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Improved calibration estimation of population mean in stratified 
sampling using two auxiliary variables 
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Abstract 

In this paper, a new improved calibration estimator for the population mean in a stratified 
sampling was proposed using two auxiliary variables. A simulation study was carried out to 
evaluate the performance and efficiency of the proposed estimator with respect to three 
estimators considered in the literature for estimating the population mean in a stratified 
sampling using two auxiliary variables. The results showed that the new estimator proved to 
be more efficient than the three existing estimators considered 

Key words: calibration, estimator, stratified sampling, auxiliary variables, mean square 
error, bias, percentage relative efficiency. 

1.  Introduction 

Calibration estimation is a popular approach in sample survey introduced by 
Deville and Sarndal (1992) and meant to improve the precision of the estimated 
population parameter. This is achieved using additional relevant information known as 
auxiliary information or variable. Auxiliary variable is a variable that provides some 
other relevant details about the study variable (Babatunde et al. (2023)). Auxiliary 
variables are correlated to the study variable (Babatunde et al. (2023)) and the efficiency 
of an estimator depends on the level of correlation between the study and auxiliary 
variables (Agunbiade and Ogunyinka (2013)). Agunbiade and Ogunyinka (2013) 
showed that using auxiliary variable that is highly correlated to the study variable 
produces an estimator with smaller variance compared to when the correlation level 
between the auxiliary variable and study variable is medium or low. This implies that 
the choice of auxiliary variables is restricted only to variables that are correlated to the 
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study variable. This poses some limitations on the use of auxiliary variable as not all 
variables can be used as auxiliary variable.  

In estimating the population mean of a stratified sampling using calibration 
approach, the calibration weights are used to replace the stratum weights in the 
estimator. The calibration weights are obtained by minimizing a distance function 
subject to well defined calibration constraints. Most often, calibration constraints 
restrict the sum of the selected sample statistics to be equal to the sum of the population 
parameters in the different strata (see Ozgul (2018), Alam et al. (2021), Adubi et al. 
(2022), Babatunde et al. (2023)).  

Several calibration estimators for the population mean in a stratified sampling 
using different parameters of one auxiliary variable in the calibration constraints have 
been proposed in the literature (see Tracey, Singh and Arnab (2003), Rao, Tekabu and 
Khan (2016), Koyuncu and Kadilar (2016), Sisodia, Singh and Singh (2017), Alam, 
Singh and Shabbir (2019), Garg and Pachori (2019), Alam and Shabbir (2020), 
Babatunde et al. (2023), Oladugba et al. (2023) etc.). Several calibration estimators were 
arrived at by modifying existing estimators (see Kadilar and Cingi (2006), Garg and 
Pachori (2019)). Calibration estimators of the population mean have been shown to be 
more efficient than the general population estimator in a stratified sampling (see Rao, 
Khan and Khan (2012), Ozgul (2018) and Alam et al. (2019)). The use of two auxiliary 
variables have also been explored in the calibration estimation of the population mean 
in stratified sampling. Rao et al. (2012), Ozgul (2018) and Rai, Singh and Qasim (2021) 
proposed different calibration estimators for population mean in a stratified sampling 
using different calibration constraints based on two auxiliary variables. 

In this paper, we propose a new improved calibration estimator for the population 
mean in a stratified sampling based on two auxiliary variables by modifying the 
estimator proposed in Ozgul (2018) with the aim of achieving a more efficient 
estimator. The standard deviation of the two auxiliary variables was used to define the 
calibration constraints. 

The remainder of this paper is as follows: notations are presented in Section 2, some 
of the existing calibration estimators based on two auxiliary variables were discussed 
in Section 3. In Section 4, the proposed calibration estimator was presented. The 
simulation study carried out and conclusions are presented in Sections 5 and 6, 
respectively. 

2. Notations 

Consider a situation where it is desired to estimate the population mean 
in stratified sampling using additional information from two auxiliary variables. Let M 
be a finite population consisting of N units, i.e. . Let ,  and 

Y
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 be the  value of the study variable, first auxiliary variable and second auxiliary 
variable respectively, i = 1, 2, … N. Let M be divided into Z distinct homogenous strata 

with each stratum containing   units, h = 1, 2, …, Z such that . A sample 

of size n is drawn from M using simple random sampling without replacement 

(SRSWOR) by selecting units from thh  stratum such that . The mean of 

the sample and population of the study variable in each stratum are given as 
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the auxiliary variables are 
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The population mean of a stratified sampling is estimated by: 

                                                                                           (2.1) 

where   is the thh  stratum weights. 

The precision of the estimator in (2.1) is improved upon using the calibration 
approach which replaces the stratum weights with calibrated weights obtained by 
optimizing the Chi-square distance function defined below: 

                                                                              (2.2) 
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Subject to well defined calibration constraints. 
where are the calibrated weights and  are defined weights for obtaining different 
versions of the estimator (Alam and Shabbir (2020)). 

3. Some Calibration Estimators in Stratified Sampling Using Two Auxiliary 
Variables 

Different calibration estimators have been proposed for the population mean of 
a stratified sampling using several known parameters of the auxiliary variables. Some 
of the existing calibration estimators using two auxiliary variables are reviewed below. 

3.1. Rao et al. (2012) 

Rao et al. (2012) proposed a calibration estimator with two auxiliary variables using 
the mean of the auxiliary variables in the calibration constraints as:  

                                                
                                                     (3.1) 

where  the calibrated weights Ω௛ோ are obtained by minimizing the Chi-square distance 
function in (2.2) subject to the calibration constraints given by: 

                                                                                                     (3.2) 

                                                 
                                                   (3.3) 

By minimizing the function in (2.2) subject to (3.1) and (3.2), the optimum 
weights obtained are: 
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By substituting (3.5) and (3.6) into (3.4) and substituting (3.4) into (3.1), the 
obtained estimator can be expressed as: 

              
                        (3.7) 

where 

    

   (3.8) 

 

(3.9) 

3.2. Ozgul (2018) 

Ozgul (2018) proposed a calibration estimator with two auxiliary variables using 
the ratio of the mean of the auxiliary variables in the calibration constraints as:  

                                        
                                                (3.10) 

where  the calibrated weights Ω௛ை are obtained by minimizing the Chi-square distance 
function in (2.2) subject to the calibration constraints given by: 
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By substituting (3.14) and (3.15) into (3.13) and substituting (3.13) into (3.12), 
the obtained estimator can be expressed as: 

                                                                   (3.17) 
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3.3. Rai et al. (2021) 

Rai et al. (2021) proposed a calibration estimator with two auxiliary variables using 
the sample and population mean of the auxiliary variables in the calibration constraints 
as: 
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(3.24) 
where 

                                                                             (3.25) 
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By substituting (3.23) and (3.24) into (3.22) and substituting (3.22) into (3.19), 
the obtained estimator can be expressed as: 
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subject to the calibration constraints defined below: 

                                          
                                                         (4.2) 

                                                                                        (4.3) 
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The optimum value for the proposed calibrated weight for each stratum was 
obtained by minimizing (2.2) subject to the constraints in (4.2) and (4.3) using 
Lagrange optimization method. The Lagrange function for minimizing (2.2) subject to 
(4.2) and (4.3) is expressed as: 

   

                      (4.4) 
where  and are defined as the Lagrange multipliers. 

By differentiating (4.4) with respect to and equating the resultant expression to 
zero, we obtained the optimum calibration weight as: 

                                                                                    (4.5) 

where  and are obtained by replacing  in (4.2) and (4.3) with the optimum value 
of in (4.5). 

                                                    (4.6) 

                          

                               (4.7) 

Then by substituting (4.6) and (4.7) into (4.5), the optimum calibrated weights are 
expressed as: 
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By substituting  obtained in (4.8) into (4.1), we obtained the proposed 
calibration estimator as: 

                                                                          (4.9) 

where 

                      (4.10) 

In most situations, is assumed to be equal to 1 (Ozgul, 2018). For calibration 
estimator involving one auxiliary variable,  is assumed to be equal to the reciprocal 
of the sample mean and any other statistic of the auxiliary variable (see Garg and 
Pachori (2019) and Babatunde et al. (2023)). Since the calibration estimators considered 
in this paper involve two auxiliary variables, we suggested  to be the reciprocal of the 
sum of the sample mean and sample standard deviation of the two auxiliary variables, 

i.e.  and . 

The different values of  were used to obtain different versions of the proposed 
calibration estimator as: 
Case I:  

                                                             (4.11) 
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where 

     

      (4.16) 

5. Simulation Study 

We demonstrated the efficiency of the proposed calibration estimator over the 
estimators proposed in Rao et al. (2012), Ozgul (2018) and Rai et al. (2021) through 
a simulation study. A simulation study establishes the consistency of the obtained result 
under different scenarios. The study population is MU284 obtained from Sarndal, 
Swensson and Wretman (1992, pp. 652–659) consisting of 284 municipalities from 
Sweden partitioned by geographical region into eight strata. The study variable is the 
1985 populations (in thousands) while the first and second auxiliary variables are the 
1975 populations (in thousands) and total number of seats in municipal council 
respectively. The population parameters in each stratum are presented in Table 1. Using 
SRSWOR, a random sample of size n; n1 = 57, n2 = 71, n3 = 85, n4 = 99 and n5 = 114, 
which correspond to 20%, 25%, 30%, 35% and 40% of the population units respectively, 
were drawn. The sample size for each stratum  was obtained using proportional 
allocation. 

For each sample size, we simulated K = 50,000 samples and computed both the 
proposed and existing estimators considered in this work for all the simulated samples. 
The performance and efficiency of the calibration estimators were assessed using the 
absolute relative bias (ARB), empirical mean square error (MSE) and percentage 
relative efficiency (PRE) expressed in (5.1), (5.2) and (5.3) respectively. The results 
obtained are presented in Tables 2, 3 and 4. 
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Table 1:  Population parameters of the study and auxiliary variables   

Strata 
Mean Standard Deviation 

Y X1 X2 Y X1 X2 

1 62.4400 59.5200 51.1600 122.0685 126.1038 13.7860 
2 29.6042 29.1667 47.6667 35.9547 34.6791 12.7628 
3 24.0625 23.9375 50.2500 20.7710 20.5790 10.1704 
4 31.0000 30.6316 48.4737 38.6775 40.9373 8.9406 
5 29.4107 28.7143 46.3571 56.2348 59.1731 9.8060 
6 20.8293 20.9756 46.5610 17.5359 17.1343 8.1272 
7 26.6667 26.6000 54.2000 23.8038 23.2975 11.0224 
8 17.5172 17.1379 40.1724 21.4164 19.7968 9.7912 
                                              
 
 

Table 2:  Absolute Relative Bias of the Calibrated Estimators Using Two Auxiliary Variables 

 

Sample size    RARB y   

n1 0.003880 0.031470 0.035461 0.035462 
n2 0.002748 0.029486 0.032508 0.032509 
n3 0.002305 0.028617 0.030898 0.030899 
n4 0.001492 0.027078 0.029139 0.029140 
n5 0.002690 0.024627 0.026226 0.026227 

 

n1 0.008747 0.029921 0.033910 0.033911 
n2 0.002528 0.027947 0.030941 0.030942 
n3 0.001439 0.027323 0.029546 0.029547 
n4 0.004879 0.024616 0.026268 0.026269 
n5 0.000527 0.023686 0.025184 0.025185 

 

n1 0.009412 0.033364 0.037549 0.037550 
n2 0.001385 0.033441 0.036775 0.036776 
n3 0.002847 0.033369 0.035985 0.035986 
n4 0.000918 0.031900 0.034010 0.034011 
n5 0.008633 0.030618 0.032596 0.032598 
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Table 3:  Mean Square Error of the Calibrated Estimators Using Two Auxiliary Variables 

 

Sample size     

n1 648.97 42693.33 54207.70 54211.06 
n2 325.51 37478.80 45554.96 45558.00 
n3 229.09 35302.94 41153.64 41156.49 
n4 95.95 31608.20 36603.02 36605.67 
n5 311.98 26144.38 29650.31 29652.67 

 

n1 3298.22 38593.30 49568.96 49572.17 
n2 275.58 33670.15 41268.60 41271.48 
n3 89.27 32182.77 37631.68 37634.39 
n4 1026.02 26122.38 29745.02 29747.40 
n5 11.97 24184.35 27340.07 27342.33 

 

n1 5002.00 51977.03 65263.01 65266.74 
n2 85.05 48265.29 58361.29 58365.28 
n3 334.90 48173.62 56008.55 56011.90 
n4 36.29 43866.74 49862.30 49865.42 
n5 3212.79 40411.47 45803.84 45806.80 

 

Table 4:  Percentage Relative Efficiency of the Proposed Estimator 

 

Sample size    

n1 65.79 83.53 83.53 
n2 115.14 139.95 139.96 
n3 154.10 179.64 179.65 
n4 329.42 381.48 381.51 
n5 83.80 95.04 95.05 

 

n1 11.70 15.03 15.03 
n2 122.18 149.75 149.76 
n3 360.51 421.55 421.58 
n4 25.46 28.99 28.99 
n5 2020.41 2284.05 2284.24 

 

n1 10.39 13.05 13.05 
n2 567.49 686.20 686.25 
n3 143.84 167.24 167.25 
n4 1208.78 1374.00 1374.08 
n5 12.58 14.26 14.26 
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Table 2 presents the absolute relative bias for all the calibration estimators.  
The proposed estimator has the least absolute relative bias followed by the estimators 
proposed by Ozgul (2018), Rao et al. (2012) and Rai et al. (2021) for all the cases of  
considered. This implies that the estimates of the population mean obtained from the 
proposed estimator are closer to the population mean compared to the estimates 
obtained from the estimators proposed in Ozgul (2018), Rao et al. (2012) and Rai et al. 
(2021). For all the different sample sizes considered, the ARB values of the proposed 
estimators are smaller compared to the ARB values of the estimators proposed in Ozgul 
(2018), Rao et al. (2012) and Rai et al. (2021). For =1, the ARB values of the proposed 
estimator reduced as the sample size increases except for n5 = 114 where the ARB value 
increased but for  and , the ARB values are not 

consistent. For =1 and , the least ARB value is observed when the 

sample size n4 = 99 while for  the least ARB value is observed when the 
sample size n5 = 114. This suggest that the proposed estimator performed better with 
a large sample size. 

The results in Table 3 are the mean square errors for all the calibration estimators. 
The proposed estimator has the least mean square error followed by the estimators 
proposed by Ozgul (2018), Rao et al. (2012) and Rai et al. (2021) for all the cases of  
considered. For all the different sample sizes considered, the MSE values of the 
proposed estimators are smaller compared to the MSE values of the estimators 
proposed in Ozgul (2018), Rao et al. (2012) and Rai et al. (2021). For =1, the MSE 
values of the proposed estimator reduced as the sample size increases except for  
n5 = 114 where the MSE value increased but for  and , 

the MSE values are not consistent. For =1 and  the least MSE value 
is observed when the sample size n4 = 99 while for  the least MSE value 
is observed when the sample size n5 = 114.  

From Table 4, all the percentage relative efficiencies obtained are greater than 100% 
implying that the proposed estimator is more efficient when compared to the estimators 
proposed by Ozgul (2018), Rao et al. (2012) and Rai et al. (2021) for all the cases of  
considered. For all the different sample sizes considered, the proposed estimator is 
more efficient compared to the estimators proposed in Ozgul (2018), Rao et al. (2012) 
and Rai et al. (2021). However, the result of this study shows that the proposed 
estimator is more efficient when compared to the estimators proposed in Ozgul (2018), 
Rao et al. (2012) and Rai et al. (2021) for large sample sizes. For example, for =1 and 

, the efficiency of the proposed estimator compared to the estimators 
proposed in Ozgul (2018), Rao et al. (2012) and Rai et al. (2021) was higher for sample 
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size n4 = 99 while for  the efficiency of the proposed estimator compared 
to the estimators proposed in Ozgul (2018), Rao et al. (2012) and Rai et al. (2021) was 
higher for sample size n5 = 114. 

6. Conclusion 

The standard estimator of the population mean in a stratified sampling was 
improved in this paper through calibration estimation approach using two auxiliary 
variables. The calibration estimator proposed in Ozgul (2018) was modified by defining 
a new set of calibration constraints. Through a simulation study, the efficiency of the 
proposed calibration estimator was assessed and compared to the estimators proposed 
in Rao et al. (2012), Ozgul (2018) and Rai et al. (2021). The proposed estimator has the 
least absolute relative bias and mean square error for all the cases of  considered. 
These results are consistent with the results obtained in Ozgul (2018), where the 
absolute relative bias and mean square error of the estimators proposed by Ozgul (2018) 
and Rao et al. (2018) were compared for . Also, the proposed estimator is more 
efficient when compared to the estimators proposed in Rao et al. (2012), Ozgul (2018) 
and Rai et al. (2021) for all the cases of  considered. Furthermore, the efficiency of 
the proposed estimator was found to be higher for large sample sizes.  
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