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ABSTRACT

The relationship between two sets of real variables defined for the same individuals
can be evaluated by a few different correlation coefficients. For the functional data
we have one important tool: canonical correlations. It is not immediately straight-
forward to extend other similar measures to the context of functional data analysis.
In this work we show how to use the distance correlation coefficient for a multi-
variate functional case.
The approaches discussed are illustrated with an application to some socio-economic
data.

Key words: multivariate functional data, functional data analysis, correlation anal-
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1. Introduction

In recent years methods for data representing functions or curves have received
much attention. Such data are known in the literature as functional data (Ramsay &
Silverman (2005), Horváth & Kokoszka (2012)). Examples of functional data can
be found in several application domains, such as medicine, economics, meteorology
and many others. In a great number of applications it is necessary to use statistical
methods for objects characterized by many features observed in many time points
(double multivariate data). In this case such data are called multivariate functional
data. The pioneering theoretical paper was Besse (1979), in which random vari-
ables have values in a general Hilbert space. Berrendero et al. (2011), Górecki et
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al. (2014) and Jacques & Preda (2014), present an analysis of multivariate func-
tional data from the point of view of Multivariate Principal Component Analysis
(MPCA). Also functional regression models have been extensively studied; see for
example James (2002), Müller and Stadmüller (2005), Reiss and Ogden (2007) and
Matsui et al. (2008). Various basic classification methods have been adapted to
functional data, such as linear discriminant analysis (Hastie et al. (1995)), logistic
regression (Rossi et al. (2002)), penalized optimal scoring (Ando (2009)), knn (Fer-
raty and Vieu (2003)), SVM (Rossi and Villa (2006)), and neural networks (Rossi
et al. (2005)). Moreover, the theory of combining classifiers has been extended
to functional data (Ferraty and Vieu (2009)). Górecki et al. (2015) discussed the
problem of classification via regression for multivariate functional data.

In this paper we focus on correlation analysis for multivariate functional data.
In the literature, there are different strategies to explore the association between
two sets of variables (p dimensional XXX and q dimensional YYY ). Historically, the
first approach was put forward by Hotelling (1936), who proposed the canonical
correlation in the framework of Canonical Correlation Analysis (CCA). The CCA
is a reference tool concerned with describing linear dependencies between two sets
of variables; it seeks a linear combination of the variables of the first group which
is maximally correlated with a linear combination of the variables of the second
group. The correlation coefficient thus obtained is said to be canonical and the
linear combinations are called canonical variables. Leurgans et al. (1993), He et
al. (2004), Krzyśko & Waszak (2013) discussed this analysis in the context of
functional data.

Another approach is to consider each set of variables through its individual
cloud, and to compare the structures (i.e. the shapes) of the two point clouds. In
this way, the so-called rV coefficient (Escoufier (1970, 1973), Robert & Escoufier
(1976), Escoufier & Robert (1979)) provides an insight into the global association
between the two sets of variables.

Székely et al. (2007), Székely & Rizzo (2009, 2012, 2013) defined a measure
of dependence between random vectors: the distance correlation (dCor) coefficient.
The authors showed that for all random variables with finite first moments, the dCor
coefficient generalizes the idea of correlation in two ways. Firstly, this coefficient
can be applied when XXX and YYY are of any dimensions and not only for the simple
case where p = q = 1. They constructed their coefficient as a generalization of the
simple correlation coefficient without reference to the earlier literature on the rV
coefficient. Secondly, the dCor coefficient is equal to zero if and only if there is
independence between the random vectors. Indeed, a correlation coefficient mea-
sures linear relationships and can be equal to 0 even when the random variables are
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dependent. This can be seen as a major shortcoming of the correlation coefficient
and the rV coefficient.

The rest of this paper is organized as follows. We first review the concept of
transformation of discrete data into multivariate functional data (Section 2). Sec-
tion 3 contains the functional version of canonical correlation coefficients analysis.
Section 4 describes our extension of the distance correlation coefficient to the func-
tional case. In Section 5 the accuracy of the proposed methods is demonstrated
using some empirical data. Conclusions are given in Section 6.

2. Smoothing of stochastic processes

Let us assume that XXX ∈ Lp
2(I1) and YYY ∈ Lq

2(I2) are random processes, where L2(I) is
a Hilbert space of square integrable functions on the interval I.

We also assume that E(XXX(s)) = 000, s ∈ I1 and E(YYY (t)) = 000, t ∈ I2.

This fact does not cause loss of generality, because functional correlation coef-
ficients are calculated on the basis of the covariance functions of processes XXX and YYY
of the form

Cov
[

XXX
YYY

]
=ΣΣΣ(s, t) =

[
ΣΣΣXXXXXX(s, t) ΣΣΣXYXYXY (s, t)
ΣΣΣY XY XY X(s, t) ΣΣΣYYYYYY (s, t)

]
, s ∈ I1, t ∈ I2,

where

ΣΣΣXXXXXX(s, t) = E[XXX(s)XXX ′(t)], s, t ∈ I1,

ΣΣΣXYXYXY (s, t) = E[XXX(s)YYY ′(t)], s ∈ I1, t ∈ I2,

ΣΣΣY XY XY X(s, t) = E[YYY (s)XXX ′(t)], s ∈ I2, t ∈ I1,

ΣΣΣYYYYYY (s, t) = E[YYY (s)YYY ′(t)], s, t ∈ I2.

We will further assume that each component Xg of process XXX and Yh of process
YYY can be represented by a finite number of orthonormal basis functions {ϕe} and
{ϕ f } of space L2(I1) and L2(I2), respectively:

Xg(s) =
Eg

∑
e=0

αgeϕe(s),s ∈ I1,g = 1,2, ..., p,

Yh(t) =
Fh

∑
f=0

βh f ϕ f (t), t ∈ I2,h = 1,2, ...,q.

The choice of the basis seems not crucial. We can use various orthonormal ba-
sis, but Fourier basis seems the most appropriate in most cases (Górecki & Krzyśko
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(2012)) and the most common in practice. The degree of smoothness of functions Xg

and Yh depends on values Eg and Fh respectively (small values cause more smooth-
ing). The choice of the truncation parameters is critical for the proper representation
of general stochastic process. The optimal number of basis elements could be deter-
mined using the Bayesian Information Criterion (BIC) for each function separately
through finding the most frequent value (modal value) over all functions. We should
prefer this value to be large, particularly when the stochastic processes are observed
at high frequency with little noise.

We introduce the following notation:

ααα = (α10, ...,α1E1 , ...,αp0, ...,αpEp)
′,

βββ = (β10, ...,β1F1 , ...,βq0, ...,βqFq)
′,

ϕϕϕEg(s) = (ϕ0(s), . . . ,ϕEg(s))
′,s ∈ I1,g = 1,2, ..., p,

ϕϕϕFh(t) = (ϕ0(t), . . . ,ϕEg(t))
′, t ∈ I2,h = 1,2, ...,q,

ΦΦΦ1(s) =


ϕϕϕ ′E1

(s) 000 . . . 000
000 ϕϕϕ ′E2

(s) . . . 000
. . . . . . . . . . . .

000 000 . . . ϕϕϕ ′Ep
(s)

 ,

ΦΦΦ2(t) =


ϕϕϕ ′F1

(t) 000 . . . 000
000 ϕϕϕ ′F2

(t) . . . 000
. . . . . . . . . . . .

000 000 . . . ϕϕϕ ′Fq
(t)

 .
Using the above matrix notation, processes XXX and YYY can be represented as:

XXX(s) =ΦΦΦ1(s)ααα, YYY (t) =ΦΦΦ2(t)βββ .

This means that the realizations of processes XXX and YYY are in finite dimensional
subspaces of Lp

2(I1) and Lq
2(I2) respectively. We will denote these subspaces by

L p
2 (I1) and L q

2 (I2).

For random vectors ααα and βββ we have:

E(ααα) = 000, E(βββ ) = 000

and
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Cov
[

ααααααααα

βββββββββ

]
=ΣΣΣ =

[
ΣΣΣαααααα ΣΣΣαβαβαβ

ΣΣΣβαβαβα ΣΣΣββββββ

]
,

where ΣΣΣαααααα = E(αααααα ′), ΣΣΣαβαβαβ = E(αααβββ ′), ΣΣΣβαβαβα = E(βββααα ′) and ΣΣΣββββββ = E(ββββββ ′).

Note that

ΣΣΣXXXXXX(s, t) = E[ΦΦΦ1(s)αααααα
′
ΦΦΦ
′
1(t)] =ΦΦΦ1(s)E(αααααα

′)ΦΦΦ′1(t) =ΦΦΦ1(s)ΣΣΣααααααΦΦΦ
′
1(t).

Similarly

ΣΣΣXYXYXY (s, t) =ΦΦΦ1(s)ΣΣΣαβαβαβΦΦΦ
′
2(t),

ΣΣΣY XY XY X(s, t) =ΦΦΦ2(s)ΣΣΣβαβαβαΦΦΦ
′
1(t),

ΣΣΣYYYYYY (s, t) =ΦΦΦ2(s)ΣΣΣββββββΦΦΦ
′
2(t).

In fact, the correlation analysis for random processes is based on matrices ΣΣΣαααααα ,
ΣΣΣββββββ and ΣΣΣαβαβαβ which are unknown. We have to estimate them on the basis of n
independent realizations XXX1,XXX2, ....,XXXn and YYY 1,YYY 2, ....,YYY n of random processes XXX
and YYY . We have XXX i(s) =ΦΦΦ1(s)ααα i and YYY i(t) =ΦΦΦ2(t)βββ i, i = 1,2, . . . ,n. This problem
has been extensively studied in the literature, e.g. Beutler (1970), Lee (1976) and
Masry (1978).

Typically, data are recorded at discrete moments in time. The transformation of
discrete data into functional data is performed for each realization and each variable
separately. Let xg j denote an observed value of feature Xg, g = 1,2, . . . p at the jth
time point s j, where j = 1,2, ...,J. Similarly, let yh j denote an observed value of
feature Yh, h = 1,2, . . .q at the jth time point t j, where j = 1,2, ...,J. Then, our data
consist of pJ pairs of (s j,xg j) and of qJ pairs of (t j,yh j).

The coefficients ααα i and βββ i are estimated by the least squares method. Let us
denote these estimates by aaai and bbbi, i = 1,2, . . . ,n.

As a result of the transformation process, we obtain functional data of the form:

xxxi(s) =ΦΦΦ1(s)aaai, yyyi(t) =ΦΦΦ2(t)bbbi, (1)

where s ∈ I1, t ∈ I2 and i = 1,2, . . . ,n.
Let AAA = (aaa′1,aaa

′
2, . . . ,aaa

′
n)
′, and BBB = (bbb′1,bbb

′
2, . . . ,bbb

′
n)
′. Then

Σ̂ΣΣαααααα =
1
n

AAA′AAA, Σ̂ΣΣββββββ =
1
n

BBB′BBB, Σ̂ΣΣαβαβαβ =
1
n

AAA′BBB. (2)
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3. Functional canonical correlation coefficient

Functional canonical variables U and V for stochastic processes XXX ∈ L p
2 (I1) and

YYY ∈L q
2 (I2) are defined as follows:

U(s) = lll′(s)XXX(s), lll ∈L p
2 (I1),

V (t) =mmm′(t)YYY (t), mmm ∈L q
2 (I2),

where lll and mmm are weight functions.

We have
E(U(s)) = E(V (t)) = 0, s ∈ I1, t ∈ I2.

Let us denote the covariance matrix of processes U and V by

ΣΣΣUV (s, t) =
[

σUU(s, t) σUV (s, t)
σVU(s, t) σVV (s, t)

]
.

Because lll ∈L p
2 (I1) and mmm ∈L q

2 (I2) we have

lll(s) =ΦΦΦ1(s)λλλ , mmm(t) =ΦΦΦ2(t)µµµ,

where λλλ ∈ RK1+p, µµµ ∈ RK2+q and K1 = E1 + ...+Ep, K2 = F1 + ...+Fq.

Moreover

σUU(s, t) = E[U(s)U ′(t)] = E[lll′(s)XXX(s)XXX ′(t)lll(t)]

= E[λλλ ′ΦΦΦ′1(s)ΦΦΦ1(s)αααααα
′
ΦΦΦ
′
1(t)ΦΦΦ1(t)λλλ ]

= λλλ
′
ΦΦΦ
′
1(s)ΦΦΦ1(s)ΣΣΣααααααΦΦΦ

′
1(t)ΦΦΦ1(t)λλλ .

Similarly

σUV (s, t) = λλλ
′
ΦΦΦ
′
1(s)ΦΦΦ1(s)ΣΣΣαβαβαβΦΦΦ

′
2(t)ΦΦΦ2(t)µµµ,

σVU(s, t) = µµµ
′
ΦΦΦ
′
2(s)ΦΦΦ2(s)ΣΣΣβαβαβαΦΦΦ

′
1(t)ΦΦΦ1(t)λλλ ,

σVV (s, t) = µµµ
′
ΦΦΦ
′
2(s)ΦΦΦ2(s)ΣΣΣββββββΦΦΦ

′
2(t)ΦΦΦ2(t)µµµ.

The functional canonical coefficient ρXXX ,YYY is defined as

ρXXX ,YYY = max
lll,mmm

∫
I1

∫
I2

σUV (s, t)dsdt = max
lll,mmm

∫
I1

∫
I2

E[lll′(s)XXX(s)YYY ′(t)mmm(t)]dsdt,
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subject to the constraint∫
I1

∫
I2

σUU(s, t)dsdt =
∫

I1

∫
I2

σVV (s, t)dsdt = 1.

Because ∫
I1

∫
I2

σUV (s, t)dsdt = λλλ
′
ΣΣΣαβαβαβ µµµ,∫

I1

∫
I2

σUU(s, t)dsdt = λλλ
′
ΣΣΣααααααλλλ ,∫

I1

∫
I2

σVV (s, t)dsdt = µµµ
′
ΣΣΣββββββ µµµ

we have
ρXXX ,YYY = max

λλλ ,µµµ
λλλ
′
ΣΣΣαβαβαβ µµµ = ρααα,βββ ,

subject to the restriction
λλλ
′
ΣΣΣααααααλλλ = µµµ

′
ΣΣΣββββββ µµµ = 1.

From the above we see that the functional canonical correlation coefficient ρXXX ,YYY

of the pair of random processes XXX ∈ L p
2 (I1) and YYY ∈ L q

2 (I2) is equivalent to the
canonical correlation coefficient ρααα,βββ of the pair of the random vectors ααα and βββ .

Note that if XXX ∈ Lp
2(I1) and YYY ∈ Lq

2(I2) there exist weight functions such that the
functional canonical coefficient is equal to one. This means that, with an increasing
size of a number of basis functions, the functional canonical coefficient will tend to
one. To avoid this problem Leurgans et al. (1993) proposed some additional regu-
larization. However, as for many correlation coefficients, it is difficult to evaluate
the magnitude of the relationship just by considering its values.

The canonical correlation coefficient ρααα,βββ of the pair of random vectors ααα and
βββ is based on matrices ΣΣΣαααααα , ΣΣΣββββββ and ΣΣΣαβαβαβ . If they are not known, we have to use
their estimators (2).

Hence
ρ̂ααα,βββ = max

λλλ ,µµµ
λλλ
′
Σ̂ΣΣαβαβαβ µµµ,

under the condition
λλλ
′
Σ̂ΣΣααααααλλλ = µµµ

′
Σ̂ΣΣββββββ µµµ = 1.

4. Functional distance correlation

First, let us define the joint characteristic function of the pair of random processes
(XXX ,YYY ). If for all functions lll ∈ Lp

2(I1) the integral
∫

I1
lll′(s)XXX(s)ds converges for almost
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all realization of XXX , and for all functions mmm ∈ Lq
2(I1) the integral

∫
I2

mmm′(t)YYY (t)dt
converges for almost all realizations of YYY , then the characteristic function of the pair
of random processes (XXX ,YYY ) has the following form:

ϕXXX ,YYY (lll,mmm) = E{exp[i < lll,XXX >p +i <mmm,YYY >q]},

where
< lll,XXX >p=

∫
I1

lll′(s)XXX(s)ds, <mmm,YYY >q=
∫

I2

mmm′(t)YYY (t)dt

and i2 = −1. Moreover, we define the marginal characteristic function of XXX and YYY
as follows: ϕXXX(lll) = ϕXXX ,YYY (lll,000) and ϕYYY (mmm) = ϕXXX ,YYY (000,mmm).

Now, let us assume that XXX ∈ L p
2 (I1) and YYY ∈ L q

2 (I2). Then, the processes XXX
and YYY can be represented as:

XXX(s) =ΦΦΦ1(s)ααα, YYY (t) =ΦΦΦ2(t)βββ ,

where ααα ∈ RK1+p and βββ ∈ RK2+q.

In this case, we may assume (Ramsey & Silverman (2005)) that the vector func-
tion lll and the process XXX are in the same space, i.e. function lll can be written in the
form

lll(s) =ΦΦΦ1(s)λλλ ,

where λλλ ∈ RK1+p.

We may assume the same for the vector function mmm and the process YYY . Then, we
have

mmm(t) =ΦΦΦ2(t)µµµ,

where µµµ ∈ RK2+q.

Hence

< lll,XXX >p=
∫

I1

lll′(s)XXX(s)ds = λλλ
′[
∫

I1

ΦΦΦ
′
1(s)ΦΦΦ1(s)ds]ααα = λλλ

′
ααα

and

<mmm,YYY >q=
∫

I2

mmm′(t)YYY (t)dt = µµµ
′[
∫

I2

ΦΦΦ
′
2(t)ΦΦΦ2(t)dt]βββ = µµµ

′
βββ

then

ϕXXX ,YYY (lll,mmm) = E{exp[iλλλ ′ααα + iµµµ ′βββ ]}= ϕααα,βββ (λλλ ,µµµ),

where ϕααα,βββ (λλλ ,µµµ) is the joint characteristic function of the pair of random vectors
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(ααα,βββ ).

On the basis of the idea of distance covariance between two random vectors
(Székely et al. (2007)), we can introduce functional distance covariance between
random processes XXX and YYY as a nonnegative number νXXX ,YYY defined by

νXXX ,YYY = νααα,βββ ,

where

ν
2
ααα,βββ =

1
CK1+pCK2+q

∫
RK1+K2+p+q

|φααα,βββ (λλλ ,µµµ)−φααα(λλλ )φβββ (µµµ)|2

‖λλλ‖K1+p+1
K1+p ‖µµµ‖K2+q+1

K2+q

dλλλdµµµ,

and |z| denotes the modulus of z ∈ C, ‖λλλ‖K1+p, ‖µµµ‖K2+q the standard Euclidean
norms on the corresponding spaces, and

Cr =
π

1
2 (r+1)

Γ(1
2(r+1))

.

The functional distance correlation between random processes XXX and YYY is a
nonnegative number defined by

RXXX ,YYY =
νXXX ,YYY√

νXXX ,XXX νYYY ,YYY

if both νXXX ,XXX and νYYY ,YYY are strictly positive, and zero otherwise. For distributions
with finite first moments, distance correlation characterizes independence in that
0≤RXXX ,YYY ≤ 1 with RXXX ,YYY = 0 if and only if XXX and YYY are independent.

We can estimate functional distance covariance using functional data of the form
(1).

On the basis of the result of Székely et al. (2007), we have

ν̂
2
XXX ,YYY =

1
n2

n

∑
k,l=1

AklBkl,

where akl = ‖aaak−aaal‖K1+p, āk· =
1
n ∑

n
l=1 akl , ā·l = 1

n ∑
n
k=1 akl , ā·· = 1

n2 ∑
n
k,l=1 akl and

Akl = akl− āk·− ā·l + ā··, and similarly for bkl = ‖bbbk−bbbl‖K2+q, b̄k·, b̄·l , b̄··, and Bkl ,
where aaak, aaal , bbbk, bbbl are given by (1) and k, l = 1, . . . ,n. Thus, the squared sample
distance covariance equals an average entry in the component-wise or Schur product
of the centered distance matrices for the two vectors.
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The sample functional distance correlation is then defined by

R̂XXX ,YYY =
ν̂XXX ,YYY√

ν̂XXX ,XXX ν̂YYY ,YYY

if both ν̂XXX ,XXX and ν̂YYY ,YYY are strictly positive, and zero otherwise.
The problem of testing the independence between the random processes XXX ∈

L p
2 (I1) and YYY ∈ L q

2 (I2) is equivalent to the problem of testing H0 : RXXX ,YYY = 0.
Székely et al. (2007) showed that under the null hypothesis of independence, nR̂XXX ,YYY

converges to ∑
∞
j=1 ν jZ2

j , where Z j are i.i.d N(0,1), and ν j depends on the distribu-
tion of (XXX ,YYY ). In practice, permutation tests are used to assess the significance of
the functional distance correlation (Josse & Holmes (2014)).

5. Empirical application

In this Section we offer an illustrative example of applying correlation analysis to
functional data. This method was employed here to cluster the twenty groups (pil-
lars) of variables of 127 countries of the world in the period 2008-2014. The list
of countries used in correlation analysis is contained in Table 1. Table 2 describes
the variables used in the analysis divided into pillars. For this purpose, use was
made of data published by the World Economic Forum (WEF) in its annual reports
(http://www.weforum.org). Those are comprehensive data, describing exhaustively
various socio-economic conditions or spheres of individual states. The data were
transformed into functional data by the method described in Section 2. Calcu-
lations were performed using the Fourier basis. The time interval [0,T ] = [0,6]
was divided into moments of time in the following way: t1 = 0.5(2008/2009), t2 =
1.5(2009/2010), . . . , t6 = 5.5(2013/2014). Moreover, in view of the small number
of time periods (J = 6), for each variable the maximum number of basis components
was taken to be equal to five. Table 3 contains the values of functional canonical
correlation coefficients. As expected, they are all close to one. But a high value
of this coefficient does not necessarily mean that there is a significant relationship
between the two groups of variables. Table 4 contains the values of functional dis-
tance correlation coefficients. This time the values are rather moderate and easier
to interpret. It is readily visible that the coefficients assume the highest values for
the following pairs of pillars: 2 - infrastructure and 10 - marker size; 11 - business
sophistication and 12 - innovation; 5 - higher education and training and 12 - inno-
vation; 5 - higher education and training and 11 - business sophistication; as well
as 6 - goods market efficiency and 11 - business sophistication. In turn, the coeffi-
cients have the lowest values for the pillars: 4 - health and primary education and
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10 - market size, as well as 4 - health and primary education and 2 - infrastructure.
Both the highest and the lowest values of distance correlation coefficients have an
obvious empirical foundation.

We performed permutation tests for the correlation coefficients discussed. For
all tests p-values were close to zero, so we can infer that we have some significant
relationship between the groups (pillars) of variables.

Finally, we joined these pillars using Ward’s hierarchical clustering algorithm
with a distance measure of the form 1− ρ̂XXX ,YYY and 1−R̂XXX ,YYY respectively. The results
are shown in Figures 1 and 2. As can be observed, given the wide differences in the
R̂XXX ,YYY values, functional distance correlations permit arranging the various groups of
variables into pillars in a logical way, e.g. (4,9), (11,12), etc. This allows analysing
the examined reality in a deeper way, which is not possible when using canonical
correlation coefficients.

During the numerical calculation process we used R software (R Core Team
(2015)) and packages: CCP (Menzel (2012)), energy (Rizzo & Székely (2014)) and
fda (Ramsay et al. (2014)).
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Figure 1: Dendrogram based on the functional canonical correlation coefficients.
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Figure 2: Dendrogram based on the functional distance correlation coefficients.
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Table 1. Countries used in correlation analysis, 2008-2014

1 Albania 44 Germany 87 Nicaragua
2 Algeria 45 Ghana 88 Nigeria
3 Argentina 46 Greece 89 Norway
4 Armenia 47 Guatemala 90 Oman
5 Australia 48 Guyana 91 Pakistan
6 Austria 49 Honduras 92 Panama
7 Azerbaijan 50 Hong Kong SAR 93 Paraguay
8 Bahrain 51 Hungary 94 Peru
9 Bangladesh 52 Iceland 95 Philippines
10 Barbados 53 India 96 Poland
11 Belgium 54 Indonesia 97 Portugal
12 Benin 55 Ireland 98 Puerto Rico
13 Bolivia 56 Israel 99 Qatar
14 Bosnia and Herzegovina 57 Italy 100 Romania
15 Botswana 58 Jamaica 101 Russian Federation
16 Brazil 59 Japan 102 Saudi Arabia
17 Brunei Darussalam 60 Jordan 103 Senegal
18 Bulgaria 61 Kazakhstan 104 Serbia
19 Burkina Faso 62 Kenya 105 Singapore
20 Burundi 63 Korea Rep 106 Slovak Republic
21 Cambodia 64 Kuwait 107 Slovenia
22 Cameroon 65 Kyrgyz Republic 108 South Africa
23 Canada 66 Latvia 109 Spain
24 Chad 67 Lesotho 110 Sri Lanka
25 Chile 68 Lithuania 111 Sweden
26 China 69 Luxembourg 112 Switzerland
27 Colombia 70 Macedonia FYR 113 Taiwan China
28 Costa Rica 71 Madagascar 114 Tanzania
29 Côte d’Ivoire 72 Malawi 115 Thailand
30 Croatia 73 Malaysia 116 Timor-Leste
31 Cyprus 74 Mali 117 Trinidad and Tobago
32 Czech Republic 75 Malta 118 Turkey
33 Denmark 76 Mauritania 119 Uganda
34 Dominican Republic 77 Mauritius 120 Ukraine
35 Ecuador 78 Mexico 121 United Arab Emirates
36 Egypt 79 Mongolia 122 United Kingdom
37 El Salvador 80 Montenegro 123 United States
38 Estonia 81 Morocco 124 Uruguay
39 Ethiopia 82 Mozambique 125 Venezuela
40 Finland 83 Namibia 126 Vietnam
41 France 84 Nepal 127 Zambia
42 Gambia The 85 Netherlands
43 Georgia 86 New Zealand
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Table 2. Variables used in correlation analysis, 2008-2014

No. Variables Pillars
1 Property rights 1. Institutions
2 Intellectual property protection
3 Diversion of public funds
4 Public trust of politicians
5 Judicial independence
6 Favoritism in decisions of government officials
7 Wastefulness of government spending
8 Burden of government regulation
9 Transparency of government policymaking
10 Business costs of terrorism
12 Business costs of crime and violence
11 Organized crime
12 Reliability of police services
13 Ethical behavior of firms
14 Strength of auditing and reporting standards
15 Efficacy of corporate boards
16 Protection of minority shareholders’ interests
17 Quality of overall infrastructure 2. Infrastructure
18 Quality of roads
19 Quality of port infrastructure
20 Quality of air transport infrastructure
21 Available airline seat kilometers
22 Quality of electricity supply
23 Inflation 3. Macroeconomic environment
24 Government debt
25 Business impact of tuberculosis 4. Health and primary education
26 Tuberculosis incidence
27 Business impact of HIV/AIDS
28 HIV prevalence
29 Infant mortality
30 Life expectancy
31 Quality of primary education
32 Quality of the educational system 5. Higher education and training
33 Quality of math and science education
34 Quality of management schools
35 Internet access in schools
36 Local availability of specialized research and training services
37 Extent of staff training
38 Intensity of local competition 6. Goods market efficiency
39 Extent of market dominance
40 Effectiveness of anti-monopoly policy
41 Agricultural policy costs
42 Prevalence of trade barriers
43 Prevalence of foreign ownership
44 Business impact of rules on FDI
45 Burden of customs procedures
46 Degree of customer orientation
47 Buyer sophistication
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Table 2. Variables used in correlation analysis, 2008-2014 (continuation)
No. Variables Pillars
48 Cooperation in labor-employer relations 7. Labor market efficiency
49 Flexibility of wage determination
50 Hiring and firing practices
51 Pay and productivity
52 Reliance on professional management
53 Female participation in labor force
54 Financing through local equity market 8. Financial market development
55 Ease of access to loans
56 Venture capital availability
57 Soundness of banks
58 Regulation of securities exchanges
59 Availability of latest technologies 9. Technological readiness
60 Firm-level technology absorption
61 FDI and technology transfer
62 Internet users
63 Domestic market size index 10. Market size
64 Foreign market size index
65 GDP valued at PPP
66 Exports as a percentage of GDP
67 Local supplier quantity 11. Business sophistication
68 Local supplier quality
69 State of cluster development
70 Nature of competitive advantage
71 Value chain breadth
72 Control of international distribution
73 Production process sophistication
74 Extent of marketing
75 Willingness to delegate authority
76 Capacity for innovation 12. Innovation
77 Quality of scientific research institutions
78 Company spending on R&D
79 Government procurement of advanced technology products
80 Availability of scientists and engineers

Table 3. Functional canonical correlation coefficients
1 2 3 4 5 6 7 8 9 10 11

2 0.9997
3 0.9711 0.9137
4 0.9999 0.9903 0.9036
5 0.9993 0.9928 0.9186 0.9980
6 1.0000 0.9927 0.9440 0.9921 0.9941
7 0.9995 0.9795 0.8687 0.9822 0.9913 0.9947
8 0.9988 0.9701 0.8773 0.9778 0.9781 0.9917 0.9878
9 0.9988 0.9872 0.8714 0.9744 0.9927 0.9922 0.9846 0.9683
10 0.9949 0.9976 0.8558 0.9518 0.9699 0.9828 0.9561 0.9408 0.9391
11 1.0000 0.9934 0.9274 0.9924 0.9973 0.9982 0.9941 0.9885 0.9915 0.9816
12 0.9984 0.9795 0.8782 0.9849 0.9915 0.9928 0.9794 0.9763 0.9795 0.9540 0.9937
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Table 4. Functional distance correlation coefficients
1 2 3 4 5 6 7 8 9 10 11

2 0.4961
3 0.5116 0.5199
4 0.6162 0.4064 0.4255
5 0.8941 0.5128 0.5034 0.7062
6 0.9006 0.5480 0.5550 0.6582 0.8972
7 0.8480 0.5654 0.5760 0.6380 0.8443 0.8760
8 0.8508 0.4921 0.4662 0.6371 0.8026 0.8681 0.8062
9 0.7482 0.4524 0.4882 0.7038 0.8540 0.7510 0.6880 0.6750
10 0.4752 0.9319 0.4938 0.4163 0.5066 0.5419 0.5506 0.4631 0.4400
11 0.8671 0.5864 0.5381 0.7047 0.9008 0.9110 0.8398 0.8257 0.8118 0.5713
12 0.8606 0.5616 0.5466 0.6466 0.9121 0.8652 0.8194 0.7757 0.7892 0.5585 0.9318

6. Conclusions

We proposed an extension of the classical correlation coefficients for two sets of
variables for multivariate functional data. We suggested permutation tests to exam-
ine the significance of the results because the values of the proposed coefficients
are rather hard to interpret. The presented method has been proved to be useful as
it was tested on a real data set, in investigating the correlation between two sets of
variables. This example confirms its usefulness in revealing the hidden structure of
the co-dependence between groups (pillars) of variables representing various fields
of socio-economic activity.
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