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ABSTRACT 

In classical data analysis, objects are characterized by many features observed at 
one point of time. We would like to present them graphically, to see their 
configuration, eliminate outlying observations, observe relationships between 
them or to classify them. In recent years methods for representing data by 
functions have received much attention. In this paper we discuss a new method of 
constructing principal components for multivariate functional data. We illustrate 
our method with data from environmental studies. 

Key words: multivariate functional data, functional data analysis, principal 
component analysis, multivariate principal component analysis. 

1. Introduction 

The idea of principal component analysis (PCA) is to reduce the 
dimensionality of a data set consisting of a large number of correlated variables, 
while retaining as much as possible of the variation present in the data set. This is 
achieved by transforming them to a new set of variables, the principal 
components, which are uncorrelated, and which are ordered so that the first few 
retain most of the variation present in all of the original variables. 

In recent years methods for representing data by functions or curves have 
received much attention. Such data are known in the literature as functional data 
(Ramsay and Silverman, 2005). Examples of functional data can be found in 
various application domains, such as medicine, economics, meteorology and 
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many others. In previous papers on functional data analysis, objects are 
characterized by only one feature observed at many time points (see Ramsay and 
Silverman (2005)). In many applications there is a need to use statistical methods 
for objects characterized by many features observed at many time points (double 
multivariate data). In this case, such data are called multivariate functional data. A 
pioneering theoretical work was that of Besse (1979), where random variables 
take values in a general Hilbert space. Saporta (1981) presents an analysis of 
multivariate functional data from the point of view of factorial methods (principal 
components and canonical analysis). Finally, Jacques and Preda (2014) proposed 
principal component analysis for multivariate functional data (MFPCA) applied to 
the methods of cluster analysis. In this paper we propose another method of 
construction of principal components for multivariate functional data, along with 
an in-depth interpretation of these variables. 

2. Classical principal component analysis (PCA) 

Suppose we observe a -dimensional random vector 
. We further assume that  and . 

In the first step we seek a variable  in the form  

 

having maximum variance for all  such that . 

Let 

  
where . 

The random variable  will be called the first principal component, and the 
vector  will be called the vector of weights of the first principal component. 

In the next step we seek a variable  which is not 
correlated with the first principal component  and which has maximum 
variance. We continue this process until we obtain  new variables  
(principal components). 

In general, the th principal component  satisfies the 
conditions:  

  

  
The expression  will be called the th principal system of the variable 

 (Jolliffe (2002)). 
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It can be shown that  and  are the 
eigenvalues and corresponding eigenvectors of the covariance matrix . 

In practice this matrix is unknown, and must be estimated from the sample. 
Let  be realizations of the vector . 

Then 

 

Moreover, let  and  be eigenvalues and 
corresponding eigenvectors of the matrix . 

Then  is called the th principal system of the sample of the vector . 
The coordinates of the projection of the th realization  of the vector  on 

the th principal component are equal to:  

 
for . Finally, the coordinates of the projection of the 
th realization  of the vector  on the plane of the first two principal 
components from the sample are equal to  

3. Multivariate functional principal component analysis (MFPCA) 

The functional case of PCA (FPCA) is a more informative way of looking at 
the variability structure in the variance-covariance function for one-dimensional 
functional data (Górecki and Krzyśko (2012)). In this section we present PCA for 
multivariate functional data (MFPCA) (Jacques and Preda (2014)). 

Suppose that we are observing a -dimensional stochastic process 
, with continuous parameter . We will 

further assume that  and , where  is a Hilbert 
space of square integrable functions on the interval  equipped with the following 
inner product:  

 
Moreover, assume that the th component of the process  can be 

represented by a finite number of orthonormal basis functions   

 
where  are random variables such that , , 

.  
Let  
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(1) 

 
where , . 

Then, the process  can be represented as  

  
We are interested to find the inner product  

  
having maximal variance for all  such that . It may 
be assumed that the vector weight function  and the process  are in the 
same space, i.e. the function  can be written in the form:  

  
where , . Then  

  
and  

  

  
Let  

 
where .  
The inner product  will be called the first principal 
component, and the vector function  will be called the first vector weight 
function. Subsequently we look for the second principal component 

, maximizing , such 
that , and not correlated with the first functional 
principal component ,i.e. subject to the restriction . 

In general, the th functional principal component 
 satisfies the conditions:  
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The expression  will be called the th principal system of the 
process . 

Now, let us consider the principal components of the random vector . The 
th principal component  of this vector satisfies the conditions:  

 

  
where , . The expression  will be called 
the th principal system of the vector . 

Determining the th principal system of the vector  is equivalent to solving 
for the eigenvalue and corresponding eigenvectors of the covariance matrix  of 
that vector, standardized so that  

From the above considerations, we have the following theorem:  
Theorem. The th principal system  of the stochastic process  is 
related to the th principal system  of the random vector  by the 
equations:  

 
where , .  

Principal component analysis for random vectors  is based on the matrix . 
In practice this matrix is unknown. We estimate it on the basis of  independent 
realizations  of the random process . 

Typically data are recorded at discrete moments in time. The process of 
transformation of discrete data to functional data is performed for each variable 

 separately. 
Let  denote an observed value of feature ,  at the th time 

point , where . Then our data consist of  pairs of . This 
discrete data can be smoothed by continuous functions , where  
(Ramsay and Silverman (2005)). Let  be a compact set such that , for 

. Let us assume that the function  has the following representation  

 
(2) 

where  are orthonormal basis functions, and  are the 
coefficients. 

Let ,  and  be a 
matrix of dimension  containing the values , , 

, . The coefficient  in (2) is estimated by the least 
squares method, that is, so as to minimize the function:  
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Differentiating  with respect to the vector , we obtain the least squares 
method estimator  

  
The degree of smoothness of the function  depends on the value  

(a small value of  causes more smoothing of the curves). The optimum value 
for  may be selected using the Bayesian information criterion BIC (see Shmueli 
(2010)). 

Let us assume that there are  independent pairs of values , 
, , . These discrete data are smoothed to 

continuous functions in the following form:  

 
Among all the  one common value of  is chosen, as the 

modal value of the numbers , and we assume that each function 
 has the form  

 
The data  are called functional data (see Ramsay and 

Silverman (2005)). 
Finally, each of  independent realizations  has the form 

 where  is given by (1) and the vectors 
 are centred, . 

Let  Then  

 
Let  be non-zero eigenvalues of the matrix , and 

 the corresponding eigenvectors, where rank . 
Moreover, the th principal system of the random process  determined 

from the sample has the following form:  

 
The coordinates of the projection of the th realization  of the process 
 on the th functional principal component are equal to:  

 
for . Finally, the coordinates of the projection of the 
th realization  of the process  on the plane of the first two functional 
principal components from the sample are equal to  
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4. Example 

Data relating to environmental protection were obtained from Professor W. 
Ratajczak of the Spatial Econometry Group at the Geographical and Geological 
Sciences Faculty of Adam Mickiewicz University, Poznań. The analysis relates to 
the 16 Polish provinces ( ). On the graphs, the provinces are denoted by 
numbers as given in Table 1. 

Table 1. Designations of provinces 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The analyzed data cover a period of 10 years, from 2002 to 2011 ( ). 
Each province was characterized by a group of 6 features ( ):  
1. Gaseous pollutant emissions [t/km2] 

2. Dust pollutant emissions [kg/km2] 

3. Solid waste produced [t/km2] 

4. Total liquid waste [dam3/1000 residents]  

5. Industrial liquid waste [dam3/1000 residents]  

6. Household and industrial water consumption [dam3/1000 residents]  

The classical method of principal component analysis (PCA) permits only 
separate analysis for each year of observation. Tables 2–5 contain the weights and 
the percentage contributions for the first and second principal component. 

1  ŁÓDZKIE 

2  MAZOWIECKIE 

3  MAŁOPOLSKIE 

4  ŚLĄSKIE 

5  LUBELSKIE 

6  PODKARPACKIE 

7  PODLASKIE 

8  ŚWIĘTOKRZYSKIE 

9  LUBUSKIE 

10  WIELKOPOLSKIE 

11  ZACHODNIOPOMORSKIE 

12  DOLNOŚLĄSKIE 

13  OPOLSKIE 

14  KUJAWSKO-POMORSKIE 

15  POMORSKIE 

16  WARMIŃSKO-MAZURSKIE 



238                                    T. Górecki, M. Krzyśko, Ł. Waszak, W. Wołyński: Methods of … 

 

 

Table 2. Weights (eigenvectors) of the first principal component  
               (analysis for a fixed time) 

  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 0.6181 0.6480 0.6404 0.6535 0.6985 0.7076 0.7564 0.7514 0.7591 0.7748 

2 0.4230 0.3964 0.3612 0.3140 0.2773 0.3042 0.2200 0.1962 0.2017 0.1884 

3 0.6609 0.6486 0.6762 0.6869 0.6579 0.6363 0.6144 0.6283 0.6180 0.6022 

4 0.0013 0.0010 0.0007 0.0008 0.0008 0.0006 0.0008 0.0009 0.0006 0.0005 

5 -0.0333 -0.0326 -0.0316 -0.0331 -0.0320 -0.0289 -0.0297 -0.0303 -0.0215 -0.0257 

6 -0.0347 -0.0338 -0.0344 -0.0370 -0.0372 -0.0327 -0.0339 -0.0358 -0.0274 -0.0300 
 
Table 3. Percentage contribution of the original variables in the structure  
              of the first principal component (analysis for a fixed time) 

  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 38.2048 41.9904 41.0112 42.7062 48.7902 50.0698 57.2141 56.4602 57.6233 60.0315 

2 17.8929 15.7133 13.0465 9.8596 7.6895 9.2538 4.8400 3.8494 4.0683 3.5495 

3 43.6789 42.0682 45.7246 47.1832 43.2832 40.4878 37.7487 39.4761 38.1924 36.2645 

4 0.0002 0.0001 0.0000 0.0001 0.0001 0.0000 0.0001 0.0001 0.0000 0.0000 

5 0.1109 0.1063 0.0999 0.1096 0.1024 0.0835 0.0882 0.0918 0.0462 0.0660 

6 0.1204 0.1142 0.1183 0.1369 0.1384 0.1069 0.1149 0.1282 0.0751 0.0900 
 
Table 4. Weights (eigenvectors) of the second principal component  
               (analysis for a fixed time) 

  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 0.7697 0.7405 0.6493 0.7145 0.3636 0.4864 0.4985 0.4124 0.3529 0.3770 

2 -0.2033 -0.1625 0.0214 0.0060 0.0548 0.0398 0.0368 0.0161 -0.0100 -0.0103 

3 -0.5764 -0.6277 -0.5937 -0.6673 -0.3448 -0.5116 -0.5798 -0.4388 -0.3824 -0.4280 

4 0.0013 0.0022 0.0024 0.0023 0.0018 0.0008 0.0010 0.0005 0.0022 0.0018 

5 0.1235 0.1194 0.3322 0.1459 0.5975 0.4978 0.4560 0.5652 0.6065 0.5830 

6 0.1368 0.1304 0.3393 0.1511 0.6237 0.5022 0.4539 0.5636 0.6010 0.5785 
 
Table 5. Percentage contribution of the original variables in the structure  
               of the second principal component (analysis for a fixed time) 

  2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

1 59.2438 54.8340 42.1590 51.0510 13.2205 23.6585 24.8502 17.0074 12.4538 14.2129 

2 4.1331 2.6406 0.0458 0.0036 0.3003 0.1584 0.1354 0.0259 0.0100 0.0106 

3 33.2237 39.4007 35.2480 44.5289 11.8887 26.1735 33.6168 19.2545 14.6230 18.3184 

4 0.0002 0.0005 0.0006 0.0005 0.0003 0.0001 0.0001 0.0000 0.0005 0.0003 

5 1.5252 1.4256 11.0357 2.1287 35.7006 24.7805 20.7936 31.9451 36.7842 33.9889 

6 1.8714 1.7004 11.5124 2.2831 38.9002 25.2205 20.6025 31.7645 36.1201 33.4662 
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The relative position of the 16 provinces (in 2002 and 2011) in the system of 
the first two principal components is shown in Figure 1. 

Figure 1. Projection of the six-dimensional vectors representing the 16 provinces 
on the plane of the first two principal components, (a) year 2002, (b) year 2011 

 
The functional principal components method enables combined analysis of the 

data for the whole of the studied period of time. The data were transformed to 
functional data by the method described in Section 3. The calculations were 
performed using the Fourier basis. The time interval [0,T]=[0,10] was divided into 
moments of time in the following way: t1=0.5(2002), t2=1.5(2003),…, 
t10=9.5(2011). Moreover, in view of the small number of time periods (J=10), for 
each variable the maximum number of basis components was taken, equal to

.9101 === BB   
Tables 6–7 show the coefficients of the weight functions for the first and 

second functional principal components. 
 

Table 6. Coefficients of weight functions for the first functional principal  
               component 

  0û  1û  2û  3û  4û  5û  6û  7û  8û  Area 

1 0.6947 -0.0007 -0.0179 -0.0056 0.0189 -0.0220 -0.0104 -0.0064 -0.0046 2.1968 

2 0.2927 0.0794 0.0094 0.0401 0.0138 0.0114 -0.0101 0.0299 0.0011 0.9256 

3 0.6443 0.0551 -0.0088 0.0086 0.0129 -0.0010 -0.0074 0.0147 -0.0002 2.0375 

4 0.0008 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0025 

5 -0.0317 0.0001 0.0009 -0.0005 -0.0009 0.0003 0.0003 0.0009 -0.0004 0.1002 

6 -0.0355 0.0013 0.0011 0.0006 -0.0008 0.0003 0.0004 0.0013 -0.0004 0.1123 
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Table 7. Coefficients of weight functions for the second functional principal  
               component 

  0û  1û  2û  3û  
4û  5û  6û  7û  

8û  Area 

1 0.5771 -0.0005 0.0680 0.0392 0.0193 0.0165 -0.0105 -0.0091 -0.0114 1.8250 

2 -0.0122 -0.0227 -0.0289 -0.0087 -0.0092 -0.0140 0.0010 -0.0157 0.0005 0.1021 

3 -0.5636 -0.0314 0.0210 -0.0042 -0.0070 0.0018 0.0017 -0.0078 0.0034 1.7823 

4 0.0017 0.0004 0.0003 -0.0001 -0.0002 -0.0002 -0.0003 -0.0001 -0.0002 0.0054 

5 0.4080 -0.0210 0.0120 -0.0081 0.0096 -0.0065 -0.0155 -0.0117 0.0055 1.2902 

6 0.4120 -0.0164 0.0081 -0.0069 0.0122 -0.0041 -0.0163 -0.0115 0.0072 1.3029 

 
At a given time point t, the greater is the absolute value of a component of the 

vector weight, the greater is the contribution in the structure of the given 
functional principal component, from the process  corresponding to that 
component. The total contribution of a particular primary process  in the 
structure of a particular functional principal component is equal to the area under 
the module weighting function corresponding to this process. These contributions 
for the six components of the vector process , and the first and second 
functional principal components are given in Tables 6–7. 

Figure 2 shows the six weight functions for the first and second functional 
principal components. 

Figure 2. Weight functions for the first (a) and second (b) functional principal  
                component (MFPCA) 

 
The relative positions of the 16 provinces in the system of the first two 

functional principal components are shown in Figure 3. The system of the first 
two functional principal components retains 90.33% of the total variation. 
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Figure 3. Projection of multidimensional functional data representing the 16 
                  provinces on the plane of the first two functional principal components 

5. Conclusions 

This paper introduces and analyzes a new method of constructing principal 
components for multivariate functional data. This method was applied to 
environmental multivariate time series concerning the Polish provinces. Our 
research has shown, on this example, that the use of a multivariate functional 
principal components analysis gives good results. Of course, the performance of 
the algorithm needs to be further evaluated on additional real and artificial data 
sets. In a similar way, we can extend similar methods like functional discriminant 
coordinates (Górecki et al. (2014)) and canonical correlation analysis (Krzyśko, 
Waszak (2013)) to multivariate case. This is the direction of our future research. 
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