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On Bayesian inference of reliability parameter in Burr-type XII 
model based on imprecise data: a survey on fuzzy modelling
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Abstract
There are always two major sources of uncertainty in measurements related to lifetime sur-
veys: variation among the observations and imprecision of individual observation called
fuzziness. The typical statistical analysis is based on variation among the observations and
does not consider the imprecision due to individual observation. However, ignoring the im-
precision of individual observations may cause losing information and getting misleading
results. It is mandatory to analyse such data, to extend the real numbers classically and
Bayesian estimation methods to fuzzy numbers. Inference on the Burr-type (BT) XII model,
based on precise measurements, is carried out by researchers, yet the problem of estimating
parameters, in the presence of fuzzy data, remains unresolved. We are estimating the BT
XII distribution parameters and their corresponding reliability when the available data are
in the fuzzy numbers. The maximum likelihood estimation (MLE), the Bayesian method
and the method of moments are used for estimating parameters. Finally, these estimators are
compared via a Monte-Carlo simulation study.
Key words: Bayesian estimation, Burr-type XII distribution, Maximum likelihood esti-
mates, Markov chain Monte Carlo, EM algorithm, Fuzzy data analysis.

1. Introduction

One of the important application of statistics is to analyse the lifetime data. Various
distributions are suggested to model the existing real lifetime data. In this regard, Burr
(1942), in his original paper, presented a system of distributions that contains twelve differ-
ent types of distribution functions useful in lifetime studies, which yield a variety of density
shapes. The two-parameter Burr-type (BT) XII model has the cumulative distribution func-
tion (CDF) and the probability density function (PDF) as follows:

F(x;c,k) = 1− (xc +1)−k , f (x;c,k) =
kcxc−1

(1+ xc)k+1 , x > 0 (1)

respectively, where c > 0 and k > 0 are the shape parameters. The corresponding reliability
function (RF) and failure rate function (FR) are also given by

R(t) = (1+ tc)−k, γ(t) =
cktc−1

1+ tc t > 0. (2)
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respectively. Figure 1 represents the PDFs of BT XII distribution for various quantities of c
and k.
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Figure 1: Probability density function for different values of c and k.

This family of distributions, especially types III, X, and XII, have been considered and
frequently studied in recent years. Investigations on the BT XII distribution, from point
of view its flexibilities, have been carried out by many authors (Hate (1949), Burr (1973),
Rodriguez (1977) and Singh, Singh and Kumar (2016)). Wingo (1983) has presented the
maximum likelihood methods for fitting of the BT XII model to life test. Wingo (1993)
also extended his work and obtained the estimating parameters of this distribution for the
progressively censored scheme in life test data. See also Wu and Yu (2005), Xiuchun,
Yimin, Jieqiong and Jian (2007), Soliman (2005), Moore and Papadopoulos (2000), Mousa,
and Jaheen (2002), for a nice account of it.

The above inference methods, to estimate the parameters of the BT XII distribution, are
limited to crisp data. But a matter of concern for the statisticians has been the exact measure-
ment of continuous real variables. For this, numerous methods are considered to measure
continuous variables precisely, yet the problem of precise measurement is unresolved, and
the numbers solely are approximated.

So, there are always situations that data sometimes cannot be measured and recorded
precisely due to machine errors, human error, or unexpected situations and it always re-
mained a problem for the researchers. Note that the problem here is different from censor-
ing and our interest is not the imprecision arising from inspection times, but it is the result
of random experiment reported from the observer and its limited perception or recollection
of the precise numerical value.

Here, we mention a few examples for fuzzy data. The measurement of the depth of
a river because of its water level fluctuation is an imprecise quantity. It may be said that
its depth is approximately 40 meters. It cannot be measured precisely at blood pressure,
differentiation between a high or low blood pressure. The measurement of temperature is
fuzziness. High or low temperature is imprecise quantity due to lack of differentiated be-
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tween high and low temperature. The effective or ineffective teacher is also one example
of fuzziness. Now, we present one case for fuzzy lifetime data as follows. The lifetime
of some shafts may be stated as vague values such as: “about 1000 hours",“approximately
1400 hours", “almost between 1000 and 1200 hours", “essentially less than 1200 hours" and
so on. Hence, we can conclude that there are always two types of uncertainty in measure-
ments: variation among the observations and imprecision of individual observations ( see
Viertl (2011) ).

The conventional statistical analysis is only related to variation among the observations
and does not consider the vagueness of individual observations. Ignoring this imprecision
may be the reason why we lose some information and get false results. The vagueness of
such data can be characterized using fuzzy sets that were first introduced by Zadeh (1965).
Realizing the importance of fuzziness in recent years, several authors get deep concentra-
tion on the fuzzy sets to estimation theory; but still, in most of the publications fuzziness is
ignored. Gertner and Zhu (1996) considered Bayesian approximation in the forest studies
when samples or prior knowledges are fuzzy. Wu (2004) obtained the Bayesian estimates on
lifetime data for fuzzy environments. Gil, López-Diaz and Ralescu (2006) indicated a back-
ward analysis on interpretation, modelling, and impact of the meaning of the fuzzy random
variable. Huang, Zuo and Sun (2006) proposed a new method to determine the membership
function of the estimates of the parameters and the reliability function of multiparameter
lifetime distributions. Coppi, Gilb and Kiersc (2006) presented some applications of fuzzy
techniques in statistical analysis. Viertl (2006) discussed a generalization of classical statis-
tical inference methods for univariate fuzzy numbers. Akbari and Rezaei (2007) proposed
a new method for uniformly minimum variance unbiased fuzzy point estimation. Zarei,
Amini, Taheri and Rezaei (2012) considered the Bayesian estimation of failure rate and the
mean time to failure based on vague set theory in the case of complete and censored data
sets. Pak, Parham and Saraj (2013, 2014) carried out a series of studies to develop the infer-
ential procedures for the lifetime distributions based on vague information and Shafiq and
Atif (2015) obtained the survival models that deal with imprecise lifetime measurements.
Very recently, Pak (2016) has investigated some inferences for the Lindley distribution based
on fuzzy data.

To our knowledge, there exist no interpretation on estimating the parameters of BT XII
distribution from fuzzy data. Since the classical statistical estimation procedures are not
suitable for the fuzzy sets; we have to extend the conventional methods to estimate the
parameters of BT XII distribution in the new situations. Therefore our main object is to
develop the inferential procedures for BT XII parameters when the available data are fuzzy
numbers.

The rest of the paper is set up as follows. In Section 2, we consider a review on the
original understandings and basic definition of fuzzy set theory. A generalized likelihood
function based on fuzzy data is introduced in Section 3. We also present the common
method of maximum likelihood for estimating the parameters c and k by taking advantage of
the Newton-Raphson (NR) and Expectation Maximization (EM) algorithms in this section.
In Section 4, we carry out the estimating parameters of c and k using the moment method.
In Section 5, we apply a Bayesian approach for estimating of the unknown parameters
using the approximation forms of Tirney and Kadane (1986) and Markov Chain Monte
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Carlo (MCMC) technique. Extensive numerical experiments are performed to compare the
accuracy of the various proposed methods in Section 6. Finally, Section 7 concludes this
research.

2. Preliminary concepts of fuzzy sets theory

Let us first review the fundamental notation and basic definitions of fuzzy set theory
used in the paper. In the following, we explaine some special concepts of fuzzy sets theory
from Viertl, (2011) and Zadeh (1965, 1968).

Notice an experiment determined by a probability space X = (X ,BX ,Pθ ), where a mea-
surable space is as (X ,BX ) and Pθ belongs to a certain family of probability measures
{Pθ , θ ∈ Θ} on (X ,BX ). Consider that the observer cannot distinguish or transmit with ex-
actness the outcome in the performance of X , but that rather the available observation may
be described in terms of fuzzy information, which is defined as follows:
Definition 1 A fuzzy event x̃ on X , determined by a Borel measurable membership function
µx̃(x) from X to [0,1], where µx̃(x) represents the “grade of membership" of x to x̃, is called
fuzzy information associated with the experiment X .
The set consisting of all observable events from the experiment X determines a fuzzy infor-
mation system associated with it, which is defined as follows.
Definition 2 (see Tanaka, Okuda and Asai (1979)). A fuzzy information system (f.i.s.) X̃

associated with the experiment X is a fuzzy partition {x̃1, ..., x̃k}, i.e., a set of fuzzy events
on X satisfying the orthogonality condition ∑

k
i=1 µx̃i(x) = 1 for all x ∈ X .

On the other hand, according to Zadeh (1968) given the experiment X = (X ,BX ,Pθ ),
θ ∈ Θ, and a f.i.s. X̃ associated with it, each probability measure Pθ on (X ,BX ) induces a
probability measure on X̃ defined as follows:
Definition 3 The probability distribution on X̃ induced by Pθ is the mapping P from X̃ to
[0,1] such that

P(x̃) =
∫

X
µx̃(x)dPθ (x), x̃ ∈ X̃ . (3)

In particular, the conditional density of a continuous random variable Y with PDF g(y)
given the fuzzy event Ã can be defined as

g(y|Ã) = µÃ(y)g(y)∫
µÃ(u)g(u)du

. (4)

Definition 4 (see Shafiq and Viertl (2014)): A subset x̃ of the set of real numbers (denoted by
R) is named fuzzy number and is characterized by the so-called membership function µx̃(.).
A fuzzy number must fulfill µx̃ : R−→ [0,1] is Borel-measurable; ∃x0 ∈ R : µx̃(x0) = 1;
and the so-called λ−cuts (0 < λ ≤ 1), defined as Bλ (x̃) = {x ∈ R : µx̃(x) ≥ λ}, are all
closed interval, i.e., Bλ (x̃) = [aλ ,bλ ].

The conventional membership functions for analysing of fuzzy lifetime data are called as
triangular and trapezoidal fuzzy numbers. A triangular fuzzy number is described as
x̃ = (ν ,ω,δ ) and the trapezoidal fuzzy number can also be characterized as x̃ = (δ ,ν ,ω,η)
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with the corresponding membership functions

µx̃(x) =


x−ν

ω−ν
ν ≤ x ≤ ω,

δ−x
δ−ω

ω ≤ x ≤ δ ,

0 otherwise.
, µx̃(x) =


x−δ

ν−δ
δ ≤ x ≤ ν ,

1 ν ≤ x ≤ ω,
η−x
η−ω

ω ≤ x ≤ η ,

0 otherwise.

respectively. For a detailed study on the fuzzy sets, membership functions and triangular
and trapezoidal fuzzy numbers one can refer to Singpurwalla and Booker (2004) and Pak,
Parham and Saraj (2013).

3. Maximum likelihood estimation

Let X1, ...,Xn be a random sample of size n from the BT XII distribution with PDF
given by (1). Let X = (X1, ...,Xn) denotes the corresponding random vector. If a realization
x = (x1, ...,xn) of X is known exactly, we can obtain the complete data likelihood function
as

L(c,k;x) = (kc)n
n

∏
i=1

xc−1
i

(1+ xc
i )

k+1 (5)

Now, consider the problem where the results of an experimental performance are not
recorded or measured precisely, but that rather the available data are identified by means
of fuzzy observation x̃ = (x̃1, ..., x̃n) with the Borel measurable membership function µx̃(x).
In practice, the grade of membership µx̃(x) is often regarded as a kind of probability with
which the observer gets the information x̃ when he really has obtained the exact outcome x .
Once x̃ is given, and assuming the joint membership function µx̃(x) to be decomposable as
µx̃(x) = µx̃1(x1)× ...×µx̃n(xn), its probability can be computed based on Zadeh’s definition
(see Zadeh (1968)) of the probability of a fuzzy event. By using the expression (3), the
observed-data likelihood function based on the fuzzy sample x̃ can then be obtained as

Lo(c,k; x̃) = P(x̃;c,k) =
∫

f (x;c,k)µx̃(x)dx. (6)

Since the data vector x is a realization of an independent identically distributed (i.i.d.)
random vector X, the likelihood function (6) can be written as:

Lo∗(c,k; x̃) = (kc)n
n

∏
i=1

∫ xc−1

(1+ xc)k+1 µx̃i(x)dx (7)

Then, the observed data log-likelihood function is as follows:

L∗∗(c,k, x̃) = n ln(kc)+
n

∑
i=1

ln
(∫ xc−1

(1+ xc)k+1 µx̃i(x)dx
)
. (8)

The maximum likelihood estimate (MLE) of parameters c and k can be obtained by max-
imizing the log-likelihood L∗∗(c,k, x̃). Equating the partial derivatives of the log-likelihood
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(8) with respect to c and k to zero, the resulting two equations are:

∂

∂k
L∗∗(c,k, x̃) =

n
k
−

n

∑
i=1

∫
xc−1(1+ xc)−k−1 ln(1+ xc)µx̃i(x)dx∫

xc−1(1+ xc)−k−1µx̃i(x)dx
= 0 (9)

and

∂

∂c
L∗∗(c,k, x̃) =

n
c
+

n

∑
i=1

∫
xc−1(1+ xc)−k−1(1− (k+1)(1+ xc)−1xc) ln(x)µx̃i(x)dx∫

xc−1(1+ xc)−k−1µx̃i(x)dx
= 0.

(10)
There is no closed form solution for the likelihood equation, therefore an iterative nu-

merical search is used to obtain the MLEs. In next section the Newton-Raphson method
and EM algorithm are used to obtain the MLE of the c and k parameters.

3.1. Newton-Raphson Algorithm

In this method, the solution of the likelihood equations is obtained through an iterative
procedure. Let θ = (k,c)T be the parameter vector. Then, at (h+ 1)th step of iteration
process, the updated parameter is computed as

θ
(h+1) = θ

(h)−
[

∂ 2L∗∗(θ ; x̃)
∂θ∂θ T |

θ=θ (h)

]−1 [
∂L∗∗(θ ; x̃)

∂θ
|
θ=θ (h)

]
(11)

in which

∂L∗∗(θ ; x̃)
∂θ

=

(
∂L∗∗(c,k;x̃)

∂c
∂L∗∗(c,k;x̃)

∂k

)
,

∂ 2L∗∗(θ ; x̃)
∂θ∂θ T =

(
∂L∗∗(c,k;x̃)

∂c2
∂L∗∗(c,k;x̃)

∂c∂k
∂L∗∗(c,k;x̃)

∂k∂c
∂L∗∗(c,k;x̃)

∂k2

)
.

For proceeding with the NR method, we need the second-order derivatives of the log-
likelihood with respect to the parameters that are obtained as follows.

∂ 2

∂c2 L∗∗(c,k, x̃) = −n
c2 (12)

+∑
n
i=1

{∫ xc−1(1+xc)−k−1mdx−
∫
(k+1)(1+xc)−k−2x2c−1mdx}B
B2

+∑
n
i=1

{∫ (k+1)(1+xc)−k−3x2c−1 ln2 xµx̃i (x)dx−
∫

x2c−1(k+1)(1+xc)−k−2 ln2 xµx̃i (x)dx}B
B2

−∑
n
i=1

{∫ xc−1(1+xc)−k−1 lnxµx̃i (x)dx−
∫
(k+1)(1+xc)−k−2x2c−1 lnxµx̃i (x)dx}A
B2 ,

∂ 2

∂k2 L∗∗(c,k, x̃) = −n
k2 (13)

+∑
n
i=1

(∫
xc−1(1+xc)−k−1 ln2(1+xc)µx̃i(x)

dx
)

B

B2 −∑
n
i=1

(∫
xc−1(1+xc)−k−1 ln(1+xc)µx̃i(x)

dx
)2

B2 ,

∂ 2

∂c∂k L∗∗(c,k, x̃) = (14)

∑
n
i=1

(−
∫

xc−1(1+xc)−k−1(1−(k+1)(1+xc)−1xc) ln(1+xc) lnxµx̃i (x)dx−
∫
(1+xc)−k−2x2c−1 lnxµx̃i (x)dx)B

B2

+∑
n
i=1

(
∫

xc−1 ln(1+xc)(1+xc)−k−1µx̃i (x)dx)
(∫

xc−1(1+xc)−k−1(1−(k+1)(1+xc)−1xc) ln(x)µx̃i(x)
dx
)

B2 ,
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in which, m=(1−(k+1)(1+xc)−1xc) ln2(x)µx̃i(x), A=
∫

xc−1(1+xc)−k−1(1−(k+1)(1+
xc)−1xc) ln(x)µx̃i(x)dx, B=

∫
xc−1(1+xc)−k−1µx̃i(x)dx. The iteration process continues until

convergence, i.e., until ∥θ (h+1)−θ (h)∥< ε for some pre-fixed ε > 0.
Note that the second-order derivatives of the log-likelihood are needed at every iteration

in this method. The calculation of the derivatives based on fuzzy data can be some tedious
in most of the time. To solve this problem, an EM algorithm will be present in the following
section.

3.2. EM Algorithm

The EM algorithm is a convenient method for incomplete data problems. Since the
observed fuzzy data x̃ can be considered an incomplete data vector x, therefore an EM
algorithm is used to obtain the MLE of the unknown parameters c and k, (see Denoeux
(2011)).
From the Eq. (5), the log-likelihood function for the complete data vector x is given by,

lnL(c,k,x) = n lnk+n lnc+(c−1)
n

∑
i=1

lnxi − (k+1)
n

∑
i=1

ln(1+ xc
i ) (15)

Taking the derivative with respect to c and k, respectively, on (15), the following likeli-
hood equations are obtained:

n
c
= (k+1)

n

∑
i=1

xc
i lnxi

1+ xc
i
−

n

∑
i=1

lnxi,
n
k
=

n

∑
i=1

ln(1+ xc
i ). (16)

So, the EM algorithm is given by the following iterative process:

• Given starting values of c and k say c(0) and k(0) and set h = 0. In the (h+ 1)-th
iteration, the E-step requires to compute the following conditional expectations using
the expression (4):

E1i = Ec(h),k(h)(lnX |x̃i) =

∫
xc(h)−1(lnx)(1+ xc(h))−k(h)−1µx̃i(x)dx∫

xc(h)−1(1+ xc(h))−k(h)−1µx̃i(x)dx
(17)

E2i = Ec(h),k(h)(
Xc lnX
1+Xc |x̃i) =

∫
x2c(h)−1(lnx)(1+ xc(h))−k(h)−2µx̃i(x)dx∫

xc(h)−1(1+ xc(h))−k(h)−1µx̃i(x)dx
(18)

E3i = Ec(h),k(h)(ln(1+Xc)|x̃i) =

∫
xc(h)−1(ln(1+ xc(h))(1+ xc(h))−k(h)−1µx̃i(x)dx∫

xc(h)−1(1+ xc(h))−k(h)−1µx̃i(x)dx
.

(19)
The likelihood equations (16) are replaced by

n
c
= (k+1)

n

∑
i=1

E2i −
n

∑
i=1

E1i,
n
k
=

n

∑
i=1

E3i. (20)

The M-step requires to solve the Eqs. in (20), and obtain the next values, c(h+1) and
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k(h+1), of c and k, respectively, as follows:

c(h+1) =
n

(k(h+1)+1)∑
n
i=1 E2i −∑

n
i=1 E1i

, k(h+1) =
n

∑
n
i=1 E3i

. (21)

• Checking convergence, if the convergence occurs then the current c(h+1) and k(h+1)

are the maximum likelihood estimates of c and k using the EM algorithm; otherwise,
set h = h+1 and go to previous step.

The maximum likelihood estimate of (c,k) by applying the EM algorithm is thereafter
refereed to as “(ĉEM, k̂EM)” in this article.

4. Method of moment

The rth moment of the BT XII distribution (see Rodriguez (1977)) is given by

E(X r) = kB
( r

c
+1,k− r

c

)
=

Γ( r
c +1)Γ(k− r

c )

Γ(k)
(22)

in which, B(.) and Γ(.) are the beta and the complete gamma functions, respectively.
By equating the first and the second sample moments to the corresponding population

moments, to obtain the estimates of moments approach, the following equations are used:

Γ( 1
c +1)Γ(k− 1

c )

Γ(k)
=

1
n

n

∑
i=1

Ec,k(X |x̃i),
Γ( 2

c +1)Γ(k− 2
c )

Γ(k)
=

1
n

n

∑
i=1

Ec,k(X2|x̃i). (23)

Since the closed form of the solutions to Eqs. in (23) could not be obtained, to achieve
the parameter estimates we use the following iterative numerical process. Let the initial
estimates of c and k, say c(0) and k(0) with h = 0. In the (h + 1) th iteration, we first
compute

Ec(h),k(h)(X
r|x̃i) =

∫
xc(h)+r−1(1+ xc(h))−k(h)−1µx̃i(x)dx∫
xc(h)−1(1+ xc(h))−k(h)−1µx̃i(x)dx

, r = 1,2.

We have to solve the system of two equations and two unknowns in the Eqs. (23).
These equations are the complex nonlinear equations. Consequently, we may need to use
an iterative numerical method to handle the finding of the roots c and k of equations in (23).

5. Bayesian approach

A robust and valid alternative to traditional statistical perspectives has been called Bayesian
inference in recent decades. It received frequent attention for statistical inference. In this
section the Bayesian estimates under the assumptions that c and k have independent gamma
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priors are obtained with the pdfs respectively,

π1(c) =
ba1

1
Γ(a1)

ca1−1 exp(−cb1), c > 0 (24)

and

π2(k) =
ba2

2
Γ(a2)

ka2−1 exp(−kb2), k > 0 (25)

with the parameters c ∼ Gamma(a1,b1) and k ∼ Gamma(a2,b2) (see Singh, Singh and Ku-
mar (2016)). Due to the likelihood function in Eq. (7) and the prior distributions mentioned
in (24) and (25) the complete form of the posterior function is as follows:

π(θ |x̃) ∝ L∗∗(θ , x̃)(ca1−1 exp(−cb1))(ka2−1 exp(−kb2)). (26)

Hence, the joint posterior density function of c and k given the data can be written as
follows:

π(c,k|x̃) = π1(c)π2(k)Lo∗(c,k; x̃)∫
∞

0
∫

∞

0 π1(c)π2(k)Lo∗(c,k; x̃)dcdk
. (27)

Therefore, the Bayes estimate of any function of c and k, say g(c,k), under a squared
error loss function is

E(g(c,k)|x̃) =
∫

∞

0
∫

∞

0 g(c,k)π1(c)π2(k)Lo∗(c,k; x̃)dcdk∫
∞

0
∫

∞

0 π1(c)π2(k)Lo∗(c,k; x̃)dcdk
. (28)

But, we cannot evaluate these estimates explicitly. Hence, we suggest Tierney and
Kadane’s procedure and MCMC method to approximate them.

5.1. Tierney and Kadane’s method

The Eq. (28) can be re-written as follows:

E(g(c,k)|x̃) =
∫

∞

0
∫

∞

0 g(c,k)eQ(c,k)dcdk∫
∞

0
∫

∞

0 eQ(c,k)dcdk
(29)

in which, Q(c,k) = ln[π1(c)π2(k)]+ lnLo∗(c,k; x̃)≡ ρ(c,k)+L∗∗(c,k). Note that Eq. (29)
cannot be obtained analytically. Using this approximation can be useful to solve this issue.

Setting H(c,k) = Q(c,k)
n and H∗(c,k) = [lng(c,k)+Q(c,k)]

n , the expression in (29) can be
reexpressed as

E(g(c,k)|x̃) =
∫

∞

0
∫

∞

0 enH∗(c,k)dcdk∫
∞

0
∫

∞

0 enH(c,k)dcdk
. (30)

Following the Tierney & Kadane method, which is based on Laplace’s method ( Tierney
and Kadane (1986)), Eq. (30) can be computed as follows:

ĝBayes(c,k) =
[

det ∑
∗

det ∑

] 1
2

exp
{

n
[
H∗(c∗,k

∗
)−H(c,k)

]}
(31)
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in which(c∗,k
∗
) and (c,k) maximize H∗(c,k) and H(c,k), respectively. Also, ∑

∗ and ∑ are
the negatives of the inverse Hessians of H∗(c,k) and H(c,k) at (c∗,k

∗
) and (c,k), respec-

tively.

For our case, we have

H(c,k) =
1
n
{K∗+(a1 −1+n) lnc+(a2 −1+n) lnk−b1c−b2k} (32)

+
1
n

{
n

∑
i=1

ln
(∫ xc−1

(1+ xc)k+1 µx̃i(x)dx
)}

in which K∗ is a constant. So, we can obtain (c,k) by solving the following two equations:

∂

∂c
H(c,k) =

1
n

{
a1 −1+n

c
−b1

}
(33)

+
1
n

{
n

∑
i=1

∫
xc−1(1+ xc)−k−1(1− (k+1)(1+ xc)−1xc) ln(x)µx̃i(x)dx∫

xc−1(1+ xc)−k−1µx̃i(x)dx

}
∂

∂k
H(c,k) =

1
n

{
a2 −1+n

k
−b2

}
(34)

− 1
n

{
n

∑
i=1

∫
xc−1(1+ xc)−k−1 ln(1+ xc)µx̃i(x)dx∫

xc−1(1+ xc)−k−1µx̃i(x)dx

}
.

The determinant of the negative of the inverse Hessian of H(c,k) at (c,k) is as follows:

det ∑ =
(
H11H22 −H2

12
)−1

, (35)

in which,

H11 =
1
n
−(a1−1+n)

c2 (36)

+ 1
n ∑

n
i=1

{∫
xc−1(1+xc)−k−1mdx−

∫
(k+1)(1+xc)−k−2x2c−1mdx

}
B

B2

+ 1
n ∑

n
i=1

{∫
(k+1)(1+xc)−k−3x2c−1 ln2 xµx̃i (x)dx−

∫
x2c−1(k+1)(1+xc)−k−2 ln2 xµx̃i (x)dx

}
B

B2

− 1
n ∑

n
i=1

{∫
xc−1(1+xc)−k−1 lnxµx̃i (x)dx−

∫
(k+1)(1+xc)−k−2x2c−1 lnxµx̃i (x)dx

}
A

B2 ,

H22 =
1
n
−(a2−1+n)

k2 (37)

− 1
n ∑

n
i=1

(∫
xc−1(1+xc)−k−1 ln2(1+xc)µx̃i(x)

dx
)

B

B2 + 1
n ∑

n
i=1

(∫
xc−1(1+xc)−k−1 ln(1+xc)µx̃i(x)

dx
)2

B2 ,

H12 = (38)

− 1
n ∑

n
i=1

(∫
xc−1(1+xc)−k−1(1−(k+1)(1+xc)−1xc) ln(1+xc) lnxµx̃i (x)dx+

∫
(1+xc)−k−2x2c−1 lnxµx̃i (x)dx

)
B

B2

+ 1
n ∑

n
i=1

(∫
xc−1 ln(1+xc)(1+xc)−k−1µx̃i (x)dx

)(∫
xc−1(1+xc)−k−1(1−(k+1)(1+xc)−1xc) ln(x)µx̃i(x)

dx
)

B2 ,
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in which m=(1−(k+1)(1+xc)−1xc) ln2(x)µx̃i(x), A=
∫

xc−1(1+xc)−k−1(1−(k+1)(1+
xc)−1xc) ln(x)µx̃i(x)dx, B=

∫
xc−1(1+xc)−k−1µx̃i(x)dx. Now, following the same arguments

with g(c,k) = c and k, respectively, in H∗(c,k), ĉBayes and k̂Bayes in Eq. (31) can then be
obtained in a straightforward manner.

5.2. MCMC Method

MCMC methods use the computer simulation procedure to get a Markov sequence with
ergodic properties in such a way that they have a limiting distribution. We know if the loss
function is squared error, then the Bayes estimates of the parameters θ = (c,k) are their
respective posteriors mean. But due to the complexity of the extraction of samples from the
posterior function, we have to apply the well-known “Gibbs sampling ” technique. Gibbs
sampling defines a broad class of MCMC methods that is used in Bayesian analysis. It
is also a special example of a general approach referred to as Metropolis-Hasting (MH)
algorithm (Hanagl and Ahmadi (2009)).Thus, a multivariate version of MH algorithm is
Gibbs sampling. In the following, the Gibbs sampler method is appropriated to compute the
Bayes estimates numerically.

The posterior PDFs of c and k are given by,

π
∗
1 (c|k, x̃) ∝ ca1−1+n exp(−cb1)

n

∏
i=1

∫ xc−1

(1+ xc)k+1 µx̃i(x)dx (39)

and

π
∗
2 (k|c, x̃) ∝ ka2−1+n exp(−kb2)

n

∏
i=1

∫ xc−1

(1+ xc)k+1 µx̃i(x)dx (40)

Note that the posterior PDFs of c and k in (39) and (40) respectively, are unknown.
Hence, we use the MH method to generate a random sample from these distributions. We
use the normal distribution as the proposal distribution for the method. So, the Gibbs sam-
pling algorithm is as follows:

Step 1: Start with an initial value (c(0),k(0)) and fix t = 1.

Step 2: Generate c(0) from (39) by using of the MH with the N(c(t−1),1) proposal distribu-
tion and generate k(0) from (40) by using of the MH with the N(k(t−1),1) proposal
distribution. Fix t = t +1.

Step 3: Repeat Step 2, T times.

For running the algorithm above, we need to perform the MH algorithm in Step 2. These
algorithms are given by,

I : Fix t=1.

II : Let v1 = c(t−1)
i and v2 = k(t−1)

i . Generate w1 and w2 from the proposal distributions

q∼N(c(t−1)
i ,1) and q∼N(k(t−1)

i ,1), respectively. Let p∗1(v1,w1)=min
{

1, π∗
1 (w1|x̃)q(v1)

π∗
1 (v1|x̃)q(w1)

}
and p2(v2,w2) = min

{
1, π∗

2 (w2|x̃)q(v2)

π∗
2 (v2|x̃)q(w2)

}
. Generate u from Uni f orm(0,1). If u <
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p1(v1,w1) we accept w1 and else accept v1 and also if u < p2(v2,w2) we accept w2

and else accept v2. Fix t = t +1.

III : Repeat Step II , T times.

So, the retained sample values, say c1, . . . ,cT−M1 , and k1, . . . ,kT−M2 are random samples
from the posterior densities in the equations of (39) and (40 ), respectively. Now, by using
Monte Carlo integration technique (Rodriguez (1977)), the Bayes estimates of c and k under
squared error loss function are given by,

ĉBayes =
1

T −M1

T

∑
i=M1+1

c(i)i , k̂Bayes =
1

T −M2

T

∑
i=M2+1

k(i)i ,

where M1 and M2 are the burn-in periods in generating c(i)i and k(i)i ,(i = 1, . . . ,n) respec-
tively. We can also conduct the highest posterior density (HPD) confidence interval of
parameter θ = (c,k). First order c(i)1 , . . . ,c(i)M1

as c(i)
(1) < .. . < c(i)

(M1)
, then construct all the

(100(1−η)%) confidence intervals of c are given by(
c(i)
(1),c

(i)
([M1(1−η)])

)
, . . . ,

(
c(i)
([M1η ])

,c(i)
([M1])

)
, (41)

where [M] is symbolized as the largest integer less than or equal to M. So, the HPD con-
fidence interval of c is the shortest length interval. Similarly, we can make a 100(1−η)%
HPD confidence interval of k as follows:(

k(i)
(1),k

(i)
([M2(1−η)])

)
, . . . ,

(
k(i)
([M2η ])

,k(i)
([M2])

)
. (42)
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Figure 2: Fuzzy information system used to encode the simulated data.

6. Numerical Study

In the present section, some of the simulation studies are done to compare the per-
formance of Bayesian estimation methods. All numerical computations are made using
MAT LAB software.
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6.1. Monte Carlo simulations

In this section, some numerical results via Monte Carlo simulations are used to see
how the different methods behave for various sample sizes. We evaluate the estimate of
unknown parameters c and k using the methods provided in the preceding sections. For
this reason the i.i.d. random samples, say x of the BT XII distribution for parameter values,
namely, (c,k) = (1,1),(2,3),(3,1) and various choices of n = 10,20,30,40,50,70,100 are
generated. Each realization of x was produced using the method proposed by Pak, Parham
and Saraj (2014). By employing fuzzy information system (f.i.s.) {x̃1, . . . , x̃11} shown in
Fig. 2, the corresponding membership functions are given by

µx̃1(x) =


1 x ≤ 0.08,
0.3−x
0.22 0.08 ≤ x ≤ 0.3,

0 otherwise,
µx̃2(x) =


x−0.08

0.22 0.08 ≤ x ≤ 0.3,
0.4−x

0.1 0.3 ≤ x ≤ 0.4,
0 otherwise,

µx̃3(x) =


x−0.3

0.1 0.3 ≤ x ≤ 0.4,
0.6−x

0.2 0.4 ≤ x ≤ 0.6,
0 otherwise,

µx̃4(x) =


x−0.4

0.2 0.4 ≤ x ≤ 0.6,
0.8−x

0.2 0.6 ≤ x ≤ 0.8,
0 otherwise,

µx̃5(x) =


x−0.6

0.2 0.6 ≤ x ≤ 0.8,
1−x
0.2 0.8 ≤ x ≤ 1,

0 otherwise,
µx̃6(x) =


x−0.8

0.2 0.8 ≤ x ≤ 1,
1.2−x

0.2 1 ≤ x ≤ 1.2,
0 otherwise,

µx̃7(x) =


x−1
0.2 1 ≤ x ≤ 1.2,
1.4−x

0.2 1.2 ≤ x ≤ 1.4,
0 otherwise,

µx̃8(x) =


x−1.2

0.2 1.2 ≤ x ≤ 1.4,
1.7−x

0.3 1.4 ≤ x ≤ 1.7,
0 otherwise,

µx̃9(x) =


x−1.4

0.3 1.4 ≤ x ≤ 1.7,
2−x
0.3 1.7 ≤ x ≤ 2,

0 otherwise,
µx̃10(x) =


x−1.7

0.3 1.7 ≤ x ≤ 2,
2.5−x

0.5 2 ≤ x ≤ 2.5,
0 otherwise,

µx̃11(x) =


x−2
0.5 2 ≤ x ≤ 2.5

1 x ≥ 2.5,
0 otherwise,

6.2. Implementation

Since the MCMC method will stabilize asymptotically, it needs to examine the reliabil-
ity of the chain outcome. Burn-in is a significant problem that is necessary to be considered.
It means that discarding the number of iterations is essential. Some diagnostic tests that in-
dicate the convergence problem can be found in the literature. One of them is trace plot in
which the history of the chain is exhibited (see Fig. 3). Plots in Fig. 3, after discarding
the initial 3000 iterates, show that the sequences have a stationary pattern. The estimates of
the parameters c, k, and R for the fuzzy sample were obtained using the Bayesian approach.
For simulation purpose, we have assumed that c, k have gamma priors, including the nonin-
formative prior (Prior I), i.e. a1 = b1 = a2 = b2 = 0, less informative prior (Prior II), i.e.
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a1 = b1 = a2 = b2 = 0.01, and most informative prior (Prior III), i.e. a1 = b1 = a2 = b2 = 4.
We replicate the process 15000 times and use 12000 iterates after discarding the initial 3000
iterates as Burn-in to make the inference. We have also reported the average values (AV)
and mean squared errors (MSE) of the estimates through Tables 1-3.

Table 1: The average values (AV) and the mean squared errors (MSE) of the estimate of
parameters θ = (c,k) = (3,2), and R = 0.7901.

n priorI
AV(c) MSE(c) AV(k) MSE(k) AV(R) MSE(R)

10 3.6086 0.3704 3.5707 2.4673 0.7417 0.0031
20 3.3724 0.1387 2.4171 0.3905 0.7909 0.0023
30 3.0210 0.0864 2.6249 0.2004 0.7337 0.0017
40 3.0133 0.0166 2.4477 0.1739 0.7484 0.0014
50 2.7060 0.0102 1.9781 0.0007 0.7518 0.0004
70 2.8709 0.0004 2.0273 0.0004 0.7692 0.0002
100 2.8987 0.0001 2.0015 0.0000 0.7759 0.0001
n priorII
10 3.6193 0.3836 3.5889 2.5247 0.7427 0.0032
20 3.3789 0.1435 2.4162 0.3839 0.7920 0.0022
30 3.0121 0.0836 2.6196 0.1732 0.7331 0.0014
40 2.7108 0.0836 1.9768 0.0009 0.7526 0.0014
50 2.7108 0.0159 1.9768 0.0005 0.7526 0.0004
70 2.8737 0.0114 2.0306 0.0005 0.7693 0.0002
100 2.8930 0.0001 2.0027 0.0001 0.7750 0.0001
n priorIII
10 2.3191 0.4635 1.8712 0.0270 0.7080 0.0067
20 2.6611 0.2570 1.8932 0.0169 0.7526 0.0057
30 2.5557 0.1973 2.1302 0.0165 0.7140 0.0034
40 2.6613 0.1147 2.1151 0.0132 0.7310 0.0026
50 2.4930 0.1146 1.8355 0.0113 0.7389 0.0014
70 2.6819 0.1011 1.9200 0.0063 0.7557 0.0011
100 2.7654 0.0550 1.9227 0.0059 0.7669 0.0005

7. Conclusion

In this paper, we have examined the classical and Bayesian inference procedures for
the BT XII distribution parameters, as well as the corresponding reliability parameter when
the available data are described regarding fuzzy numbers. In this context, we considered
three priors as noninformative prior, i.e. a1 = b1 = a2 = b2 = 0, less informative prior,
i.e. a1 = b1 = a2 = b2 = 0.01, and informative prior, i.e. a1 = b1 = a2 = b2 = 4. The
general results can be made from Tables 1-3 as follows. Considering the criterion MSE for
all methods, with increasing n, the estimates are improved. The performance of the Bayes
estimates with assumptions of noninformative prior and less informative prior regarding
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AVs and MSEs, are almost identical. So, we prefer the prior XII since it will make the priors
proper. The simulation study for all methods shows that the estimate of R is satisfactory,
even for samples with sizes small and moderate. Using the NR or EM algorithms for the
computation of MLEs gives similar estimation results. Because these two procedures have
different features in the complexity of the iterative numerical search, we let users choose
which to be used based on their preferences. The Bayes estimates obtained by Tierney and
Kadane’s approximation and the MCMC method behave in a very similar manner. However,
from the computational point of view, Tierney and Kadane’s procedure is easier to obtain.
Note that these estimation results cannot be attributed to the assumed fuzzy numbers in
Fig. 2. We have implemented the estimation procedures for different fuzzy numbers (not
reported here) and found that the rationale for such fuzzy numbers, which are characterized
by the membership functions µx̃(.) will not influence the estimate results.

Table 2: The AV and MSE of the estimate of parameters θ = (c,k) = (2,3), and R= 0.5120.

n priorI
AV(c) MSE(c) AV(k) MSE(k) AV(R) MSE(R)

10 2.0763 0.0333 6.2226 1.3855 0.3228 0.0357
20 2.0096 0.0058 3.9389 1.1535 0.4333 0.0126
30 1.9341 0.0043 4.0740 0.8816 0.3995 0.0067
40 2.0035 0.0029 3.8693 0.7557 0.4298 0.0061
50 1.8174 0.0002 3.0318 0.0300 0.4725 0.0015
70 1.9459 0.0002 3.1732 0.0010 0.4832 0.0008
100 1.9836 0.0001 3.0189 0.0003 0.5076 0.0001
n priorII
10 2.0566 0.0309 6.0537 9.3255 0.3306 0.0328
20 2.0021 0.0049 3.9133 1.1654 0.4336 0.0129
30 1.9297 0.0032 4.0795 0.8342 0.3982 0.0068
40 1.9996 0.0031 3.8646 0.7476 0.4292 0.0061
50 1.8241 0.0001 3.0440 0.0260 0.4727 0.0015
70 1.9438 0.0002 3.1613 0.0019 0.4841 0.0007
100 1.9867 0.0001 3.0146 0.0002 0.5088 0.0001
n priorIII
10 1.4479 0.3048 2.1876 0.6598 0.5174 0.0017
20 1.6671 0.1170 2.4551 0.2968 0.5173 0.0010
30 1.6578 0.1108 2.7872 0.1753 0.4702 0.0001
40 1.7714 0.0880 2.8966 0.0610 0.4794 0.0001
50 1.7032 0.0522 2.5812 0.0487 0.5034 0.0001
70 1.8432 0.0245 2.7791 0.0452 0.5069 0.0001
100 1.9136 0.0074 2.7528 0.0106 0.5242 0.0001
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Table 3: The AV and MSE of the estimate of parameters θ = (c,k) = (1,1), and R= 0.6667.

n priorI
AV(c) MSE(c) AV(k) MSE(k) AV(R) MSE(R)

10 1.4393 0.1930 2.0352 1.0717 0.5414 0.0156
20 1.2573 0.1049 1.3105 0.0964 0.6350 0.0053
30 1.1349 0.0873 1.1559 0.0243 0.6497 0.0036
40 1.2375 0.0662 1.1183 0.0140 0.6740 0.0011
50 1.1726 0.0564 0.9733 0.0110 0.6999 0.0009
70 1.2954 0.0298 0.9305 0.0048 0.7274 0.0002
100 1.3239 0.0182 0.8951 0.0007 0.7399 0.0001
n priorII
10 1.4468 0.1996 2.0446 1.0913 0.5417 0.0156
20 1.2510 0.1058 1.3056 0.0934 0.6348 0.0052
30 1.1340 0.0891 1.1553 0.0241 0.6497 0.0036
40 1.2430 0.0630 1.1158 0.0134 0.6754 0.0012
50 1.1782 0.0590 0.9689 0.0103 0.7019 0.0010
70 1.2986 0.0317 0.9340 0.0043 0.7269 0.0002
100 1.3254 0.0179 0.8980 0.0009 0.7393 0.0001
n priorIII
10 1.2976 0.0903 1.5289 0.2797 0.5985 0.0046
20 1.2102 0.0886 1.2267 0.0514 0.6454 0.0045
30 1.1188 0.0732 1.1325 0.0175 0.6527 0.0029
40 1.2164 0.0468 1.1010 0.0102 0.6750 0.0009
50 1.1589 0.0441 0.9768 0.0086 0.6969 0.0004
70 1.2705 0.0252 0.9427 0.0032 0.7210 0.0002
100 1.3005 0.0141 0.9071 0.0005 0.7339 0.0001
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Figure 3: Plots of generated c versus iteration of MCMC (Gibss algorithm).
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