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Vol. 15, No. 1, pp. 1–5 

FROM THE EDITOR 

At the outset of this issue I would like to announce some novelties in the 
journal, with respect to its issuing and editing. First, from this issue on, Statistics 
in Transition new series (SiTns) will be printed four times a year, just becoming a 
regular quarterly journal. This will give us an opportunity to be more responsive 
to systematically growing number of submitted papers, and to earn an extra point 
in certain indexation bases. Currently, in addition to several bases monitoring our 
publications, we are under consideration by SCOPUS. The second announcement 
is about preparing the journal's special issue, envisaged as a thematic collection of 
articles devoted to the subjective well-being, with preference given to papers 
presenting current research on this topic in public (government) statistics. In view 
of the fact that arranging for such a thematic collection of articles is a challenging 
task we have invited Prof. Graham Kalton (who also inspired us with this idea) to 
act as a Guest (co)Editor of such a topical collection of papers. The formal call for 
papers will be published in the next issue (scheduled for July).   

 

ACKNOWLEDGEMENTS AND NOMINATIONS 

With this issue some important personal changes take place. First of all, on 
behalf of the Editorial Office and also on behalf of the Co-Chairmen of the 
Editorial Board - Prof. Janusz Witkowski, the President of the Central Statistical 
Office and of Prof. Czesław Domański, the President of the Polish Statistical 
Association - I would like to express our gratefulness to the long-serving (since 
Autumn 2007) members of the journal's Editorial Board: Prof. Prof. Walenty 
Ostasiewicz, Tomasz Panek, Jan Paradysz, Mirosław Szreder, and Mr. 
Wiesław Łagodziński. Our excellent collaboration with each of these prominent 
researchers and scholars to a great extent contributed to the constantly rising 
recognition and overall quality of the journal. I deeply appreciate having chance 
to collaborate with so prominent experts, and hope to have the privilege to 
continue such a fruitful collaboration in the future.   

At the same time, I am extremely pleased to announce nomination of the five 
world renowned experts - previous members of our Associate Editors panel - to 
resume the membership of the Editorial Board: Sir Anthony B. Atkinson, 
University of Oxford, UK, Prof. Malay Ghosh, University of Florida, USA, 
Prof. Graham Kalton, Westat, and the University of Maryland, USA, 



2                                                                                                  W. Okrasa: From the ... 

 

 

Prof. Mirosław Krzyśko, Adam Mickiewicz University in Poznań, Poland, and 
Prof. Janusz L. Wywiał, University of Economics in Katowice, Poland.  

We welcome new members of the Editorial Board and look forward to so 
exceptional opportunity to collaborate with frontiers in their fields.  

AN OVERVIEW OF THE CONTENTS 

As regards the contents of this issue, it starts with five papers devoted to 
different issues in Sampling Methods and Estimation. Tomasz Bąk's paper, 
Triangular Method of Spatial Sampling, presents a new adaptive method of 
spatial sampling, starting with developing a theory of this method, followed by 
discussion of the benefits of decreased size of a sample due to the employment of 
this method in sampling of natural area units. Initial sampling of the first three 
elements is described and density of sampling at the initial stage is obtained by 
the Monte Carlo method. The density is defined on the basis of the logarithm of 
inverse square of the Euclidean distance function and a simulation of the 
triangular method of spatial sampling is finally conducted. An example is given 
for sampling forest areas in research on approximating the ability of trees to 
absorb carbon dioxide. The triangular method of spatial sampling is used at the 
strata sampling stage, and density of sampling in the simulated forest is obtained 
using Monte Carlo method. 

Ashok V. Dorugade  introduces a new estimator - A Modified Two-
Parameter Estimator in Linear Regression - envisaged as an alternative to the 
OLS estimator  for the vector of parameters in the linear regression model in the 
case when multicollinearity is present in the data. The properties of the proposed 
estimator are discussed along with its performance in terms of the matrix mean 
square error criterion. A new two-parameter estimator (NTP), an almost unbiased 
two-parameter estimator (AUTP), and other well-known estimators are being 
discussed. A numerical example and simulation study are conducted to illustrate 
the superiority of the proposed estimator. 

Arkadiusz Kozłowski discusses possibilities for improving The Use of Non- 
Sample Information in Exit Poll Surveys in Poland - the quality and overall 
precision of  the survey - through using the non-sample information more 
efficiently. Statistical methods aiming at incorporating the information about the 
relevant variables to the survey, both at the stage of selecting the sample of 
precincts and at the stage of forecasting election results are proposed. The 
presented approach is tested by simulation on the parliamentary election 2011 
data. The results confirm the possibility of a significant increase in the 
effectiveness of estimates by choosing a more representative sample and by 
applying complex estimation of parameters.  
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Another paper aiming at using 'external' information in a more efficient way, 
An Improved Estimator for Population Mean Using Auxiliary Information in 
Stratified Random Sampling by Malik S., Singh V. K., and Singh R. 
concentrates on the development of a new estimator for population mean Y  of 
the study variable y, in the case of stratified random sampling. Using the 
information based on auxiliary variable x, a formula for the mean squared error 
(MSE) of the proposed estimator is derived up to the first order of approximation. 
An empirical study (a numerical example) demonstrates the efficiency of the 
suggested estimator over sample mean estimator, usual separate ratio, separate 
product estimator and other proposed estimators. 

The next paper, A Modified Mixed Randomized Response Model by Housila 
P. Singh and Tanveer A. Tarray  is devoted to the problem arising in survey 
research from the fact that people wish to hide some information from others, 
especially on the so-called sensitive issues. These include savings, the extent of 
their accumulated wealth, their history of intentional tax evasion and other illegal 
or unethical practices leading to earnings from clandestine sources, crimes, trade 
in contraband goods, susceptibility to intoxication, expenditures on addictions of 
various forms, homosexuality, and similar issues which are customarily 
disapproved of by society. Authors start with briefing on some methods for 
dealing with this kind of problem - Warner's (1965) survey technique that is 
known as randomized response (RR) technique and its revised version by   
Greenberg et al. (1971) for qualitative variables; various further modifications 
given by several researchers (Chaudhuri 2011, Kim and Warde, 2005), and by 
Nazuk and Shabbir, 2010) who presented mixed randomized response models 
using simple random sampling with replacement sampling scheme improving the 
privacy of respondents. Authors propose a modified mixed randomized response 
model to estimate the proportion of a qualitative sensitive variable, along with 
recommendations. It has been shown that the suggested randomized response 
model is always better than Kim and Warde’s model while it is better than Nazuk 
and Shabbir’s model under some realistic conditions. Supporting material for 
these results is also given in the paper.   

The 'research article' section consists of Jacek Białek's paper on Application 
of the Original Price Index Formula to Measuring the CPI’s Commodity 
Substitution Bias. It examines the possibility of applying the original price index 
formula to measuring the commodity substitution bias associated with the 
Consumer Price Index (CPI). The CPI bias values - calculated by using the 
original price index formula - is compared through simulation study with those 
calculated on the basis of some known, superlative price indices. 
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In the last, methodologically oriented, 'other articles' section some papers 
presented at the XXXII International Conference on Multivariate Statistical 
Analysis 2013 in Łódź are included.  

Grażyna Dehnel's paper on Winsorization Methods in Polish Business 
Survey is devoted to one of the major problems involved in estimating 
information about economic activity across small domains due to excessively 
small sample size and incompleteness of data sources. In view of the fact that 
often it is not obvious whether the implementation of traditional estimation 
methods meets the desired requirements (assumptions about being free from bias 
or about variance), and given  the pressure to produce accurate estimates at a low 
level of aggregation, or to substantially reduce sample size, the need to develop a 
more sophisticated approach to estimation seems to be inescapable. The aim of 
this study was to test the usefulness of winsorization methods in such a problem 
context in order to estimate economic statistics from the DG1 survey in a more 
efficient way. One of the conclusions states that the use of the winsorized estimation 
reduces estimator variance and the effect of outliers. Also, the winsorized 
estimator nearly always outperforms the expansion estimator in terms of MSE. 

Daniel Kosiorowski, Dominik Mielczarek, Jerzy Rydlewski, Małgorzata 
Snarska discuss the problem of Sparse Methods for Analysis of Sparse 
Multivariate Data From Big Economic Databases. Authors present a new 
approach to sparse high-dimensional data sets meant as data which contain many 
zeros among coordinates of observations. Taking jointly the selected sparse 
methods recently proposed in multivariate statistics and kernel density framework 
for discrete data, they outline a general perspective for bringing out useful 
information from big economic databases. As a framework for considerations 
they use the so-called functional data analysis, which originates from Ramsay and 
Silverman works, and particularly, the functional principal components analysis 
within 2D density estimation procedure proposed by Simonoff. 

Dorota Pekasiewicz's paper on Application of Quantile Methods to 
Estimation of Cauchy Distribution Parameters focuses on using quantile 
methods to estimate population parameters when other methods such as the 
maximum likelihood method and the method of moments cannot be applied. The 
percentile method, the quantile least squares method and its two modifications are 
used for this purpose. The proposed methods allow estimators to be obtained with 
smaller bias and smaller mean squared error than estimators of the quantile least 
squares method. The proposed approach can be applied to estimation of the 
Cauchy distribution parameters. The theoretical considerations on the properties 
of the estimator are supported by results of the simulation analysis. 

Margus Pihlak's presents an approach to Modelling of Skewness Measure 
Distribution. After showing some results of matrix algebra useful in multivariate 
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statistical analyses, the central limit theorem on modelling of skewness measure 
distribution is presented. The paper concludes discussion of the idea of finding the 
confidence intervals of statistical model residuals' asymmetry measure. For 
example, by means of skewness confidence intervals it is possible to estimate the 
influence of outliers (which are typically present in forestry study).  

Justyna Wilk and Michał Bernard Pietrzak discuss the issues involved in 
An Analysis of the Population Aging Phenomena in Poland from a Spatial 
Perspective. The objective of this empirically-oriented demographic study is to 
characterize the degree of differentiation of the Polish population across 
subregions (66 in total) in terms of  the proportion of senior citizens and its 
growth rate, and also determinants exerting impact on the demographic aging 
processes. Demographically the youngest and slowest aging population lives in 
south-eastern and central Poland. The most intensive population aging processes 
are seen in the selected subregions of south-western Poland. The latter also is 
characterized by extremely low fertility, old working-age population, and 
significant migration outflow of younger people. 

The volume is concluded by Jan Kordos' remarks on the recently published 
textbook Correlation and regression of economic qualitative features, by 
 J. W. Wiśniewski, which are presented in the 'book review' section. 

 

Włodzimierz Okrasa 
Editor 
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SUBMISSION INFORMATION FOR AUTHORS 

Statistics in Transition new series (SiT) is an international journal published 
jointly by the Polish Statistical Association (PTS) and the Central Statistical 
Office of Poland, on a quarterly basis (during 1993–2006 it was issued twice and 
since 2006 three times a year). Also, it has extended its scope of interest beyond 
its originally primary focus on statistical issues pertinent to transition from 
centrally planned to a market-oriented economy through embracing questions 
related to systemic transformations of and within the national statistical systems, 
world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved 
in data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy 
makers and the general public – with a platform for exchange of ideas and for 
sharing best practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement 
– as either a scientific domain (new research and data analysis methods) or as a 
domain of informational infrastructure of the economy, society and the state – are 
appropriate for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by 
internationally recognized experts, who are guided in their decisions about the 
publication by criteria of originality and overall quality, including its content and 
form, and of potential interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
sit@stat.gov.pl., followed by a hard copy addressed to 
Prof. Wlodzimierz Okrasa, 
GUS / Central Statistical Office  
Al. Niepodległości  208, R. 287, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published previously 
and that it is not under review elsewhere. It should include an abstract (of not 
more than 1600 characters, including spaces). Inquiries concerning the submitted 
manuscript, its current status etc., should be directed to the Editor by email, 
address above, or w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines 
on its Web site: http://pts.stat.gov.pl/czasopisma/statistics-in-transition/ 

 

mailto:@stat.gov.pl
mailto:w.okrasa@stat.gov.pl
http://pts.stat.gov.pl/czasopisma/statistics-in-transition/
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TRIANGULAR METHOD OF SPATIAL SAMPLING

Tomasz Bąk1

ABSTRACT

In this paper a new adaptive method of spatial sampling - a triangular method
of spatial sampling is presented. The theory of this method is developed.
Benefits of decreased size of a sample, when this method is used, are dis-
cussed. Initial sampling of the first three elements is described and density of
sampling at the initial stage is obtained byMonte Carlo method. The density
is defined on the basis of the logarithm of inverse square of the Euclidean
distance function. Simulation of the triangular method of spatial sampling
is conducted. An example is research on a forest. The aim of this research is
to approximate the ability of trees to absorb carbon dioxide. In this example
the triangular method of spatial sampling is used at the strata sampling stage.
Density of sampling in the simulated forest is obtained using Monte Carlo
method.
Key words: adaptive sampling, spatial sampling, stratified sampling, re-
search on a forest, minimizing costs of sampling.

1. Sampling based on triangles

In adaptive sampling probabilities of inclusion depend on values of the
variable of interest. Adaptive sampling is primarily used in the studies of
rare phenomena and agglomerations of the characteristics under study on a
relatively large area. This method allows, in such a case, to increase the
probability of inclusion of elements which are near to the element with given
characteristics. This feature gives the researcher some control over sample
composition.

Several authors have dealt with the problem of selection of the elements
with specified characteristics. For instance, Thompson and Seber [1996] de-
scribe searching for the people infected by a rare disease. If the infected
person is found using simple random sampling, then automatically all people

1University of Economics in Katowice. E-mail: tbak88@wp.pl.
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close to the infected person are also selected to the sample. Similar methods
are applied in various fields of science. In this paper a new method of spatial
sampling is constructed. Theoretical construction of the sampling method
based on triangles is put in the context of the simulation of the ability of
forest to absorb the carbon dioxide.

2. The method of sampling the first triangle

At the first stage three elements are selected. Let us denoteX1 andX2 by
some characteristics of population under study. Let us consider the realiza-
tion of spatial sampling from space X1 × X2. Three circular areas with a
fixed radius are used as a base of the estimation. However, the selection will
be conducted by sampling points which are the centres of circles. The first
element is taken uniformly from the space X1 × X2. In this way, none of
the fragments of the forest is preferred. Let us denote the first sampled ele-
ment by (x11, x21). This element becomes a central point for sampling the
next two elements. In order to draw next two elements, let us define distance
function from point (x11, x21) on the space X1×X2:

g(x1, x2) = dist((x1, x2), (x11, x21)), (1)

where dist is a function which satisfies the definition of distance function
(satisfies the conditions of non-negativity, identity of indiscernibles, sym-
metry and subadditivity) and is integrable. When the dist is selected, the
specificity of the space X1×X2 should be taken into account. The g func-
tion is used to define density function on the space X1 × X2, which is as
follows:

f(x1, x2) =

{
(αg(x1, x2))−1, when (x1, x2) 6= (x11, x21),

0, when (x1, x2) = (x11, x21),
(2)

where α =
∫∫

X1×X2
g(x1, x2)−1dx1dx2. Sampling of X1-coordinate is in-

dependent from sampling X2-coordinate, thus the g function can be defined
separately for each subspace:

g1(x1) = dist(x1, x11),

g2(x2) = dist(x2, x21).
(3)
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The density function can be also defined separately for each subspace:

f1(x1) =

{
(α1g1(x1))−1, when x1 6= x11,

0, when x1 = x11,

f2(x2) =

{
(α2g2(x2))−1, when x2 6= x21,

0, when x2 = x21,

(4)

where α1 =
∫
X1
g1(x1)−1dx1 and α2 =

∫
X2
g2(x2)−1dx2.

Finally, we define (using independence of sampling of each coordinate) the
density function f(x1, x2) on space X1×X2 as a product f1(x1) · f2(x2).

Next, two elements are sampled with probabilities defined by density func-
tion f(x1, x2). The sampling plan of sample

s = {K(x11, x21), K(x12, x22), K(x13, x23)}, (5)

where K(x1i, x2i) denotes a circle centered at the point (x1i, x2i), is as fol-
lows:

P (s) = c

[∫∫
K(x12,x22)

f1(x1, x2)dx1dx2

∫∫
K(x13,x23)

f1(x1, x2)dx1dx2

+

∫∫
K(x11,x21)

f2(x1, x2)dx1dx2

∫∫
K(x13,x23)

f2(x1, x2)dx1dx2

+

∫∫
K(x11,x21)

f3(x1, x2)dx1dx2

∫∫
K(x12,x22)

f3(x1, x2)dx1dx2

]
,

(6)

where c is a ratio of the area of the circle to the area of entire space X1 ×
X2, and fi, i = 1, 2, denotes density functions defined by the equations
(4) in the case when the first sampled element is a circle centred at the point
(x1i, x2i), i = 1, 2, 3.
Let us consider, for example, sampling of three elements in the way de-

scribed above. Let X1×X2 be a plane [0, 1]× [0, 1]. After determining on
the plane X1 × X2 the uniform distribution, the element with coordinates
(x11, x21) is sampled. The g function is defined as a product of g1 and g2
functions. These functions are as follows:

g1(x1) =

{
log((x1− x11)

−2), when x1 6= x11,

0, when x1 = x11,

g2(x2) =

{
log((x2− x21)

−2), when x2 6= x21,

0, when x2 = x21.

(7)
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Figure 1. Density function defined on the basis of the log-
arithm of inverse square of the distance from the point
(0.8026372,0.1422940).

Then, the probability of selecting the next element is given by the density
function onX1×X2, which is a product of densities onX1 andX2. Density
functions on spaces X1 and X2 are as follows:

f1(x1) =

{
(α1 log((x1− x11)

−2))−1, when x1 6= x11,

0, when x1 = x11,

f2(x2) =

{
(α2 log((x2− x21)

−2))−1, when x2 6= x21,

0, when x2 = x21,

(8)

where
α1 =

∫
X1

log((x1− x11)
−2)−1dx1 and α2 =

∫
X2

log((x2− x21)
−2)−1dx2

Figure 1 presents a density function in a situation when the first sampled
element has coordinates (x11, x21) = (0.8026372, 0.1422940).
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A more fundamental problem than determing the probability of sampling
the second and the third element, when the first is already sampled, is to deter-
mine the probability of sampling without any assumption about the elements
already sampled. Such analysis was performed for the example presented
above. Let us denote density function which determines this probability by
f0(x1, x2). In order to approximate this function, sampling of the first el-
ement, defining the density function f(x1, x2) and sampling of the second
and the third elements were repeated 10 000 times. The density function
f0(x1, x2) was defined as:

f0(x1, x2) =
1

10000

10000∑
i=1

fi(x1, x2), (9)

where functions fi(x1, x2), i = 1, . . . , 10000 are sequentially created densi-
ties defined as a product of the function (8). Approximation of density func-
tion f0(x1, x2) was obtained therefore by Monte Carlo method. The density
function f0(x1, x2) could be used to determine the inclusion probabilities for
initial sampling (sampling of the first triangle). The inclusion probabilities
for initial sampling are

πK(x10,x20) =

∫∫
K(x10,x20)

f0(x1, x2)dx1dx2, K(x10, x20) ∈ X1 ×X2.

(10)
Empirical inclusion probabilities defined in such way may be adopted in the
Horvitz-Thompson statistics as well as in the variance estimators instead of
their true counterparts [4]. Function f0(x1, x2) is presented in figure 2.

Figure 2 confirms that at the initial sampling stage (sampling of vertices
of the first triangle) it is more likely to sample elements which are located
more centrally. Of course, the shape of the density function f0(x1, x2) can
be changed by another choice of distance function.

3. The method of sampling the subsequent triangles

Let us denote the characteristic under study by Z and the characteristic
strongly correlated with the characteristic under study by Y . Let ȳ be an
average value of Y characteristic. The sampling method described below al-
lows (of course with a certain lack of precision) the values of the elements
which are included in the sample in next steps to be controlled. This sam-
pling method is a kind of adaptive sampling. As in other adaptive sampling
procedures, initial elements need to be chosen. The procedure of the triangu-
lar sampling method requires three initial elements. They form the vertices
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Figure 2. Density function f0(x1, x2).

of the first triangle. For the reasons of cost and ease of the implementation
of the research, it is important to choose these 3 elements relatively close to
each other.

Let us assume that one has information which suggests that values of Y
change in the majority of the population monotonically (precisely, weakly
monotonically, which means some that of the values of Y can be party con-
stant). Let us denote Y -values of the first 3 sampled elements by y1,1, y1,2,
y1,3.
Consider 3 points (x11,1, x21,1, y1,1), (x11,2, x21,2, y1,2), (x11,3, x21,3, y1,3),
embedded in three-dimensional space X1×X2× Y . Selection of the next,
fourth element is dependent on the values y1,1, y1,2 and y1,3. The condition
which defines sampling of the fourth element is as follows:

∃i,j∈{1,2,3}, i 6=j y1,i ≤ ȳ ∧ y1,j ≥ ȳ. (11)
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There are, of course, two possible situations (compliance and non-compliance
with condition (11)):

• compliance with condition (11). At least one of the elements y1,1,
y1,2, y1,3 has the value equal or lower than ȳ and at least one of the
elements y1,1, y1,2, y1,3 has the value equal or higher than ȳ. Then, in-
side the triangle with vertices (x11,1, x21,1, y1,1), (x11,2, x21,2, y1,2),
(x11,3, x21,3, y1,3) we can find a point (x11,4, x21,4, y1,4) such that
y1,4 = ȳ. More precisely, it is a plane (segment should be treated
as a degenerated plane) composed with points with given charac-
teristics. Let us introduce the coefficient d ∈ (0, 1). This coeffi-
cient defines the probability of sampling of the fourth element (point
(x11,4, x21,4, y1,4)) from the plane inside a triangle (x11,1, x21,1, y1,1),
(x11,2, x21,2, y1,2), (x11,3, x21,3, y1,3). Therefore, the value of d coef-
ficient should be set after the first triangle is built. When the value of
d coefficient is set, the area (relative to population) of the first triangle
should be taken into account. The smaller area of the first triangle is,
the lower the value of d coefficient should be. However, other factors
should also be considered, such as the diversity of population. The
main feature of d coefficient is that the higher the value of d is, the
greater ’adaptability’ (ability to learn on already sampled elements)
the triangular method of spatial sampling has.

Naturally, coefficient 1 − d defines the probalitity of sampling of
an element outside the triangle, but located relatively "close" to the
triangle. In the second case, to sample the point it is suggested to use
the sampling scheme which prefers elements situated in the neighbor-
hood of the first selected element, such as sampling method presented
in Chapter . In other words, the fourth element could be sampled in
the same way in which the third and the second element were sam-
pled.
• non-compliance with condition (11). With probability 1 we select an
element located relatively "close" to the triangle (x11,1, x21,1, y1,1),
(x11,2, x21,2, y1,2), (x11,3, x21,3, y1,3) (cf. the sampling method pre-
sented in Chapter )

Then, having selected four points on the plane X1 × X2, we create new
triangles by choosing for each of the sampled points two other points which
are closest to them (in the sense of Euclidean distance). Triangles with the
same vertices are treated as one.

Let us consider the situation when, by using the method described above,
we have created k triangles fromm sampled elements (points in space). Let
us denote these triangles by ∆1,1,∆1,2, . . . ,∆1,k. For each triangle we verify
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the compliance with the following condition:
∃i,j∈{1,2,3}, i 6=j y1,li ≤ ȳ ∧ y1,lj ≥ ȳ, (12)

where y1,l1 , y1,l2 , y1,l3 are vertices of the triangle ∆1,l, l = 1, . . . , k.
Let us denote the triangles fulfilling condition (12) by∆1,p1 ,∆1,p2 , . . . ,∆1,pq ,

q ≤ k. Then, the d coefficient denotes the probability of sampling the next
element from interior of one of the triangles ∆1,p1 ,∆1,p2 , . . . ,∆1,pq . Espe-
cially, the probability of sampling the next element from the interior of the
triangle ∆1,i is

p1,m+1(i) = d
h(∆1,i)∑q

j=1 h(∆1,pj)
, i ∈ {p1, p2, . . . , pq}, (13)

where h(∆1,i) is the area of the projection of the triangle ∆1,i on the plane
X1 × X2. We can also simplify this scheme by taking h(∆1,i) = 1, i ∈
{p1, p2, . . . , pq}.

After sampling the triangle we define uniform distribution on the plane in-
side the triangle, on which (according to conjecture) the value of the variable
under study should be equal to ȳ. In the last step we sample the point from
the plane according to the uniform distribution.

The sampling procedure is carried out until the sample size is equal to
n0. After sampling of n0 elements from the area covered by the triangles we
select a new element to the sample, "distant" from the previously sampled
elements. Construction of the density for such sampling could be made by
analogy to construction described in . The difference is that in 1 instead of
the distance function the inverse of the distance function is used (the values
of the function are higher for elements more distant from the hub). On the
base of the n0 + 1 element presented sampling scheme is repeated. In other
words, we start for the second time the initial sampling of three elements - the
vertices of the next first triangle. The main feature of n0 coefficient is quite
similarly to the main feature of d coefficient. However, it could be assumed
that n0 = n.

Generally, condition (12) adapted for sampling from k-th area (i.e. after
sampling (k − 1)n0 elements) is as follows

∃i,j∈{1,2,3}, i 6=j yk,li ≤ ȳ ∧ yk,lj ≥ ȳ. (14)
Finally, using empirical inclusion of probabilities of Horvitz-Thompson

statistic as well as variance estimators could be calculated [4]. Empirical
density function and, therefore, this empirical inclusion probabilities for the
triangular method of spatial sampling could be obtained using Monte Carlo
method. Naturally, the density function is strictly dependent on the values of
Y characteristic. In the example presented below such function is defined.
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4. Example of the triangular method of spatial sampling

Let us consider a research on the forest which aim is to approximate the
ability of the trees to absorb carbon dioxide. Diameter at breast height (DBH)
is a standard method of expressing the diameter of a trunk of a standing tree.
In continental Europe, Australia, the UK and Canada the diameter is mea-
sured at 1.3 metres above ground [2]. This characteristic is strongly corre-
lated with the weight of a tree, thus it could be used to estimate carbon diox-
ide absorption [3]. In addition, DBH average in strata can be assessed by the
average age of trees in strata. Therefore, if there is a possibility to sample
only few trees in strata, then it is necessary to construct a sampling scheme
in such a way that the trees with DBH values close to the average in strata
are choosen. Then, the risk of sampling a tree with DBH value distant from
average is reduced and the precision of estimation is improved.

Let us consider the sampling of points in a space (a land on which the
forest grows) which are centres of circles with fixed radius, as the method
of selecting a sample in this research. A point in a space for which a part
of a circle is outside the forest could be sampled. In this case the radius
of the circle is increased in such way that the area of the circle inside the
forest is equal to the area of a ’normal’ circle. Trees inside the circle will
be later used to estimate the total carbon dioxide absorption. The sample is,
therefore, taken from infinite (uncountable) population, but the estimation is
made from finite population (trees). This method is a common approach in
studying forests (cf. Fattorini et al. 2006). Because of differences between
sampling elements and elements which are used in estimation, the assumption
about monotonic changes of Y in the majority of the population refers to an
average DBH value inside a circle. An average value of DBH is assigned to
the point in X1 ×X2 space - centres of the circle (in practice, it is assigned
to part of X1 ×X2 space - circles with centres close to each other can have
the same contents). Sampling is conducted with replacement. The sampled
trees are cut down and weighted in the next phase of the study. If the tree was
only partly located in the sampled circle, the weight of the tree is multiplied
by the share of the circle in the area of the trunk 1.3 metres above ground. By
relying on these measurements, one can assess the amount of carbon dioxide
absorbed by the forest.

The forest can be divided into strata, using the economic map of forest
area. Those maps provide ready-to-use division of the forest, based on dom-
inant species, its share in total afforestation of the area and the average age
of dominant tree species. The sample is taken from infinite (uncountable)
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population, thus each strata is a part of two-dimensional space, and consists
of infinite (uncountable) elements - points in the space.

Referring to the theory, if the population can be divided into strata, then
the division should maximize the differentiation between average values of
the variable under study in strata (in other words, the aim is to maximize the
intergroup variance). Thus, having strata which strongly differentiate capa-
bility to absorb the carbon dioxide (species and age are strongly correlated
with this ability), it is important to select a "good" representative of each
strata. Since the costs of weighting trees are very large, the perspective of
sampling only a few elements in strata is very important.

Measurements of a tree diameter at breast height (DBH) on a simulated for-
est were used as a testing field of the triangular method of spatial sampling. In
order to test this sampling method apprioprate simulations were performed.
Also an apprioprate program was written in the R package. Simulations were
conducted on the simulated matrix of DBH values. This matrix was equiva-
lent to the real forest, the cells of matrix corresponded to the fragments of the
forest and the values in the cells are mean DBH values in certain fragments
of the forest. Matrix of DBH values was a square matrix, consisted of 10 000
cells. As a result of the simulation, a density function which determines the
probabilities of inclusion of X1×X2 space fragments was obtained.

The triangular method of spatial sampling is based on selection of points
from space - from an uncountable population. Therefore, the matrix of DBH
values was equated to a space [0, 1] × [0, 1]. The space [0, 1] × [0, 1] is a
square forest area for which we can set two-dimensional coordinates. Each
cell of DBH matrix is equivalent to the fragment of the space [0, 1] × [0, 1]
of the size equal to [0, 0.01] × [0, 0.01]. The value in each cell is the mean
DBH value of the trees which grow on the area determined by coordinates of
this cell in DBH matrix.

Further, as shown in the previous section, points are sampled from the
space [0, 1]× [0, 1]. Rather than choosing to sample circles centered in sam-
pled points, as is described in Chapter , cells were selected fromDBHmatrix,
within which sampled points were located. This way of proceeding was due
to restrictions which result from algorithmization of mathematical models.

In the first step, the matrix of simulated average DBH values of the trees in
certain forest was constructed. Spatial autoregressive model (SAR) was used
in simulation (cf. Anselin [1980]). The form of this model was relatively
simple, which facilitates further interpretation of the results of the simula-
tion. The DBH value in the cell was influenced by the values of the adjacent
cells which already have set the DBH values. In other words, cells [i− 1, j],
[i, j − 1] and [i − 1, j − 1] influenced on cell [i, j], i ∈ {2, . . . , 100}, with
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following weights: 0.4, 0.4 and 0.2. For simulation of the DBH value in first
the row/column of matrix, DBH value from the previous cell in the same
row/column was used. The model was expanded by including a random ele-
ment, which changed the value obtained from the basic model by 1% at the
most. For the starting point (cell[1,1]) DBH value equal to 20cm was set.
Formally, this model can be described as follows:

[i, j] =



(0.4 ([i− 1, j] + [i, j − 1]) + 0.2[i− 1, j − 1]) (1 + 0.01εi,j) ,

when i, j ∈ {2, . . . , 100} ,
[i− 1, j] (1 + 0.01εi,j) , when i ∈ {2, . . . , 100} , j = 1,

[i, j − 1] (1 + 0.01εi,j) , when i = 1, j ∈ {2, . . . , 100} ,
20 cm, when i = j = 1,

(15)

where εi,j i, j ∈ {1, . . . , 100} , have uniform distribution on segment [−1, 1].
In addition, limits on the maximum and minimum value of DBH average

were imposed on the model. The average of diameter at breast height was
no more than 30 cm and no less than 10 cm. Figure 3 shows the result of
simulation of DBH values.

An average of DBH values on the forest created by simulation was 19.835
cm, with a standard devation equal to 0.746 cm.

On such a simulated forest the triangular method of spatial sampling was
conducted. The sample consisted of 20 elements. At the first stage (initial
sampling) three points from the space [0, 1] × [0, 1] were sampled and used
to create a triangle. Further, 17 elements were sampled either from interior
of one of the triangles, in compliance with condition (14) (with probability
d = 0.9), or in accordance with density defined after drawing the first ele-
ment (with probability 1 − d = 0.1). Probabilities of sampling each of the
triangles are the same, that is they are not weighted by the areas of projection
of triangles on space X1 × X2. As the expected average DBH value (the
constant ȳ) 20 cm was set.
Sampling of 20 elements was repeated 10 000 times. The necessary time to

make all simulations was nearly 6 hours. 200 000 observations were obtained
this way. UsingMonte Carlo method the density function was obtained. This
density function determines the probability of sampling of each part of the
forest. This density function is, of course, strongly dependent on the average
DBH value obtained by simulation. Density function is shown in Figure 4.

The averageDBH from 200 000 sampled elements was 19.966 cm, with the
standard devation equal to 0.593 cm. As expected, the sampled elements were
close to the sought value, which was 20 cm. In addition, standard devation
from elements in sample was less than standard deviation in the population.

litkowiecr
Pływające pole tekstowe
(15)
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Figure 3. Simulated diameter at breast height.

5. Conclusion

The triangular method of spatial sampling can be an interesting alternative
to classical methods of spatial sampling, especially in the case of stratified
sampling, where this method allows the selected elements around a predeter-
mined value to e stabilized. As a result, triangular method of spatial sampling
increases the chance of achieving a high interstrata variance, which is a de-
sirable feature in proportional stratified sampling.

It should be emphasized that an important advantage of the triangularmethod
of spatial sampling could be the reduction of the cost of research. For in-
stance, if [0, 1] × [0, 1] is a space which defines location of the element (for
example length and width), then by choosing elements which are close to
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Figure 4. Density function obtained by Monte Carlo method.

each other, time and costs of research could be reduced. This aspect is par-
ticularly important in the case of spatial sampling, where the implementation
is often a very expensive aspect of survey. It should be noted that for the
efficiency of implementation of the triangular method of spatial sampling
mobile electronic devices are necessary. One should not, however, consider
this as a serious problem. Statistics is a branch of science more and more
computerized, so one should try to begin using computers (especially mo-
bile electronic devices) in the process of the research implementation. Then,
a response to elements included in the sample could be made already during
the implementation of the research. The response to elements included in the
sample can be done by changing the probabilities of inclusion or transferring
to/focusing on a certain fragment of the population.
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In the end it should be emphasized that the presented method can be the 
subject of modifications, depending on the needs of the researcher. 

The author thinks that the change of 𝑦 �  – constant value into a variable could 
be an interesting problem, which gives new posibilities to use the triangular 
method of spatial sampling. 
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A MODIFIED TWO-PARAMETER ESTIMATOR  
IN LINEAR REGRESSION 

Ashok V. Dorugade1 

ABSTRACT 

In this article, a modified two-parameter estimator is introduced for the vector of 
parameters in the linear regression model when data exists with multicollinearity. 
The properties of the proposed estimator are discussed and the performance in 
terms of the matrix mean square error criterion over the ordinary least squares 
(OLS) estimator, a new two-parameter estimator (NTP), an almost unbiased two-
parameter estimator (AUTP) and other well known estimators reviewed in this 
article is investigated. A numerical example and simulation study are finally 
conducted to illustrate the superiority of the proposed estimator. 

Key words: liu estimator, multicollinearity, two-parameter estimator, mean 
squared error matrix. 

1. Introduction 

In practice, there can be strong or near to strong linear relationships among 
the explanatory variables. In that case the independent assumptions are no longer 
valid, which causes the problem of multicollinearity. In the presence of 
multicollinearity, it is impossible to estimate the unique effects of individual 
variables in the regression equation. Also, the OLS estimator yields regression 
coefficients whose absolute values are too large and whose signs can actually 
reverse with negligible changes in the data (see Buonaccorsi, 1996). Therefore, 
multicollinearity becomes one of the serious problems in the linear regression 
analysis. The method of ridge regression, proposed by Hoerl and Kennard (1970a) 
is a popular technique for estimating the regression parameter for the ill-
conditioned multiple linear regression models.  

Much of the discussion on ridge regression concerns the problem of finding 
better alternative to the OLS estimator. Some popular numerical techniques to 
deal with multicollinearity are the ridge regression due to Stein estimator (Stein, 
1956), contraction estimator (Mayer and Willke, 1973), modified ridge regression 
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(MRR) estimator (Swindel, 1976), Kadiyala (1984), Ohtani (1986), Singh and 
Chaubey (1987), Nomura (1988), and Gruber (1998) Sing et al. (1988), Liu 
(1993), Akdeniz and Kaciranlar (1995), Crouse et al. (1995), Ozkale and 
Kaciranlar (2007), Batah et al. (2008), Sakallioglu and Kaciranlar (2008), Yang 
and Chang (2010), Wu and Yang (2011), Dorugade and Kashid (2011) and others.     

In this paper we introduce a modified two-parameter estimator for the vector 
of parameters in the linear regression model when data exists with 
multicollinearity. The rest of the paper is organized as follows. The model and 
some well known estimators are reviewed in section 2. The modified two-
parameter estimator is introduced in section 3. Performances of the proposed 
estimator with respect to the scalar MSE criterion are discussed in section 4. In 
section 5, we give methods to choose the biasing parameters. A simulation study 
to justify the superiority of the suggested estimator is given in section 6. Some 
concluding remarks are given in section 7. 

2. Model and estimators 

Consider a widely used linear regression model      
                                        εβ += XY ,                                                    (1) 

where Y is an n×1 vector of observations on a response variable. β is a p×1 vector 
of unknown regression coefficients, X is a matrix of order (n × p) of observations 
on  ‘p’ predictor (or regressor) variables and  ε is an n × 1 vector of errors with  
E(ε) = 0 and V(ε) = 2σ In. For the sake of convenience, we assume that the matrix 
X and the response variable Y are standardized in such a way that XX '  is a non-
singular correlation matrix and YX '  is the correlation between X and Y. The 
paper is concerned with data exhibited with multicollinearity leading to a high 
MSE for β meaning that β̂  is an unreliable estimator of β. 

Let Λ  and T be the matrices of eigenvalues and eigenvectors of XX ' , 
respectively, satisfying XTXT ''  =  Λ  = diagonal ( 1λ , 2λ ,..., pλ ),    where iλ  

being the ith eigenvalue of XX '  and TT '  = 'TT  = Ip. We obtain the equivalent 
model  

              Y =  Zα +ε ,                                                   (2) 

where Z = XT. It implies that ZZ '  =Λ , and α = β'T    (see Montgomery et al., 
2006).                                                                                     

Then, the OLS estimator of α is given by 

                   YZZZ '1' )(ˆ −=α = 1−Λ YZ '                                            (3)  
Therefore, the OLS estimator of β is given by 

β̂ = Tα̂  
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2.1. Ordinary ridge estimator (ORR)  

A popular estimator for combating multicollinearity is the ridge estimator, 
originally introduced by Hoerl and Kennard (1970a) as 

                             Rβ̂ = T Rα̂ = T ( )[ ]α̂1−+Λ− kIkI                   (4) 
where k  is the ridge parameter (or biasing constant), and it normally lies between 
0 and 1. iα̂  is the ith

 element of α̂ ,   pi ,...,2,1=  and 2σ̂  is the OLS estimator of 
2σ i.e. 2σ̂ )1()ˆ( ''' −−−= pnYZYY α .                                        

The ridge regression method has been considered by various researchers.  The 
drawback of the ridge regression method is that it is a complicated function of k. 
To overcome this problem Liu (1993) proposed an estimator which combines the 
benefit of both the estimators given by Hoerl and Kennard (1970a) and Stein 
(1956), respectively. 
It is given as 

Liuα̂ = ( ) ( )α̂1 dII +Λ+Λ −             10 << d                         (5) 
Liu estimator has been considered by several researchers several times for 

different perspectives. Following Liu many researchers propose two-parameter 
ridge estimators. Ozkale and Kaciranlar (2007) obtained the two-parameter (TP) 
estimator given as  

TPα̂ = ( ) ( )α̂1 kdIkI +Λ+Λ −                                            (6) 

MSE of TPα̂  is given as 
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Sakallioglu and Kaciranlar (2008) suggested the following two-parameter 
estimator: 

)3(ˆLTEα = ( ) ( ) ( ) YZkIIkdI '111 )( −−− +Λ++Λ+Λ .                  (8) 

MSE of )3(ˆ LTEα  is given as 
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since the ridge parameter ∑
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22 ˆˆˆ ασ  given by Hoerl et al. (1975) performs 

fairly well and the well-known estimate of ‘ d ’proposed by Liu (1993) is given as    
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The above calculated values of k̂  and d̂ are used in determination of 
estimators given in equations (6) and (8). 

On the other hand, Yang and Chang (2010) introduce a new two-parameter 
(NTP) estimator given as  

NTPα̂ = ( ) ( )( ) YZkIdII '11 −− +Λ+Λ+Λ ,                       (10) 

where ∑
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It includes the OLS, RR, and Liu estimators as special cases and provides an 
alternative method to overcome multicollinearity in linear regression.  
Also, MSE of  NTPα̂  is given as 
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Recently Wu and Yang (2011) introduced an almost unbiased two-parameter 
(AUTP) estimator alternative to the OLS estimator in the presence of 
multicollinearity. These estimators are given as  

AUTPα̂ = ( ) TPTP kIdk αα ˆ)1(ˆ 1−+Λ−+ ,                              (12) 

where 




 +−< 22 ˆˆˆmin1ˆ σαλσ iid       and     
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iii dk  

Also, MSE of  AUTPα̂  is given as 
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         (13) 

Estimators given in equations (6), (8), (10) and (12) used for estimating α  are 
used in section 6. 

3. Proposed ridge estimator 

In this article we introduce a modified two-parameter estimator and it can be 
computed in two steps. Initially, following a similar method proposed by Liu 
(1993), Kaciranlar et al. (1999) and Yang and Chang (2010) we introduce two-
parameter estimator as 

*α̂ = ( ) YZIdk '1−+Λ                                            (14) 
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Then, following Kadiyala (1984), Ohtani (1986) and Wu and Yang (2011) the 
estimator defined in equation (14) can be rewritten as 

( ) *1* ˆ)1(ˆˆ ααα −+Λ−+= kdIdkMTP                                            (15) 
or 

[ ] [ ]αα ˆ)())(1(ˆ 11 −− +Λ−+Λ−+= kdIkdIkdIdkIMTP . 
It is termed as a modified two-parameter (MTP) estimator of  α . 
Thus, the coordinate wise estimators can be written as                
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where iα̂  are the individual components of α̂ . 
We can see that it is a general estimator which includes the OLS and RR 

estimators as special cases: 
at  ( )00 == dork  YZMTP

'1ˆ −Λ=α ,           the OLS estimator 

at  1=d                     ( ) YZIkMTP
'1ˆ −+Λ=α ,  the RR estimator 

Obviously,  
                  OLSiiMTP )ˆ(ˆ αα =           at  ( )00 == dork  
and            RiiMTP )ˆ(ˆ αα =          at  1=d  

3.1. Bias, variance and MSE of MTP estimator 

It is clear that MTPα̂ is a biased estimator, with the bias of the MTP estimator 
is given by:  

( )MTPBias α̂ = αα −]ˆ[ MTPE  α]))(1())(21([ 221 −− +Λ−−+Λ−= kdIddkkdIdk  
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( )MTPV α̂    = '12 VV −Λσ  

where [ ] [ ]11 )())(1( −− +Λ−+Λ−+= kdIkdIkdIdkIV          
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The MSE of MTP estimator is  
( )MTPMSE α̂  = ( )MTPV α̂ + ( )[ ]MTPBias α̂ ( )[ ] 'ˆMTPBias α , 
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Setting 0=k or 0=d  in equation (19), we obtain 

                 ( )α̂MSE ∑
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=
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2 1
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σ                    (20) 

Also, setting 1=d in equation (19), we obtain 

                 ( )RMSE α̂
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4. Performance of proposed estimator  

This section compares the performance of the MTPα̂  with the α̂ , AUTPα̂  and 
NTPα̂  using smaller MSE criteria. 

4.1. Comparison between MTPα̂ and α̂  

In order to compare MTPα̂ with α̂ in the MSE sense, using equations (19) and 
(20) we investigate the following difference: 
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From above equation it can be seen that ( ) ( )MTPOLS MSEMSE αα ˆˆ ≥  if and only 
if  

( ) ( )[ ] [ ]222222242 )21( dkdkkkd iiiiii −−≥+−+ λαλλλλσ  

4.2. Comparison between MTPα̂ and AUTPα̂   

Wu and Yang (2011) proposes the almost unbiased two-parameter estimator 
 ( AUTPα̂ ) given in equation (12). Also, they compare performance of their 
estimator with the OLS estimator and the two-parameter estimator given in 
equation (6). To compare MTPα̂ with AUTPα̂ in the MSE sense, using equations (19) 
and (13) we investigate the following difference: 
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From above equation it can be seen that ( ) ( )MTPAUTP MSEMSE αα ˆˆ ≥  if and only 

if 
[ ]{ }( )4244222 )1()2()2( kddkdkdk iiiii +−+−++ λαλλλσ

( ) [ ]{ }( )kkddk iiiiii +−−++≥ λλαλλλσ
222222 )21(  

  

4.3. Comparison between MTPα̂ and NTPα̂   

Yang and Chang (2010) introduced a new two-parameter (NTP) estimator and 
studied superiority of their estimator over the OLS estimator, Liu estimator and 
the two-parameter estimator. In order to compare MTPα̂ with NTPα̂ in the MSE 
sense, using equations (19) and (11) we investigate the following difference: 
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From above equation it can be seen that ( ) ( )MTPNTP MSEMSE αα ˆˆ ≥  if and only 
if    
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5. Determination of ridge parameters k  and d   

In ridge regression the additional parameter, the ridge parameter k , plays a 
vital role to control the bias of the regression towards the mean of the response 
variable. Although these estimators result in a bias for certain value of k they 
yield minimum mean squared error (MSE) compared to the OLS estimator (see 
Hoerl and Kennard, 1970a). Similarly, d  is another ridge parameter which serves 
the same role as k  used in determination of two-parameter estimators (see Liu, 
1993).  

In order to determine and evaluate the performance of our proposed estimator 
MTPα̂  as compared to the OLS estimator and others, we will find the optimal 

values of k  and d . Let k  be fixed and determined using one of the available 
methods for choosing the ridge parameter value. Some of the well known 
methods are listed below.  
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                            (Batah et al., (2008))                  (24) 
Then, the optimal value of d  can be considered to be the d  that minimize 
( )MTPMSE α̂ .  
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Then, by differentiating ),( dkg w.r.t. d  and equating to 0, we have 
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Unfortunately, d depends on the unknown 2σ and iα . For practical purposes 
we replace them with their unbiased estimator 2σ̂ and iα̂  , and obtain 
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6. Comparative study 

6.1. Numerical illustration 

In this section we demonstrate the performance of the proposed estimator by 
considering a numerical example; we use Hald cement data (see Montgomery et 
al., 2006). We use the ridge parameters given in equations (22) to (24) and d
given in equation (26) to compute our modified two-parameter (MTP) estimator. 
Also, OLSα̂ , TPα̂ , )3(ˆ LTEα , NTPα̂ , AUTPα̂  estimators are computed and their 
estimated MSE values are obtained by replacing all unknown model parameters 
respectively with their OLS estimators in the corresponding expressions, and the 
values are reported in Table 1. 

Table 1. Values of estimates and MSE 

Estimator OLSα̂  TPα̂  )3(ˆ LTEα  NTPα̂  AUTPα̂  MTPα̂  
at 1k  

MTPα̂  
at 2k  

MTPα̂  
at 3k  

MSE 1.3709 0.1485 1.2605 0.1484 1.3662 0.1492 0.1487 0.1490 
 

From Table 1 we can see that the estimated MSE value of the modified two-
parameter estimator is always smaller than the one of the OLS, AUTP and LTE(3) 
estimators. However, we also find that the estimated MSE value of the modified 
two-parameter estimator for each choice of the ridge parameter is approximately 
equal to those of the TP and NTP estimators. The results agree with our 
theoretical findings in section 4. 

6.2. Simulation study 

Here, we examine the performance of the modified two-parameter estimator 
( )MTPα̂  over different estimators OLSα̂ , TPα̂ , )3(ˆ LTEα , NTPα̂ , AUTPα̂ . We examine 
the average MSE (AMSE) ratio of the MTPα̂  and other estimators over the OLS 
estimator. We will discuss the simulation study that compares the performance of 
different estimators under several degrees of multicollinearity. We consider the 
true model as εβ += XY . Here, ε follows a normal distribution ),0( 2

nIN σ and the 
explanatory variables are generated (see Batah et al., 2008) from  

pjniuux ipijij ,...,2,1,...,2,1,)1( 2/12 ==+−= ρρ  
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where iju  are independent standard normal random numbers and 2ρ  is the 
correlation between ijx  and  jix ′  for j , 'j < p and j ≠ 'j . j , 'j = 1, 2,…, p. 
When j or 'j = p, the correlation is be ‘ ρ ’. Here, we consider predictor variables 
p = 4 and ρ = 0.9, 0.95. These variables are standardized such that XX '  is in the 
correlation matrix form and it is used for the generation of Y with β  = ')5,4,1,2(
. We have simulated the data with sample sizes n = 20, 50 and 100. The variance 
of the error terms is taken as 2σ  = 1, 5, 10 and 25. Estimators OLSα̂ , TPα̂ , )3(ˆ LTEα , 

NTPα̂ , AUTPα̂  are computed. The modified two-parameter estimator ( MTPα̂ ) is 
computed for different choices of ridge parameters given in equations (22) to (24) 
and d given in equation (26). The experiment is repeated 1500 times and obtains 
the average MSE (AMSE) of estimators using the following expression: 

 )ˆ(αAMSE  = ∑ ∑
= =

−
4

1

1500

1

2)ˆ(
1500

1

i j
iij αα  

where ijα̂  denotes the estimator of the ith parameter in the jth replication and iα , 
i=1,2,3, 4 are the true parameter values. 

Firstly, we have computed the AMSE ratios ( )ˆ()ˆ( αα AMSEAMSE OLS ) of 
the OLS estimator over different estimators for various values of triplet ( ρ , n, 2σ ) 
and reported them in Table 2. We consider the method that leads to the maximum 
AMSE ratio to be the best from the MSE point of view.  

The same procedure for another choice of p = 3 and ')5,2,1(=β is performed 
and AMSE ratios are computed and reported in Table 3.  
Table 2. Ratio of AMSE of OLS over various two-parameter estimators  
               (p = 4 and ')5,4,1,2(=β ) 

ρ  = 0.90 

n 20 50 100 
2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

TPα̂  1.185 1.2908 1.3352 1.472 1.228 1.2809 1.3539 1.478 1.235 1.2563 1.3283 1.484 

)3(ˆLTEα  1 1.0009 1.0023 1.004 1 1.0003 1.0007 1.001 1 1.0002 1.0008 1.001 

NTPα̂  1.359 1.5054 1.5857 1.978 1.473 1.5372 1.6313 2.067 1.496 1.4705 1.576 2.089 

AUTPα̂  0.997 0.9903 0.9758 1.002 0.999 0.9946 1.032 0.989 1.003 0.9959 0.9883 0.983 

MTPα̂  

at 1k  
1.369 1.5169 1.6342 2.094 1.477 1.5402 1.6379 2.195 1.497 1.4848 1.607 2.164 

MTPα̂  

at 2k  
1.368 1.5069 1.6059 2.044 1.471 1.5367 1.6325 2.110 1.498 1.4835 1.605 2.172 

MTPα̂  

at 3k  
1.369 1.5167 1.6344 2.097 1.470 1.5401 1.638 2.141 1.497 1.4848 1.6071 2.165 
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Table 2. Ratio of AMSE of OLS over various two-parameter estimators  
               (p = 4 and ')5,4,1,2(=β )  (cont.) 

ρ  = 0.95 
n 20 50 100 

2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

TPα̂  1.214 1.2792 1.4212 1.554 1.211 1.256 1.3406 1.495 1.222 1.2798 1.3456 1.502 

)3(ˆLTEα  1 1.0002 1.0006 1.001 1 1.0003 1.0006 1.001 1 1.0003 1.001 1.002 

NTPα̂  1.448 1.5177 1.8593 2.434 1.438 1.4786 1.6337 2.128 1.46 1.5168 1.6237 2.12 

AUTPα̂  1 0.9974 0.9929 1.005 0.998 1.001 1.002 0.987 0.999 0.9947 0.9954 0.983 

MTPα̂  
at 1k  

1.447 1.5282 1.8693 2.485 1.442 1.5075 1.6492 2.172 1.468 1.5207 1.6325 2.182 

MTPα̂  
at 2k  

1.447 1.5271 1.872 2.499 1.443 1.5053 1.6367 2.176 1.467 1.5186 1.6458 2.175 

MTPα̂  
at 3k  

1.447 1.5281 1.8697 2.486 1.442 1.5074 1.6493 2.174 1.468 1.5206 1.6227 2.183 

ρ  = 0.99 

n 20 50 100 
2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

TPα̂  1.2819 1.3621 1.397 1.552 1.2745 1.3373 1.466 1.563 1.2615 1.37 1.457 1.565 

)3(ˆLTEα  1.0011 1.0021 1.003 1.004 1.0007 1.0023 1.004 1.004 1.0009 1.0026 1.004 1.005 

NTPα̂  1.4962 1.6641 1.798 2.355 1.4737 1.5729 1.939 2.37 1.4394 1.6433 1.9 2.382 

AUTPα̂  0.9847 1.0003 1.003 0.963 0.9923 0.9761 0.963 1.003 0.9929 0.9782 1.002 0.958 

MTPα̂  
at 1k  

1.5321 1.7232 1.909 2.55 1.4708 1.6249 2.071 2.617 1.4374 1.6832 2.004 2.621 

MTPα̂  
at 2k  

1.5293 1.7102 1.918 2.592 1.479 1.6116 2.081 2.544 1.4319 1.6666 2.030 2.671 

MTPα̂  
at 3k  

1.532 1.7237 1.911 2.555 1.47 1.6253 2.073 2.622 1.4376 1.6835 2.006 2.627 

 
Table 3. Ratio of AMSE of OLS over various two-parameter estimators 
               (p = 3 and ')5,2,1(=β ) 

ρ  = 0.90 
n 20 50 100 

2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

TPα̂  1.1772 1.3769 1.554 1.637 1.1193 1.3248 1.511 1.58 1.113 1.3425 1.539 1.671 

)3(ˆLTEα  1.0047 1.0063 1.01 1.01 1.0007 1.0017 1.002 1.002 1.0012 1.0016 1.003 1.002 

NTPα̂  1.1245 1.5709 2.098 2.572 1.0138 1.4679 2.218 2.588 1.0059 1.493 2.247 2.905 

AUTPα̂  1.003 0.9369 0.92 0.93 0.9882 1.0002 0.975 0.978 1.002 0.9788 0.975 1.003 
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Table 3. Ratio of AMSE of OLS over various two-parameter estimators 
               (p = 3 and ')5,2,1(=β )   (cont.) 

ρ  = 0.90 
n 20 50 100 

2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

MTPα̂  

at 1k  
1.1551 1.6875 2.429 3.004 1.0116 1.4822 2.347 2.712 1.0033 1.5099 2.343 3.081 

MTPα̂  

at 2k  
1.1336 1.5861 2.52 3.12 1.0017 1.4733 2.326 2.754 1.003 1.5067 2.268 2.972 

MTPα̂  

at 3k  
1.1545 1.6884 2.437 3.016 1.0112 1.4823 2.349 2.715 1.0029 1.51 2.346 3.085 

ρ  = 0.95 
n 20 50 100 

2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

TPα̂  1.217 1.2942 1.4217 1.543 1.147 1.214 1.2792 1.4212 1.209 1.299 1.4227 1.559 

)3(ˆLTEα  1 1.0001 1.0006 1.001 1 1 1.0002 1.0006 1 1.0003 1.0007 1.001 

NTPα̂  1.457 1.5275 1.8817 2.38 1.314 1.448 1.5177 1.8593 1.434 1.5311 1.834 2.445 

AUTPα̂  1 0.9971 0.9921 1.002 1 1 0.9974 0.9929 1.020 0.9968 1.003 0.99 

MTPα̂  

at 1k  
1.454 1.5328 1.9085 2.391 1.31 1.447 1.5282 1.8693 1.435 1.5322 1.845 2.508 

MTPα̂  

at 2k  
1.454 1.5322 1.9105 2.398 1.32 1.457 1.5271 1.872 1.439 1.5394 1.8461 2.45 

MTPα̂  

at 3k  
1.454 1.5327 1.9089 2.392 1.31 1.457 1.5281 1.8697 1.441 1.5322 1.8454 2.509 

ρ  = 0.99 
n 20 50 100 

2σ̂  1 5 10 25 1 5 10 25 1 5 10 25 

α̂  

TPα̂  1.3596 1.534 1.624 1.65 1.2018 1.3461 1.561 1.654 1.1787 1.3767 1.577 1.575 

)3(ˆLTEα  1.0053 1.006 1.008 1.01 1.0033 1.005 1.008 1.008 1.004 1.0065 1.008 1.009 

NTPα̂  1.5565 2.09 2.489 2.66 1.1904 1.5099 2.133 2.555 1.1288 1.5669 2.173 2.31 

AUTPα̂  1.001 1.002 0.933 0.93 0.9607 0.9514 1.002 0.933 0.9541 1.003 0.927 0.927 

MTPα̂  

at 1k  
1.6313 2.376 2.972 3.24 1.2261 1.592 2.394 2.949 1.1592 1.638 2.499 2.843 

MTPα̂  

at 2k  
1.6133 2.379 2.989 3.42 1.2051 1.5716 2.41 3.062 1.1312 1.6141 2.564 2.658 

MTPα̂  

at 3k  
1.6317 2.381 2.984 3.26 1.2255 1.5926 2.399 2.957 1.1585 1.6385 2.506 2.854 
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From Tables 2 and 3 we observe that the performance of our proposed 
modified two-parameter estimator MTPα̂  is better than OLSα̂ , TPα̂ , )3(ˆ LTEα , and 

AUTPα̂  . At the same time MTPα̂  perform equivalently and is slightly better than 
NTPα̂   for all combinations of correlation between predictors ( ρ ), the numbers of 

explanatory variables (p), the sample size (n), the choice of the ridge parameter  
( k ) and the variance of the error term ( 2σ ) used in this simulation study.  

7. Conclusion 

 In this article a modified two-parameter estimator alternative to the OLS 
estimator is proposed for estimating the regression parameter in the presence of 
multicollinearity. The performance of the proposed estimator is evaluated in terms 
of scalar mean-squared error criterion. Through the simulation study the 
performance of the proposed estimator is evaluated, for different combinations of 
ρ , p, n, k  and 2σ over the OLS and other two-parameter estimators reviewed in 
this article. Finally, it is found that the performance of the proposed estimator is 
satisfactory over the other estimators in the presence of multicollinearity. 
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ABSTRACT 

Exit poll is a commonly used tool to predict election outcome in democratic 
countries. The aims of this survey, however, go beyond the standard prediction 
which usually loses its value after 1-2 days. Lasting benefits of exit poll result 
from the possibility of estimating vote distribution in socio-demographic groups, 
changes of political preferences, the motives for choosing a candidate, etc. No 
other survey is capable of providing such detailed data with satisfactory precision. 
Nonetheless, the exit poll accuracy, both in Poland and abroad, often leaves much 
to be desired. It seems that while conducting the research the non-sample 
information is not used sufficiently, which could improve the quality and the 
precision of the survey. 
The sources of auxiliary variables, which can be used in exit poll, along with the 
analysis of technical aspects of their acquisition and combination are outlined in 
this paper. Statistical methods aiming at incorporating the information about 
those variables to the survey, both at the stage of selecting the sample of precincts 
and at the stage of forecasting election results are proposed. Developed solutions 
were subjected to the simulation testing on the parliamentary election to the Sejm 
2011 data. The results confirm the possibility of a significant increase in the 
effectiveness of estimates by improving ‘representativeness’ of a sample and by 
applying complex estimation of parameters.  

Key words: exit poll, auxiliary variables, balanced sampling, complex 
estimation. 

1. Introduction 

An exit poll, conducted on the election day in which respondents (voters) 
leaving the selected polling stations answer, i.a. on who they cast their votes, is a 
commonly used tool to predict the election outcome in democratic countries. 
Thanks to work of a few thousand pollsters within appropriately organized 
logistics and IT operation, the TV viewers can know the approximate election 
results on the same day, right after the last polling station has been closed. These 
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estimates allow first commentaries and live analysis to be presented on the 
election night (which usually guarantees wide audience). 

The aim of exit poll is not only to predict the election result (the very same 
forecast quickly becomes useless). The survey gives the opportunity for in-depth 
analysis of voting results in such aspects as vote distribution in different socio-
demographic groups, the changes of political preferences in relation to previous 
election, the motives of choosing a particular party or candidate, the motives of 
participating in election, etc. These analyses remain to be the most reliable source 
of citizens’ political behaviours until the next election, due to the fact that current 
political surveys are unable to provide such detailed data with the necessary 
precision (Szreder, 2011).  

In terms of statistics, exit poll is a unique survey because it is a sample survey 
research the general result of which is quickly confronted with the result of 
complete enumeration (the same cannot be said about pre-election surveys as the 
population of interest is much larger – apart from actual voters, the pre-election 
survey encompasses also people entitled to vote but not participating in the 
election). The degree of compatibility between the general forecast and official 
results announced by the National Electoral Commission (PKW) is the basis for 
validation of applied methodology, and also has influence on the quality of more 
detailed data sets.  

The key elements of the exit poll methodology are the sampling design and 
the method of estimation.  The sample is chosen in two stages. In the primary 
stage the precincts are sampled and in the secondary stage the voters leaving the 
polling station are chosen. As far as the selection of the respondents to the sample 
is concerned there is an agreement between theorists and practitioners that the 
best choice in this case is systematic sampling (in Poland it is usually every tenth 
person leaving polling station). This approach mainly results from the uneven 
distribution of particular party voters during the day, which was the object of 
study, for instance by  Klorman (1976), Busch and Lieske (1985). It is especially 
important in countries where the election day falls on working day, like in the US 
(Tuesday) and the UK (Thursday). In Poland, as in the majority of countries, 
election takes place on holiday.  

The more problematical stage is the choice of accurate sample of precincts 
which would be the most representative of the population. Barreto et al. (2006, p.  
479) state, “In fact, this is the most important step in exit polling”, suggesting that 
selecting the inaccurate sample of precincts was the reason of unsatisfactory exit 
poll results during U.S. presidential election 2004 (the survey conducted by 
Edison-Miofsky Research forecasted the victory of John Kerry over Georg W. 
Bush). In Poland around 25-26 thousand of precincts are created during the 
election (around 24 thousand are the so-called regular precincts). The 
conventional approach towards the issue of sampling the precincts is stratified 
sampling, in which strata are created based on geographical regions and the type 
of territorial unit (city/village). Such a solution increases the representativeness of 
a sample compared to unrestricted sampling, however, by increasing the degree of 
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the use of a prior knowledge about the population of interest, the 
representativeness can be further increased. The sources of knowledge about 
population can be, on the one hand, the official statistics of the Central Statistical 
Office (GUS), on the other hand, the official results of the past elections shared by 
PKW. PKW databases are particularly valuable because they contain detailed 
voting results for each of over 25 thousand precincts.  

The same data sources which help selecting the right sample (supporting 
sampling process) can also support the process of estimating the election result. It 
is commonly known that electorates of particular political groups vary between 
themselves in respect of  many demographic, economic and social variables. If 
this type of characteristics was known for every precinct, it would be, along with 
information about the previous elections vote structures, a rich source of auxiliary 
variables for complex estimations.  

The aim of this paper is the empirical verification of the assumption that 
incorporating additional auxiliary variables to the exit poll strategy increases 
effectiveness of estimating the election result. The additional variables are non-
sample and are not directly connected with the unit of research, i.e. the precinct, 
therefore, statistical analysis is preceded by the presentation of technical aspects 
of data acquisition and combination along with pointing out the advantages and 
limitations of a given source. At the stage of selecting the sample, an innovative 
method of balanced sampling, the so-called cube method, is applied. The object of 
the analysis is estimation of relative result, i.e. the fraction of votes cast on 
particular committees across the country. Proposed strategies are subjected to 
simulation testing on the parliamentary election to the Sejm 2011 data.  

2. Characteristics of exit poll 

The first exit poll was conducted in the United States in the 60s of the 20th 
century at the request of CBS (Levy, 1983). The creation and development of the 
survey methodology  is ascribed to Warren Mitofsky (Moore, 2003). In Poland 
the first this type of research was conducted by Ośrodek Badania Opinii 
Publicznej (OBOP) during the first and second round of presidential election in 
1990.  

Exit poll differs from other political preferences surveys in many aspects. 
First of all, the population of interest is different. Apart from actual voters, the 
political surveys encompasses also people entitled to vote but not participating in 
the election, whereas the exit poll surveys only people taking part in the election 
(this is one of the main arguments of the opinion research centres refuting 
accusations of the discrepancy between pre-election surveys and the actual 
election results). Secondly, the exit poll questions refer to facts (the actual votes), 
not to the intentions which often are different from the actual voting decisions. 
The survey is conducted directly after leaving the polling station which minimizes 
the errors connected with ‘gaps in memory’ and the ‘bandwagon effect’ due to the 
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fact that the final result is still unknown. Another distinguishing feature is much 
higher percentage of the conducted interviews. In standard surveys conducted by 
applying the CATI method, the percentage goes up to several percents, in face-to-
face interviews it goes up to 50-60% whereas in exit polls in Poland it remains at 
the level of 85-95% (Domański et al., 2010). It is worth emphasizing that this is a 
particularly high level, practically unparalleled in the Western countries, where 
the general trend for the decrease of the sample response rates has also affected 
exit poll (the examples of the response rate: Germany: 70-72% (Hofrichter, 1999), 
USA: 45-55% (Lenski, 2008), Great Britain: 86% (Moon 2008)). Furthermore, 
the survey scale is also noteworthy – the sample size measured by the number of 
individual respondents is usually several times higher than the sample size of a 
standard pre-election survey. For example, during the parliamentary election 
2011, TNS OBOP conducted research on the sample of 900 polling stations, 
conducting around 100 000 interviews in total.  

The above-mentioned characteristics raise the value of the exit poll 
information compared to other preferences and political behaviours surveys. The 
challenge to maintain this advantage is that in a few countries there is a possibility 
of voting indirectly, not in a polling station (the so-called absentee ballot), i.e. via 
mail, Internet or attorney. Additionally, people voting through mail can do this 
within a certain period of time before the official election day. This complicates 
the survey and forces the organizer to apply different techniques, e.g. telephone 
surveys, in order to supplement the interviews conducted in front of polling 
stations. However, for the time being, this is not a problem of Polish researchers. 

The main focus of this paper is on reducing errors relating to the selection of 
precincts and estimation, nonetheless, it is worth mentioning other potential 
sources of errors. They mainly occur during the selection of voters and interaction 
between the respondent and interviewer. One of them is the faulty implementation 
of systematic sampling scheme. The threat is that the selection discipline of taking 
every nth person will break down and interviewers will approach individuals who 
they think will respond. That would naturally introduce selection bias. Another 
problem is that of co-location of precincts, when two or more precincts are in the 
same physical facility. For someone who is leaving such a facility it is usually not 
clear which precinct he/she voted in, which makes it difficult to maintain the 
desired selection probabilities (Scheuren and Alvey, 2008, p.12). 

Another potential source of errors are non-respondents. As stated above, the 
response rate in Polish exit polls is still quite high, but it will probably decline in 
the near future. There are two types of non-respondents in exit polls: refusals and 
misses. A refusal is when a sampled voter refuse to participate in the survey and a 
miss is when a sampled voter cannot be asked to fill out the questionnaire because 
the interviewer is too busy or the voter does not pass the interviewer. Merkle and 
Edelman (2002) estimate that about three-fourths of non-response in exit polls is 
attributable to refusals and about a quarter to misses. Refusals pose a greater 
threat to the survey outcome than misses because the voter’s reluctance to 
participate in exit polls can result from specific political attitudes and 
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consequently cause certain bias. Merkle and Edelman (2002) studied factors 
correlated with non-response on the basis of various exit polls conducted from 
1992 through 1998 in the USA. Conclusions from their investigation are as 
follows: of the voter’s characteristics, age is the most strongly related factor to the 
response rate (older voters have lower response rates), of the Election Day factors, 
interviewing position at the polling place (closeness to the polling place) is the 
main factor that can have a dramatic effect on response rates (response rates 
decline as the interviewer moves further away from the voting room), and of the 
interviewer characteristics, again age is the most significant factor (the age of the 
interviewer is positively correlated with response rates). What is surprising is the 
authors found very little or no correlation between response rates and exit poll 
error measures. Neither refusal rates nor miss rates were significant predictors of 
errors. 

Apart from unit non-response, when information is missing on all 
questionnaire variables, researchers conducting exit polls experience item 
non-response (when only some answers are missing) and false answers. The 
crucial factor for the scale of these occurrences seems to be the mode of data 
collection. One of the most popular solution here is the so-called secret ballot. In 
this mode respondents chosen to the sample are interviewed by the use of self-
administered questionnaire, which is then put in the envelope or deposited in the 
specially prepared ballot box. Bishop and Fisher (1995) proved experimentally 
that this mode of data collection decreases item non-responses and gives socially 
desirable responses, compared to the face-to-face interview. Using secret ballot 
one assumes that voters can read and understand questions well enough to give a 
reasonable answer. This can not be the case in countries with low literacy level. 
Bautista et al. (2006) give the example of Mexico, where due to low educational 
level mixed-mode of data collection were used (face-to-face with secret ballot). 

3. Sources of additional information 

Exit poll does not always meet recipients’ expectations as far as the 
compatibility between the forecast and the actual result is concerned, irrespective 
of the fact that the survey is conducted on a large sample size with a low rate of 
refusals and potentially low measurement error. As a result, the need to strengthen 
the survey with non-sample information arises. Two main sources of non-sample 
information are specified: data referring to past election results and GUS data not 
directly connected with the elections but strongly related to voters’ decisions.  

As far as the past general election data is concerned, the election results 
starting from the presidential election 2000 are available on each aggregation 
level (from voivodeship to precincts) on the PKW website. The key issue for 
using this data is the possibility of confronting the results for two or more 
elections between the corresponding precincts. This process, however, causes 
some problems. The main issue is that according to the Election code (2011) the 
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division into the election precincts is made by authority of municipality, however, 
the division is not permanent. Before each election a new division is made and 
both the number and the boarders of precincts within municipality can change. 
Further difficulties arise from typical demographic changes (reaching voting age, 
deaths, migrations), voting outside the voter’s district. The above-mentioned 
reasons lead to a situation in which the voters from i-th precinct in the X 
municipality are not exactly the same voters who participated in the elections a 
few years ago. However, the differences are insignificant, thus the informative 
value of the past election results should remain high. 

Another aspect of the use of information about past results is choosing the 
elections which will serve as a reference point to strengthen the estimates of the 
current survey. The most reasonable option seems to be choosing the 
chronologically nearest election as in such case, the changes on the political scene 
along with demographic and organizational changes are not so significant. In the 
case of the parliamentary election 2011 such a reference point can be the 
presidential election 2010 (some of the main candidates can be linked to political 
parties). However, the parliamentary election’s character is different in respect of 
the division into electoral districts and different set of candidates in each district, 
hence the parliamentary election 2007 can be considered as a better reference 
point. The question arises as how much the informative value of the data has 
deteriorated due to the changes in precincts during 4 years. Another possibility is 
choosing the European Parliament election 2009, however, irrespective of being 
nearest in time, this choice has some drawbacks, i.e. low election turnout 
(24,53%), different division into electoral districts and generally speaking 
different attitude towards the European election among both the voters and the 
politicians than towards the national elections. In the conducted simulation 
analysis the use of the presidential election 2010 results (first round) and the 
parliamentary election to the Sejm 2007 results was studied. 

Only the technical issue of matching the corresponding precincts in the 
mentioned elections needs to be resolved. Due to the fact that the division into 
precincts lies within the competence of municipality, there is no main key 
identifying the precincts between elections. By comparison of the precinct 
address, precinct number (numeration applied within municipality) and the 
number of registered voters, the corresponding precincts can be identified with the 
high credibility. The probably correctly linked precincts in which the difference in 
the number of people entitled to vote exceeded 200 were excluded (this operation 
also eliminates the precincts in tourist resorts, in which the vast majority of voters 
are out-of-towners). In further analysis only the regular precincts were taken into 
account, as only this type of precinct encompasses relatively unchanged voter 
groups. The number of linked precincts and the number of registered voters in 
comparison with the whole population are presented in Table 1. 
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Table 1. Data on populations subjected to simulation test 
 Number of precincts 

(Number of registered voters) 

all regular linked 
S11 – P10 

linked 
S11 – P10 – S07 

Population: U U1 U2 U3 

Sejm 2011 (S11) 
25 993 

(30 762 931) 
24 217 

(30 387 730) 
23 553 

(29 382 340) 
22 209 

(27 305 152) 
Presidential 2010 
(P10) 

25 774 
(30 813 005) 

24 144 
(30 382 814) 

23 553 
(29 388 485) 

22 209 
(27 349 352) 

Sejm 2007 (S07) 
25 476 

(30 615 471) 
23 903 

(30 188 868) 
 

22 209 
(27 332 149) 

Source: Own calculation based on PKW data.  
 
Another source of information that can increase the quality of exit poll are 

GUS official statistics for the units of territorial division of the country referring 
to social and economic characteristics. In this case, the main factors limiting the 
possible uses are: the level of data aggregation, the range of described population 
and the timeliness of data. As far as the aggregation level is concerned, the most 
helpful would be the data at the level of precincts, which of course does not exist. 
The lowest available level of aggregation is municipality and only for a limited 
range of variables. The second limitation is a problem due to the fact that GUS 
data refers naturally to the whole population and not only to the active voter 
groups which are analyzed  in exit poll. As far as the timeliness of data is 
concerned, it depends on the type of variables, however, usually a few years' 
delay in relation to the election date has to be taken into account. In that case, the 
most reasonable approach is to use the features which do not change significantly 
in time.  

Despite these limitations, it is believed that incorporating certain variables can 
improve both selecting a sample and the result estimations. After the analysis of 
available socio-economic data and their relation to the past election results, it was 
decided to incorporate to the study two variables at the level of municipality: 
• economic entities registered in REGON per every 10 000 population (2010, 

podm_gm), 
• the area of agricultural land (in ha) per every 1 000 population (2005, 

uzyt_gm), 
and two variables at the level of powiat (the second-level unit of local government 
and administration in Poland): 
• registered unemployment rate (2011, bezr_pow), 
• the average monthly gross salary in comparison to national average salary 

(2010, wyn_pow). 
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The very valuable source of the supportive information can be the distribution 
of voters in view of the features like sex, age and education. The character of 
election does not enable the official collection of such data, however, the opinion 
research centre conducting such survey in the past has own estimates at its 
disposal and can use them to correct the estimates at the level of a single unit. In 
view of the fact that presented analysis encompasses only official data in which 
the most detailed information is the general election result in the precinct, this 
possibility is not taken into consideration.  

4. Sampling plan 

The proposed sampling technique, which expands the conception of restricted 
sampling compared to typical stratified sampling, is balanced sampling. The 
sampling design is called balanced in relation to certain additional characteristics 
(auxiliary variables) if it generates samples from which the estimates of 
additional variables sums (by Horvitz–Thompson estimator, HT) match the 
known actual sums (Deville, 2004). In other words, in balanced sampling the 
auxiliary variables are estimated without an error. The above definition can be 
generalised for any samples, not necessarily chosen in random sampling.  

The idea of balanced sampling is not new. It appeared along with the 
representative method and is connected with the very same term of 
representativeness. The first use of this conception in practice refers to famous 
sampling of precincts during the Italy census (Gini, Galvani, 1929, after Langel, 
Tille, 2011). 29 precincts were selected in such way that the averages from the 
sample for a few auxiliary variables would match the average from population. 
Both Nayman and Yates (Langel, Tille, 2011) condemned such behaviour as the 
sample was selected purposive. It was later observed that the balanced sample can 
be selected in a probabilistic way. A special example is stratified sampling, in 
which the sample is random and at the same time balanced on the specified 
indicator variables of the strata (such variables take on the value 1 for the units 
belonging to stratum and, otherwise, 0; the number of variables corresponds with 
the number of strata).  

From a technical side, the probabilistic way of selecting a balanced sample is 
not evident. There is a number of methods enabling this choice, the majority of 
which is based on elimination process (the so-called rejective sampling), i.e. 
rejecting some of the sampled units (or the whole sample) if the condition of the 
balance is not satisfied (one of the variants of the method is the so-called tied 
sampling (Kozłowski, 2012). This requires conducting a number of interactions, 
which, depending on complexity of limiting conditions, are more or less time-
consuming. The majority of methods also have some constraints resulting from 
the possible applicability only in a chosen sampling schemes, the lack of 
possibility of differentiating inclusion probabilities as well as limited number and 
type of auxiliary variables. The method which overcomes these difficulties and, in 
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this context, is the most general is the so-called cube method proposed by Deville 
(2004).  

The starting point in the cube method is geometrical conceptualisation of all 
possible samples (in sampling without replacement) of N-element population as 
vertices of N-cube C, i.e. C=[0,1]N. Any sample s is defined as a vector 
(s1,….,sk,….sN)’, where sk takes on the value 1 if the kth unit is in the sample and, 
otherwise, 0. The number of all possible samples (of any size) equals to the 
number of the vertices of the cube C, i.e. 2N. In the instance of 3-element 
population (N=3) the sample space can be presented as vertices of a cube (Figure 
1). Starting from the point defined by the vector of the first order inclusion 
probabilities π=( π 1,…, π k,…, π N) , the selection of the sample can be illustrated 
as random ‘reaching’ to the one of vertices.  
 

 

 
 

Figure 1. Geometrical representation of sample space for 3-element population 

Source: Deville, 2004, p. 896. 
 
The design is balanced on auxiliary variables only if the data is at the unit 

level, i.e. for every unit of the population the vector xk=(xk1,…,xkj,…,xkp)’ should 
be known, where p – the number of auxiliary variables. The totals of auxiliary 
variables 𝑿 = ∑ 𝑥𝑘𝑘∈𝑈  are estimated by 𝑿�𝐻𝑇 = ∑ 𝑥𝑘𝑆𝑘

𝜋𝑘𝑘∈𝑈  , where U – 
population. The balanced sampling, as per definition, reassures: 

𝑿�𝐻𝑇 = 𝑿 (1) 

for every possible sample, in other words 𝑿�𝐻𝑇 variation equals 0. In practice, this 
condition is usually fulfilled only approximately. The equation (1)  is a set of 
limiting conditions, which defines an affine subspace (hyperplane) Q in ℝ𝑁 in 
dimension N-p. The idea of balanced sampling is to randomly ‘reach’ to such a 
vertex of cube C, which at the same time belongs to hyperplane Q (exactly 
balanced) or is located as close as possible (approximately balanced).  
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In the cube method the vector π is randomly transformed into a vector 
containing only values 0 and 1 (i.e. vector s defining a sample) in such a way that 
inclusion probabilities are exactly satisfied and balance condition (1) for every 
variable is satisfied to the furthest extent possible (Tillé, 2011). The method is 
divided into two phases: flight phase and landing phase. Flight phase is a random 
walk on in the intersection of the cube C and the constraint subspace, which starts 
from the point defined by the vector π and ends on the vertex of intersection (π*). 
If the reached point is at the same time the vertex of the cube C (i.e. all elements 
of π* equals 0 or 1), then the balance is exactly satisfied and the process of 
sampling is finished. Otherwise, the landing phase begins in which (by applying 
linear programming) the vertex of cube C located as close as possible to the point 
reached in the flight phase and at the same time satisfying the inclusion 
probabilities is set. 

In most cases the perfect balance cannot be achieved due to the so-called 
rounding problem. Nevertheless, it is proved that (Tillé 2006, p. 165): 

�X�j HT − Xj� ≤ p ∗ maxk∈U �
xkj
πk
�                                      (2) 

The accuracy of the balance is decreased along with the increase in the 
amount of auxiliary variables, and is improved along with the increase in a sample 
size if it is set before the sampling.  

5. Methods of estimation 

The estimated parameter is the fraction of votes cast on J committee, which 
can be presented as a quotient of two sums: 

PJ = YJ
Y

= ∑ yJkk∈U
∑ ykk∈U

 (3) 
where: 

YJ – the sum of valid votes cast on the J committee across the country, 
Y – the sum of valid votes in total across the country, 
yJk – the number of valid votes cast on J committee in the kth precinct, 
yk – the number of valid votes in total in kth precinct. 

The problem of estimation is to estimate the total number of valid votes and 
the total number of valid votes cast on J committee based on n-element sample of 
precincts. In the case of both sums, it was decided to test three types of 
estimators: Horvitz-Thompson estimator (HT), ratio estimator (q) and estimator 
using the log-linear model (P). The model is the so-called Poisson regression – 
the type of a generalized regression model, in which it is assumed that the 
response variable Y has a Poisson distribution. The function linking linear 
combination of explanatory variables with the response variable is a natural 
logarithm. This model was chosen because it is particularly useful in the analysis 
of count variables (taking on integer nonnegative values). 
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The Horvitz-Thompson estimators used for estimating the sum of votes in 
total and the sum of votes cast on J committee respectively are presented with the 
following formulas: 

Y�HT = ∑ yi
πii∈s  (4) 

Y�J,HT = ∑ yJ,i
πii∈s  (5) 

where: 
yi, yJ,i – the number of valid votes, in total and on J committee respectively, 
cast in ith precinct selected to the sample, 
πi - the first order inclusion probability.  

The Horvitz-Thompson estimator does not use the auxiliary variables directly, 
however, it can use them indirectly if in the sampling design the additional 
variable is used to establish the inclusion probabilities.  

The analogous set of ratio estimators is as follows: 

Y�q = Y�HT
X�HT

X (6) 

Y�J,q = Y�J,HT
X�J,HT

XJ (7) 

where:  
X�HT, X�J,HT - HT estimators of the sums for auxiliary variables, 
X ,XJ – the known sums of auxiliary variables. 

Ratio estimators use the information about one auxiliary variable for which 
the values from the sample and the actual sum in population are known. In the 
conducted analysis the auxiliary variable is usually the same variable but in the 
past (e.g. the result of the same committee in the previous election). 

In the third case, the numbers of votes were modelled by the Poisson 
regression, by using the following formula (the same for both parameters): 

y�k = exkβ� ∙ Xk∗  (8) 
where: 

y�k - the theoretical number of votes in kth precinct, 
xk – the vector of explanatory variables (independent variables), 
𝜷� – the vector of regression factor estimated based on the sample s, 
Xk

* - offset variable. 

The aim of the offset variable, which is added to the basic model, is to 
eliminate the differences between number of votes resulting only from the 
precinct’s size. In the case of modelling the number of votes in total, the offset 
variable was the number of registered voters in S11, whereas in the case of 
modelling the number of votes cast on committee J, the offset variable was a 
previously estimated total number of votes. Estimation of the sum of votes across 
the country is the simple prediction aggregation for all precincts in the population.  
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The estimators are presented as follows: 

Y�P = ∑ y�kk∈U  (9) 

Y�J,P = ∑ y�Jkk∈U  (10) 

where:  
y�k, y�Jk - the theoretical number of votes in kth precinct according to the model 
(8), in total and on committee J, respectively. 
The general rule was adopted (with the exception of formula (12)) that the 

final estimator of fraction of votes cast on committee J would be the quotient of 
two sums estimated with the same type of estimator. Complex estimators can use 
supportive data from other sources and to different extents, which results in a high 
number of possible variants. Finally, it was decided to separate seven estimators, 
the effectiveness of which will be subjected to simulation testing later in this 
paper:  

P�J
(HT) = Y�J,HT

Y�HT
 (11) 

P�J
(Q−S11) = Y�J,HT

Y�q
(S11) (12) 

where: 
𝑌�𝑞

(𝑆11) - the ratio estimator according to formula (6) in which the auxiliary  
variable is the number of registered voters during the parliamentary election to the 
Sejm 2011;  

P�J
(Q−P10) =

Y�J,q
(P10)

Y�q
(P10) (13) 

where:  
Y�J,q

(P10) - the ratio estimator according to formula (7), in which the auxiliary 
variable is the number of votes cast on the candidate linked to the committee J 
during the presidential election 2010 (in the case of the Ruch Palikota (RuchP) 
committee, the auxiliary variable was the result of Bronisław Komorowski 
committee), 

Y�q
(P10) - ratio estimator according to formula (6), in which the auxiliary 

variable is the number of valid votes in total during the presidential election 2010; 

P�J
(Q−S07) =

Y�J,q
(S07)

Y�q
(S07) (14) 

where: 
Y�J,q

(S07) - the ratio estimator according to formula (7), in which the auxiliary 
variable is the number of votes cast on the same political party during the 
parliamentary election to the Sejm 2007 (in the case of Ruch Palikota committee, 
the auxiliary variable was the result of Platforma Obywatelska RP committee), 
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Y�q
(S07) - the ratio estimator according to formula (6), in which the auxiliary 

variable is the number of valid votes in total during parliamentary election to the 
Sejm 2007. 

 P�J
(Poiss−S11) =

Y�J,P
(S11)

Y�P
(S11) (15) 

where:  
Y�𝐽,𝑃

(𝑆11) - the estimator according to formula (10) based on the model (8) with 
the explanatory variables: 

teren –  the type of the area where the precinct is based (large city – above 
80 thousand registered voters, town, village), 

region –  the group of voivodeships (first group: Małopolskie, 
Podkarpackie, Świętokrzyskie, Lubelskie, Łódzkie, Mazowieckie, 
Podlaskie; second group: the remaining voivodeships), 

podm_gm, uzyt_gm. 

𝑌�𝑃
(𝑆11) - the estimator according to formula (9) based on the model (8) with 

the explanatory variables: 

podm_gm, uzyt_gm, bezr_pow, wyn_pow, terrain. 

P� J
(Poiss−P10) =

Y�J,P
(P10)

Y�P
(P10)                         (16) 

where: 
Y�𝐽,𝑃

(𝑃10) - the estimator according to formula (10) based on the model (8) with 
explanatory variables: 

P10_Komorowski – the number of votes cast on Bronisław Komorowski 
during the presidential election 2010, 

P10_KaczynskiJ – the number of votes cast on Jarosław Kaczyński during 
the presidential election 2010, 

P10_Napieralski – the number of votes cast on Grzegorz Napieralski 
during the presidential election 2010, 

podm_gm, uzyt_gm, terrain, region. 

 P�J
(Poiss−S07) =

Y�J,P
(S07)

Y�P
(S07) (17) 

where:  
𝑌�𝑃

(𝑃10) – the estimator according to formula (10), based on model (8) with the 
explanatory variables: 

S07_PO – the number of votes cast on Platforma Obywatelska RP  
 committee during the parliamentary to the Sejm 2007, 
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S07_PiS – the number of votes cast on Prawo i Sprawiedliwość (PiS) 
(Law and Justice) during the parliamentary election to the 
Sejm 2007,  

S07_LiD – the number of votes cast on Lewica i Demokraci (LiD) (Left 
and Democrats) during the parliamentary election to the Sejm 
2007,  

terrain, region, podm_gm, uzyt_gm. 

𝑌�𝑃
(𝑆07) - the estimator according to formula (9) based on model (8) with 

explanatory variables: 

S07_votes – the number of valid votes in total during the parliamentary 
election to the Sejm 2007,  

podm_gm, uzyt_gm, bezr_pow, wyn_pow, S07_PO, terrain.  

6. Description of simulation 

In the conducted simulation test the single-stage cluster sampling was applied 
instead of two-stage sampling typical for exit poll, which results from the 
character of available data. No sampling at the second stage was simulated as no 
unit information being capable to support estimation process was available, 
therefore, the result in the sampled precinct was taken as given without errors. 
The sampled units are precincts, i.e. the groups of voters participating in voting. 

For reference purposes along with the balanced sampling, the simple random 
sampling without replacement (SRS) and stratified sampling were tested 
(STRAT). The division into strata was made based on the variation of the past 
election results in the section of following variables: teren and region. 6 strata 
were created as combination of 3 variants of a teren variable and 2 variants of a 
region variable. With regard to the large disproportion between the number of 
precincts and the number of votes cast in a stratum, the location was chosen 
proportionally to the number of valid votes cast in the parliamentary election to 
the Sejm 2007. 

The balanced sampling was conducted in 3 variants depending on the type of 
auxiliary variables that were used: 

• balance in reference to GUS variables (podm_gm, uzyt-gm, 
bezr_pow, wyn_pow) and the number of registered voters during S11 
(BALS11), 

• balance in reference to GUS variables (podm_gm, uzyt_gm, 
bezr_pow, wyn_pow) and the variables from the presidential election 
2010 (P10_votes, P10_Komorowski, P10_KaczynskiJ, 
P10_Napieralski) (BALP10), 
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• balance in reference to GUS variables (podm_gm, uzyt_gm, 
bezr_pow, wyn_pow) and variables from the parliamentary election to 
the Sejm 2007. (S07_votes, S07_PO, S07_PiS, S07_LiD) (BALS07). 

Additionally, each balanced sample was at the same time a stratified sample 
according to the above-described scheme. Within strata the precincts were 
sampled with the same probability of being selected, however, between strata the 
probabilities differed due to the allocation being disproportionate to the number of 
precincts in a stratum. In stratified sampling the estimators using auxiliary 
variables had a form of combined estimators, which means that the model is 
estimated for the whole sample altogether and not separately for each stratum like 
in the case of separate estimators. Due to small sizes of a sample in strata separate 
estimators would be in this case less stable. 

The use of the past election results, due to the incomplete link of precincts 
between elections, implies the restriction of frame population to the set U2 or U3 
(see Tab. 1). Even in the case of using only GUS variables, or if auxiliary 
variables are completely excluded, the frame population is restricted to regular 
precincts (set U1), which reflects the practical way of conducting the research. 
Nevertheless the aim of the survey is to estimate the actual fraction of the whole 
population (U). Thus, it seems appropriate to validate the estimates against non-
included units. The correction is not necessary in the case of ratio estimators, 
which use the sum of additional features for the whole population, thus the 
estimates can be generalized to the entire population U. The estimates obtained by 
using estimators based on the log-linear model can be generalized only to the 
particular frame population (U1, U2 or U3). The same applies to the Horvitz-
Thompson estimator, due to the restriction of frame population to the regular 
precincts. Therefore, the part of estimators was extended with the correction 
based on the past election results of the entire population in relation to the result 
of the particular frame population. General formula of the correction is as follows: 

P�J∗ = P�J
PJ′

(W)

PJ′
(W,Ui) (18) 

where: 
𝑃𝐽′

(𝑊) – the actual fraction of votes cast on committee/candidate linked to the  
 committee J in the election Wϵ{S07, P10}, in population U, 

𝑃𝐽′
(𝑊,𝑈𝑖) – the actual fraction of votes cast on committee/candidate linked to 

the committee J in election W, in population Ui (Ui ϵ {U1, U2, U3}). 

The correction applied only to irregular precincts (Ui=U1) is based on the 
assumption that the voters abroad, in prisons, on vessels, etc. are different from 
the rest of voters and the directions of those differences remain constant over at 
least a few years. The analysis of the past election results indicates the presence of 
some constant trends, i.a. the result of PO in irregular precincts was usually 
higher than the result in regular precincts (pkw.gov.pl). These trends, however, do 
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not have to sustain in the future, thus in case of Horwitz-Thompson estimators it 
was decided to test both estimators with correction or without it.  

Juxtaposition of all sampling plans and methods of estimation, taking into 
account the fact that not all combinations are possible, gives 30 possible strategies 
of research. Some of the strategies use the same auxiliary variables, both at the 
stage of selecting the balanced sample and at the stage of estimation. Such a 
solution is not inconsistent due to the fact that the sample is almost never exactly 
balanced, thus using the complex estimators in the sample approximately 
balanced can bring additional benefits (Tille 2011, p. 223).  

Due to the fact that in the majority of elections, three first parties usually get 
the vast majority of votes and estimating their results is of primary importance, 
the number of estimated parameters was limited to the results of three committees 
with the highest results. Besides, estimating separately very low fractions would 
artificially lower the mean absolute estimation error.   

The sample size in each analysed scheme was set at the level of n=100 
precincts, which (taking account of all voters in the sampled precinct) corresponds 
to the 50-70 thousand of elementary units. Every strategy was simulated M=1000 
times. The effectiveness of a strategy was measured in two ways: separately for 
each of three committees and altogether. In the first case the Empirical Root Mean 
Squared Error (ERMSE), was used: 

ERMSEJ = �1
M
∑ �P�J,i − PJ�

2M
i=1 ∙ 100                         (19) 

where: 
P�J,i –  the estimates of fraction of votes cast on J committee in ith iteration. 

In the second case, the estimates for the three main committees altogether were 
taken into account and for every iteration the Average Manhattan Distance 
(AMD) was calculated and subsequently the Mean AMD was computed 
(MAMD): 

MAMD = 1
M
∑ AMDi
M
i=1 ∙ 100                              (20) 

where: 
AMDi = 1

3
∑ �P�J,i − PJ�3
J=1                    (21) 

Both measures were multiplied by 100, thus the obtained values can be 
interpreted in categories of percentage points. The simulation analysis was 
conducted in the R environment. 

7. Simulation results 

In Table 2 the ERMSE for all strategies for the three subsequent committees 
with the highest final result are presented. The estimators marked with asterisk (*) 
were corrected according to the formula (18).  It turned out that the best strategy 
in the case of all three committees was the strategy {BALP10, Q_P1t0}, in which 
the stratified, balanced against the chosen official statistics at the level of 
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municipality and powiat, and against the results of presidential election 2010 
sample is drawn. This sample also uses the ratio estimator in which the auxiliary 
variable is the result of the candidate associated with a given party, also during 
the 2010 election. Distribution of the effectiveness of other strategies is similar in 
the case of PO and PiS, whereas it differs slightly in the case of Ruch Palikota. 
Nevertheless, the best sampling design in all cases, irrespective of the method of 
estimation, turned out to be BALP10.  

Table 2. ERMSE for fraction of votes cast on three winning parties  
Platforma Obywatelska 
(Civil Platform) 

Sampling design 
SRS STRAT BALS11 BALP10 BALS07 

Es
tim

at
or

 

HT 1.458 1.112 0.980 x x 
HT* 1.468 1.130 1.000 0.601 0.637 
Q-S11 2.672 1.904 1.071 x x 
Q-P10 0.589 0.624 0.560 0.557 x 
Q-S07 0.615 0.593 0.576 x 0.586 
Poiss-S11* 1.201 1.054 1.024 x x 
Poiss-P10* 1.030 0.898 0.759 0.679 x 
Poiss-S07* 1.128 0.884 0.807 x 0.757 

Prawo i Sprawiedliwość 
(Law and Justice) 

Sampling design 
SRS STRAT BALS11 BALP10 BALS07 

Es
tim

at
or

 

HT 1.152 1.020 0.963 x x 
HT* 1.151 1.020 0.966 0.454 0.518 
Q-S11 1.604 1.721 1.000 x x 
Q-P10 0.444 0.460 0.452 0.416 x 
Q-S07 0.447 0.504 0.478 x 0.468 
Poiss-S11* 0.921 0.943 0.947 x x 
Poiss-P10* 0.676 0.686 0.629 0.560 x 
Poiss-S07* 0.722 0.740 0.627 x 0.590 

Ruch Palikota (Palikot’s 
Movement) 

Sampling design 
SRS STRAT BALS11 BALP10 BALS07 

Es
tim

at
or

 

HT 0.359 0.332 0.322 x x 
HT* 0.355 0.323 0.314 0.267 0.323 
Q-S11 0.625 0.499 0.319 x x 
Q-P10 0.367 0.348 0.354 0.265 x 
Q-S07 0.453 0.405 0.414 x 0.323 
Poiss-S11* 0.335 0.317 0.312 x x 
Poiss-P10* 0.296 0.288 0.287 0.268 x 
Poiss-S07* 0.385 0.355 0.352 x 0.331 

Source: Own calculation. 
 
In the case of two main parties, the ratio estimators have proved greater 

efficiency as they correct the direct estimation only against the past election 
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results of the same party or the candidate associated with the party, which 
presumably results from the fact that the electorates of those parties remain almost 
unchanged. In the case of Ruch Palikota, which was the new party on the political 
scene, supporting the estimation only with the past PO or Bronisław Komorowski 
results did not work out; generally, the simple estimators or estimators based on 
log-linear model (the exception is the best strategy, which like in the case of two 
other parties was {BALP10, Q-P10}) would be a better choice. The mean square 
error is an absolute measure, thus the differences in values between three 
committees result mainly from the differences between the values of estimated 
parameters.  

The simulation results with respect to the second criteria of  evaluation of 
strategies are presented in Table 3. The table includes the mean of  average 
absolute differences (for three first parties) between the actual result and 
estimations in each iteration. In the case of this criteria, the strategy {BALP10, Q-
P10} again turned out to be the most effective. Taking into consideration only the 
sampling design, irrespective of the estimator, the best solution turned out to be 
BALP10 – the design using the information from the presidential election 2010. 
BALS07, i.e. the design using the information from the previous election 2007, 
turned out to be slightly worse. BALS11, which balanced the sample only on data 
referring to municipalities and powiats, showed similar effectiveness to BALS07 
in case of complex estimators, however, in case of simple estimators the 
effectiveness was worse. The plan using the relatively little additional 
information, i.e. the stratified sampling performed poorly in terms of drawing the 
most representative sample. The simple random sampling turned out to be the 
least effective.  

Table 3. MAMD for the three committees with the highest results  
 Sampling design 

SRS STRAT BALS11 BALP10 BALS07 

Es
tim

at
or

 

HT 0.794 0.653 0.600 x x 
HT* 0.798 0.656 0.603 0.348 0.393 
Q-S11 1.301 1.088 0.632 x x 
Q-P10 0.369 0.381 0.362 0.326 x 
Q-S07 0.401 0.400 0.389 x 0.365 
Poiss-S11* 0.652 0.612 0.604 x x 
Poiss-P10* 0.516 0.498 0.445 0.401 x 
Poiss-S07* 0.582 0.522 0.478 x 0.445 

Source: Own calculation. 
 
The most favourable assessment of the effectiveness of the methods of 

estimations for the ratio estimators is, as in the first criteria, using the presidential 
election 2010 results (Q-P10) as the auxiliary variables. The same estimators 
using the parliamentary election to the Sejm 2007 results (Q-S07) as the auxiliary 
variables performed slightly worse. Subsequently, the estimators based on the 
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log-linear model, which irrespective of the higher number of auxiliary variables 
used do not surpass the ratio estimators in terms of effectiveness, are ranked. This 
results from the strong correlation between the estimated parameter and the same 
parameter in the previous election and not so strong link to the other auxiliary 
variables, and also from the relatively small sample size which leads to the less 
stable estimations of the model with many variables. The least effective estimator 
turned out to be Q-S11 estimator, in which the sum of votes in total was estimated 
by the ratio estimator and the sum of votes cast on J committee was estimated by 
the HT estimator.  

The correction in Horwitz-Thompson estimator (HT*), calculated with respect 
to exclusion of irregular precincts from the frame population in plans SRS, 
STRAT and BALS11, led to minimal change in the estimate. The result of this 
correction for estimating the particular parties results (Table 2) is not unequivocal, 
however, as far as MAMD is concerned it is negative for every sampling plan. 
This confirms the above-mentioned assumptions that the electorate in irregular 
precincts can differ from the voters across country, however, the directions of 
those differences do change in time, thus they do not qualify for the correction of 
estimates from regular precincts. Consequently, the restriction of frame 
population to regular precincts should not systematically bias the results of 
research.  

 
 

 
 
Figure 2. Ternary plot of the simulation results for strategies {SRS, HT} and 
{BALP10, QP-10} 
Source: Own calculation. 

 
To illustrate the difference between the results of the best strategy using 

auxiliary variables and the results of the classical strategy, i.e. without any 
auxiliary variables, the ternary plot was created, which is presented in the 
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Figure 2. The ternary plot is a type of scatter diagram for three variables adding 
up to a constant. In order to be able to present the estimates for three main parties 
in this way, the estimates were transformed. Thanks to the transformation, the 
sum of the estimates equalled 1, that is, as if only these three parties took part in 
the election. Each point represents the result of one out of M simulations. The 
location of the point indicates the distribution of votes over three parties – the 
closer to the vertex of a triangle, the larger part of votes is distributed to the 
committee described on the particular vertex. Smaller scatter of points for strategy 
{BALP10, Q-P10} compared to the strategy {SRS, HT} is the reflection of higher 
effectiveness of the first one.  

7. Conclusions 

The subject of this paper was the evaluation of the usefulness of available 
additional data to strengthen the process of estimating the distribution of votes 
cast during the election in exit poll survey. The additional data were taken from 
two sources: the Central Statistical Office and the National Electoral Commission. 
A priori information was included in the strategy of survey both at the stage of 
selecting a sample and at the stage of estimating parameters. The proposed 
strategies were tested on the detailed results of the parliamentary election to the 
Sejm 2011. The results of the conducted simulation indicate that drawing a 
sample balanced against the selected auxiliary variables as well as the use of those 
variables in the estimation process significantly improves the effectiveness of the 
survey. This conclusion was not obvious in the beginning, as the auxiliary 
features did not refer to the units of research directly; data from GUS refer to the 
higher aggregation level and data from PKW are not linked to the current research 
and somehow force the restriction of frame population. Out of two past elections 
tested as a reference point for the correction of current estimates, the 
chronologically nearest presidential election 2010 turned out to be best.  
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AN IMPROVED ESTIMATOR FOR POPULATION 
MEAN USING AUXILIARY INFORMATION IN 

STRATIFIED RANDOM SAMPLING 

Sachin Malik, Viplav K. Singh, Rajesh Singh1 

ABSTRACT 

In the present study we propose a new estimator for population mean Y  of the 
study variable y in the case of stratified random sampling using the information 
based on auxiliary variable x. An expression for the mean squared error (MSE) of 
the proposed estimator is derived up to the first order of approximation. The 
theoretical conditions have also been verified by a numerical example. An 
empirical study demonstrates the efficiency of the suggested estimator over 
sample mean estimator, usual separate ratio, separate product estimator and other 
proposed estimators. 

Key words: study variable, auxiliary variable, stratified random sampling, 
separate ratio estimator, bias and mean squared error. 

1. Introduction 

The problem of estimating the population mean in the presence of an auxiliary 
variable has been widely discussed in the finite population sampling literature. 
Many ratio, product and regression methods of estimation are good examples in 
this context. Diana (1993) suggested a class of estimators of the population mean 
using one auxiliary variable in the stratified random sampling and examined the 
MSE of the estimators up to the kth order of approximation. Kadilar and Cingi 
(2003), Singh et al. (2007), Singh and Vishwakarma (2008) as well as Koyuncu 
and Kadilar (2009) proposed estimators in stratified random sampling. Bahl and 
Tuteja (1991) and Singh et al. (2007) suggested some exponential ratio type 
estimators.  
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Consider a finite population of size N is divided into L strata such that 
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2. Established estimators  

When the population mean  hX of  the stratum  h of the auxiliary variable x is 
known then the usual separate ratio and product estimators for the population 
mean Y  are respectively given as 
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Following Bahl and Tuteja (1991), we propose the following ratio and product 
exponential estimators 
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The MSEs of these estimators are respectively given by 
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The usual regression estimator of the population mean Y  is 
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The MSE  of the regression estimator is given by  
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The variance of the usual sample mean estimator hy  is given as 
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Yadav et al. (2011) proposed an exponential ratio-type estimator for estimating  Y   as 
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The MSE of the  estimator tR is given by 
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At the optimum value of ha the MSE of the estimator tR is equal to the MSE 
of the regression estimator tlr given in equation (2.9).
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3. The proposed estimator 

Motivated by Singh and Solanki (2012), we propose an estimator of 
population mean Y of the study variable y as 
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To obtain the bias and MSE of tP, we write 
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Expressing equation (3.1) in terms of es, we have  
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By neglecting the terms of e’s power greater than two in expression (3.2), we 

obtain 
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Taking expectations on both sides of (3.3), we have the bias of  the estimator

Pt   up to the first order of approximation as 
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Squaring both sides of (3.3) and neglecting the terms with power greater than 
two, we have 
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 Taking expectations of both sides of (3.5), we have the mean squared error of the 
estimator Pt  up to the first order of approximation as 
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Partially differentiating expression (3.6) with respect to ,λ and λ 21   we get 
the optimum values of 21 λ and λ as 
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Substituting these  values of   λ1 and   λ2 in expression (3.7), we get the 
minimum value of the MSE(tP). 
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4. Numerical study 

For  numerical study we use the data set used earlier by Kadilar and Cingi 
(2003). In this data set, Y is the apple production amount and X is the number of 
apple trees in 854 villages of Turkey in 1999. The population information about 
this data set is given in Table 4.1. The indices 1,2,…,6 indicate the strata. 

Table 4.1. Population data  

 
N=854      n=140           
N1=106            N2=106            N3=94             N4=171              N5=204              N6=173    

n1=9                  n2=17              n3=38              n4=67                 n5=7                  n6=2   

24375X1 =   27421X2 =   72409X3 =   74365X4 =   26441X5 =   9844X6 =  

536iY1 =      2212Y2 =     9384Y3 =     5588Y4 =      967Y5 =     404Y6 =  

71.251x =β   57.342x =β   14.263x =β   60.974x =β   47.275x =β   10.286x =β  

Cx1=2.02        Cx2=2.10         Cx3=2.22          Cx4=3.84         Cx5=1.72         Cx6=1.91 

Cy1=4.18         Cy2=5.22         Cy3=3.19          Cy4=5.13         Cy5=2.47         Cy6=2.34 

Sx1=49189      Sx2=57461      Sx3=160757      Sx4=285603    Sx5=45403       Sx6=18794 

Sy1=6425        Sy2=11552      Sy3=29907        Sy4=28643      Sy5=2390         Sy6=946 

82.01 =ρ    86.02 =ρ      90.03 =ρ       99.04 =ρ       71.05 =ρ        89.06 =ρ  

0.102f1 = 0.049f2 =     0.016f3 =        0.009f4 =       0.138f5 =       0.006f6 =  

015.0w 2
1 =   015.0w 2

2 =   012.0w 2
3 =   04.0w 2

4 =   057.0w 2
5 =  041.0w 2

6 =  

 
 
 

To compare the efficiency of the proposed estimator we have computed the 
percent relative efficiencies (PREs) of the estimators with respect to the usual 

unbiased estimator sty using the formula: 

( ) ( )
( ) 100*
tMSE

yMSE
yt,PRE st

st = , where )t,t,t,t,t(t Plr321=  

The findings are given in the Table 4.2. 
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Table 4.2. Percent relative efficiencies (PREs) of estimators 

S. No. ESTIMATORS PREs 

1 y st 
100 

2 
1t  423.20 

3 
2t  37.60 

2 
3t  199.14 

3 
4

t  12.83 

4 
lrt  629.03 

5 
Rt  629.03 

6 
Pt  789.87 

 

5. Conclusion 

In this paper we have proposed a new estimator of the population mean of the 
study variable using auxiliary variables. Expressions for bias and MSE of the 
estimator are derived up to first order of approximation. The proposed estimator is 
compared with the usual mean estimator and other considered estimators. 
A numerical study is carried out to support the theoretical results. From Table 4.2. 
it is clear that the proposed estimator Pt  is more efficient than the unbiased 

sample mean estimator sty , the usual ratio and product estimators 1t and ,t 2  the 
usual exponential ratio and product type estimators 3t  and 

4
t , and Yadav et al. 

(2011) estimator .t R  
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A MODIFIED MIXED RANDOMIZED RESPONSE 
MODEL 

Housila P. Singh, Tanveer A. Tarray1 

ABSTRACT 

Socio-economic investigations often relate to certain personal features that people 
wish to hide from others in comprehensive inquiries, detailed questionnaires 
include numerous items. Data on most of them are frequently easy to procure 
merely by asking, but a few others can be on sensitive issues for which people are 
not inclined to state honest responses. For example, most people prefer to conceal 
the truth regarding their savings, the extent of their accumulated wealth, their 
history of intentional tax evasion and other illegal and or unethical practices 
leading to earnings from clandestine sources, crimes, trade in contraband goods, 
susceptibility to intoxication, expenditures on addictions of various forms, 
homosexuality, and similar issues which are customarily disapproved of by 
society. Open or direct queries often fail to yield reliable data on such 
confidential aspects of human life. Warner (1965) developed an alternative 
survey technique that is known as randomized response (RR) technique. 
Greenberg et al. (1971) presented a revised version of Warner's (1965) technique 
for qualitative variables. Later various modifications were given by several 
researchers [see Chaudhuri (2011)]. Kim and Warde (2005) and Nazuk and 
Shabir (2010) presented mixed randomized response models using simple random 
sampling with replacement sampling scheme which improves the privacy of 
respondents. In this paper we have suggested a modified mixed randomized 
response model to estimate the proportion of a qualitative sensitive variable. 
Properties of the proposed randomized response model have been studied along 
with recommendations. It has been shown that the suggested randomized 
response model is always better than Kim and Warde’s (2005) model while it is 
better than Nazuk and Shabbir’s (2010) model under some realistic conditions. 
Numerical illustrations and graphs are also given in support of the present study. 

Key words: randomized response technique, simple random sampling, 
dichotomous population, estimation of proportion, privacy of respondents, 
sensitive characteristics. 
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1. Introduction  

In situations where potentially embarrassing or incriminating responses are 
sought, the randomized response (RR) technique is effective in reducing non-
sampling errors in sample surveys.  

Refusal to respond and lying in surveys are two main sources of such non-
sampling errors, as the stigma attached to certain practices (e.g. sexual behaviours 
and the use of illegal drugs) often leads to discrimination. Warner (1965) was first 
to introduce a randomized response (RR) model to estimate the proportion for 
sensitive attributes including homosexuality, drug addiction or abortion. 
Greenberg et al. (1969) proposed the unrelated question RR model that is a 
variation of Warner’s (1965) RR model. Since the work by Warner (1965) a huge 
literature has emerged on the use and formulation of different randomization 
devices to estimate the population proportion of a sensitive attribute in survey 
sampling. Mention may be made of the work of Tracy and Mangat (1996), 
Cochran (1977), Singh and Mangat (1996), Chaudhuri and Mukherjee (1988), 
Ryu et al. (1993), Fox and Tracy (1986), Singh (2003), Singh and Tarray (2012, 
2013 a,b,c,d) and the references cited therein. 

Mangat et al. (1997) and Singh et al. (2000) pointed out the privacy problem 
with Moors’ (1971) model. To implement the privacy problem with the Moors’ 
(1971) model, Mangat et al. (1997) and Singh et al. (2000) presented several 
strategies as an alternative to Moors’ model, but their models can lose a large 
portion of data information and require a high cost to obtain confidentiality of the 
respondents. Kim and Warde (2005) suggested a mixed randomized response 
model using simple random sampling which rectifies the privacy problem. 
Amitava (2005) and Hussain and Shabbir (2007) suggested improvements over 
Kim and Warde’s (2005) mixed randomized response technique in complex 
surveys situations and illustrated the superiority of their models over Kim and 
Warde’s (2005) procedure. Later, Nazuk and Shabbir (2010) presented a 
modification of Kim and Warde’s (2005) model to estimate the proportion of a 
qualitative sensitive variable using simple random sampling with replacement 
(SRSWR), which reduces the variance of the estimator and improves the privacy 
protection of respondents. 

In this paper we have suggested a modified mixed randomized response 
model and its properties are studied. We have shown that the suggested mixed 
randomized response model is always better than Kim and Warde’s (2005) model 
and it is more efficient than the one recently proposed by Nazuk and Shabbir’s 
(2010) estimator under some realistic conditions. 
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2. Kim and Warde (2005) and Nazuk and Shabbir’s (2010) models 

2.1. Kim and Warde’s (2005) mixed randomized response model 

Kim and Warde (2005) introduced a mixed randomized response procedure 
for estimating the proportion Sπ  of a population possessing a sensitive attribute 
using simple random sampling with replacement (SRSWR) which rectifies the 
privacy problem. Following them, a single sample with the size n is selected by 
SRSWR from the population. Each respondent selected in the sample is instructed 
to answer the direct question “I am a member of the innocuous trait group”. If a 
respondent answers “Yes” to the direction question, then she or he is instructed to 
go to the randomization device R1 consisting of the statements (i) “I am a member 
of the sensitive trait group” and (ii) “I am a member of the innocuous trait group” 
with pre-assigned probability of selection P1 and 1-P1, respectively. If a 
respondent answers “No” to the direct question, then the respondent is instructed 
to use the randomization device R2 consisting of the statement (i) “I am a member 
of the sensitive trait group” and (ii) “I am not a member of the sensitive trait 
group” with pre-assigned probability P and 1-P, respectively. The survey 
procedures are performed under the assumption that both the sensitive and 
innocuous questions are unrelated and independent in the randomization device 
R1. To protect the respondents’ privacy, the respondents should not disclose to the 
interviewer the question they answered from either R1 or R2. Let n be the sample 
size confronted with a direct question and n1 and n2 ( = n- n1) denote the number 
of “Yes” and “No” answers from the sample. Since all respondents using the 
randomization device R1 already responded “Yes” from the initial direct 
innocuous question, the proportion Y of getting “Yes” answers from the 
respondents using the randomization device R1 should be  

   ),P1(P)P1(PY 1S111S1 −+π=π−+π=                                (2.1) 
where Sπ  is the proportion of “Yes” answers from the sensitive trait and 1π  is 
the proportion of “Yes” answers from the innocuous question [see Kim and 
Warde (2005,p.212)]. 

An unbiased estimator of Sπ  is given by 

   1

1
a P

)P1(Ŷˆ −−
=π

                                                 (2.2) 

where Ŷ is the sample proportion of “Yes” responses.  

The proportion of “Yes” answers from the respondents using the 
randomization device R2 is given by 

          )]P1()1P2[()]1)(P1(P[X SSS −+π−=π−−+π=                      (2.3) 
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Thus, an unbiased estimator of Sπ , in terms of the sample proportion of “Yes” 

responses X̂ , is 

        )1P2(
)P1(X̂ˆ b −

−−
=π

                                                    (2.4) 
Pooling the two unbiased estimators aπ̂  and bπ̂  using weights, Kim and Warde 

(2005) suggested an unbiased estimator aπ̂  and bπ̂   for Sπ  as     

     
1

n
n0for,ˆ

n
)nn(ˆ

n
nˆ 1

b
1

a
1

kw <<π
−

+π=π
                    (2.5) 

Applying Lanke’s (1976) arguments, Kim and Warde (2005) derived  

         1P2
1P
−

=
                                                    (2.6) 

and hence obtained the variance of the estimator kwπ̂  as 

    
2

1

S11SS
kw nP

)]1()1(P[)P1(
n

)1(
)ˆ(V

λ−+π−λ−
+

π−π
=π

             (2.7) 

for .
n
nandnnn 1

21 =λ+=  

2.2. Nazuk and Shabbir’s (2010) model 

Nazuk and Shabbir (2010) presented a modified version of Kim and Warde’s 
(2005) model which differs from Kim and Warde’s (2005) procedure only in the 
formation of the randomization device R2. The description of Nazuk and 
Shabbir’s (2010) model is given below. 

Let a random sample of size n be selected using SRSWR. Each respondent in 
the sample is instructed to answer an innocuous question “I possess the innocuous 
character Y”. If the answer to the initial direct question is “Yes” then the 
respondent is instructed to go the randomization device R1, otherwise R2, where 
R1 consists of two statements (i) “I belong to the sensitive group” and (ii) 
“I belong to the innocuous group”, with respective probability P1 and (1-P1), 
while R2 consists of the same pair of statements as in R1 but with respective 
probability P2 and (1-P2). In order to offer privacy to the respondents they are not 
required to say that which randomization device they have used. Let n1 and n2 be 
the number of respondents using R1 and R2 respectively such that (n1 + n2) = n. 
Note that the respondents coming to R1 have reported “Yes” to the initial direct 
question, therefore 11 =π  in R1 [see Nazuk and Shabbir (2010, pp.186-187)].  
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The probability of “Yes” answers is (the same as given in (2.1))  

   ),P1(P])P1(P[Y 1S111S1 −+π=π−+π=                            (2.8) 

An unbiased estimator of Sπ  is (the same as given in (2.2)) 

   1

1
a P

)P1(Ŷˆ −−
=π

                                                         (2.9) 

where Ŷ is the same as defined earlier.  
Note that the respondents using R2 have reported a “No” to the initial direct 

question, therefore 01 =π  in R2. Denote by X2 the probability of “Yes” answers 
from the respondents using R2 which is given by 

          S212S22 P])P1(P[X π=π−+π=                                 (2.10) 

Let 2X̂ be the sample proportion of “Yes” response from the randomization 
device R2, then an unbiased estimator of Sπ  is given by 

        2

22
c P

)P1(X̂ˆ −−
=π

                                (2.11) 

Pooling the two unbiased estimators aπ̂ and cπ̂ , Nazuk and Shabbir (2010) 

suggested an unbiased estimator for Sπ  as     

     
1

n
n0for,ˆ

n
)nn(ˆ

n
nˆ 1

c
1

a
1

ns <<π
−

+π=π
                                (2.12) 

With 
1

2 P2
1P
−

=   Nazuk and Shabbir (2010) obtained the variance of nsπ̂ as        

    1

1SS1SS
ns nP

]P)1()1([)P1(
n

)1(
)ˆ(V

πλ−+π−λ−
+

π−π
=π

            (2.13) 

3. The suggested model 

The suggested procedure differs from Kim and Warde (2005) and Nazuk and 
Shabbir’s (2010) procedures only in the contribution of the randomization device 
R2. Let a random sample of size n be selected using simple random sampling with 
replacement (SRSWR). Each respondent from the sample is instructed to answer 
the direct question “I am a member of the innocuous group”. If a respondent 
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answers “Yes” to the direct question, then she or he is instructed to go to the 
randomization device R1 consisting of the statements (i) “I am the member of the 
sensitive trait group” and (ii) “I am a member of the innocuous trait group” with 
respective probabilities P1 and (1-P1). If a respondent answers “No” to the direct 
question, then the respondent is instructed to use the randomization device R2 
using three statements: (i) “I possess the sensitive attribute “A” ”, (ii) “Yes” and 
(iii) “No” with known probabilities P, (1-P)w and (1-P)w respectively, where 

]1,0[w ∈ . It is to be mentioned that the randomization device R2 is due to Singh 
et al. (1995). The survey procedures are performed under the assumption that both 
the sensitive and innocuous questions are unrelated and independent in the 
randomization device R1. To protect the respondent’s privacy, the respondents 
should not disclose to the interviewer the question they answered from either R1 
or R2.  

We explain the suggested procedure with the help of an example earlier 
considered by Hussain and Shabbir (2007). Consider that we are interested in the 
estimation of the proportion Sπ  of carriers of HIV in a particular county/ locality/ 
town or district. Each survey respondent is asked a direct innocuous (non- 
sensitive) question “Were you born in the first three months of a calendar year?”. 
On receiving a “Yes” response he/she is requested to use the randomization 
device R1 consisting of the two statements, (i) “I do carry HIV” and (ii) “My 
birthday falls in the first three months of a calendar year” presented with 
predetermined probabilities P1 and (1-P1). If the respondent says “No” to the 
direct question he/she is requested to use the randomization device R2. Now, from 
this random device, if the statement (i) is chosen, the respondent will reply 
according to his actual status with respect to carriers of HIV. In the case the 
statement (ii) or (iii) is selected, one will report “Yes” or “No” as observed on the 
outcome of the random device R2 presented with predetermined probabilities P, 
(1-P)w and (1-P)w respectively, where ]1,0[w ∈ .    

Let n be the sample size confronted with a direct question and n1 and  
n2 (= n – n1) denote the number of “Yes” and “No” answers from the sample. 
Note that the respondents coming to R1 have reported a “Yes” to the initial direct 
question, therefore 11 =π  in R1, where 1π  is the proportion of “Yes” answers 
from the innocuous question. 

Denote by ‘Y’ the probability of “Yes” from the respondents using R1. Then 

  )P1(P)P1(PY 1S111S1 −+π=π−+π= ,                               (3.1)  

where Sπ  is the proportion of “Yes” answers from the sensitive trait. 

An unbiased estimator of Sπ , in terms of the sample proportion of “Yes” 

responses Ŷ , becomes 
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    1

1
a P

)P1(Ŷˆ −−
=π

.                                                         (3.2) 
The variance of  aπ̂  is  

                   11
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The proportion of “Yes” answers from the respondents using randomization 
device R2 follows: 

          w)P1(PX S3 −+π=                                    (3.4) 
An unbiased estimator of Sπ , in terms of the sample proportion of “Yes” 

responses 3X̂ , becomes 

        P
w)P1(X̂ˆ 3

d
−−

=π
.                                      (3.5) 

The variance of dπ̂  is given by  
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                (3.6) 
The estimator of Sπ , in terms of the sample proportions of “Yes” responses 

Ŷ and 3X̂ , is  

                                                
d
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As both aπ̂  and dπ̂  are unbiased estimators, the expected value of tπ̂ is  
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Thus, the proposed estimator tπ̂  is an unbiased estimator Sπ .  

Now, the variance of tπ̂  is given by 
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(3.8) 

Since our mixed RR model also uses Horvitz’s et al. (1967) method when
11 =π , we can apply Lanke’s (1976) idea to our suggested model. Thus, using 

Lanke’s (1976) result for P with 11 =π , we get  

                                           1P2
1P
−

=
.                                                   (3.9) 

Putting P = (2 – P1) -1 in (3.6), we get 
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                      (3.10) 

Thus, we have established the following theorem. 

Theorem 3.1. The variance of  tπ̂  is given by 
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S1S1SS
t nP
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Remark 3.1. Following Chaudhuri (2001, 2004), Amitava (2005) and Hussain 
and Shabbir (2007), the present study can be extended for complex surveys.  
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4. Efficiency comparisons 

In this section we have made a comparison of the suggested model under 
a completely truthful reporting case with Kim and Warde (2005) and Nazuk and 
Shabbir’s (2010) models. 

From (2.7) and (3.11) we have 

V ( tπ̂ ) < V ( kwπ̂ ) if 

1

S1
S1S P

)]1()1(P[]w)1(P)1()1([ λ−+π−λ
<π−λ−+π−λ

 

i.e. if   1w)1(P S
2

1 <π−  
which is always true. 

Thus, the proposed model is always better than Kim and Warde’s (2005) 
model. 
Further, from (2.13) and (3.11) we have 

{ }w)w1(
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which is positive if  

.
)w1(

w
S +
>π

                                                        (4.1) 

It follows from (4.1) that f for 2/1S ≥π , the proposed randomized response 
model is always superior to Nazuk and Shabbir’s (2010) model. Further, for

10/1,5/1,5/3,5/2S =π , the proposed model is better than Nazuk and 
Shabbir’s (2010) model in the respective ranges of w:  

)9/1,0(wand)4/1,0(w),7/3,0(w),3/2,0(w ∈∈∈∈  
It is observed from the above that when the value of )2/1(<π decreases the 

ranges of w decrease. 
To have a tangible idea about the performance of the proposed estimator tπ̂  

over Kim and Warde’s (2005) estimator kwπ̂  and Nazuk and Shabbir’s (2010) 

estimator nsπ̂ , we have computed the percent relative efficiency of the proposed 

estimator tπ̂  with respect to Kim and Warde’s (2005) estimator kwπ̂  and Nazuk 

and Shabbir’s (2010) estimator nsπ̂ by using the formulae: 
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for different values of , P1,w, n and n1.  

We have obtained the values of the percent relative efficiencies 
 P )ˆ,ˆ(RE kwt ππ for λ= (0.7, 0.5, 0.3), n = 1000 and for different cases of of

11S Pandn,w,π . Findings are shown in Table 1. Diagrammatic representation 
is also given in Fig. 1. 

It is observed from Fig. 1 and Table 1that: 

 

 
 

Figure 1. Percent relative efficiency of the proposed estimator tπ̂ with respect to  

              Kim and Warde’s (2005) estimator kwπ̂  when 25.0wand7.0 ==λ   
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Table 1. Percent relative efficiency of the proposed estimator tπ̂ with respect to  

               Kim and Warde’s (2005) estimator kwπ̂   
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The values of percent relative efficiencies P )ˆ,ˆ(RE kwt ππ  is more than 100. 

We can say that the envisaged estimator tπ̂  is more efficient than Kim and 

Warde’s (2005) estimator kwπ̂ . Fig. 1 shows the results for λ= 0.7, w = 0.25 and 

different values of .andP S1 π  
We note from Table 1 that the values of the percent relative efficiencies 

)ˆ,ˆ(PRE kwt ππ  decrease as the value of P1 increases. Also, the values of the 

percent relative efficiencies )ˆ,ˆ(PRE kwt ππ  increase as the value of λ  decreases 
for fixed values of P1.  

We further note from the results of Fig. 1 that there is a large gain in 
efficiency by using the suggested estimator tπ̂ over Kim and Warde’s (2005) 

estimator kwπ̂ when the proportion of the stigmatizing attribute is moderately 
large. 

Fig. 2 and Table 2exhibit that: 
 
 

 
 

Figure 2. Percent relative efficiency of the proposed estimator tπ̂ with respect to  

                 Nazuk and Shabbir’s (2010) estimator nsπ̂  when 25.0wand7.0 ==λ  
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Table 2. Percent relative efficiency of the proposed estimator tπ̂ with respect to  

               Nazuk and Shabbir’s (2010) estimator nsπ̂  
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The values of percent relative efficiencies P )ˆ,ˆ(RE nst ππ  is more than 100. 

We can say that the envisaged estimator tπ̂  is more efficient than Nazuk and 
Shabbir’s (2010) estimatorc. Fig. 2 shows the results for λ= 0.7, w = 0.25 and 

different values of .andP S1 π  
We note from Table 2 that the values of the percent relative efficiencies

)ˆ,ˆ(PRE nst ππ  increase as the value of P1 increases up to 5.0P1 ≤  and decreases 

5.0P1 >  onwards. Also, the values of the percent relative efficiencies 
)ˆ,ˆ(PRE nst ππ  increase as the value of λ  decreases for fixed value of P1.  

We further note from the results of Fig. 2 that there is a large gain in 
efficiency by using the suggested estimator tπ̂ over Nazuk and Shabbir’s (2010) 

estimator nsπ̂ when the proportion Sπ of the stigmatizing attribute and P1 are 
moderately large.  

It is observed from Table 1 and Table 2 that a larger gain in efficiency is 
obtained by using the proposed estimator tπ̂  over Kim and Warde’s (2005) 

estimator kwπ̂  as compared to Nazuk and Shabbir’s (2010) estimator nsπ̂ . 

5. Conclusions 

In this paper we have proposed a mixed randomized response model to 
estimate the proportion of qualitative sensitive character. It has been shown that 
the proposed mixed randomized response model is more efficient than Kim and 
Warde (2005) and Nazuk and Shabbir’s (2010) mixed randomize response models 
with a larger gain in efficiency. Thus, this paper attempts to extend the 
methodology of the mixed randomized response techniques.  

Acknowledgements 

The authors are grateful to the referee for fruitful comments to bring the 
original manuscript in the present form. 

REFERENCES 

AMITAVA, S., (2005). Kim and Warde’s mixed randomized response technique 
for complex surveys. Jour Mod. Appl. Statist. Meth. , 4(2), 538–544. 

CHAUDHURI, A., MUKERJEE, R., (1988): Randomized Response: Theory and  
Techniques. Marcel-Dekker, New York, USA. 



STATISTICS IN TRANSITION new series, Winter 2014 
 

 

81 

CHAUDHURI, A., (2011). Randomized response and indirect questioning 
techniques in surveys. CRC Press, Taylor and Frances group, USA. 

CHAUDHURI, A., (2004). Christofides’ randomized response technique in 
complex sample surveys. Metrika, 60(3), 23–228. 

CHAUDHURI, A., (2002). Estimating sensitive proportions from randomized 
responses in unequal probability sampling. Cal. Statist. Assoc. Bull., 52,  
315–322. 

COCHRAN, W. G., (1977). Sampling Technique, 3rd Edition. New York: John 
Wiley and Sons, USA. 

FOX, J. A., TRACY, P. E., (1986). Randomized Response: A method of Sensitive 
Surveys. Newbury Park, CA: SEGE Publications. 

GREENBERG, B., ABUL-ELA, A., SIMMONS, W. R., HORVITZ, D. G., 
(1969). The unreleased question randomized response: Theoretical 
framework. Jour. Amer. Statist. Assoc., 64, 529–539. 

HORVITZ, D. G., SHAH, B. V., SIMMONS, W. R., (1967). The unrelated 
question randomized response model. Proc. Soc. Statist. Sec. Amer. Statistical 
Assoc. 65–72. 

HUSSAIN, Z., SHABBIR, J., (2007). Improvement of Kim and Warde’s mixed 
randomized response technique for complex surveys. InterStat, July # 003. 

KIM, J. M., TEBBS, J. M., AN, S. W., (2006). Extensions of Mangat’s 
randomized response model. Jour. Statist. Plan. Inference, 136, 1554–1567. 

KIM, J. M., WARDE, W. D., (2005). A mixed randomized response model. Jour. 
Statist. Plan. Inference, 133, 211–221. 

LANKE, J., (1976). On the degree of protection in randomized interview Internet.  
Statist. Rev. 44, 80–83. 

MANGAT, N. S., SINGH, R., (1990). An alternative randomized procedure. 
Biometrika, 77, 439–442.  

MANGAT, N. S., SINGH, R., SINGH, S., (1997). Violation of respondent’s 
privacy in Moors model – its rectification through a random group strategy  
response model. Comm. Statist. Theo. Meth., (3), 243–255. 

MOORS, J. A., (1971). Optimization of the unrelated question randomized 
response model. Jour. Amer. Statist. Assoc., 66, 627–629. 

NAZUK, A., SHABBIR, J., (2010). A new mixed randomized response model. 
Inter.  Jour Buss. Soc. Sci. 1, 186–190. 

RYU, J. B., HONG, K. H., LEE, G. S., (1993). Randomized response model, 
Freedom Academy, Seoul, Korea.  



82                                                               H. P. Singh, T. A. Tarray: A modified mixed … 
 

 

 

SINGH, H. P., TARRAY, T. A., (2012). A Stratified Unknown repeated trials in 
randomized response sampling. Comm. Korean Statist. Soc., 19, (6),  
751–759. 

SINGH, H. P., TARRAY, T. A., (2013a). An alternative to Kim and Warde’s 
mixed randomized response model. Statist. Oper. Res. Trans., 37 (2),  
189–210. 

SINGH, H. P., TARRAY, T. A., (2013b). An alternative to stratified Kim and 
Warde’s randomized response model using optimal (Neyman) allocation, 
Model Assist. Statist. Appl., 9, 37–62.  

SINGH, H. P., TARRAY, T. A., (2013c). An improved mixed randomized 
response model. Model Assist. Statist. Appl., 9, 73–87. 

SINGH, H. P., TARRAY, T. A., (2013d). An alternative to Kim and Warde’s 
mixed randomized response technique. Accepted in Statistica. 

SINGH, R., MANGAT, N. S., (1996). Elements of Survey Sampling, Kluwer 
Academic Publishers, Dordrecht, The Netherlands. 

SINGH, S., SINGH, R., MANGAT, N. S., TRACY, D. S., (1995). An improved 
two-stage randomized response strategy. Statistical Papers, 36, 265–271. 

SINGH, S., (2003). Advanced sampling theory with applications. Kluwer 
Academic Publishers, Dordrecht. 

SING, S., SINGH, R., MANGAT, N. S., (2000). Some alternative strategies to 
Moor’s model in randomized response model. Jour. Statist. Plan. Inference, 
83, 243–255. 

TRACY, D. S., MANGAT, N. S., (1996). Some developments in randomized 
response sampling during the last decade – A follow up of review by 
Chaudhuri  and Mukherjee. Jour. Applied. Statist. Sci., 4 (2/3), 147–158.  

WARNER, S. L., (1965). Randomized response: A survey technique for 
eliminating evasive answer bias. Jour. Amer. Statist. Assoc., 60, 63–69. 

 



STATISTICS IN TRANSITION-new series, Winter 2014 

 

83 

STATISTICS IN TRANSITION-new series, Winter 2014 
Vol. 15, No. 1, pp. 83–96 

APPLICATION OF THE ORIGINAL PRICE INDEX 
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ABSTRACT  

This paper examines a possibility to apply the original price index formula to 
measuring the commodity substitution bias associated with the Consumer Price 
Index (CPI). Through simulation study the CPI bias values - calculated by using 
the original price index formula – is compared with those calculated on the basis 
of some known, superlative price indices. 
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1. Introduction 

The Consumer Price Index (CPI) is used as a basic measure of inflation. The 
index approximates changes in the costs of household consumption that provide 
the constant utility (COLI, Cost of Living Index). In practice, the Laspeyres price 
index is used to measure the CPI (see White (1999), Clements and Izan (1987)). 
The Lapeyres formula does not take into account changes in the structure of 
consumption, which occur as a result of price changes in the given time interval. 
It means that the Laspeyres index can be biased due to the commodity 
substitution.  Many economists consider the superlative indices (like the Fisher 
index or the Törnqvist index) to be the best approximation of COLI. Thus, the 
difference between the Laspeyres index and the superlative index should 
approximate the value of the commodity substitution bias. In this paper we 
propose the application of the original price index formula (see Białek (2012a), 
Białek (2013)) in measuring the commodity substitution bias associated with the 
Consumer Price Index (CPI). In our simulation study we compare the CPI bias 
values calculated by using the original price index formula with those calculated 
                                                           
1 University of Lodz, Chair of Statistical Methods. E-mail: jbialek@uni.lodz.pl. 
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on the basis of some known, superlative price indices. It should be emphasized, 
that we do not consider other sources of the CPI biases, presented by White (1999). 

2. Superlative price indices in the CPI bias measurement 

Any discussion of consumer price index bias must first address the important 
issue of the target measure with respect to which the bias is measured. The final 
report of the Boskin Commission begins with a recommendation that “the Bureau 
of Labor Statistics (BLS) should establish a cost of living index (COLI) as its 
objective in measuring consumer prices” (see Boskin et al. (1996), page 2). 
Further discussions on the theory of the COLI can be found in the following 
papers: Diewert (1983), Jorgenson and Slesnick (1983), Pollak (1989).       

Let ))({min),( uQUQPuPE T

Q
≥=  be the expenditure function of 

a representative consumer which is dual to the utility function )(QU . In other 
words it is the minimum expenditure necessary to achieve a reference level of 
utility u  at vector of prices P . Then the Konüs cost of living price index is 
defined as 
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where t  denotes the current period, s  denotes the base period, and in general, the 
vector of N considered prices at any moment τ  is given by 

T
NpppP ],...,,[ 21
ττττ = . KI  is a true cost of living index in which the 

commodity Q  changes as the vector of prices facing the consumer changes. The 
CPI, in contrast, measures the change in the cost of purchasing a fixed basket of 
goods at a fixed sample of outlets over a time interval, i.e. 
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so we assume here the constant consumption vector on the base period level. It 
can be shown (see Diewert (1993)) that under the assumption that the 
consumption vector tQ  solves the base period t  expenditure minimization 
problem, that 
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so KLa II −  is the extent of the commodity substitution bias, where KI  plays the 
role of the reference benchmark. In the so-called economic price index approach 
many authors use superlative price indices to approximate the KI  index (see 
White (1999)). 

First we define a price index I  to be exact for a linearly homogeneous 
aggregator function f (here a utility function), which has a dual unit cost function 

)(Pc and it holds 

        
)(
)(

s

t

Pc
PcI = .                                                                (4) 

In other words, an exact price index is one whose functional form is exactly 
equal to the ratio of cost functions for some underlying functional form 
representing preferences. The Fisher price index FI  (defined below as a 
geometric mean of the Laspeyres and Paasche indices) is exact for the linearly 
homogeneous quadratic aggregator function 5,0)()( Axxxf T= , where A  is a 
symmetric matrix of constants (see Diewert (1976)). The quadratic function above 
is an example of a flexible functional form (i.e. a function that provides a second 
order approximation to an arbitrary twice continuously differentiable function). 
Since FI  is exact for a flexible functional form, it is said to be a superlative index 
number (see Diewert (1976)). In the papers of Afriat (1972), Pollak (1971) and 
Samuelson-Swamy (1974) we can find other examples of exact index numbers 
and also superlative index numbers (see Diewert (1976), von der Lippe (2007)). 
Under all above remarks, an estimate of the commodity substitution bias csubB  
can be given by (see White (1999)) 

 
        FLacsub IIB −≈ .                                                        (5) 

In general, we can use any other superlative index supI  to calculate the above 
mentioned CPI bias, namely then (see Hałka, Leszczyńska (2011)) 

 
       supIIB Lacsub −≈ .                                                      (6) 

In this paper we compare the CPI biases calculated by using some known, 
superlative price indices. In particular, we use the Fisher price index, the 
Törnqvist price index ( TI ), the Walsh price index ( WI ) and some original price 
index formula, defined in the next part of the paper ( BI ).  These indices are as 
follows (see von der Lippe (2007)) 

 
       PaLaF III = ,                                                            (7) 
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3. The original price index formula 

Białek (2012a) proposes the following price index 

      ULB III ⋅= ,                                                               (11) 

where the lower ( LI ) and upper index ( UI ) we define as follows  
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In the above-mentioned paper it is proved that the index P
BI  satisfies price 

dimensionality, commensurability, identity, the mean value test, the time reversal 
test and linear homogeneity (see von der Lippe (2007)).  Moreover, there are 
some interesting relations between this index and other formulas. For example, in 
the paper of Białek (2013) it is also proved that 
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and thus      
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It leads to the following conclusion 
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In the paper of von der Lippe (2012) it is proved that the Marshall-Edgeworth 
price index MEI  can be written as a weighted arithmetic mean of LI  and UI , 
namely 
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In fact, we can make a much more general observation – it can be proved (see 
Białek (2013)) that each of the above-mentioned indices (Fisher, Laspeyres, 
Paasche, Marhall-Edgeworth, Walsh formulas) have values between the lower 
and upper index. Thus, the formula BI , as a geometric mean of LI  and UI , 
seems to be well formed. In our simulation study (see Białek (2013)) it is shown, 
that the Fisher index and the Białek’s price formula approximate each other. In 
the Section 4 we use the mentioned superlative price indices and the BI index for 
calculating the CPI substitution bias in simulation studies. 

4. Simulation study 

Simulation 1 

Let us take into consideration a group of 50=N  commodities, where 
random vectors of prices and quantities are as follows1 (we present below only 
the first five commodities): 
                                                           
1 The specification of prices and quantities does not mean that constapp s

i
t
i ==/  and 

constahqq s
i

t
i == )(/ , because random components of vectors tP and tQ are generated after 

the generating vectors sP and sQ . In other words, firstly we generate values of vectors of prices 

and quantities twice obtaining two pairs: ( sP , sQ ) and ( sP′ , sQ ′ ) and after that we assume 
st PaP ′= and st QahQ ′= )( .  
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]),...500,100(),7000,3000(),9,3(),6000,1000(),700,400([ ′= UUUUUP s
, 

]),...900,300(),50000,20000(),900,300(),500,100(),70000,30000([ ′= UUUUUQ s
, 

]),...500,100(),7000,3000(),9,3(),6000,1000(),700,400([ ′⋅= UUUUUaPt
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]),...900,300(
),50000,20000(),900,300(),500,100(),70000,30000([)(

′
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where ),( nmU denotes a random variable with the uniform distribution which has 
values in an ],[ nm  interval and )(ah  is some positive function of the parameter 

0>a . We consider three cases: 
Case 1: aah /1)( =  which means that prices and quantities are negatively 
correlated; 
Case 2: 1)( =ah  which means that prices and quantities are uncorrelated and 
consumption is on the constant level; 
Case 3: aah =)(  which means that prices and quantities are positively 
correlated. 

We consider these three cases although only the first one is the most common 
in practice. However, sometimes consumers stock up on commodities although 
they observe the rise in prices and in this case prices and quantities are positively 
correlated. We generate values of these vectors in 100000=n  repetitions. We 
get the results1 presented in Tab. 1, Tab.2 and Tab. 3 and on Fig. 1. 
Case 1 

Table 1.  Basic characteristics of the discussed CPI bias measures for the given  
 values of  parameter a  

Characteristics FLa II −  TLa II −  WLa II −  BLa II −  

 2.0=a  

Mean 0.003191 0.002693 0.003537 0.003323 

Standard deviation 0.003921 0.003502 0.004200 0.004192 

Volatility coefficient 1.228871 1.300712 1.187441 1.261510 

 5.0=a  

Mean 0.001521 0.001672 0.001381 0.001404 

Standard deviation 0.005902 0.007801 0.005902 0.005898 

Volatility coefficient 3.878860 4.665669 4.273692 4.199560 

                                                           
1 To read more about mean value estimation and the bias of this estimation see Żądło (2006), 

Gamrot (2007), Małecka (2011) or Papież, Śmiech (2013). 
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Table 1.  Basic characteristics of the discussed CPI bias measures for the given  
 values of  parameter a   (cont.) 

Characteristics FLa II −  TLa II −  WLa II −  BLa II −  

 1=a  
Mean 0.002513 0.001069 0.002877 0.002756 

Standard deviation 0.01165 0.01108 0.01179 0.01173 
Volatility coefficient 4.62112 10.35642 4.09681 4.25761 

 5.1=a  
Mean 0.001744 0.002202 0.001910 0.001775 

Standard deviation 0.017100 0.021628 0.017262 0.017180 
Volatility coefficient 9.802840 9.821980 9.034320 9.676200 

 2=a  
Mean 0.006229 0.003213 0.006427 0.006033 

Standard deviation 0.023712 0.022446 0.023920 0.023774 
Volatility coefficient 3.806440 6.984651 3.721341 3.940150 

Source: Own calculations using Mathematica 6.0. 

Case 2 

Table 2. Basic characteristics of the discussed CPI bias measures for the given 
values of  parameter a  

Characteristics FLa II −  TLa II −  WLa II −  BLa II −  

 2.0=a  
Mean -0.002382 -0.001877 -0.002532 -0.002517 

Standard deviation 0.003318 0.002939 0.003414 0.003405 
Volatility coefficient 1.392530 1.565551 1.348520 1.353140 

 5.0=a  
Mean -0.002344 -0.002338 -0.002498 -0.002472 

Standard deviation 0.006125 0.006040 0.006212 0.006156 
Volatility coefficient 2.612710 2.582451 2.486670 2.490291 

 5.1=a  
Mean -0.006760 -0.007030 -0.005637 -0.005642 

Standard deviation 0.018090 0.017812 0.017742 0.017716 
Volatility coefficient 2.675760 2.533680 3.147060 3.139941 

 2=a  
Mean -0.004522 -0.004402 -0.005210 -0.005148 

Standard deviation 0.023198 0.022387 0.023437 0.023359 
Volatility coefficient 5.12930 5.084760 4.497961 4.537181 

Source: Own calculations using Mathematica 6.0. 
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Case 3 

Table 3. Basic characteristics of the discussed CPI bias measures for the given  
 values of  parameter a  

Characteristics FLa II −  TLa II −  WLa II −  BLa II −  

 2.0=a  
Mean -0.001148 -0.001988 -0.001118 -0.001148 

Standard deviation 0.002542 0.002984 0.002537 0.002542 
Volatility coefficient 2.213850 1.500073 2.269740 2.213850 

 5.0=a  
Mean -0.001893 -0.002050 -0.002111 -0.001893 

Standard deviation 0.005976 0.005851 0.0061144 0.005984 
Volatility coefficient 3.155621 2.853650 2.896052 3.160200 

 5.1=a  
Mean -0.002294 -0.003171 -0.0024332 -0.002294 

Standard deviation 0.0029232 0.003653 0.003022 0.002903 
Volatility coefficient 1.274201 1.151940 1.242360 1.265571 

 2=a  
Mean -0.003097 -0.003630 -0.002794 -0.002916 

Standard deviation 0.003777 0.004212 0.003534 0.003627 
Volatility coefficient 1.219540 1.160181 1.264651 1.243970 

Source: Own calculations using Mathematica 6.0. 
 

 

Figure 1. Histogram of BLa II −  in the case of 1=a  
Source: Own calculations using Mathematica 6.0. 
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Simulation 2 

Let us take into consideration a group of only 4=N  commodities, where 
vectors of prices and quantities are as follows:  

]2500,500,200,50[ ′=sP , ]2000,400,300,90[ ′=tP , 

]500,200,90,300[ ′++++= dcbaQ s                          and 

]500,200,90,300[ ′=tQ , for some real parameters dcba ,,, . The difference 

BLa II −  depending on these parameters is presented by Fig.2.  
 

2.1. 0== dc                                                       2.2. 0== db  

 
 
 
 
 
 
 
 
 
 
 
 

 

 
2.3. 0== cb                                                        2.4. 0== da  

 
 
 

 

 

 

 

 

 

 

 

Figure 2. The CPI bias calculated as BLa II −  depending on parameters cba ,,  and d  
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2.5. 0== ca                                                             2.6. 0== ba  

 

 

 

 

 

 

 

 

 

 

Figure 2. The CPI bias calculated as BLa II −  depending on parameters cba ,,  and d   
               (cont.) 

Source: Own calculations using Mathematica 6.0. 

5. Conclusions 

In the simulation 1, case 1 (see Tab.1) we observe a positive expected value of 
the commodity substitution bias. This observation corresponds to the results 
coming from the report of the Boskin Commission, where we can find the 
estimated value of the commodity substitution bias on the level of 0,004 (see 
Boskin et al. (1996)). The similar conclusion can be also found in Cunnigham1 
(1996) or Crawford2 (1998). We can notice that only in this case the estimator of 
the CPI bias calculated as TLa II −  is different in its expected value and has the 
highest volatility coefficient (the rest of estimators have similar values of this 
coefficient). Taking into consideration only the expected value of the commodity 
substitution bias we can find high similarity between the measures based on the 
Fisher and Białek formulas. Moreover, the scale of the commodity substitution 
bias does not seem to depend on the parameter a , which describes the changes in 
prices and quantities. In cases 2 and 3 (see Tab. 2 and Tab. 3 and Fig. 1) we 
observe negative expected value of the commodity substitution bias. Such 
situation can appear when the consumption does not depend on prices and is 
constant in time or quantities and prices are positively correlated. Then the real 
CPI is higher than the value obtained by Laspeyres formula (see researches by 

                                                           
1 In this report the commodity substitution bias is in the interval 0 - 0.001. 
2 In this report the commodity substitution bias equals 0,001 and CPI is overestimated by 0.007. 
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Hałka, Leszczyńska1 (2011), Ngasamiaku, Mkenda2 (2009)). In the case 2 we can 
notice that bias measured by using the Walsh price index and the Białek index 
approximate one another. But the case 2 is not a real-life situation because it 
means that consumption remains on the constant level and is independent of 
changes in prices. It is worth noting that in case 3 we can also observe small 
differences between values of the CPI bias measures based on the Fisher and 
Białek formulas (as in the case 1). Taking into consideration good properties of 
the Białek formula (see also Białek (2012a), (2012b), (2013)) and the presented 

results we conclude that the BI  index can be a good alternative for the Fisher 
index in the CPI bias measurement. 

In the simulation 2 we can notice that when parameters cba ,,  and d increase 

then the Euklidean distance between quantities 222),( dcbaQQd sts
e +++=  

also increases and consequently the value of the difference 
),,,(),,,( tsts

B
tsts

La PPQQIPPQQI −  becomes higher (see Fig. 2).  

For 0==== dcba  we have 0),,,(),,,( =− tsts
B

tsts
La PPQQIPPQQI . 

Let us also notice (see Fig. 2) that the CPI substitution bias is an increasing 
function of parameters a  and b  but a decreasing function of parameters c and d . 
When the value of any parameter increases, we observe that the consumption 
decreases. Thus, the above observation confirms the conclusion from the 
simulation 1 if we notice that the first two products have higher prices and the last 
two products have lower prices at time t  compared with time s . 

Note 

This article is based on the paper presented at the 7th Scientific Conference 
on Modelling and Forecasting of Socio-Economic Phenomena, May 7-10, 2013, 
Zakopane, Poland.  
 

 

 

 

 

                                                           
1 In this paper the commodity substitution bias equals - 0.1 or 0. 
2 In this report the commodity substitution bias equals about - 0.0027. 
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WINSORIZATION METHODS IN POLISH  
BUSINESS SURVEY 

Grażyna Dehnel1 

ABSTRACT 

One of the major problems involved in estimating information about economic 
activity across small domains is too  small sample size and incompleteness of 
data sources. For instance, the distribution of enterprises by target variables tends 
to be considerably right-skewed, with high variation, high kurtosis and outliers. 
Therefore, it is not obvious that the implementation of traditional estimation 
methods meets the desired requirements, such as being free from bias or having 
competitive variance. Furthermore, the pressure to produce accurate estimates at a 
low level of aggregation or needs to substantially reduce sample size have 
increased the importance of exploring the possibilities of applying new, more 
sophisticated methods of estimation. The aim of the study was to test the usefulness 
of winsorization methods to estimate economic statistics from the DG1 survey. 

Key words: domain estimation, business statistics, winsorized estimator. 

1. Introduction 

Nowadays the growing demand for business information at a low level of 
aggregation has called for estimation methods that could meet the requirements 
specified by the user’s needs. In practice, business surveys often pose a variety of 
data problems. For example, target variables tend to be highly skewed and 
populations can contain a number of extreme values, the so-called outliers. 
Although outliers are extreme, they need not necessarily be incorrect but are an 
integral part of each survey population and cannot be dismissed in the analysis. 
Since outliers usually have a huge impact on estimates, outlier detection and their 
treatment are important elements of statistical analysis. This is true especially 
when estimation is carried out for small domains. In the case of small sample size, 
outliers can result in estimates greatly diverging from the real value for the 
population. Even if the sample size is large, the influence of an outlier can 
significantly increase the variance resulting in a decreased efficiency of 
estimation.  
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Dealing with outliers has two aspects: the first one involves identifying 
outlying observations in an objective way, while the second focuses on ways of 
handling them to reduce their effect on survey estimates. 

There are three main methods of dealing with outliers in a finite population 
(Cox, 1995): reducing the weights of outliers (trimming weight), changing the 
values of outliers (winsorization, trimming), using robust estimation techniques 
such as M-estimation. 

The paper describes implementation of winsorization - one frequently applied 
estimation method, used to reduce the impact of outlying units. The general idea 
of winsorization is that if an observation exceeds a preset cutoff value, then the 
observation is replaced by that cutoff value or by a modified value closer to the 
cutoff value. 

The objective of the referred study was to assess the performance of four 
various methods use to estimate robust regression parameters, and hence estimate 
the cutoff values used in the winsorized estimator. The paper presents attempts to 
estimate basic economic information about small, medium-sized and large 
businesses at a low level of aggregation (in the joint cross-section of economic 
activity classification and the territorial division by province).  

2. Estimation method 

Winsorization is often used for data cleaning in statistical practice. Since 
outliers are a serious problem in many sample surveys (especially business 
surveys), an appropriate way of handling them is required. Winsorization involves 
identifying cutoff values. Sample observations whose values lie outside certain 
preset cutoff values are transformed in order to make them closer to the cutoff 
value.  

Cutoff values are derived in a way that approximately minimizes the MSE of  
estimates. All sampled units are divided into two groups. One group contains 
typical observations which are left unmodified, the other one contains 
observations regarded as outliers. The classification is made on the basis of two 
preset cutoff values. Then, values of the study variable outside the cutoff values 
are transformed so that they are no longer regarded as outliers. It should be 
stressed, however, that the modified values are artificial and may sometimes be 
unacceptable. As a result of the winsorized estimation, we obtain a „new” sample, 
in which untypical observations have been replaced with typical ones. Further 
calculations are conducted for the modified sample. Any kind of estimation can 
be used at this stage.  Here, GREG estimation is illustrated. 

The winsorized estimator, with GREG estimation, can be expressed as: 

∑∑
∈∈

==
dsi

iii
dsi

iiwin ygwywY **~ˆ          (1) 
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where, in the presence of outliers, modified values of the study variable *
iy  are 

calculated in the following manner (Gross, Bode Taylor, Lloyd-Smith, 1986):  
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where:  

ds - population parameter for domain d 

{ }NiU ,.....,.....1=   - general population of size N  
( )Nss ⊆ - sample 

igiwiw =~    

i
iw π

1=  - sampling weights  

ig  - weights dependent on the value of a vector of auxiliary variables for  
              sampled units 

( )'1 ,...,,..., Kikiii xxxx = - vector of auxiliary variables 

∑
∉

=
Ui

ix xt  - population total 

UiK  - upper cutoff value   

LiK  - lower cutoff value  

The cutoff values are calculated to minimize MSE of the winsorized estimator 
under the model (Preston, Mackin, 2002): 

    ( )1~
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where:   
( )**

ii YE=µ  - expectation under the assumed model 
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[ ]DIRwinUU YYEB ˆˆ −= - bias of winUŶ  

[ ]DIRwinLL YYEB ˆˆ −=  - bias of winLŶ  

winUŶ  - the winsorized estimator of the population total when only upper  
                 winsorization is performed 

winLŶ  - the winsorized estimator of the population total when only lower  
                 winsorization is performed. 

When winsorization is mild and reasonably symmetric, being *
iµ  difficult to 

estimate, we can replace *
iµ  with iµ . Then, the approximately optimal cutoffs 

are (Preston, Mackin, 2002): 
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Under the assumption 
iµ = ii xβµ ˆˆ =  (Preston, Mackin, 2002) the cutoff 

values are estimated based on the following formulas: 
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where ii xβµ ˆˆ =  - a robust estimate of regression parameter
iµ (see below). 

In order to estimate the bias parameter BU under winsorization we can use the 
Kokic and Bell approach (1994). According to that approach, the value of BU can 
be calculated by solving the equation: 

{ } 00,max =







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∈si
i GDEG      (10) 

where ( )( )1~* −−= iiii wYD µ  are weighted residuals. Assuming iµ̂  is a robust 

estimate of parameter iµ , we obtain ( )( )1~ˆˆ −−= iiii wYD µ . 

We can write the function ( )( )kU D̂ψ  (Kokic, Bell, 1994).  
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where:  
)(k  - a number assigned to the unit drawn into the sample after ordering all units 

in the sample according to non-ascending estimated residuals iD̂ : 

( ) ( ) ...0...ˆˆ
21 ≥≥≥≥ DD . By solving ( ) 0=GUψ  one can obtain the value 

of G .  

In order to estimate the cutoff values UiK̂  and LiK̂ , in addition to the above 

bias parameters UBG −=  and LBH −=  , it is necessary to compute ii xβµ ˆˆ =  
which is an estimate of *

iµ . For this purpose, robust regression methods can be 
used. Those recommended in the literature (Preston, Mackin, 2002) include: 
Trimmed least squares (TLS), Trimmed least absolute value (ABS), Sample 
Splitting (HALF), Least median of squares (LMS). 

The method of Trimmed least squares (TLS) involves first fitting an 
Ordinary Least Squares (OLS) regression model to minimise the function:  

     ( )2∑
∈

−=
si

i
T

i xyF β              (12)  

Then fitted values are calculated, and then residuals. In the second step, units 
with the largest positive and negative residuals are removed. Finally, a new 
regression model is fitted to the reduced sample in order to estimate the value 
of *

iµ .  
Another method used in robust regression is Trimmed least absolute value 

(ABS). It consists in fitting a regression model to minimise the function:  

∑
∈

−=
si

i
T

i xyF β             (13) 

After evaluating fitted values and residuals, as is the case in the TLS method, 
units with the largest positive and negative residuals are removed. A new 
regression model is fitted to the reduced sample. It is expected that the ABS 
method is a more robust regression model than the TLS technique because large 
residuals which are not squared have less influence on the regression parameters. 

Another example of robust regression is Sample Splitting Technique (HALF) 
based on Ordinary Least Squares (OLS). It is applied to data that has been 
randomly split into two halves. A regression model is fitted to each half of the 
data while the residuals are calculated using the model applied to the half of the 
data that was not used to fit the model. Then, after merging the data, units with 
the largest positive and negative residuals are removed.  The process is repeated 
until a certain percentage of data has been deleted.  The HALF technique is 
expected to be more robust than TLS because the residuals used to remove the 
‘outlier’ units are not calculated from the regression model that has been 
generated using these ‘outlier’ units. 
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The list of robust regression techniques cannot be complete without the Least 
median of squares (LMS) technique. It was described by Rousseeuw and Leroy 
[2003]. It resembles the bootstrap method.  It involves drawing subsamples of 
size n – 1 from a sample of size n using simple random sampling with 
replacement. For each subsample trial regression model parameters are calculated 
and then their squared residuals, which are used to calculate the median. The 
model with the smallest median of squared residuals is selected. The LMS 
technique should be more robust than TLS because an OLS regression model is 
fitted in the absence of ”outlier” units, without totally removing these “outlier” 
units (Preston, Mackin, 2002). 

3. Data source 

Information for the study came from the DG1 survey conducted by the 
Statistical Office in Poznan. The survey is conducted in the form of monthly 
reports submitted by all large and medium-sized enterprises and a 10% sample of 
small enterprises. Its objective is to collect up-to-date information about basic 
indicators of economic activity of enterprises, such as revenue from sales (of 
products and services), number of employees, gross wages, volume of wholesale 
trade and retail sales, excise tax, specific subsidies. The sample frame includes 
98,000 units, of which 19,000 are medium-sized and large enterprises (with over 
49 employees), 80,000 are small enterprises (from 10 to 49 employees). In effect, 
about 30,000 units participate in the survey every month. 

4. Description of the study 

The study was limited to enterprises that were active in August of 2012. Gross 
wages were the target variable, while revenue from sales of products (goods and 
services) was the auxiliary variable. 

The general population included all enterprises that participated in the DG1 
survey. This choice enabled access to detailed information about the target and 
auxiliary variables. With the general population defined in this way, it was 
possible to conduct a simulation study, which was then used to evaluate 
estimation precision.  

The level of aggregation adopted for the study was a combination of 
economic activity classification (NACE Rev.2) and the territorial division by 
province. 

5. Precision assessment methods 

The precision of estimators analysed in the study was evaluated using the 
bootstrap method. 1000 iterations of drawing 20% samples were made, which 
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were then used to calculate: 

• Relative estimation error (REE) 

 ( ) ( )
( )d

d

d YE
YVar

YCV ˆ
ˆ

ˆ =    (14) 

 where: ( ) ( )
21000

1
,

ˆˆ
999

1ˆ ∑
=

−=
b

ddbd YYYVar  (15) 

• Mean absolute relative bias (ARB)  
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• Relative root mean square error (RMSE)   
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• To describe the general precision of combined estimates, for all small areas, 
mean values of Relative root mean square error applied to particular domains 
were calculated. The mean values were calculated as arithmetic means used in 
empirical studies and as weighted means 
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Owing to the large volume of estimation results, the following presentation is 
limited to estimates for the variable of gross wages for two PKD categories: 
manufacturing, construction and trade.  

6. Estimation results and assessment of their precision 

The effect of different winsorized estimation techniques on the value of the 
study variable is shown on a scatterplot (see Fig. 1). To illustrate the shift in 
values as a result of modification, only domains for manufacturing have been 
selected. Empirical values of the study variable in domains are marked by a black 
cross. Each domain is represented by five points: the real value and values 
modified as a result of each of the four robust regression techniques. The degree 
of modification depends on the type of robust regression technique. It is also 
worth noting that in nearly all the cases the HT estimates were significantly 
different from the winsorized estimates.  

 



104                                                                            G. Dehnel: Winsorization methods … 

 

 

 
Figure 1. Real values (Y- Gross Wage) and values estimated by winsorization 
Source: Own calculations based on DG1 survey, data from August 2012. 

 

The scatterplot shows both the direction and the degree of modification of the 
study variable. In the case of units classified as x-outliers, namely for small values 
of wages paid by businesses with high revenue, the modification involved 
increasing the value of the study variable. The study variable was decreased in the 
case of outliers corresponding to businesses paying high wages but reporting low 
revenue.  

Figures 2-7 present the distribution of three performance criteria: relative 
estimation error, mean absolute relative bias and relative root mean square error 
for two analyzed sections: construction and trade. From the results in Fig. 2 and 3 
we can see that in most cases the winsorized estimator has considerably less REE 
than the HT and GREG estimators. 

The amount of bias induced by winsorizing is for most cases almost 
insignificant except in the case of province characterised by high variation of the 
auxiliary variable (see Fig. 4 and 5). In terms of RMSE, the performance of the 
winsorized estimators is considerably better than the HT and GREG estimator 
(see Fig. 6 and 7).  
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Figure 2. Relative estimation error for construction 
Source: Own calculations based on DG1 survey, data from August 2012. 

 

 
Figure 3. Relative estimation error for trade 
Source: Own calculations based on DG1 survey, data from August 2012. 

 

 
Figure 4. Mean absolute relative bias for construction 
Source: Own calculations based on DG1 survey, data from August 2012. 
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Figure 5. Mean absolute relative bias for trade 
Source: Own calculations based on DG1 survey, data from August 2012. 

 

 
Figure 6. Relative root mean square error for construction 
Source: Own calculations based on DG1 survey, data from August 2012. 

 

 
Figure 7. Relative root mean square error for trade 
Source: Own calculations based on DG1 survey, data from August 2012. 
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For most values of the estimated cutoffs (calculated according to the four 
various methods of estimate robust regression parameters), the winsorized 
estimator significantly outperformed the expansion estimators (see Tab. 1). There 
are very few cases when the HT and GREG estimation is better than the 
winsorized estimator. The winsorized estimator nearly always had considerably 
smaller RMSE than the expansion estimators.  

The results described above indicate that winsorizing optimize trade-off 
between variance and bias. The improvement in the general performance of the 
estimator that is obtained against extremely large errors from winsorizing is 
usually at the price of introducing a small amount of bias in estimation. 

Table 1. Relative root mean square error for construction and trade 

 RMSE  HT GREG winTLS winABS winHALF winLMS 

Construction 
  

29.1   22.2   20.7   20.3   20.6   17.6 

RMSE<RMSEHT (%) 88 94 94 100 94 

Trade 
  

31.1   27.7   25.5   25.2   22.1   23.5 

RMSE<RMSEHT (%) 56 75 81 88 69 

Source: Own calculations based on DG1 survey, data from August 2012. 

 
Figures 8-9 present the distribution of estimates for selected provinces for 

construction and trade. The use of the winsorized estimation reduces estimator 
variance compared to direct estimation. The distribution of the winsorized 
estimates is significantly more leptokurtic than DIRECT or GREG estimates. In 
many cases it follows the normal distribution while the distribution of DIRECT or 
GREG estimators is sometimes multimodal or highly skewed. It is very difficult 
to point out which type of the winsorized estimators has better properties based on 
the presented figures. 
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Figure 8. Distribution of estimates for selected provinces for construction  
Source: Own calculations based on DG1 survey, data from August 2012. 
 
 
 

  

  
Figure 9. Distribution of estimates for selected provinces for trade  
Source: Own calculations based on DG1 survey, data from August 2012. 
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7. Conclusion 

• Simulation research demonstrated the relation between efficiency of 
estimation and a type of robust regression technique used.  

• The effectiveness of the winsorized estimator in terms of its resistance to 
unusually large residuals depends on the choice of cutoff values - in other 
words, on methods of estimating bias parameters and regression parameters. 
The more robust regression technique was applied, the more efficient estimates 
were produced. 

• The use of the winsorized estimation reduces estimator variance.  
• Winsorization reduces outliers values, producing an insignificant estimated 

bias in the characteristic estimates.  
• If cutoff values are chosen appropriately, the decline in variance is big enough 

to offset the bias of MSE. The winsorized estimator nearly always outperforms 
the expansion estimator in terms of MSE. 
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MULTIVARIATE DATA FROM BIG ECONOMIC 

DATABASES 

Daniel Kosiorowski1, Dominik Mielczarek2, Jerzy Rydlewski2, 
Małgorzata Snarska3 

ABSTRACT 

In this paper we present a novel perspective dedicated for sparse high-
dimensional data sets, i.e. data which contain many zeros among coordinates of 
observations. Using jointly, selected sparse methods recently proposed in 
multivariate statistics, and kernel density framework for discrete data, we outline 
a general perspective for bringing out useful information from big economic 
databases. As a framework for our considerations we take the so-called functional 
data analysis, which originates from Ramsay and Silverman works. In particular 
we use functional principal components analysis within 2D density estimation 
procedure proposed by Simonoff. 

Key words: sparse data, sparse methods, robust methods, categorical data, big 
data.  

1. Introduction  

In recent years several authors have investigated the use of smoothing 
methods for sparse multinomial data. In his excellent paper Simonoff (1983) 
considered probabilities in a large one-dimensional sparse contingency table 
estimated by maximizing the likelihood modified by a roughness penalty. It was 
shown in his paper that if certain smoothness criteria on the underlying 
probability vector are fulfilled, the maximum penalty estimator is consistent in a 
one-dimensional table under a sparse asymptotic framework. However, a proof of 
sparse asymptotic consistency for multidimensional tables was not found. It was 
shown that the bias of kernel estimates of probabilities for cells near the 
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boundaries of the multinomial vector often dominates the mean sum of the 
squared error of the estimator. However, boundary kernels contrived to correct 
boundary effects for kernel regression estimators can achieve the same result for 
these estimators. Dong and Simonoff (1994) investigated the properties of 
estimators based on boundary kernels and compared them to unmodified kernel 
estimates and maximum penalized kernel likelihood estimates. They showed that 
the boundary-corrected estimates usually outperform uncorrected kernel estimates 
and are quite competitive with penalized likelihood estimates. Shane and 
Simonoff (2001) considered categorical data analysis using maximum likelihood. 
The problem with maximum likelihood estimates is their sensitivity to outlier 
cells. For this reason robust alternatives to maximum likelihood estimation were 
proposed in Shane and Simonoff (2001). The methods include the least median of 
chi-squared residuals, the least median of weighted squared residuals, and 
methods using the least trimmed functions. They also considered equivariance 
and breakdown properties of the estimators. They showed that the maximum 
likelihood estimates break down in the presence of outlying cells, while robust 
estimators do not as long as the contamination point does not exceed the 
breakdown point. Simonoff (1998) focused on nonparametric estimation of 
smooth functions. He considered categorical data smoothing and constructed 
effective categorical likelihood smoothing estimates. He also used an appropriate 
likelihood function yielding cell probability estimates with many desirable 
properties. Such estimates can be used to construct well-behaved density 
estimates using local or penalized likelihood estimation. Simonoff (1998) showed 
advantage of the local polynomial likelihood density estimate over the penalized 
likelihood density estimate. Namely, it is the structure which can be manipulated 
to allow local variation in the amount of smoothing. 

In this paper we consider the estimator of the bivariate density function 
proposed in Simonoff (1988) and its modifications in the context of data mining 
in huge economic databases which may contain outliers.  

2. Estimator of two-dimensional density function 

Models using categorical data usually assume that there is no relation between 
adjacent cells. This is not the case for continuous distributions, where many 
estimation procedures are based on the fact that observations falling near the 
approximation site do give some information about the function we are trying to 
estimate, whether this is a density or a regression function. This information by 
proximity is at the base of the modifications that have been proposed to the 
histogram. The classical kernel or local polynomial estimators are, in fact, clever 
ways to use this idea to improve upon rough estimates. This idea has been used to 
smooth over discrete distributions, with increased interest when few observations 
are available when compared with the number of cells of the underlying 
distribution, or when the observations tend to concentrate too much in a few cells 
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of the support, indicating that the underlying distribution is quite peaked.  
Smoothing over adjacent cells does contribute to improve estimators in the similar 
cases. For one-dimensional distributions Simonoff (1983), Hall and Titterington 
(1987) smoothed the histogram with a uniform-like distribution, and Burman 
(1987) discretized the kernel estimator. More recently Simonoff (1995, 1996), 
Dong and Simonoff (1995) or Aerts et al. (1997) studied discrete versions of local 
polynomial estimators for higher dimensional data. Jacob and Oliveira (2011) 
used the local polynomial approach but with respect to a relativized L2 - error, 
showing good performance for one-dimensional data. The extension of these 
methods to higher dimensional data introduces some difficulties.  

Assume we consider objects with respect to (w.r.t.) two variables 1X  and 2X , 

and our aim is to estimate their joint probability density function. Our starting 
point is the estimator proposed in  Simonoff (1995), which is based on binning the 
data and dedicated to sparse continuous data. Simonoff proposes to divide the 
range of 1X  into 1n  bins, the i-th bin being called 1iI  , and to divide the range of 

2X  into 2n  , the j-th bin being called 2 jI  .  

Table 1. Illustration for binning 2D continuous data 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. 2D kernel density estimates for binned data, unemployment vs. mean  
                 salary in Polish subregions in 2006  
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Next, let us consider 2|1 2 1 1( | )if x x I , the conditional density of 2x  given 

1 1ix I , 1|2 1 2 2( | )jf x x I , the conditional density of 1x  given 2 2 jx I , the 

marginal densities of 1x  and 2x  to be 1 1( )f x  and 2 2( )f x . Integrating the 

conditional densities over the appropriate bins gives conditional probabilities: 

    
1

1 1 2 2 1|2 2 2( | ) ( | )
i

i j jI
P x I x I f u x I du    ,                            (2.1) 

      
2

2 2 1 1 2|1 1 1( | ) ( | )
j

j i iI
P x I x I f v x I dv    .                              (2.2) 

Simonoff proposes to estimate the conditional probabilities by treating each 
row and each column as one-dimensional multinomial vector, and then smooth 
them using the penalized likelihood method proposed by Simonoff (1983). The 
marginal probabilities were estimated using the marginal frequency estimates. He 
shows that when the number of rows 1n  , and the number of columns 

2n  , then his estimator is a sparse asymptotic consistent one. For estimating 

the continuous density 1 2( , )f x x  we use an analogous technique.  

Substituting into  

     
1/2

1 2 2|1 2 1 1 1 1|2 1 2 2 2( , ) ( | ) ( ) ( | ) ( )f x x f x x f x f x x f x    ,                         (2.3) 

the kernel estimates  of  the conditional and marginal densities we obtain the 2D 
density estimate. 

It is possible to generalize the estimator proposed by Simonoff for the 
multidimensional case. The main advantages of this estimator are relative 
computational simplicity in comparison to direct estimation of the 
multidimensional density, the effect of avoiding outlying cell propagation on the 
whole density estimate and its elasticity related to marginal and conditional 
density estimation method. 

Further, we use a kernel density estimator for discrete data. Let us revise some 
basic notions related to this idea. Consider the estimation of a probability function 
defined for { }iX 0,1,...,c -1 S  .  

The kernel estimator of ( )p x   

                        
1

1
ˆ ( ) ( , )

n

i
i

p x l X x
n 

   ,                                            (2.4) 

where ( )l   is a kernel function defined by, say, 

              
1

( , )
/ ( 1)

i
i

X x
l X x

c otherwise




 
  

 ,                                 (2.5) 
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and where [0, ( 1) / ]c c   is a “smoothing parameter” or “bandwidth”. It is 
easy to show 

1 ( )
ˆ ( ) ( )

1

cp x
Ep x p x

c
      

 , 

2
( )(1 ( ))

ˆvar ( ) 1
( 1)

p x p x c
p x

n c
 

   
. 

This estimator was proposed by Aitchinson and Aitken (1976). 
Theoretical results related to the Simonoff estimator (2.3) applied to binned 

data can be found in Simonoff (1995). Further, we use the estimator of (2.3) of 
the form  

       1/2

1 2 2|1 2 1 1 1 1 1|2 1 2 2 2 2
ˆ ˆ ˆ ˆ ˆ( , ) ( | ) ( ) ( | ) ( ) .i jf x x f x x I f x f x x I f x          (2.6) 

The rate of the Mean Squared Error for this estimator equals to 4/7( )O n , and 

is worse than the rate of the common univariate kernel estimator 2/3( )O n . This 
inferiority has been called the quantitative effectiveness of smoothing.  
However, it is balanced by the adaptive nature of the proposed estimator in the 
sense of mode determination. 

It is worth noting how important is the correct choice of bins for 
multimodality detection of the underlying distribution. Figure 1 presents the 
effects of kernel density estimation of the unemployment rate and the average 
salary in Polish subregions in 2006 for various number of bins. Obviously, the 
number of bins should increase as the sample size increases. As it has been 

shown, it should increase with a rate 2/7n , the best rate with respect to squared 
error. 

3. Robustness in the case of sparse contingency table 

Effective analysis of high-dimensional discrete sparse data requires a special 
attention especially in the context of robustness of the procedure and its 
computational complexity. Issues related to robustness of the procedure dedicated 
to analysis of discrete data are not so highly developed as in the case of 
continuous data analysis. In the predominant part, good multivariate robust 
procedures are computationally very intensive. This in particular affects methods 
of nonparametric estimation of probability density function for high-dimensional 
data. As a starting point for our considerations and proposals we take pioneering 
works of J. Simonoff related to automatic and adaptive estimation of bivariate 
density function (see Simonoff, 1985, 1988, 1995), developed now by Jacob and 
Oliveira (see Jacob & Oliveira,2011). 

Categorical data analysis is typically performed by fitting models to the 
observed counts in a contingency table using maximum likelihood. An inherent 
problem with maximum likelihood fits is their sensitivity to outlier cells, the ones 
whose counts are not consistent with the assumed model. Maximum likelihood 
estimates break down in the presence of outlying cells. It is worth noting that in 
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categorical data analysis an outlier is a cell, i.e. a set of observations rather than a 
single observation, which deviates greatly from the expected count associated 
with the parametric model appropriate for the majority of cells. 

Following Shane and Simonoff (2001), let us consider a D  dimensional 
contingency table with d  cells written as 1d  vector 1( ,..., )dn n n  . Let 

1( ,..., )de ee  be the vector of expected cell counts under a hypothesized model. 

The expected counts are k ke N p   , where N  is the total sample size 

1

d

kk
N

  , where 1( ,..., )dp pp  are theoretical cell probabilities. Assuming 

multinomial model for the cells we can understand robustness of the estimator in 
terms of goodness-of-fit statistics: 

 
2 2

2 2

1 1 1

ˆ( ) ( )
ˆ( , )

ˆ

d d d
k k k k

k k k
k k kk k

n e n p N
X n e

e p N


  

 
                       (3.1) 

or equivalently the likelihood ratio goodness-of-fit statistics 

           2

1 1

ˆ2 log( / ) 2 log( / )
d d

k k k k k k
k k

G n n e n n N p
 

                       (3.2) 

Let 2
( )lX  denote the l   order statistics of 2

kX  . Shane and Simonoff (2001) 

define a robust Pearson estimate of a contingency table model as minimizing the 
criterion 

                                2
( )

1

( , )
d

k k k k
k

c X n e

  ,                                                         (3.3) 

where 1( ,..., )dc cc  is an appropriate vector of weights. 

The robust estimate according to Simonoff means a fit that is appropriate for 
the majority of cells and which is determined by the vectors of weights

1( ,..., )dc cc . For continuous data this idea depends on the binning, the vector 

of weights and the measure used to assess the overall goodness of fit.  
In the context of the analysis of sparse high-dimensional data for robustness 

of the procedure evaluation we propose to follow ideas presented in Mizera 
(2001). According to the ideas it is possible to define halfspace depth and 
maximum depth based estimators for the contingency tables. General 
halfspace depth can be defined as a measure data-analytic admissibility of a fit 
with respect to the data. Depth of p  can be expressed as the proportion of the 
data points whose omission causes p  to become a nonfit, a fit that can be 
uniformly dominated by another one. 

For a contingency table with bins    1 2i jI I  , 11,...,i k  , 21,...,j k  , we 

define the depth of a fit 1( ,..., )dp pp  as a minimal fraction of observations 

in the contingency table, whose replacement with other observations from 
the table will effect in taking the overall goodness-of-fit measure 
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unacceptable value. As the overall goodness-of-fit measure we take Pearson 
statistics calculated for nonzero cells (we can use many other criteria functions 
instead, however): 

                          
2

0

( )
k

k k
PEAR n

k

n Np
F

Np


  .                                 (3.4) 

As the robust estimator of the model we take the maximum depth 
estimator. 

In Mizera (2002) it is shown how to reformulate the general criteria (3.4) into 
the first order optimization. Mizera introduces the tangent depth -  the depth of the 
fit takes a form  

                  ( ) inf# : ( ) 0T
PEARd n F


  pu 0

p u p .                            (3.5) 

where p fŃ denotes gradient of   a function f  in a point p  . 

Attractive breakdown point robustness of the maximum depth estimator 
follows from Mizera (2002). 

4. Our proposals 

Sparse methods could be described as methods which make interpretation of 
the statistical analysis easier by forcing the statistical procedure to produce 
sparser output that is, for example, a sparser vector of regression coefficients. As 
a prototype for the sparse methods one can take the ridge regression, the LASSO 
regression, or the ELASTIC NET. Considering regression data  

  1
1 1( , ),..., ( , ) p

N Ny y x x �  , in ridge and LASSO regression correspondingly, 

as regression parameters estimates we take vectors  
2

0
1 1

ˆ arg min
pN

ridge
i ij j

i j

y x


  
 

 
   

 
  , subject to 2

1

p

j
j

t


 ,     (4.1) 

2

0
1 1

ˆ arg min
pN

LASSO
i ij j

i j

y x


  
 

 
   

 
  , subject to 

1

p

j
j

t


  .      (4.2) 

In the case of sparse PCA, taking into account the fact that an interpretation of 
the PCA components is conducted by examining the direction vectors known as 
loadings – we force the estimation procedure to produce sparser set of the 
loadings. Constraints encourages some loadings to be zero (for further details see 
Hastie et al. (2009)).  The SCOTLASS procedure of Joliffe et al. (2003) focuses 
on maximum variance property of principal components by solving 

    max T Tv X X v  , subject to 
1

p

j
j

v t


  , 1T v v .                    (4.3) 
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Sparse and robust methods are relatively new and appeared during last 5 years 
(see Croux and Filzmoser, 2010). 

Below we propose a general idea of producing a sparse and robust estimator 
of 2D density appealing to functional data analysis. The Simonoff estimator 
enables us to decompose 2D density estimation procedure (computationally a 
more complicated problem) into blocks which are estimated using 1D marginal 
densities and 1D conditional densities (computationally a less complicated 
problem). 

Assuming a certain sample of contingency tables – for each of its cells we 
dispose of a certain number of marginal and conditional density estimates. We 
can successfully apply Functional Data Analysis (FDA) machinery to them. In 
particular we can use functional PCA of the estimated densities. Squared 
functional principal components fulfil density function postulates. We can 
decompose the overall density by means of them. 

Let us consider functional data 1( ),..., ( )sx t x t . Assuming we have chosen a 

basis 1,..., L   (we advocate here on using basis consisted of splines), we consider 

representations of the data 

                               
1

( ) ( )
L

r rj j
j

x t c t


  ,                                                  (4.4) 

where 1,...,r rLc c   are coefficients for r-th objects in this basis.  

Coefficients 1,...,r rLc c  are chosen separately for every function ( )rx t .  

Assume we fixed L  basis functions and then our data set consists of s  functions

1( ),..., ( )sx t x t . In the FDA we perform basic operations using L s  matrix 

containing object coefficients in the fixed basis (see Krzyśko et al., 2012). 
Introducing a quantity 

             ( ( )) ( ) ( )x t t x t dt    ,                                          (4.5) 

our aim is to find a function ( )t  which in a best way underlines a variability of 

the data, i.e. for which ( ( ))x t  takes the maximal value. 

FPCA GOAL: 2

1

max ( ( ))
s

i

x t
 



 
  

 
  , under the condition 2 ( ) 1t dt  .    

(4.6) 

It is common to use a restriction on weight function   , 2 ( ) 1t dt   . In a 

similar manner as in the case of classical PCA a non-decreasing sequence of 

eigenvalues 1 2 K      is developed recursively: ( ) ( ) 0j lt t dt    , 

1,..., 1j l   , 2 ( ) 1l t  . For further details see Ramsey et al. (2010) and 

Krzyśko et al. (2012). 
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5. Empirical examples 

In order to illustrate the presented approach we used the Central Statistical 
Office (CSO) data concerning traceability of crimes and unemployment in Polish 
subregions in 2004 – 2010. We have analysed eight 5x5 contingency tables, each 
consisting of 66 observations. Figures 2 – 6 present kernel density estimates for 
marginal, conditional and joint probability distribution of the unemployment rate 
and traceability of crimes in Polish subregions in 2004 – 2010. Estimates were 
obtained using binned data presented in Table 1. Figures 7 – 18 present results of 
the functional PCA performed on the basis of 8 contingency tables consisting of 
data on traceability of crimes and the unemployment rate in Polish subregions. 
For simplicity of the presentation we focused only on one cell placed on the 
crossing of the shaded row and column in Table 2. We have performed similar 
analysis for the rest of the cells. It is easy to see that we can estimate the joint 
density of the variables using the idea of the Simonoff estimator (2.3) and using 
only the first or the second weight function (Fig. 9, Fig. 12, Fig. 15, Fig. 18). The 
output obtained in this way is much easier to interpret – the joint density function 
is decomposed into more evident layers. Although it is well known that the 
classical PCAs are not robust for outliers, several simulation studies we have 
performed using mixtures of various 2D discrete distributions show that our 
proposal seems to be robust to replacement of a small fraction of observations in 
the contingency table and in the spirit of Mizera (2002) ideas. It is possible, 
however, to directly the use robust PCA (see Croux et al., 2012) instead of 
classical PCA calculations during functional PCA. Our approach is 
computationally less intensive.  

Table 2. A contingency table – traceability of crimes in Polish sub-regions 
                in 2010 

 
 
 
 
 
 
 
 
 
 

2010 
X11= 
50.4 

X12= 
58.4 

X13= 
66.4 

X14= 
74.4 

X15= 
82.4 

TOTAL 

X21=5.6 3 2 1 2 0 8 
X22=9.8 1 4 5 1 2 13 
X23=14.0 0 1 3 14 8 26 
X24=18.2 0 0 1 9 3 13 
X25=22.4 0 0 1 5 0 6 
TOTAL 4 7 11 31 13 66 
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Figure 2. Kernel estimate of marginal 
density – traceability of crimes in 
Polish sub-regions in 2010 
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Figure 3. 2D kernel density estimate 
of unemployment rate vs. traceability 
of crimes in Polish sub-regions in 2010  

Figure 4. Kernel estimate of 
marginal density – unemployment 
rate in Polish sub-regions in 2010 

Figure 5. Conditional density estimate of unemployment rate under the 
condition that traceability of crimes takes value i1,…, i5. Last graph represents 
the unconditional density estimate of unemployment  
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Figure 6. Conditional density estimate of traceability of crimes under the 
condition that unemployment rate takes value w1,…,w5. Last graph represents 
the unconditional density estimate of traceability 

Figure 7. Density estimates for traceability of crimes in Polish subregions 
in 2004–2010 

Figure 8. Functional mean (left) and functional SD (right) for density 
estimates for traceability of crimes in Polish subregions in 2004–2010  
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Figure 9. First and second weight functions (analogues of the eigenvectors) 
for density estimates for traceability of crimes in Polish subregions in 2004 – 
2010 

Figure 10. Density estimates for conditional traceability of crimes in Polish 
subregions in 2004–2010, condition unemployment rate = i1

Figure 11. Functional mean (left) and functional SD (right) for conditional 
density estimates for traceability of crimes in Polish subregions 
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Figure 12. First and second weight functions (analogues of the eigenvectors) for 
conditional density estimates for traceability of crimes in Polish subregions 
in 2004–2010 

Figure 13. Density estimates for unemployment rate in Polish subregions  
in 2004–2010

Figure 14. Functional mean (left) and functional SD (right) for density 
estimates for unemployment in Polish subregions in 2004–2010
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Figure 15. First and second weight functions (analogues of the eigenvectors) 
for density estimates for unemployment rate in Polish subregions in 2004–2010 

Figure 16. Density estimates for conditional traceability of crimes in Polish 
subregions in 2004–2010, condition unemployment rate = i1

Figure 17. Functional mean (left) and functional SD (right) for conditional 
density estimates for traceability of crimes in Polish subregions 
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6. The random matrix theory for detecting dependency between 
variables in a huge contingency table  

Consider now that a contingency table, i.e. a data frame of 1p  input factors 

and 2p  output factors is observed continuously at n  consecutive time moments. 

Let iaY  be the value of the i -th ( 11, ,i p  ) random variable at the a -th time 

moment ( 1, ,a n  ); together, they make up a rectangular 1p n  matrix Y . 

Analogously, let jbX  be the value of the j -th ( 21, ,j p  ) random variable at 

the b -th time moment ( 1, ,b n  ); together, they make up a rectangular 2p n  

matrix X . In general 1 2, ,p p n  can be very large. Further, we will assume that 

1 2, ,p p n   but 1 1/p n c  and 2 2/p n c  are fixed. Under null hypothesis, 

each iaY  and  jbX  is supposed to be drawn from a Gaussian probability 

distribution, and that they have mean values zero. Specifically, the aim is to test 
the hypothesis: 

           0H  : x and y are independent; against 1H  : x and y are not 

independent,  

where 
11( , , )p

Tx x x  and 
21( , , )T

py y y . Without loss of generality, 

suppose that 1 2p p . 

It is well known that the canonical correlation analysis (CCA) deals with the 
correlation structure between two random vectors. Draw n  independent and 
identically distributed (i.i.d.) observations from these two random vectors x  and 
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Figure 18. First and second weight functions (analogues of the eigenvectors) 
for density estimates for unemployment rate in Polish subregions in 2004–2010 
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y  respectively, and group them into 1p n  random matrix 

11( , , ) ( )n ij p nx x X   X  and 2p n  random matrix 

21( , , ) ( )n ij p ny y Y   Y  , respectively. The CCA seeks the linear combinations 

aT x and bT y that are most highly correlated, that is to maximize 

              ( , )
T

T T XY

T T
XX YY

a b
Corr a x b y

a a b b



 

 
                             (6.1) 

where XX  and YY  are the population covariance matrices for x  and y  

respectively, and XY is the population covariance matrix between x  and y .  

After finding the maximal correlation 1r  and associated vectors 1a  and 1b , 

CCA continues to seek a second linear combination 2
Ta x  and 2

Tb y  that has the 

maximal correlation among all linear combinations uncorrelated with 1
Ta x  and 

1
Tb y . This procedure can be iterated and successive canonical correlation 

coefficients 
11, , p  can be found. It turns out that the population canonical 

correlation coefficients 
11, , p   can be recast as the roots of the determinant 

equation 

                                               1 2det( ) 0XY YY XXXY
 

                              (6.2) 

This equation can be replaced by: 

                                           1 2det( ) 0XY YY XXXY
G D G r D

                             (6.3) 

1 1 1T T T
XX YY XYD XX D YY G XY

n n n
    

We also think of XXD , YYD  and XYG  as sample covariance matrices. 

However, due to dimensionality curse these are not consistent estimators of 
population covariance matrices, when the dimensions 1p  and 2p are both 

comparable to the sample size n . As a consequence, it is conceivable that the 
classical likelihood ratio statistics do not work well in the high dimensional case. 

Moreover, 
1

2 2 2
1 2, , , pr r r  are the eigenvalues of the matrix 

                            1 1
TXX XX XY YY XY

S D G D G                                          (6.4) 

Evidently, 1
XXD  and 1

YYD  do not exist when 1p n  and 2p n . For this 

reason we also consider the eigenvalues of the regularized matrix 

                                           1 1
TXY tX XY XY XY

T D G D G  ,                             (6.5) 
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where 
1

1 11
( )tX PD XX tI
n

   , t is a positive constant number and 
1pI  is 

a 1 1 p p  identity matrix. 

In addition to proposing statistics for testing we will also establish the limit of 
the ESD of regularized sample canonical correlation coefficients and central limit 
theorems (CLT) of linear functionals of the classical and regularized sample 
canonical correlation coefficients 

11 2, , , pr r r  , respectively. To derive the CLT 

for linear spectral statistics of classical and regularized sample canonical 
correlation coefficients, the strategy is to first establish the CLT under the 
Gaussian case, the entries of X are Gaussian distributed. In the Gaussian case, the 
CLT for linear spectral statistics of the matrix XYS  can be linked to that of an  

F -matrix, which was investigated in Bai and Silverstein (1995).  

We make the following assumptions: 
1. 1 1( )p p n  and 2 2 ( )p p n  with 1 1p c  and  2 2p c  , 1 2, (0,1)c c   as 

n   

2. 1,
, 1( ) p n

ij i jX X   and 2 ,
, 1( ) p n

ij i jY Y   satisfy 1/2
XXX W   and 1/2

YYY V  , where 

1 ,
1 , 1( , , ) ( ) p n

n ij i jW w w W     consists of i.i.d. real random variables { }ijW  

with 11 0EW   and 2
11| | 1E W  ; 2 ,

1 , 1( , , ) ( ) p n
n ij i jV v v V     consists of i.i.d. 

real random variables { }ijV  with 11 0EV   and 2
11| | 1E V  ; 1/2

XX , 1/2
YY  are 

Hermitian square roots of positive definite matrices XX  and YY  . 

3. XX DF H   a proper cumulative distribution function. 

By the definition of the matrix XYS , the classical canonical correlation 

coefficients between x  and y  are the same as those between w  and v  when w , 

v  are i.i.d. 
We now introduce some results from random matrix theory and free 

probability theory as presented by Voiculescu (1991). 

Definition 6.1: Denote the ESD of any n n  matrix A  with real eigenvalues 

1 2 n     

                                
1

( ) #{ : }A
iF x i x

n
  ,                       (6.6) 

where #{ }  denotes the cardinality of the set { } . 

Theorem 6.2: When the two random vectors x  and y  are independent and 
each of them consists of i.i.d Gaussian random variables, under Assumptions 1 
and 2, the empirical measure of the classical sample canonical correlation 
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coefficients 
11 2, , , pr r r  converges in probability to a fixed distribution whose 

density is given by 

                               1 1 2 2

1

( )( )( )( )
( )

(1 )(1 )

x L x L L x L x
x

c x x x



   


 

 ,        (6.7) 

1 2[ , ]x L L , and atom size of 2 1max(0, (1 ) / )c c  at zero and size 

2 1max(0,1 (1 ) / )c c   at unity, where 1 2 2 1 1 1 2| |L c c c c c c     and 

2 2 2 1 1 1 2| |L c c c c c c    .  

Here, the empirical measure of 
11 2, , , pr r r  is defined as in the ESD with i  

replaced by ir .  

Let us now introduce the test statistics. Under Assumption 1 and 
Assumption 3, if 1Y W  and 2X W  with 1 2p p  and both 1  and 2  

being invertible, then 1,XYS  which implies that the limit of ( )XYSF x  is a 

degenerate distribution. Thus, we consider the following statistics 

                                           
1

2

11

1
( ) .XY

p
S

n i
i

S xdF x r
p 

                            (6.8) 

In the classical CCA, the maximum likelihood ratio test statistics with fixed 
dimensions is 

                                            
1

2

1

log(1 )
p

n i
i

MLR r


  .                                 (6.9) 

Note that the density ( )x  has atom size of 2 1max(0,1 (1 ) / )c c   at unity. 

Thus, the normalized statistics nMLR  is not well defined when 1 2 1c c   ( 

because 2log(1 )x dx  is not meaningful). In addition, even when 1 2 1c c  , 

the right end point of ( )x , 2L , can be equal to one so that some sample 

correlation coefficients ir  are close to one. For example, 2 1L   when 1 2 1c c  . 

This in turn causes a big value of the corresponding 2log(1 )ir .  

Therefore, nMLR  is not stable.  

Here we would like to point out that the idea of testing independence between 
two random vectors x and y by the CCA is based on the fact that the lack of 
correlation between x and y is equivalent to independence between them when the 
random vector of size (p1 +p2) consisting of the components of x and y is a 
Gaussian random vector.  

In addition, it can be proved that 

                                                     01r( ) )T (HH
XY XY pG G O n                           (6.10) 
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ALGORITHM FOR THE PROCEDURE – “DOUBLE SPARSITY ALGORITHM” 

STEP 1. Preparation of the dataset 

Now we will extend our consideration to the case of n  consecutive 
observations. First, let us divide all variables into two subsets, i.e. focus on 1p  
input factors aX  1( 1, , )a p   and 2p  output factors Y  2( 1, , )p    with 
the total number of observations being n . All series of observations are 
standardized to have zero mean and unit variance. The data can be completely 
different or can be the same variables but observed at different times. First, one 
has to remove potential correlations inside each subset, otherwise it may interfere 
with the out-of-sample signal. To remove the correlations inside each sample we 
form two correlation matrices which contain information about in-the-sample 
correlations: 

1 1
,T TXX YY

n n
 XX YYD D  

STEP 2. Diagonalization 

The matrices are then diagonalized, provided 1 2,n p p , and the empirical 
spectrum is compared to the theoretical Bai, Silverstein (1995) result 

      
1 2

1
( ) ( )( )

2
x x L L x

x



  Re

2 2
1 1 1 1(1 ) (1 )L c L c     

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
STEP 3. Reconstruction 

One can then construct a set of uncorrelated unit variance input variables X̂  

and output variables Ŷ  
                           1 1ˆ ˆ

i j

T T
w i v j

i j

X W X Y V Y
nw nv

   

Figure 19. The spectrum of the single sparse matrices  and  when null 

hypothesis holds (i.e., there are no internal temporal correlations. The eigenvalues 
of ESD, which lie much below the lower edge of the spectrum, represent the 
redundant factors inconsistent with the null hypothesis) 
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where V,U, a ,   are the corresponding eigenvectors and eigenvalues of XXD , 

YYD . 

Finally, we can reproduce the asymmetric 1 2p p  cross-correlation matrix 

G  between the Ŷ  and X̂ : 

                                                ˆ ˆTG XY . 

Under the null hypothesis of independence between X  and Y , the ESD 
should follow the distribution with density (see, Snarska 2012) 

2 2

1 2 1 2 2

Re ( )( )
( ) max(1 ,1 ) ( ) max( 1,0) ( 1)

(1 )

x s x s
x c c x c c x

x x
  


  

       
G

, 

where 1 2 1 2 1 2 1 22 2 (1 )(1 )x c c c c c c c c        are the two positive roots of 

the quadratic expression under the square root. It is easy to see the fact that in the 
limit n  at fixed 1p , 2p  all singular values collapse to zero as they should 

since there are no true correlations between X  and Y ; the allowed band in the 

limit 1 2, 0c c   becomes: 1 2 1 2| |, .x c c c c     When 1 2c c , the 

support becomes 1 1[0,2 (1 )]x c c   (plus a   function at 1x   when 

1 2 1c c  ),  while when 1 1c  , the whole band collapses to a   function at 

1x n  . For 1 2 1c c    there is an initial singularity of ( )x  1x   

diverging as 1/2(1 )x  . Ultimately, 1 0c   at fixed 2c , one finds that the whole 

band collapses again to a   function at 2x c . 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 Figure 20. Theoretical distribution of singular values for under validity of null 

hypothesis. The eigenvalues of ESD, which lie much below the lower edge of the 
spectrum, represent the redundant factors inconsistent with the null hypothesis 
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7. Conclusions 

A common application of the statistical procedures has changed business and 
the economy. Statistics have changed the ways we reason in a public debate, form 
our opinions, manage banking systems, perform interventions in a certain market, 
allocate energy stored in the capital between competing investments.  

The innovative nature of the outlined approach to big economic databases 
analysis is manifested in formation of a complete methodology for a robust 
analysis of sparse high-dimensional discrete data in the economy. Our approach is 
still being developed and we hope to obtain interesting results in the near future. 
We are convinced that our proposal could find several applications in the on-line 
economy and exploration of the official statistics databases.  
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APPLICATION OF QUANTILE  METHODS TO 
ESTIMATION OF CAUCHY DISTRIBUTION 

PARAMETERS  

Dorota Pekasiewicz1 

ABSTRACT 

Quantile  methods are used for estimation of population parameters when other 
methods such as the maximum likelihood method and the method of moments 
cannot be applied. In the paper the percentile method, the quantile  least squares 
method and its two modifications are considered. The proposed methods allow 
estimators to be obtained with smaller bias and smaller mean squared error than 
estimators of the quantile  least squares method. The considered methods can be 
applied to estimation of the Cauchy distribution parameters. The results of the 
simulation analysis of the estimator properties have allowed conclusions to be 
drawn as concerning the application of the considered methods.  

Key words: quantile , percentile method, quantile least square method, Cauchy 
distribution. 

1. Introduction 

Quantile estimation methods can be used for estimating parameters of 
different distributions, particularly in the cases when we cannot use the maximum 
likelihood method and the method of moments, for example, for heavy tailed 
distributions. We focus on the percentile method, the quantile least squares 
method and its modifications.  

Since in the percentile method distribution quantiles are compared with 
sample quantiles, its application requires the formula for the quantile function. 
The number of required quantiles depends on the number of distribution 
parameters. The orders of selected quantile s have impact on properties of 
estimators. Quantiles that give the estimators with small mean squared errors can 
be different for different types of distribution estimates. In Aitchison and Brown 
(1975) the orders of quantiles which should be selected in estimating lognormal 
distribution parameters are given and in Pekasiewicz (2012) they are computed 
for the Pareto distribution.  
                                                           
1 University of Łódź, Department of Statistical Methods. E-mail: pekasiewicz@uni.lodz.pl. 
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The quantile least squares method has the advantage over the percentile 
method that there is no need to determine the ranks of used order statistics. 
However, in the case of the Cauchy distribution, the application of  minimum or 
maximum statistics leads to very large mean squared errors of the parameter 
estimators because extreme statistics have infinite variances. Rejecting extreme 
order statistics significantly improves the properties of the estimators. Hence, we 
suggest the truncated quantile least squares method. In the case of the Cauchy 
distribution, we reject a fixed number of the largest and the smallest order 
statistics. Rejecting the same number of quantiles on both sides of the distribution 
appears to be justified in view of the symmetry of the distribution. The use of this 
method requires determination of the number of rejected quantiles. The second of 
the proposed methods does not require assumptions about the number of truncated 
quantiles. In this method all possible estimators are calculated by the truncated 
least squares and the median of them is chosen. 

The properties of the Cauchy distribution parameter estimators are analysed 
by the Monte Carlo method. The received results allow some conclusions to be 
drawn regarding the choice of ranks of the order statistics in the percentile method 
or the number of rejected order statistics. 

2. The percentile method 

 The percentile method (PM) allows for estimation of unknown parameters 
sθθθ ...,,, 21  of the continuous random variable X distribution with cumulative 

distribution function ( )sF θθθ ...,,,, 21⋅  by comparing theoretical quantiles and 
empirical quantiles (Wywiał, 2004, Castillo et al., 2004). 
 Let nXXX ...,,, 21  be an i.i.d. sample with a cdf F. Let us denote by npi

X ;  the 

sample quantile  of order ,ip  si ...,,1= . Estimators of the parameters sθθθ ...,,, 21  
are the statistics pm

s
pmpm θθθ ˆ...,,ˆ,ˆ

21  that are solutions of the equations: 

 

( )
( )

( )










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=

=

−
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−

,...,,,,
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,...,,,,

,...,,,,

21
1

;
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1

;
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1
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1

ssnp

snp

snp

pFX

pFX

pFX

s
θθθ

θθθ

θθθ

 (1) 

where 1−F  is the inverse of F . 

When estimating parameters 21,θθ  for the random variable X with cdf 
( )21,, θθ⋅F , frequently the quantiles of orders 21, pp  are chosen, such that 

121 =+ pp . 
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 For the Cauchy distribution with cdf ( ) 





 −

+=
λπ

mxarctgxF 1
2
1   and orders 

of quantile s  p and  1 – p, equations (1) take the following form: 

 
( )( )

( )( )





−+=

−+=

− ,5,0tg
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);1(

;

pmX

pmX

np

np

πλ

πλ
 (2) 

and the estimators are defined by the formulas: 

 ,
2

ˆ );1(; npnppm XX
m −+

=  (3) 

 ( ) .
ctg2

ˆ ;);1(

p
XX npnppm

π
λ

−
= −  (4) 

3. The Quantile  least squares method and its modifications 

The quantile  least squares method (QLSM) estimates the unknown 
parameters sθθθ ...,,, 21  of random variable X with cdf F by minimizing the sum of 
squares of the differences between theoretical and empirical quantile s (Gilchrist, 
2000; Castillo et al., 2004). Then, the function for which we calculate the global 
minimum has the following form: 

 ( ) ,)...,,,(
1

2
/;/21 ∑

=

−=
n

i
ninnis QXG θθθ  (5) 

where nniX ;/  is  the sample quantile  of order 
n
ipi =  from the i.i.d. sample 

nXXX ...,,, 21  and 





= −

nni n
iFQ θθ ...,,, 1

1
/ .  

The estimators of parameters sθθθ ...,,, 21  obtained by QLSM are denoted by 
qls
s

qlsqls θθθ ˆ...,,ˆ,ˆ
21 . 

Using all available quantile  orders can, however, result in unsatisfactory 
estimate properties or in some cases cannot be feasible. For the Cauchy 
distribution extreme statistics have infinite variance, which means that the mean 
squared errors of estimators based on them are very large. Therefore, the 
minimum and maximum statistics must be rejected for estimation of the Cauchy 
distribution parameters. 

The first suggested modification of the quantile  least squares method is 
rejecting a fixed number of quantile s, which we call the truncated quantile  least 
squares method (TQLMS). In this case the estimators of distribution parameters 

sθθθ ...,,, 21  of the random variable X with distribution function ( )sF θθθ ...,,,, 21⋅  
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are statistics tqls
s

tqlstqls θθθ ˆ...,,ˆ,ˆ
21 , for which the following expression reaches 

a global minimum:  

 ( )∑
∈

−=
n

ii
Ii

pnps QXG 2
;21 )...,,,( θθθ , (6) 

where 
n
ipi =  and nI  is the subset of { }n...,,2,1 . 

For symmetric or close to symmetric distributions we suggest skipping 

k quantiles, where k is the even number,  that is 
2
k  the smallest and 

2
k  the largest 

quantiles. Then, the function (6) takes the form: 

 ( )∑
−

+=

−=
2

21

2
;21 )...,,,(

kn

ki
pnps ii

QXG θθθ . (7) 

For asymmetric distributions with right or left heavy tail we suggest skipping  
k the largest or the smallest order statistics, respectively. Then, one of the 
functions expressed by the formula: 

 ( )∑
−

=

−=
kn

i
pnps ii

QXG
1

2
;21 )...,,,( θθθ  (8) 

or 

 ( )∑
=

−=
n

ki
pnps ii

QXG 2
;21 )...,,,( θθθ , (9) 

is minimized, respectively for right and left heavy tailed distribution. 

The second modification of the quantile  least squares method is the median-
quantile  least squares method (MQLSM). The estimators of sθθθ ...,,, 21  
parameters of the random variable X from the random sample nXXX ...,,, 21  are 
statistics  mq

s
mqmq θθθ ˆ...,,ˆ,ˆ
21  of the following form: 

 ( )tqls
rki

tqls
ki

tqls
ki

mq
i Me ==== ;4;2;

ˆ,...,ˆ,ˆˆ θθθθ         for  si ...,,1= , (10) 

where tqls
rki

tgls
ki

tqls
ki === ;4;2;

ˆ...,,ˆ,ˆ θθθ  are estimators of the parameter iθ  obtained through 
the truncated quantile  least squares method with k quantiles left out and 2−= nr
, when n is even and 3−= nr , when n is odd. 

The proposed modifications can be used to estimate the Cauchy distribution 
parameters. 
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The application of the truncated quantile  least squares method for the Cauchy 
distribution is related to the minimization of the function:  

 ( )( )∑
−

+=

+−=
2

21

2
; ctg),(

kn

ki
inp pmXmG

i
πλλ . (11) 

Therefore, it requires solving the system of equations: 
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The estimators for parameters m  and λ , received by the truncated quantile  
least squares method (TQLSM) are defined by the formulas:  
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where k is a fixed even number, npi
X ;  is the quantile  from the i.i.d. sample 

nXXX ...,,, 21  and 
n
ipi =  for  

2
...,,

2
1 knki −+= . 

The estimators of the Cauchy distribution parameters received by median-
quantile  least squares method (MQLSM) have the following form: 

 )ˆ...,,ˆ,ˆ(ˆ 42
tqls

rk
tqls
k

tqls
k

mq mmmMem ==== , (15) 

 )ˆ...,,ˆ,ˆ(ˆ
42

tqls
rk

tqls
k

tqls
k

mq Me ==== λλλλ , (16) 

where 2−= nr , when n is even and 3−= nr , when n is odd. 
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4. Simulation analysis of Cauchy distribution parameter estimators 

The properties of the Cauchy distribution parameter estimators were studied 
using the Monte Carlo methods. The following methods were considered:  

- the percentile methods with different orders of selected quantiles, 
- the truncated quantile  least squares methods with different number of rejected 

quantile s from tails of the distribution, 
- the median-quantile  least squares method. 
In each case the bias and the mean squared error were estimated over 20000 

repetitions. For the percentile method the dependences of the estimator bias and 
the mean squared error on the quantile  order are presented in Figures 1 and 2. 
The size of the sample n was set to 100. 

From the obtained results it can be concluded that, for the considered 
distribution, if p increases both the bias and the mean squared error of the 
estimators decrease, but only to a certain point. When this point is exceeded the 
precision can deteriorate. For 45.0≈p  the estimator pmm̂  of  parameter m  has 
the best of properties, and for 25.0≈p  the estimator pmλ̂  has the smallest mean 
squared error. 
 
 

 
 
 

Figure 1. Dependence of the bias of Ca(0,3) parameter estimators obtained by the 
                percentile methods on the quantile  order 
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Figure 2. Dependence of the mean squared error of Ca(0,3) parameter estimators  
                obtained by the percentile methods on the quantile  order 
 

The estimated values of the bias and the mean squared error for selected 
orders of quantile , for chosen parameters of the Cauchy distribution are shown in 
Table 1. The study included sample sizes n = 60 and n = 100. Pekasiewicz (2012) 
gives results for the Cauchy distribution with other parameters.  
 
Table 1. The estimated bias and the mean square errors for the Cauchy  
                distribution parameter estimators obtained by the percentile method  
Distribution 

random 
variable 

n p ( )pmmSABI ˆˆ  ( )pmSABI λ̂ˆ  ( )pmmESM ˆˆ  ( )pmESM λ̂ˆ  

)3,0(Ca  

60 
 

0.05 - 4.4690 0.7057 241.5300 5.7885 
0.10 - 0.9033 0.2788 14.1888 1.2504 
0.15 - 0.4011 0.1824 3.7038 0.7143 
0.20 - 0.2385 0.1400 1.5905 0.5356 
0.25 - 0.1614 0.1155 0.8972 0.4656 

100 

0,05 - 2.4252 0.3735 81.5948 1.8908 
0,10 - 0.5821 0.1630 6.6861 0.6084 
0,20 - 0.1521 0.0817 0.8736 0.2842 
0,30 - 0.0818 0.0567 0.3424 0.2618 
0,40 - 0.0575 0.0500 0.2312 0.4381 
0,45 - 0.0525 0.0397 0.2233 0.8682 
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Table 1. The estimated bias and the mean square errors for the Cauchy  
                distribution parameter estimators obtained by the percentile method  
               (cont.) 
Distribution 

random 
variable 

n p ( )pmmSABI ˆˆ  ( )pmSABI λ̂ˆ  ( )pmmESM ˆˆ  ( )pmESM λ̂ˆ  

)2,3(Ca  

60 

0,05 - 3.1883 0.4949 143.4070 3.4363 
0,10 - 0.6597 0.2021 6.8335 0.6129 
0,15 - 0.2971 0.1285 1.7430 0.3321 
0,20 - 0.1729 0.0958 0.7408 0.2427 
0,25 - 0.1153 0.0759 0.4051 0.2056 

100 

0,05 - 1.6606 0.2460 36.0447 0.8338 
0,10 - 0.3889 0.1115 3.1781 0.2740 
0,20 - 0.1032 0.0511 0.3826 0.1239 
0,30 - 0.0552 0.0372 0.1515 0.1136 
0,40 - 0.0402 0.0317 0.1022 0.1907 
0,45 - 0.0369 0.0361 0.0973 0.3835 

  
The use of the truncated quantile  least squares method for large k allowed the 

bias and the mean squared error to be significantly reduced, although rejecting too 
many quantiles gives poorer results. Dependences of the bias and the mean 
squared error on k are shown in Figures 3 and 4, respectively. The results for the 
selected parameters are given in Table 2. 
 

 
 
 

Figure 3. Dependence of the bias of Ca(0,3)  parameter estimators obtained by  
                TQLSM on the number of rejected quantiles 
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Figure 4. Dependence of the mean squared error of Ca(0,3)  parameter estimators  
                obtained by TQLSM on the number of rejected quantiles   

 
Table 2. The estimated bias and the mean squared errors for the Cauchy  
  distribution parameter estimators obtained by the truncated quantile   
  least squares method  
Distribution 

random 
variable 

n k ( )tqlsmSABI ˆˆ  ( )tqlsSABI λ̂ˆ  ( )tqlsmESM ˆˆ  ( )tqlsESM λ̂ˆ  

)3,0(Ca  

60 

2 - 1.1615 0.4884 14.5741 9.2934 

10 - 0.3844 0.2749 2.0822 1.2637 

20 - 0.2024 0.1687 0.9150 0.5702 

30 - 0.1460 0.1296 0.6253 0.4364 

40 - 0.1182 0.1068 0.4968 0.3990 

50 - 0.1016 0.0943 0.4303 0.4137 

100 

2 - 1.1474 0.4970 15.3895 12.9429 

10 - 0,2189 0.1736 1.0284 0.5808 

30 - 0.0840 0.0716 0.3446 0.2286 

50 - 0.0585 0.0471 0.2446 0.2264 

70 - 0.0492 0.0362 0.2184 0.3392 

90 - 0.0451 0.0240 0.2222 1.0580 
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Table 2. The estimated bias and the mean squared errors for the Cauchy  
  distribution parameter estimators obtained by the truncated quantile   
  least squares method (cont.) 
Distribution 

random 
variable 

n k ( )tqlsmSABI ˆˆ  ( )tqlsSABI λ̂ˆ  ( )tqlsmESM ˆˆ  ( )tqlsESM λ̂ˆ  

)2,3(Ca  

60 

2 - 0.8459 0.3919 3.3330 1.3605 

10 - 0.3745 0.1965 0.7766 0.4571 

20 - 0.2330 0.0424 0.4033 0.1809 

30 - 0.2575 0.0192 0.3496 0.1500 

40 - 0.2631 - 0.0129 0.3209 0.1615 

50 - 0.2553 -0.0232 0.2996 0.1710 

100 

2 - 0.7546 0.3381 7.3597 4.4003 

10 - 0.1461 0.1177 0.4638 0.2525 

30 - 0.0562 0.0522 0.1570 0.1014 

50 - 0.0389 0.0405 0.1111 0.1014 

70 - 0.0317 0.0363 0.0979 0.1532 

90 - 0.0292 0.0332 0.0996 0.4758 
 

The median-quantile  least squares method was also used for estimation of the 
Cauchy distribution parameters. The properties of the estimators are presented in 
Table 3 for selected parameters. This method offers a more convenient estimation 
algorithm in comparison to the percentile method and the truncated quantile  least 
squares method because it does not require additional assumptions about the 
quantile  orders or the number of rejected quantiles. 

Table 3. The estimated bias and the mean squared errors for the Cauchy  
                distribution parameter estimators obtained by the median-quantile  least  
                squares method  

Distribution 
random 
variable 

n ( )mqmSABI ˆˆ  ( )mqSABI λ̂ˆ  ( )mqmESM ˆˆ  ( )mqESM λ̂ˆ  

Ca(0, 3) 
60 - 0.1136 0.0846 0.4383 0.3861 

100 - 0.0659 0.0455 0.2468 0.2181 

Ca(3, 2) 
60 - 0.0780 0.0535 0.2005 0.1685 

100 - 0.0462 0.0340 0.1119 0.0983 
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In Table 4 the results of simulation analysis about the considered methods: the 
percentile method (PM) for selected p, the truncated quantile  least squares 
method (TQLSM) and the median-quantile  least squares method (MQLSM) for 
selected k are presented. The estimators obtained from the percentile methods 
have the smallest mean squared errors for the value of p given in the table. In the 
case of the truncated quantile  least squares estimators for k=78 the estimator m̂  
has the smallest mean squared errors and the estimator λ̂  for k =40. The number 
of k =52 was chosen as an intermediate value for comparison of the properties of 
the estimators. 
 
Table 4. The estimated mean squared errors for the Cauchy distribution parameter  
               estimators obtained by the considered quantile  methods for n = 100 
Distribution 

random 
variable 

Estimators Estimation method 
PM TQLSM MQLSM 

k=2 k=40 k=52 k=78 

Ca(0,3) 

m̂  
 

λ̂  

0.2227 
(p= 0.44) 

0.2536 
(p= 0.27 ) 

15.3895 
 

12.9429 

0.2787 
 

0.2135 

0.2399 
 

0.2318 

0.2167 
 

0.4228 

0.2468 
 

0.2181 

Ca(3,2) 

m̂  
 

λ̂  

0.0973 
(p= 0,45) 

0.1098 
(p= 0,27) 

7.3597 
 

4.4003 

0.1273 
 

0.0957 

0.1089 
 

0.1014 

0.0972 
 

0.1910 

0.1118 
 

0.0983 

 
The results of the analysis indicate that rejecting a number of the smallest and 

the largest quantiles significantly improved properties of the Cauchy distribution 
parameter estimators as compared to the quantile  least squares method, which 
rejects only extreme statistics. In both methods estimation of each parameter 
requires choosing different orders and different number of rejected quantiles, 
which ensures the smallest mean squared errors. 

The application of the median-quantile  least squares method gives results 
which are similar to the truncated quantile  least squares method on condition that 
the appropriate quantile  order is chosen. 

5. Conclusions 

Quantile methods are used for estimation of the Cauchy distribution 
parameters because the method of moments and the maximum likelihood method 
cannot be used. Practical conclusions as to their application result from the 
simulation analysis of the estimator properties. The appropriate value of the 
quantile orders in the percentile method and the number of rejected quantiles in 
the truncated quantile  least squares method lead to estimators with small bias and 
mean squared error. 
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In the case of the Cauchy distribution, which is a heavy tailed distribution, 
rejecting a fixed number of the smallest and the largest quantiles significantly 
improves the properties of the parameter estimators. In order to minimize the 
mean squared errors of estimators, it is possible to use different number of 
rejected quantiles for each estimator.  

The second suggested modification of the quantile  least squares method is 
more convenient in applications, as it does not require any additional assumptions 
and allows estimators with good properties to be obtained.  

Both methods can be applied to estimation of the Cauchy distribution 
parameters. The application of these methods to estimation of other distribution 
parameters requires simulation analysis of the quantile  orders in the percentile 
methods and of the number of truncated quantiles in the truncated quantile  least 
squares method. 
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MODELLING OF SKEWNESS MEASURE 
DISTRIBUTION 

Margus Pihlak1 

ABSTRACT 

In this paper the distribution of random variable skewness measure is modelled. 
Firstly, we present some results of matrix algebra useful in multivariate statistical 
analyses. Then, we apply the central limit theorem on modelling of skewness 
measure distribution. Finally, we give an idea for finding the confidence intervals 
of statistical model residuals' asymmetry measure.  

Key words: central limit theorem, multivariate skewness measure, skewness 
measure distribution, statistical model residuals.  

1. Introduction and basic notations 

Firstly, we introduce some notations used in the paper. The zero vector is 
denoted as .0  The transposed matrix A is denoted as .TA  

Let us have random vectors T
21 ),,,( ikiii XXX =X  where index 

ni ,,2,1 =  is for observations and k denotes the number of variables. These 
random vectors are independent and identically distributed copies (observations) 
of a random k-vector .X  Let  

∑
=

=
n

i
in 1

1 Xx  

and  

∑
=

−−
−

=
n

i
iin 1

T))((
1

1 xXxXS  

be the estimators of the sample mean μX =)(E  and the covariance matrix 
ΣX =)(D , respectively.  

                                                        
1 Tallinn University of Technology (Estonia), Department of Mathematics, Ehitajate tee 5 19086 
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Now, we present matrix operations used in this paper. One of the widely used 
matrix operation in multivariate statistics is Kronecker product (or tensor product) 

BA⊗  of nm×:A  and qp×:B  which is defined as a partitioned matrix 
[ ] .,,2,1;,,2,1, njmiaij  ===⊗ BBA  

By means of Kronecker product we can present the third and the fourth order 
moments of vector :X   

)()( T
3 XXXX ⊗⊗= Em  

and 
).()( TT

4 XXXXX ⊗⊗⊗= Em  
The corresponding central moments 

{ })()()()( T
3 μXμXμXX −⊗−⊗−= Em  

and 
{ }.)))((()))((()( TT

4 μXμXμXμXX −−⊗−−= Em  

The operation )vec(A  denotes a mn -vector obtained from nm× -matrix by 
stacking its columns one under another in the natural order. For the properties of 
Kronecker product and vec-operator the interested reader is referred to Harville 
(1997), Kollo (1991) or Kollo and von Rosen (2005). In the next section skewness 
measure will be defined be means of the star-product of the matrices. The star-
product was introduced in (MacRae, 1974) where some basic properties of the 
operation were presented and proved.   
Definition 1. Let us have a matrix nm×:A  and a partitioned matrix 

nsmr×:B  consisting of sr× -blocks .,,2,1;,,2,1, njmiBij  ==  Then, the 
star-product BA*  is a sr× -matrix 

∑∑
= =

=
m

i

n

j
ijija

1 1
.* BBA  

The star-product is an inverse operation of Kronecker product in a sense of 
increasing and decreasing the matrix dimensions. One of the star-product 
applications is presented in the paper (Pihlak, 2004). 

We also use the matrix derivative defined following Neudecker (1969). 
Definition 2. Let the elements of a matrix sr ×:Y  be functions of a matrix 

.: qp×X  Assume that for all ,,,2,1 pi =  ,,,2,1 qj =  rk ,,2,1 =  and 

sl ,,2,1 = partial derivatives 
ij

kl

X
Y
∂
∂  exist and are continuous in an open set A. 

Then, the matrix 
X
Y

d
d  is called matrix derivative of the matrix sr ×:Y  by the 

matrix qp×:X  in a set A, if  
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)(vec
)(vec

Y
XX

Y
⊗= Td

d
d
d  

where 

.,,,,,,
)(vec 1111

T 










∂
∂

∂
∂

∂
∂

∂
∂

=
pqqp xxxxd

d


X
 

The matrix derivative defined by Definition 2 is called Neudecker matrix 
derivative. This matrix derivative has been in the last 40 years a useful tool in 
multivariate statistics. 

2. Multivariate measures of skewness  

In this section we present a multivariate skewness measure by means of the 
matrix operation described above. A skewness measure in multivariate case was 
introduced in Mardia (1970). Mori et al. (1993) introduced a skewness measure as 
a vector. B. Klar (2002) gave a thorough overview of the skewness problem. In 
this paper asymptotic distribution of different skewness characteristics is also 
examined. In Kollo (2008) a skewness measure vector is introduced and applied 
in Independent Component Analyses (ICA). In this paper we give an idea for the 
application of a skewness measure to residuals of statistical models. Our aim is to 
estimate the distribution of skewness measure and to find confidence intervals of 
the asymmetry characteristics.  

The skewness measure in the multivariate case is presented through the third 
order moments: 

)()( YY'YXs ⊗⊗= E                                         (2.1) 
where 

).(2
1

μXΣY −=
−

 
In Kollo (2008) the skewness measure based on (2.1) is introduced by means 

of the star product:  
)(*)( Xs1Xb kk×=                                            (2.2) 

where kk × -matrix 

.
11

11
















=×







kk1  

In Kollo and Srivastava (2004) the Mardia’s skewness measure is presented 
through the third order moment: 

))()((tr 3
T
3 YY mm=β  
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where operation tr denotes the trace of matrix. 

The equality (2.2) generalizes the univarite ( 1=k ) skewness measure 

3

3)()(
σ

µ−
=

XEXb  

where σ  denotes standard deviation of the random variable X. Thus, we can 
express the estimator of the univariate skewness measure as 

3

3^ )()(
s

xXEXb i −=                                             (2.3) 

where s denotes unbiased estimator of standard deviation σ  and x  is the sample 
mean estimator. 

3. Modelling distribution of the univariate skewness measure  

In this section we model the distribution of the random variable 
^

)(Xb  defined 
by the equation (2.3). Let us have independent and identically distributed random 
variables .,,, 21 nXXX   

Let µ=)(XE  and .)( 2σ=XD  Then, according to the central limit 

theorem the distribution of the random variable 
σ

µ)( −xn
 converges to the 

normal distribution ).1,0(N  In the multivariate case the distribution of the 

random vector )( μx −n converges to normal distribution ).,( Σ0N   

Let us have 2kk + -vector 

.
)(vec 







=

S
x

Zn  

Then 

),())(( Π0ZZ NEn nn −  

in distribution. Here, )()( 22 kkkk +×+ -dimensional partitioned matrix 









=

43

T
3

)(
)(

ΠX
XΣΠ

m
m

 

where 22 kk × -matrix )(vec)(vec)( T
44 ΣΣXΠ −= m  (Parring, 1979). This 

convergence can be generalized by means of the following theorem. 
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Theorem 1. Let { }nZ be a sequence of 2kk + -component random vectors and ν
be a fixed vector such that )( νZ −nn  has the limiting distribution ),( Π0N  as 
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is Neudecker matrix derivative at .νz =n   

The proof of the theorem can be found in the book of T. W. Anderson (2003, 
page 132). In Theorem 1 vector ).( nE Zν =  
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According to the Theorem 1 we can say that the random variable 
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Thus, we have  
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Example. Let us generate m times random variable X with a sample size n. Let 
random variable X have exponential distribution with parameter .0>λ  Then, the 

i-th order moment .!)( i
i iXE

λ
=  Using these moments we get that 33

2)(
λ

=Xm  

and .8
44 λ

=Π  According to the formula (3.1) variance .1172 =bσ   Thus, we get 

the following approximate 0.95-confidence interval for the skewness measure 
:)(Xb  

.11796.1)(ˆ
nm

Xb ±  

4. Summary: skewness confidence intervals for statistical models 

The problem concerns the estimation of statistical models. This is the problem 
of skewness or lack of symmetry, which means the distribution of statistical 
model residuals is frequently non-gaussian, as Kolmogorov-Smirnov test shows. 
In this case the skewness has to be estimated for testing the goodness of models. 
The confidence intervals of that parameter have to be found. This enables us to 
improve the diagnosis of statistical models. By means of skewness confidence 
intervals we can estimate the influence of outliers. These outliers are typical in 
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forestry. The main question is: does the zero value belong to the estimated 
confidence interval? To answer this question we can estimate the variance of 
residuals by means of equality (3.1). This variance depends on standard deviation, 
skewness and kurtosis of residuals. 
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AN ANALYSIS OF  THE POPULATION AGING 
PHENOMENA IN POLAND FROM A SPATIAL 

PERSPECTIVE 

Justyna Wilk1, Michał Bernard Pietrzak2 

ABSTRACT 

The processes of socio-economic development are continuously accompanied by 
the process of population aging. It is seen as a growing percentage share of 
people aged 65 and over in the general population. It covers the majority of the 
European Union countries and also refers to Poland. The objective of the paper is 
to analyse the population aging phenomenon from a spatial perspective. The 
study has been carried out for 66 subregions (NUTS 3) and covered the period 
1995-2012.  
Poland is characterized by strong spatial diversification regarding the proportion 
of senior citizens and its growth rate, and also determinants exerting impact on 
the demographic aging processes. Demographically the youngest and slowest 
aging population lives in south-eastern and also central Poland. The most 
intensive population aging processes are seen in the selected subregions of south-
western Poland. Here, we observe extremely low fertility, demographically old 
working-age population and also significant migration outflow of younger people. 

Key words: population aging, socio-economic development, spatial approach, 
taxonomic analysis, regression analysis. 

1. Introduction 

The paper discusses the problem of demographic aging of the Polish 
population. Aging processes are defined as changes in the age structure of 
population where the percentage of older population compared to the total 
population number is increasing (Rosset, 1959; Frątczak, 1984; Uhlenberg, 2009). 
They are accompanied by social, cultural and economic factors; among other 
things, intentional delaying of procreation time and changing life priorities, 
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leading more and more towards a healthy life style, progress in medicine and 
wider access to medical services, etc.  

These processes are present in almost all European Union countries and also 
refer to Poland (see Kurkiewicz et. al., 2006, 2012; Muenz, 2007; Giannakouris, 
2008; Kurek, 2008; Strzelecki, 2009; Lindh and Malmberg, 2009; Kurkiewicz, 
2010; Dragan, 2011; Hrynkiewicz, 2012; Pociecha, 2003). The processes of 
demographic aging are affected by a slow, although often irreversible, change in 
time. From the perspective of the state policy it is observed as a major problem 
which strongly determines the situation in the country in terms of its financial, 
social and economic issues.  

In the long-term prospect, without taking appropriate actions in the socio-
economic sphere, the population aging processes can lead to a gap in the labour 
market, disturb the retirement system, decrease the efficiency of social systems 
(e.g. health care, welfare). The growing proportion of the older population also 
imposes the need to adapt adequate social policy within the framework of which 
indispensable care will be offered to people included in this age group (see 
Golinowska, 2008; Jurek, 2012; Magnus, 2008; Prskawetz and Lindh, 2011; Wilk 
and Bartłomowicz, 2012).  

There are significant regional disparities in socio-economic development 
processes in Poland. This affects the conditions of the population aging processes. 
Therefore, we can assume that the dynamics of the population aging processes are 
also spatially diversified and their conditions are peculiar to particular regions of 
the country. The objective of the paper is to examine the level and rate of the 
population aging processes in Poland, and also to reveal their demographic 
conditions from a spatial perspective.  

The analysis of the population aging phenomenon was carried out for 66 
subregions (NUTS 3) and covered the period 1995-2012. In the first part of the 
paper the degrees and rates of the population aging processes in subregions will 
be discussed. Therefore, the subregions demonstrating significant progress in the 
population aging processes will be revealed.  

In the next part of the paper the econometric model will be constructed. The 
investigation will be carried out based on the synthetic measure values specified 
considering the proportion of senior citizens, as well as the growth rate of this 
proportion. Next, for the selected demographic factors (such as fertility, 
migrations, etc.), the identification of their relations with the population aging 
processes will be carried out. In the third part, the demographic conditions of 
population aging processes in Polish subregions will be presented.  

2. The population aging phenomena in Poland  

2.1. The background  

The overall trends in changing the age structure are shown by the shape of the 
age pyramid, which is a graphical illustration of the distribution of various age 
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groups by sex in a population, and its changes in time. It forms the shape of a 
triangle when the young population is growing, whereas a diagram in the shape of 
an upside-down vase is characteristic of a demographically old population. 

In 1975 the Polish population was relatively young demographically. There 
was a higher percentage proportion of young people than old people in the total 
population. The age pyramid formed a shape similar to a pyramid. In subsequent 
years the shape of the diagram changed; the middle of the pyramid extended 
while the lower part narrowed. The percentage share of young population 
significantly decreased in the period before 2012 while the number of older 
people increased (see Figure 1). 

 
 

 
 

 
 

 
Figure 1. Age pyramids for Poland in 1975 and 2012 
Source: See Central Statistical Office of Poland, 
http://www.stat.gov.pl/PI_gus/ludnosc_piramida/struktura_ludnosci.svg. 
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2.2. The proportion of senior citizens and its growth rate in Poland  1995-
2012, by subregions 

Population aging is demonstrated by a high proportion of senior citizens 
(people aged 65 and over) and also by the dynamics of this proportion. The 
proportion indicates the current state of the population aging processes in a region 
(saturation), while the growth rate indicates the direction of changes and their 
dynamics. Both variables function as stimulants of the population aging 
processes. High values of these variables confirm the advancement (intensity) of 
the population aging processes in a region. 

In 2012 the proportion of senior citizens in the total population of Poland 
reached 14.24%, which was approximately 3.0 percentage points more than in 
1995. This implies 1.41% yearly increases (see Table 1). Polish subregions 
demonstrated diversified proportion of senior citizens, from approximately 10.0% 
in Gdański subregion to approximately 19.0% in the city of Łódź. Positive 
increase rates of the proportion, to a greater or lesser degree, were observed in all 
subregions in the period 1995-2012. The values of the growth rate near to zero 
were observed in Krakowski (0.23%) and Sandomiersko-Jędrzejowski (0,26%) 
subregions, while very high dynamics were demonstrated by Rybnicki (3.44%) 
and Gliwicki (3.19%) subregions. 

Table 1. Basic statistics for the proportion of senior citizens and its growth rate 

Specification 
The proportion of senior 
citizens (population aged 
65 and over) in 2012 (%) 

The growth rate of the 
proportion of senior 
citizens in the period 

1995-2012 (%) 
POLAND 14.24 1.41 
Minimum 9.9 0.23 
Maximum 18.6 3.44 
Coefficient of variation (%) 12.2 46.6 
Pearson’s correlation [-1, 1] 0.08 

Source: own estimation based on data provided by the Local Data Bank of the Central 
Statistical Office of Poland. 

 
The subregions were divided, on the basis of quartiles, into four classes 

representing very low, low, moderate and high proportion of senior citizens. The 
same procedure was conducted in respect to the growth rate of the proportion of 
senior citizens. Figure 2 presents the results of this classification. Relatively high 
proportions of senior citizens were observed for subregions located in eastern, 
central and also in a part of south Poland. In particular, this situation occurred in 
the biggest cities of Poland such as the cities of Warsaw, Łódź, Poznań, Wrocław, 
Szczecin, Tricity and Cracow.  

Relatively high and moderate levels were recorded within Łódzkie, Śląskie, 
Lubelskie, Opolskie, Świętokrzyskie and Podlaskie voivodeships (NUTS 2). 
Conversely, very low proportions of senior citizens were observed within 
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Zachodniopomorskie, Wielkopolskie, Pomorskie, Lubuskie and Warmińsko-
Mazurskie voivodeships, and low proportions within Mazowieckie and 
Podkarpackie voivodeships. 

 

 
 
 

 
 
 
 
 

 
a) the proportion of senior citizens in the  
    total population in 2012 

b) the growth rate of the proportion of  
    senior citizens in the period 1995-2012 

 
 

Figure 2. Spatial diversification of the proportion of senior citizens and its growth 
rate Source: own compilation based on data provided by the Local Data 
Bank of the Central Statistical Office of Poland 

 
The situation is quite different regarding the growth rate of the proportion. 

Relatively high or moderate dynamics were characteristic of the subregions of 
Zachodniopomorskie, Pomorskie, Warmińsko-Mazurskie, Lubuskie, Opolskie 
and Śląskie voivodeships. A very low or low growth rate was true for 
Wielkopolskie, Łódzkie, Mazowieckie, Podlaskie, Lubelskie and Podkarpackie 
voivodeships. The highest dynamics were recorded in northern, western and 
south-western Poland, and also in selected bigger cities. 

It is also interesting that discussed indicators are not statistically correlated 
(see Table 1). Therefore, we cannot conclude that the higher the growth rate, the 
bigger (or lower) the proportion of senior citizens in Polish subregions. The 
exception is Śląskie voivodeship, for which the values of both variables represent 
a relatively high percentage share. This is manifested in the intense advancement 
of the population aging processes occurring in this subregion. 

Phenomena level 
  very low 
  low 
  moderate 
  high 
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3. Modelling the population aging processes in Poland 

3.1. The dependent variable 

In order to examine the advancement of the population aging processes in 
Poland and their conditions the regression analysis was applied. The synthetic 
measure of the intensity of the population aging processes served as the dependent 
variable while several significant demographic indicators formed a set of 
explanatory variables. The application of a synthetic measure in cause-effect 
models was proposed in Hellwig, Siedlecka and Siedlecki, 1995. 

The approach using a taxonomic measure of development (TMD) was applied 
to assess the spatial diversification of the population aging processes in Polish 
subregions. It allows us to cover a set of indicators at the same time and to 
provide the synthetic description of the situation regarding the analyzed 
phenomenon (see Grabiński, Wydymus and Zeliaś, 1989; Nowak, 1990; Młodak, 
2006).  

The construction of TMD was based on two diagnostic variables presented 
above, such as the proportion of senior citizens in 2012 and also the growth rate 
of the senior citizens proportion in the period 1995-2012. Both variables function 
as stimulants of the population aging processes. Therefore, the highest values of 
variables reached by the Polish subregions served as the features of the pattern 
object, while the lowest values of variables determined the coordinates of the anti-
pattern object. These two ideal objects (the pattern object and anti-pattern object) 
constituted referring points in the comparative analysis. 

The values of the variables were normalized, using the unitization with zero 
as the minimum, to standardize their implementation intervals. For each 
subregion the distances to the pattern object and anti-pattern object were 
calculated using Euclidean distance. Application of the TOPSIS formula (see 
Hwang and Yoon, 1981) resulted in determination of the TMD value for each 
subregion. High TMD values confirm the advancement of the population aging 
process in a subregion while its low values are seen as a moderate intensity of the 
phenomenon.  

TMD takes values of [0, 1] while the Polish subregions recorded values from 
approximately 0.20 to approximately 0.70, apart from Gdański subregion which 
took the value of 0.91 (see Figure 3a). The situation in Poland is relatively highly 
diversified from a spatial perspective; the classical coefficient of variation took 
the value of 32%. On the basis of the calculated TMD values the subregions were 
divided into four classes using quartiles. The obtained classes illustrate advanced 
(TMD took values above 0.52), progressive (between 0.42 and 0.51), intense 
(between 0.36 and 0.41) or moderate (up to 0.35) levels of the population aging 
processes advancement (see Figure 3b).  
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a) the dispersion of TMD values  
    in Polish subregions 
 
 
 
 
 
 
 
           b) classes of Polish subregions  
               according to TMD values 

 
Figure 3. Spatial diversification of the population aging processes in Poland 
Source: Own compilation. 

 
Advanced population aging processes are observed in south-western Poland. 

In particular the advanced and progressive situation is typical of Śląskie and 
Opolskie voivodeships. Moderate or intense progresses relate to Mazowieckie, 
Wielkopolskie, Lubuskie, Pomorskie and selected subregions of Małopolskie 
voivodeship. 

3.2. Explanatory variables 

High territorial disparities of population aging processes in Poland are seen in 
the specificities of Polish subregions which differ in the social and cultural 
conditions: the dynamics of economic growth and socio-economic development, 
and also in respect of the resources of the natural environment and its condition 
(see, e.g. Müller-Frączek and Pietrzak, 2009a, 2009b; Bal-Domańska and Wilk, 
2011; Pietrzak, 2012; Wilk and Bartłomowicz, 2012; Wilk, Pietrzak and Matusik, 
2013). This affects the economic and financial situation of households, the 
lifestyle led and priorities held, health condition of society, access to medical 
services, etc. 
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All these factors have a significant influence on demographic processes 
occurring in subregions; this is reflected in statistical data. Propensity to procreate 
and the duration of life are regarded as the basic determinants of the population 
aging processes from the perspective of the state. The migration outflow of the 
young (working-age) population to other regions or abroad can also be a 
significant factor, as seen from the regional perspective. 

The population aging processes are also intensified by the aging of the 
working-age population (population aged between 18 years and retirement age). 
The higher the proportion of people aged 45 and over in this group, the bigger the 
“portion” of people who will supply the population of senior citizens in the future. 
The population aging processes and their economic consequences are also 
determined by the proportion of the oldest-old population (population aged 80 and 
over) in the population of senior citizens, and also its growth rate. Table 2 
presents a set of accepted explanatory variables.  

Table 2. The set of explanatory variables 

No. Variable name Definition 

1 Total fertility rate (person) 

The mean number of children that would be born 
alive to a woman during her lifetime if she were to 
pass through her childbearing years conforming to 
the fertility rates by age of a given year  

2 Life expectancy of men at the 
age of 65 (year) 

The mean number of years still to be lived by a 
man who has reached the age of 65, if subjected 
throughout the rest of his life to the current 
mortality conditions (age-specific probabilities of 
dying)  

3 Net migration rate of 
population aged 20-59 (person) 

Net migration of people aged between 20 and 59, 
expressed per 10 000 inhabitants in this age 
group. Data covers registered migration inflows 
and outflows for permanent residence between 
subregions and abroad  

4 Working-age population aging 
rate (%) 

The percentage share of immobile working-age 
people in the working-age population. The 
working-age population is defined as people aged 
18 to 59 (women) and 18 to 64 (men), while the 
group of people aged 45 and over is seen as 
immobile working-age population  

5 Oldest-old-age population rate 
(%) 

The percentage share of people aged 80 and over 
in the total population aged 65 and over  

Source: Own compilation according to the definitions of Central Statistical Office of 
Poland. 
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Extremely low fertility has been typical of Poland for many years and does 
not provide the so-called simple generation substitutability which is seen as the 
level 2.1 of total fertility rate. Although a slight increase of the indicator value 
was observed within the last 10 years, in 2012 the value reached only 1.3 in 
Poland (see Table 3). However, in the majority of Polish subregions (apart from 
Gdański subregion) there were only 1.5 children per woman. In respect to the 
current socio-economic processes occurring in Poland, we cannot expect rapid 
changes to this situation even in the long-term perspective. On the other hand, we 
notice a decrease in regional disparities regarding the fertility level within Poland. 

Low fertility is accompanied by extending life duration in Poland. According 
to statistical data, a man aged 65 is expected to live a further 15.4 years. It means 
that in average terms he would be up to a little more than 80 years old. The 
situation differs for Polish women who, on average, live 4.3 years longer than 
men. Statistical correlation between values of these two indicators (for men and 
women) is relatively high; Pearson’s correlation took a value above 0.7, while 
territorial disparities are slightly higher for men. 

In the period 2007-2012 yearly increases in life expectancy of men aged 65 
were recorded by all subregions. However, their dynamics is territorially 
diversified; the difference between subregions reaches 2.7 years. The shortest 
expected life duration in 2012 was typical of men living in Skierniewicki (79.2 
years), Elbląski and Łódzki (79.3 years) and also Starogardzki (79.4 years) 
subregions. The longest life expectancy of men at the age of 65 is observed in big 
agglomerations, such as the cities of Warsaw and Wrocław, where an average 
man is expected to live for 82 years. 

In some regions of Poland the population aging processes are significantly 
affected by migration outflows of young people. Approximately, three in four 
subregions showed a negative balance of migration flows in 2012. The highest 
intensity of the phenomenon is typical in Łomżyński subregion, where the net 
migration coefficient reached -55.2. A similar situation (negative net migration 
rate under 50.0) was in Puławski subregion, which is, as Łomżyński subregion, 
located in eastern Poland, and also adjoins Mazowieckie voivodeship.  

Very high positive values (above 50.0) of net migration coefficient were 
presented by 7 subregions while extremely high value (100.2) was observed in 
Poznański subregion, which surrounds the city of Poznań. This means that many 
more young people settle down in this subregion than leave it. This results from 
the suburbanization processes (see e.g. Matusik, Pietrzak and Wilk, 2012; 
Pietrzak et al., 2012; Pietrzak, Drzewoszewska and Wilk, 2012; Pietrzak, Wilk 
and Matusik, 2013a, 2013b; Pietrzak and Wilk, 2013; Wilk and Pietrzak, 2013; 
Pietrzak, Wilk and Siekaniec, 2013). 
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Table 3. Basic statistics for explanatory variables 

No Variable name Year* POLAND Minimum Maximum 

Coefficient  
of 

variation 
(%) 

1 Total fertility rate 
(person) 

2002 1.249 0.893 
(Wrocław) 

1.614 
(Nowosądecki) 13.3 

2012 1.299 1.091 
(Kraków) 

1.632 
(Gdański) 8.4 

2 Life expectancy of men 
at the age of 65 (years) 

2007 14.6 13.6 
(Włocławski) 

16.4 
(Warszawa) 4.1 

2012 15.4 14.2 
(Skierniewicki) 

16.9 
(Warszawa) 4.0 

3 
Net migration rate of 
population aged 20-59 
(person) 

1995 x x x x 

2012 x -55.2 
(Łomżyński) 

100.2 
(Poznański) x 

4 Working-age population 
aging rate (%) 

2009 37.8 33.7 
(Nowosądecki) 

41.7 
(Łódź) 4.4 

2012 37.4 
34.4 

(Nowosądecki, 
Rzeszowski) 

41.1 
(Sosnowiecki) 4.1 

5 Oldest-old-age 
population rate (%) 

2005 20.3 16.2 
(Rybnicki) 

24.2 
(Sandomiersko-
jędrzejowski) 

8.3 

2012 26.3 19.5 
(Rybnicki) 

31.3 
(Łomżyński) 8.4 

* according to the availability of statistical data. 
Explanations: “x” – not applicable.  
Source: Own estimation based on data provided by Local Data Bank of Central Statistical 
Office of Poland. 

 
In Poland we can observe a relatively high percentage share of old people 

within the working-age population. In 2009-2012 more than one in three people at 
the working age was 45 years old or over. The youngest working-age populations 
live in Nowosądecki and Rzeszowski subregions (34.4% immobile working-age 
people) while the oldest population lives in Sosnowiecki subregion (41.1%). 

Oldest-old population is also increasing in Poland; the growth rate of the 
oldest-old-age population coefficient is relatively high. The proportion of this 
group in the population of senior citizens increased by 6 percentage points within 
the last 7 years. Values of this indicator are spatially diversified; the differences 
reach over 10%. The highest proportion of the oldest-old-age people is typical of 
Łomżyński subregion, where one in three senior citizens represents an oldest-old-
age person. Relatively high values of this indicator are also observed for the 
Sandomiersko-Jędrzejowski subregion (30.1%), the city of Warsaw (29.9%), 
Bialski subregions (29.8%) and Suwalski subregion (29.7%). 
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4. Demographic conditions of the population aging processes in Poland 

The estimated values of the structural parameters of the regression model, 
representing explanatory variables impacts, were estimated using the least squares 
method. In this way the significance and the impact direction of the adopted 
variables on the phenomenon of population aging in the Polish subregions was 
analysed.  

Table 4 presents the results of the estimation. They turned out statistically 
significant for of all explanatory variables. This means that each of the examined 
factors exerts a significant impact on the population aging processes in Poland. 
The resulting value of the determination coefficient confirms high adjustment of 
the model to the empirical data. 

Table 4. Results of the estimation of the parameters of the regression model 

No Variable name Estimate p-value* 

1 Total fertility rate  -0.4013 0.0034 
2 Life expectancy of men at the age of 65  0.1539 0.0001 
3 Net migration rate of population aged 20-59  -0.0071 0.0169 
4 Working-age population aging rate  0.0492 0.0001 
5 Oldest-old-age population rate  0.0259 0.0001 

Determination coefficient 0.7356 

* at 5% degree of significance. 

Source: Own estimation based on data provided by Local Data Bank of Central Statistical 
Office of Poland in R-CRAN. 

 
The highest estimate (considering absolute values) was determined for the 

total fertility rate. A relatively high value of the structural parameter was also 
showed by the indicator of life expectancy. The negative estimate was determined 
for the total fertility rate, while the positive value is typical of the life expectancy. 
This indicates inversely proportional influence of fertility and directly 
proportional relations between life expectancy and the synthetic measure. 
Therefore, the progress in the population aging processes in the Polish subregions 
is most significantly affected by low fertility and extending the duration of life. 

The subregions were divided into four classes (according to quartiles), 
representing very low (the indicator takes values of [1.00, 1.22)), low [1.22, 1.30), 
medium [1.30, 1.37) and moderate [1.37, 1.65] level of fertility (see Figure 4a). It 
can be seen that moderate or medium level is present in the subregions of 
Pomorskie, Wielkopolskie, Mazowieckie, Łódzkie and Małopolskie 
voivodeships. Additionally, moderate intensity of births occurs for the following 
subregions: Grudziądzki (Kujawsko-pomorskie voivodeship), Skierniewicki and 
Piotrowski (Łódzkie voivodeship), Nowosądecki (Małopolskie voivodeship) and 
Bialski (Lubelskie voivodeship).  
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On the other hand, it is quite characteristic to observe a very low level of 
fertility in the case of the largest Polish cities. Extremely low fertility was also 
recorded in Opolski region, as well as in Jeleniogórski and Wałbrzyski 
(Dolnośląskie voivodeship), Częstochowski and Sosnowiecki (Śląskie 
voivodeship), Kielecki (Świętokrzyskie voivodeship), Tarnobrzeski 
(Podkarpackie voivodeship), Białostocki (Podlaskie voivodeship) and Olsztyński 
(Warmińsko-mazurskie voivodeship) subregions. 

The estimate of the regression parameter relating to life expectancy of men 
aged 65 was 0.1539, which is nearly three times less than in the case of the 
fertility rate. According to the values of the variables we can distinguish 
subregions with short (the indicator takes values of [14.1, 14.8)), medium [14.8, 
15.2), long [15.2, 15.6) and very long [15.6, 16.9) expected duration of life (see 
Figure 4b). In this case, very low life expectancy is characteristic of the 
subregions of Łódzkie voivodeship and some subregions of Zachodniopomorskie, 
Pomorskie, Warmińsko-Mazurskie, Dolnośląskie and Śląskie voivodeships. 
Relatively high values of the indicator were recorded in the subregions related to 
regional capital cities. 

 
 
 
 
 
 
 
 
 
 
 
 

 
  

 
 
 
 
 
 

 

a) total fertility rate in 2012                    b) life expectancy of men at the age of 65  in 2012 

Figure 4. Spatial diversification of the most significant factors affecting the  
                 population aging processes in Polish subregions  
Source: Own compilation based on data provided by Local Data Bank of Central 
Statistical Office of Poland. 

Very low fertility and simultaneously long life expectancy are observed in 
Białostocki (Podlaskie voivodeship), Tarnobrzeski (Podkarpackie voivodeship) 
and Gliwicki (Śląskie voivodeship) subregions. A similar situation, resulting from 

Life duration 
  short 
  medium 
  long 
  very long 

Fertility 
  very low 
  low 
  medium 
  moderate 
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different reasons (probably due to suburbanization processes) is seen in the 
following cities: Szczecin, Poznań, Tricity, Wrocław and Cracow. 

The conducted regression analysis also allowed observation of the substantial 
relations between the working-age population aging rate and the oldest-old-age 
population rate, as well as the intensity of the population aging processes. Slightly 
higher impact is presented by the working-age population aging rate. The interval 
of the indicator values was divided into four subintervals representing very high 
(the indicator takes values of [38.60, 41.10]), high [37.75, 38.60), medium [36.61, 
37.75) and low [34.31, 36.61) percentage share of the immobile working-age 
population in the total working-age population (see Figure 5a).  

A relatively high or very high level of this indicator is true for the 
Zachodniopomorskie, Opolskie and Śląskie voivodeships, and some subregions 
from Dolnośląskie and Łódzkie voivodeships. A relatively young working-age 
population lives in the biggest Polish cities (such as Poznań, Warsaw, Wrocław, 
Cracow and Lublin), as well as in the subregions of Podkarpackie voivodeship. 

Figure 5b presents the classes of subregions in relation to the values of the 
oldest-old-age population rate which can be defined as very high (the indicator 
takes values of [26,97; 31,30]), high [26,33; 26,97), medium [25,04; 26,33) and 
low [19,51; 25,04) percentage share of the oldest-old population. Except for a few 
subregions, relatively high or very high values of the oldest-old-age population 
rate were recorded in eastern voivodeships, such as: Warmińsko-Mazurskie, 
Podlaskie, Mazowieckie, Lubelskie, Świętokrzyskie, Małopolskie and Pod-
karpackie voivodeships, while a low or medium percentage share of the oldest-old 
seniors relates to the remaining part of the state, in particular western Poland. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Figure 5. Spatial diversification of the working-age population aging rate and the  
                 oldest-old-age population rate in 2012  
Source: Own compilation based on data provided by Local Data Bank of Central 
Statistical Office of Poland. 
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Statistically, there are no significant relations between the working-age 
population aging rate and the oldest-old-age population rate; the Pearson’s 
correlation coefficient took the value near to zero (-0.142). However, there are 
subregions in which both indicators take relatively high values: subregions of 
Świętokrzyskie voivodeship, Jeleniogórski and Wałbrzyski subregions 
(Dolnośląskie voivodeship), Sieradzki and the city of Łódź (Łódzkie 
voivodeship), Częstochowski (Śląskie voivodeship), Elbląski (Warmińsko-
Mazurskie voivodeship), Łomżyński (Podlaskie voivodeship) and Chełmsko-
Zamojski subregions (Lubelskie voivodeship). 

The process of population aging in many Polish subregions is also deepened 
by migration outflow of young people (negative estimate). The higher the 
negative migration rate coefficient, the stronger the processes of population aging 
in a region. The values of quartiles served in defining four classes of subregions 
(see Figure 6): 
− high outflow (the indicator took values of [-55,30; -29,40)), resulting from a 

much higher migration outflow than inflow of young people,  
− medium outflow (the indicator took values of [-29,40; -20,62)),  
− low outflow or slight inflow; the coefficient took relatively low absolute 

values within the interval [-20,62; 4,21), 
− high inflow (the indicator took values of [4,21; 100,30]), resulting from a 

much higher migration inflow than outflow of young people. 
High positive balance of migration flows occurs in subregions related to big 

agglomerations and their neighbouring subregions (the city of Szczecin and 
Szczeciński subregion, the city of Wrocław and Wrocławski subregion, the city of 
Warsaw and Warszawski Wschodni and Warszawski Zachodni subregions, the 
city of Cracow and Krakowski subregion). A similar situation is observed in 
subregions which contain a bigger city inside, such as Bielski (Śląskie 
voivodeship), Rzeszowski (Podkarpackie voivodeship), Białostocki (Podlaskie 
voivodeship), Bydgosko-Toruński (Kujawsko-pomorskie voivodeship), and also 
Szczeciński subregions. 

 
 
 

 
 
 
 

 
 
 
 
 
Figure 6. Spatial diversification of the net migration rate values referring to  
                population aged 20-59 in 2012  
Source: Own compilation based on data provided by Local Data Bank of Central 
Statistical Office of Poland. 

Migration flow 
  high outflow  
  medium outflow 
  low outflow or slight inflow  
  high inflow 



STATISTICS IN TRANSITION new series, Winter 2014 

 

167 

This indicates a progressing processes of concentrating population in the 
economically well developed areas and their surroundings, and also depopulation 
of economically poor regions. An alarmingly high outflow of young people is 
noticeable for the voivodeships of eastern Poland, such as Podlaskie, Lubelskie 
and Podkarpackie voivodeships, as well as selected subregions of Mazowieckie 
and Świętokrzyskie voivodeships. A similar situation is also seen in subregions 
(e.g. Stargardzki subregion in Zachodniopomorskie voivodeship, Słupski 
subregion in Pomorskie voivodeship, etc.) which are located close to bigger cities 
and their nearest neighbours. 

5. Conclusions 

The population aging processes result in long-term consequences in the socio-
economic sphere relating to public finance, regional labour markets, increasing 
demand on selected goods and services, organizational problems, etc. Therefore, 
they affect the socio-economic aspects of the functioning of territorial units and 
formation of their policies of regional development. The results of the conducted 
empirical research allow drawing the following conclusions which can provide 
significant support in these cases. 

Population aging is usually a consequence of a few simultaneously occurring 
phenomena. The most significant factor in progressing the population aging 
processes is extremely low fertility which is also supported by extension of life 
expectancy in the Polish subregions. A significant role is also played by aging 
processes of the working-age population and increasing number of oldest-old 
people within the population of senior citizens. The majority of subregions also 
struggle with a significant migration outflow of younger people, which deepens 
the population aging processes. 

High territorial diversification of the population aging processes, according to 
the senior citizens proportion and its growth rate, and also demographic 
conditions of these processes, occur in Poland. The most advanced population 
aging processes are observed in south-western Polish subregions, in which the 
most significant problems are very low fertility, relatively old working-age 
population and also a significant migration outflow of younger people. On the 
other hand, the youngest and slowest aging population lives in south-eastern and 
central Poland. It is characterized by higher fertility but shorter life expectancy, 
and also a younger working-age population. 
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BOOK REVIEW 

Jerzy Witold Wiśniewski: Correlation and regression of economic qualitative 
features, Lambert Academic Publishing, 2013, ISBN 9783659512780, 72 pp., 
EUR 16, 26.  

 by Jan Kordos1 

The purpose of this book is to present research methods suitable for 
qualitatively characterized phenomena, along with illustrations of their 
applications. The book consists of an introduction, four chapters, a summary and 
a bibliography.  

The first chapter, The specificity of the economic measurement, starts with the 
concepts of measurement, metrology, economic metrology and the measurement 
scales.  

The second chapter, The features and quality processes in economics, is 
devoted to the specificity of the qualitative characteristics, measurement by weak 
scales, arithmetic operations on numbers in a variety of scales, notes on the 
measurement of economic values, and transformation of the measurement results.  

The third chapter, Correlation of features and quality processes, deals with 
the nature of correlation coefficients, correlation of the dummy variables, and the 
coefficient of association attributes. 

The last, fourth chapter, The regression model in the analysis of the attributes 
and quality processes, analyses the nature of the regression model, a linear 
function of the probability, and models with transformed limited variables. 

In brief, the following topics are covered:  

1) simple methods of measurement of the quality features based on the weak 
Stevens scales;  

2) common errors in the application of the statistical methods for the analysis of 
the results of the measurement in ordinal scale which have not been 
presented in any book before;  

3) the risk of applying the well-known Spearman’s correlation coefficient;  
4) a new coefficient of association of quality features developed by the book’s 

author which is equivalent to Pearson’s correlation coefficient (this 
coefficient of association presented in the book can be tested, for instance, by 
a simple t-Student test);  

                                                        
1 Warsaw School of Management, and Central Statistical Office of Poland. 

https://www.morebooks.de/search/gb?q=+Jerzy+Witold+Wi%C5%9Bniewski&via_keyword=1
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5) the possibilities of applying the association coefficient which can be used to 

management decisions in an enterprise; 
6) the possibilities of applying the linear probability function in an enterprise 

with advantages of its application;  
7) the econometric models of limited dependent variables with general formula 

for logit transformation and possible applications in managerial decision-
making at an enterprise. 

The author considers shortly metrology, economic metrology, and the features 
and quality processes in economics. Metrology is the science of measurement and 
includes all theoretical and practical aspects of the measurement. I would like to 
add for considerations the philosophy of statistical thinking.2 

Statistical thinking is the philosophy of learning and action based on the 
following fundamental principles: 

 a) all work occurs in a system of interconnected processes - a process being a 
chain of activities that turns inputs into outputs;  

 b) variation, which gives rise to uncertainty, exists in all processes; and  
 c) understanding and reducing variation are keys to success. 

All three principles work together to create the power of statistical thinking. 
Since the 1980s statistical thinking has been discussed in the literature, 

applied in the workplace, and formally taught at some university.3 While there has 
been some resistance from those who prefer a more traditional, mathematically 
oriented approach, the profession  has gradually accepted the need for readers to 
think deeply before calculating. 

The definition highlights several key components: process thinking, 
understanding and managing uncertainty, and using data whenever possible to 
guide actions and improve decision-making. Statistical thinking is a philosophy of 
an overall approach to improvement and, therefore, more broadly applicable than 
statistical methods. It is a way of thinking, behaving, working, taking action and 
interacting with others. In addition, the focus of the statistical thinking process 
provides the context and the relevancy for broader and more effective use of 
statistical methods4. 

                                                        
2 See: http://www.statoo.com/en/statistical.thinking; eKPIsolutions; email: eu@ekpisolutions.com; 

http://www.asq.org.  
3 Hoerl, R. and Snee, R. D., (2012). Statistical Thinking: Improving Business  Performance, New 

York: Wiley & Sons; Wild C. J. and Pfannkuch, M. (1999), Statistical Thinking in Empirical 
Enquiry, International Statistical Review, 67, 223–265.  

4 Abert, J. ,Ruud, H., (2007), Statistical thinking in Sports, Publisher Chapman & Hall/CRC; Britz 
G. C., Emerling, D. W., Hare, L. B., Hoerl, R. W., Janis, S. J., (2000). Improving Performance 
Through Statistical Thinking, ASQ Quality Press; Snee, R. D. (1990). Statistical Thinking and its 
contribution to Total Quality, Am. Statist. 44, 116-121; Yu-Kang Tu, (2012). Statistical Thinking 
in Epidemiology, Chapman and Hall/CRC.  
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Statistical thinking uses the scientific method to develop subject matter 
knowledge and to gather data to evaluate and revise hypotheses. First, statistical 
thinking recognizes that results are produced by a process and that the process 
must be understood and developed to improve the results. The second difference 
is the emphasis on variation on statistical thinking. The scientific method can be 
applied without any awareness of the concept of variation, which may lead to 
misinterpretation of the results. The key similarities are that they both are 
sequential approaches that integrate data and subject matter knowledge.  
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