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METHODS OF REDUCING DIMENSION
FOR FUNCTIONAL DATA

Tomasz Gorecki', Mirostaw Krzyékoz, Lukasz Waszak®,

Waldemar Wolyl'lski4

ABSTRACT

In classical data analysis, objects are characterized by many features observed at
one point of time. We would like to present them graphically, to see their
configuration, eliminate outlying observations, observe relationships between
them or to classify them. In recent years methods for representing data by
functions have received much attention. In this paper we discuss a new method of
constructing principal components for multivariate functional data. We illustrate
our method with data from environmental studies.

Key words: multivariate functional data, functional data analysis, principal
component analysis, multivariate principal component analysis.

1. Introduction

The idea of principal component analysis (PCA)

is to reduce the

dimensionality of a data set consisting of a large number of correlated variables,
while retaining as much as possible of the variation present in the data set. This is
achieved by transforming them to a new set of variables, the principal
components, which are uncorrelated, and which are ordered so that the first few

retain most of the variation present in all of the original variables.

In recent years methods for representing data by functions or curves have
received much attention. Such data are known in the literature as functional data
(Ramsay and Silverman, 2005). Examples of functional data can be found in
various application domains, such as medicine, economics, meteorology and
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many others. In previous papers on functional data analysis, objects are
characterized by only one feature observed at many time points (see Ramsay and
Silverman (2005)). In many applications there is a need to use statistical methods
for objects characterized by many features observed at many time points (double
multivariate data). In this case, such data are called multivariate functional data. A
pioneering theoretical work was that of Besse (1979), where random variables
take values in a general Hilbert space. Saporta (1981) presents an analysis of
multivariate functional data from the point of view of factorial methods (principal
components and canonical analysis). Finally, Jacques and Preda (2014) proposed
principal component analysis for multivariate functional data (MFPCA) applied to
the methods of cluster analysis. In this paper we propose another method of
construction of principal components for multivariate functional data, along with
an in-depth interpretation of these variables.

2. Classical principal component analysis (PCA)

Suppose we observe a p-dimensional random vector
X = (X1,Xy,..., X;) € RP. We further assume that E(X') = 0 and Var(X) = X.
In the first step we seek a variable T7; in the form

P
U =<u,X >= u’lX = Zulz’Xi:

=1

having maximum variance for all # € R? such that < u,u >= 1.
Let

A1 = sup Var(< u,X >) = Var(< %1, X >) =ujBu,
ueR?P

where < @1, 41 >=uju; = 1.

The random variable {7; will be called the first principal component, and the
vector w; will be called the vector of weights of the first principal component.

In the next step we seek a variable Us =< u2, X >=u5X which is not
correlated with the first principal component I7; and which has maximum
variance. We continue this process until we obtain p new variables Uy, Uy, ..., U,
(principal components).

In general, the kth principal component Uy =< u, X >=u; X satisfies the
conditions:

Ap = sup Var(< u, X >) = Var(< ug, X >) = upSuy,
uckP

< U, Uy >= O g K, ke =1,.., k.

The expression { g, uy) Will be called the 4th principal system of the variable
X (Jolliffe (2002)).
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It can be shown that A\ > Xy > .- 2 A, and up,ug,...,u, are the
eigenvalues and corresponding eigenvectors of the covariance matrix X.
In practice this matrix is unknown, and must be estimated from the sample.
Letz = (z1,%2,. .. ,%,) be realizations of the vector X.
Then
1 /

Y= —zx'.
i

Moreover, let Ay > 3y > --- > A, and 4y,4s,...,4, be eigenvalues and
corresponding eigenvectors of the matrix 3

Then (A, @) is called the kth principal system of the sample of the vector X.

The coordinates of the projection of the ith realization =; of the vector X on
the kth principal component are equal to:

U =< fig,m; >= i,
fori =1,2,...,n,k=1,2,..., p. Finally, the coordinates of the projection of the 4

th realization =; of the vector X on the plane of the first two principal
components from the sample are equal to (&} z;, iyz;),i = 1,2, ..., n.

3. Multivariate functional principal component analysis (MFPCA)

The functional case of PCA (FPCA) is a more informative way of looking at
the variability structure in the variance-covariance function for one-dimensional
functional data (Goérecki and Krzysko (2012)). In this section we present PCA for
multivariate functional data (MFPCA) (Jacques and Preda (2014)).

Suppose that we are observing a p-dimensional stochastic process
X(t) = (X1(t), X2(2), ..., Xp(t))", with continuous parameter ¢t € 7. We will
further assume that E(X(¢)) =0 and X(t) € LE(I), where La(I) is a Hilbert
space of square integrable functions on the interval I equipped with the following
inner product:

<ult),u(t) >= /I u! (t)w(t)dt.

Moreover, assume that the kth component of the process X(t) can be
represented by a finite number of orthonormal basis functions {¢y }

By,
Xi(t) =D cwep(t),t €l k=1,2,.p,
=0

where ¢, are random variables such that E{cgs) = 0, Var(egs) < 00,
k=1,2,..,p,b=0,... B
Let
c—= (cl[)y - C18y, '-'7Cp0: "'7%33})’7
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P 0 .. 0
sp=| O O o 0 @
0 0 - Pp(t)

where @i (t) = (po(t), ... ¢B, (1)) k= 1,....p.
Then, the process X (¢) can be represented as
X(t)=®(t)e, t €I, E(e) =0, Var(e) = Z,.
We are interested to find the inner product

U =< ut), X(£) >— /; w'()X (¢)dt

having maximal variance for all w(t) € LE(I) such that < u(t),u(t) >= 1. It may
be assumed that the vector weight function u(¢) and the process X () are in the
same space, i.e. the function () can be written in the form:

u(t) = ®(t)u,
where uw € REY?, K — B, + .. + B, Then
<u(t),X(t) >=< ®()u,d(t)c >=u' < ®(t),d(t) >c=v'c

and
E(<u(t),X(t) >) =u'E(c) =40 =0,
Var(< u(t), X (t) >) = u'E(ec)u = u'Seu.
Let
M= sup Var(<u(t),X(t)>)= Var(<ui(t),X(t) >) = uiBcus,

w(t)eLE (1)

where < (), 11 {t) >=uju; = 1.
The inner product U7 =< u{t), X (t) >=ujc will be called the first principal
component, and the vector function ,(t) will be called the first vector weight
function. Subsequently we look for the second principal component
Us =< ua(t), X(t) >=ube, maximizing Var(< u(t),X(t) >) = uw'Eeu, such
that < uo(t),u2(f) >=ubua = 1, and not correlated with the first functional
principal component U/y,i.e. subject to the restriction < w; (t), w2 (t) >= wjus = 0.
In general, the kth functional principal component
U =< ug(t), X (t) >= uc satisfies the conditions:
M= sup Var(<u(t),X(#) >) = Var(< ug(t), X (t) >) = u;, Beoug,
u(t)eLy (D)

< ufcl (t);uKQ(t) >= 5“}11’62? n‘il,f{Q = 1: ...;k.
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The expression {Ag,ug(t)) will be called the th principal system of the
process X (t).

Now, let us consider the principal components of the random vector e. The &
th principal component U} =< u, € > of this vector satisfies the conditions:

vr = sup Var(<u,e>)= sup w'Var(e)lu= sup u'S.u,
ucRX+p ucRE+p ucRK+p

!
unluﬂz - 5&‘:1:‘627

where k1,62 = 1,...,k, K = B; + ... + By. The expression (v, ux) will be called
the £th principal system of the vector e.

Determining the kth principal system of the vector e is equivalent to solving
for the eigenvalue and corresponding eigenvectors of the covariance matrix X, of
that vector, standardized so that s, %z = Sxre-

From the above considerations, we have the following theorem:

Theorem. The kth principal system (A, ug(t)) of the stochastic process X (t) is
related to the kth principal system (vg,ux) of the random vector ¢ by the
equations:

Ae =7k uwk(t) =V()ux, tel,
wherek=1,.. K +p, K =B +By+:- + B,

Principal component analysis for random vectors € is based on the matrix X,.
In practice this matrix is unknown. We estimate it on the basis of » independent
realizations z1(t), 2(t), ...., £, (t) of the random process X ().

Typically data are recorded at discrete moments in time. The process of
transformation of discrete data to functional data is performed for each variable
X1, Xa,... Xpseparately.

Let x; denote an observed value of feature X, k =1,2,...p at the jth time
point ¢;, where j = 1,2,...,.J. Then our data consist of p.J pairs of {t;,zy;). This
discrete data can be smoothed by continuous functions zg(t), where t €I
(Ramsay and Silverman (2005)). Let I be a compact set such that ¢; € I, for
j =1,...,J. Let us assume that the function x(t) has the following representation

By,
mk(t) =chb¥’b(t): tEI, k=1:"'ap: (2)
b=0
where {4 } are orthonormal basis functions, and cgg, c1,. . . , ¢kB, are the
coefficients.
Let T, — (Ikl,mkg, A ,.’Ekj)’, cp = (CkU:ck:h- - :CkBk), and @k(t) be a

matrix of dimension J x (B 4 1) containing the values 4 (t;), b=0,1, ..., B,
i=12,..,J k=1,...,p. The coefficient ¢ in (2) is estimated by the least
squares method, that is, so as to minimize the function:

Slex) = (x — ®r(t)er) (@r — Br(ter), k=1,...,p.
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Differentiating S(eg) with respect to the vector ¢, we obtain the least squares
method estimator

= (®L()BL(1) @)k, k=1,...,p.

The degree of smoothness of the function z(t) depends on the value B,
(a small value of B, causes more smoothing of the curves). The optimum value
for B, may be selected using the Bayesian information criterion BIC (see Shmueli
(2010y).

Let us assume that there are n independent pairs of values (i;,zxi;),
k=1,...,p, i=1,..,n, j=1,..,J. These discrete data are smoothed to
continuous functions in the following form:

By,
mk'i-(t) = Zékib(ﬁb(t), k= 1: Ry 2 1= 1: ey tE 1.
b=0

Among all the By, By, ..., By,, 0ne common value of B, is chosen, as the
modal value of the numbers By, By, ..., By, and we assume that each function
zi(t) has the form

By
:L’kr,;(t) = Zé]ﬂ'b(pb(t), k= 1,. RN/ R 1= 1,...,7’&, tel
=0

The data {zz(%),...,zr.(t)} are called functional data (see Ramsay and
Silverman (2005)).

Finally, each of » independent realizations z1({t),z2(t), ..., & (t) has the form
z;(t) = ®(t)e; where @(f) is given by (1) and the vectors
& = (é10, .-, €18y, -, Ep0, -, Cp, ) Are centred, i = 1,2, ..., n.

LetC = (é1,82, ...,6,). Then

~ 1 o &
¥, = -C¢.
n

Let 4 > 49 = ... 2 45 be non-zero eigenvalues of the matrix f)c, and

A~

i1, 93, ..., it5 the corresponding eigenvectors, where s —rank{X%,).
Moreover, the kth principal system of the random process X {t) determined
from the sample has the following form:

Gk = e, () = B()Yy), k=1,..,5.

The coordinates of the projection of the ith realization =;(t) of the process
X (t) on the kth functional principal component are equal to:

Us, =< @ (8), 2i(t) >=< @), B(1)&; >= ), < B(1), B(t) > & = U},
fori=1,2,..,n,k = 1,2, ..., s Finally, the coordinates of the projection of the i
th realization z;{t) of the process X (t) on the plane of the first two functional
principal components from the sample are equal to (@}&;, #5¢;),i = 1,2, ..., n.
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4. Example

Data relating to environmental protection were obtained from Professor W.
Ratajczak of the Spatial Econometry Group at the Geographical and Geological
Sciences Faculty of Adam Mickiewicz University, Poznan. The analysis relates to
the 16 Polish provinces (. = 16). On the graphs, the provinces are denoted by
numbers as given in Table 1.

Table 1. Designations of provinces
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The analyzed data cover a period of 10 years, from 2002 to 2011 (J = 10).
Each province was characterized by a group of 6 features (p = 6):

Gaseous pollutant emissions [t/km?]
Dust pollutant emissions [kg/km?]

Solid waste produced [t/km?]

Total liquid waste [dam®1000 residents]

Industrial liquid waste [dam®/1000 residents]

© o M w b E

Household and industrial water consumption [dam®1000 residents]

The classical method of principal component analysis (PCA) permits only
separate analysis for each year of observation. Tables 2-5 contain the weights and
the percentage contributions for the first and second principal component.
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Table 2. Weights (eigenvectors) of the first principal component
(analysis for a fixed time)

2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011
1 | 06181| 0.6480| 0.6404| 0.6535| 0.6985| 0.7076| 0.7564| 0.7514 | 0.7591| 0.7748
2 | 04230| 0.3964| 0.3612| 0.3140| 0.2773| 0.3042| 0.2200| 0.1962 | 0.2017 | 0.1884
3 | 0.6609| 0.6486| 0.6762| 0.6869| 0.6579| 0.6363| 0.6144| 0.6283| 0.6180 | 0.6022
4 | 0.0013| 0.0010 | 0.0007 | 0.0008 | 0.0008| 0.0006| 0.0008 | 0.0009 | 0.0006 | 0.0005
5 | -0.0333| -0.0326 | -0.0316 | -0.0331| -0.0320 | -0.0289 | -0.0297 | -0.0303 | -0.0215| -0.0257
6 | -0.0347 | -0.0338 | -0.0344| -0.0370| -0.0372| -0.0327 | -0.0339 | -0.0358 | -0.0274 | -0.0300
Table 3. Percentage contribution of the original variables in the structure
of the first principal component (analysis for a fixed time)
2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011
1 | 38.2048 | 41.9904 | 41.0112 | 42.7062 | 48.7902 | 50.0698 | 57.2141 | 56.4602 | 57.6233 | 60.0315
2 | 17.8929 | 15.7133 | 13.0465| 9.8596 | 7.6895| 9.2538 | 4.8400 | 3.8494 | 4.0683 | 3.5495
3 | 43.6789 | 42.0682 | 45.7246 | 47.1832 | 43.2832 | 40.4878 | 37.7487 | 39.4761 | 38.1924 | 36.2645
4 | 0.0002| 0.0001| 0.0000| 0.0001| 0.0001| 0.0000| 0.0001| 0.0001| 0.0000 | 0.0000
5 | 01109| 0.063| 0.0999| 0.1096| 0.1024| 0.0835| 0.0882| 0.0918| 0.0462| 0.0660
6 | 01204 0.142| 0.183| 0.1369| 0.1384| 0.1069 | 0.1149| 0.1282| 0.0751| 0.0900
Table 4. Weights (eigenvectors) of the second principal component
(analysis for a fixed time)
2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011
1 | 07697 | 0.7405| 0.6493| 0.7145| 0.3636| 0.4864 | 0.4985| 0.4124| 03529 | 0.3770
2 | -0.2033| -0.1625| 0.0214| 0.0060| 0.0548| 0.0398| 0.0368| 0.0161| -0.0100| -0.0103
3 | -0.5764| -0.6277 | -0.5937 | -0.6673 | -0.3448 | -0.5116 | -0.5798 | -0.4388 | -0.3824 | -0.4280
4 | 0.0013| 0.0022| 0.0024| 0.0023| 0.0018| 0.0008 | 0.0010 | 0.0005| 0.0022| 0.0018
5 | 01235| 0.194| 0.3322| 0.1459| 0.5975| 04978 | 0.4560| 0.5652| 0.6065| 0.5830
6 | 0.1368| 0.304| 0.3393| 0.1511| 0.6237| 05022 0.4539| 0.5636| 0.6010| 05785
Table 5. Percentage contribution of the original variables in the structure
of the second principal component (analysis for a fixed time)
2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011
1 | 59.2438 | 54.8340 | 42.1590 | 51.0510 | 13.2205 | 23.6585 | 24.8502 | 17.0074 | 12.4538 | 14.2129
2 | 41331| 26406| 0.0458| 0.0036| 0.3003| 0.1584| 0.1354 | 0.0259 | 0.0100 | 0.0106
3 | 33.2237 | 39.4007 | 35.2480 | 44.5289 | 11.8887 | 26.1735 | 33.6168 | 19.2545 | 14.6230 | 18.3184
4 | 00002 | 0.0005| 0.0006| 0.0005| 0.0003| 0.0001| 0.0001| 0.0000| 0.0005| 0.0003
5 | 15252 | 1.4256| 11.0357 | 2.1287 | 35.7006 | 24.7805 | 20.7936 | 31.9451 | 36.7842 | 33.9889
6 | 18714| 17004 | 115124 | 2.2831| 38.9002 | 25.2205 | 20.6025 | 31.7645 | 36.1201 | 33.4662




STATISTICS IN TRANSITION new series, Spring 2014

239

The relative position of the 16 provinces (in 2002 and 2011) in the system of
the first two principal components is shown in Figure 1.

A
500 1000 1500
|

U,(t) (12.91%)

-500

%

O

0,(t) (13.70%)

Iy

O

1000

2000

T
3000

0, (t) (78.53%)

(a)

T
4000

1000
1

500

-500

-1000

@
2 ©

o

" ©
®@
T T T T T
0 1000 2000 3000
01(0 (76.60%)

(b)

Figure 1. Projection of the six-dimensional vectors representing the 16 provinces
on the plane of the first two principal components, (a) year 2002, (b) year 2011

The functional principal components method enables combined analysis of the
data for the whole of the studied period of time. The data were transformed to
functional data by the method described in Section 3. The calculations were
performed using the Fourier basis. The time interval [0,T]=[0,10] was divided into
moments of time in the following way: t;=0.5(2002), t,=1.5(2003),...,
t10=9.5(2011). Moreover, in view of the small number of time periods (J=10), for
each variable the maximum number of basis components was taken, equal to

B,=--=B,=9.
Tables 6-7 show the coefficients of the weight functions for the first and
second functional principal components.

Table 6. Coefficients of weight functions for the first functional principal

Component
U, u, u, U, u, Ug Ug U, Ug Area
1| 06947 -0.0007 | -0.0179 | -0.0056 | 0.0189 | -0.0220 | -0.0104 | -0.0064 | -0.0046 | 2.1968
2 0.2927 | 0.0794 | 0.0094 | 0.0401| 0.0138| 0.0114| -0.0101 0.0299 | 0.0011 0.9256
3 0.6443 | 0.0551 | -0.0088 0.0086 | 0.0129 | -0.0010| -0.0074 | 0.0147| -0.0002 2.0375
4 0.0008 | 0.0001| 0.0000| 0.0001| 0.0000| 0.0001| 0.0000| 0.0001| 0.0000 0.0025
5 | -0.0317| 0.0001| 0.0009| -0.0005| -0.0009| 0.0003| 0.0003| 0.0009| -0.0004| 0.1002
6 | -0.0355| 0.0013| 00011| 0.0006| -0.0008| 0.0003| 0.0004| 00013 | -0.0004| 0.1123
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Table 7. Coefficients of weight functions for the second functional principal

Component
U, u, u, U, u, ug Ug U, Ug Area
1| 05771 -0.0005| 0.0680| 0.0392] 00193| 0.0165| -0.0105| -0.0091 | -0.0114| 1.8250
2 | -0.0122| -0.0227 | -0.0289 | -0.0087 | -0.0092 | -0.0140| 0.0010| -0.0157| 0.0005| 0.1021
3 | -0.5636 | -0.0314| 0.0210| -0.0042| -0.0070| 0.0018| 00017 | -0.0078| 0.0034| 1.7823
4 | 00017 | 00004 0.0003| -0.0001| -0.0002| -0.0002 | -0.0003 | -0.0001| -0.0002| 0.0054
5 | 0.4080| -0.0210| 00120 | -0.0081| 0.0096 | -0.0065| -0.0155 | -0.0117| 0.0055| 1.2002
6 | 04120] -0.0164| 00081 | -0.0069| 00122 -0.0041| -0.0163 | -0.0115| 0.0072| 1.3029

At a given time point t,

the greater is the absolute value of a component of the

vector weight, the greater is the contribution in the structure of the given
functional principal component, from the process X (¢) corresponding to that
component. The total contribution of a particular primary process X;(¢) in the
structure of a particular functional principal component is equal to the area under
the module weighting function corresponding to this process. These contributions
for the six components of the vector process X(t), and the first and second
functional principal components are given in Tables 6-7.

Figure 2 shows the six weight functions for the first and second functional
principal components.
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Figure 2. Weight functions for the first (a) and second (b) functional principal
component (MFPCA)

The relative positions of the 16 provinces in the system of the first two
functional principal components are shown in Figure 3. The system of the first
two functional principal components retains 90.33% of the total variation.
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Figure 3. Projection of multidimensional functional data representing the 16
provinces on the plane of the first two functional principal components

5. Conclusions

This paper introduces and analyzes a new method of constructing principal
components for multivariate functional data. This method was applied to
environmental multivariate time series concerning the Polish provinces. Our
research has shown, on this example, that the use of a multivariate functional
principal components analysis gives good results. Of course, the performance of
the algorithm needs to be further evaluated on additional real and artificial data
sets. In a similar way, we can extend similar methods like functional discriminant
coordinates (Gorecki et al. (2014)) and canonical correlation analysis (Krzysko,
Waszak (2013)) to multivariate case. This is the direction of our future research.
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