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ABSTRACT 

Ranked set sampling (RSS) was first suggested by McIntyre (1952) to increase 
the efficiency of estimate of the population mean. It has been shown that this 
method is highly beneficial to the estimation based on simple random sampling 
(SRS). There has been considerable development and many modifications were 
done on this method. This paper presents a modified ratio estimator using prior 
value of coefficient of kurtosis of an auxiliary variable x, with the intention to 
improve the efficiency of ratio estimator in ranked set sampling. The first order 
approximation to the bias and mean square error (MSE) of the proposed estimator 
are obtained. A generalized version of the suggested estimator by applying the 
Power transformation is also presented.  

Key words: ranked set sampling, ratio estimator, power transformation estimator, 
auxiliary variable. 

1. Introduction 

The traditional ratio estimator for the population mean Y  of the study 
variable y  is defined by 

in which it is assumed that the population mean X  of the auxiliary variable x  is 
known. Here, y  is the sample mean of the study variable and x  is the sample 
mean of the auxiliary variable.  
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The bias and mean square error (MSE) of RY
Λ

  are given by  
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k ρ= ,  yC  and xC  are coefficients of variations of y  and 

x  respectively and ρ  is correlation coefficient. 
 

Singh, H.P (2004) proposed a modified ratio estimator as 

 
where )(2 xβ  is known value of the coefficient of kurtosis of an auxiliary 
variable. 
 

The Bias and MSE of this estimator were given by 
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By applying the power transformation on αMY
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 in (1.4), the generalized 
estimator is  
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where α is a suitably chosen scalar.   

 (1.7) 
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The bias and MSE of the estimator αMY
Λ

 to the first degree of approximation 
are respectively given by  

 

 

in which the value of  
λ

α k
=  makes the MSE in (1.9) minimum. Comparing 

(1.9) when  
λ

α k
=  with (1.6), Singh (2004) showed that αMY

Λ

 is more efficient 

than MY
Λ

. 

2. The suggested estimator 

In Ranked set sampling (RSS), m independent random sets, each of size m , 
are selected with equal probability and with replacement from the population. The 
members of each random set are ranked with respect to the characteristic of the 
study variable or auxiliary variable. Then, the smallest unit is selected from the 
ordered set and the second smallest unit is selected from the second ordered set. 
By this way, this procedure is continued until the unit with the largest rank is 
chosen from the thm  set. This cycle may be repeated r  times, so mr units have 
been measured during this process. 
When we rank on the auxiliary variable, let ),( )(][ ii xy  denote a thi  judgment 

ordering in the thi  set for the study variable and thi  set for the auxiliary variable. 

Swami and Muttlak (1996) defined the estimator of the population ratio using 
RSS as  
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As Swami and Muttlak (1996) remind that this estimator can also be used for 
the population total and mean. We can write the following estimator for the 
population mean as  
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Here, we would also like to remind that Xixix −= )()( µτ  ,   Yiyiy −= ][][ µτ   

and )( )()( Xixiyx −= µτ )( ][ Yiy −µ . 
 
Further, to validate first degree of approximation, we assume that the sample 

size is large enough to get 0ε  and 1ε  as small so that the terms involving 0ε  

and or 1ε  in a degree greater than two will be negligible. 
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Bias and MSE of the estimator RSSRY ,

Λ

 to the first degree of approximation are 
respectively given by  

(B RSSRY ,

Λ

)= (E RSSRY ,

Λ

)-Y  

Here RSSRY ,

Λ

 = 1
10 )1)(1( −++ εεY  

 = [ ])(1 1
2
11010 εεεεεε oY ++−−+  

Now    (E [ ])()(1) 10
2
1, εεε EEYY RSSR −+=

Λ

 

(B⇒ RSSRY ,

Λ

)  =  { } { }[ ])(
2

)(
2

iyxxyyxixx WCCWCY −−− θρθ   

Now    (MSE RSSRY ,

Λ

) = (E RSSRY ,

Λ
2)Y−  

    = [ ]22
11010

2
εεεεε +−−EY  = [ ]10

2
1

2
0

2
2 εεεε −−Y  

    = ( )[ ])(
2

)(
22

][
22

2 iyxxyyxixxiyy WCCWCWCY −−−+− θρθθ  

    = [ ]}2{)}21({ )(
2

)(
2

][
222

iyxixiyxy WWWkCCY −+−−+θ  

Adapting the estimator in (2.1) to the modified ratio estimator for the 
population mean suggested by Singh (2004), given in (1.4), we develop the 
following estimator 

The Bias and MSE of RSSMY ,
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 can be found as follows: 
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By applying the power transformation on RSSMY ,

Λ

, the generalized estimator is 
given by 

 The bias and MSE of the estimator RSSMY ,α
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 to the first degree of 
approximation, are respectively given by  
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By this way, we can write (2.10) as  

 
It is easily shown that MSE of the proposed estimator using ranked set 

sampling is always smaller than the estimator, suggested by Singh (2004) given in 
(1.7), because A  is a non-negative value. As a result, it is shown that the 

proposed estimator RSSMY ,α
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 is more efficient than the estimator αMY
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3. Optimality of α 

The optimum value of α  to minimize the MSE of RSSMY ,α

Λ

can easily be 
found as follows: 
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When we replace  α  by α ′  in (2.10), we obtain minimum MSE of the 
proposed estimator as follows: 
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