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Skew Log-Logistic distribution: properties
and application
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Abstract

This paper introduces a novel three-parameter skew-log-logistic distribution. The research 
involves the development of a new random variable based on Azzalini and Capitanio’s (2013) 
proposition. Additionally, various statistical properties of this distribution are explored. The 
paper presents a maximum likelihood method for estimating the distribution’s parameters. 
The density function exhibits unimodality with heavy right tails, while the hazard function 
exhibits rapid increase, unimodality, and slow decrease, resulting in a right-skewed curve. 
Furthermore, four real datasets are utilized to assess the applicability of this new distribution. 
The AIC and BIC criteria are employed to assess the goodness of fit, revealing that the new 
distribution offers greater flexibility compared to the baseline distribution.
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1. Introduction

Different families of distribution created from the baseline distribution by using differ-
ent mathematical techniques have attracted the interest of statisticians and other scholars.
In the literature, univariate probability distributions have been modified by adding extra pa-
rameters such as shape, scale, or location in the existing distribution, the primary aim of
such extension, generalization, and modification of the existing distribution is to generate
a more flexible distribution. Such new distributions have been applied to fit a distribution
pattern of real-world problems such as in finance, economics, physics, biostatistics, actu-
arial science, reliability analysis, engineering, and many more fields. In this study, a new
random variable from the application of Azzalini and Capitanio’s proposition (Azzalini and
Capitanio, 2013) has been introduced. For this, the Log-Logistic (LLog) distribution is cho-
sen as a base distribution. Heavy-tailed distribution is always desired by the researcher to
capture the right-tailed skewed data. This research is motivated to find the distribution to
capture the unusual data or outliers present in the real dataset. Four real data sets of the age
of the Nepalese mother at the birth of a child, the waiting time of customers at the bank
before receiving the service, the age at first marriage of Nepalese females, and the age at
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menarche of Nepalese girls have been applied to test the suitability and flexibility of the
proposed distribution.

The rest of the paper is organized as follows. In Section 2, a brief review of LLog
distribution has been presented. In Section 3 a new distribution, called hereafter, ’Skew-
Log-Logistic’ (SLLog) distribution, is formulated and some statistical properties have been
derived. Section 4 includes the methods of parameter estimation and Section 5 illustrates
the application and validity of a model by using the four real data sets. Finally, Section 6
concludes the paper.

2. Log Logistic Distribution

The LLog distribution is a popular logistic distribution, which was initially developed to
model population growth by Verhulst (1838) as cited in (Tahir et al., 2014). It is a continuous
distribution with a uni-model failure rate function for a non-negative random variable. If T
has a logistic distribution, then X = eT has LLog distribution. It is popularly known as
Fisk-distribution in economics (Fisk, 1961). This distribution is applicable for modeling in
various real-world situations, viz.: wealth and income (Fisk, 1961); economics and actuarial
sciences (Kleiber and Kotz, 2003); flow data in hydrology (Ashkar and Mahdi, 2006) and
‘time following a heart transplantation’ in biostatistics (Collet, 2015). Similarly, Yilmaz
et al. (2011) used it to estimate the seismic risk and earthquake occurrence probabilities.
Further, Tahir et al. (2014) applied it to study the reliability analysis. Furthermore, it is used
by Surendran and Tota-Maharaj, (2015) for modeling daily water consumption, estimation,
and forecasting. So, LLog is a widely applicable model in different walks of life.

The probability density function (PDF) and the cumulative distribution function (CDF)
of the three-parameter LLog distribution are given as
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where α > 0 is a shape parameter, β > 0 is a scale parameter and γ is a threshold or location
parameter. The random variables under study in the different situations have positive values
and the minimum cutoff value of these random variables is greater than zero, such as the
minimum age of the mother at the birth of a child. Here, we consider the third threshold or
location parameter of the LLog distribution.

The basic properties of this distribution are studied by Kleiber and Kotz (2003), Lawless
(2003), and Ashkar and Mahdi (2006). The kth order moments of two-parameter LLog
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distribution are derived and studied by Tadikamalla (1980) for α > k as
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where B(a,b) is the Beta function defined as B(a,b) =
∫ 1

0 xa−1(1−x)b−1dx. Also, the value
of the Beta function is computed by using the relation as B(a,b) = Γa Γb

Γ(a+b) .
In particular, the mean and variance of the two-parameter LLog distribution are given as
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for α > 2.

3. Skew Log-Logistic Distribution

The Normal distribution was extended to the Skew-Normal distribution by adding an
asymmetry parameter λ > 0 (Azzalini, 1985, 2005). The PDF of a Skew-Normal distribu-
tion was derived by using the relation expressed in Equation (4).

f (z) = 2 φ(z) Φ(λ z), z ∈ R, λ ∈ R (4)

Here, φ(z) and Φ(z) are the PDF and CDF of Standard Normal distribution. The general
formula for the construction of a skew-symmetrical distribution other than the Standard
Normal distribution proposed by Azzalini and Capitanio (2013) is as:

f (x) = 2 g(x) G(x), x ∈ R (5)

where g(x) and G(x) are the PDF and CDF of any baseline distribution. Gupta et al. (2002)
introduced Skew-uniform, Skew-t, Skew-Cauchy, Skew-Laplace, and Skew-logistic distri-
butions. Later, Nadarajah (2009) studied in detail about the Skew-Logistic distribution. The
base distributions chosen in all of these cases were a symmetrical distribution about the ori-
gin. However, Shaw and Buckley (2007) claimed to choose any distribution other than the
symmetrical one (p. 15). Thus, in this research, the LLog distribution is chosen as a base
distribution that is already positively skewed. Since the distributions proposed by different
researchers are unable to catch the extreme value of data. We hope this construction of a
heavy-tailed distribution could catch the unusual extreme value that exists in the data. [Note:
Some or part of this research is published as a preliminary result in proceeding (Gaire et al.,
2019)].

The LLog distribution is chosen as the base distribution because it has been preferred by
different researchers in their generalization, modification and extension due to the flexible
nature of both PDF and hazard rate functions. Different forms of generalization of the LLog
distributions are found in literature used by different scholars. Some of frequently used dis-
tributions are exponentiated LLog distribution (Rosaiah et al., 2006); Beta LLog distribu-
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tion (Lemonte, 2012) by using the generator introduced by Eugene et al. (2002) and Jones
(2004); Kumaraswamy LLog distribution proposed by De-Santana et al. (2012) by using the
relationship provided by Cordeiro and Castro (2011); Transmuted LLog distribution intro-
duced by Aryal (2013) using the concept of the quadratic transmutation rank map of Shaw
and Buckley (2007); Marshall-Olkin Extended LLog distribution proposed and studied by
Gui (2013) using the concept of Marshall and Olkin (1997); Zografos-Balakrishnan LLog
distribution introduced and studied by Hamedani (2013) based on the concept of Zografos-
Balakrishnan generalized distribution (Zografos and Balakrishnan, 2009); McDonald LLog
distribution proposed and studied by Tahir et al. (2014) using the concept of Alexander et
al. (2012); Extended LLog distribution studied and presented by Lima and Cordeiro (2017)
using an exponentiated generalized class of distribution of Cordeiro et al. (2013). Similarly,
Additive Weibull LLog distribution has been introduced by Hemeda (2018) using the con-
cept suggested by Hassan and Hemeda (2016); Transmuted generalized LLog distribution
was studied by Adeyinka and Olapade (2019). At this juncture, the SLLog distribution is
introduced and formulated; further some structural properties of the distribution are derived,
along with a method of parameter estimation, and applied to four real data sets for model
validity.

3.1. Probability Density Function of the SLLog Distribution

In this section, the PDF of the SLLog distribution is introduced. After substituting the
values of g(x) and G(x) of the LLog distribution in Equation (5) we obtained the PDF of
the SLLog distribution in Equation (6) as:

f (x) =
2α

β

(
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β

)2α−1

(
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(
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β

)α)3 , for x > γ (6)

Here, f (x) is a probability density function since the total probability under a given
range is unity. Figure 1 depicts the plots of PDF of the distribution for the selected values of
parameters. The graph shows that the PDF is right-skewed for selected values of parameters.

3.2. Cumulative Distribution Function of SLLog Distribution

The CDF of the SLLog distribution is defined as:
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Figure 1: Plots of PDF of SLLog distribution for selected values of parameters
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Figure 2: Graph of CDF for the selected values of parameters

On simple calculation, it gives the value of F(x) as:

F(x) = 1− 2

1+
(

x−γ

β

)α +
1(

1+
(

x−γ

β

)α)2 , for x > γ (7)

The graph of CDF of SLLog distribution has been presented in Figure 2 for the selected
values of the parameters α, β , and fixed value of γ = 15. The graph is monotonically
increasing and the maximum value is 1 for a different set of parameters selected.
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3.3. Moments About Origin of the SLLog Distribution

To calculate the kth order moments of the SLLog distribution about the origin, first,
consider the third parameter γ = 0, then the density function (6) becomes,
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Now, the kth order moments of the SLLog distribution about the origin is
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By using the relation of integration from Gradshteyn and Ryzhik (2000),
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Here, it is to be noted that moments of the SLLog distribution are only defined for α > k
as.
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In particular, the mean and variance of the SLLog Distribution are given in Equation
(9).
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Thus, the value of the mean of SLLog distribution for α = 3 and β = 10 is 16.1252.
Table 1 gives the value of the first four moments of distribution about the origin for different
values of parameters. These moments can be used to compute the value of skewness and
kurtosis of the distribution. The values of moments are increased with the increase in the
value of parameters.

Table 1: Value of first four moments about the origin for different values of parameters

Parameters K = 1 K = 2 K = 3 K = 4
α = 8, β = 10 11.54 138.84 1753.35 23571.43

α = 9, β = 11 12.47 160.62 2146.27 29992.96

α = 10, β = 12 13.42 184.72 2617.31 38367.2

α = 11, β = 13 14.37 211.02 3170.38 48922.32
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3.4. Random Number Generation and Quantile Function of the SLLog Distribution

A set of random numbers can be generated by using the method of inversion from the
CDF of the SLLog distribution. For this, let, F(x) = U , where, the function U follows the
uniform distribution in an interval [0,1] as
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= Z. Then, it leads to: Z2(1−U)−2UZ −U = 0

This is quadratic in Z. After simple calculation, this becomes

Z =
U ±
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Here, U < 1 so the term becomes negative and this negative term is not included in
further analysis. Thus, the value of the random variable is given as

X = γ +β

(
U +

√
U

1−U

) 1
α

(10)

For the known value of parameters α, β and γ , one can generate a set of random num-
bers X by using Equation (10). Similarly, by choosing the suitable value of U in Equation
(10) one can also get the different values of quantiles such as the first, second, and third
quartiles obtained by setting U = 1

4 , U = 1
2 , and U = 3

4 respectively.

3.5. Reliability Analysis of the SLLog Distribution

The reliability function R(x) as defined by Rodriguez (2010) is simply the complement
of the CDF. It is also the probability that a random variable X will take a value greater than
a number x or the probability of an item not failing before some time x. So, it is defined as
R(X) = Prob(X > x) = 1−Prob(X ≤ x) = 1−F(x)

The graph of the reliability function of the SLLog distribution is presented in Figure
3 and the expression is given in Equation (11). The graph of the reliability function is
decreasing with respect to increase in the value of variable X .
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Figure 3: The plot of the reliability function for selected values of parameters

3.6. Hazard, Inverse Hazard, and Cumulative Hazard Rate Function

The other characteristics of interest of a random variable are the hazard and inverse
hazard rate function defined as h(x) = f (x)

1−F(x) , and rh(x) = f (x)
F(x) . Thus, the hazard rate

function for the SLLog distribution, which is the conditional probability of failure, given
that it has survived up to the time x is given in Equation (12), and the graph of the hazard
rate function is presented in Figure 4. Similarly, the inverse hazard rate function defined by
(Barlow et al., 1963) for SLLog is present in Equation (13). The hazard function increases
fast along with the uni-modality and decreases slowly creating a right skew curve.
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Similarly, the Inverse hazard rate function of the SLLog distribution is given as:

rh(x) =
2α

β
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x−γ

β

)
+
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β

)α+1
) (13)

Furthermore, the cumulative hazard rate function of the SLLog distribution is defined
by H(x) =−ln(R(x)) as given in Equation (14) and the graph is increasing with respect to
the increase in values of variable X , which has been depicted in Figure 5.



STATISTICS IN TRANSITION new series, March 2024 51

50 100 150

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

x

h(
x)

α = 3 , β = 10 , γ = 15

α = 3 , β = 15 , γ = 15

α = 3 , β = 23 , γ = 15

α = 3 , β = 29 , γ = 15

Figure 4: Plot of hazard rate function for the selected value of parameters
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3.7. Entropy Measure of SLLog Distribution

Entropy is defined as the measure of the variation of the uncertainty of a random vari-
able which is used in various situations in science and engineering. Different forms of the
entropy are studied and compared, here we only derived the expression of two types of
entropy Renyi entropy and q-entropy of the SLLog distribution.

3.7.1 Reny Entropy

First of all, for the SLLog random variable X with PDF f (x), the Renyi entropy as
defined by (Renyi, 1961) which has a similar role of kurtosis to measure and compare the
shapes of densities is given as

IR(ρ) =
1

1−ρ
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Therefore, the Renyi entropy of the SLLog distribution can be expressed as
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 (15)

3.7.2 q-Entropy

For the SLLog random variable X with PDF f (x), the q-entropy as defined and intro-
duced by Havarda and Charvat (1967) and later applied to physical problems by Tsallis
(1988) is defined as

IR(q) =
1

1−q

(
1−

∫
( f (x))qdx

)
Where q > 0 and q ̸= 1 and q is a real non-integer.
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Therefore, after using the expression of Equation (15) with replace of ρ by q the q-
entropy of the SLLog distribution can be expressed as

IR(q) =
1

1−q

1−2q
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)
Γ(3q)

 (16)

Entropy is the average amount of information conveyed by an event when considering
all possible outcomes or events drawn from the probability distribution. It is also used to
measure disorder. It is also used to measure the variation of the uncertainty of a random
variable in various situations in science and engineering.

4. Method of Parameter Estimation

To estimate the parameters involved in the SLLog distribution, the expression is derived
by using the maximum likelihood estimates (MLEs) method. Let X1,X2, . . . ,Xn be a set of n
samples drawn from a SLLog distribution. Then the likelihood function of this distribution
is given by
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Therefore, the log-likelihood function of the SLLog distribution becomes
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The components of the score vector to estimate the parameters associated with the
SLLog distribution are given by
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By solving the nonlinear system of equations simultaneously using suitable numerical
methods by setting the score vector to zero we obtain the value of parameters α, β and γ of
the SLLog distribution.
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5. Application of SLLog Distribution

To test the potentiality of the proposed SLLog distribution, four real data sets are pre-
sented. To test the validity and suitability of the proposed models, Akaike’s Information
Criteria (AIC), and Bayesian Information Criteria (BIC) at the maximum value of Negative
Log-likelihood (NLL) of probability distributions have been applied. The formulas of AIC
and BIC for the fitted models are given as

AIC = 2k−2 lnL (22)

BIC = k ln(n)−2 lnL (23)

where k is the number of parameters associated with the probability distribution. n is the
number of observations and lnL is the log-likelihood function at the maximum likelihood
estimate of that distribution.

The first data set is taken from the Nepal Demographic and Health Survey (NDHS,
2022). Different demographers and researchers used different right-skewed probability dis-
tribution models to test the goodness of fit of Age-Specific Fertility Rates (ASFRs) of dif-
ferent countries viz. Peristera and Kostaki (2007) used the Normal mixture model to capture
both traditional and modern distorted ASFRs. Mazzuco and Scarpa (2011) applied a flexible
generalized skew Normal distribution to fit the fertility pattern of countries that experienced
a bimodal-fertility schedule eg. the USA, the UK, Ireland, and countries that keep a classic
fertility pattern viz. Italy and the Czech Republic. Gaire and Aryal (2015) applied inverse
Gaussian model to describe the distribution pattern of ASFRs of Nepalese mothers. Asili
et al. (2014) used skew-logistic probability to fit ASFRs of Italy and the same model was
applied to fit the ASFRs of India by Mishra et al. (2017). A polynomial model was used
by Gaire et al. (2022). In this paper, the proposed SLLog model is applied to the age of
the mother at the birth of a child to fit ASFRs of Nepal, and the results are compared with
baseline distribution which are presented in Table 2.

Table 2: Parameter estimation and different test statistics for the age of the mother at the
birth of a child

Distribution Parameters NLL AIC BIC
α β γ

LLog 24.612 0.321 17.445 -602.39 1210.77 1210.61
SLLog 5.958 22.914 0.000 -28.280 60.360 60.252

The second data set consists of 100 observations of the waiting time (minutes) of a
customer at the bank before receiving the service and it has been taken from Ghitany et al.
(2008) and recently the same data was applied to Skew-Lomax distribution by Gaire (2022).
The values of parameters and the result of test statistics have been presented in Table 3.
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Figure 6: Empirical and fitted ASFRs of Nepalese Mothers

Figure 7: Empirical and fitted number of customers waiting for a service at the bank

The third data set consists of 10,631 data of age at first marriage of Nepalese women
taken from (NDHS, 2022). The values of the estimated parameters along with the test
statistics have been presented in Table 4.
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Figure 8: Empirical and fitted number of Nepalese women with age at first marriage

Table 3: Parameter Estimation and different test statistics for waiting time of customers

Distribution Parameters NLL AIC BIC
α β γ

LLog 2.185 7.935 0.198 -44.135 94.270 95.178
SLLog 1.811 5.031 0.000 -43.703 93.407 94.315

Finally, the fourth data set consists of 14,349 data on the age of girls at menarche and
has been taken from (NDHS, 2022). The value of the estimated parameter along with the
test statistics have been presented in Table 5.

Table 4: Parameter estimation and different test statistics for age at first marriage

Distribution Parameters NLL AIC BIC
α β γ

LLog 4.694 8.349 8.883 -80.837 167.674 169.799
SLLog 7.994 14.946 0.522 -74.264 154.528 156.446

In general smaller values of NLL, AIC, and BIC values of goodness of fit of the probabil-
ity distribution suggest the best fit to the data. The values of AIC and BIC at the maximum
likelihood estimate for the proposed SLLog distribution are lower than that of the LLog
distribution for all four data sets. This clearly showed that the proposed model is flexible
enough to fit the data better than that of the base distribution.
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Table 5: Parameter estimation and different test statistics for the age of girls at menarche

Distribution Parameters NLL AIC BIC
α β γ

LLog 7.420 6.471 7.677 -63.30 132.60 134.77
SLLog 13.644 13.269 0.000 -49.985 105.970 107.88

6. Conclusions

A new three-parameter skew probability distribution model has been formulated as the
SLLog distribution. Some of the statistical properties of the distribution have been studied.
The parameter estimation method is discussed by using maximum likelihood. To test the
suitability and validity of the proposed model four real data sets, viz. age of the Nepalese
mother at the birth of a child, the waiting time of the customer before receiving the service,
the age at first marriage of Nepalese female, and the age of Nepalese girls at menarche have
been used. The AIC and BIC test criteria have been applied to test the validity and suitability
of the model obtained at the maximum value of negative log-likelihood of the probability
distribution. The observed values of AIC and BIC show that the proposed distribution is
more flexible than the baseline distribution to fit the pattern of these real data sets.

Figure 9: Empirical and fitted number of Nepalese girls at the age of menarche
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