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Abstract

We develop statistical methodology for the quantification of risk of source-destination pairs
in an internet network. The methodology is developed within the framework of functional
data analysis and copula modeling. It is summarized in the form of computational algo-
rithms that use bidirectional source-destination packet counts as input. The usefulness of
our approach is evaluated by an application to real internet traffic flows and via a simulation
study.
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1. Introduction

Malicious cyberattacks have emerged as a growing threat to economic performance and
national security. They can be launched by criminal organizations or autocratic govern-
ments. A significant challenge facing the internet security community is to develop algo-
rithms that can automatically detect abnormal network access patterns. Attackers use many
different techniques, such as distributed denial of service attacks (DDoS), intrusions that
lead to the installation of malware for exfiltration or ransomware intrusion, misconfigured
servers for reflection and amplification attacks. By sending a misconfigured server request
using a spoofed IP address, the server will unknowingly bombard the target with a frequency
50 or more times higher than that of the response. Attacks of various types have been sub-
jects of extensive research, with thousands papers on the above topics. Some representative
recent contributions are Dong and Sarem (2019), Nishanth and Mujeeb (2020), Sambangi
and Gondi (2020) and Awan et al. (2021).

In this paper, we propose statistical methodology aimed at detecting attacks manifested
as unusual traffic between a source and a destination IP addresses. Our focus is on identi-
fying such pairs and ranking them according to the threat they may pose. Related papers,
focusing on outlier detection in multivariate functional data, are Dai and Genton (2018) and
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Amovin-Assagba et al. (2022). Dai and Genton (2018) propose graphical tools for identify-
ing the set of potentially outlying curves by taking into account unusually large magnitudes
and/or shapes. They do not rank the pairs, even though this might be possible by elaborat-
ing on their approach. Amovin-Assagba et al. (2022) also focus on identifying the set of
outlying pairs, but do not rank them in any way. They postulate a specific model motivated
by the industrial application they consider. Such a model, and the clustering technique they
use, need not be suitable for the data we consider. Basically, related existing approaches fo-
cus on identifying the set of outliers rather than assigning numerical measures of separation
from most curves.

Our method is based on multivariate functional principal components and copula mod-
eling. Internet streaming data are recorded at densely spaced time points, so they can be
modeled as densely observed functions. This suggests that functional data analysis (FDA)
approaches might be suitable. Following the monographs of Bosq (2000), Ramsay and Sil-
verman (2005) and Ferraty and Vieu (2006), FDA has grown into a mature field of statistics.
Its advantage over competing approaches is that all information in the time series of traffic
traces, e.g. shape, variation, and timing, can be taken into account. Functional principal
component analysis (FPCA) is a statistical method used to uncover main patterns in func-
tional data, see e.g. Chapter 11 of Kokoszka and Reimherr (2017). FPCA is a powerful
dimension reduction, or feature extraction, tool when a sample of functions from a single
population is observed. In our setting, we are dealing with bidirectional traffic flows, so we
need an analog of FPCA for samples whose elements are pairs of functions. A suitable tool
is therefore Multivariate (bivariate in our case) FPCA. Such methods have recently been
studied by Happ and Greven (2018), Górecki et al. (2018), Krzyśko and Smaga (2020,
2021), even though earlier related work exists, e.g. Berrendero et al. (2011), Jacques and
Preda (2014), Chiou et al. (2014).

A copula describes the joint distribution of random vectors with standard uniform
marginal distributions. Many excellent monographs are available, e.g. Nelsen (2006), Joe
(2015), Hofert et al. (2018) and Czado (2019). A copula model decomposes a multivariate
distribution function into two elements: the marginal distributions and the copula which
captures the dependence relationship of the marginals. In recent years, copulas have been
used to handle multivariate cybersecurity risks, e.g. Peng et al. (2018), and for predicting
the effectiveness of cyber defense early-warning, e.g. Xu et al. (2017). Both FPCA and cop-
ula modeling show flexibility and efficiency that we also demonstrate for our methodology
that combines and suitably refines them for our task.

To summarize our contribution, this paper develops statistical methodology to identify
IP addresses of source-destination pairs that exhibit unusual and suspicious behavior and
quantify their cybersecurity risks. We use the term risk to refer to the level of extreme
behavior relative to the bulk of the data. We treat the bi-directional internet flows as bivariate
functional data and compute scores using a multivariate FPCA (MFPCA) algorithm. The
scores provide low dimensional representations of the traffic between the node IP addresses
of each pair. Then, we propose a multivariate copula to compute the cybersecurity risk. The
copula model is estimated after outlying scores have been removed because it is used to
compute probabilities of extreme observations under the assumption of normal traffic. Even
though we deal with a specific application, we propose a general paradigm that can be used
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to develop effective screening tools to detect unusual multiple functional data objects.
It is informative to put the approach we propose into the context of previous research.

Methods for detecting internet anomalies can be divided into signature-based methods and
profile-based methods, Liao et al. (2013). Several requirements are necessary for signature-
based methods to identify suspects, including the need for labeled data, prior results from
anomalies, and an external supervisor. However, using this method, it is not possible to
detect new intrusions that are unknown, Modi et al. (2013). A number of approaches
have been proposed for the detection and prevention of DDoS attacks by using classifica-
tion algorithms. The majority of such techniques require pre-training on a set of labeled
data before they are applied. There are several popular approaches to data analysis, in-
cluding Support Vector Machines, Bayesian Networks, and Neural Networks, Ahmed et
al. (2016). Although these algorithms have performed well in certain situations in which
“known" anomaly data exist, they can be difficult to incorporate into a larger set of algo-
rithms due to the reliance on labeled data. It is likely that there will be no real knowledge for
the classification of network traffic, which means supervised techniques can only be applied
when approximated labels are available. It is inevitable that the results of training will be
skewed by incorrectly labeled data, Soysal and Schmidt (2010).

Furthermore, an analysis of frequency domains has proven to be effective in detecting
DDoS attacks, Fouladi et al. (2016). Compared to normal traffic in which energy is dis-
tributed among different frequencies, most DDoS attack energy is found at lower frequen-
cies. Such methods have been used to discover abnormalities and analyze traffic patterns,
Fouladi et al. (2013). Low rate DoS attacks (LDoS) are distinguished from normal traffic
using spectrum energy and thresholding methods. Spectrum energy and thresholding are
used to separate them, Wu et al. (2015). Spectral analysis is one of the methods used by the
authors in order to detect DoS attacks, Hussain et al. (2003). It should be noted that most
studies of frequency domain analysis in identifying DoS and DDoS attacks are carried out
in simulation environments.

The remainder of this paper is structured as follows. Section 2 begins with an introduc-
tion of the MFPCA followed by algorithms for identification of outliers and copula based
risk quantification. In Section 3, we apply our methods to a DDoS data set. The analysis is
supplemented by a simulation study in Section 4.

2. Statistical methodology

In Section 2.1, we review the MFPCA and interpret it in context of source-destination
traffic flows. Section 2.2 describes strategies used to remove outlying pairs so that a model
for normal traffic (for the whole source-destination network) can be constructed. Finally,
Section 2.3 explain the estimation of this model.

2.1. Multivariate functional principal components

To make the exposition more relevant, we introduce multivariate functional principal
component analysis (MFPCA) in the context of time series of packet counts.

Suppose there are N SIP-DIP (source-destination) pairs. Sources are outside, and des-
tinations are inside an organization or a protected network. Let (Xi(t),Yi(t)) be a bivariate
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time series associated with the ith SIP-DIP pair. Here, Xi(t) denotes the count of packets in
hour t in the SIP → DIP direction (i.e. inbound), and Yi(t) denotes the count of packets in
hour t in the DIP → SIP direction (i.e. outbound). These are pairs of noisy functions over
the time interval [0,T ]. We create their smooth versions and set

hi(t) = [h(1)i (t),h(2)i (t)]⊤. (2.1)

The smoothing serves two purposes: 1) it is the first step in dimension reduction because
it eliminates noise, 2) within an FDA software it converts discrete data to functional objects.
The latter can be done in such a way that the functional objects look almost exactly as raw
data, but then no noise reduction is achieved. We performed the smoothing using 100 B-
spline basis functions. In the context of the data studied in Section 3, it corresponds to
approximately using averages over 2.5 h, thus focusing only on persistent anomalies or
attacks. Using 250 basis functions would practically correspond to working with raw data
and would thus include anomalies lasting an hour or less, which we want to exclude, unless
they are so large that their influence spreads over a few hours. Using 50 basis functions
would focus on anomalies impacting at least five hours. The latter choice produces basically
the same risk rankings as the 100 basis functions we use in the remainder of the paper. The
details of smoothing are not essential to understand the remainder of the paper, we refer e.g.
to Chapter 1 of Kokoszka and Reimherr (2017). Examples of the raw count data and smooth
series are shown in Figure 1.

Figure 1: Example of DIP→SIP traffic and its smooth version.

We begin by describing the MFPCA algorithm of Happ and Greven (2018). We ini-
tially assume that each pair i comes from the same population, in particular, the functions
h(k)1 , . . . ,h(k)N , have the same distributions as a population function h(k). This corresponds to
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the absence of any outliers. We set

µµµ(t) = [µ(1)(t),µ(2)(t)]⊤ = [E[h(1)i (t)],E[h(2)i (t)]]⊤, 1 ≤ i ≤ N, (2.2)

and consider the Karhunen–Loève expansions

h(k)i (t)−µ
(k)(t) =

∞

∑
m=1

ξ
(k)
i,m φ

(k)
m (t)≈

M

∑
m=1

ξ
(k)
i,m φ

(k)
m (t), k = 1,2. (2.3)

The functions φ
(k)
m are the functional principal components of the functions h(k)i . Their

scores are ξ
(k)
i,m = ⟨h(k)i − µ(k),φ

(k)
m ⟩. At this stage, decomposition (2.3) is performed for

each k separately. For each k = 1,2, the functions φ
(k)
m are orthonormal in the Hilbert space

L2([0,T ]) and provide optimal data-driven basis systems in the sense that a specified accu-
racy of approximation that can be achieved with the smallest possible truncation level M.
We refer e.g. to Chapter 11 of Kokoszka and Reimherr (2017) for an introductory account
of FPCA and to Ramsay and Silverman (2005) and Horváth and Kokoszka (2012) for many
examples of applications of FPCA.

Based on the sample h(k)i , 1 ≤ i ≤ N, we can estimate the FPCs φ
(k)
m and the scores ξ

(k)
i,m .

We denote the corresponding estimators by φ̂
(k)
m and ξ̂

(k)
i,m . We set

Ξi = (ξ̂
(1)
i,1 , ..., ξ̂

(1)
i,M , ξ̂

(2)
i,1 , . . . , ξ̂

(2)
i,M) (2.4)

and denote by ΞΞΞ the N ×2M matrix whose ith row is Ξi. Next, we set

Ẑ = (N −1)−1
ΞΞΞ
⊤

ΞΞΞ (dim[Ẑ] = 2M×2M). (2.5)

The entries of the matrix Ẑ are estimators of the covariances E[ξ (k)
m ξ

(l)
m′ ], k, l = 1,2,

m,m′ = 1, . . .M.
The eigenvalues of the positive definite matrix Ẑ are denoted by λs and the orthonormal

vectors belonging to them by ĉs, i.e.

Ẑĉs = λsĉs, s = 1, . . . ,2M, (2.6)

with the convention that the eigenvalues λs are ordered from the largest to the smallest. Each
ĉs is a column vector of length 2M. The multivariate eigenfunctions are estimated by ψ̂

(k)
m

where

ψ̂
(k)
m (t) =

M

∑
j=1

ĉ(k−1)M+ j,mφ̂
(k)
j (t), m = 1,2, . . . ,M, k = 1,2. (2.7)

The multivariate scores are calculated as

ρ̂i,m =
2

∑
k=1

M

∑
j=1

ĉ(k−1)M+ j,mξ̂
(k)
i, j , m = 1,2, . . . ,M, i = 1, ...,n. (2.8)



6 P. Kokoszka et al.: Statistical risk quantification of ...

There is a correlation between the two sets of scores since the number of packets sent
from SIP to DIP is correlated with the number of packets sent from DIP to SIP. The MFPCA
algorithm has the advantage of revealing a joint variation in the number of packets sent
in both directions that cannot be captured by separate FPCA.

We emphasize that the φ
(k)
m and ξ

(k)
i,m are the functional principal components and scores

from univariate FPCA, while the ψ̂
(k)
m are the multivariate functional principal components

of the kth variable and ρ̂i,m are the corresponding scores of the ith multivariate functional
observation. Thus, in the MFPCA, the functional principal components of both variables
share the same score. These scores reflect the variability of pairs rather than their individual
components. While the objects at the population level are defined under the assumption of
identical distributions, the estimators discussed above can be computed for any sample of
SIP-DIP pairs.

We conclude this section by introducing the concept of the copula, see Genest and
Nešlehová (2012) for a recent review. Consider a random vector (Z1, . . . ,Zd) with uni-
variate continuous marginal distribution F1, . . . ,Fd , respectively. Then the random vector
(U1, . . . ,Ud) = (F1(Z1), . . . ,Fd(Zd)), where Fk(z) = P(Zk ≤ z) has marginals that are uni-
formly distributed on the interval [0,1]. The copula of (Z1, . . . ,Zd) is defined as the joint
cumulative distribution functions of (U1, . . . ,Ud), i.e.

C(u1, . . . ,ud) = P
(
Z1 ≤ F−1

1 (u1), . . . ,Zd ≤ F−1
d (ud)

)
. (2.9)

Equivalently, for any random vector (Z1, . . . ,Zd) with distribution function F(z1, . . . ,zd)

and marginal distributions F1, . . . ,Fd , there is a copula C such that

F(z1, . . . ,zd) =C(F1(z1), . . . ,Fd(zd)).

Therefore, assuming that the margins F1, . . . ,Fd are continuous and that the unique un-
derlying copula is absolutely continuous, the joint density function can be represented as

f (z1, ...,zd) = c(F1(z1), . . . ,Fd(zd))
d

∏
i=1

fi(zi),

where fi(zi) is the corresponding marginal density function of Zi and c(u1, ...,ud) is the
d−dimensional copula density function. We refer to C or c as a copula model.

In Sections 2.2 and 2.3, we use the letter d in place of M. Our recommendation is to
perform the MFPCA for some larger M, and then depending on the variance explained, use
d < M initial components.

2.2. Identification of risky source-destination pairs

We will use bivariate FPCA and a probabilistic copula-based method as our anomaly
detection and risk quantification techniques. There are three stages. First, we consider
the bi-directional streams [(h(1)i (t),h(2)i (t))], i = 1, ...,N, as bivariate functional data and
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compute the scores ρ̂i,m defined by (2.8). Then, a copula model is estimated based on
the score vectors ρρρ i = (ρi1, ...,ρid), i = 1, ...,N, obtained from the bivariate FPCA after
outlying scores or outlying functions have been removed. Finally, a copula model is used
to compute the risk of each SIP-DIP pair. We propose two strategies to remove outliers.
In the first algorithm, we remove extremely large scores before fitting a copula. In the
second algorithm, we remove pairs of functions associated with extreme scores, recompute
the scores, and then fit a copula. The justification for removing outlying pairs of curves is
to ensure that a copula is estimated on data that can be reasonably assumed to come from
the same distribution, so a single copula model is appropriate. Outliers come from different
distributions than the bulk of the data. These two strategies are summarized in Algorithms
1 and 2 below. In Algorithm 3, we explain how extremely large scores are identified.

ALGORITHM 1

1. For the smooth versions (h(1)i (t),h(2)i (t)), i = 1, ...,N, estimate the multivariate func-
tional principal components ψ

(k)
m , k = 1,2, and the scores ρ̂i,m, m = 1, ...,d.

2. If pair i has extremely large ρ̂ρρ i, then it is considered as an outlier. Remove ρ̂ρρ i from
the estimated scores.

3. Estimate a copula model based on the remaining scores ρ̂ρρ i = (ρ̂i1, ..., ρ̂id).

ALGORITHM 2

1. Step 1 is the same as in Algorithm 1.

2. If pair i has extremely large ρ̂ρρ i, remove (h(1)i (t),h(2)i (t)).

3. Estimate the multivariate functional principal components ψ
(k)
m and the scores ρ̂i,m

again.

4. Iterate Step 2 and Step 3 until there is no more ρ̂ρρ i identified as outlying.

5. Estimate a copula model based on estimated scores ρ̂ρρ i = (ρ̂i1, ..., ρ̂id).

Step 2 of both algorithms identifies outlying pairs i using the following Algorithm 3 due
to Billor et al. (2000). We note that any effective way of identifying pairs of outlying curves
could be used; the approaches of Hubert et al. (2005), Dai and Genton (2018) or Amovin-
Assagba et al. (2022) could be effective. As we will see in Section 3, a more significant
difference arises depending on whether Algorithms 1 or 2 are used.

ALGORITHM 3

1. Compute the Mahalanobis distance for each ρ̂ρρ i:

Mahalanobis distance = (ρ̂ρρ i − ¯̂ρρρ i)
⊤S−1(ρ̂ρρ i − ¯̂ρρρ i), i = 1, . . . ,N,

where ¯̂ρρρ i and S are the mean and the sample covariance matrix of the ρ̂ρρ1, . . . ,ρ̂ρρN .
Select a potential basic subset of size k (k > M) of smallest Mahalanobis distances
that can safely be assumed free of outliers.
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2. Compute the discrepancies:

di =
√
(ρ̂ρρ i − ρ̄ρρb)

⊤S−1
b (ρ̂ρρ i − ρ̄ρρb), i = 1, . . . ,N,

where ρ̄ρρb and Sb are the sample mean and the sample covariance matrix of the obser-
vations in the basic subset.

3. Denote by χ2
d,α/N the (1−α/N)th quantile of the chi-square distribution with d de-

grees of freedom. The level α depends on how many risky pairs we want to identify;
see the discussion following (2.13).

Set the new basic subset to all points with discrepancies less than c, where

c =
√

χ2
d,α/N

(
max

{
0,

h− k
h+ k

}
+1+

d +1
N −d

+
1

N −h−d

)
with h = (N +d +1)/2.

4. The stopping rule: Iterate Step 2 and 3 until the size of the basic subset no longer
changes.

5. Nominate the observations excluded by the final basic subset as outliers.

2.3. Risk quantification using a copula model

Among several copula candidates, we settled on the t-copula that is widely used in
finance and risk analysis, see Demarta and McNeil (2005). We also considered the popular
normal copula, but it did not lead to a good separation of risks for the most extreme pairs.
The R package copula contains many other copula models that could be used in various
settings, and could be better than the t-copula in different applications.

The d-dimensional t-copula with ν degrees of freedom and association matrix Σ is the
probability distribution on [0,1]d whose distribution function is given by

Cν ,Σ(uuu) =
∫ t−1

ν (u1)

−∞

...
∫ t−1

ν (ud)

−∞

Γ( ν+d
2 )

Γ( ν

2 )
√
(πν)d |Σ|

(
1+

xxx′Σ−1xxx
ν

)− ν+d
2

dxxx (2.10)

where tν(·) is the distribution function of a univariate t-distribution with ν degrees of free-
dom. The probability density function corresponding to (2.10) equals to

cν ,Σ(uuu) =
dtν ,Σ(t−1

ν (u1), ..., t−1
ν (ud))

∏
d
i=1 dt(t−1

ν (ui),ν)
, (2.11)

where dtν ,Σ(·) and dt(·, ·) are the densities of multivariate and univariate t-distribution, re-
spectively. We used the R package copula to fit copula (2.10). While the t-copula provides
a useful separation of risks for the data we study in Section 3, different copulas could be
more appropriate for different data sets. Our criterion is that the highest risks should be
clearly separated from each other and the bulk of the data.
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Risk usually refers to the uncertainty of an outcome given a situation. Cybersecurity risk
is the potential for a cybersecurity threat to occur. Following an established practice, we use
tail probabilities to quantify risk. To explain the idea, we consider the first two scores, i.e.,
ρρρ i = (ρi1,ρi2). This corresponds to d = 2 used in Section 3. In general, the four cases in
(2.12) would be replaced by 2d cases. Define the probability of scores more extreme than
those of the observed pair (ρ̂i1, ρ̂i2) as

pi =


P(ρi1 ≥ ρ̂1,ρi2 ≥ ρ̂2), if ρ̂i1 ≥ 0 and ρ̂i2 ≥ 0

P(ρi1 ≤ ρ̂1,ρi2 ≥ ρ̂2), if ρ̂i1 < 0 and ρ̂i2 ≥ 0

P(ρi1 ≤ ρ̂1,ρi2 ≤ ρ̂2), if ρ̂i1 < 0 and ρ̂i2 < 0

P(ρi1 ≥ ρ̂1,ρi2 ≤ ρ̂2), if ρ̂i1 ≥ 0 and ρ̂i2 < 0.

(2.12)

The extreme (risky) regions may have a different form, and will look differently in
higher dimensions, but (2.12) is a commonly used definition on the plane. We require that
in every quadrant, both scores are extreme, rather than just one of them. If the ith pair of
traffic flows is anomalous, then it should occur infrequently, i.e., the probability of obtaining
ρi at least as extreme should be small. To associate high risk with large positive values, we
work with negative log probabilities. Thus, the cybersecurity risk of pair i is defined as

Ri =− log(ε + pi), (2.13)

where ε > 0 is a small value, the same in all calculations. (In Section 3, we use ε = 0.001.)
The risks Ri can be used to rank the pairs from most risky to least risky. One can also set a
probability threshold α , and consider the pairs satisfying Ri >− log(ε+α) as exceptionally
risky. We emphasize that α has an interpretation as a probability only within the copula
model. Alternatively, one can report α corresponding to 10 or 20, or any other number of
most risky pairs. In most applications, we are dealing with thousands of pairs.

3. Application to bi-directional packet flows

3.1. Data description and preliminary analysis

The data set we study consists of a collection of time series of bi-directional packet
flows, aggregated hourly, between source Internet protocol (SIP) addresses and destination
IP (DIP) addresses captured at a large university from October 20th to 30th, 2013. These
data are collected 3 months before a major DDoS attack occurred around January 10th,
2014. The data, transformed with Crypto-PAn, as well as the source code, accompany
this paper at the journal’s website. During the 250-hour time window over which the data
were collected, there are 869 unique SIPs connected with 1869 unique DIPs, and a total of
approximately 1.2 million data packets were sent. We consider N = 3049 unique SIP-DIP
pairs, where SIP is an IP outside the university network and DIP is inside. Each pair is
associated with two observed time series, an inbound packet flow and an outbound packet
flow. The pairs are labeled with integers 1,2, . . . ,3049, the SIPs with S1,S2, . . . ,S869 and
the DIPs with D1,D2, . . . ,D1869. This is needed to anonymize the IP addresses and ease
the notation, the real addresses are long string of integers.
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Figure 2: Time series plots of traffic traces. Left: inbound (SIP to DIP); Right: outbound
(DIP to SIP). Each time series depicts the hourly count of packets between a SIP-DIP pair.

Figure 3: Zoom of Figure 2 with outlying traces removed.
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Time series of inbound traffic traces (from SIP to DIP) and outbound traffic traces (from
DIP to SIP) are depicted, respectively, in the left and right panels of Figure 2. The hourly
count of packets is shown as y-axis, and the time (in hours) is shown as x-axis. It can
be seen that there are some clearly, or potentially, outlying packet flows. These are the
traces that need to be removed before the computation of the bivariate FPCA is performed.
Detection and ordering of risky pairs in the remaining data set shown in Figure 3, cannot
be done visually, or by an obvious algorithm. This is why we have developed copula-based
algorithms.

Figure 4: Mean functions of all functions in the sample.

Another justification of the need to develop an algorithm that uses only the pairs that
are not obviously outlying comes from the examination of Figures 4 and 5. Figure 4 shows
sample mean functions computed from all available data. It is seen that they strongly reflect
the extremely outlying curves in Figure 2, one curve in each panel. Similarly, the initial
FPCs, shown in Figure 5 reflect the deviations of the mean due to smaller outliers, except
the first FPC that reflects the differences in level for most functions. These figures show
that the FPCA based on all functions is not suitable for the quantification of risk because it
reflects the most risky functions and mostly ignores the bulk of the data. For these reasons,
in the following, we first apply the outlier removal algorithms proposed in Section 2.2.

We conclude this section with information about running times. On a 2.2 GHz Intel
Core i7 processor, 16GB RAM, the average running times over three repetitions were 27.9
s for Algorithm 1 and 129.9 s for Algorithm 2, for the data set described at the beginning of
this section.

3.2. Risk analysis using Algorithm 1

For reasons explained in Section 3.1, before fitting a copula model, we use Algorithm 3
in Section 2.2 to remove outlying curves. It identifies four pairs with abnormal scores (la-
beled 2, 794, 1077, and 1491). These pairs are excluded from the copula model estimation.
Using only the remaining pairs, 95.6% of the variance is explained by the first two MFPCs,
with 86.3% of the variance explained by the first MFPC and 9.3% by the second MFPC.
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Figure 5: The first four sample FPCs for all functions in the SIP to DIP direction.

Using d = 2 is therefore sufficient to capture the main features of the data. After estimat-
ing the bivariate t copula (2.10), we compute the probabilities p̂i using (2.11) for all pairs
ρ̂ρρ i = (ρ̂i1, ρ̂i2), including those that were excluded in the copula estimation. Next, we com-
pute the risks using equation (2.13) with ε = 0.001. The risks are in the range [0.624,2.336],
i.e. R̂i ∈ [0.624,2.336]. To give a better idea about the range of risk, we consider, say, 55
pairs with the highest risk. They have risks higher than 1.509. This corresponds to the cut-
off level α = 0.22, i.e for these 55 pairs, R̂i >− log(ε +0.22) = 1.509. Table 3.2 shows the
risks for ten riskiest pairs.
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Table 1. The 10 riskiest pairs according to Algorithm 1
Pair SIP DIP Risk

2 S2 D2 2.336
1077 S312 D655 2.0679
1491 S213 D899 2.0404
2260 S312 D1296 1.999

10 S10 D1 1.896
51 S46 D1 1.870
40 S36 D1 1.861
33 S30 D1 1.858

1272 S423 D1 1.854
34 S31 D1 1.820

We note that the risky pairs are found, and their risks computed, using presmoothing
with B = 100 splines, which is the value used for all analyses presented in this paper. This
level of smoothing is suitable to capture the main and relevant features of the data we study.
We refer again to Figure 1. We need a level of smoothing that preserves large spikes, but
basically ignores typical variability that is not unusual in any way. Larger values of B are not
recommended because they would basically reproduce the raw data and distort the MFPCA
that requires smooth functions as inputs. Using B = 50 produces basically the same risks
and identifies almost the same sets of risky pairs. Using fewer that B = 50 basis functions
is not recommended because the spikes are smoothed out too much.

We examined the patterns of high risk pairs in Table 3.2. The high-risk pairs can,
roughly, be classified into three groups, which we denote (a), (b), and (c). Figure 6 shows
examples of packet flows in each of the three groups. The curves in group (a) have high lev-
els of packet flows with many rapid drops in the packet counts. Pair 2, the most outstanding
outlier, is characterized by exceptionally large traffic. Pair 34 has a similar pattern as pair 2,
but the traffic levels are much lower, so it is not displayed in Figure 6. The relatively high
levels of activity in group (b) (pairs 1077, 1491, and 2260) last only for a short period of
time, and at other times, no activity occurs. The curves in group (c) (pairs 10, 33, 40, 51,
and 1272) have generally low levels with many spikes. Only two pairs in groups (b) and (c)
are plotted, so as not to obscure the picture.

We also examined other pairs in the group of the 55 riskiest pairs, beyond those in Table
3.2. The general patterns are somewhat different. Basically, the patterns in panels (a) and
(b) of Figure 3.2 are exceptional and correspond to outliers. For the majority of high-risk
pairs three different groups can be identified. Figure 7 shows examples of packet flows in
each of the three groups. The curves in group (a) have moderate levels of packet flows, but
exhibit more variability than typical curves. The curves in group (b) have mostly high levels
of packet flows with many rapid drops in the packet counts. Group (c) coincides with group
(c) in Figure 6. It is basically a mirror image of group (b). The curves in that group have
generally low levels with many upward spikes.

It is not possible to display risks for all 3049 pairs in our data set. To obtain some
additional insights, we proceed as follows. In the 3049 pairs, there are SIPs that appear
more often than others. We thus ranked the SIPs by the frequency with which they appear
in the pairs. For example, the address S23 appears most frequently, in 241 out of 3049
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Figure 6: Examples of traffic traces corresponding to the pairs in Table 3.2.

Figure 7: Examples of traffic traces corresponding to pairs identified as high risk under
Algorithm 1: Left: pair 8 (S8 → D2), pair 16 (S15 → D2); Middle: pair 1 (S2 → D2), pair
7 (S7 → D2); Right pair 10 (S10 → D1), pair 33 (S30 → D1).

pairs. We performed the same ranking for the DIPs; the address D1 appears most often, in
285 out of 3049 pairs Figure 8 shows risks for the 10 most frequent DIP and SIP addresses.
According to Figure 8, the pairs including the 10 most frequent SIPs tend to be less risky,
whereas the pairs sent to the 10 most frequent DIPs require more attention, particularly
D1 and D2. The DIP D2 was captured by the outlier detection Algorithm 3, but D1 was
identified only after computing the risks. A finding of this type may indicate that D1 and
D2 (that are within the university) may require special attention.

The results presented in this section illustrate the value of quantitative risk assessment.
Certain SIP-DIP pairs are brought to attention by their high risk, even though they are
difficult to identify visually due to the fact that we are dealing with thousands of pairs of
curves with very complex shapes; in a cloud of thousands of curves it is difficult to see
which are more unusual than others, and it is difficult to examine them visually one after
another. Our method provides a tool for sorting the SIP-DIP pairs so that attention can be
focused only on the riskiest ones.
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Figure 8: Top: Boxplots of risks for pairs with the 10 most frequent SIPs. Bottom: Boxplots
of risks for pairs with the 10 most frequent DIPs. (Algorithm 1)

3.3. Risk analysis using Algorithm 2

We now turn to the application of Algorithm 2 proposed in Section 2.2. The results of
copula estimations are shown in Table 3.3. Due to the iterative procedure for the removal of
outliers, Algorithm 2 is expected to identify more outliers than Algorithm 1. We emphasize
that risks are computed for all pairs, including those identified as outliers. The difference
relative to Algorithm 1 is that the copula is estimated on a smaller subset of “typical" pairs.
For the data set we study, Algorithm 2 identified 54 pairs as outlying using α = 0.1 in Step
3 of Algorithm 3. The first iteration identified, by definition, the same outliers as Algorithm
1: pairs 2, 794, 1077 and 1491. The second iteration identified 42 new outliers, third, 5
outliers and fourth 3. After the fourth iteration no more outliers were identified. The range
of R̂i computed by Algorithm 2 is [0.870,2.059]. The risks are different than those obtained
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from Algorithm 1, where the range was [0.624,2.336]. We emphasize that the values of
risks are used only for identifying and ranking risky pairs, they do not have an “absolute"
interpretation. This point is further highlighted by comparing Figures 8 and 9. Table 3.3
displays the risks of the riskiest pairs identified by Algorithm 2. The pairs in Table 3.3 are
different than those in Table 3.2, with some overlap (pairs 2260, 2, 1491, 1272, 40). This
is to be expected because different copula models are used to compute them. A change in
ranking can also occur if the method is applied to transformed data. We applied Algorithm
2 to log(1+ count) and obtained slightly different, but similar rankings using the level of
smoothing similar to that used for the original data. This is understandable, because after
any transformation, the curves take on different shapes.

Table 2. Results of the estimation of the t copula based on the two algorithms
Algorithm 1 Algorithm 2

Degrees of freedom 1.844 3.359

Correlation matrix
(

1 0.344
0.344 1

) (
1 −0.0737

−0.0737 1

)
Margin 1 t0.785(µ =−0.672,σ = 0.0289) t1.0769(µ =−0.0459,σ = 0.0273)
Margin 2 t0.965(µ = 0.0761,σ = 0.0295) t0.908(µ = 0.00433,σ = 0.0470)

Table 3. The 10 riskiest pairs according to Algorithm 2
Pair SIP DIP Risk
2260 S312 D1296 2.0594
794 S312 D13 2.0329
80 S71 D1 2.0294
2 S2 D2 1.995

1491 S213 D899 1.994
79 S70 D1 1.988
43 S39 D2 1.951

1272 S423 D1 1.945
57 S49 D1 1.938
40 S36 D1 1.929

4. Assessment of the methodology on simulated data

A question arises whether Algorithm 1 or Algorithm 2 provides a more useful risk rank-
ing. To address this question, we need an informative simulation study, which is the focus
of this section.

The chief difference between Algorithms 1 and 2 of Section 2.2 is as follows. In Algo-
rithm 1, the MFPCs are computed using all available data, even the potential outliers. The
largest outliers do not affect the MFPCs because they impact the mean functions that are
subtracted before the computation of the MFPCs. In Algorithm 2, the MFPCs are computed
after the outliers have been removed. For example, in Section 3.3 they were computed after
54 pairs had been removed. We assess the performance, and relative performance, of the
two algorithms using simulated data that has certain features of our real data sets, but also
certain characteristics that are known targets. In step 1 of the following data generation al-
gorithm, we have two options, A and B. Option A might seem to, a priori, favor Algorithm
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Figure 9: Top: Boxplot of risks for pairs with the 10 most frequent SIPs. Bottom: Boxplot
of risks for pairs with the 10 most frequent DIPs. (Algorithm 2)

1 and Option B Algorithm 2.

1. A Estimate ψ
(1)
1 ,ψ

(1)
2 ,ψ

(1)
3 and ψ

(2)
1 ,ψ

(2)
2 ,ψ

(2)
3 using all data.

B Remove 54 pairs identified by Algorithm 2 as outlying and estimate ψ
(1)
1 ,ψ

(1)
2 ,

ψ
(1)
3 and ψ

(2)
1 ,ψ

(2)
2 ,ψ

(2)
3 based on the remaining 3049 - 54 = 2995 pairs.

2. For 1 ≤ i ≤ 2995, generate

Xi =
3

∑
j=1

ξi jψ
(1)
j , Yi =

3

∑
j=1

ηi jψ
(2)
j (4.14)

with iid scores ξi j and ηi j distributed according to

ξ1 ∼ t10, ξ2 ∼ 0.5 N(0,1), ξ3 ∼ 0.1 N(0,1),

η1 ∼ t11, ξ2 ∼ 0.4 N(0,1), ξ3 ∼ 0.2 N(0,1),
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The first 2995 pairs are the typical low risk pairs.

3. For 2996≤ i≤ 3041, generate the pairs (Xi,Yi) according to (4.14), but ξ1 and η1 hav-
ing different, “larger" distributions, as specified below. The remaining distributions
are unchanged. These are the pairs with increasing risks. Pair 2996 has the smallest
risk of them, pair 3041 the highest.

4. For 3042 ≤ i ≤ 3049, generate the pairs (Xi,Yi) according to (4.14), but with ξ1 and
η1 having “extremely" large distributions. These are the outlying pairs

In steps 3 and 4 above, the distribution of the scores changes, so as reduce the depen-
dence of the the conclusions on a specific distribution of risky and outlying pairs. We repeat
steps 1-4 20 times, and use four distributions for each batch of five simulations according to
the following specifications:

Simulations 1 to 5: For 2996 ≤ i ≤ 3041, ξ1 ∼ (i−2995)t10,η1 ∼ (i−2995)t11; for
3042 ≤ i ≤ 3049, ξ1 ∼ 2(i−3041)t3,η1 ∼ 2(i−3041)t4.

Simulations 6 to 10: For 2996 ≤ i ≤ 3041, ξ1 ∼ (i − 2995)Exp(0.5),η1 ∼ (i −
2995)Exp(1); for 3042≤ i≤ 3049, ξ1 ∼ (i−3041)Exp(0.1),η1 ∼ (i−3041)Exp(0.5);

Simulations 11 to 15: For 2996≤ i≤ 3041, ξ1 ∼ 2i−2995
10 Exp(1),η1 ∼ 2i−2995

11 Exp(2);
for 3042 ≤ i ≤ 3049, ξ1 ∼ 2i−3041

5 Exp(1),η1 ∼ 2i−3041
6 Exp(2).

Simulations 16 to 20: For 2996 ≤ i ≤ 3041, ξ1 ∼ (i − 2995)Exp(0.5),η1 ∼ (i −
2995)t11; for 3042 ≤ i ≤ 3049, ξ1 ∼ (i−3041)Exp(0.1),η1 ∼ (i−3041)t4.

We apply Algorithms 1 and 2 to the data generated above. Note that each algorithm
estimates the MFPCs and the scores. The estimated MFPCs will be different than those
used to generated the data in Step 1. We list the pairs identified as outliers. The target
list are pairs 3042,3043, . . . ,3049. We find 54 riskiest pairs and order them from the one
with the smallest risk to the one with the highest risk (according to each algorithm). We
denote the indexes as i1, . . . , i54. These indexes will be different for the two algorithms.
The pair (Xi1 ,Yi1) has the the lowest risk out of the 54 pairs. We compute the absolute
differences |ik − k−2995|, k = 1, . . . ,54, and plot them as histograms for both algorithms.
If an algorithm performs well, these differences should be small. For an algorithm that
detects outliers perfectly and ranks the risks perfectly, they should all be zero. However,
due to the random generation of outlying and risky pairs, some of them will not appear to
be in these categories because even a t3 distribution can take a value close to zero. However,
our experiment should give a reasonable idea how the algorithms perform, as we now report.

In both scenarios A and B, Algorithm 1 identifies five to nine pairs as outlying and
Algorithm 2 eight to seventeen pairs. In this sense, Algorithm 1 is closer to our target of
seven outlying pairs. However, as shown in Figure 10, Algorithm 2 has an advantage in
ranking the risky and outlying pairs, but is more prone to make serious mistakes more often
that Algorithm 1. The reader can certainly draw conclusions from the above analysis, but
it appears that the additional outliers identification step in Algorithm 2 does not provide a
decisive improvement. One might conclude that both algorithms identify outliers and risky
pairs in a satisfactory manner, but may result in somewhat different risk rankings, as we
have seen in Section 3.
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Figure 10: Boxplots of absolute difference for the top 54 risky pairs for both algorithms
in two scenarios.
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Krzyśko, Mirosław and Smaga, Łukasz, (2020). Measuring and testing mutual dependence
of multivariate functional data. Statistics in Transition, 21, no. 3, pp. 21–37.
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