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BEST LINEAR UNBIASED ESTIMATORS OF 
POPULATION MEAN ON CURRENT OCCASION IN 

TWO-OCCASION ROTATION PATTERNS 
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ABSTRACT 

Best linear unbiased estimators have been proposed to estimate the population 
mean on current occasion in two-occasion successive (rotation) sampling. 
Behavior of the proposed estimators have been studied and their respective 
optimum replacement policies are discussed. Empirical studies are carried out to 
examine the performance of the proposed estimators and consequently the 
suitable recommendations are made. 

Key words: successive sampling, auxiliary information, unbiased, variance, 
optimum replacement policy. 

1. Introduction 

Often in sample surveys on successive occasions for the same population, the 
current or most recent estimates are of the primary interest if the characteristics of 
the population are likely to change rapidly over time. For example, monthly 
surveys are carried out to collect data on prices of goods to determine the 
consumer price index, labor force surveys are conducted on monthly basis to 
estimate the numbers of people in employment and industries, collect information 
at regular intervals to know popularity of their products, etc. In such studies, 
successive (rotation) sampling may be an impressive statistical tool to generate 
reliable and cost effective estimates of different population parameters on 
successive points of time (occasions) in chronological order. It also provides 
effective estimates of changing patterns over a period of time. 

The problem of successive (rotation) sampling with a partial replacement of 
sampling units was initiated by Jessen (1942) in the analysis of agricultural 
survey data. He pioneered using the entire information collected during the 
previous investigations. The theory of successive (rotation) sampling was further 
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extended by Patterson (1950), Rao and Graham (1964), Gupta (1979), Das (1982) 
and Chaturvedi and Tripathi (1983), among others. Sen (1971) applied this theory 
with success in designing the strategies for estimating the population mean on the 
current occasion using information on two auxiliary variables readily available on 
the previous occasion. Sen (1972, 1973) extended his work for several auxiliary 
variables. Singh et al. (1991) and Singh and Singh (2001) used the auxiliary 
information available on the current occasion and proposed estimators for the 
current population mean in two-occasion successive (rotation) sampling. Singh 
(2003) generalized his work for h-occasion successive sampling.  

In many situations, information on an auxiliary variable may be readily 
available on the first as well as on the second occasion; for example, tonnage (or 
seat capacity) of each vehicle or ship is known in survey sampling of 
transportation, number of beds in different hospitals may be known in hospital 
surveys, number of polluting industries and vehicles is known in environmental 
surveys, nature of employment status, educational status, food availability and 
medical aids of a locality is well known in advance for estimating various 
demographic parameters in demographic surveys. Utilizing auxiliary information 
on both the occasions, Feng and Zou (1997), Biradar and Singh (2001), Singh 
(2005), Singh and Priyanka (2006, 2007, 2008), Singh and Karna (2009a, b) have 
proposed several estimators for estimating the population mean on current 
(second) occasion in two-occasion successive (rotation) sampling. Recently Singh 
and Vishwakarma (2009) have suggested a general estimation procedure for 
population mean in successive (rotation) sampling. Motivated with the above 
works and utilizing the information on an auxiliary variable, readily available on 
both the occasions, we have proposed best linear unbiased estimators for 
estimating the current population mean in two-occasion successive (rotation) 
sampling. Behaviors of the proposed estimators are examined through empirical 
means of comparison and subsequently the suitable recommendations are made. 

2. Sample structures and notations on two occasions 

Let U = (U1, U2, - - -, UN) be the finite population of N (large) units which is 
assumed to remain unchanged over two occasions. Let x (y) be the character 
under study on the first (second) occasion respectively. It is assumed that the 
information on an auxiliary variable z (stable over occasion), is readily available 
for both the occasions, whose population mean is known and it is highly 
positively correlated to x and y on the first and second occasions respectively. 
A simple random sample (without replacement) of size n units is drawn on the 
first occasion and a random sub-sample of size m = nλ units from the sample on 
the first occasion is retained (matched) for its use on the current (second) 
occasion. A fresh (un-matched) sample of size u = (n-m) = nμ units is drawn on 
the current occasion from the entire population by simple random sampling 
(without replacement) method so that the sample size on the current occasion is 
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also n. λ and μ (λ+μ =1) are the fractions of the matched and fresh samples, 
respectively, on the current occasion. We consider the following notations for 
further use:  

X , Y, Z : Population means of the variables x, y  and z respectively. 

mx , nx , uy , m y , uz , mz , nz : Sample means of the respective variables based on  
   the sample sizes shown in suffices. 

ρyx, ρyz, ρxz: Correlation coefficients between the variables shown in suffices.  
N

2 -1 2
x i

i = 1
S  = (N-1) (x -X)∑ : Population mean square of x. 

2
yS , 2

ZS  : Population mean squares of y and z respectively. 

3. Formulation of the estimator 

To estimate the population mean Y on the current (second) occasion, we 
consider the following minimum variance linear unbiased estimator of Y , which 
is as follows: 

{ } { } { }1 1 u 2 m 3 m 4 n 5 u 6 m 7 n 8T  = a y + a y + a x + a x + a z + a z + a z + a Z          (1) 

where 1a , 2a , 3a , 4a , 5a , 6a , 7a
 
and 8a  are constants to be determined so that 

(i) T1  becomes an unbiased estimator of Y  and 

(ii)  the variance of T1 attains a minimum value. 

For unbiasedness condition, we must have  
 ( )1 2a +a  = 1, ( )3 4a +a  = 0  and ( )5 6 7 8a +a +a +a  = 0 . 

Substituting 1 1a = φ , 3 1a  = β  and ( )8 5 6 7a = - a + a + a , the estimator T1 

defined in equation (1) reduces to the following form 
   

( ){ } { } ( ) ( ) ( ){ }1 1 u 1 m 1 m n 5 u 6 m 7 nT  = φ y + 1-φ y +β x -x + a z -Z +a z -Z +a z -Z   

   ( ) ( ) { } ( ) ( )1 u 1 u 1 m 2 m n 3 m 4 n = φ y +k z -Z + 1-φ y +k x -x +k z -Z +k z -Z        

         ( )1 1u 1 1m= φ T + 1-φ T                        (2) 

where ( )1u u 1 uT  = y + k z -Z ; an estimator based on the fresh sample of size u 
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and ( ) ( ) ( )1m m 2 m n 3 m 4 nT = y +k x -x +k z -Z +k z -Z ; an estimator based on the 

matched sample of size m, 5
1

1

ak  = 
φ

, 1
2

1

βk  = 
1-φ

, 6
3

1

ak  = 
1-φ

, 7
4

1

ak  = 
1-φ

 and 

1φ  are  the unknown constants to be determined under certain criterions. 

Remark 3.1. For estimating the population mean on each occasion the estimator 
T1u is suitable, which implies that more belief on T1u could be shown by choosing 

1φ  as 1 (or close to 1), while for estimating the change over the occasions, the 
estimator T1m could be more useful and hence 1φ  might be chosen as 0 (or close 
to 0). For asserting both the problems simultaneously, the suitable (optimum) 
choice of 1φ  is desired. 

4. Properties of the estimator T1 

1T  is an unbiased estimator of Y whose variance, ignoring finite population 
corrections, is derived in the following theorem.  
Theorem 4.1. Variance of the estimator T1 is obtained as   

( ) ( ) ( )22
1 1 1u 1 1mV( T ) = φ  V T + 1-φ V T               (3) 

where  2
1u 1 y

1V(T ) = η S
u

                      (4) 

   2
1m 2 3 4 y 

1 1 1 1V(T )  = η + - η + η S
m m n n
  

    
                (5) 

 ( )2
1 1 1 yzη = 1+k +2k ρ , ( )2

2 3 3 yzη = 1+k +2k ρ ,  

 ( )2
3 2 2 yx 2 3 xzη = k +2k ρ +2k k ρ  and ( )2

4 4 4 yz 3 4η = k +2k ρ +2k k . 

Proof: It is obvious that the variance of the estimator T1 is given by    

            ( ) ( )( ) 22

1 1 1 1u 1 1mV(T ) = E T -Y = E φ T -Y + 1-φ T -Y       

                        ( ) ( ) ( )22
1 1u 1 1m 1 1 11= φ  V(T ) + 1-φ V T +2φ 1-φ C                

(6) 

where 

( ) ( )( )2 2

1u 1u 1m 1m 11 1u 1mV T =E T -Y , V(T ) = E T -Y  and  C  = E T -Y T -Y           

Substituting the expressions of T1u and T1m in equation (6), taking 
expectations and ignoring finite population corrections, we have the expression of 
the variance of the estimator T1 as given in equation (3).  
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Remark 4.1. Results in equation (3) are derived under the assumption that the 
population mean squares of the variables x, y and z are almost equal. 

Remark 4.2. 1uT  and 1mT  are based on two independent samples of sizes u and 

m respectively and they are unbiased estimators of Y , hence the covariance term 
11C between 1uT  and 1mT  vanishes. 

5. Minimum variance of the estimator T1 

Since the variance of the estimator T1 in equation (3) is the function of the 
unknown constants k1, k2, k3, k4 and 1φ , therefore it is minimized with respect to 
these constants, and subsequently the optimum values of k1, k2, k3, k4 and 1φ  are 
obtained as  

*
1 yzk  = -ρ                        (7) 

yz xz yx*
2 2

xz

ρ ρ -ρ
k   = 

1-ρ
                    (8) 

yx xz yz*
3 2

xz

ρ ρ -ρ
k  = 

1-ρ
                    (9) 

( )xz yz xz yx*
4 2

xz

ρ ρ ρ -ρ
k  = 

1-ρ
                 (10)  

1m
1

1u 1m
opt

V(T )φ  = 
V(T )+V(T )

              (11) 

Substituting the values of *
1k , *

2k , *
3k  and *

4k  in equations (4) and (5), we get 
the optimum variances  of  T1u and T1m  as  

   
2

1u opt 1 y
1V(T )  = A S
u

                 (12) 

   2
1m opt 2 3 4 y 

1 1 1 1V(T )   = A + - A + A S
m m n n
  

    
        (13) 

where 2
1 yzA  = 1-ρ , 

( )
( )

2 2 2 2 2
xz xz yx yz yz yx xz yz

2 22
xz

1+ρ ρ -2+ρ +2ρ -2ρ ρ ρ -ρ
A  = 

1-ρ
, 

2*
3 2A  = -k   

and 
2*

4 4A  = -k .  
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Further, substituting the values of 1u optV(T )  and 1m optV(T )  from equations 

(12) and (13) in equation (11), we get the optimum value 1opt
φ  with respect to *

1k , 
*
2k , *

3k  and *
4k  as  

    

1m opt*
1opt

1u opt 1m opt

V(T )
φ  = 

V(T ) +V(T )              

(14) 

Again from equation (14) substituting the value of *
1optφ  in equation (3), we 

get the optimum variance of 1T  as 

    
( )

( ) ( )
( ) ( )

1m 1uopt opt
1 opt

1u 1mopt opt

V T .V T
V T  = 

V T +V T
     

     (15) 

Further, substituting the values from equations (12) and (13) in equations 
(14) and (15), the simplified values of *

1optφ and ( )1 opt
V T   are obtained as

 

     

( )1 5 1 6*
1opt 2

1 1 7 1 6

μ A +μ A
φ  = 

A +μ A +μ A
 
 
           

      (16) 

    
( )1 5 1 6 2

1 opt y2
1 1 7 1 6

A A +μ A1V(T )  = S
n A +μ A +μ A
 
 
 

              (17)  

where 5 2 4A  = A +A , 6 3 4A  = A -A , 7 5 1A  = A -A   and 1μ  is the fraction of 
fresh sample for the estimator 1T .      

6. Optimum replacement policy 

To determine the optimum value  of μ1 (fraction of a sample to be drawn 
afresh on the current occasion) so that the population mean Y  may be estimated 
with the maximum precision, we minimize the ( )1 opt

V T  given in equation (17) 

with respect to μ1, which result in a quadratic equation in μ1  and respective 
solutions of μ1  say 0

1μ  is given below: 
2

1 1 2 1 3Q μ +2Q μ +Q =0              (18) 

2
2 2 1 30

1
1

-Q ± Q -Q Q
μ =

Q
             (19) 

where 2
1 6Q  = A , 2 5 6Q  = A A  and 3 7 5 1 6Q  = A A -A A . 
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From equation (19), it is obvious that the real values of 0
1μ  exist if the 

quantity under square root is greater than or equal to zero. Two real values of 0
1μ  

are possible. Hence, while choosing the value of 0
1μ , it should be remembered 

that 0
10 μ 1≤ ≤ . All other values of 0

1μ  are inadmissible. Substituting the 

admissible value of 0
1μ  say 1μ̂  from equation (19) into equation (17), we have the 

optimum value of ( )1 opt
V T as            

        
( )1 5 1 60 2

1 opt y2
1 1 7 1 6

ˆA A +μ A1V(T )  = S
ˆ ˆn A +μ A +μ A

 
 
 

            (20) 

7. Efficiency comparison 

To study the performance of the estimator 1T  the percent relative efficiencies 
of the estimator 1T  with respect to (i) ny , when there is no matching, and (ii) the 
estimator 2T , when no auxiliary information is used at any occasion, have been 
computed for different choices of correlations. The estimator 2T  is defined under 
the same circumstances as the estimator 1T , but in the absence of the auxiliary 
variable z on both the occasions and proposed as   

{ } { }2 1 u 2 m 3 m 4 nT  = b y + b y + b x + b x        (21) 

where 1b , 2b , 3b  and 4b  are constants to be determined so that 

(i) T2  becomes an unbiased estimator of Y  and 

(ii) The variance of T2 attains a minimum value. 

For unbiasedness condition, we must have ( )1 2b +b  = 1  and ( )3 4b +b  = 0 . 

Substituting 1 2b = φ  and 3 2b  = β , the estimator T2 defined in equation (21) 
reduces to the following form 
 ( ){ } { }2 2 u 2 m 2 m nT  = φ y + 1-φ y +β x -x   

                 ( ) { }2 u 2 m 5 m n = φ y + 1-φ y +k x -x    

                  ( )2 2u 2 2m= φ T + 1-φ T                    (22)  

where 2u uT  = y ; an estimator based on the fresh sample of size u  
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and  ( )2m m 5 m nT = y +k x -x ; an estimator based on the matched sample of 

size m, 2
5

2

βk  = 
1-φ

  and 2φ  are  the unknown constants to be determined in such 

a way that they minimize the variance of the estimator 2T . Following the 
methods discussed in Sections 4, 5 and 6, the optimum values of 5k , 2μ  
(fraction of fresh sample for the estimator 2T  ), variance of ny  and optimum 
variance of 2T  for large N are given by 

 *
5 yxk  = -ρ                        (23) 

 
2
yx

2 2
yx

1± 1-ρ
μ̂  = 

ρ
                     (24) 

 ( )
2
y

n

S
V y  = 

n
                     (25) 

 

2
2 yx0 2

2 opt y2 2
2 yx

ˆ1 - μ ρ1V(T )  = S
ˆn 1 - μ ρ

 
 
  

                 (26) 

For different choices of yxρ , xzρ  and yzρ , Table 1 shows the optimum values 

of 1μ  and percent relative efficiencies 1E  and 2E  of the estimator 1T  with 
respect to the estimators ny  and 2T  respectively,  where 

 ( )
( )

n
1 0

1 opt

V y
 E  = ×100 

V T
 and 

 

( )
( )

0
2 opt

2 0
1 opt

V T
E  = ×100.

V T
 

8. Analysis of results for estimator T1  

The following conclusions can be read out from Table 1. 
 (a) For fixed values of ρxz and ρyz, the values of 1μ  and 1E  are increasing with the 
increasing values of ρyx. The values of 2E  are decreasing for the lower values of 
ρyx while increasing pattern may be seen for the higher values of ρyx. 
 (b) For fixed values of ρxz and ρyx, the values of 1μ  are decreasing with the 
increasing values of ρyz.. Values of 1E  and 2E  are increasing with the increasing 
values of ρyz..This behavior is highly desirable, since it concludes that if highly 
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correlated auxiliary variable is available, it pays in terms of enhance precision of 
the estimates as well as it reduces the cost of the survey. 
 (c) For fixed values of ρyz and ρyx, the values of 1μ  are decreasing with the 
increasing values of ρxz . Similar patterns are visible for the efficiencies 

1E and 2E . 

 (d) Minimum value of 1μ  is 0.4329, which indicates that only 43 percent of the 
total sample size is to be replaced on the current occasion for the corresponding 
choices of the correlations. 

9. Use of auxiliary variable only at the current occasion  

In section 3 we have formulated the estimator 1T  on the assumption that 
information on a stable auxiliary variable z was readily available on both the 
occasions. If the duration between two successive occasions is small then one 
may expect the stability of the auxiliary variable but the stability character of the 
auxiliary variable may not sustain if the duration between two successive 
occasions is appreciably large. In such situation it may not be wise to use the 
auxiliary information from the previous occasion. Motivated with the above 
argument, we formulate the estimator 3T  when the information on an auxiliary 
variable z is available only on the current (second) occasion. The estimator 3T  is 
formulated as 

{ } { } { }3 1 u 2 m 3 m 4 n 5 u 6 m 7T  = c y + c y + c x + c x + c z + c z + c Z        (27) 

where 1c , 2c , 3c , 4c , 5c , 6c
 
and 7c  are constants to be determined so that 

(i) T3  becomes an unbiased estimator of Y  and 

(ii) The variance of T3 attains a minimum value. 

For unbiasedness condition, we must have  

 ( )1 2c +c  = 1, ( )3 4c +c  = 0  and ( )5 6 7c +c +c  = 0 .  

Substituting 1 3c  = φ , 3 3c  = β  and ( )7 5 6c = - c + c , the estimator T3 defined 
in equation (27) reduces to the following form 
 ( ){ } { } ( ) ( ){ }3 3 u 3 m 3 m n 5 u 6 mT  = φ y + 1-φ y +β x -x + c z -Z +c z -Z   

                ( ) ( ) { } ( )3 u 1 u 3 m 2 m n 3 m = φ y +l z -Z + 1-φ y +l x -x +l z -Z        

    ( )3 3u 3 3m = φ T + 1-φ T                       (28) 
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where ( )3u u 1 uT  = y + l z -Z ; an estimator based on the fresh sample of size u 

and ( ) ( )3m m 2 m n 3 mT = y +l x -x +l z -Z ; an estimator based on the matched sample 

of size m, 5
1

3

cl  = 
φ

, 3
2

3

βl  = 
1-φ

, 6
3

3

cl  = 
1-φ

 and 3φ  are  the unknown constants to 

be determined under certain criterions. 

9.1. Properties of the estimator T3 

3T  is an unbiased estimator of Y whose variance is given in the following 
theorem. 
Theorem 9.1. Variance of the estimator T3 is obtained as   

( ) ( ) ( ) ( )22
3 3 3u 3 3mV T  = φ  V T + 1-φ V T               (29) 

 where ( ) ( )2 2
3u 1 1 yz y

1V T  = 1+l +2l ρ S
u

                 (30) 

      ( ) ( ) ( )2 2 2
3m 3 3 yz 2 2 yx 2 3 xz y 

1 1 1V T   = 1+l +2l ρ + - l +2l ρ +2l l ρ S
m m n
  

    
    (31) 

Proof: It is obvious that the variance of the estimator T3 is given by    

             ( ) ( ) ( )( ) 22

3 3 3 3u 3 3mV T = E T -Y = E φ T -Y + 1-φ T -Y       

                         ( ) ( ) ( ) ( )22
3 3u 3 3m 3 3 11= φ  V T  + 1-φ V T +2φ 1-φ R         

(32) 

where ( ) 2

3u 3uV T  = E T -Y   , ( ) 2

3m 3mV T = E T -Y    and 

( )( )11 3u 3m R  = E T -Y T -Y    

 
Substituting the expressions of 3uT  and 3mT  in equation (32), taking 

expectations and ignoring finite population corrections, we have the expression of 
the variance of T3 as given in equation (29).  

 

Remark 9.1. Results in theorem 9.1 is derived similar to the results obtained in 
theorem 4.1. 
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9.2. Minimum variance of the estimator T3 

Since the variance of the estimator T3  in equation (29) is the function of the 
unknown constants l1, l2, l3  and 3φ , therefore it is  minimized with respect to 
these constants  and subsequently the optimum values of l1, l2, l3 and 3φ  are 
obtained as  

*
1 yzl  = -ρ                     (33) 

yz xz yx*
2 2

3 xz

ρ  ρ -ρ
l   = 

1-μ ρ
                 (34) 

3 yx xz yz*
3 2

3 xz

μ ρ ρ -ρ
l  = 

1-μ ρ
                 (35) 

( )
( ) ( )

3m
3

3u 3m
opt

V T
φ  = 

V T +V T
            (36) 

Now, substituting the values of *
1l , *

2l  and *
3l  in equations (30) and (31), we 

get the optimum variances of  3uT  , 3mT  as  

( ) 2
3u 1 yopt

1V T  = B S
u

              (37)  

     ( )
( )

2
21 3 5 3 2

3m y 2opt 2
3 xz

B +μ B +μ B1V T   = S
m 1-μ ρ

 
 
 
 

       (38) 

where 2
1 yzB  = 1-ρ , ( )2 2 2

2 xz xz yx yz yx xzB  = ρ ρ +ρ -2ρ ρ ρ , 2
3 xz 1B  = -2ρ B , 

( )2

4 yz xz yxB  = - ρ ρ -ρ  and 5 3 4B  = B +B . 

Further, substituting the values of 3u optV(T )  and 3m optV(T )  from equations 

(37) and (38) in equation (36), we get the optimum value 1opt
φ  with respect to *

1l , 
*
2l  and *

3l  as  

     

( )
( ) ( )

3m opt*
3opt

3u 3mopt opt

V T
φ  = 

V T +V T
        

(39) 

Again, from equation (39) substituting the value of *
3optφ  in equation (29), we 

get the optimum variance of T3 as 
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( )

( ) ( )
( ) ( )

3m 3uopt opt
3 opt

3m 3uopt opt

V T  V T
V T  = 

V T +V T
       

(40) 

Further, substituting the values from equations (37) and (38) in equations 
(39) and (40), the simplified values of *

3optφ and ( )3 opt
V T   are obtained as

 

    

( )2
3 1 3 5 3 2*

3opt 3 2
3 6 3 7 3 3 1

μ B +μ B +μ B
φ  = 

μ B +μ B +μ B +B

 
 
          

      (41)  

      ( )
2

28 3 9 3 10
3 y3 2opt

3 6 3 7 3 3 1

B +μ B +μ B1V T  = S
n μ B +μ B +μ B +B
 
 
 

            (42)  

                                                                                 
where 4

6 2 1 xzB  = B -B ρ , 4 2
7 1 xz 1 xz 5B  = B ρ +2B ρ +B , 2

8 1B = B , 9 1 5B = B B , 

10 1 2B  = B B  and 3μ  is the fraction of fresh sample for the estimator T3.    

9.3. Optimum replacement policy 

To determine the optimum value  of μ3 (fraction of a sample to be drawn 
afresh on the current occasion) so that population mean Y  may be estimated 
with the maximum precision, we minimize the ( )3 opt

V T  given in equation (42) 

with respect to μ3, which result in fourth degree equation in μ3  and respective 
solutions of μ3  is discussed below: 

4 3 2
1 3 2 3 3 3 4 3 5Pμ +P μ +P μ +P μ +P  = 0            (43) 

where 1 6 10P  = -B B , 2 6 9P  = -2B B ,  

3 3 10 7 9 6 8P  = B B -B B -3B B , ( )4 1 10 7 8P  = 2 B B -B B ,  

5 1 9 3 8P  = B B -B B  
From equations (43) it is obvious that the four real values of 3μ  are possible. 

Hence, while choosing the values of 3μ , it should be remembered that 

30 μ 1≤ ≤ . All the other values of 3μ  are inadmissible. If more than one 
admissible values are obtained, the lowest admissible value is the best choice as it 
reduces the cost of the survey. From equation (43), substituting the admissible 
value of 3μ  say 3μ̂  into equation (42), we have the optimum value of 

( )3 opt
V T as           
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       ( ) ( )2
1 1 3 4 3 50 2

3 y3 2opt
3 6 3 7 3 8 1

ˆ ˆB B -μ B +μ B1V T  = S
ˆ ˆ ˆn μ B +μ B +μ B +B

 
 
  

          (44) 

9.4. Efficiency comparison 

To study the performance of the estimator 3T , the percent relative efficiencies 

of the estimator 3T  with respect to (i) ny , when there is no matching, and (ii) the 

estimator 2T , when no auxiliary information is used at any occasion, have been 
obtained for different choices of correlations. For different choices of yxρ , 

xzρ and yzρ , Table 2  shows  the optimum values of 3μ  and percent relative 

efficiencies 3E  and 4E  of the estimator 3T   with respect to  the estimators ny  
and 2T respectively,  where  

 ( )
( )

n
3 0

3 opt

V y
 E  = ×100 

 V T
and

( )
( )

0
2 opt

4 0
3 opt

V T
 E  = ×100.

V T
 

9.5. Analysis of results for estimator T3  

The following conclusions can be read out from Table 2: 

 (a) For fixed values of ρxz and ρyz, the values of 3μ  and 3E  are increasing with the 
increasing values of ρyx. Efficiencies 4E  are decreasing for the increasing values 
of ρyx.  

 (b) For fixed values of ρxz and ρyx, the values of 3μ  increase for the lower values 
of ρyz and decrease for the higher values of ρyz. Efficiencies 3E  and 4E  are 
increasing with the increasing values of ρyz .  

 (c) For fixed values of ρyz and ρyx, the values of 3μ  are increasing with the 
increasing values of ρxz. Efficiencies 3E  and 4E  increase for the lower values of 
ρxz while decreasing patteren may also be seen for the higher values of ρxz . 

 (d) Minimum value of 3μ  is 0.5365, which indicates that only 54 percent of the 
total sample size is to be replaced at the current occasion for the corresponding 
choices of the correlations. 
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Table 1. Optimum values of 1μ  and percent relative efficiencies of 1T  with 
respect to ny and 2T  

 Note: “*” indicates 1μ̂ do not exist.  

ρxz↓ ρyz↓ ρyx→ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0.5 0.5 

1μ̂  

1E  

2E  

0.5006 

133.48 

130.41 

0.5051  

134.69 

129.07 

0.5147   

137.25 

128.06 

0.5307 

141.51 

127.35 

0.5556  

148.14 

126.97 

0.5953 

158.74 

126.99 

0.6672 

177.91 

127.72 

0.7 
1μ̂  

1E  

2E  

0.4956 

194.36 

189.88 

0.4965  

194.70 

186.58 

0.5039 

197.60 

184.36 

0.5190 

203.53 

183.17 

0.5450 

213.74 

183.18 

0.5899 

231.35 

185.08 

0.6818 

267.36 

191.95 

0.9 
1μ̂  

1E  

2E  

0.4352 

458.11 

447.55 

0.4329 

455.69 

436.67 

0.4404  

463.55 

432.49 

0.4597 

483.92 

435.53 

0.4982 

524.45 

449.49 

0.5823 

612.93 

490.35 

* 

- 

- 

0.7 0.5 
1μ̂  

1E  

2E  

0.4987 

132.97 

129.91 

0.4996 

133.22 

127.65 

0.5070 

135.19 

126.13 

0.5221 

139.22 

125.30 

0.5481 

146.16 

125.27 

0.5929 

158.11 

126.49 

0.6844 

182.51 

131.03 

0.7 
1μ̂  

1E  

2E  

0.5187 

203.39 

198.71 

0.5040   

197.62 

189.37 

0.5000 

196.09 

182.96 

0.5060 

198.41 

178.57 

0.5232 

205.17 

175.85 

0.5574 

218.58 

174.86 

0.6271 

245.91 

176.55 

0.9 
1μ̂  

1E  

2E  

0.6616 

696.46 

680.42 

0.5334 

561.47 

538.03 

0.4915 

517.36 

482.70 

0.4796 

504.86 

454.37 

0.4897 

515.52 

441.84 

0.5286 

556.42 

445.13 

0.6436 

677.46 

486.37 

0.9 0.5 
1μ̂  

1E  

2E  

0.4820 

128.54 

125.58 

0.4883    

130.20 

124.77 

0.5003 

133.43 

124.48 

0.5201 

138.68 

124.81 

0.5515 

147.07 

126.05 

0.6050 

161.33 

129.06 

0.7230 

192.78 

138.41 

0.7 
1μ̂  

1E  

2E  

0.6548   

256.79 

250.87 

0.5435   

213.15 

204.25 

0.5049 

198.01 

184.74 

0.4943 

193.85 

174.47 

0.5051 

198.07 

169.76 

0.5440 

213.33 

170.66 

0.6564 

257.41 

184.81 

0.9 
1μ̂  

1E  

2E  

* 

- 

- 

* 

- 

- 

* 

- 

- 

* 

- 

- 

0.5509 

579.85 

496.96 

0.5003 

526.68 

421.35 

0.5317 

559.70 

401.83 
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Table 2. Optimum values of 3μ  and percent relative efficiencies of 3T  with 
respect to ny and 2T  

Note: “*” indicates 3μ̂ do not exist.  

ρxz↓ ρyz↓ ρyx→ 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0.5 0.5 

3μ̂  

3E  

4E  

0.5365 

133.46 

130.38 

0.5410 

134.50 

128.88 

0.5505 

136.70 

127.54 

0.5663 

140.32 

126.28 

0.5907 

145.89 

125.04 

0.6294 

154.64 

123.71 

0.6983 

169.95 

122.02 

0.7 
3μ̂  

3E  

4E  

0.5367 

196.35 

191.83 

0.5367 

196.35 

188.15 

0.5434 

198.63 

185.32 

0.5580 

203.56 

183.20 

0.5834 

212.11 

181.79 

0.6273 

226.71 

181.37 

0.7163 

255.75 

183.61 

0.9 
3μ̂  

3E  

4E  

0.5572 

545.67 

533.09 

0.5381 

528.32 

506.26 

0.5381 

528.32 

492.93 

0.5572 

545.66 

491.09 

0.6065 

589.99 

505.66 

0.7550 

719.76 

575.81 

* 

- 

- 

0.7 0.5 
3μ̂  

3E  

4E  

0.5842 

133.48 

130.41 

0.5842 

133.48 

127.91 

0.5907 

134.72 

125.70 

0.6049 

137.40 

123.66 

0.6294 

141.96 

121.67 

0.6712 

149.55 

119.64 

0.7538 

163.89 

117.66 

0.7 
3μ̂  

3E  

4E  

0.6014 

201.09 

196.46 

0.5872 

197.15 

188.92 

0.5834 

196.09 

182.95 

0.5892 

197.69 

177.92 

0.6058 

202.30 

173.38 

0.6381 

211.13 

168.89 

0.7019 

227.92 

163.63 

0.9 
3μ̂  

3E  

4E  

* 

- 

- 

0.6751 

593.11 

568.34 

0.6065 

543.53 

507.12 

0.5845 

527.17 

474.45 

0.5897 

531.03 

455.13 

0.6257 

557.65 

446.12 

0.7378 

636.23 

456.78 

0.9 0.5 
3μ̂  

3E  

4E  

0.7143 

135.37 

132.25 

0.6983 

133.55 

127.97 

0.6983 

133.55 

124.60 

0.7143 

135.37 

121.83 

0.7538 

139.64 

119.68 

0.8596 

149.42 

119.54 

* 

- 

- 

0.7 
3μ̂  

3E  

4E  

* 

- 

- 

0.7730 

208.23 

199.53 

0.7163 

199.41 

186.05 

0.6974 

196.24 

176.62 

0.7019 

197.001 

68.84 

0.7325 

202.04 

161.63 

0.8217 

215.00 

154.36 

0.9 
3μ̂  

3E  

4E  

* 

- 

- 

* 

- 

- 

* 

- 

- 

* 

- 

- 

0.7378 

544.564 

66.72 

0.6967 

526.45 

421.16 

0.7226 

538.03 

386.27 
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10. General conclusions 

The estimators T1 and T3 proposed in this work are proved to be the best 
linear unbiased estimators of population mean Y  with their respective minimum 
variance. These estimators may be seen as new innovative ideas in survey 
literature as they nicely utilized the information on an auxiliary variable in order 
to improve the precision of the estimates. From the analysis of the results shown 
in Tables 1-2, the propositions of the estimators T1 and T3 are vindicated because 
it enhances the precision of estimates as well as reduces the cost of the survey. 
Therefore, the proposed estimators may be recommended to survey practitioners 
for use in real life problems. 

Acknowledgements 

Authors are thankful to the referee for his valuable suggestions. Authors are 
also thankful to the UGC, New Delhi and Indian School of Mines, Dhanbad for 
providing financial assistance and necessary infrastructures to carry out the 
present research work. 



STATISTICS IN TRANSITION-new series, Spring 2013 

 

73 

REFERENCES 

BIRADAR, R. S. and SINGH, H. P., (2001). Successive sampling using auxiliary 
information on both occasions. Cal. Statist. Assoc. Bull. 51, 243-251. 

CHATURVEDI, D. K. and TRIPATHI, T. P., (1983). Estimation of population 
ratio on two occasions using multivariate auxiliary information. Jour. Ind. 
Statist. Assoc., 21, 113-120. 

DAS, A. K., (1982). Estimation of population ratio on two occasions, Jour Ind. 
Soc. Agr. Statist. 34, 1-9. 

FENG, S. and ZOU, G., (1997). Sample rotation method with auxiliary variable. 
Communications in Statistics-Theory and Methods, 26, 6, 1497-1509. 

GUPTA, P. C., (1979). Sampling on two successive occasions. Jour. Statist. Res. 
13, 7-16. 

JESSEN, R. J., (1942). Statistical Investigation of a Sample Survey for obtaining 
farm facts, Iowa Agricultural Experiment Station Research Bulletin No. 304, 
Ames, Iowa, U. S. A., 1-104. 

PATTERSON, H. D., (1950). Sampling on successive occasions with partial 
replacement of units, Journal of the Royal Statistical Society, 12, 241-255. 

RAO, J. N. K. and Graham, J. E., (1964). Rotation design for sampling on 
repeated occasions. Jour. Amer. Statist. Assoc. 59, 492-509. 

SEN, A. R., (1971). Successive sampling with two auxiliary variables, Sankhya, 
33, Series B, 371-378. 

SEN, A. R., (1972). Successive sampling with p ( )p 1≥  auxiliary variables, Ann. 
Math. Statist., 43, 2031-2034. 

SEN, A. R., (1973). Theory and application of sampling on repeated occasions 
with several auxiliary variables, Biometrics 29, 381-385. 

SINGH, V. K., SINGH, G. N. and SHUKLA, D., (1991). An efficient family of 
ratio-cum-difference type estimators in successive sampling over two 
occasions, Jour. Sci. Res. 41 C, 149-159. 

SINGH, G. N., (2003). Estimation of population mean using auxiliary information 
on recent occasion in h-occasion successive sampling, Statistics in Transition, 
6, 523-532. 

SINGH, G. N., (2005). On the use of chain-type ratio estimator in successive 
sampling, Statistics in Transition, 7, 21-26. 

SINGH, G. N. and SINGH, V. K., (2001). On the use of auxiliary information in 
successive sampling, J. Indian Soc. Agric. Statist., 54 (1), 1-12. 



74                                                                             G. N. Singh, S. Prasad: Best linear … 

 

 

SINGH, G. N. and PRIYANKA, K., (2006). On the use of chain-type ratio to 
difference estimator in successive sampling, IJAMAS, 5 (S06), 41-49. 

SINGH, G. N. and PRIYANKA, K., (2007). On the use of auxiliary information 
in search of good rotation patterns on successive occasions, Bulletin of 
Statistics and Economics, 1 (A07), 42-60. 

SINGH, G. N. and PRIYANKA, K., (2008). Search of good rotation patterns to 
improve the precision of estimates at current occasion, Communications in 
Statistics- Theory and Methods, 37(3), 337-348. 

SINGH, G. N. and KARNA, J. P., (2009, a). Estimation of population mean on 
current occasion in two-occasion successive sampling, METRON, 67(1), 
 69-85. 

SINGH, G. N. and KARNA, J. P., (2009, b). Search of effective rotation patterns 
in presence of auxiliary information in successive sample over two-occasions, 
Statistics in Transition, new series 10(1), 59-73.  

SINGH, H. P. and VISHWAKARMA, G. K., (2009). A general procedure for 
estimating population mean in successive sampling, Communications in 
Statistics - Theory and Methods, 38(2), 293-308. 

 


	Best Linear Unbiased Estimators of Population Mean on Current Occasion in Two-Occasion Rotation Patterns
	Theorem 4.1. Variance of the estimator T1 is obtained as
	(3)
	where                        (4)
	Proof: It is obvious that the variance of the estimator T1 is given by
	(6)
	where
	Remark 4.1. Results in equation (3) are derived under the assumption that the population mean squares of the variables x, y and z are almost equal.
	Remark 4.2.  and  are based on two independent samples of sizes u and m respectively and they are unbiased estimators of , hence the covariance term between  and  vanishes.
	where , ,   and  is the fraction of fresh sample for the estimator .
	(18)
	(19)
	where ,  and .
	(20)
	Theorem 9.1. Variance of the estimator T3 is obtained as
	(29)
	where                  (30)
	Proof: It is obvious that the variance of the estimator T3 is given by
	(32)
	where ,  and
	Remark 9.1. Results in theorem 9.1 is derived similar to the results obtained in theorem 4.1.
	where , , , ,  and  is the fraction of fresh sample for the estimator T3.
	To determine the optimum value  of μ3 (fraction of a sample to be drawn afresh on the current occasion) so that population mean  may be estimated with the maximum precision, we minimize the  given in equation (42) with respect to μ3, which result in f...
	(43)
	where , ,
	(44)
	To study the performance of the estimator, the percent relative efficiencies of the estimator  with respect to (i) , when there is no matching, and (ii) the estimator , when no auxiliary information is used at any occasion, have been obtained for diff...
	and
	Table 1. Optimum values of  and percent relative efficiencies of  with respect to and
	Table 2. Optimum values of  and percent relative efficiencies of  with respect to and
	References

