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ABETTER ESTIMATOR OF POPULATION MEAN
WITH POWER TRANSFORMATION BASED ON
RANKED SET SAMPLING

Nitu Mehta (Ranka)!, V.L. Mandowara®

ABSTRACT

Ranked set sampling (RSS) was first suggested by Mclntyre (1952) to increase
the efficiency of estimate of the population mean. It has been shown that this
method is highly beneficial to the estimation based on simple random sampling
(SRS). There has been considerable development and many modifications were
done on this method. This paper presents a modified ratio estimator using prior
value of coefficient of kurtosis of an auxiliary variable x, with the intention to
improve the efficiency of ratio estimator in ranked set sampling. The first order
approximation to the bias and mean square error (MSE) of the proposed estimator
are obtained. A generalized version of the suggested estimator by applying the
Power transformation is also presented.

Key words: ranked set sampling, ratio estimator, power transformation estimator,
auxiliary variable.

1. Introduction

The traditional ratio estimator for the population mean Y of the study
variable y is defined by

Y= 9(%] (1.1)

in which it is assumed that the population mean X of the auxiliary variable x is

known. Here, 9 is the sample mean of the study variable and X is the sample
mean of the auxiliary variable.
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A
The bias and mean square error (MSE) of Y r are given by

B(Yz) = OYC(1-k) (1.2)

A _
and  MSE(Yr) = eYZ[Cj +C2(1-2k)) 3

C
where (9:1 , k=p—2L, C, and C, are coefficients of variations of y and
n

X

X respectively and o is correlation coefficient.

Singh, H.P (2004) proposed a modified ratio estimator as

L X +B,(%
Yo _y[hﬁz(x)} .

where f,(x) is known value of the coefficient of kurtosis of an auxiliary
variable.

The Bias and MSE of this estimator were given by

B(\? M) =6YACZ(A-K) (1.5)
and MSE(\%m)zQ\?Z[CyZ +AC2(A-2K)] (1.6)
where A = _L

X+ B,(X)

A
By applying the power transformation on Y m. in (1.4), the generalized
estimator is

Vo =3 XL
T+ 800

where o is a suitably chosen scalar.

(1.7)
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A
The bias and MSE of the estimator Y w. to the first degree of approximation
are respectively given by

B(Y we) = ea(ijch {Ala+1) -2k}
2 (1.8)
and MSE(\% we) = OY [C? + aAC? (ad — 2K)] (19)

in which the value of « :% makes the MSE in (1.9) minimum. Comparing

A

(1.9) when «o :E with (1.6), Singh (2004) showed that Y me is more efficient

A
than Y wm.

2. The suggested estimator

In Ranked set sampling (RSS), m independent random sets, each of size m,
are selected with equal probability and with replacement from the population. The
members of each random set are ranked with respect to the characteristic of the
study variable or auxiliary variable. Then, the smallest unit is selected from the
ordered set and the second smallest unit is selected from the second ordered set.
By this way, this procedure is continued until the unit with the largest rank is

chosen from the m™ set. This cycle may be repeated r times, so mr units have
been measured during this process.

When we rank on the auxiliary variable, let (y;;,X;,) denote a i™ judgment

ordering in the i™ set for the study variable and i™ set for the auxiliary variable.

Swami and Muttlak (1996) defined the estimator of the population ratio using
RSS as

X(m 2.1)
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As Swami and Muttlak (1996) remind that this estimator can also be used for
the population total and mean. We can write the following estimator for the

population mean as

Ao (X
Y R,RSS = y[n] [_J
Q) (2.2)

A _ _
To obtain bias and MSE of Yerprss, we put Yy, =Y(1+&,) and

X = X (1+¢&,) sothat E(g,) = E(g,) =0

V(e) - EGe) Vi)
1 1 2
= mr Y { nym} [ y Wy[l]]

similarly, V (g,) = E(&?)= [ch x(u)]

Cov(y[n] » X (n) )

and Cov(e,, &) =E(gy, €)= Y
= X=1Ym_{ nyx(u)} [epyxc yx(u)]
where 6= C; E—yz Cl= EXZZ C, SYX ~C,C,
mr Y X XY
WG = mlzr%i:sz(n) Wy _% 12 ifim and
Wiy = mlzr %iﬂxm

Here, we would also like to remind that 7, = s,y — X | Ty = Lyig =Y

and 7,y = (a5 = X) (#typy =Y)

Further, to validate first degree of approximation, we assume that the sample
size is large enough to get |&,| and |¢,| as small so that the terms involving &,

and or &, in a degree greater than two will be negligible
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A
Bias and MSE of the estimator Y rrss to the first degree of approximation are
respectively given by

A A _
B(Yrrss)=E(YRrrss)-Y
A _
Here Y rrss = Y(L+&,)(L+¢&,)™
= \?[1+ £y — & —EyE, + & +O(81)]
A _
Now E(Y rpss)=Y[L+E(?) - E(coz,)]

= B( YAR,RSS) = ?[{6(:3 - x(,)} {prxc Cx _Wyx(i)}]

= B( ?R,RSS )=V[mf (1-k)- (\Nxz(i) _WVX(i))]

C
where k = pC—y 23)

A A _
Now MSE(Y rrss)= E(Y riprss —Y)2
—2 2 o2,
=Y E[go -& —5051+51] =Y [go —& —28081]
—2
=Y [‘902 Wi +6C5 ~W,, Z(prXC C, _Wyx(i))]
= Y'lofc? + c2 -2k W2, + W2 2w, 3]

MSE( Y Rrss )=?2 [Q{Cj + sz (1- 2k)}_{\Ny[i] _Wx(i)}z] (2.4)

Adapting the estimator in (2.1) to the modified ratio estimator for the

population mean suggested by Singh (2004), given in (1.4), we develop the
following estimator

o (X480
B AN

The Bias and MSE of ?M,RSS can be found as follows:

<|>

(2.5)

A A _
B(YM rss )=E(Y mpss)-Y

X

X+ B,(X)
Suppose |A&;|<1 so that (1+Ag,)™ is expandable.

Here Y M.RSS = Y(1+ g,)(L+ Ag,) ™ where A=
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A _
S0 B(Y wirss) = Y [E(e?) — AE(&,5,)]
[/12 {6C2 x(|)} ﬂ’{epyxcycx _Wyx(i)}]
A _
and  B(Y wrss)=Y [0AC2 (L—K) - AW2, - W, )] 26
here k <y
where = p—
e
A A _
MSE(Ymrss)= E(Ymprss —Y)?
= ?Z[gj + A%l — 2/15081]
=Y loc2 -w2, + 22 (c? -W2,) - 24(6p,.C,C, -W, )]

ylil
:?2 [H{Cj +/1CX (;L_Zk)}_{vv)/['] +/12WZ 2/AL\Nyx(i)}]

x(i)

MSE (Y wm rss )=VZ [H{Ci +AC (A~ 2K)}=W,p5y — }“Wx(i)}z] (2.7)

A
By applying the power transformation on Y wm rss , the generalized estimator is
given by

A —
Y Ma,Rrss y[n]( X+ /P (X)J

X + B,(X) (2.8)

A
The bias and MSE of the estimator Y mqrss to the first degree of
approximation, are respectively given by
A A

B( ?Ma,RSS )=E( ?Ma,Rss )-V

A _
Here Y marss = Y (L+&,)(L+ Ag,) ™
= \7{(1+ go){l— Aag, + a(a2+ 1 12812 + 0(81)H

B( Y Ma,RSS ) = [/12 @{6{:2 sz(u)} la{@pyXCny _WyX(i) }}

= 90{%]/1@{/1((1 +1) - 2k - [ZJﬂ“{ﬁ(anl)Wx(u) ZWyx(i)}
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= B( Y Marss )=(;],1a [HCXZ{%(OC +1) -2k} - {/1(05 + D)W,y = 2W,, }] (2.9)

where k= p—L
P

X

A A _
and MSE( Y marss) = E(Y Marss —Y)?
52 a(a+1) ?
=Y E{go — Ao, + A Tgf —ﬂa€081i|
VL 2 2 2.2
=Y E[go +Aae; —2/1058081]

—2
=Y [Hcyz ‘WyZ[i] + A’ (6C ‘sz(i))‘u“(epyxcycx _Wyx(i))]

A _
MSE( Y magss)=Y  [{C2 + aAC? (@ — 2K)}—{W,, — AW, ¥

(2.10)
let A= (W, —2aW,, )
By this way, we can write (2.10) as
A A

It is easily shown that MSE of the proposed estimator using ranked set
sampling is always smaller than the estimator, suggested by Singh (2004) given in

(1.7), because A is a non-negative value. As a result, it is shown that the
A A

proposed estimator VMa,Rss is more efficient than the estimator\?,v,a .

3. Optimality of a

A
The optimum value of « to minimize the MSE of Y wma,rss Can easily be
found as follows:

A
OMSE(Y Ma rss ) _
o

= 0C2(24%a - 2kA)- (222aW 2, —2AW, ) )= 0

0
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= 6C2 (222 - 2k2)- (222aW 2, —22W,,, )= 0
= ﬁ,a(ecf -W. )+ (Wyx(i) - chzk): 0

2
_ G W (3.1)

=>a
Aoci-w,)

When we replace « by «' in (2.10), we obtain minimum MSE of the
proposed estimator as follows:

!

A
MiN.MSE( Y magss) =Y °[0{C? + a'aC?(2a’ - 2k)}- W2, + Aa (2a W2, —2W ¢, )]

A _
= MSE( Y marss )=Y [0{C2 + a/AC? (@4 - 2K)}—{W, ;, — 2aW, )} ] (32)
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