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FROM THE EDITOR 

This issue of the journal contains seven articles, four of which address matters 
classified to the first section, Sampling methods and estimation, while the other 
three fall under the second category, Research articles. These sections are 
complemented by a r elatively detailed report of the Small Area Estimation 
conference (SAE 2014) that took place in Poznan at the beginning of September. 
There is also the Book review section treating of a looked-for type of book by 
Vijay Verma, devoted to sampling of elusive populations in the context of child 
labour studies.   

As a kind of announcement, there are few things worth making a note of here. 
The first relates to the aforementioned SAE 2014 conference. Namely, due to a 
big interest in the conference papers and as a response to the suggestions of 
several prominent participants of the conference, there is a joint special issue of 
the Statistics in Transition new series and the Survey Methodology Journal of 
Statistics Canada (edited by Mike Hidiroglou) under preparation. We have invited 
Raymond Chambers, Malay Ghosh, Graham Kalton, and Risto Lehtonen to 
provide leadership for this innovative venture as Guest Editors. We hope to 
contribute in this way to dissemination of the highest quality output of this 
important scientific event to the interested audience around the world.  

The other thing concerns a technical improvement in accessing the journal 
before its final version is being made available − in both printed and online forms 
− due to introducing an Early View option, facilitating access and interaction 
between the editorial office and the authors, and allowing for making some minor 
changes or corrections in the meantime. As a way of bringing authors closer to 
readers, we have decided to include − starting with this issue - brief notes on 
authors/biosketches with some basic information about them.   

From organizational point of view, it also deserves to be mentioned that the 
new Editorial Board held its first meeting on the occasion of the SAE2014 
conference in Poznan - the minutes of the meeting concludes this note.   

* 

The first series of papers is opened by Joseph W. Sakshaug's and Trivellore 
E. Raghunathan’s paper Generating Synthetic Microdata to Estimate Small 
Area Statistics in the American Community Survey. The authors propose a 
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solution to practically important issue caused by certain constraints being 
imposed on information - as regards its scope and form - needed in the context of 
local-level studies. Although, on t he one hand, statistical agencies regularly 
collect data from small areas, they are prevented from releasing detailed 
geographical identifiers in public-use data sets due to disclosure concerns. On the 
other hand, data dissemination methods used in practice include releasing 
summary (aggregate) tables, suppressing detailed geographic information. 
Therefore, an alternative method for disseminating microdata with more 
geographical details than are currently being released in public-use data files is 
presented by the authors. Specifically, the method replaces the observed survey 
values with imputed or synthetic values simulated from a h ierarchical Bayesian 
model. Confidentiality protection is enhanced because no actual values are 
released. The method is demonstrated using restricted data from the 2005-2009 
American Community Survey. The analytic validity of the synthetic data is 
assessed by comparing small area estimates obtained from the synthetic data with 
those obtained from the observed data.  

The paper by Kajal Dihidar is devoted to Estimating Population Mean with 
Missing Data in Unequal Probability Sampling. It discusses the nonresponse 
problem as a ser ious obstacle to the validity of estimates. The question how to 
deal with missing values is complicated by the fact that they are deemed 
impossible to recover. One way of exploring a possible lack of  representativity in 
missing data is to estimate the response probabilities which are usually done by 
logistic regression. However, the drawback of this model is that it requires 
knowledge of the explanatory variables for all nonrespondents. One way is to 
estimate response probabilities by weighting adjustment technique without having 
the individual data of the nonrespondents. The author considers the doubtful 
nature of nonresponse regarding possible existence of relationship with any of the 
covariates, and general unequal probability sampling scheme for selecting 
respondents. This paper presents the modification of Bethlehem (2012) proposal 
for unequal probability sampling to obtain the unbiased estimators for population 
total/average of a variable of interest and variance estimator, and compares them 
with the usual estimators through numerical simulations. 

In the paper A Class of Two Phase Sampling Estimators for Ratio of Two 
Population Means Using Multi-Auxiliary Characters in the Presence of Non-
Response by B. B. Khare and R. R. Sinha both the asymptotic bias and mean 
square error, as w ell as minimum mean square error of the proposed class of 
estimators have been obtained. The optimum values of the sample at the first and 
the second phases along with the sub-sampling fraction of the non-responding 
group have been determined for the fixed cost and for the specified precision. The 
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efficiency of the proposed class of estimators has also been shown through the 
theoretical and empirical studies. 

Sanjay Kumar Singh, Umesh Singh and Manoj Kumar in the paper 
Bayesian Inference for Exponentiated Pareto Model with Application to 
Bladder Cancer Remission Time discuss maximum likelihood and Bayes 
estimators of the unknown parameters. The expected experiment times of the 
exponentiated Pareto model have been obtained for progressive type-II censored 
data with binomial removal scheme. Markov Chain Monte Carlo (MCMC) 
method was used to compute the Bayes estimates of the parameters of interest. 
The generalized entropy loss function and squared error loss function have been 
considered for obtaining the Bayes estimators. Comparisons are made between 
Bayesian and maximum likelihood (ML) estimators via Monte Carlo simulation. 
The proposed methodology is illustrated for real data.  

The Research articles section begins with Anna Czapkiewicz's and Beata 
Basiura’s paper The Position of the WIG Index in Comparison with Selected 
Market Indices in Boom and Bust Periods. Its main objective is exploration of 
differences between the rank of the Polish stock market in the boom and the bust 
cycles. The daily stock market returns data for the twenty three major 
international indices from Europe, America and Asia are used for comparing two 
boom and two bust periods. The correlation coefficient obtained from Copula-
GARCH model is a measure of similarity between the considered indices. The 
cluster analysis carried on for these series (in the boom and bust the cycles) 
allows us to identify the differences in the market behaviour. The empirical 
results indicate that the relationship of the Polish index with other indices is 
stronger during the bust sub-periods than during the boom ones. Through cluster 
analysis it is shown that the Polish index occurs in one subset with the Hungarian, 
Czech Republic, Turkish and Russian indices, regardless of the studied sub-
periods. 

In the paper by Atanu Bhattacharjee and Dilip C. Nath, Joint Longitudinal 
and Survival Data Modelling: An Application in Anti-Diabetes Drug 
Therapeutic Effect,  the longitudinal and survival analyses are shown to be useful 
tools in the exploration of drug trial data. In both cases the challenge is to deal 
with correlated repeated observations. Here, the joint modelling for longitudinal 
and survival data has been carried out via Markov Chain Monte Carlo (MCMC) 
method in type 2 d iabetes clinical trials to compare different combinations of 
drugs, viz. Metformin plus Pioglitazone and gliclazide plus pioglitazone. It has 
been found relatively easier to implement this model with Winbugs software, and 
the results were computed and compared with software R. In both types of the 



336                                                                                                  W. Okrasa: From the ... 

 

 

analyses it has been found that no estimates of treatment appear to have 
significant effect on the evolution of the matter of HBA1c, neither on the 
longitudinal part nor on the survival one. The Bayesian approach has also been 
considered as an extended tool with classical approach for estimation of clinical 
trial data analysis.  

Henryk Gurgul's and Pawel Zajac’s paper The Impact of Alterations in the 
Local Insolvency Legislation on Business Bankruptcy Rates in Poland analyses 
the effect of the major bankruptcy code novelization (that was enacted in the 
second quarter of 2009) on the  number of insolvencies in Poland, using ‘before-
after’ comparison. To this aim, a series of econometric models has been employed 
to analyze changes in bankruptcy rates using quarterly data for the period 2003-
2013. Contrary to the expectations of lawmakers, while controlling for the variety 
of macroeconomic factors affecting insolvency rates, the authors conclude that the 
aggregate bankruptcy rates significantly increased after implementation of the 
new code (novelization of 2009). One of the reason is that entrepreneurs often do 
not use bankruptcy as a rational business formula due to its negative connotation 
in the colloquial language, and as a result they often start respective proceedings 
when it is too late to save their businesses. However, authors admit that this 
conclusion is pending for more detailed future assessment of the impact taking 
into account the effect of differences in firms’ size and business sector on their 
failure rates.   

* 

Minutes of the Meeting of the SiTns’ Editorial Board 

Taking an exceptional opportunity provided by the fact that the overwhelming 
majority of members of the journal’s new Editorial Board members attended the 
Small Are Estimation (SAE2014) conference in Poznan, an occasional meeting 
was organized by the SiTns Editor on the eve of the conference (i.e., on the 2nd of 
September). The following EB Members participated in the meeting: Czesław 
Domanski, Malay  Ghosh, Graham Kalton, Jan Kordos (Founder Editor), 
Janusz Witkowski, Janusz L. Wywial, and the Editor.  

At its outset, the Editor addressed some recent challenges and visions for 
possible improvements − such as moving to four issues per year, introducing an 
online Early View issue, increasing visibility of the journal, and multi-path efforts 
being under way for including the journal in the monitoring systems of the 
prestigious indexation bases toward obtaining the appropriate impact factor(s). 
While sharing the journal’s editorial policy and tasks being currently realized (by 
the Editorial Office), the EB Members provided several insightful observations 
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and useful recommendations, which will underlay our efforts aimed at excelling 
the journal for making it increasingly attractive and needed for our key partners − 
potential authors, peer-reviewers and readers − and for the community of 
statisticians world-wide. The following suggestions are worthwhile mentioning 
here as accepted by all the EB Members:  
• Janusz Witkowski stressed need to increase the visibility and accessibility of 

the journal and, as the President of the Central Statistical Office − the main 
sponsor of the journal − supported initiatives toward its greater international 
scope and rank in the global professional environment. Special issues, such as 
planned collection of papers based on the SAE 2014 conference presentations, 
would be a good means to achieve  such goal. 

• Graham Kalton indicated the need to have more research-based publications − 
meant as g iving greater preferences to articles presenting innovative 
applications of statistical methods in empirical research, and/or discussing 
statistical tools for such purposes. During supporting discussion further 
arguments were provided for bringing statistics closer to policy application 
(policy research articles, devoted, for instance, to policy and program 
evaluation), and the problem-solving implications were emphasized too. He 
also pointed to organizing special issues, as a strategy effective also in this 
context, illustrating this approach by one being currently under preparation 
(see Call for papers published in the last issue of the SiTns − special issue 
devoted to “The Measurement of Subjective Well-Being in Survey Research”).  

• Malay Ghosh, who seconded this line of editorial policy, suggested to 
introduce a section Review paper on a systematic basis, as a part of at least 
every other issue of the journal. It should be devoted to comprehensive 
discussion of the current state of selected areas of statistical research, with 
emphasis on new and important topics.  
In addition to such a review, it was also suggested that the Book review section 
should be a part of each issue too, to either complement the former or be used 
as its substitute.  

• Czeslaw Domanski, the President of the Polish Statistical Association - under 
the aegis of which the journal is being issued − emphasized the unique role 
played by the journal as a platform for integration of the high level 
professionals across disciplines, world-wide.  

• Janusz Wywial, commenting on the thematic profile of the journal, indicated 
the need of flexibility in this aspect, including papers on rarely presented 
matters, such as related for instance, to certain audit and finance statistics.  
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• Jan Kordos, supporting the suggestions, reflected a bit on the historical 
development of the journal, with optimist conviction of its further 
development in terms of quality and usability. 

On behalf of the Journal and its Editorial Office, the Editor expressed the 
commitment to make all these observations, suggestions and recommendations 
the important input to efforts aimed at excelling the journal in all the aspects of its 
functioning as an organ serving professionals, statisticians and other readers from 
over the world. 
 

Wlodzimierz Okrasa 
Editor 
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SUBMISSION INFORMATION FOR AUTHORS 

Statistics in Transition new series (SiT) is an international journal published 
jointly by the Polish Statistical Association (PTS) and the Central Statistical 
Office of Poland, on a quarterly basis (during 1993–2006 it was issued twice and 
since 2006 three times a year). Also, it has extended its scope of interest beyond 
its originally primary focus on statistical issues pertinent to transition from 
centrally planned to a m arket-oriented economy through embracing questions 
related to systemic transformations of and within the national statistical systems, 
world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved 
in data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy 
makers and the general public – with a platform for exchange of ideas and for 
sharing best practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement 
– as either a scientific domain (new research and data analysis methods) or as a 
domain of informational infrastructure of the economy, society and the state – are 
appropriate for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by 
internationally recognized experts, who are guided in their decisions about the 
publication by criteria of originality and overall quality, including its content and 
form, and of potential interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
sit@stat.gov.pl., followed by a hard copy addressed to 
Prof. Wlodzimierz Okrasa, 
GUS / Central Statistical Office  
Al. Niepodległości  208, R. 287, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published previously 
and that it is not under review elsewhere. It should include an abstract (of not 
more than 1600 characters, including spaces). Inquiries concerning the submitted 
manuscript, its current status etc., should be directed to the Editor by email, 
address above, or w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines 
on its Web site: http://pts.stat.gov.pl/en/journals/statistics-in-transition/ 
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GENERATING SYNTHETIC MICRODATA TO 
ESTIMATE SMALL AREA STATISTICS IN THE 

AMERICAN COMMUNITY SURVEY 

Joseph W. Sakshaug1, Trivellore E. Raghunathan2 

ABSTRACT 

Small area estimates provide a critical source of information used to study local 
populations. Statistical agencies regularly collect data from small areas but are 
prevented from releasing detailed geographical identifiers in public-use data sets 
due to disclosure concerns. Alternative data dissemination methods used in 
practice include releasing summary/aggregate tables, suppressing detailed 
geographic information in public-use data sets, and accessing restricted data via 
Research Data Centers. This research examines an alternative method for 
disseminating microdata that contains more geographical details than are 
currently being released in public-use data files. Specifically, the method replaces 
the observed survey values with imputed, or synthetic, values simulated from a 
hierarchical Bayesian model. Confidentiality protection is enhanced because no 
actual values are released. The method is demonstrated using restricted data from 
the 2005-2009 American Community Survey. The analytic validity of the 
synthetic data is assessed by comparing small area estimates obtained from the 
synthetic data with those obtained from the observed data.  

Key words: counties, microdata, multiple imputation, data confidentiality. 

1. Introduction 

Demand for small area estimates is growing rapidly among a variety of 
stakeholders who use these data to advance the study of issues affecting local 
communities and the lives of their residents (Tranmer et al., 2005). Statistical 
agencies regularly collect data from small geographic areas and are therefore in a 
unique position to meet some of this demand. However, they are often prevented 
from releasing microdata for such areas because releasing detailed geographical 
identifiers for small areas may increase the risk of respondent re-identification 

                                                           
1 Department of Statistical Methods, Institute for Employment Research, Germany. Program in 

Survey Methodology, University of Michigan, USA. E-mail: joesaks@umich.edu. 
2 Department of Biostatistics, University of Michigan, USA. E-mail: teraghu@umich.edu. 
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and inadvertent disclosure of confidential information (Mackie and Bradburn, 
2000).  

In order to minimize the risk of disclosure, statistical agencies commonly 
adopt one or more of the following data dissemination methods: 1) release 
summary tables that contain aggregate data for specific geographic areas (e.g., 
counties, census tracts, block groups); 2) suppress geographical details in public-
use microdata sets for areas that fail to meet a predefined population threshold 
(e.g., 100,000) and; 3) release the unmasked confidential data set to data users via 
a secure data enclave or Research Data Center (RDC). Although these approaches 
are useful in many situations, each has limitations that preclude its ability to meet 
the growing demand for small area data that is being fuelled by researchers, 
analysts, policy-makers, and community planners. 

For example, summary tables are useful tools for describing basic profiles of 
housing- and/or person-level characteristics for a w ide variety of geographical 
areas, but their utility is limited to addressing complex scientific hypotheses that 
require customizable analytic approaches that are not feasible using existing 
aggregate data products. Releasing public-use microdata mitigates this issue by 
enabling users to perform customized analyses that go beyond the capabilities of 
published summary tables, but the suppression of identifiers for the smallest 
geographic areas limits their use for studying small area phenomenon. Releasing 
restricted microdata via a Research Data Center overcomes the limitations of the 
previous two by permitting users access to the full unmasked microdata, including 
all small area identifiers. In order to access data within an RDC, one must submit 
a research proposal, apply for special sworn status, pay a d ata usage fee, and 
travel to the nearest RDC facility. Unfortunately, these requirements are too 
restrictive for many analysts. 

1.1. Synthetic data for small geographic areas 

This article investigates a fourth approach that may permit statistical agencies 
to release more detailed geographical information in public-use data sets without 
compromising on data confidentiality. The approach extends the idea, originally 
proposed by Rubin (1993), of replacing the observed data values with multiply-
imputed, or synthetic, values. The general idea is to treat the unobserved portion 
of the population as missing data to be multiply imputed using a predictive model 
fitted using the observed data. A random sample of arbitrary size is then drawn 
from each synthetic population which comprises the public-use data sets. Valid 
inferences are obtained by analyzing each synthetic data set separately and 
combining the point estimates and standard errors using combining rules 
developed by Raghunathan, Reiter, and Rubin (2003).  

The synthetic data literature focuses on preserving statistics about the entire 
sample, but preserving small area statistics is usually ignored. Statistics about 
small areas can be extremely valuable to data users, but detailed geospatial 
information is almost always suppressed in public-use survey data.  Research on 
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model-based small area estimation has led to a greater understanding of how 
small area data can be summarized by statistical models (Platek et al., 1987; Rao, 
2003), and such models could potentially be used for simulating small area 
microdata. 

1.2. Fully synthetic versus partially synthetic data 

There are two general synthetic data approaches: full synthesis and partial 
synthesis.  Under a fully synthetic design all survey variables are synthesized and 
no real data is released. This approach provides the highest level of privacy and 
confidentiality protection (Drechsler, Bender, and Raessler, 2008), but the 
analytic validity of inferences drawn from the synthetic data may be poor if 
important relationships are omitted or mis-specified in the imputation model. 
Partial synthesis involves synthesizing a su bset of variables or records that are 
pre-identified as being the most vulnerable to disclosure (Little, 1993; Kennickell, 
1997; Liu and Little, 2002; Reiter, 2003). If implemented properly, this approach 
yields high analytic validity as inferences are less sensitive to misspecification of 
the imputation model. However, because the observed sample units and the 
majority of their data values are released to the public, it does not provide the 
same level of disclosure protection as full synthesis (Drechsler et al., 2008).  

At the present time, the creation of partially synthetic data files is the most 
common application of synthetic data in large databases (Abowd, Stinson, and 
Benedetto, 2006; Rodriguez, 2007; Kinney et al., 2011). There are worthwhile 
reasons why fully synthetic data may be more appropriate for small area 
applications. Perhaps, the most important reason is that complete synthesis can 
offer stronger levels of disclosure protection than partial synthesis. Data 
disseminators are obligated by law to prevent data disclosures and may face 
serious penalties if they fail to do so. Maintaining high levels privacy protection 
should take precedence over maintaining high levels of analytic validity. This 
point is particularly important for small geographic areas, which may contain 
sparse subpopulations and higher proportions of unique cases that are especially 
susceptible to re-identification. A secondary benefit of fully synthetic data is that 
arbitrarily large sample sizes may be drawn from the synthetic populations, 
facilitating analysis for data users who would otherwise be forced to exclude areas 
with insufficient sample sizes, or apply complex indirect estimation procedures to 
compensate for the lack of sampled cases.  

1.3. Organization of article 

This article investigates an extension to Rubin’s synthetic data method for the 
purpose of creating fully synthetic, public-use microdata sets for small geographic 
areas. A hierarchical Bayesian model is used that accounts for multiple levels of 
geography and “borrows strength” across related areas. A sequential multivariate 
regression procedure is used to approximate the joint distribution of the observed 
data, which is then used to simulate synthetic values from the posterior predictive 
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distribution (Raghunathan et al., 2001). How statistical agencies may generate 
fully synthetic data for small geographic areas is demonstrated using a subset of 
restricted data from the American Community Survey. Synthetic data is generated 
for several commonly used household- and person-level variables and their 
analytic validity is assessed by comparing inferences obtained from the synthetic 
data with those obtained from the actual data. The disclosure risk properties of the 
synthetic data methodology are not assessed here and are left to future work. 
Limitations of the app roach and possible extensions are discussed in the final 
section. 

2. Review of fully synthetic data 

2.1. Creation of fully synthetic data sets 

The general framework for creating and analyzing fully synthetic data sets is 
described in Raghunathan et al. (2003) and Reiter (2005). Suppose a sample of 
size 𝑛 is drawn from a finite population Ω = (𝑋,𝑌) of size 𝑁, with 𝑋 =
(𝑋𝑖; 𝑖 = 1,2, … ,𝑁) representing design, geographical, or other auxiliary 
information available for all 𝑁 units in the population, and 𝑌 = (𝑌𝑖; 𝑖 =
1,2, … ,𝑁) representing the survey variables of interest. It is assumed that there is 
no confidentiality concern over releasing information about 𝑋 and synthesis of 
these auxiliary variables is not needed, but the method can be extended to 
synthesize these variables if necessary. Let 𝑌𝑜𝑏𝑠 = (𝑌𝑖; 𝑖 = 1,2, … ,𝑛) be the 
observed portion of 𝑌 corresponding to sampled units and 𝑌𝑛𝑜𝑏𝑠 = (𝑌𝑖; 𝑖 = 𝑛 +
1,𝑛 + 2, … ,𝑁) be the unobserved portion of 𝑌 corresponding to the nonsampled 
units. The observed data set is 𝐷 = (𝑋,𝑌𝑜𝑏𝑠). For simplicity, assume there are no 
item missing data in the observed data, but methods exist for handling this 
situation (Reiter, 2004). 

Fully synthetic data sets are constructed in two steps. First, 𝑀 synthetic 
populations 𝑃(𝑙) = ��𝑋,𝑌(𝑙)�; 𝑙 = 1,2, … ,𝑀� are generated by taking independent 
draws from the Bayesian posterior predictive distribution of 𝑓(𝑌𝑛𝑜𝑏𝑠|𝑋,𝑌𝑜𝑏𝑠) 
conditional on the observed data 𝐷. Alternatively, one can generate synthetic 
values of 𝑌 for all 𝑁 units to ensure that no observed values of 𝑌 are released. The 
number of synthetic populations 𝑀 is determined based on the desired accuracy 
for synthetic data inferences and the risk of disclosing confidential information. A 
modest number of fully synthetic data sets (e.g., 5 or 10) are usually sufficient to 
ensure valid inferences (Raghunathan et al., 2003). In the second step, a random 
sample of size 𝑛𝑠𝑦𝑛 is drawn from each of the 𝑙 = 1,2, … ,𝑀 synthetic data 
populations, 𝐷(𝑙) = �𝑥𝑖,𝑦𝑖

(𝑙), 𝑖 = 1,2, … ,𝑛𝑠𝑦𝑛�. The corresponding 𝑀 synthetic 
samples 𝐷𝑠𝑦𝑛 = �𝐷(𝑙); 𝑙 = 1,2, … ,𝑀� comprise the public-use data sets, which 
are released to, and analyzed by, data users. In practice, the first step of generating 
complete synthetic populations is unnecessary and we only need to generate 
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values of 𝑌 for units in the synthetic samples. The complete synthetic population 
setup is useful for theoretical development of combining rules. 

2.2. Obtaining inferences from fully synthetic data sets 

From the publicly-released synthetic data sets, data users can make inferences 
about a scalar population quantity 𝑄 = 𝑄(𝑋,𝑌), such as the population mean of 𝑌 
or the population regression coefficients of 𝑌 on 𝑋. Suppose the analyst is 
interested in obtaining a point estimate 𝑞 and an associated measure of 
uncertainty 𝑣 of 𝑄 from a set of synthetic samples 𝐷𝑠𝑦𝑛 drawn from the synthetic 
populations 𝑃𝑠𝑦𝑛 = �𝑃(𝑙); 𝑙 = 1,2, … ,𝑀� under simple random sampling. The 
values of 𝑞 and 𝑣 computed on the M synthetic data sets are denoted by 
�𝑞(𝑙),𝑣(𝑙), 𝑙 = 1,2, … ,𝑀�. 

Consistent with the theory of multiple imputation for item missing data 
(Rubin, 1987; Little and Rubin, 2002), combining inferences about 𝑄 = 𝑄(𝑋,𝑌) 
from a set of synthetic samples 𝐷𝑠𝑦𝑛 is achieved by approximating the posterior 
distribution of 𝑄 conditional on 𝐷𝑠𝑦𝑛. The suggested approach, outlined by 
Raghunathan et al. (2003), is to treat �𝑞(𝑙),𝑣(𝑙); 𝑙 = 1,2, … ,𝑀� as sufficient 
summaries of the synthetic data sets 𝐷𝑠𝑦𝑛 and approximate the posterior density 
𝑓�𝑄|𝐷𝑠𝑦𝑛� using a normal distribution with the posterior mean 𝑄 computed as the 
average of the estimates, 

 
𝑞�𝑀 = �𝑞(𝑙)

𝑀

𝑙=1

/𝑀 (1) 
 

and the approximate posterior variance is computed as, 

 𝑇𝑀 = (1 + 𝑀−1)𝑏𝑀 − 𝑣𝑚 (2) 

where𝑣̅𝑀 = ∑ 𝑣(𝑙)𝑀
𝑙=1 /𝑀 is the overall mean of the estimated variances across all 

synthetic data sets (“within variance”) and 𝑏𝑀 = ∑ �𝑞(𝑙) − 𝑞�𝑀�
2

/(𝑀− 1)𝑀
𝑙=1  is 

the variance of 𝑞(𝑙) across all synthetic data sets (“between variance”).  
Under certain regulatory conditions specified in Raghunathan et al. (2003), 

𝑞�𝑀 is an unbiased estimator of 𝑄 and 𝑏𝑀 − 𝑣𝑚 is an unbiased estimator of the 
variance of 𝑄. The 1

𝑀
𝑏𝑀 adjusts for using only a finite number of synthetic data 

sets. It should be noted that the subtraction of the within imputation variance in 
𝑇𝑀 is due to the additional step of sampling units from the synthetic populations. 
Because of this extra sampling step, the between imputation variance contains the 
true between and nearly twice the amount of within variance needed to obtain an 
unbiased estimate of T. 

When 𝑛, 𝑛𝑠𝑦𝑛, and 𝑀 are large, inferences for scalar 𝑄 can be based on 
normal distributions. For moderate 𝑀, inferences can be based on t-distributions 
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with degrees of freedom 𝛾𝑀 = (𝑀 − 1)(1 − 𝑟𝑚−1)2, where 𝑟𝑚 = (1 +𝑀−1)𝑏𝑚/
𝑣̅𝑀, so that a (1 − 𝛼)% interval for 𝑄 is 𝑞�𝑀 ± 𝑡𝛾𝑀(𝛼/2)�𝑇𝑀 as described in 
Raghunathan and Rubin (2000). Extensions for multivariate 𝑄 are described in 
Reiter and Raghunathan (2007). 

A limitation of the variance estimator 𝑇𝑀 is that it can produce negative 
variance estimates. Negative values of 𝑇𝑀 can generally be avoided by increasing 
𝑀or 𝑛𝑠𝑦𝑛. Numerical routines can be used to calculate the integrals involved in 
the construction of 𝑇𝑀, yielding more precise variance estimates (Raghunathan et 
al., 2003). A simpler variance approximation that is always positive is shown in 
Reiter (2002). 

3. Creation of synthetic data sets for small geographic areas 

Hierarchical models have been used in several applications of small area 
estimation (Fay and Herriot, 1979; Malec et al., 1997). See Rao (2003) for a 
comprehensive review of design-based, empirical Bayes, and fully Bayesian 
approaches for small area estimation. Hierarchical models have also been used for 
multiple imputation of missing data in multilevel data structures (Reiter, 
Raghunathan, and Kinney, 2006; Yucel, 2008). 

The approach considered here involves three stages. In the first stage, the joint 
density of the variables to be synthesized is approximated by fitting sequential 
regression models based on the observed data within each small area. In the 
second stage, the sampling distribution of the unknown regression parameters 
(estimated in the first stage) is approximated and the between-area variation is 
modelled using auxiliary information. In the third stage, the unknown regression 
parameters are simulated and used to draw synthetic microdata values from the 
posterior predictive distribution. 

Two levels of geography are considered. For illustration, consider “small 
areas” as counties nested within states. In illustrating the approach, the models are 
kept relatively simple from a co mputational perspective to make the modelling 
practical. Despite the simplified presentation, the framework can be extended to 
handle more sophisticated modelling approaches.  

3.1. Stage 1: Approximation of joint density via sequential regression 

Suppose that a simple random sample of size 𝑛 is drawn from a finite 
population of size 𝑁. Assuming units were sampled from each county, let 𝑛𝑐𝑠 and 
𝑁𝑐𝑠 denote the respective sample and population sizes for county 𝑐 = (1,2, … ,𝐶𝑠) 
nested within state 𝑠 = (1,2, … , 𝑆). Let 𝑌𝑐𝑠 = �𝑌𝑖𝑐𝑠,𝑝; 𝑖 = 1,2, … ,𝑛𝑐𝑠;  𝑝 =
1,2, … ,𝑃� represent the 𝑛𝑐𝑠 × 𝑃 matrix of survey variables collected from each 
survey respondent located in county 𝑐 and state 𝑠. Let 𝑋𝑐𝑠 = �𝑋𝑖𝑐𝑠,𝑗; 𝑖 =
1,2, … ,𝑛𝑐𝑠,𝑛𝑐𝑠 + 1, … ,𝑁𝑐𝑠;  𝑗 = 1,2, . . , 𝐽� represent the 𝑁𝑐𝑠 × 𝐽 matrix of 
auxiliary or administrative variables known for every population member in a 
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particular county and state. Here only the survey variables 𝑌𝑐𝑠,𝑝 are synthesized, 
but it is straightforward to synthesize the auxiliary variables 𝑋𝑐𝑠,𝑗 as well. 

A desirable property of the synthetic data is that the multivariate 
relationships among the observed variables are maintained in the synthetic data, 
i.e., the joint distribution of variables given the auxiliary information 
𝑓�𝑌𝑐𝑠,1,𝑌𝑐𝑠,2, … ,𝑌𝑐𝑠,𝑃|𝑋𝑐𝑠,𝑗� is preserved. Specifying and simulating from the joint 
conditional distribution can be difficult for complex data structures involving 
large numbers of variables representing a v ariety of distributional forms. 
Alternatively, one can approximate the joint density as a product of conditional 
densities (Raghunathan et al., 2001). That is, the joint density 
𝑓�𝑌𝑐𝑠,1,𝑌𝑐𝑠,2, … ,𝑌𝑐𝑠,𝑃|𝑋𝑐𝑠,𝑗� can be factored into the following conditional 
densities: 𝑓�𝑌𝑐𝑠,1|𝑋𝑐𝑠,𝑗�, 𝑓�𝑌𝑐𝑠,2|𝑌𝑐𝑠,1,𝑋𝑐𝑠,𝑗�,…,𝑓�𝑌𝑐𝑠,𝑃|𝑌𝑐𝑠,1, … ,𝑌𝑐𝑠,𝑃−1,𝑋𝑐𝑠,𝑗�. In 
practice, a seq uence of generalized linear models are fit based on the observed 
county-level data where the variable to be synthesized comprises the outcome 
variable that is regressed on any auxiliary variables or previously fitted variables, 
e.g.,  𝑌𝑖𝑐𝑠,1 = (𝑋𝑖𝑐𝑠)𝛽𝑐𝑠,1 + 𝜀𝑖𝑐𝑠, 𝑌𝑖𝑐𝑠,2 = �𝑋𝑖𝑐𝑠,𝑌𝑖𝑐𝑠,1�𝛽𝑐𝑠,2 + 𝜀𝑖𝑐𝑠 ,…,𝑌𝑖𝑐𝑠,𝑃 =
�𝑋𝑖𝑐𝑠,𝑌𝑖𝑐𝑠,1,𝑌𝑖𝑐𝑠,2, … ,𝑌𝑖𝑐𝑠,𝑃−1�𝛽𝑐𝑠,𝑃 + 𝜀𝑖𝑐𝑠. The choice of model (e.g., Gaussian, 
binomial) is dependent on the type of variable to be synthesized (e.g., continuous, 
binary). It is assumed that any complex survey design features are incorporated 
into the generalized linear models and that each variable has been appropriately 
transformed to satisfy modelling assumptions. After fitting each conditional 
density, the vector of regression parameter estimates 𝛽̂𝑐𝑠,𝑝, the corresponding 
covariance matrix 𝑉�𝑐𝑠,𝑝, and the residual variance 𝜎�𝑐𝑠,𝑝

2  are extracted from each of 
the 𝑃 regression models and incorporated into the hierarchical model described 
below. 𝑝 = (1,2, … ,𝑃)is used to index the set of parameters associated with the 
𝑝𝑡ℎ synthetic variable of interest and the 𝑝𝑡ℎ regression model from which the 
direct estimates are obtained.  

3.2. Stage 2: Sampling distribution and between-area model 

In the second stage, the joint sampling distribution of the design-based 
county-level regression estimates 𝛽̂𝑐𝑠,𝑝 (obtained from each conditional model 
fitted in Stage 1) is approximated by a multivariate normal distribution, 

 𝛽̂𝑐𝑠,𝑝 ~ 𝑀𝑉𝑁�𝛽𝑐𝑠,𝑝,𝑉�𝑐𝑠,𝑝� (3) 

where𝛽𝑐𝑠,𝑝 is the (𝐽 + 𝑝) × 1 matrix of unknown regression parameters and 𝑉�𝑐𝑠,𝑝 
is the corresponding (𝐽 + 𝑝) × (𝐽 + 𝑝) estimated covariance matrix obtained from 
Stage 1. The unknown county-level regression parameters 𝛽𝑐𝑠,𝑝 are assumed to 
follow a multivariate normal distribution,  

 𝛽𝑐𝑠,𝑝 ~ 𝑀𝑉𝑁�𝛽𝑝𝑍𝑠, Σ𝑝� (4) 
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where𝑍𝑠 = �𝑍𝑠,𝑘;𝑘 = 1,2, … ,𝐾� is a 𝐾 × 1 matrix of state-level covariates, 𝛽𝑝 is 
a (𝐽 + 𝑝) × 𝐾 matrix of unknown regression parameters, and Σ𝑝 is a (𝐽 + 𝑝) ×
(𝐽 + 𝑝) covariance matrix. State-level covariates are incorporated into the 
hierarchical model in order to “borrow strength” from related areas. Prior 
distributions may be assigned to the unknown parameters 𝛽𝑝and Σ𝑝, but for 
computational simplicity it is assumed that 𝛽𝑝 and Σ𝑝 are fixed at their respective 
maximum likelihood estimates, a common assumption in hierarchical models for 
small area estimation (Fay and Herriot, 1979; Datta, Fay, and Ghosh, 1991; Rao, 
1999). Details for obtaining the maximum likelihood estimates using the 
expectation-maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977) 
are provided in Appendix 1.  

Based on standard theory of the normal hierarchical model (Lindley and 
Smith, 1972), the unknown regression parameters 𝛽𝑐𝑠,𝑝 can be drawn from the 
following posterior distribution,  
 𝛽�𝑐𝑠,𝑝 ~ 𝑀𝑉𝑁 ��𝑉�𝑐𝑠,𝑝

−1 + Σ�𝑝−1�
−1�𝑉�𝑐𝑠,𝑝

−1 𝛽̂𝑐𝑠,𝑝 + Σ�𝑝−1𝛽̂𝑝𝑍𝑠�, �𝑉�𝑐𝑠,𝑝
−1 + Σ�𝑝−1�

−1� (5) 

where𝛽�𝑐𝑠,𝑝 is a simulated vector of values for the unknown regression parameters 
𝛽𝑐𝑠,𝑝 . 

3.3. Stage 3: Simulating from the posterior predictive distribution 

The ultimate objective is to generate synthetic populations for each small area 
using an appropriate posterior predictive distribution. Simulating a synthetic 
variable 𝑌�𝑐𝑠 = �𝑌�𝑙𝑐𝑠,𝑝; 𝑙 = 1,2, … ,𝑁𝑐𝑠;𝑝 = 1,2, … ,𝑃� for observed variable 𝑌𝑐𝑠 for 
synthetic population unit 𝑙 = (1,2, … ,𝑁𝑐𝑠) is achieved by drawing, in sequential 
fashion, from the following posterior predictive distributions 𝑓�𝑌�𝑐𝑠,1|𝑋𝑐𝑠 ,𝛽�𝑐𝑠,1�, 
𝑓�𝑌�𝑐𝑠,2|𝑌�𝑐𝑠,1,𝑋𝑐𝑠 ,𝛽�𝑐𝑠,1�, …, 𝑓�𝑌�𝑐𝑠,𝑃|𝑌�𝑐𝑠,1,𝑌�𝑐𝑠,2, … ,𝑌�𝑐𝑠,𝑃−1,𝑋𝑐𝑠,𝛽�𝑐𝑠,1�. For example, if the 
first variable to be synthesized 𝑌𝑐𝑠,1 is normally distributed then 𝑌�𝑐𝑠,1 can be 
drawn from a normal distribution with location and scale parameters 𝑋𝑐𝑠𝛽�𝑐𝑠,1and 
𝜎𝑐𝑠,1
2  , respectively, where 𝜎𝑐𝑠,1

2  may be drawn from an appropriate posterior 
predictive distribution, or fixed at its maximum likelihood estimate 𝜎�𝑐𝑠,1

2  
(obtainable from Stage 1). Generating a second (normally distributed) synthetic 
variable 𝑌�𝑐𝑠,2 from the posterior predictive distribution 𝑓�𝑌�𝑐𝑠,2|𝑌�𝑐𝑠,1,𝑋𝑐𝑠,𝛽�𝑐𝑠,2� is 
achieved by drawing 𝑌�𝑐𝑠,2  from 𝑁��𝑋𝑐𝑠,𝑌�𝑐𝑠,1�𝛽�𝑐𝑠,2,𝜎𝑐𝑠,2

2 �, and  so on up t o 
𝑌�𝑐𝑠,𝑃~𝑁��𝑋𝑐𝑠 ,𝑌�𝑐𝑠,1,𝑌�𝑐𝑠,2, … ,𝑌�𝑐𝑠,𝑃−1�𝛽�𝑐𝑠,𝑃 ,𝜎𝑐𝑠,𝑃

2 �. Alternatively, if the variable under 
synthesis 𝑌𝑐𝑠,𝑝 is binary, then 𝑌�𝑐𝑠,𝑝 is drawn from a binomial distribution 
𝐵𝑖𝑛�1, 𝑝̂��𝑋𝑐𝑠 ,𝑌�𝑐𝑠,1,𝑌�𝑐𝑠,2, … ,𝑌�𝑐𝑠,𝑝−1�𝛽�𝑐𝑠,𝑃��, where 𝑝̂��𝑋𝑐𝑠,𝑌�𝑐𝑠,1,𝑌�𝑐𝑠,2, … ,𝑌�𝑐𝑠,𝑝−1�𝛽�𝑐𝑠,𝑃� is 
the predicted probability computed from the inverse-logit of 
��𝑋𝑐𝑠,𝑌�𝑐𝑠,1,𝑌�𝑐𝑠,2, … ,𝑌�𝑐𝑠,𝑝−1�𝛽�𝑐𝑠,𝑃�. For polytomous variables, the same procedure is 
used to obtain posterior probabilities for each categorical response, which are then 
used to generate the synthetic values from a multinomial distribution. The 
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iterative simulation process continues until all synthetic variables 
�𝑌�𝑐𝑠,1,𝑌�𝑐𝑠,2, … ,𝑌�𝑐𝑠,𝑃� are generated. The procedure is repeated M times to create 
multiple populations of synthetic variables �𝑌�𝑐𝑠,1

(𝑙) ,𝑌�𝑐𝑠,2
(𝑙) , … ,𝑌�𝑐𝑠,𝑃

(𝑙) ; 𝑙 = 1,2, … ,𝑀�. In 
addition, the entire cycle may be repeated several times to minimize ordering 
effects (Raghunathan et al., 2001). 

The complete synthetic populations may be disseminated to data users, or 
simple random samples of arbitrary size may be drawn from each population and 
released. Stratified random sampling may be used if different sampling fractions 
are to be applied within small areas. Inferences for a variety of estimands can be 
obtained using the combining rules in Section 2.2. 

4. American Community Survey (2005-2009) 

The proposed methodology is applied to a subset of restricted county-level 
microdata from the 2005-2009 American Community Survey (ACS), obtained 
from the Michigan Census Research Data Center. The ACS is an ongoing national 
survey that provides yearly estimates on a variety of topics, including income and 
benefits, health insurance coverage, disabilities, family and relationships, and 
others. The ACS collects information on pe rsons living in housing units and 
group quarters facilities in all 3,141 counties in the United States. Data collection 
is conducted using a mixed-mode design. First, questionnaires are mailed to all 
sampled household addresses obtained from a Master Address File. 
Approximately six weeks after the questionnaire is mailed the Census Bureau 
attempts to conduct telephone interviews with all households that do not respond 
by mail. Following the telephone operation, a random sample is taken from the 
list of addresses where interviews have not been obtained and these addresses are 
visited by a field representative. Full details of the ACS methodology can be 
found in the technical documentation (U.S. Census Bureau, 2009). 

Unlike the ACS public-use microdata files, the restricted data contain 
identifiers for all counties in the United States. For this application, we restrict the 
data to occupied housing units in the Northeast region. The Northeast region 
consists of 217 counties, all of which included households that completed ACS 
interviews. We use 5 years of restricted data to facilitate the disclosure review 
process and allow for the publication of estimates for all counties; the latter is not 
permitted with fewer years. Seven household- and seven person-level variables 
were selected for this analysis. The variables, shown in Table 1, were chosen by 
statisticians at the U.S. Census Bureau specifically for this project due to their 
common use among data users. Some variables (e.g., household tenure status, 
education, race) contained numerous categories. Ideally, each category would be 
preserved in the synthetic data; however, the decision was made to keep the 
number of categories at a minimum while maximizing the number of variables 
used in this small demonstration project. Thus, the few polytomous variables were 
recoded to reduce their number of categories. Transformations were applied to the 



350                                         J. W. Sakshaug, T. E. Raghunathan: Generating synthetic … 

 

 

continuous variables to meet normality assumptions during the model fitting and 
the synthetic data generation stages. After the synthesis was completed, the 
variables were transformed back to their original scales. The Census Bureau 
applies single imputation to missing ACS values in the restricted and public-use 
data files. We treat these imputations as actual observations in this application. 

Table 1. List of ACS Variables Used in Synthetic Data Application. Variables 
Shown in the Order of Synthesis 

Variable Type Range/Categories  Transformation 

Household variables 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
    (excl. bedrooms) 
  Income   
  Tenure 
 

 
count 
continuous 
count 
continuous 
count 
 
continuous 
polytomous 
 

 
1 - 20 
1 - 201 
0 - 5 
1 - 687 
1 - 7 
 
0 – 3,999,996 
recoded; mortgage/loan, own 
free and clear, rent 

  
-- 
log 
-- 
cube root 
-- 
 
cube root 
-- 
 

Person variables 
  Sampling weight 
  Gender 
  Education 
 
  Hispanic ethnicity 
  Age 
  Race 
  Living in poverty 

 
continuous 
binary 
polytomous 
 
binary 
continuous 
polytomous 
binary 

 
1 - 341 
male, female 
recoded; < 12 years, 12 years,  
13-15 years, 16+ years 
yes, no 
0 - 115 
recoded; white, black, other 
yes, no 

  
log 
-- 
-- 
 
-- 
-- 
-- 
-- 

 
Ten fully synthetic household- and person-level data sets were generated for 

each county. To ensure that each synthetic data set contained ample numbers of 
households and persons within each county, synthetic samples were created to be 
approximately equivalent to 20% of the total number of households based on the 
decennial census count. This yielded a total synthetic sample size of 3,963,715 
households and 10,192,987 persons in the Northeast region.  

The first survey variable to be synthesized was household size. Creating a 
household size variable facilitates the subsequent generation of synthetic person-
level data. Household size was simulated using a Bayesian Poisson-Gamma 
model conditional on the observed household size variable with unknown 
hyperparameters fixed at their marginal maximum likelihood estimates obtained 
using the Newton-Raphson algorithm (see Appendix 2 for details). All subsequent 
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variables were synthesized using the hierarchical modelling approach described in 
Section 3. S tate-level covariates 𝑍𝑠that were incorporated into the hierarchical 
model included population size (2005 estimate: log-transformed) and the number 
of metropolitan and micropolitan areas. These covariates were obtained from the 
Census Bureau website. 

For numerical variables (continuous, count), design-based estimates of 
regression parameters were obtained by fitting normal linear models within each 
county and synthetic values were drawn from the Gaussian posterior predictive 
distribution. For binary variables, logistic regression models were used to obtain 
the design-based parameter estimates and synthetic values were drawn from the 
binomial posterior predictive distribution. Logistic regression was also applied to 
polytomous variables after breaking them up i nto a series of conditional binary 
variables, estimating the propensity of a case belonging to a particular category 
versus all other categories, and using those propensities to predict case 
membership. We considered using multinomial regression for polytomous 
variables, but preliminary testing yielded convergence and stability problems for 
many counties. Therefore the decision was made to use the modified logistic 
regression approach. To increase the stability of the estimated regression 
coefficients, a minimum sample size rule of 10 ∙ 𝑝 was applied within each 
county. If the target county did not meet this sample size threshold then nearby 
counties were pooled together until the criterion was met. 

The household variables were synthesized first, followed by the person 
variables. After the synthetic household data sets had been created, they were 
converted to person-level data sets based on values of the synthetic household size 
variable. Taylor series linearization (Binder, 1993) was used to adjust the 
variances of the design-based regression estimates for the additional homogeneity 
due to persons clustered within households. To reduce the ordering effect induced 
by synthesizing the variables in a prescribed order, we repeat the entire synthetic 
data process 4 additional times, each time conditioning on the full set of synthetic 
variables generated from the previous implementations. Finally, it should be 
noted that the person-level variables were synthesized independently of the 
household-level variables. Although multiple imputation theory dictates that one 
should condition on all available information (Rubin, 1987), we found in 
preliminary runs that cycling between household- and person-level synthesis by 
aggregating person-level variables up to the household-level did not yield 
satisfactory inferences, possibly due to the non-standard distributions that the 
aggregation procedure produced. After applying several transformation 
procedures to the aggregated person-level variables, which did not significantly 
improve the imputations, we decided to keep the household and person levels 
separate for this demonstration project. 

All results were reviewed and approved by the U.S. Census Bureau’s 
Disclosure Review Board. 
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4.1. Validity of univariate estimates 

Figure1 contains back-to-back histograms depicting the overall distributions 
for each continuous household- and person-level variable. The actual distributions 
are shown in the left panel and the synthetic distributions in the right panel. All 
variables are presented in their original scale. Visual comparisons show that for 
some variables, the synthetic data distribution corresponds to the actual data 
distribution reasonably well, but for others, the correspondence is poorer. 
Although the bulk of the distributions are generally maintained in the synthetic 
data, not every peak and valley is preserved. Those variables which do not follow 
a smooth parametric form tend to be most susceptible to a lack of correspondence. 
For example, the shape of the age distribution is bimodal denoting the highest 
frequency of people between the ages of 0-20 and 45-55. The synthetic age 
values, which are simulated from a normal distribution, fail to reflect the 
underlying bimodality. To a lesser degree, the sampling weight variables exhibit 
some bimodality at the left-most portion of their distributions, which is also not 
accounted for by the synthetic data. More sophisticated techniques, such as 
mixture modelling or nonparametric imputation may do a better job of preserving 
these non-standard distributional forms. 

 

Figure 1. Back-to-Back Histograms of Actual (Left) and Synthetic (Right) 
Distributions for Continuous ACS Household- and Person-Level 
Variables in the Northeast Region. 
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While it is useful to compare synthetic and actual variable distributions for 
purposes of evaluation, data users are most interested in the validity of the small 
estimates obtained from the synthetic data. Table 2shows summary measures of 
univariate county-level estimands obtained from the synthetic and actual data. 
The first column contains the original set of ACS variables as w ell as recoded 
binary variables indicating overall income percentiles (50th, 75th and 90th) and 
specific subgroups (income x t enure; poverty x race/ethnicity). The second 
column shows the average county mean obtained from the synthetic and actual 
data, across all 217 counties. The third and fourth columns show the average 
standard deviation and standard error of the county means. The last column 
contains the intercept and slope values obtained from regressing the actual county 
means against the corresponding synthetic means. Intercept values close to zero 
and slope values close to one indicate strong correspondence between the 
synthetic and actual data estimates.  
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The synthetic data estimates, based on the original ACS variables, correspond 
roughly to the actual estimates, on a verage; out of the 9 hous ehold- and 12 
person-level estimands, 5 and 10 of them yield synthetic point estimates that lie 
within two standard errors of the actual estimates, respectively, on average. The 
largest deviations occur for the tenure variable where the percentage of housing 
units being rented is overestimated by about two percentage points, on average, 
and the percentages of housing units owned free and clear and being financed 
through a mortgage or loan, are both underestimated in the synthetic data by about 
one and three percentage points, respectively, on average. These deviations are 
evident from examination of scatter plots of synthetic and actual county-level 
estimates (not shown, but available upon r equest). Similar over- and under-
estimation effects appear in estimates of the other polytomous variables 
(education, race), but to a lesser extent. The cause of these effects is likely driven 
by two joint factors. The overestimation is likely due to the pooling of nearby 
counties to facilitate model fit for target counties that contained insufficient 
numbers of rented housing units; the rarest of the three membership categories. 
For the affected counties, the act of pooling at the estimation stage yields a higher 
rate of rented housing units in the synthetic data, which is closer to the population 
average. The underestimation in the other tenure estimates is driven by the fact 
that rental status was the first tenure category to be simulated, followed by 
ownership (conditional on not being rented) and mortgage/loan status (conditional 
on not being rented or owned). A consequence of this step-by-step conditional 
simulation approach is that the higher rates of rented housing units generated for 
the areas with inadequate samples sizes are offset by lower rates of ownership and 
mortgage/loan status for these smaller areas. 

Aside from the positive/negative deviations among the polytomous estimates, 
the other estimates, based on continuous and binary ACS variables, appear to be 
reasonably valid as indicated by the diagnostic measures in Table 2. Many of the 
estimands yield intercept and slope values for the linear regression of actual 
county means against the synthetic means that are close to zero and one, 
respectively, indicating good correspondence between the actual and synthetic 
estimates. However, some of the continuous variables including electricity bill 
amount, household income, and, especially, age, yield larger deviations from the 
ideal intercept and slope values. The largest deviation occurs for the age 
estimates, which are likely due to the aforementioned bimodality of the age 
distribution that is reflected poorly in the synthetic data. The resulting synthetic 
county-level age estimates tend to be biased upward, particularly, for the counties 
with the highest average ages. 

The validity of the percentile and subgroup estimates is mixed. The 
percentage of households with incomes exceeding the 50th percentile in the 
synthetic data corresponds closely to the actual percentages, on average. 
However, the estimates based on the 75th and 90th percentiles are higher in the 
synthetic data by about 1.5-2.0 percentage points, on average. Scatterplots of the 
county-level percentile means (not shown, but available upon request) indicate 
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that the correspondence between synthetic and actual means becomes poorer as 
the percentile increases. Almost all of the income and poverty subgroup means lie 
within 1-2 standard errors of their corresponding actual means, on average. 
However, a positive and negative bias can be seen for synthetic estimates of mean 
income among mortgaged and rented housing units from scatterplots (not shown, 
but available upon request); a r esult that is likely due to the aforementioned 
under- and over-estimation of these tenure variables in the synthetic data, 
respectively.  

A few remarks can be made about the uncertainty of the synthetic estimates. 
Based on multiple imputation theory, we would expect the synthetic standard 
deviations to be approximately the same and the standard errors to be larger than 
the actual standard deviations and standard errors, respectively, on average. This 
expectation is confirmed for some, but not all estimates. In most cases, the 
synthetic data standard deviations are close to their actual data counterparts. A 
particular exception is age, which yields larger standard deviations in the 
synthetic data, on a verage, due to the aforementioned bimodal age distribution, 
which is smoothed over in the synthetic data causing more age values to lie 
further away from the mean. On average, about half of the synthetic standard 
errors is equal to or greater than the corresponding actual standard errors. 
Estimates of income tend to have smaller standard errors in the synthetic data, on 
average, as a result of outlying observations being less preserved in the synthetic 
data. Moreover, the underestimated variances could be caused by misspecification 
of the imputation model and/or poor choice of transformation for preserving the 
tail-end of the distribution in the synthetic data, a problem which has been 
highlighted in earlier research on the estimation of imputed totals in skewed 
populations (Rubin, 1983). Another possible source of variation not accounted for 
in the synthetic data is due to the fact that the hyperparameters were fixed at their 
maximum likelihood estimates (see Section 3.2), rather than being randomly 
drawn from an a priori distribution. 

Table 2. Summary Measures of Actual and Synthetic County Means 
  

Avg.  
Mean 

 
Avg. Standard 

 Deviation 

 
Avg. Standard  
Error of Mean 

Regression of 
Actual Means 
on Synthetic 

Means 

 Actual Synthetic Actual Synthetic Actual Synthetic Intercept Slope 

Household variables 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms 
  Income 
  Tenure (%) 
    Mortgage/loan 
    Own free & clear 
    Rent 

 
2.12 
9.99 
2.88 

118.89 
3.23 

67983.9 
 

49.00 
31.12 
19.88 

 
2.12 
10.20 
2.82 

119.37 
3.18 

67382.4 
 

47.03 
30.37 
22.60 

 
1.46 
7.21 
0.96 
78.72 
1.19 

68481.3 
 

49.38 
45.53 
38.86 

 
1.45 
7.04 
1.09 
78.33 
1.28 

54081.9 
 

49.30 
44.97 
41.00 

 
0.02 
0.11 
0.02 
1.25 
0.02 

1067.3 
 

0.82 
0.77 
0.63 

 
0.01 
0.11 
0.01 
1.10 
0.02 
692.6 

 
0.74 
0.72 
0.63 

 
0.02 
0.01 
0.15 
9.90 
0.09 

4681.7 
 

0.04 
0.05 
-0.05 

 
0.99 
0.98 
0.97 
0.91 
0.99 
0.94 

 
0.95 
0.85 
1.09 
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Table 2. Summary Measures of Actual and Synthetic County Means (cont.) 
  

Avg.  
Mean 

 
Avg. Standard 

 Deviation 

 
Avg. Standard  
Error of Mean 

Regression of 
Actual Means 
on Synthetic 

Means 

 Actual Synthetic Actual Synthetic Actual Synthetic Intercept Slope 

Recoded variables 
  Income > 50th pctile,% 
  Income > 75th pctile,% 
  Income > 90th pctile,% 
  Income (Mortgage=1) 
  Income (Own=1) 
  Income (Rent=1) 

 
44.65 
19.34 
6.78 

84667.0 
61076.6 
38844.5 

 
44.56 
21.49 
8.38 

86992.6 
60456.9 
36921.9 

 
48.24 
37.34 
22.96 

69019.2 
76053.1 
37759.4 

 
48.19 
38.69 
24.58 

58960.1 
45083.6 
32527.3 

 
0.80 
0.59 
0.35 

1536.0 
2132.8 
1436.0 

 
0.56 
0.43 
0.24 

1195.3 
1232.7 
1166.5 

 
0.01 
-0.00 
0.56 

5460.0 
1717.0 
3480.0 

 
0.97 
0.91 
0.74 
0.91 
0.98 
0.99 

Person variables 
  Sampling weight 
  Gender (%) 
  Education (%) 
< 12 years 
    12 years 
    13-15 years 
    16+ years 
  Hispanic (%) 
  Age 
  Race (%) 
    White 
    Black 
    Other 
  Poverty (%) 
Recoded variables 
  Poverty (White=1; %) 
  Poverty (Black=1; %) 
  Poverty (Other=1; %) 
  Poverty (Hispanic=1; %) 

 
10.27 
48.63 

 
31.48 
28.34 
20.33 
19.85 
3.85 

40.89 
 

92.21 
3.55 
4.24 
8.65 

 
7.93 

20.48 
16.62 
19.92 

 
10.67 
48.63 

 
31.67 
27.74 
20.25 
20.35 
4.23 
41.16 

 
91.34 
4.01 
4.65 
9.04 

 
8.19 
21.30 
17.84 
21.11 

 
7.59 
49.97 

 
46.31 
44.40 
40.11 
38.72 
15.72 
22.98 

 
22.17 
14.54 
14.54 
27.54 

 
26.41 
36.86 
35.37 
37.08 

 
8.02 
49.97 

 
46.31 
44.06 
40.04 
39.14 
16.99 
30.34 

 
24.08 
16.26 
18.61 
28.13 

 
26.84 
37.03 
36.07 
37.96 

 
0.08 
0.53 

 
0.49 
0.48 
0.43 
0.40 
0.14 
0.25 

 
0.20 
0.13 
0.16 
0.30 

 
0.30 
4.62 
2.96 
3.52 

 
0.14 
0.44 

 
0.39 
0.57 
0.50 
0.51 
0.26 
0.27 

 
0.36 
0.26 
0.27 
0.53 

 
0.51 
3.52 
4.38 
5.54 

 
-0.09 
0.04 

 
0.09 
0.01 
0.01 
-0.01 
-0.00 
22.02 

 
0.01 
-0.01 
-0.00 
-0.00 

 
-0.00 
-0.01 
0.01 
-0.01 

 
0.97 
0.91 

 
0.71 
0.97 
0.96 
1.00 
1.00 
0.46 

 
1.00 
1.00 
1.00 
1.00 

 
1.00 
1.01 
0.87 
0.98 

4.2. Validity of multivariate estimates 

The next set of analyses examine the analytic validity of synthetic 
multivariate estimates obtained from multiple regression models. Table 3 shows 
average coefficient estimates (and their standard errors) for two regression models 
fit within each county. The first model fits a household-level linear regression of 
income (cube root) on the remaining ACS household covariates, and the second 
model fits a person-level logistic regression of poverty status on the remaining 
person covariates. Both models yield coefficient estimates based on the synthetic 
data that closely resemble those based on the actual data. Nearly all of the 
synthetic data coefficient estimates lie within one standard error of their 
corresponding actual data estimates, on average. Scatterplots of the synthetic and 
actual county regression coefficients (not shown, but available upon request) 
show that the synthetic data county estimates are in agreement with the actual 
county estimates as the points lie about the 45 d egree line. However, there are 
clear biases associated with some coefficients, particularly, those associated with 
tenure variables that have already been shown to be affected by biases in the 
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synthetic data. The standard errors of the synthetic data estimates appear to be on 
par, and in some cases, twice as large as those of the actual data estimates. In 
summary, the multivariate relationships examined here appear to be reasonably 
valid in the synthetic data. This is a reassuring result given that these relationships 
were explicitly accounted for in the synthetic data generation models. 

Table 3. Summary Measures of Actual and Synthetic Linear and Logistic County 
Regression Coefficients 

 
 

Avg. Beta  
Coefficient 

Avg. Standard Error 
of Beta Coefficient 

Linear regression of household  income (cube 
root) on household-level covariates 

 
Actual 

 
Synthetic 

 
Actual 

 
Synthetic 

Intercept 
Household size 
Sampling weight 
Total bedrooms 
Electricity bill/mo. 
Total rooms 
Tenure 
Mortgage/loan 
Own free & clear 
Rent 

24.34 
1.52 
-0.04 
1.15 
0.99 
1.25 

 
Ref 

-3.47 
-6.01 

24.26 
1.44 
-0.05 
1.23 
1.04 
1.26 

 
Ref 

-3.05 
-6.84 

1.11 
0.14 
0.24 
0.19 
0.18 
0.14 

 
Ref 
0.37 
0.44 

1.09 
0.14 
0.26 
0.18 
0.17 
0.13 

 
Ref 
0.34 
0.47 

 Avg. Beta  
Coefficient 

Avg. Standard Error 
of Beta Coefficient 

Logistic regression of poverty status on 
person-level covariates 

 
Actual 

 
Synthetic 

 
Actual 

 
Synthetic 

Intercept 
Sampling weight 
Gender: Male 
Education 
<12 years 
 12 years 
13-15 years 
16+years 
Hispanic 
Age 
Race 
White 
Black 
Other 

-2.39 
0.25 
-0.33 

 
Ref 

-0.36 
-0.62 
-1.52 
0.36 
-0.00 

 
Ref 
0.28  
0.41 

-2.32 
0.25 
-0.34 

 
Ref 

-0.35 
-0.63 
-1.59 
0.27 
0.01 

 
Ref 
0.22 
0.41 

0.16 
0.07 
0.08 

 
Ref 
0.12 
0.13 
0.18 
0.29 
0.00 

 
Ref 
0.34 
0.25 

0.24 
0.10 
0.08 

 
Ref 
0.13 
0.15 
0.30 
0.63 
0.07 

 
Ref 
0.87 
0.56 

5. ACS simulation 

This section evaluates the repeated sampling properties of small area 
inferences drawn from the synthetic data based on a simulation study. In this 
simulation, we use public-use ACS microdata for the Northeast region for years 
2005-2007.  T he smallest geographical unit in the public-use microdata is 
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a Public-Use Microdata Area (PUMA). PUMAs are defined as areas which 
contain at least 100,000 persons. In many cases, PUMAs overlap exactly with 
counties with the exception of very large counties, which are split into multiple 
PUMAs, and very small counties, which are combined with nearby counties to 
form a single PUMA. There are 405 PUMAs located in the Northeast region. For 
this simulation study, the ACS data is treated as a population from which 
subsamples are drawn. 500 stratified random subsamples are drawn from each 
PUMA with replacement. Each subsample accounts for approximately 30% of the 
total sample in each PUMA. Each ACS subsample is used as the basis for 
constructing a synthetic population from which 100 synthetic samples are drawn. 
This resulted in a total of 50,000 synthetic data sets. 

Two types of inferences can be obtained from the synthetic data: conditional 
and unconditional. Conditional synthetic inferences are obtained from synthetic 
samples that are based on a single observed sample drawn from the population. 
This is the situation that most commonly occurs in practice, where a su rvey is 
carried out on a  single population-based sample and the synthetic data is 
generated conditional on that sample. Unconditional inferences are obtained from 
synthetic samples that are based on multiple, or repeated, population-based 
samples. Obtaining unconditional inferences is not feasible in practice but is 
possible in the simulation study considered here.  

To obtain conditional inferences, 500 sets of 10 synthetic samples are 
randomly selected (with replacement) from each of the 100 synthetic samples 
generated conditional on each of the 500 ACS subsamples. For each set of 10 
synthetic samples, a synthetic estimate and associated 95% confidence interval 
are obtained for each variable in each PUMA using the combining rules of 
Section 2.2. To obtain unconditional inferences, 100 sets of 10 synthetic samples 
are randomly selected with replacement across each of the 100 ACS subsamples 
and point estimates and associated confidence intervals are again obtained using 
the relevant combining rules. 

We use two evaluative measures to assess the validity of the synthetic data 
estimates. The first one is confidence interval coverage (CIC). For conditional 
inference, CIC is defined as t he proportion of times that the synthetic data 
confidence interval, computed at the 0.05 level,�𝐿𝑞�𝑀,𝑠𝑦𝑛,𝑈𝑞�𝑀,𝑠𝑦𝑛� contains the 
actual estimate 𝑦�𝑎𝑐𝑡: 

𝑄𝐶𝐼𝐶 = 𝐼�𝑦�𝑎𝑐𝑡 ∈  �𝐿𝑞�𝑀,𝑠𝑦𝑛,𝑈𝑞�𝑀,𝑠𝑦𝑛�� 

where 𝐼(∙) is an indicator function. 𝑄𝐶𝐼𝐶 = 1if𝐿𝑞�𝑀,𝑠𝑦𝑛 ≤ 𝑦�𝑎𝑐𝑡 ≤ 𝑈𝑞�𝑀 ,𝑠𝑦𝑛 and 
𝑄𝐴 = 0 otherwise. 

For unconditional inference, the only difference is that the CIC is calculated 
as the proportion of times that the synthetic data confidence interval contains the 
“true” population value 𝑌𝑝𝑜𝑝, i.e., 𝐿𝑞�𝑀,𝑠𝑦𝑛 ≤ 𝑌𝑝𝑜𝑝 ≤ 𝑈𝑞�𝑀 ,𝑠𝑦𝑛.  

The second evaluative measure is referred to as the confidence interval 
overlap (CIO; Karr et al., 2006). CIO is defined as the average relative overlap 



STATISTICS IN TRANSITION new series, Summer 2014 

 

359 

between the synthetic and actual data confidence intervals.  For every estimate the 
average overlap is calculated as, 

𝑄𝐶𝐼𝑂 = 1
2
�𝑈𝑜𝑣𝑒𝑟−𝐿𝑜𝑣𝑒𝑟
𝑈𝑎𝑐𝑡−𝐿𝑎𝑐𝑡

+ 𝑈𝑜𝑣𝑒𝑟−𝐿𝑜𝑣𝑒𝑟
𝑈𝑠𝑦𝑛−𝐿𝑠𝑦𝑛

� , 

where 𝑈𝑎𝑐𝑡 and 𝐿𝑎𝑐𝑡 denote the upper and the lower bound of the confidence 
interval for the actual estimate 𝑦�𝑎𝑐𝑡, 𝑈𝑠𝑦𝑛 and 𝐿𝑠𝑦𝑛 denote the upper and the 
lower bound of the confidence interval for the synthetic data estimate 𝑞�𝑀, and 
𝑈𝑜𝑣𝑒𝑟 and 𝐿𝑜𝑣𝑒𝑟 denote the upper and lower bound of the overlap of the 
confidence intervals from the original and synthetic data for the estimate of 
interest. 𝑄𝐶𝐼𝑂can take on a ny value between 0 a nd 1. A  value of 0 means that 
there is no overlap between the two intervals and a value of 1 m eans that the 
synthetic interval completely covers the actual interval. Calculating the 
confidence interval overlap is only possible for conditional inferences. This 
measure yields a more accurate assessment of data utility in the sense that it 
accounts for the significance level of the estimate. That is, estimates with low 
significance might still have a h igh confidence interval overlap and therefore a 
high data utility even if their point estimates differ considerably from each other. 

5.1. Validity of univariate estimates 
Table 4 shows the average confidence interval coverage (CIC) and confidence 

interval overlap (CIO) across all PUMAs for univariate household-level 
estimands. The conditional CIC is high for non-recoded estimates ranging from 
0.86-0.99. The income by t enure subgroup estimates also yield relatively high 
conditional CIC values (range: 0.89-0.97). The CIC values for income percentile 
estimates do not fare as well as they tend to decline monotonically as the 
percentiles increase. The same general trend is observed for the conditional CIO 
values, which closely resemble the CIC values. Regarding the unconditional 
inferences, the CIC values tend to be slightly higher than the corresponding 
values obtained from the conditional evaluation. The actual CIC  values, obtained 
from the actual ACS subsamples, tend to be very close to the synthetic CIC 
values, if not slightly higher, except for the aforementioned percentile estimates 
which demonstrate weaker coverage for the most extreme percentiles.  

Table 4. Simulation-Based Confidence Interval Results for PUMA Means 
 Conditional Inference Unconditional Inference 

 CIC CIO CIC CIC (Actual) 
Household variables 
Household size 
Sampling weight 
Bedrooms 
Electricity cost/mo. 
Rooms 
Household income 
Tenure 
Own free & clear 
Rent 

 
0.99 
0.95 
0.89 
0.86 
0.97 
0.90 

 
0.93 
0.94 

 
0.97 
0.99 
0.87 
0.87 
0.93 
0.91 

 
0.92 
0.96 

 
0.98 
0.99 
0.93 
0.91 
0.98 
0.94 

 
0.96 
0.96 

 
0.98 
0.98 
0.98 
0.98 
0.98 
0.98 

 
0.98 
0.98 
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Table 4. Simulation-Based Confidence Interval Results for PUMA Means  (cont.) 
Recoded variables 
Income > 50thpctile 
Income > 75thpctile 
Income > 90thpctile 
Income (Mortgage=1) 
Income (Own=1) 
Income (Rent=1) 

 
0.89 
0.71 
0.52 
0.89 
0.91 
0.97 

 
0.92 
0.71 
0.60 
0.88 
0.98 
0.93 

 
0.94 
0.80 
0.62 
0.94 
0.96 
0.99 

 
0.98 
0.98 
0.97 
0.97 
0.96 
0.96 

5.2. Validity of multivariate estimates 

Multivariate simulation results are shown in Table 5. T his table shows 
average CIC and CIO values for regression coefficient estimates obtained within 
each PUMA from a linear regression of income (cube root) on household-level 
covariates. The conditional CIC and CIO values are high and range from 0.93-
0.99 and 0.90-0.98, respectively, indicating good analytic validity for these 
multivariate statistics. The unconditional CIC values range from 0.85-0.92, which 
are slightly below the actual CIC values obtained from the observed data (0.98). 
The lowest unconditional CIC values (0.85 and 0.87) are associated with the 
household tenure categories. Given that the analytic model being evaluated here is 
one of the same models used during the synthetic data generation process, it is not 
surprising that the analytic validity of the estimates is generally high. Overall, we 
believe this result is reassuring and underscores the importance of ensuring that 
the models used during the imputation process sufficiently overlap with the 
analytic models of interest. 

Table 5. Simulation-Based Confidence Interval Results for PUMA Regression 
Coefficients  

 
Linear regression of  
income (cube root) on 

Conditional Inference Unconditional Inference 

CIC CIO CIC CIC (Actual) 
  Intercept 
  Household size 
  Sampling weight 
  Total bedrooms 
  Electricity bill/mo. 
  Total rooms  
  Tenure  
    Mortgage/loan 
    Own free & clear 
    Rent   

0.98 
0.98 
0.99 
0.98 
0.99 
0.98 

 
Ref 
0.95 
0.93 

0.97 
0.95 
0.97 
0.98 
0.97 
0.97 

 
Ref 
0.90 
0.96 

0.92 
0.91 
0.92 
0.91 
0.91 
0.92 

 
Ref 
0.87 
0.85 

0.98 
0.98 
0.98 
0.98 
0.98 
0.98 

 
Ref 
0.98 
0.98 

6. Conclusions 
Data users are increasingly interested in producing small area estimates, but 

statistical agencies are prevented from releasing these data due to disclosure 
concerns. In this article, a sy nthetic data methodology for generating and 
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disseminating public-use microdata for small geographic areas was evaluated 
using restricted data from the U.S. Census Bureau. Compared with current 
practices of disseminating detailed geographical data, the synthetic data 
framework offers data users the flexibility of performing their own customizable 
geographic analyses using data that can presumably be released to the public 
without restriction. 

The empirical evaluations show that the synthetic data generated from a 
Bayesian hierarchical model yields generally valid univariate and multivariate 
county-level estimates and repeated sampling properties. However, limitations of 
the method were apparent when simulating synthetic data for non-standard 
distributions and for polytomous variables when sample size limitations required 
pooling of nearby counties. Such limitations can potentially be overcome with 
more sophisticated modelling approaches, such as nonparametric imputation or 
mixture modelling, which was beyond the scope of this demonstration project. In 
addition, the “empirical” Bayesian approach considered here by fixing the 
hyperparameters at their maximum likelihood estimates may have underestimated 
the uncertainty of the synthetic data estimates, resulting in smaller standard errors 
and narrower confidence intervals. Although some underestimation of uncertainty 
might be welcomed in fully-synthetic data applications where standard errors are 
expected to be much higher relative to the observed standard errors, a more 
principled approach that accounts for all sources of variation might be viewed 
more favourably by sceptical data users. 

Several extensions of this work are currently being considered. The 
preservation of skewed and non-standard distributions is an important issue that 
will need to be addressed prior to pubic release of synthetic small area microdata. 
Parametric modelling approaches are inherently limited in real-world applications 
where many of the most commonly used variables do not  follow a smooth 
distributional form. The use of transformations to achieve normality is one 
possible solution; however, such transformations are not always effective for 
some types of distributions (e.g., bimodal). One must also consider the possibility 
that the same transformation might not work in all small areas. In this application, 
a single transformation was applied across all counties based on the overall 
distribution. Incorporating a tuning parameter in the hierarchical modelling 
approach that accounts for distributional differences across small areas might 
yield higher quality synthetic data and small area estimates with greater analytic 
validity. Another possible extension of this work is complex sample surveys. 
Although the ACS does not employ a complex sample design, most large-scale 
surveys do, and studies have shown that ignoring important design features during 
the imputation process can have drastic effects on the validity of the resulting 
estimates (Reiter, Raghunathan, and Kinney, 2006). Finally, the disclosure risk 
properties associated with fully synthetic data need to be studied in greater depth. 
Although we argue that fully synthetic data greatly enhances data confidentiality 
and prevents respondent re-identification because no observed data is released to 
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the public, the extent to which confidentiality is protected needs to be 
systematically and empirically assessed. 

Despite the potential for future improvements, the methodology examined 
here shows some promise and could be implemented by large-scale survey 
projects, such as t he American Community Survey, to release more 
geographically-relevant data to the public. Such efforts could potentially help 
meet the growing demand for small area microdata, which is expected to grow 
among a variety of data users across many disciplines. 
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APPENDICES  
 

Appendix 1. EM algorithm for estimating Bayesian hyperparameters 

The EM algorithm is used to estimate the unknown population parameters 
𝛽𝑝and Σ𝑝from the following setup, 

𝛽̂𝑐𝑠,𝑝 ~ 𝑀𝑉𝑁�𝛽𝑐𝑠,𝑝,𝑉�𝑐𝑠,𝑝� 

𝛽𝑐𝑠,𝑝 ~ 𝑀𝑉𝑁�𝛽𝑝𝑍𝑠, Σ𝑝� 

where𝑝 = (1,2, … ,𝑃) is used to index the set of parameters associated with the 
𝑝𝑡ℎ synthetic variable of interest and the 𝑝𝑡ℎ regression model from which the 
direct estimates 𝛽̂𝑐𝑠 and 𝑉�𝑐𝑠 were obtained in Step 1. 

The E step consists of solving the following expectations, 

𝛽𝑐𝑠,𝑝
∗ = 𝐸�𝛽𝑐𝑠,𝑝� = ��V�𝑐𝑠,𝑝

−1 + Σ𝑝−1�
−1�V�𝑐𝑠,𝑝

−1 𝛽̂𝑐𝑠 + Σ𝑝−1𝛽𝑝𝑍𝑠�� 

�𝛽𝑐𝑠,𝑝�𝛽𝑐𝑠,𝑝�
𝑇
�
∗

= 𝐸�𝛽𝑐𝑠,𝑝𝛽𝑐𝑠,𝑝
𝑇 � = �V�𝑐𝑠,𝑝

−1 + Σ𝑝−1�
−1 + 𝛽𝑐𝑠,𝑝

∗ �𝛽𝑐𝑠,𝑝
∗ �𝑇 

Once these expectations are computed they are then incorporated into the 
maximization (M-step) of the unknown hyperparameters 𝛽𝑝 andΣ�𝑝 using the 
following equations, 

𝛽̂𝑝 = 𝛽+𝑠,𝑝
∗ 𝑍𝑠(𝑍𝑠𝑍𝑠𝑇)−1 , where 𝛽+𝑠∗ = �∑ 𝛽𝑐𝑠∗

𝐶𝑠
𝑐=1 � 𝐶𝑠� , and 

Σ�𝑝 =

�∑
�∑ �𝛽𝑐𝑠,𝑝

∗ − 𝛽̂𝑝𝑍𝑠��𝛽𝑐𝑠,𝑝
∗ − 𝛽̂𝑝𝑍𝑠�

𝑇𝐶𝑠
𝑐=1 �

𝐶𝑠
�𝑆

𝑠=1 �

𝑆
 

After convergence the maximum likelihood estimates are incorporated into 
the posterior distribution of 𝛽𝑐𝑠,𝑝 shown in equation [5]. 

http://www.census.gov/acs/www/Downloads/survey_methodology/acs_design_methodology.pdf
http://www.census.gov/acs/www/Downloads/survey_methodology/acs_design_methodology.pdf
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Appendix 2. Creation of synthetic household size variable 

Let 𝑍ℎ𝑐𝑠 be the number of people in household ℎ = (1,2, … ,𝑛𝑐𝑠) in county 
𝑐 = (1,2, … ,𝐶𝑠) within state 𝑠 = (1,2, … , 𝑆). Assume that 
𝑍ℎ𝑐𝑠~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑐𝑠)and 𝜆𝑐𝑠~𝐺𝑎𝑚𝑚𝑎(𝛼𝑠,𝛽𝑠). Conditional on the data and 
(𝛼𝑠,𝛽𝑠; 𝑠 = 1,2, … , 𝑆) it is straightforward to simulate values of 𝑍ℎ𝑐𝑠.  

First, obtain the marginal maximum likelihood estimates of (𝛼𝑠,𝛽𝑠; 𝑠 =
1,2, … , 𝑆) through Newton-Raphson for each state independently. Also, obtain the 
covariance matrix 𝑉�𝑠 = 𝐶𝑜𝑣�𝛼�𝑠, 𝛽̂𝑠� by inverting the observed Fisher Information 
matrix. The marginal likelihood is given by, 

� ��𝑒−𝛽𝑠𝜆𝑐𝑠𝜆𝑐𝑠
𝛼𝑠−1

𝐶𝑠

𝑐=1

��𝑒−𝜆𝑐𝑠
𝑛𝑐𝑠

ℎ=1

𝜆𝑐𝑠
𝑍ℎ𝑐𝑠� /Γ(𝛼𝑠)𝑑𝜆𝑐𝑠� 

= �� 𝑒−(𝛽𝑠+𝑛𝑐𝑠)𝜆𝑐𝑠 𝜆𝑐𝑠
𝑍+𝑐𝑠+𝛼𝑠−1/Γ(𝛼𝑠)𝛽𝑠

𝛼𝑠

𝐶𝑠

𝑐=1

𝑑𝜆𝑐𝑠 

= �{Γ(𝑍+𝑐𝑠 + 𝛼𝑠)}(𝛽𝑠 + 𝑛𝑐𝑠)−(𝑍+𝑐𝑠+𝛼𝑠)/Γ(𝛼𝑠)
𝐶𝑠

𝑐=1

𝛽𝑠
𝛼𝑠 

where 𝑍+𝑐𝑠 = ∑ 𝑍ℎ𝑐𝑠
𝑛𝑐𝑠
ℎ=1  . Taking the logarithms, the quantity to be maximized 

with respect to 𝛼𝑠 and 𝑏𝑠 via the Newton-Raphson is, 

𝐿 = �{𝑙𝑜𝑔Γ(𝑍+𝑐𝑠 + 𝛼𝑠) − (𝑍+𝑐𝑠 + 𝛼𝑠)𝑙𝑜𝑔(𝛽𝑠 + 𝑛𝑐𝑠)} − 𝐶𝑠𝑙𝑜𝑔Γ(𝛼𝑠)
𝐶𝑠

𝑐=1
+ 𝐶𝑠𝛼𝑠𝑙𝑜𝑔(𝛽𝑠) 

The first and second derivatives of this function are, 

𝜕𝐿
𝜕𝛼𝑠

= �{𝜓(𝑍+𝑐𝑠 + 𝛼𝑠) − 𝑙𝑜𝑔(𝛽𝑠 + 𝑛𝑠)} − 𝐶𝑠𝜓(𝛼𝑠) + 𝐶𝑠𝑙𝑜𝑔(𝛽𝑠)
𝐶𝑠

𝑐=1

 

𝜕𝐿
𝜕𝛽𝑠

= −�{(𝑍+𝑐𝑠 + 𝛼𝑠)/(𝛽𝑠 + 𝑛𝑠)} + 𝐶𝑠𝛼𝑠/𝛽𝑠

𝐶𝑠

𝑐=1

 

𝜕2𝐿
𝜕𝛼𝑠2

= �𝜓′(𝑍+𝑐𝑠 + 𝛼𝑠) − 𝐶𝑠𝜓′(𝛼𝑠)
𝐶𝑠

𝑐=1

 

𝜕2𝐿
𝜕𝛽𝑠2

= �{(𝑍+𝑐𝑠 + 𝛼𝑠)/(𝛽𝑠 + 𝑛𝑠)2}
𝐶𝑠

𝑐=1

− 𝛼𝑠𝐶𝑠/𝛽𝑠2 

𝜕2𝐿
𝜕𝛽𝑠𝜕𝛼𝑠

= −� 1/(𝛽𝑠 + 𝑛𝑠)
𝐶𝑠

𝑐=1

+ 𝐶𝑠/𝛽𝑠 
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The logarithm of the gamma function, its first and second derivatives can be 
accurately approximated as follows, 

𝑙𝑜𝑔Γ(𝑧) = −𝑙𝑜𝑔�𝑐𝑖𝑧𝑖
26

𝑖=1

 

𝜓(𝑧) =
𝜕
𝜕𝑧
𝑙𝑜𝑔Γ(𝑧) = −

∑ 𝑖𝑐𝑖𝑧𝑖−126
𝑖=1
∑ 𝑐𝑖𝑧𝑖26
𝑖=1

 

𝜓′(𝑧) = �
∑ 𝑖𝑐𝑖𝑧𝑖−126
𝑖=1
∑ 𝑐𝑖𝑧𝑖26
𝑖=1

�
2

−
∑ 𝑖(𝑖 − 1)𝑐𝑖𝑧𝑖−226
𝑖=1

∑ 𝑐𝑖𝑧𝑖26
𝑖=1

 

The constants 𝑐𝑖 can be found in Abramowitz and Stegun (1965). The 
Newton-Raphson method is applied iteratively to obtain maximum likelihood 
estimates of 𝛼𝑠and 𝛽𝑠, 

�
𝛼𝑠,𝑛+1

𝛽𝑠,𝑛+1
� =

⎣
⎢
⎢
⎢
⎢
⎡ 𝜕2𝐿

𝜕𝛼𝑠,𝑛
2� 𝜕2𝐿

𝜕𝛼𝑠,𝑛𝜕𝛽𝑠,𝑛
�

𝜕2𝐿
𝜕𝛽𝑠,𝑛𝜕𝛼𝑠,𝑛
� 𝜕2𝐿

𝜕𝛽𝑠,𝑛
2�

⎦
⎥
⎥
⎥
⎥
⎤
−1

�
𝜕𝐿

𝜕𝛼𝑠,𝑛
�

𝜕𝐿
𝜕𝛽𝑠,𝑛
�

� 

The logarithm of the estimates for 𝛼𝑠 and 𝛽𝑠 are then assumed to follow the 
hierarchical model,  

�
𝑙𝑜𝑔 𝛼�𝑠
𝑙𝑜𝑔 𝛽̂𝑠

�~𝑁 ��
𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

� , �
1/𝛼�𝑠 0

0 1/𝛽̂𝑠
� 𝑉�𝑠 �

1/𝛼�𝑠 0
0 1/𝛽̂𝑠

�� = 𝑁 ��
𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

� , Σ�𝑠� 

�𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

�~𝑁 ��𝜃𝜙� , �Ω11 Ω12
Ω22 Ω22

�� = 𝑁 ��𝜃𝜙� ,Ω� 

The Expectation-Maximization (EM) algorithm (Dempster, Laird, and Rubin, 
1977) is used to obtain maximum likelihood estimates of (𝜃,𝜙,Ω). The E step is 
carried out by solving the following expectation equations, 

�𝑙𝑜𝑔 𝛼𝑠∗
𝑙𝑜𝑔 𝛽𝑠∗

� = 𝐸 �𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

� = ��Σ�𝑠−1 + Ω−1�−1 �Σ�𝑠−1 �
𝑙𝑜𝑔 𝛼�𝑠
𝑙𝑜𝑔 𝛽̂𝑠

� + Ω−1 �𝜃𝜙��� 

��
𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

��
𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

�
𝑇

�
∗

= 𝐸 ��𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

� �𝑙𝑜𝑔 𝛼𝑠
𝑙𝑜𝑔 𝛽𝑠

�
𝑇
�

= �Σ�𝑠−1 + Ω−1�−1 + �𝑙𝑜𝑔 𝛼𝑠∗
𝑙𝑜𝑔 𝛽𝑠∗

� �𝑙𝑜𝑔 𝛼𝑠∗
𝑙𝑜𝑔 𝛽𝑠∗

�
𝑇
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and the M step is performed by solving the following maximization equations, 

�𝜃
�
𝜙�� =

�∑ �𝑙𝑜𝑔 𝛼𝑠∗
𝑙𝑜𝑔 𝛽𝑠∗

�𝑆
𝑠=1 �

𝑆
 

Ω� = �Ω
�11 Ω�12
Ω�22 Ω�22

� =
�∑ ��𝑙𝑜𝑔 𝛼𝑠∗

𝑙𝑜𝑔 𝛽𝑠∗
� − �𝜃

�
𝜙���

𝑆
𝑠=1 ��𝑙𝑜𝑔 𝛼𝑠∗

𝑙𝑜𝑔 𝛽𝑠∗
� − �𝜃

�
𝜙���

𝑇

�

𝑆
 

It is then straightforward using this setup to synthesize the number of 
members in each household by treating the parameter estimates of (𝜃,𝜙,Ω) as 
known and retracing back to simulate values of 𝑍ℎ𝑐𝑠 using the following 3 steps: 

Step 1: Simulate Gamma parameters 𝛼𝑠 and 𝛽𝑠 from the bivariate normal 

distribution, �
𝛼�𝑠
𝛽�𝑠
�~𝑒𝑥𝑝 �𝑁 ��Σ�𝑠−1 + Ω�−1�−1 �Σ�𝑠−1 �

𝑙𝑜𝑔 𝛼�𝑠
𝑙𝑜𝑔 𝛽̂𝑠

� + Ω−1 �𝜃
�
𝜙��� , �Σ�𝑠−1 +

Ω�−1�−1��, 

Step 2: Simulate Poisson parameter 𝜆𝑐𝑠 from the Gamma distribution given the 
county population size, number of households, and simulated parameters obtained 
from Step 1, 
𝜆̃𝑐𝑠~𝐺𝑎𝑚𝑚𝑎�𝑍+𝑐𝑠 + 𝛼�𝑠,𝛽�𝑠 +  𝑛𝑐𝑠�, 
 
Step 3: Simulate household size 𝑍ℎ𝑐𝑠from the Poisson distribution, 
𝑍�ℎ𝑐𝑠~𝑃𝑜𝑖𝑠𝑠𝑜𝑛�𝜆̃𝑐𝑠�. 
 
 
 

 



STATISTICS IN TRANSITION new series, Summer 2014 369

STATISTICS IN TRANSITION new series, Summer 2014
Vol. 15, No. 3, pp. 369–388

ESTIMATING POPULATION MEAN WITH MISSING DATA IN
UNEQUAL PROBABILITY SAMPLING

Kajal Dihidar 1

ABSTRACT

Nonresponse problem is a serious obstacle to the validity of estimates in a survey.
The estimates become biased due to the missing values in data. The problem is
how to deal with missing values, once they have been deemed impossible to re-
cover. One way of exploring a possible lack of representativity in missing data is
to estimate the response probabilities which are usually done by logistic regression
model. However, the drawback of the logit model is that this requires values of the
explanatory variables of the model to be known for all nonrespondents. Bethlehem
(2012) showed that the response probabilities can be estimated by some weight-
ing adjustment technique without having the individual data of the nonrespondents.
Here we consider the doubtful nature of nonresponse regarding possible existence
of relationship with any of the covariates. Moreover, instead of simple random
sampling, we consider general unequal probability sampling scheme for selecting
respondents. This paper presents the modification of Bethlehem (2012) proposal
for unequal probability sampling to obtain the unbiased estimators for population
total/average of a variable of interest and variance estimator and compares them
with the usual estimators through numerical simulations.
Key words: non-response, missing at random, missing completely at random, un-
equal probability sampling.

1. Introduction

Almost all large scale sample surveys suffer the problem with missing data. It
may occur even if an investigator tries to have all questions fully responded to in
a survey, or if the respondent is not available at home to answer the questionnaire.
One of the effects of nonresponse is that the sample size is smaller than expected.
This would lead to less accurate, but still valid estimates of population characteris-
tics, which can be taken care of by taking the initial sample size larger. A far more
serious effect of nonresponse is that estimates of population characteristics may be
biased. This situation occurs if, due to nonresponse, some groups in the popula-
tion are over- or under-represented, and these groups behave differently with respect

1Sampling and Official Statistics Unit, Indian Statistical Institute, Kolkata, West Bengal, India.
E-mail: kajaldihidar@gmail.com, dkajal@isical.ac.in.
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to the characteristics to be investigated. Consequently, wrong conclusions will be
drawn from the survey data. The amount of bias created due to missing values often
increases with the rate of occurence of nonresponse. Above all, the large number of
missing values in the data set can also lead to computational difficulties.

Towards this problem, starting from the pioneered work by Hansen and Hurwitz
(1946), many methods of attempts to re-collect the missing values in sample surveys
are available in the literature. However, in most of the practical sample survey work,
it is not possible to recover the actual missing values. In such situations, the problem
is how to estimate the population parameters dealing with the missing values. The
method of response modeling and imputation are popular to survey statisticians in
this direction. Good details regarding this are given in Rubin (1987) and Särndal,
Swenson and Wretman (1992).

In general, obtaining the responses from the selected units is totally unknown
in advance. For this reason, the probabilistic models are assumed to describe the
unknown response distributions. Politz and Simmons (1949, 1950) obtained the
response probability of a respondent as the proportion of time staying at home. The
response probability may be directly related to the study variable and hence to the
auxiliary variable, which is highly related to the study variable. For example, in
the study of household income, the people with high income may respond with low
probability and may be under represented in the sample. Similarly, if tax return is
considered as an auxiliary variable, then the response probability of an individual
may be inversely proportional to the amount of tax return.

Regarding the possible relatioship of missingness with any of the covariates, Ru-
bin (1976) defined the concepts of missing at random (MAR) and missing completely
at random (MCAR). Missing completely at random (MCAR) means that the miss-
ing data is not related to the values of any variable, neither to the response variable
itself nor to other covariates, whether missing or observed; whereas missing at ran-
dom (MAR) means that the missing data is unrelated to the actual missing values
but is related either to observed covariates or to observed response variable itself or
to both. Among many contributors in this area, Folsom (1991), Fuller et al. (1994),
Kott (2006), Chang and Kott (2008) and Kott and Chang (2010) advocated the use of
calibration weighting to adjust for unit nonresponse. In this regard, for more detailed
clarification, interested researchers may see Heitzan and Basu (1996), Singh (2010).

In case the covariate relation is considered, the concept of the response propensity
is introduced in Little (1986). The response propensity is the probability of response
given the values of some auxiliary variables. The response propensities are also
unknown, so they need to be estimated. For this purpose, the logistic model is used
in practice. Of course, another model sometimes used is the probit model. Estimates
of the coefficients in both the logit and probit models are obtained by maximum
likelihood estimation. And the estimated response propensities in these two models
are always in the interval [0, 1]. However, the drawback of the logit and probit
models is that these require the values of the explanatory variables of the model to
be known for all nonrespondents. Bethlehem (2012) showed that this condition can
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be relaxed by computing response probabilities from weights that have been obtained
from some weighting adjustment technique. This technique produces weights that
correct for the lack of representativity of the survey response. Since the weights can
be seen as a kind of inverted response probabilities, they can be used to estimate
response probabilities. Weights are computed following those techniques without
having the individual data of the nonrespondents. We use this approach to estimate
the response propensities from correlated auxiliary variables.

In this paper, we consider the situation where some of the respondents selected
using an unequal probability sampling scheme fail to respond and the nature of non-
response is uncertain as to whether it is MAR or MCAR. Moreover, instead of con-
sidering the simple random sampling, we consider any general unequal probability
sampling scheme even without replacement for selecting the respondents because
we believe that many of the practical cases of large-scale sample surveys require the
selection of respondents with probability proportional to size measures of some aux-
iliary variable related to study variable. Under the consideration of doubtful nature
of random nonresponse, we shall derive here unbiased estimators for population to-
tal/average of a variable of interest and variance estimators in unequal probability
sampling scheme. The derived estimators will be compared with usual estimators in
presence of random nonresponse through numerical simulations.

We organize our findings in the following sections.

2. Unbiased estimator of population mean and variance with missing data

Suppose in a finite survey population U = (1, . . . , i, . . . , N) a person labelled i
has the value yi defined on a variable y of interest and has value xi > 0 defined on
an auxiliary variable x closely related to the study variable y. The values of x are
all positive and known for all the population units in U . Our problem is to estimate

Ȳ =
1

N

N∑
i=1

yi on the basis of a sample s of size n, selected with probability p(s)

according to a sampling design p.
Let πi and πij be the first and second order inclusion probabilities of the units in

U . Let us define a random variable δi as

δi =

{
1 if ith unit responds,
0 otherwise. (1)

Let EP , VP denote the expectation and variance operators with respect to the sam-
pling design for selecting the respondents. Let ER, VR denote the expectation and
variance operators with respect to obtaining a response from the selected respondent,
and E, V denote the overall expectation and variance operators. In this setup, δi is
a Bernoulli random variable with probability of success as δ∗i , say, and it is known.
So, ER(δi) = Prob(δi = 1) = δ∗i , and VR(δi) = δ∗i (1 − δ∗i ). We first of all assume
that the value of response probability depends on some auxiliary variables which
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are well correlated with the study variable, but the exact relationship of the response
probability with the auxiliary variables is unknown to us. We can get possible re-
lationships based on some statistical testing whether the available data is MCAR or
MAR. For example, we can apply some variable selection method to see whether or
not the response propensity depends (or not) on a set of auxiliary variables. However,
a weighted sum of these two estimators (MCAR and MAR) would be an alternative
to choosing one over the other to balance their degree of bias. This type of estimator,
namely the ‘composite estimator’ is formed by compromising in between the MAR
estimator and MCAR estimator, with a compromising factor λ(0 < λ < 1).

The composite estimator of population total Y will be obtained as

Ŷcomp = λŶMCAR + (1− λ)ŶMAR,

where ŶMCAR and ŶMAR respectively denote the MCAR and MAR estimators for
Y . We may get the optimal compromising factor by minimmizing the MSE of the
composite estimator with respect toλ under the assumption that the covariance factor
of ŶMCAR and ŶMAR is too small relative to the MSE of ŶMAR and then it can be
negligible. In this situation, the optimal compromising factor λopt may be obtained
as

λopt =
MSE(ŶMAR)

MSE(ŶMCAR) +MSE(ŶMAR)
.

In practical situation, λopt can be estimated by substituting the estimates of
MSE(ŶMCAR) and of MSE(ŶMAR) based on the sample survey data in above
expression of λopt.

2.1. Unbiased estimator of population mean

Under the non-response setup, a homogeneous linear unbiased estimator for pop-
ulation mean is

ˆ̄Y =
1

N

∑
i∈s

yibsi

(
δi
δ∗i

)
=

1

N

∑
i∈s

uibsi, where ui = yi
δi
δ∗i

(2)

and bsi’s are free of yi’s and satisfy
∑

s3i p(s)bsi = 1,∀ i ∈ U.
This happens because

ER(ui) =
yi
δ∗i
ER(δi) =

yi
δ∗i
δ∗i = yi, (3)

and

E
(

ˆ̄Y
)

= EPER

[
1

N

∑
i∈s

uibsi

]
= EP

[
1

N

∑
i∈s

bsiER(ui)

]

= EP

[
1

N

∑
i∈s

yibsi

]
= Ȳ . (4)



STATISTICS IN TRANSITION new series, Summer 2014 373

2.2. Variance of the unbiased estimator of population mean

From the definition of ui, we have

VR(ui) =
y2i
δ∗2i

VR(δi) =
y2i (1− δ∗i )

δ∗i
. (5)

So, the variance of the estimator given in Eqn. (5) is

V
[

ˆ̄Y
]

= VPER

[
1

N

∑
i∈s

uibsi

]
+ EPVR

[
1

N

∑
i∈s

uibsi

]

= VP

[
1

N

∑
i∈s

yibsi

]
+ EP

[
1

N2

∑
i∈s

b2siVR(ui)

]

=
1

N2

 N∑
i=1

y2i ci +

N∑
i=1

N∑
j=1,j 6=i

yiyjcij + EP

(∑
i∈s

b2si
y2i
δ∗i

(1− δ∗i )

)

=
1

N2

 N∑
i=1

y2i ci +

N∑
i=1

N∑
j=1,j 6=i

yiyjcij +

(
N∑
i=1

y2i bsi
δ∗i

(1− δ∗i )

) , (6)

where ci = EP (b2siIsi) − 1 and cij = EP (bsibsjIsij) − 1 where Isi and Isij are
defined as

Isi =

{
1 if i ∈ s,
0 otherwise. (7)

and Isij = IsiIsj .

2.3. Unbiased variance estimator for population mean

First of all, we find an unbiased estimator for VR(ui). We note that δ2i = δi and
so,

ER(u2i ) = ER

[
y2i δ

2
i

δ∗2i

]
= ER

[
y2i δi
δ∗2i

]
=

y2i
δ∗2i

ER[δi] =
y2i
δ∗i
,

and so
ER[u2i δ

∗
i ] = y2i . (8)

Now,

VR(ui) = ER(u2i )− (ER(ui))
2 = ER(u2i )− y2i

= ER(u2i )− ER[u2i δ
∗
i ] = ER[u2i (1− δ∗i )] (9)
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implies that
vR(ui) = V̂R(ui) = u2i (1− δ∗i ). (10)

Let csi and csij be such that EP (csiIsi) = ci and EP (csijIsij) = cij .
We define

v1 =
1

N2

∑
i∈s

u2i csi +
∑
i∈s

∑
j∈s,j 6=i

uiujcsij +
∑
i∈s

vR(ui)(b
2
si − csi)

 , (11)

and

v2 =
1

N2

∑
i∈s

u2i csi +
∑
i∈s

∑
j∈s,j 6=i

uiujcsij +
∑
i∈s

vR(ui)bsi

 . (12)

Following Raj (1966), we haveEPER(v1) = V ( ˆ̄Y ) = EPER(v2), and so v1 and
v2 are two unbiased estimators for V ( ˆ̄Y ).

3. Estimation of response probability

The true response probability δ∗i as discussed in Section 2 is practically unknown
in advance. So, we need to use an estimator for this.

If no covariate relation is considered, the missing data is considered as missing
completely at random (MCAR), then the probability of response (assuming same
for all units) is estimated by r

n , where n is the sample size and r is the number of
responses obtained out of n persons sampled.

If the covariate relation is considered, the concept of the response propensity is
introduced in Little (1986). He has defined the response propensity of element i as

δ∗i (X) = P (δi = 1|Xi), (13)

where Xi = (Xi1, Xi2, . . . , Xip)
′ is a vector of values of, say, p auxiliary variables.

So, the response propensity is the probability of response given the values of some
auxiliary variables. The response propensities are also unknown, so they need to be
estimated.

3.1. Traditional models

The most frequently used model to estimate the response propensities is the logis-
tic regression model. It assumes the relationship between response propensity and
auxiliary variables as

logit(δ∗i (X)) = log

(
δ∗i (X)

1− δ∗i (X)

)
=

p∑
j=1

Xijβj , (14)

where β = (β1, β2, . . . , βp)
′ is a vector of p regression coefficients.
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Of course, another model, the probit model can also be used. It assumes the
relationship between response propensity and auxiliary variables as

probit(δ∗i (X)) = Φ−1 (δ∗i (X)) =

p∑
j=1

Xijβj , (15)

where Φ−1 is the inverse of the N(0, 1) distribution function.
Estimates of the coefficients in both the logit and probit models can be obtained by

maximum likelihood estimation. And the estimated response propensities in these
two models are always in the interval [0, 1].

However, the drawback of the logit and probit models is that these require the
values of the explanatory variables of the model to be known for all nonrespondents.
But this is not the situation in many cases. To overcome this drawback, we follow
Bethlehem (2012) model to estimate the response propensities and this is described
below.

3.2. Bethlehem Model

Bethlehem (2012) showed how to estimate the response probabilities from weights
that have been obtained from some weighting adjustment technique without having
the individual data of the nonrespondents. The basic idea is to assign weights to re-
sponding elements in such a way that over-represented groups get a weight smaller
than 1 and under-represented groups get a weight larger than 1. There is a relation-
ship between response probabilities and weights: large weights correspond to small
response probabilities, and vice versa. Therefore, it should be possible to transform
weights into estimates for response probabilities.

There are several types of weighting techniques. The most frequently used ones
are post-stratification, generalized regression estimation and raking ratio estimation.
Weighting is based on the use of auxiliary information. Auxiliary information is
defined here as a set of variables that have been measured in the survey, and for
which the distribution in the population, or in the complete sample, is available. The
individual values of the auxiliary variables are not required for the nonresponding
elements. Among several weighting techniques, we adopt here the generalized re-
gression estimation technique for simplicity. The generalized regression estimator is
based on a linear model that attempts to explain a target variable of the survey from
one or more auxiliary variables. The weights resulting from generalized regression
estimation make the response representative with respect to the auxiliary variables
in the model (Särndal, 2011).

In principle, the auxiliary variables in the linear model have to be continuous
variables, i.e. they measure a size, value or duration. However, it is also possible
to use categorical variables. The trick is to replace a categorical variable by a set
of dummy variables, where each dummy variable represents a category, i.e. it in-
dicates whether or not a person belongs to a specific category. Suppose there are p
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(continuous) auxiliary variables available. The p-vector of values of these variables
for element i is Xi.

Let Y be the N -vector of all values in the population of the target variable, and
let X be the N × p-matrix of all values of the auxiliary variables. The vector of
population means of the p auxiliary variables is defined by

X̄ = (X̄1, X̄2, . . . , X̄p)
′.

We assume that this vector representing the population information is available,
based on some expert guess or on the result of some prior survey. If the auxiliary
variables are correlated with the target variable, then for a suitably chosen vector
B = (B1, B2, . . . , Bp)

′ of regression coefficients for a best fit of Y on X, the resid-
uals E = (E1, E2, . . . , EN )′, defined by E = Y − XB will vary less than the
values of the target variable itself. The population regression coefficient B obtained
by applying ordinary least squares technique is

B = (X′X)−1X′Y =

(
N∑
i=1

XiX
′
i

)−1( N∑
i=1

XiYi

)
. (16)

The vector B can be estimated by

b =

(∑
i∈s

π−1i xix
′
iδi

)−1(∑
i∈s

π−1i xiyiδi

)
, (17)

where πi is the first order inclusion probability of unit i in sample s.
Let Xs, Ys be n× p and n× 1 versions of X and Y for the units i ∈ s where n

is the sample size. Let Ws be the n×n diagonal matrix with the weights wi for the
units i ∈ s on the diagonal. The Horvitz-Thompson (1952) weights are wi = 1/πi.
Also let δs be the n × n diagonal matrix with values δi for the units i ∈ s on the
diagonal. The vector b can then be written in matrix form as

b = (X′sWsδsXs)
−1(X′sWsδsYs). (18)

The generalized regression estimator is now defined by

ȳGR =
1

N

[∑
i∈s

yiδi
πi

+ (X−
∑
i∈s

π−1i xiδi)
′b

]
. (19)

Following Bethlehem and Keller (1987), the generalized regression estimator can
be rewritten in the form of the weighted estimator as

ȳGR =
∑
i∈s

wiyiδi, (20)

where the weights are

wi = X̄

∑
j∈s

π−1j x′jxjδj

−1 π−1i x′i, (21)
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where xj is the k-dimensional vector of control variables, X̄ is the row vector of
population totals of the control variables, the first element of xj is always one, and
the first element of X̄ is one.

Following Bethlehem (2012), we get the adjusted weight wi for observed element
i for unequal probability sampling, as equal to wi = ν ′Xi, where ν is a vector of
weight coefficients defined by

ν = (
∑
i∈s

π−1i δi)

∑
j∈s

π−1j xjx
′
jδj

−1 X̄. (22)

So, it is clear that computation of the weight does not require the individual values
of the nonresponding elements. It is sufficient to have the population means of the
auxiliary variables.

As an illustration, the case of one auxiliary variable with C categories is consid-
ered. Then C dummy variablesX(1),X(2), ...,X(C) are defined. For an observation
in a category H , the corresponding dummy variable is assigned the value 1, and all
other dummy variables are set to 0. Consequently, the vector of population means
of these dummy variables is equal to

X̄ =

(
N1

N
,
N2

N
, ...,

NC

N

)
, (23)

where Nj is the number of elements in category j (in the population), for j =
1, 2, ..., C. The vector ν of weight coefficients is equal to

ν =

∑
i∈s π

−1
i δi

N

(
N1∑

i∈s π
−1
i δiX(1)

,
N2∑

i∈s π
−1
i δiX(2)

, ...,
NC∑

i∈s π
−1
i δiX(C)

,

)′
.

(24)
Now we see how the weights computed by means of generalized regression es-

timation can be transformed into response propensities. Let there be p categorical
auxiliary variables. The continuous variables can also be transformed into categor-
ical variables by forming several meaningful groups. The values of these variables
for unit i are denoted by the vector

Xi = (X
(1)
i , X

(2)
i , ..., X

(p)
i )′.

The number of categories of variable X(j) is denoted by Cj , say, for j = 1, 2, ..., p.
So, for variable X(j), the categories are numbered as 1, 2, ..., Cj .

We note from the above adjusted regression weight formula that all respond-
ing units with the same set of values for the auxiliary variables will be assigned
the same weight. Suppose a unit is in category number k1 of the first variable,
category k2 of the second variable,..., and category kp of the pth variable. Let
w(k1, k2, ..., kp) denote the corresponding weight. Furthermore, we assume that
there are r(k1, k2, ..., kp) respondents in this group. The number of sample units
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n(k1, k2, ..., kp) in the group can now be estimated by

n̂(k1, k2, ..., kp) =

∑
i∈s π

−1
i∑

i∈s π
−1
i δi

× w(k1, k2, ..., kp)× r(k1, k2, ..., kp). (25)

The response propensity for all elements in the group can be estimated by

ρ̂(k1, k2, ..., kp) =
r(k1, k2, ..., kp)

n̂(k1, k2, ..., kp)
=

∑
i∈s π

−1
i δi∑

i∈s π
−1
i

× 1

w(k1, k2, ..., kp)
. (26)

So, it is clear that the response propensities are inversely proportional to the weights.
We note that the response propensities can only be estimated for respondents and not
for nonrespondents.

Following Chaudhuri (2010), we can now obtain several competitive estimators
and variance estimators for population mean of a variable of interest by replacing the
response probabilities δ∗i with their estimates δ̂∗i obtained by whatever means using
MCAR or the logit/probit models or the ρ̂(k1, k2, ..., kp)s of Bethlehem model in the
respective equations shown in Section 2.

4. Illustrative simulation based findings

In this section, we present the results of numerical comparison of our different
estimators based on sample drawn using unequal probability sampling scheme. To
perform the comparison simulation, we use the data of a real population. The popu-
lation considered is the Labor Force Population obtained from the September 1976
Current Population Survey (CPS) conducted in the United States and this data set
was studied by Valliant et al. (2000). This population data contains information on
demographic and economic variables from the persons chosen in that labor force
survey. This is basically a clustered population of individuals, where the clusters
are compact geographic areas used as one of the stages of sampling in the CPS and
are typically composed of about four nearby households. The units within clusters
for this illustrative population are individual persons. For our numerical illustration,
we use all of the observations of one stratum containing information of N = 210
persons. This data set contains information of persons about their usual number of
hours of working per week, usual amount of their weekly wages along with their de-
mographic and social charateristics like their age, sex, race (non-black, black). We
consider the usual amount of their weekly wages as the main variable y of interest
and the usual number of hours of working per week as the size measure variable
x for drawing sample of persons. Our objective is to estimate the average weekly
wage taking into account the doubtful missing information obtained from the se-
lected respondents chosen by varying probability sampling scheme and to study
the performance behaviour of alternative estimators. We use the logistic model as
φ(xi) = 1

1+e(−1.65+.5×racei+.08×sexi+0.05×agei)
to generate the true probabilities δ∗i s.
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4.1. Application in two specific unequal probability sampling schemes

For illustration in practical sample survey situation, we consider two different
unequal probability sampling schemes. The first one is Midzuno’s (1952) scheme
and the second one is a modification of Brewer’s (1963) scheme. The choice of
these two different types of sampling schemes is based on the knowledge of having
a constant effective sample size and uniformly non-negative variance estimator for
Midzuno’s scheme and the knowledge of having varying effective sample size and
uniformly non-negative variance estimator for the modified Brewer’s scheme. We
now describe briefly these two sampling schemes.

4.1.1. Midzuno’s scheme

Midzuno (1952) suggested this scheme first by drawing one unit by probability
proportional to the size measure of an auxiliary variable with known xi > 0, for
i = 1, 2, . . . , N . Then, keeping the selected unit aside, the remaining (n− 1) units
should be chosen by simple random sampling without replacement (SRSWOR) out

of (N − 1) units. Let X =
N∑
i=1

xi. Then, under this scheme,

πi =
xi
X

+
X − xi
X

(
N−2
n−2
)(

N−1
n−1
) =

xi
X

N − n
N − 1

+
n− 1

N − 1
∀i = 1, 2, . . . , N, (27)

and

πij =
xi
X

(
N−2
n−2
)(

N−1
n−1
) +

xj
X

(
N−2
n−2
)(

N−1
n−1
) +

X − xi − xj
X

(
N−3
n−3
)(

N−1
n−1
)

=
xi + xj
X

(N − n)(n− 1)

(N − 1)(N − 2)
+

(n− 1)(n− 2)

(N − 1)(N − 2)
, (28)

∀i 6= j ∈ U . For this scheme, πiπj > πij∀i 6= j ∈ U , and so for the Horvitz and
Thompson (1952)’s estimator

∑
i∈s

yi
πi

for population total Y of y variable, the Yates

and Grundy (1953) form of variance estimator

VY G =
∑
i∈s

∑
j∈s,j>i

πiπj − πij
πij

(
yi
πi
− yj
πj

)2

is always non-negative.

Now, keeping in mind that all the yi’s may not be available for all i ∈ s, so with
respect to the response probabilities δ∗i , an unbiased estimator for population mean
is

eM =
1

N

∑
i∈s

yi
πi

(
δi
δ∗i

)
=

1

N

∑
i∈s

ui
πi
, where ui = yi

δi
δ∗i
, (29)

since ER(ui) = yi and EPER(eM ) = EP ( 1
N

∑
i∈s

yi
πi

) = Ȳ .
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The variance of eM is obtained as

V (eM ) = VPER(eM )+EPVR(eM ) =
1

N2

[
VP

(∑
i∈s

yi
πi

)
+ EP

(∑
i∈s

1

π2i
VR(ui)

)]

=
1

N2

 N∑
i=1

N∑
j=1,j>i

(πiπj − πij)
(
yi
πi
− yj
πj

)2

+ EP

(∑
i∈s

1

π2i

y2i (1− δ∗ik)
δ∗i

)
=

1

N2

 N∑
i=1

N∑
j=1,j>i

(πiπj − πij)
(
yi
πi
− yj
πj

)2

+

N∑
i=1

1

πi

y2i (1− δ∗i )
δ∗i

 . (30)

Following Chaudhuri, Adhikary and Dihidar (2000), an unbiased estimator of the
variance of eM is :

v(eM ) =
1

N2

∑
i∈s

∑
j∈s,j>i

πiπj − πij
πij

(
ui
πi
− uj
πj

)2

+
∑
i∈s

vR(ui)

πi

 . (31)

Next, as δ∗i is unknown to us, so following Chaudhuri (2010), we can have the re-
quired estimators and variance estimators of the population mean as êM = eM |{δ∗i =

δ̂∗i } and v(eM )|{δ∗i = δ̂∗i }, i.e. replacing δ∗i in eM and v(eM ) throughout by its es-
timate δ̂∗i obtained by any means as discussed earlier.

4.1.2. Modified Brewer’s scheme

We consider the following scheme of Brewer (1963), modified by Seth (1966) and
further modified by Chaudhuri and Pal (2002). Let us call the normed size measues
of auxiliary variable as pi = xi

X ’s for i = 1, 2, . . . , N . In this scheme, on the first

draw, the unit i is chosen with a probability proportional to qi =
pi(1− pi)
1− 2pi

and

leaving aside the unit i so chosen, a second unit j(6= i) is chosen in the second draw

from the remaining units with the probability
pj

1− pi
. Writing D =

N∑
i=1

pi
1− 2pi

,

from Brewer (1963) it is known that the inclusion probability of i and that of the pair
(i, j), i 6= j in the sample of 2 draws are respectively

πi(2) = 2pi, and πij(2) =

[
2pipj
1 +D

](
1

1− 2pi
+

1

1− 2pj

)
. (32)

It is further known that

∆ij(2) = πi(2)πj(2)− πij(2) ≥ 0 ∀i, j(i 6= j) ∈ U. (33)

We use ‘2’ within parenthesis to emphasize that this scheme uses 2 draws. Let the
sample chosen as above be augmented by adding to the 2 distinct units so drawn as
above, (r−2) further distinct units from the remaining (N−2) units of U by simple
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random sampling without replacement (SRSWOR). For such a scheme introduced
by Seth (1966) admitting r distinct units in each sample, the inclusion probabilities
πi(r) for i and πij(r) for (i, j)(i 6= j), involving r draws, are respectively

πi(r) =
1

N − 2
[(r − 2) + (N − r)πi(2)] , (34)

πij(r) = πij(2) +

(
r − 2

N − 2

)
(πi(2) + πj(2)− 2πij(2))

+

(
r − 2

N − 2

)(
r − 3

N − 3

)
(1− πi(2)− πj(2) + πij(2)) . (35)

Chaudhuri and Pal (2002) modified this sampling scheme of Seth (1966) by allow-
ing (r − 2) to be (1) a number (n− 2) to be chosen with a pre-assigned probability
w(0 < w < 1) and (2) a number (n − 1) to be chosen with the complementary
probability (1 − w). Then, a sample s so drawn will have a size n with probability
w and (n + 1) with probability (1 − w). So, the effective sample size is either n
or (n+ 1). So for this modified sampling scheme if π∗i and π∗ij denote the first and
second order inclusion probabilities, then

π∗i = wπi(n) + (1− w)πi(n+ 1), (36)
and

π∗ij = wπij(n) + (1− w)πij(n+ 1). (37)
Chaudhuri and Pal (2002) also showed that π∗i π∗j ≥ π∗ij , ∀i, j ∈ U(i 6= j).
Under this scheme, for the Horvitz and Thompson (1952) estimator

∑
i∈s

yi
π∗i

for

population total Y of y variable, the variance estimator is given by Chaudhuri and
Pal (2002)

vCP =
∑
i∈s

∑
j∈s,j>i

π∗i π
∗
j − π∗ij
π∗ij

(
yi
π∗i
− yj
π∗j

)2

+
∑
i∈s

αiy
2
i

π∗2i
, (38)

whereαi = 1 +
1

π∗i

N∑
j=1,j 6=i

π∗ij −
N∑
i=1

π∗i . They also showed thatαi > 0 for all i ∈ U

and so vCP is always non-negative.
Now, keeping in mind that all the yi’s may not be available for all i ∈ s, so with

respect to the response probability δ∗i , an unbiased estimator for population mean is

eB =
1

N

∑
i∈s

yi
π∗i

(
δi
δ∗i

)
=

1

N

∑
i∈s

ui
π∗i
, where ui = yi

δi
δ∗i
, (39)

since ER(ui) = yi and EPER(eB) = EP ( 1
N

∑
i∈s

yi
π∗
i
) = Ȳ .

The variance of eB is obtained as
V (eB) = VPER(eB) + EPVR(eB)



382 K. Dihidar: Estimating population ...

=
1

N2

[
VP

(∑
i∈s

yi
π∗i

)
+ EP

(∑
i∈s

1

π∗2i
VR(ui)

)]

=
1

N2

 N∑
i=1

N∑
j=1,j>i

(π∗i π
∗
j−π∗ij)

(
yi
π∗i
− yj
π∗j

)2

+
N∑
i=1

αiy
2
i

π∗i
+EP

(∑
i∈s

1

π∗2i

y2i (1−δ∗i )
δ∗i

)
=

1

N2

 N∑
i=1

N∑
j=1,j>i

(π∗i π
∗
j−π∗ij)

(
yi
π∗i
− yj
π∗j

)2

+
N∑
i=1

αiy
2
i

π∗i
+

N∑
i=1

1

π∗i

y2i (1−δ∗i )
δ∗i

 .
(40)

Following Chaudhuri, Adhikary and Dihidar (2000), an unbiased estimator of the
variance of eB is:

v(eB) =
1

N2

∑
i∈s

∑
j∈s,j>i

π∗i π
∗
j − π∗ij
π∗ij

(
ui
π∗i
− uj
π∗j

)2

+
∑
i∈s

αiu
2
i

π∗2i
+
∑
i∈s

vR(ui)

π∗i

 .
(41)

Next, as δ∗i is unknown to us, so following Chaudhuri (2010), we can have the re-
quired estimators and variance estimators of the population mean as êB = eB|{δ∗i =

δ̂∗i } and v(eB)|{δ∗i = δ̂∗i } i.e. replacing δ∗i in eB and v(eB) throughout by its esti-
mate δ̂∗i obtained by any means as discussed earlier.

4.2. Efficiency comparison

To get some ideas about the estimates and the measure of errors obtained in a
practical sample survey situation, we perform the simulation by drawing samples
of size equal to 15% of the population size by each of above mentioned sampling
schemes taking the usual number of hours of working per week (x) as the size mea-
sure. Let us denote the estimators based on the two sampling designs by êM and
êB , the subscripts M and B being for Midzuno’s and Modified Brewer’s sampling
schemes respectively. The notations used for different competitive estimators for
population mean concerned are described as below.

(1) êM (1) and êB(1): Based on the estimate of δ∗i as δ̂∗i1 = r
n , the traditional

MCAR estimator.
(2) êM (2) and êB(2): Based on the estimate of δ∗i as δ̂∗i2 obtained from usual

logit model.
(3) êM (3) and êB(3): Based on the estimate of δ∗i as δ̂∗i3 obtained from Bethle-

hem (2012) model.
(4) êM (4, λ = ...) and êB(4, λ = ...): Based on compromising in between

traditional MCAR and Bethlehem (2012) model.
We compare the estimators using measures based on confidence intervals for the

parameters they are meant to estimate. For each sampling scheme, the sampling is
replicated a large number of times, say, 10000 times and the corresponding estimator
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is computed for each such sample. The standardized pivotal, namely, τ = θ̂−θ√
v(θ̂)

is
assumed to be a standard normal deviate. Then,(

θ̂ − 1.96

√
v(θ̂), θ̂ + 1.96

√
v(θ̂)

)
is used as a 95% confidence interval for θ based on the estimator θ̂.

Two measures based on this confidence interval are often used to compare the
performance of the alternative estimators. One is the ACP, i.e., the Average Coverage
Percentage, which is the percent of the replicated samples for which θ is covered by
the above confidence interval. The second measure is the AL, i.e., the average length,
which is the length of the confidence interval ( =2× 1.96

√
v(θ̂) ) averaged over all

the replicates.
We consider another measure, namely the simulation coefficient of variation (or

in short SimCV, say) defined by

SimCV (θ̂) = 100×

√
1
L

∑L
l=1

(
θ̂l −

(
1
L

∑L
l=1 θ̂l

))2
|θ|

,

where
L = the number of replications in the simulation study,
θ̂l = the value of the estimator in the lth iteration (l = 1, 2, . . . , L),
θ = the value of the population parameter computed based on the whole population

dataset.
As the simulation CV is not sufficient to compare the accuracies of the estimators,

additionally some more values are computed. These are defined below.
(i) Simulation relative biases of the estimators given by:

rB(θ̂) = 100×
1
L

∑L
l=1 θ̂l − θ
|θ|

,

(ii) Simulation relative Root Mean Squared Errors given by:

rRMSE(θ̂) = 100×
1
L

∑L
l=1

(
θ̂l − θ

)2
|θ|

,

(iii) Simulation relative biases of variance estimators given by:

rB(D̂2(θ̂)) = 100×
1
L

∑L
l=1 D̂

2(θ̂l)− D̂2(θ̂)

D̂2(θ̂)
,

where
D̂2(θ̂l) = the value of the variance estimator in the lth iteration (l = 1, 2, . . . , L),

and
D̂2(θ̂) = 1

L

∑L
l=1

(
θ̂l −

(
1
L

∑L
l=1 θ̂l

))2
.
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A good estimator is the one with a high value of ACP; the closer this value is to
95%, the better the estimator. Again, with respect to AL, a good estimator should
have a small value of AL. Similarly, the small values for the criteria SimCV, Simula-
tion relative biases of the estimators, Simulation relative Root Mean Squared Errors,
Simulation relative biases of variance estimators are also desirable for a good estima-
tor. We present the results of these comparison criteria in Tables 1 to 4. Almost all
the above stated criteria show good performances. More specifically, it is interesting
to note that all values of the biases of the estimators are negative, and they are quite
small, and the only exception is for the biases of the variance estimators. It is im-
portant to note that they are not so quite small, and this inspires us to investigate for
other variance estimators in the future research. However, the overall results show
that the estimator based on Bethlehem (2012) model used in unequal probability
sampling scheme is a good competitor of the traditional estimators. Moreover, the
compromised estimators based on the MCAR and Bethlehem (2012) model may also
be tried with several compromising factors in order to achieve further improvement.

Table 1. Simulation results for alternative estimators (Midzuno’s scheme)

Estimator ACP (θ̂) AL(θ̂) SimCV (θ̂) rB(θ̂) rRMSE(θ̂) rB(D̂2(θ̂))
(%) (%)

MCAR(êM (1)) 95.8 195.7 14.38 -2.37 14.55 131.99
Logistic(êM (2)) 97.0 240.1 14.83 -1.82 14.92 136.56
Bethlehem(êM (3)) 96.3 220.8 13.13 -6.53 14.65 195.54

Table 2. Simulation results for compromised estimators (Midzuno’s scheme)

Estimator ACP (θ̂) AL(θ̂) SimCV (θ̂) rB(θ̂) rRMSE(θ̂) rB(D̂2(θ̂))
(%) (%)

êM (4, λ = 0.1) 95.7 196.5 13.87 -4.31 14.50 134.78
êM (4, λ = 0.2) 95.2 190.7 13.45 -5.83 14.64 142.56
êM (4, λ = 0.3) 94.9 190.8 13.11 -7.00 14.84 150.96
êM (4, λ = 0.4) 95.7 189.2 12.82 -7.86 15.02 159.28
êM (4, λ = 0.5) 94.8 196.4 12.58 -8.44 15.13 168.10
êM (4, λ = 0.6) 94.7 199.7 12.40 -8.74 15.16 177.06
êM (4, λ = 0.7) 95.1 203.2 12.29 -8.76 15.08 185.81
êM (4, λ = 0.8) 95.4 206.7 12.28 -8.46 14.90 193.31
êM (4, λ = 0.9) 96.0 219.5 12.46 -7.77 14.67 197.93
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Table 3. Simulation results for alternative estimators (Modified Brewer’s scheme)

Estimator ACP (θ̂) AL(θ̂) SimCV (θ̂) rB(θ̂) rRMSE(θ̂) rB(D̂2(θ̂))
(%) (%)

MCAR(êB(1)) 96.3 245.23 14.49 -3.14 14.81 137.28
Logistic(êB(2)) 96.8 263.70 15.43 -1.60 15.50 182.50
Bethlehem(êB(3)) 98.3 262.08 13.72 -6.46 15.15 219.12

Table 4. Simulation results for compromised estimators (Modified Brewer’s scheme)

Estimator ACP (θ̂) AL(θ̂) (%) rB(θ̂) rRMSE(θ̂) rB(D̂2(θ̂))
(%) (%)

êB(4, λ = 0.1) 97.60 239.21 14.05 -4.82 14.84 145.24
êB(4, λ = 0.2) 97.40 237.26 13.71 -6.12 15.00 153.24
êB(4, λ = 0.3) 97.00 236.40 13.43 -7.11 15.19 161.64
êB(4, λ = 0.4) 98.40 236.53 13.22 -7.82 15.35 170.53
êB(4, λ = 0.5) 98.00 237.61 13.06 -8.27 15.45 179.91
êB(4, λ = 0.6) 98.20 239.70 12.96 -8.48 15.48 189.63
êB(4, λ = 0.7) 98.20 242.89 12.93 -8.43 15.43 199.41
êB(4, λ = 0.8) 98.20 247.39 13.00 -8.11 15.32 208.66
êB(4, λ = 0.9) 97.80 253.55 13.22 -7.48 15.18 216.20

5. Concluding remarks

This paper presents a general framework to estimate the population mean in the
presence of auxiliary variables and non-response under the unequal probability sam-
pling scheme. It is shown that the good competitive estimators can be obtained by
estimating the response probabilities postulating good models keeping in mind that
the values of the possible correlated variables may also not be available for the non-
respondents. Finally, the doubtful missing data can also be profitably handled with
the use of compromised estimator. Moreover, we need to examine the performance
of the suggested estimators with some other estimators like Kott and Chang (2010),
Chang and Kott (2008). Our research is in progress to see if the results of the pro-
posed estimators in this paper show better performance in comparison with Kott and
Chang (2010), Chang and Kott (2008) estimators.
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SÄRNDAL, C. E., SWENSON, B., WRETMAN, J., (1992). Model Assisted Survey
Sampling. Springer-Verlag. New York.

SETH, G. R., (1966). On estimators of variance of estimate of population total in
varying probabilities. Journal of the Indian Society of Agricultural Statistics. 18,
52-56.

SINGH, S., (2010). Layman’s understanding of non-response: How Michael and
Amy adjust a missing phone call. LIAISON, Statistical Society of Canada. 24(3),
p. 67.

VALLIANT, R., DORFMAN, A. H., ROYALL, R. M., (2000). Finite Population
Sampling and Inference: A Prediction Approach. Wiley Series in Survey Method-
ology. New York.



388 K. Dihidar: Estimating population ...

YATES, F., GRUNDY, P. M., (1953). Selection without replacement from within
strata with probability proportional to size. Journal of the American Statistical As-
sociation. 75, 206-211.



STATISTICS IN TRANSITION new series, Summer 2014 

 

389 

STATISTICS IN TRANSITION new series, Summer 2014 
Vol. 15, No. 3, pp. 389–402 

A CLASS OF TWO PHASE SAMPLING ESTIMATORS FOR 
RATIO OF TWO POPULATION MEANS USING  

MULTI-AUXILIARY CHARACTERS IN  
THE PRESENCE OF NON-RESPONSE 

B. B. Khare1, R. R. Sinha2 

ABSTRACT 

In this paper, a class of two phase sampling estimators for estimating the ratio of 
two population means using multi-auxiliary characters with unknown population 
means has been proposed in presence of non-response. The asymptotic bias, mean 
square error and minimum mean square error of the proposed class of estimators 
have been obtained. The optimum values of the sample at the first and the second 
phases along with the sub-sampling fraction of the non-responding group have 
been determined for the fixed cost and for the specified precision. The efficiency 
of the proposed class of estimators has also been shown through the theoretical 
and empirical studies. 

Key words: two phase sampling, ratio of two means, bias, mean square error, 
auxiliary characters. 

1. Introduction 

The estimation of the ratio of two population means with known population 
mean of auxiliary character(s) has been discussed by Hartley and Ross (1954), 
Singh (1965), Tripathi (1970), Tripathi and Chaurvedi (1979) and Khare (1991). 
It has been well known that the ratio, product and regression types of estimators 
are used to increase the efficiency of the estimates when population mean of the 
auxiliary character is known in advance. But sometimes it has been observed in 
sample surveys that the population means of available auxiliary characters are not 
known in advance [sea Rao (1990)], in this condition it is customary to use two 
phase sampling for estimating the population means of the auxiliary characters. 
By introducing the two phase sampling scheme, Tripathi (1970), Singh (1982) 
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and Khare (1983, 91) have proposed the estimators for estimating the ratio of two 
population means 𝑅 = 𝑌�1 𝑌�2⁄  using an auxiliary character with unknown 
population mean. Using two auxiliary characters with unknown population 
means, the estimators for estimating 𝑅 have been proposed by Tripathi and Sinha 
(1976) and Srivasvata et al. (1988). Further Khare (1993) has proposed a class of 
estimators for 𝑅 by using multi-auxiliary characters with unknown population 
means when the information is available on all selected units in the sample for 
main and auxiliary characters. But it has been observed in practice while 
conducting a sample survey related to human that we do not  collect complete 
information for all the units selected in the sample due to the problem of non-
response on s tudy characters. Khare and Sinha (2002, 2004) have proposed 
classes of two phase sampling estimators for estimating the ratio of two 
population means using auxiliary character in presence of non-response while 
Khare and  

Sinha (2012) have suggested the general classes of estimators using multi-
auxiliary characters with subsampling the non-respondents. 

In this paper, we have proposed a class of two phase sampling estimators for 
estimating the ratio of two population means 𝑅 = 𝑌�1 𝑌�2⁄  of the study characters in 
presence of non-response using multi-auxiliary characters when their population 
means are not known. The expressions of bias, mean square error and minimum 
mean square error of the proposed class of estimators have been obtained. The 
optimum values of first phase sample, second phase sample and sub-sampling 
fraction of the non-responding group have been determined for the fixed cost and 
for the specified precision. The efficiency of the proposed class of estimators has 
also been shown through theoretical and empirical studies.  

2. The proposed class of estimators 

Consider a finite population which consists of 𝑁 identifiable units 𝑈𝑁 =
(𝑢1,𝑢2, … … … ,𝑢𝑁 ) in which (𝑦1,𝑦2) are the variables under study and 
(𝑥1,𝑥2, … … , 𝑥𝑜) are the 𝑝 auxiliary characters having population means 𝑌�𝑖  (𝑖 =
1, 2) of study characters and 𝑋�𝑗 (𝑗 = 1, 2, … … ,𝑝) of auxiliary characters 
respectively. In many practical situations when the list of the sampling units is 
available but the population means of the auxiliary characters are not known then 
we use two phase sampling scheme to estimate the unknown population means of 
the auxiliary characters. In such situations, the estimate of population mean 
𝑋�𝑗 (𝑗 = 1, 2, … … ,𝑝) is furnished by taking a large first phase sample of size 𝑛′ 
from the population of 𝑁 units using simple random sampling without 
replacement (SRSWOR) method. Let the estimate of 𝑋�𝑗 (𝑗 = 1, 2, … … ,𝑝) be the 
sample means 𝑥̅𝑗′ (𝑗 = 1, 2, … … ,𝑝) based on the information available on 𝑛′ units. 
Again a seco nd phase sample of size 𝑛 (<  𝑛′ ) is drawn from the first phase 
selected units 𝑛′ by SRSWOR method of sampling and collect the information on 
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the study characters 𝑦𝑖 (𝑖 =  1, 2). We observe for the study characters 𝑦𝑖 (𝑖 =
 1, 2) that only 𝑛1 units are responding and 𝑛2(= 𝑛 − 𝑛1) units are not 
responding in the sample of size 𝑛. In this case, it has been assumed that the 
whole population 𝑈𝑁 is divided into two non-overlapping strata 𝑈𝑁1 and 𝑈𝑁2 of 
responding and non-responding soft-core groups; however they are not known in 
advance. The stratum weights of responding and non-responding groups are given 
by 𝑃1 = 𝑁1 𝑁⁄  and 𝑃2 = 𝑁2 𝑁⁄ , and their estimates are respectively given by 
𝑃�1 = 𝑝1 = 𝑛1 𝑛⁄  and 𝑃�2 = 𝑝2 = 𝑛2 𝑛⁄ .  Further, from the non-responding units 
𝑛2, we draw a su bsample of size 𝑟 (= 𝑛2 𝑘−1, 𝑘 >  1) using SRSWOR 
technique of sampling and collect the information by the direct interview for 
𝑦𝑖 (𝑖 =  1, 2). Now using the approach of Hansen and Hurwitz (1946), the 
unbiased estimator for 𝑌�𝑖 (𝑖 = 1, 2) based on the information of (𝑛1 + 𝑟) units is 
given by  

   𝑦�𝑖∗ =  𝑝1𝑦�𝑖1 + 𝑝2𝑦�𝑖𝑛(2𝑟),  𝑖 = 1, 2        (2.1) 

where 𝑦�𝑖1 and 𝑦�𝑖𝑛(2𝑟) are the sample means of 𝑦𝑖 based on 𝑛1 and 𝑟 units 
respectively. 
The variance of the estimator 𝑦�𝑖∗ up to the terms of order (𝑛−1) is given by 

   𝑉(𝑦�𝑖∗) = 𝑉𝑖 = 𝜃 𝑆𝑦𝑖
2 + 𝜃𝑘  𝑆𝑦𝑖(2)

2 ,         (2.2) 

where 𝑆𝑦𝑖
2  and 𝑆𝑦𝑖(2)

2  denote the population mean square of 𝑦𝑖 for the entire and 

non-responding part of the population, and 𝜃 = 𝑁−𝑛
𝑁𝑛

 , 𝜃𝑘 =  𝑃2(𝑘−1)
𝑛

. 
If the ratio of two population means is 𝑅 = 𝑌�1 𝑌�2⁄  and we have incomplete 

information on t he study characters (𝑦1,𝑦2), then the usual estimator for 
estimating 𝑅 may be given by 

   𝑅� =  𝑦�1
∗

𝑦�2∗
 .              (2.3) 

The bias and mean square error of 𝑅� under SRSWOR up to the terms of order 
(𝑛−1) are given by 

 𝐵�𝑅�� = 𝑅{𝜃  ∇21 +  𝜃𝑘∇21′ },           (2.4) 
 𝑀�𝑅�� = 𝑅2{𝜃 ∆12 + 𝜃𝑘∆12′ },           (2.5) 

where  ∇21= 𝑆𝑦2
2

𝑌�22
− 𝜌 𝑆𝑦1

𝑌�1
 𝑆𝑦2
𝑌�2

 , ∇21′ =
𝑆𝑦2(2)
2

𝑌�22
− 𝜌2

𝑆𝑦1(2)

𝑌�1
 
𝑆𝑦2(2)

𝑌�2
 , ∆12= 𝑆𝑦1

2

𝑌�12
+ 𝑆𝑦2

2

𝑌�22
−

2𝜌 𝑆𝑦1
𝑌�1

 𝑆𝑦2
𝑌�2

, ∆12′ =
𝑆𝑦1(2)
2

𝑌�12
+

𝑆𝑦2(2)
2

𝑌�22
− 2𝜌2

𝑆𝑦1(2)

𝑌�1
 
𝑆𝑦2(2)

𝑌�2
 , 𝜌 and 𝜌2 are the correlation 

coefficients between (𝑦1,𝑦2) for the entire and non-responding group of the 
population respectively. 

Hence, when we have incomplete information on the study characters 𝑦1,𝑦2 
but complete information on the auxiliary characters 𝑥1,𝑥2, … , 𝑥𝑜 for the sample 
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of size 𝑛 [See Rao (1986) p. 220], we propose a class of two phase sampling 
estimators for estimating the ratio of two population means 𝑅(= 𝑌�1 𝑌�2⁄ ) of study 
characters using multi-auxiliary characters in presence of non-response on study 
characters only as 

    𝑇 = 𝑓�𝑦�1∗ 𝑦�2∗⁄ , 𝑧′� = 𝑓�𝑚, 𝑧′�        (2.6) 

such that  𝑓�𝑅, 𝑒′� = 𝑅, and  𝑓1(𝑅,    𝑒′) = � 𝜕
𝜕𝑚

𝑓�𝑚, 𝑧′��
�𝑅,   𝑒′�

= 1,  (2.7) 

where 𝑧 and 𝑒 are the column vectors of �𝑧1, 𝑧2, … … , 𝑧𝑜�
′ and (1, 1, … … ,1)′ 

respectively and 𝑧𝑗 =  𝑥̅𝑗
𝑥̅𝑗
′ , (𝑗 =  1,2, … ,𝑝). Here we assume that the function 

𝑓�𝑚, 𝑧′� is continuous and bounded in (𝑝 + 1) dimensional real space 𝑆∗ 
containing the point (𝑅, 𝑒′) and the first and second order partial derivatives of 
𝑓�𝑚, 𝑧′� exist and are continuous and bounded in 𝑆∗. 

3. Bias and mean square error (MSE) 

Let the conventional estimator of 𝑅 be 𝑅�(= 𝑦�1∗ 𝑦�2∗⁄ ). Since the number of 
possible samples is finite, so the bias and mean square error of the estimator 𝑇 
may be obtained. Now, expanding the function 𝑓�𝑚, 𝑧′� about the point �𝑅, 𝑒′� 
in a second order Taylor’s series and using the condition (2.7), we have 

 
 𝑇 = 𝑅 + 𝐷 + 𝐷′𝑓2 (𝑅,   𝑒′) + 𝐷𝐷′𝑓12(𝑚∗,   𝑧∗′) + 1

2
�𝐷2𝑓11(𝑚∗,   𝑧∗′) + 𝐷′𝑓22(𝑚∗,   𝑧∗′)𝐷�,     

(3.1) 
 

where 𝐷 = (𝑚 − 𝑅), 𝐷′ = (𝑧 − 𝑒)′, 𝑚∗ = 𝑅 + ∅(𝑚 − 𝑅), 𝑧∗ = 𝑒 + ∅ (𝑧 − 𝑒) 
such that 0 < ∅,∅𝑗 < 1; 𝑗 =  1, 2, … ,𝑝 and ∅ is a 𝑝 × 𝑝 diagonal matrix having 
𝑗𝑜ℎ diagonal elements φ𝑗. 

Here, 𝑓1�𝑚, 𝑧′� and 𝑓2�𝑚,   𝑧′� denote the first partial derivatives of 𝑓�𝑚, 𝑧′� 
with respect to 𝑚 and 𝑧′ respectively. The second partial derivative of 𝑓�𝑚, 𝑧′� 
with respect to 𝑧′ is denoted by 𝑓22�𝑚,   𝑧′� and the first partial derivative of 
𝑓2�𝑚,   𝑧′� with respect to 𝑚 is denoted by 𝑓12�𝑚,   𝑧′�. 

The expressions for bias and mean square error of 𝑇 for any sampling design 
up to the terms of order 𝑛−1 [𝑂(𝑛−1)] are given by  

   𝐵(𝑇) = 𝐵�𝑅�� + 𝐸�𝐷𝐷′�𝑓12�𝑚∗, 𝑧∗′� + 1
2

 𝐸(𝐷′𝑓22(𝑚∗, 𝑧∗′)𝐷)   (3.2) 

and  𝑀(𝑇) = 𝑀�𝑅��+ 2𝐸�𝐷𝐷′�𝑓2�𝑅, 𝑒′� + 𝐸(𝑓2�𝑅, 𝑒′�)′𝐷 𝐷′𝑓2�𝑅,   𝑒′�.  (3.3) 
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The mean square error of 𝑇 is minimized for  

𝑓2�𝑅,   𝑒′� = −[𝐸�𝐷 𝐷′�]−1𝐸�𝐷𝐷�         (3.4) 

and the resulting minimum mean square error of 𝑅 up to the terms of 𝑂(𝑛−1) is 
given by  

   𝑀(𝑇)𝑚𝑖𝑛. = 𝑀�𝑅�� + 𝐸�𝐷𝐷′�[𝐸�𝐷 𝐷′�]−1𝐸�𝐷𝐷�.    (3.5) 

To find the bias and mean square error of 𝑇 under SRSWOR, we use the large 
sample approximation by assuming 

𝑦�𝑖∗ =  𝑌�𝑖(1 +∈0𝑖), 𝑥𝑗 =  𝑋𝑗(1 +∈𝑗′), 𝑥𝑗
′ =  𝑋𝑗(1 +∈𝑗′′) with 𝐸(∈0𝑖) = 𝐸�∈𝑗′� =

𝐸�∈𝑗′′� = 0 and |∈0𝑖| < 1, �∈𝑗′� < 1, �∈𝑗′′� < 1  ∀ 𝑖 = 1, 2; 𝑗 = 1, 2, … … ,𝑝. 

We also assume that the contribution of the terms involving the powers in ∈0𝑖, 
∈𝑗′ and ∈𝑗′′ of order higher than two in the bias and mean square error are assumed 
to be negligible. 

Let 𝜌𝑗𝑗′ , 𝜌𝑖𝑗∗  be the correlation coefficients between �𝑥𝑗, 𝑥𝑗′� and �𝑦𝑖 , 𝑥𝑗� 
respectively for the entire population and 𝜌𝑗𝑗′(2), 𝜌𝑖𝑗(2)

∗  be the correlation 
coefficients between �𝑥𝑗, 𝑥𝑗′� and �𝑦𝑖 , 𝑥𝑗� for the non-responding group of the 
population. 

So, the expressions of bias and mean square error of 𝑅 in SRSWOR method 
of sampling up to the terms of 𝑂(𝑛−1) are given by 

𝐵(𝑇) = 𝐵�𝑅�� + 𝑅(𝜃 − 𝜃′)𝔹′𝑓12�𝑚∗, 𝑧∗′� + (𝜃−𝜃′)
2

 𝑡𝑟𝑎𝑐𝑒 𝑀 𝑓22(𝑚∗, 𝑧∗′)       
(3.6) 

and  

𝑀(𝑇) = 𝑀�𝑅��+ (𝜃 − 𝜃′) �𝑓2�𝑅,   𝑒′��
′
𝑀 𝑓2�𝑅, 𝑒′� + 2𝑅 (𝜃 − 𝜃′) 𝔹′𝑓2(𝑚∗, 𝑧∗′), 

(3.7) 

where 𝜃′ = 𝑁−𝑛′

𝑁𝑛′
, 𝔹 = (𝔹1,𝔹2, … … ,𝔹𝑜)′is a column vector of order (𝑝 × 1) 

having the 𝑗𝑜ℎ element 𝔹𝑗 =
𝑆𝑥𝑗
𝑋𝑗
�𝜌1𝑗∗

𝑆𝑦1
𝑌1
− 𝜌2𝑗∗

𝑆𝑦2
𝑌2
�, 𝑀 = [𝑚𝑗𝑗′]𝑜×𝑜 is a (𝑝 × 𝑝) 

positive definite matrix having 𝑚𝑗𝑗′ = 𝜌𝑗𝑗′
𝑆𝑥𝑗
𝑋𝑗

 
𝑆𝑥𝑗′

𝑋𝑗′
 ;∀ 𝑗 ≠ 𝑗′ = 1, 2, … … ,𝑝 and 

𝑆𝑥𝑗
2  denotes the mean square error of 𝑥𝑗 for the entire part of the population. 

Since the objective of this paper is to suggest a generalized class of estimators 
𝑇 = 𝑓�𝑚, 𝑧′� for estimating 𝑅 and study its properties, so we may consider the 
following exponential, chain ratio and chain ratio cum regression types of 
estimators as members of 𝑇, which are as follows: 

  𝑇𝑒 = 𝑚 𝑒∑ 𝑎𝑗
𝑝
𝑗=1 𝑙𝑜𝑔𝑧𝑗 ,             (3.8) 
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𝑇𝑟 = 𝑚�𝜔1𝑧1𝑏1 𝜔1⁄ + 𝜔2𝑧2𝑏2 𝜔2⁄ +⋯… … +𝜔𝑜𝑧𝑜𝑏𝑝 𝜔𝑝⁄ �;  ∑ 𝜔𝑗
𝑜
𝑗=1 = 1      (3.9) 

and  𝑇𝑐𝑟𝑟 = ∑ �𝑚 + 𝜑𝑗�𝑧𝑗 − 1��𝑜
𝑗=1 �𝜔𝑗𝑧𝑗𝑐𝑗 𝜔𝑗⁄ �,          (3.10) 

where 𝑎𝑗, 𝑏𝑗 and 𝑐𝑗 (𝑗 = 1, 2, … ,𝑝) are the scalar constants.  

Now we state the following theorems: 
Theorem 1. Up to the terms of order 𝑂(𝑛−1) under SRSWOR, the mean square 
error of 𝑇 is minimized for  

    𝑓2�𝑅, 𝑒′� = −𝑅𝑀−1𝔹         (3.11) 
and minimum mean square error of 𝑇is given by 

   𝑀(𝑇)𝑚𝑖𝑛. = 𝑅2�(𝜃 ∆12 + 𝜃𝑘∆12′ )− (𝜃 − 𝜃′)�𝔹′𝑀−1𝔹��.   
 (3.12) 

Since the estimators 𝑇𝑒, 𝑇𝑟 and 𝑇𝑐𝑟𝑟 are the members of 𝑇, so the values of the 
constants involved in them can be obtained by the condition (3.11) and their 
minimum mean square error will be equal to 𝑀(𝑇)𝑚𝑖𝑛.. Sometimes this condition 
involves unknown parameters, so one may use the values of the parameters from 
past data or experience for obtaining the required value of the constants involved 
in (3.11). Reddy (1978) has shown that such values are stable not only over time 
but also over different regions. Srivastava and Jhajj (1983) have shown that the 
efficiency of such type of estimators does not decrease up to the terms of order 
𝑂(𝑛−1) if we replace the optimum values of the constants by their estimates 
based on the sample values. 

On comparing the proposed class of estimator 𝑇 with 𝑅� in terms of precision from 
(2.5) and (3.12), we have derived the following theorem: 

Theorem 2. Up to the terms of order 𝑂(𝑛−1), 
 𝑀(𝑇) < 𝑀�𝑅�� and 𝑀�𝑅�� −𝑀(𝑇) =  𝑅2�(𝜃 − 𝜃′)�𝔹′𝑀−1𝔹�� > 0. 

Theorem 3. Up to the terms of order 𝑂(𝑛−1), 

 𝑀(𝑇) < 𝑀�𝑅�� iff −𝑀�𝑅�� < �(𝜃 − 𝜃′) �𝑓2�𝑅,   𝑒′ ��� ��𝑓2�𝑅,   𝑒′ ��
′
𝑀 +

2𝑅𝔹′� < 0. 

If we compare the efficiency of proposed class of estimators (𝑇) with the 
class of estimators suggested by Khare and Sinha (2012), we find that the Khare 
and Sinha (2012) estimator gives equal precision to 𝑇 under the condition of 
known population mean of auxiliary characters. 

It is also to be noted here that for W2 = 0, i .e. when we have complete 
information on the study characters as well as on auxiliary characters for the 
sample of size n, then the proposed class of estimators 𝑇 is equally efficient to the 
class of estimators for 𝑅 as proposed by Khare (1993). Hence, it is clear that all 
the members of the proposed class of estimators 𝑇 will attain minimum mean 
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square error for one, two or 𝑝-auxiliary characters if the condition (3.11) is 
satisfied. 

It is very important to know whether the reduction in variance would be worth 
the extra expenditure on the additional sample required to estimate the population 
mean of the auxiliary characters used in the case of two phase sampling. Hence, a 
rational approach is found by minimizing the mean square error of 𝑇 for the fixed 
cost and obtaining the optimum values of 𝑛′, 𝑛 and 𝑘. Therefore, we determine 
the size of the first phase sample (𝑛′), second phase sample (𝑛) and the value of  
subsampling  proportion (𝑘−1) which will minimize the mean square error of the 
proposed class of estimators 𝑇 for the fixed cost 𝐶 ≤ 𝑪𝟎. 

4. Optimum sample size for the fixed cost C≤ C0 

The minimum value of the mean square error of 𝑇 depends upon the values of 
𝑛′ 𝑛 and 𝑘. Let the fixed total cost apart from overhead cost be 𝐶 ≤ 𝑪𝟎. Let 𝐶1′ and 
𝐶1are be the cost per unit of identifying and observing auxiliary characters and the 
cost per unit of mailing questionnaire/visiting the unit at the second phase 
respectively while 𝐶2 and 𝐶3 be the cost per unit of collecting/processing data for 
the study characters 𝑦1,𝑦2 obtained from 𝑛1 responding units and the cost per unit 
of obtaining and processing data for the study characters 𝑦1, 𝑦2 (after extra 
efforts) from the subsampled units. Now, the cost function under these 
assumptions is given by 

𝐶′ = 𝐶1′𝑛′+ 𝐶1𝑛 + 𝐶2𝑛1 + 𝐶3𝑟.          (4.1) 

Since 𝐶′ will vary from sample to sample, so we consider the expected cost 𝐶 
to be incurred in the survey apart from overhead expenses, which is given by 

 𝐶 = 𝐸(𝐶′) = 𝐶1′𝑛′+ 𝑛[𝐶1 + 𝐶2𝑃1 + 𝐶3𝑃2𝑘−1].     (4.2) 

Let 𝑅2Ψ0𝑟, 𝑅2Ψ1𝑟 and 𝑅2Ψ2𝑟 be the coefficients of the terms 𝑛−1, (𝑛′)−1 and 
𝑘𝑛−1  respectively in the expressions of 𝑀(𝑇), then 𝑀(𝑇) can be expressed as  

 𝑀(𝑇) = (𝑛−1)𝑅2Ψ0𝑟 + (𝑛′)−1𝑅2Ψ1𝑟 + (𝑘𝑛−1)𝑅2Ψ2𝑟 + 𝐼,    (4.3) 

where 𝐼 is the terms independent of 𝑛, 𝑛′ and 𝑘 in the expressions of 𝑀(𝑇). 
Now, let us define a function 𝜑 for minimizing the 𝑀(𝑇) for the fixed cost 

𝐶 ≤ 𝑪𝟎 and to obtain the optimum sample sizes as  

𝜑 = 𝑀(𝑇) + 𝜆𝑟{𝐶1′𝑛′+ 𝑛(𝐶1 + 𝐶2𝑃1 + 𝐶3𝑃2𝑘−1)− 𝑪𝟎},   (4.4) 

where λ𝑟 is a Lagrange’s multiplier. 
Differentiating 𝜑 with respect to 𝑛′, 𝑛 and 𝑘 and equating to zero, we have 

   𝑛′ = 𝑅�Ψ1𝑟
λ𝑟𝐶1′

 ,            (4.5) 
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   𝑛 = 𝑅� Ψ0𝑟+𝑘Ψ2𝑟
λ𝑟(𝐶1+𝐶2𝑃1+𝐶3𝑃2𝑘−1)          (4.6) 

and     𝑘𝑜𝑜𝑜. = 𝑅� 𝐶3𝑃2Ψ0𝑟
(𝐶1+𝐶2𝑃1) Ψ2𝑟

 .         (4.7) 

Now, putting the values of 𝑛′and 𝑛 from (4.5) and (4.6) and using the value of 
𝑘𝑜𝑜𝑜. from (4.7) in (4.2), we have  

 �λ𝑟 = 𝑅
𝑪𝟎
��Ψ1𝑟𝐶1′ + ��Ψ0𝑟 + 𝑘𝑜𝑜𝑜.Ψ2𝑟��𝐶1 + 𝐶2𝑃1 + 𝐶3𝑃2𝑘𝑜𝑜𝑜.

−1 ��.  (4.8) 

It has also been observed that the determinant of the matrix of the second 
order derivative of 𝜑 with respect to 𝑛′, 𝑛 and 𝑘 is positive for the optimum 
values of 𝑛′, 𝑛 and 𝑘, which shows that the solutions for 𝑛′, 𝑛  given by (4.5), 
(4.6) and the optimum value of 𝑘 under the condition 𝐶 ≤ 𝑪𝟎 minimize the 
variance of 𝑇. It is also important to note here that the subsampling fraction 𝑘𝑜𝑜𝑜.

−1  
will decrease as  �𝐶3 (𝐶1 + 𝐶2𝑃1)⁄  increases. 

Hence, for the optimum values of 𝑛′, 𝑛 and 𝑘, the minimum value of 𝑀(𝑇) is 
given by 

𝑀(𝑇)𝑚𝑖𝑛. = 𝑪𝟎λ𝑟 − 𝑅2∆12𝑁−1.         (4.9) 

5. Determination of sample sizes for the specified variance 𝑴𝟎 

Let 𝑴𝟎 be the variance of the estimator 𝑇 fixed in advance and we have  

𝑴𝟎 = (𝑛−1)𝑅2Ψ0𝑟 + (𝑛′)−1𝑅2Ψ1𝑟 + (𝑘𝑛−1)𝑅2Ψ2𝑟 + 𝑅2∆12𝑁−1. (5.1) 

For minimizing the average total cost 𝐶 for the specified variance of the 
estimator 𝑇 (i.e. 𝑀(𝑇) = 𝑴𝟎), we define a function 𝜑∗ which is given as  

𝜑∗ = 𝐶1′𝑛′+ 𝑛(𝐶1 + 𝐶2𝑃1 + 𝐶3𝑃2𝑘−1)− 𝜇(𝑀(𝑇) −𝑀0)   (5.2) 

where 𝜇 is a Lagrange’s multiplier.  
Now, for obtaining the optimum values of 𝑛′, 𝑛 and 𝑘, differentiating 𝜑∗ with 

respect to 𝑛′, 𝑛 and 𝑘 and equating to zero, we have 

    𝑛′ = 𝑅�𝜇Ψ1𝑟
𝐶1′

           (5.3) 

    𝑛 = 𝑅� 𝜇(Ψ0𝑟+𝑘Ψ2𝑟)
(𝐶1+𝐶2𝑃1+𝐶3𝑃2𝑘−1)         (5.4) 
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and       𝑘𝑜𝑜𝑜. = � 𝐶3𝑃2Ψ0𝑟
(𝐶1+𝐶2𝑃1) Ψ2𝑟

.         (5.5) 

Again by putting the values of 𝑛′ and 𝑛 from (5.3) and (5.4) and utilizing the 
optimum value of 𝑘 in (5.1), we get 

    √𝜇 =
��Ψ1𝑟𝐶1′+��Ψ0𝑟+𝑘𝑜𝑝𝑡.Ψ2𝑟��𝐶1+𝐶2𝑃1+𝐶3𝑃2𝑘𝑜𝑝𝑡.

−1 ��

[𝑴𝟎+ 𝑅2∆12𝑁−1] .     (5.6) 

The minimum expected total cost incurred in attaining the specified variance 
𝑴𝟎 by the estimator 𝑇 is then given by  

 𝐶(𝑇)𝑚𝑖𝑛. =
��𝐶1′𝑉11+��𝑉01+𝑘𝑜𝑝𝑡.𝑉21��𝐶1+𝐶2𝑊1+𝐶3

𝑊2
𝑘𝑜𝑝𝑡.

��

2

[𝑴𝟎+ 𝑅2∆12𝑁−1] .     (5.7) 

6. An empirical study 

109 Village/Town/ward population of urban area under Police-station – Baria, 
Tahasil – Champua, Orissa has been taken under consideration from District 
Census Handbook, 1981, O rissa, published by Govt. of India. The last 25% 
villages (i.e. 27 villages) have been considered as n on-response group of the 
population. Here we have considered the study characters and auxiliary characters 
given as follows: 

𝑦1: Number of literate persons in the village, 
𝑦2: Number of main workers in the village, 
𝑥1: Number of non-workers in the village, 
𝑥2: Total population of the village and 
𝑥3: Number of cultivators in the village. 

The values of the parameters of the population under study are as follows: 

𝑌�1 = 145.3028 𝑌�2 =  165.2661 𝑋�1 = 259.0826 𝑋�2 = 485.9174 𝑋�3 = 100.5505 

𝑆𝑦1 = 111.3891 𝑆𝑦2 = 112.8437 𝑆𝑥1 = 198.0687 𝑆𝑥2 = 320.2197 𝑆𝑥3 = 73.5426 

𝑆𝑦1(2)
2 = 100.2444 𝑆𝑦2(2)

2 = 95.3420 𝜌11∗  = 0.905 𝜌12∗  = 0.905 𝜌13∗  = 0.648 

𝜌 =0.816 𝜌2 = 0.787 𝜌21∗  = 0.819 𝜌22∗  = 0.908 𝜌23∗  = 0.841 

 𝜌12 = 0.946 𝜌13 = 0.732 𝜌23 = 0.801  
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Let the costs at the different processing stages be 𝐶1′ = Rs. 0.15, 𝐶1 = Rs. 
5.00, 𝐶2 = Rs. 25.00 and 𝐶3 = Rs. 65.00. 

To show the efficiency of the proposed class of estimators 𝑇 for the ratio of 
two population means [i.e. 𝑅 = 𝑌�1 𝑌�2⁄ ] using the auxiliary characters 𝑥1, 𝑥2 and 
𝑥3, we have considered 𝑇𝑒 = 𝑚 𝑒∑ 𝑎𝑗

𝑝
𝑗=1 𝑙𝑜𝑔𝑧𝑗 as a member of the proposed class of 

estimators 𝑇. 
The optimum values of the constants 𝑎𝑗, mean square error and the percentage 

relative efficiency (PRE) of 𝑇𝑒 with respect to 𝑅� for fixed sample sizes 𝑛′ = 80, 
𝑛 = 20 and for the fixed cost 𝑪𝟎 = Rs. 280 are shown in Table 1. The expected 
cost of 𝑅� and 𝑇𝑒 in case of specified precision 𝑴𝟎 = 1250 × 10−5 are also given in 
Table 1. 

7. Conclusions 

From Table 1 – see Appendix 2, it has been observed that the estimator 𝑇𝑒 is 
more efficient than 𝑅� for all the different values of the sub-sampling fraction 𝑘−1 
and its efficiency increases as the value of sub-sampling fraction increases. The 
mean square error of the estimator 𝑇𝑒 decreases while the relative efficiency of the 
estimator 𝑇𝑒 with respect to 𝑅� increases with the increase in the numbers of 
auxiliary characters used. Regarding the performance of the estimator 𝑇𝑒 over 𝑅� 
in case of fixed cost, we observe that the relative efficiency of 𝑇𝑒 increases as the 
number of the auxiliary characters increases. We also observe that the values of 
𝑘𝑜𝑜𝑜. and 𝑛𝑜𝑜𝑜. decrease while the value of 𝑛𝑜𝑜𝑜.

′  increases with the increase in the 
numbers of auxiliary characters used. Further, in case of specified variance, the 
expected cost incurred by 𝑇𝑒 decreases with the increases in the numbers of 
auxiliary characters used. It has been also observed that 𝑛𝑜𝑜𝑜.

′ increases while 𝑛𝑜𝑜𝑜. 
decreases by increasing the numbers of the auxiliary characters. Hence, on the 
basis of theoretical and empirical studies, we may recommend the proposed class 
of estimators 𝑇 for the use in practice under its respective circumstances as 
discussed in the text. 
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APPENDIX 1 
 

Expand the function 𝑓�𝑚, 𝑧 ′� given in (2.6) about the point �𝑅,   𝑒′� using 
Taylor’s series up to the second order partial derivatives, we have 
       𝑇 = 𝑓�𝑅, 𝑒 ′�+ 𝐷𝑓1 (𝑅,   𝑒 ′) + 𝐷′𝑓2 (𝑅,   𝑒 ′) 

       + 1
2
�𝐷2𝑓11(𝑚∗,   𝑧∗′) + 2𝐷𝐷′𝑓12(𝑚∗,   𝑧∗′) + 𝐷′𝑓22(𝑚∗,   𝑧∗′)𝐷� 

Using condition (2.7), we get 
  𝑇 = 𝑅 + 𝐷 + 𝐷′𝑓2 (𝑅,   𝑒 ′) + 2𝐷𝐷′𝑓12(𝑚∗,   𝑧∗′) + 1

2
�𝐷2𝑓11(𝑚∗,   𝑧∗′) +

𝐷′𝑓22(𝑚∗,   𝑧∗′)𝐷� 

Now, 
    𝐵(𝑇) = 𝐸(𝑇 − 𝑅) 
                   = 𝐵�𝑅�� + 𝐸�𝐷𝐷′�𝑓12�𝑚∗, 𝑧∗′� + 1

2
 𝐸(𝐷′𝑓22(𝑚∗, 𝑧∗′)𝐷) 

    𝑀(𝑇) = 𝐸(𝑇 − 𝑅)2 
                    = 𝑀�𝑅��+ 2𝐸�𝐷𝐷′�𝑓2�𝑅, 𝑒′� + 𝐸(𝑓2�𝑅, 𝑒′�)′𝐷 𝐷′𝑓2�𝑅,   𝑒′� 

Differentiating 𝑀(𝑇) with respect to 𝑓2�𝑅, 𝑒′� and equating it to zero, we have  
       𝑓2�𝑅,   𝑒′� = − [𝐸�𝐷 𝐷′�]−1𝐸�𝐷𝐷� 

Putting this 𝑓2�𝑅,   𝑒 ′� in 𝑀(𝑇), we get 
      𝑀(𝑇)𝑚𝑖𝑛. = 𝑀�𝑅�� + 𝐸�𝐷𝐷′�[𝐸�𝐷 𝐷′�]−1𝐸�𝐷𝐷�. 
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Under simple random sampling without replacement (SRSWOR), we have 
obtained 
        𝐸�𝐷 𝐷′� = 𝐸 ��𝑧 − 𝑒��𝑧 − 𝑒�′� 

Consider 
       𝐸[(𝑧1 − 1)(𝑧2 − 1)] = 𝐸 ��𝑥1

𝑥1
′ − 1� �𝑥2

𝑥2
′ − 1�� 

                        = 𝐸 ��𝑋1(1+∈1′ )
𝑋1(1+∈1′′ )

− 1� �𝑋2(1+∈2′ )
𝑋2(1+∈2′′ )

− 1�� 

                        = 𝐸 ���1 +∈1′ ��1 +∈1′′�
−1 − 1� ��1 +∈2′ ��1 +∈2′′ �

−1 − 1�� 

Neglecting the terms involving powers in ∈𝑗′ ,∈𝑗′′; 𝑗 = 1, 2 of order higher than 
two, we have  
    𝐸[(𝑧1 − 1)(𝑧2 − 1)] = 𝐸�∈1′′∈2′′−∈1′′∈2′ −∈1′ ∈2′′+∈1′ ∈2′ � 

Since        𝐸[∈1′′∈2′′] = 𝐸[∈1′′∈2′ ] = (𝜃 − 𝜃′)𝜌12
𝑆𝑥1
𝑋1

 𝑆𝑥2
𝑋2

 
Therefore, 𝐸[(𝑧1 − 1)(𝑧2 − 1)] =  𝐸[∈1′ ∈2′ ] − 𝐸[∈1′ ∈2′′] 

            = 𝜃𝜌12
𝑆𝑥1
𝑋1

 𝑆𝑥2
𝑋2
− 𝜃′𝜌12

𝑆𝑥1
𝑋1

 𝑆𝑥2
𝑋2

 

            = (𝜃 − 𝜃′)𝜌12
𝑆𝑥1
𝑋1

 𝑆𝑥2
𝑋2

= (𝜃 − 𝜃′)𝑚12 

Similarly, we can define       𝑚𝑗𝑗′ = 𝜌𝑗𝑗′
𝑆𝑥𝑗
𝑋𝑗

 
𝑆𝑥𝑗′

𝑋𝑗′
. 

Now,        𝐸�𝐷𝐷′� = 𝐸(𝑚 − 𝑅)�𝑧 − 𝑒� 
Consider  

      𝐸(𝑚 − 𝑅)(𝑧1 − 1) = 𝐸 ��𝑦�1
∗

𝑦�2∗
− 𝑅� �𝑥1

𝑥1
′ − 1�� 

     = 𝐸 ��𝑌
�1(1+∈01)
𝑌�2(1+∈02)

− 1� �𝑋1(1+∈1′ )
𝑋1(1+∈1′′)

− 1�� 

     = 𝑅 𝐸 �{(1 +∈01)(1 +∈02)−1 − 1} ��1 +∈1′ ��1 +∈1′′�
−1
− 1�� 

Neglecting the terms involving powers in ∈01,∈02,∈1′  and ∈1′′ of order higher 
than two, we have  
𝐸(𝑚 − 𝑅)(𝑧1 − 1) = 𝑅[{𝐸(∈01∈1′ )− 𝐸(∈01∈1′′)} − {𝐸(∈02∈1′ )− 𝐸(∈02∈1′′)}] 

    = 𝑅 ��𝜃𝜌11∗
𝑆𝑦1
𝑌�1

𝑆𝑥1
𝑋�1
− 𝜃 ′𝜌11∗

𝑆𝑦1
𝑌�1

𝑆𝑥1
𝑋�1
� − �𝜃𝜌21∗

𝑆𝑦2
𝑌�2

𝑆𝑥1
𝑋�1
− 𝜃 ′𝜌21∗

𝑆𝑦2
𝑌�2

𝑆𝑥1
𝑋�1
�� 

    = 𝑅 ��𝜃 − 𝜃 ′�𝜌11∗
𝑆𝑦1
𝑌�1

𝑆𝑥1
𝑋�1
− �𝜃 − 𝜃 ′�𝜌21∗

𝑆𝑦2
𝑌�2

𝑆𝑥1
𝑋�1
� 

    = 𝑅�𝜃 − 𝜃 ′� �
𝑆𝑥1
𝑋�1
�𝜌11∗

𝑆𝑦1
𝑌�1
− 𝜌21∗

𝑆𝑦2
𝑌�2
�� 

    = 𝑅�𝜃 − 𝜃 ′�𝐵1 

Similarly, we can define    𝐵𝑗 =
𝑆𝑥𝑗
𝑋�𝑗
�𝜌1𝑗∗

𝑆𝑦1
𝑌�1
− 𝜌2𝑗∗

𝑆𝑦2
𝑌�2
� 

The expressions given in theorems can be obtained from (3.4) and (3.5). 
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APPENDIX 2 

Table 1. Mean square error (MSE) and the percentage relative efficiency (PRE) of 𝑇𝑒 with 
respect to 𝑅�  for fixed sample sizes, cost and variance 
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BAYESIAN INFERENCE FOR EXPONENTIATED
PARETO MODEL WITH APPLICATION TO BLADDER

CANCER REMISSION TIME

Sanjay Kumar Singh 1, Umesh Singh 2, Manoj Kumar 3

ABSTRACT

Maximum likelihood and Bayes estimators of the unknown parameters and
the expected experiment times of the exponentiated Pareto model have been
obtained for progressive type-II censored data with binomial removal scheme.
Markov Chain Monte Carlo (MCMC) method is used to compute the Bayes
estimates of the parameters of interest. The generalized entropy loss function
and squared error loss function have been considered for obtaining the Bayes
estimators. Comparisons are made between Bayesian and maximum likeli-
hood (ML) estimators via Monte Carlo simulation. The proposed method-
ology is illustrated through real data.
Key words: PT-II CBR, MLE, bayes estimators, average experiment time.

1. Introduction

The exponentiated Pareto model (EPM) was proposed by Gupta, Gupta and
Gupta (1998). The probability density function (pdf) and cumulative distribution
function (cdf) of the EPM are given by

f(x, α, θ) = αθ
[
1− (1 + x)−α

]θ−1
(1 + x)−(α+1) ;x > 0, α > 0, θ > 0 (1)

and
F (x, α, θ) =

[
1− (1 + x)−α

]θ
;x > 0, α > 0, θ > 0 (2)

respectively, where α and θ are the shape parameters of the model. The reliability
function takes the following form:

S(x) = 1− F (x, α, θ) = 1−
[
1− (1 + x)−α

]θ
, x > 0, α > 0, θ > 0. (3)

1Department of Statistics, Banaras Hindu University,Varanasi-221005.
2Department of Statistics and DST-CIMS, Banaras Hindu University,Varanasi-221005.
3Assistant Prof. (Statistics), Department of School of Basic Science and Research, Sharda
University, Greater Noida, UP. E-mail: manustats@gmail.com.
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A distinguished feature of EPM is that because it accommodates all types of
failure rates (i.e both monotone and non-monotone). Therefore, it can be effectively
used for analyzing various types of data. It may also be noted that a number of distri-
butions can be obtained as particular cases of it. For the shape parameter θ = 1, the
EPM is reduced to standard Pareto distribution of second kind (see, Johnson Kotz
and Balakrishnan, 1994). For more details about EPM, we refer to Gupta Gupta and
Gupta (1998). Some statistical properties of this distribution and the estimators of
the parameters of EPM have been discussed by Shawky and Abu-Zinadah (2009) un-
der different estimation procedures for complete sample case. In general life testing
experiments, situations do arise when units are lost or removed from the experiment
while they are still functioning, i.e. we get censored data from the experiment. The
loss of units may occur due to time constraints, giving type-I censored data. In such
a censoring scheme, the experiment is terminated at some specified time. Some-
times, the experiment is terminated after a prefixed number of observations due to
cost constraints and we get type-II censored data. The estimation of parameters of
EPM has also been attempted by Afify (2010) under type-I and type-II censoring
scheme. Besides the above two controlled causes, units may drop out of the experi-
ment randomly due to some uncontrolled causes such type of situation progressive
censoring arises.

For example, consider that a doctor performs an experiment with n bladder can-
cer patients with remission times (in months), i.e. a period during which symptoms
of disease are reduced (partial remission) or disappear (complete remission) with
regard to cancer, remission means there is no sign of it on scans or when the doctor
examines you. Doctors use the word ’remission’ instead of cure when talking about
cancer because they cannot be sure that there are no cancer cells at all in the body. So
the cancer could come back in the future. But the complete remission would there-
fore be better than partial remission. Because with partial remission the chances of
occurrence of bladder cancer are higher, its means remission times (in months) are
the minimum that represents partial remission, when remission times (in months)
are longer, say complete remission. So the doctor performs an experiment on blad-
der cancer patients with partial and complete remission times (in months) are very
costly and time-consuming. Due to cost constraint the experiment is terminated af-
ter a prefixed number of bladder cancer patients and we get type-II censored data.
After type-II censoring another situation of bladder cancer patients with remission
times (in months) may arise, the first bladder cancer patient has died due to some
other unforeseen circumstances such as heart attack, accident, damage of lever, de-
pletion of funds, etc.; some patients leave the experiment and go for treatment to
other doctor/hospital. Similarly, after the second death a few more leave and so on.
Finally, the doctor stops taking observation as soon as the predetermined number
of deaths (say m) is recorded. Which has arise a scenario of progressive type-II
censoring with random/binomial removals. For further details, readers are referred
to Balakrishnan (2007). In last few years, the estimation of parameters of differ-
ent life time distribution based on progressive censored samples have been studied
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by several authors such as Childs and Balakrishnan (2000), Balakrishnan and Kan-
nan (2001), Mousa and Jheen (2002), Ng, Chn and Balakrishnan (2002). The pro-
gressive type-II censoring with binomial removal were considered by Yang, Tse and
Yuen (2000) for Weibull distribution, Wu and Chang (2002) for Exponential dis-
tribution. Under the progressive type-II censoring with random removals, Wu and
Chang (2003) and Yuen and Tse (1996) developed the estimation problem for the
Pareto distribution and Weibull distribution respectively, when the number of units
removed at each failure time has a discrete uniform distribution, the expected time
of this censoring plan is discussed and compared numerically. Mathematically, this
experiment is similar to a life test experiment which starts with n units. At the first
failureX1, r1 (random) units are removed randomly from the remaining (n−1) sur-
viving units. At the second failure X2, r2 units from remaining n− 2− r1 units are
removed, and so on; untill mth failure is observed, i.e. at mth failure all the remain-
ing rm = n−m− r1− r2 · · · rm−1 units are removed. Note that herem is pre-fixed
and r,is are random. Such a censoring mechanism is termed as progressive type-II
censoring with random removal scheme. If we assume that probability of removal of
a unit at every stage is p for each unit then ri can be considered to follow a binomial
distribution i.e, ri ≈ B(n − m −

∑i−1
l=0 rl, p) for i = 1, 2, 3, · · ·m − 1 and with

r0 = 0. The main aim of this article is concerned with the problem of obtaining
Bayes estimates for the two parameter EPM based on progressive type-II censoring
with binomial removals (PT-II CBR). Bayes estimators are obtained based on under
square error loss function (SELF) and generalized entropy loss function (GELF).
The results are obtained to PT-II CBRs, and compare the expected test times for PT-
II CBR with complete sampling scheme. However, no attempt has been made to
develop estimators for the parameters of EPD under PT-II CBR and its applications
are discussed based on real illustration. Therefore, we propose to develop such an
estimation procedure. The rest of the paper is organized as follows.

Section 2, provides the likelihood function. The ML estimators of the unknown
parameters are presented in section 3. Section 4 contains the loss functions, prior
distributions, the Bayes estimates using the MCMC via Gibbs sampling scheme.
An algorithm for simulating the PT-II CBR is presented in section 5. We compare
the expected test times under PT-II CBRs with complete sample which are given in
section 6. The comparison of ML estimators and corresponding Bayes estimators
are presented in section 7. These comparisons are based on simulated risk (average
loss over sample space) of the estimators and discussion of results is presented. In
section 8, we provide an application of the EPD distribution to remission time of
bladder cancer. Finally, some conclusions are drawn in section 9.

2. Likelihood function

Let (X1, R1), (X2, R2), (X3, R3), · · · , (Xm, Rm) denote a progressive type-II
censored sample, where X1 < X2 < X3, · · · , Xm.With pre-determined number
of removals, say R1 = r1, R2 = r2, R3 = r3, · · · , Rm = rm, the conditional
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likelihood function can be written as, Cohen(1963)

L(α; θ;x|R = r) = c∗
m∏
i=1

f (xi) [S (xi)]
ri , (4)

where c∗ = n(n − r1 − 1)(n − r1 − r2 − 2)(n − r1 − r2 − r3 − 3) · · · (n −
r1− r2− r3, · · · , rm−m+ 1), and 0 ≤ ri ≤ (n−m− r1 − r2 − r3 · · · ri−1), for
i = 1, 2, 3 . . . ,m− 1. Substituting (1) and (3) into (4), we get

L(α, θ;x|R = r) =

m∏
i=1

αθ
[
1− (1 + xi)

−α
]θ−1

{
1−

[
1− (1 + xi)

−α
]θ}ri

(1 + xi)
−(α+1). (5)

Suppose that an individual unit being removed from the test at the ith failure,
i = 1, 2, · · · (m − 1) is independent of the others but with the same probability p.
That is the numberRi of the unit removed at ith failure i = 1, 2, · · · (m− 1) follows
a binomial distribution with parameters

(
n−m−

∑i−1
l=1 ri, p

)
therefore,

P (R1 = r1; p) =

(
n−m
r1

)
pr1(1− p)n−m−r1 , (6)

and for i = 2, 3, · · · ,m− 1,

P (R;p) = P (Ri = ri|Ri−1 = ri−1, · · ·R1 = r1)

=

(
n−m−

∑i−1
l=0 rl

ri

)
pri(1− p)n−m−

∑i−1
l=0 rl .

(7)

Now, we further assume thatRi is independent ofXi for all i. Then, using above
equations, we can write the full likelihood function as in the following form

L (α, θ, p;x, r) = AL1 (α, θ)L2 (p) , (8)
where

L1(α; θ) =
m∏
i=1

αθ
[
1− (1 + xi)

−α]θ−1 {1−
[
1− (1 + xi)

−α]θ}ri (1 + xi)
−(α+1),

(9)

L2 (p) = p
∑m−1
i=1 ri (1− p)(m−1)(n−m)−

∑m−1
i=1 (m−i)ri . (10)

and A = c∗(n−m)!

(n−m−
∑i−1
l=1 ri)!

∏m−1
i=1 ri!

does not depend on the parameters α, θ and p.
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3. ML estimation

The ML estimations of α and θ are the simultaneous solutions of following nor-
mal equations

m

α
+ (θ − 1)

m∑
i=1

(1 + xi)
−α ln (1 + xi)

1− (1 + xi)
−α −

m∑
i=1

ln (1 + xi)−

θ
m∑
i=1

ri
[
1− (1 + xi)

−α]θ−1 (1 + xi)
−α ln (1 + xi)

1−
[
1− (1 + xi)

−α]θ = 0,

(11)

and
m

θ
+

m∑
i=1

ln
[
1− (1 + xi)

−α]
m∑
i=1

ri
[
1− (1 + xi)

−α]θ ln
[
1− (1 + xi)

−α]
1−

[
1− (1 + xi)

−α]θ = 0.

(12)

It may be noted that (11) and (12) cannot be solved simultaneously to provide a
nicely closed form for the estimators. Therefore, we propose to use fixed point it-
eration method for solving these equations. For details about the proposed method
readers may refer to Jain, Iyengar and Jain (1984).

4. Bayesian estimation

This section is concerned with prior distributions for unknown parameters, sym-
metric and asymmetric loss function and Bayes estimates using the Gibbs sampling
scheme.

Prior and posterior distributions

In order to obtain the Bayes estimators of unknown parameters α and θ based on
PT-II CBRs, we must assume that the parameters α and θ are random variables. The
model under consideration has shapes and censoring parameters, and continuous
conjugate priors for these parameters do not exist. We further assume that these ran-
dom variables α and θ have independently distributed informative prior distribution
with respective prior pdfs

g1 (α) =
λ1

ν1e−λ1ααν1−1

Γν1
; 0 < α <∞, λ1 > 0, ν1 > 0 (13)

g2 (θ) =
λ2

ν2e−λ2θθν2−1

Γν2
; 0 < θ <∞, λ2 > 0, ν2 > 0 (14)
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respectively. But Arnold and Press (1983) had all ready discussed that there is no
clear cut way in which one can say that one prior is better than the other. But for
purpose of Bayesian analysis, the gamma prior g1 (α) and g2 (θ) are chosen instead
of the exponential prior of α and θ used by Eissa and Nassar (2004) and Jung, Chung
and Kim (2011) because the gamma prior is wealthy enough to cover the prior belief
of the experimenter for different shapes. On the basis of the above stated assump-
tions, the joint prior pdf of α and θ is

g (α, θ) = g1 (α) g2 (θ) ; α > 0, θ > 0 (15)

Combining the priors given by (13) and (14) with likelihood given by (9), we can
easily obtain joint posterior pdf of (α, θ) as π (α, θ|x, r) = J1

J0
where

J1 = αm+ν1−1θm+ν2−1e−(
∑m
i=1 λ1α+

∑m
i=1 λ2θ)

m∏
i=1

[
1− (1 + xi)

−α]θ−1
{

1−
[
1− (1 + xi)

−α]θ}ri (1 + xi)
−(α+1),

(16)

and J0 =
∫∞
0

∫∞
0 J1dαdθ. Hence, the respective marginal posterior pdfs of α

and θ are given by

π1 (α|x, r) =

∫ ∞
0

J1
J0
dθ, (17)

and

π2 (θ|x, r) =

∫ ∞
0

J1
J0
dα. (18)

Loss functions

In order to select the best decision in decision theory, an appropriate loss function
must be specified. For this purpose, we use symmetric as well as asymmetric loss
function. The Bayes estimators are obtained under SELF

l1(φ, φ̂) =∈1
(
φ− φ̂

)2
; ∈1> 0 (19)

where φ̂ is the estimate of the parameter φ and the Bayes estimator φ̂S of φ comes out
to beEφ[φ], whereEφ denotes the posterior expectation. However, this loss function
is symmetric loss function and can only be justified if over-estimation and under-
estimation of equal magnitudes are of equal seriousness. A number of asymmetric
loss functions are also available in the statistical literature. Let us consider the GELF,
proposed by Calabria and Pulcini (1996), defined as follows :

l2(φ, φ̂) =∈2

( φ̂
φ

)δ
− δ ln

(
φ̂

φ

)
− 1

 ; ∈2> 0 (20)
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The constant δ, involved in (20), is its shape parameter. It reflects departure
from symmetry. When δ > 0, it considers over-estimation (i.e., positive error) to
be more serious than under-estimation (i.e., negative error) and converse for δ < 0.
The Bayes estimator φ̂E of φ under GELF is given by

φ̂E =
[
Eφ

(
φ−δ

)](− 1
δ ) (21)

provided the posterior expectation exits. It may be noted here that for δ = −1,
the Bayes estimator under loss (19) coincides with the Bayes estimator under SELF
l1. Expressions for the Bayes estimators α̂E and θ̂E for α and θ respectively, under
GELF can be given as

α̂E =

[∫ ∞
0

α−δπ1 (α|x, r) dα
](− 1

δ )
, (22)

and

θ̂E =

[∫ ∞
0

θ−δπ1 (θ|x, r) dθ
](− 1

δ )
, (23)

It is to mention here that from equation (22) and (23), the Bayes estimators α̂E
and θ̂E are not reducible in a nice closed form. Therefore, we use the numerical
techniques for obtaining the estimates. We, therefore, propose to consider Gibbs
sampling procedure.

MCMC method via Gibbs sampling

In this subsection, we use the Gibbs sampling procedure to obtain the Bayes
estimates α and θ under SELF and GELF. It is clear from equations (22) and (23)
that the Bayes estimators of α and θ are not obtained analytically and numerical
techniques must be used for computations. To compute Bayes estimators of the pa-
rameters α and θ we propose to use MCMC technique, via Gibbs sampler along with
Metropolis-Hastings algorithms to generate samples from posterior distributions and
then compute Bayes estimates. The Gibbs is an algorithm for simulating from the
full conditional posterior distributions while the Metropolis-Hastings algorithm gen-
erates samples from an (essentially) arbitrary proposal distribution. For more details
about the MCMC methods see, for example, Vasishta, Smith and Upadhyay (2001)
and Gupta and Upadhyay (2010). The full conditional posterior distributions of the
parameters α and θ are, respectively, given as

τ1(α|x, r) ∝ αm+ν1−1e−(
∑m

i=1 λ1α)
m∏
i=1

[
1− (1 + xi)

−α
]θ−1

{
1−

[
1− (1 + xi)

−α
]θ}ri

(1 + xi)
−(α+1)

(24)

τ2(θ|x, r) ∝ θm+ν2−1e−(
∑m

i=1 λ2θ)
m∏
i=1

[
1− (1 + xi)

−α
]θ−1

{
1−

[
1− (1 + xi)

−α
]θ}ri

(25)
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The following MCMC algorithm is used to generate the posterior samples and
then to obtain the Bayes estimates of α and θ.

I. Start with initial guesses of α and θ say α0 and θ0.
II. Set j=1.

III. Generate α1 from τ1(α|θ, x, r) and θ1 from τ2(θ|α, x, r).
IV. Repeat steps 2-3, N times.
V. Now, the Bayes estimates of α and θ under GELF are, respectively, given as

α̂E =

 1

N −M

N∑
j=M+1

αj
−δ

−1/δ (26)

θ̂E =

 1

N −M

N∑
j=M+1

θj
−δ

−1/δ (27)

VI. Put δ = −1 in above step 5, then the Bayes estimator under GELF coincides
with Bayes estimator under SELF.
where M is the burn-in period (i.e, the number of iterations before the station-
ary distribution is achieved).

5. Algorithm for PT-II CBR

We need to simulate PT-II CBR from specified EPD. To get such a sample, we
propose the use of the following algorithm:

I. Specify the value of n.
II. Specify the value of m.

III. Specify the value of parameters α, θ and p.
IV. Generate random number ri from B

(
n−m−

∑i−1
l=0 rl, p

)
, for i = 1, 2, 3, · · · ,

m− 1.
V. Set rm according to the following relation.

VI. rm =

{
n−m−

∑m−1
l=1 rl if n−m−

∑m−1
l=1 rl > 0

0 otherwise
VII. Generate m independent U(0, 1) random variables W1,W2, · · · ,Wm.

VIII. For given values of the progressive type-II censoring scheme ri(i = 1, 2, · · · ,m)

set Vi = W
1/(i+rm+·+rm−i+1)
i (i = 1, 2, · · · ,m).

IX. Set Ui = 1−VmVm−1 · · ·Vm−i+1(i = 1, 2, · · · ,m), then U1, U2, · · · , Um are
progressive type-II censored samples with binomial removals of size m from
U(0, 1).

X. Finally, for given values of parameters α and λ, we set xi = F−1(U)(i =
1, 2, · · · ,m). Then,(x1, x2, · · · , xm) is the required from progressive censor-
ing with binomial removals sample of size m from the EPD.
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6. Average Experiment Time

In practical situations, an Experimenter may be interested to know whether the
test can be completed within a specified time. This information is important for
an experimenter to choose an appropriate sampling plan because the time required
to complete a test is directly related to cost. Under Progressive censoring with a
fixed number of removal the time is given by Xm. According to Balakrishnan and
Aggarwalla (2000), the expected value of Xm is given by

E [Xm|R] = C(r)

r1∑
l1=0

r2∑
l2=0

· · ·
rm∑

lm=0

(−1)B
Cr1

l1=0 · · ·C
rm
lm=0∏m−1

i=1 h(li)

∫ ∞
0

xf(x)Fh(lm)−1(x)∂x.

(28)

where B =
∑m

i=1 li, h(li) = l1 + l2 + · · · + li + i, C(r) = n(n − r1 − 1)(n −
r1− r2− 2) · · · [n−

∑m−1
i=1 (ri + 1)] and i is the number of live units removed from

experiment (number of failure units). Using the p.d.f and c.d.f of EPD, the equation
will be

E [Xm|R] = C(r)

r1∑
l1=0

r2∑
l2=0

· · ·
rm∑
lm=0

(−1)B
Cr1l1=0 · · ·C

rm
lm=0∏m−1

i=1 h(li)∫ ∞
0

xiαθ
[
1− (1 + x)−α

]θ−1
(1 + x)−(α+1)

{[
1− (1 + x)−α

]θ}(h(lm)−1)

(29)

Let

S1 = αθ

∫ ∞
0

xi
[
1− (1 + x)−α

]θ−1
(1 + x)−(α+1)

{[
1− (1 + x)−α

]θ}(h(lm)−1)

= αθ

∫ ∞
0

xi(1 + x)−(α+1) [1− (1 + x)−α
](h(lm)θ−1)

∂xi.

= αθ

h(lm)θ−1∑
k=0

(−1)k
(
h(lm)θ − 1

k

)∫ ∞
0

xi

(1 + xi)(α(k+1)+1)
∂xi

= αθ

h(lm)θ−1∑
k=0

(−1)k
(
h(lm)θ − 1

k

)
BII(2, α(k + 1)− 1)
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Putting this value in to the right hand of equation (29), the expected test time is
given by

E [Xm|R] = C(r)αθ

r1∑
l1=0

r2∑
l2=0

· · ·
rm∑
lm=0

(−1)B
Cr1l1=0 · · ·C

rm
lm=0∏m−1

i=1 h(li)

αθ

h(lm)θ−1∑
k=0

(−1)k
(
h(lm)θ − 1

k

)
BII(2, α(k + 1)− 1)

(30)

The expected test time for PT-II CBRs is evaluated by taking expectation on both
sides (29) with respect to the R. That is

E [Xm] = ER [E [Xm|R = r]]

=

g(r1)∑
r1=0

g(r2)∑
r2=0

· · ·
g(rm−1)∑
rm−1=0

P (R, p)E [Xm|R = r] .
(31)

where g(ri) = n−m− r1 − · · · − ri−1 and P (R; p) is given in equation (7). For
the expected time a complete sampling case with n test units is obtained by taking
m = n and ri = 0 for all i = 1, 2, · · · ,m, in (30). We have

E [X∗n] = nαθ

n−1∑
k=0

(
n− 1

k

)
(−1)kBII(2, α(k + 1)− 1). (32)

Also, the expected time of a type-II censoring without removal is defined by the
expected value of the mth failure time, then

E [X∗m] = mαθ

(
n

m

)m−1∑
k=0

(
m− 1

k

)
(−1)kBII(2, α(k + 1)− 1), (33)

The ratio of the expected experiment time (REET)δREET is computed between
PT-II CBR and the complete sampling, we define

δREET =
E[Xm] Under PT − II CBR

E[Xn
∗] under complete sampling

. (34)

It can be noted from δREET that important information is given in order to determine
significantly the shortest experiment time if a much larger sample of n test units is
used, the test is terminated, when mth failures have been observed. But here we
are interested in considering various values of n, m and p, numerically calculated
under the expected experiment time of PT-II CBR and complete sample, which are
derived in equations (31) and (32). Numerical results are obtained in Table 7 where
for n = 15, 12 and 9 corresponding choices of m are given. From Table 7 we
observed that, when n is fixed, the values of the δREET and expected termination
time under PT-II CBR and complete test decrease as m decreases, while for fixed
m, the value of the δREET and expected termination time under PT-II CBR and
complete sampling increase as n decreases. Finally, for fixed values of m and n, we
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Figure 1. δREET under PT-II CBRs to δREET under complete sample

observed that the effect of variation of removal probability p with the values of the
δREET and expected termination time of PT-II CBR increase as p increases.

Figure 1 shows the ratio of the expected test time under PT-II CBR to the ex-
pected test time under complete sample versus n for m = 8 and different values
of removal probability p. We observed that, when the value of p is large, the ratio
increases and approaches 1 quickly and the expected test time is not small in these
cases. Hence, for small p, the expected test time is more significant than larger value
of p. So, we have taken p = 0.3 from Figure 1, which was significant for further
calculation.

7. Simulation studies

The estimators α̂M and θ̂M denote the ML estimators of the parameters α and θ
respectively while α̂S and θ̂S are corresponding Bayes estimators under SELF and
α̂E and θ̂E are the corresponding Bayes estimators under GELF. We compare the
estimators obtained under GELF with corresponding ML estimators and Bayes es-
timators under SELF. The comparisons are based on the simulated risks (average
loss over sample space) under GELF. It may be mentioned here that the exact ex-
pressions for the risks cannot be obtained because estimators are not in a nice closed
form. Therefore, the risks of the estimators are estimated on the basis of Monte-carlo
simulation study of 10000 samples. It may be noted that the risks of the estimators
will depend on values of n,m, θ, α, p, λ1, λ2, ν1, ν2 and δ. In order to consider vari-
ation in the values of these parameters, we have obtained the simulated risks for
m = 9 [3] 15, when n = 15, θ = 0.5, α = 2, δ = ±0.5 and p = 0.3. For
prior distribution we have used non-informative prior with λ1 = λ2 = ν1 = ν2 = 0,
and informative prior and the hyper parameter are chosen in such a way that the prior
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mean became true value of the parameter and belief in prior mean strong or weak, i.e.
the prior variance is small and large. Thus, the values of the hyper parameter of in-
formative prior are λ1 = (0.5, 4), λ2 = (0.125, 1), ν1 = (1, 8), ν2 = (0.0625, 0.5).
Generating the progressive sample as mentioned in section 4, the simulated risks
under SELF and GELF have been obtained for different values of m with selected
values of the rest of the parameters n, θ, α, p, λ1, λ2, ν1, ν2 and δ have been taken.
The results are given in tables Table 1-6. The entries in brackets in all the tables de-
note the risks of the estimators when δ is negative and the other non-bracket entries
are the risks when δ is positive.

Discussion of the results

It is interesting to note that when effective sample size m increases, keeping n,
fixed for fixed positive value of δ under both losses, the risks of the ML estimate
of α, first increase then decrease slightly as m increases whereas the risks of Bayes
estimators always increase with the increase in the value of m. This trend of the
magnitude of the risks is also the same for fixed negative value of δ. It is observed
when non-informative prior for α has been used (see, Table 1). While regarding
the considered prior distribution, when we have smaller belief in considered prior
distribution for α, i.e. prior variance is 1, then we observe that in over-estimation
situation under both losses, the risks of estimator α̂M increase then slightly decrease
as m increases but in under estimation situation under both losses, the risks of es-
timator of α̂M decrease then slightly increase as m increases. Finally, we observed
that under both losses for positive and negative values of δ, the risks of estimator of
α̂S and α̂E increase asm increases (see, Table 2). For larger prior variance of α, we
observed that under both losses for δ < 0, the risks of estimator α̂M decrease as m
increases, and the rest of them for δ < 0 and δ > 0, the risks of estimators α̂S , α̂E
and for δ > 0 α̂M increase asm increases (see, Table 3). The risk of estimators of θ
under SELF and GELF, when priors for the parameter θ are non-informative types,
the risks of estimator θ̂M , decrease in case of both positive and negative values of
δ, and the risks of Bayes estimators increase as m increases for both positive and
negative values of δ, and under both losses namely SELF and GELF (see, Table 4).
For smaller prior variance of θ, we observed under both losses that when δ > 0, the
risk of estimator θ̂M decreases as m increases but when δ < 0, the risk of estimator
θ̂M first increases then decreases asm increases and as in the previous table the risk
of Bayes estimators as m increases for both positive and negative values of δ under
both losses. The risk of estimators of θ under SELF and GELF, when prior for the
parameter θ are non informative types, the risks of estimator θ̂M decrease in case of
both positive and negative values of δ and the risks of Bayes estimators increase as
m increases for both positive and negative values of δ and under both losses, namely
SELF and GELF (see, Table 5). For larger prior variance of θ, under both losses, for
δ > 0 and δ < 0, the risk of estimator θ̂M decreases as m increases and as in the
previous cases, the trends for the risks are the same (see, Table 6).
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8. Application

In this section we reanalyze the data extracted from Luz, Silva, Rodrigo, Bou-
ruignon, Andrea and Gauss Coreiro (2012). For the purpose of real illustration, we
have been discussed in presence of PT-II CBR. The data describe a study of remis-
sion time(in months) of a random sample of 128 bladder cancer patients reported in
Lee and Wang (2003). The data are given as

0.08,2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29,
0.40, 2.26,3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24,
25.82, 0.51, 2.54,3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06,
14.77,32.15, 2.64, 3.88,5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34,7.59, 10.66,
15.96, 36.66, 1.05, 2.69, 4.23,5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63,
17.12, 46.12, 1.26,2.83, 4.33, 5.49,7.66,11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64,
17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79,18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76,
3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76,

12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.
In order to identify the shape of lifetime data failure rate function, we shall consider,
as a crude indicative, a graphical method based on TTT (Total time on test) plot
Aarset (1985) Hence, in its empirical version the TTT plot is given as

T (nr ) =
∑r
i=1 y(i)+(n−r)y(r)∑n

i=1 y(i)

where r = 1, 2, · · · , n and y(r) is the order statistics of the sample. On the basis
of TTT plot, we identify that the failure rate function is increasing, decreasing and
increasing then decreasing, i.e. when the TTT plot for considered data is concave,
convex and concave then convex respectively. Figure 2 shows that TTT plot for con-
sidered data, which is concave then convex indicating an increasing then decreasing
failure rate function, is properly accommodated by EPD with increasing then de-
creasing failure rate. According to Figure 3, we observed that this data is appropri-
ate for EPD and Figure 4 shows estimated pdf, CDF and hazard functions. Also, we
have obtained Kolmogrov-Smirnov (K-S) Statistics, Akaike’s information criterion
(AIC) and Bayesian information criterion (BIC) under sub model Pareto distribution
for given data set and values summarized in Table 8. According to above considered
criterion, we can say that EPD provide better fit than Pareto distribution. Therefore,
we use this data to illustrate the proposed methodology. For this PT-II CBRs are
generated from the given data under various schemes, which are summarized in Ta-
ble 11. We have obtained the ML estimates, Bayes estimates (using non-informative
prior), 95% CI and HPD intervals for the parameters α and θ respectively under
SELF and GELF for δ = ±1.5, and value of the hyper parameters α and θ are taken
as ν1 = 0.00001, λ1 = 0.0001 and ν2 = 0.00001, λ2 = 0.0001 respectively. We
have obtained the ML and the Bayes estimates of α and θ under SELF and GELF for
δ = ±1.5 presented in Table 9 and 10 respectively. When the degree of censoring
decreases, the estimate of α and θ is closer to the estimates of without censoring.
Under different censoring schemes, the length of HPD intervals is always less than
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CI. The ML and Bayes estimates under SELF and GELF of α and θ always lies be-
tween HPD and CI.

9. Conclusion
In this paper, we consider a Bayesian estimation of EPD in presence of PT-II

CBRs under the asymmetric loss function. We use independent gamma priors for
the unknown parameters as the continuous conjugate priors do not exist. It is seen
that the explicit expressions for the Bayes estimators are not possible. We obtain the
approximate Bayes estimates of parameters using the MCMC via Gibbs sampling
scheme. To observe the properties of the Bayes estimators based on the MCMC
via Gibbs sampling, some numerical experiments are performed. In general most
of cases, when the sample size increases the risk of the estimators decreases. The
interesting points are observed regarding PT-II CBR, either prior belief of the model
parameter is low or high, our proposed estimators α̂E and θ̂E perform well (in the
sense of having smaller risk).

On the other hand, in context of the expected experiment time, we may also
conclude that the removal probability p plays a great role in the expected test time.
The increase in the removal probability pmeans more items are removed at the early
stage of the experiment. Hence, for larger p, the collection of observations much
closer to the tail of the life time distribution and the experiment under PT-II CBR
increase as p increases.
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Figure 2. TTT plot for the remission times (in months) of
128 bladder cancer patients
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Figure 4. Estimated probability density, survival and hazard
functions for the remission times (in months) of 128 bladder
cancer patients.
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Table 1. Risks of estimators of α under different losses for
fixed α = 2, θ = 0.5, ν1 = 0, λ1 = 0, ν2 = 0, λ2 = 0, n= 15,
δ = ±0.5

m RS(α̂M ) RS(α̂S ) RS(α̂E ) RE(α̂M ) RE(α̂S ) RE(α̂E )

9 0.70526 0.41143 .021448 0.01624 0.010061 0.000743
(0.71638) (0.42280) (0.19942) (0.01462) (0.00937) (0.00484)

12 0.72537 0.50554 0.06051 0.01665 0.01211 0.001691
(0.72006) (0.50812) (0.33002) (0.01468) (0.01096) (0.00757)

15 0.72402 0.54560 0.13901 0.01662 0.01296 0.00372
(0.71659) (0.53729) (0.39171) (0.01462) (0.01150) (0.00879)

Table 2. Risks of estimators of α under different losses for
fixed α = 2 , θ = 0.5, ν1 = 4, λ1 = 2, n=15, ν2 = 0.25,
λ2 = .5, δ = ±0.5

m RS(α̂M ) RS(α̂S ) RS(α̂E ) RE(α̂M ) RE(α̂S ) RE(α̂E )

9 0.71061 0.07906 0.00245 0.01635 0.00220 .00074
(0.70607) (0.07960) (0.04193) (0.01445) (0.00212) (0.00116)

12 0.72158 0.13124 0.02286 0.01657 0.00355 0.00067
(0.70378) (0.12874) (0.08569) (0.01441) (0.00330) (0.00227)

15 0.70846 0.16820 0.04939 0.01631 0.00447 0.001406
(0.71687) (0.16936) (0.12436) (0.01463) (0.00422) (0.00319)

Table 3. Risks of estimators of α under different losses for
fixed α = 2 , θ = 0.5, ν1 = 1, λ1 = 0.5, n=15, ν2 = 0.0625,
λ2 = 0.125, n=15, δ = ±0.5

m RS(α̂M ) RS(α̂S ) RS(α̂E ) RE(α̂M ) RE(α̂S ) RE(α̂E )

9 0.69846 0.23747 0.00534 0.01610 0.00613 0.00016
(0.71844) (0.24831) (0.12497) (0.01465) (0.00592) (0.00319)

12 0.71230 0.32581 0.04418 0.01638 0.00818 0.00125
(0.71827) (0.32775) (0.21453) (0.01465) (0.00755) (0.00520)

15 0.72212 0.38485 0.10290 0.01658 0.00951 0.00281
(0.71713) (0.38264) (0.27947) (0.01464) (0.00864) (0.00657)
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Table 4. Risks of estimators of θ under different losses for
fixed α = 2, θ = 0.5, ν1 = 0, λ1 = 0, ν2 = 0, λ2 = 0, n= 15,
δ = ±0.5

m RS(θ̂M ) RS(θ̂S ) RS(θ̂E ) RE(θ̂M ) RE(θ̂S ) RE(θ̂E )

9 0.02434 0.01574 0.00451 0.00957 0.00642 0.00199
(0.02350) (0.01526) (0.01082) (0.008449) (0.00577) (0.00424)

12 0.02336 0.01687 0.00621 0.00921 0.00685 0.00269
(0.02336) (0.01717) (0.01299) (0.00834) (0.00641) (0.00500)

15 0.02256 0.01712 0.00699 0.00893 0.00693 0.00301
(0.02305) (0.01739) (0.01351) (0.00831) (0.00649) (0.00518)

Table 5. Risks of estimators of θ under different losses for
fixed α = 2 , θ = 0.5, ν1 = 4, λ1 = 2, n=15, ν2 = 0.25,
λ2 = .5, δ = ±0.5

m RS(θ̂M ) RS(θ̂S ) RS(θ̂E ) RE(θ̂M ) RE(θ̂S ) RE(θ̂E )

9 0.02402 0.009106 0.00303 0.00945 0.00387 0.00136
(0.02359) (0.00911) (0.00670) (0.008478) (0.00364) (0.00275)

12 0.0230799 0.00939 0.00339 0.00912 0.00399 0.00151
(0.02405) (0.01004) (0.00761) (0.00861) (0.00397) (0.00309)

15 0.02300 0.00964 0.00375 0.00909 0.00409 0.00167
(0.0224) (0.00932) (0.00712) (0.00811) (0.00371) (0.00290)

Table 6. Risks of estimators of θ under different losses for
fixed α = 2 , θ = 0.5, ν1 = 1, λ1 = 0.5, n=15, ν2 = 0.0625,
λ2 = 0.125, δ = ±0.5

m RS(θ̂M ) RS(θ̂S ) RS(θ̂E ) RE(θ̂M ) RE(θ̂S ) RE(θ̂E )

9 0.02446 0.01318 0.004151 0.00961 0.005469 0.00184
(0.02434) (0.0131) (0.00953) (0.008710) (0.00505) (0.0037)

12 0.02321 0.01385 0.00510 0.00916 0.00571 0.00223
(0.02338) (0.01392) (0.0105) (0.00841) (0.00533) (0.00414)

15 0.02298 0.01438 0.00582 0.009078 0.00591 0.00253
(0.02272) (0.01419) (0.01095) (0.008199) (0.005418) (0.00429)
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Table 7. Expected experiment time E(Xm) and δREET (in
the brackets) for (α, θ) = (2, 0.5) under PT-II CBR

(n, m) p=0.05 p=0.1 p=0.3 p=0.5 p=0.7 p=0.9

15 4.0340 4.0340 4.0340 4.0340 4.0340 4.0340
(15,14) 2.5476 2.8857 3.4785 3.6652 3.7676 3.9679

(0.6315) (0.7154) (0.8623) (0.9086) (0.9340) (0.9836)
(15,13) 1.6483 2.1813 3.2342 3.5110 3.6181 3.7663

(0.4086) (0.5407) (0.8017) (0.8704) (0.8969) (0.9336)
(15,12) 0.7518 1.1819 2.6107 3.3734 3.3846 3.7347

(0.1864) (0.2930) (0.6472) (0.8362) (0.8390) (0.9258)
(15,11) 0.5354 0.8059 2.4429 2.6319 2.8624 3.6419

(0.1327) (0.1998) (0.6056) (0.6524) (0.7096) (0.9028)
(15,10) 0.5104 0.7854 2.2901 2.7439 3.0896 3.6191

(0.1265) (0.1947) (0.5677) (0.6802) (0.7659) (0.8971)

12 3.4955 3.4955 3.4955 3.4955 3.4955 3.4955
(12,11) 1.9313 2.3490 3.1130 3.1289 3.4512 3.4808

(0.5525) (0.6720) (0.8906) (0.8951) (0.9873) (0.9958)
(12,10) 1.2064 1.6751 2.7961 2.8736 2.8852 2.9184

(0.3451) (0.4792) (0.7999) (0.8221) (0.8254) (0.8349)
(12,9) 0.7102 1.1478 2.2872 2.6235 2.7740 3.0725

(0.2032) (0.3284) (0.6543) (0.7505) (0.7936) (0.8790)
(12,8) 0.4466 0.6991 1.8043 2.2604 2.5090 2.5323

(0.1278) (0.2000) (0.5162) (0.6467) (0.7178) (0.7244)

9 2.8353 2.8353 2.8353 2.8353 2.8353 2.8353
(9,8) 1.3739 1.7627 2.4083 2.5943 2.6157 2.7586

(0.4845) (0.6217) (0.8494) (0.9150) (0.9225) (0.9729)
(9,7) 0.7664 1.0396 1.8727 2.2745 2.3097 2.4699

(0.2703) (0.3667) (0.6605) (0.8022) (0.8146) (0.8711)
(9,6) 0.4260 0.5567 1.2967 1.8170 2.0244 2.0305

(0.1503) (0.1964) (0.4573) (0.6408) (0.7140) (0.7161)
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Table 8. Goodness of fit for the remission times (months) of
bladder cancer data

Distribution AIC BIC K-S Statistics P-value Log-likelihood

EPD 856.6102 862.3142 0.1016 0.5239 -426.3051
Pareto 948.0433 953.7473 0.3125 7.45E-06 -472.0216

Table 9. Bayes and ML estimates, CI and HPD intervals for
α with fixed n = 128 and p = 0.3 under PT-II CBR for the
remission times (months) of bladder cancer data for different
censoring schemes (Sn:m).

Sn:m MLE Bayes Estimates(MCMC) Interval

SELF GELF 95% CI 95% HPD

δ = 1.5 δ = −1.5 αLc αUc αLh αUh

51 3.5109 2.9787 2.9787 2.9787 2.1359 4.8859 2.9635 2.9925
64 2.9321 2.9273 2.9273 2.9273 1.8982 3.9659 2.9141 2.9398
77 3.5733 3.5675 3.5674 3.5675 2.3763 4.7704 3.5528 3.5829
90 3.6080 3.6033 3.6033 3.6033 2.4537 4.7624 3.5882 3.6168
102 4.0606 4.0564 4.0563 4.0564 2.8117 5.3096 4.0416 4.0724
128 4.6574 4.6574 4.6573 4.6329 3.3135 6.0013 4.6409 4.6740
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Table 10. Bayes and ML estimates, CI and HPD intervals for
θ with fixed n = 128 and p = 0.3 under PT-II CBR for the
remission times (months) of bladder cancer data for different
censoring schemes (Sn:m).

Sn:m MLE Bayes Estimates(MCMC) Interval

SELF GELF 95% CI 95% HPD

δ = 1.5 δ = −1.5 θLc θUc θLh θUh

51 0.6885 0.6895 0.6895 0.6895 0.4883 0.8885 0.68512 0.6937
64 0.7123 0.7112 0.7112 0.7112 0.5195 0.9051 0.7076 0.7152
77 0.8203 0.8193 0.8193 0.8193 0.6373 1.0034 0.8157 0.8227
90 0.8824 0.8816 0.8816 0.8816 0.7023 1.0624 0.8779 0.8849
102 0.9559 0.9554 0.9554 0.9554 0.7823 1.1296 0.9519 0.9586
128 1.0877 1.0877 1.0877 1.0845 0.9194 1.2559 1.0845 1.0912
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THE POSITION OF THE WIG INDEX IN COMPARISON 
WITH SELECTED MARKET INDICES IN BOOM AND 

BUST PERIODS 

Anna Czapkiewicz1, Beata Basiura2 

ABSTRACT 

The main aim of this work is to discover the differences between the rank of 
Polish stock market in the boom and the bust cycles. The data of the daily stock 
market returns for the twenty three major international indices from Europe, 
America and Asia are used in the research. Two boom and two bust periods are 
considered. The correlation coefficient obtained from Copula-GARCH model is a 
similarity measure between the considered indices returns. The cluster analysis 
carried on for these series in the boom and bust the cycles allows us to find the 
differences in the market behaviour. 

Key words: clustering stock indices, dependence parameter, Copula-GARCH 
model. 

1. Introduction 

Finding similarities between world financial markets has been one of the 
primary intention amongst investigations. Practitioners are interested in 
identifying these similarities to assess investment risk. Knowledge about market 
relationships enables us to diversify this risk. To gain insight into the internal 
relationship between financial time series the cluster analysis has proved useful, 
producing a set of markets grouped according to a given measure of similarity in 
their behaviour. However, in the case of the clustering time series we encounter 
difficulties with the choice of an appropriate measure which could be used as a 
measure of similarity between the indices returns and takes into account the 
character of the considered series. It is known that the function of the Pearson 
correlation coefficient as a measure of similarity between pairs of stock returns 
(Mantegna, 1999; Bonanno et al., 2001) is not a satisfactory measure of 
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dependence. Without the multivariate normality assumption, two pairs of markets 
can have equal linear correlation coefficient while they can still differ in terms of 
dependence structure. 

A useful tool to describe dependence between time series is the application of 
copula function to model the multivariate distribution (Embrechts et al. 2001, 
2003). Copulas are useful to apply because they allow us to separate the 
dependence properties of the data from their marginal properties and to construct 
multivariate models with marginal distributions of an arbitrary form. Some of 
them are appropriate for financial markets. The most popular are t-Student and 
Joe-Clayton copulas. The first one is recommended, for example, by Mashal, Zevi 
(2002) and Breymann et al. (2003). The AR(1)-GARCH(1,1) model with skewed 
t-Student conditional distribution is quite satisfactory for describing the indices 
returns behaviour and may be applied as the marginal. The elements of the 
correlation matrix obtained from t-Student copula may be considered as the 
similarity measure between data. Having the matrix of distances based on these 
the similarity measure the Ward algorithm (Ward 1968) may be used to cluster 
the indices into the similar groups. The applicability of such a methodology for 
grouping global markets was presented in the work by Czapkiewicz, Basiura 
(Czapkiewicz, Basiura 2010). 

This study concerns the determination of the Poland’s position in comparison 
with the selected market indices. Empirical study covers two boom periods and 
two bust periods from June 2003 to March 2012. The possibility of difference in 
grouping of the markets in the boom and the bust periods is taken into 
consideration. It is anticipated that the negative moods in the stock markets 
strongly influence the other markets than the positive ones. The aim of this 
empirical work is to search for the differences in the relation strength of Polish 
market with other markets in the boom and bust periods. Furthermore, the 
clustering of the twenty three markets is carried on in these periods. These periods 
are defined according to WIG and WIG 20 indices behaviour. 

2. The model 

2.1. The distributions of returns 

The advantage of using copulas, as mentioned in the introduction, stems from 
the fact that marginal distributions can be separated from the underlying 
dependency structure. Many models have been proposed to describe the dynamics 
of return. In this paper we consider the univariate AR(1)-GARCH(1,1) model. It 
is defined as follows:  

𝑦𝑡 = 𝜇 + 𝛼𝑦𝑡−1 + 𝜀𝑡 ,     𝜀𝑡 = �ℎ𝑡𝜂𝑡 
ℎ𝑡 = 𝑎0 + 𝑎1𝜀𝑡−12 + 𝑎2ℎ𝑡−1,    𝜂𝑡~𝑖𝑖𝑑(0,1) 

In the above equation 𝑦𝑡 denotes the daily return of stock market index. 
Scrutiny of daily returns led to the introduction of fat-tailed distributions for this 
residuals. Fat-tails are not the only problem in the context of conditional 
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distribution, the skewness can also be noticed. That is why the skewed 
distribution was considered as the conditional distribution in the above process.  

2.2. The copula function 

The copula function is a multivariate distribution defined on the unit cube 
[0,1]𝑑, with uniformly distributed margins. The function 𝐶: [0,1]𝑑 → [0,1]  is a d-
dimensional copula if it satisfies the following properties: 

1. For all 𝑢𝑖 ∈ [0,1], 𝐶(1, … ,1,𝑢𝑖, 1, … ,1) = 𝑢𝑖 . 

2. For all 𝑢 ∈ [0,1]𝑑 ,𝐶(𝑢1, … ,𝑢𝑑) = 0, if at least one coordinate 𝑢𝑖 = 0.  

3. 𝐶 is d-increasing.  

The importance of the copula function stems from the fact that it captures the 
dependence structure of the multivariate distribution. According to Sklar’s 
theorem (Sklar, 1959) a given d-dimensional distribution function 𝐹 with margins 
𝐹1, … ,𝐹𝑑   can be presented as: 

𝐹(𝑥) = 𝐶�𝐹1(𝑥1), … ,𝐹𝑑(𝑥𝑑)�. 

When 𝐹(𝑥) is a multivariate continuous distribution function of a random 
vector 𝑋 ∈ 𝑅𝑑 and 𝐹𝑖(𝑥𝑖) are continuous margins the copula is uniquely 
determined.  

The copula used in the empirical part is the t-Student copula: 

𝐶(𝑢1, … ,𝑢𝑑) = 𝑡Σ,η �𝑡𝜂−1(𝑢1), … 𝑡𝜂−1(𝑢𝑑)� 

where 𝑡𝜂 is the t-Student’s cumulative distribution with 𝜂 degrees of freedom and 
𝑡Σ,η is the t-Student’s cumulative distribution with 𝜂 degrees of freedom and the 
correlation matrix Σ. The bivariate case of t-Student copula is given by: 

𝐶�𝑢𝑖,𝑢𝑗; 𝜌𝑖𝑗� = � �
1

2𝜋�1 − 𝜌2

𝑡𝜂−1�𝑢𝑗�

−∞

𝑡𝜂−1(𝑢𝑖)

−∞

�1 +
𝑠2 − 2𝜌𝑖𝑗𝑠𝑡 + 𝑡2

𝜂�1 − 𝜌𝑖𝑗2�
�
−𝜂+22

𝑑𝑠 𝑑𝑡 

where 𝜌𝑖𝑗 is the correlation ratio. 
The Copula-GARCH model may be estimated by maximum likelihood 

method. The IFM strategy (Shih, Louis, 1995; Joe, Xu, 1996) is used for this 
purpose in the empirical work. IFM proceeds in the two steps. Firstly, the 
parameter estimates of margins distribution are obtained, secondly, the estimate of 
copula dependence parameter1 is calculated. Under some regularity conditions, 
Patton (2006) shows that the IFM procedure yields consistent and asymptotically 
normal estimates.  
                                                           

1 It is the commonly used name of the parameter 𝜌𝑖𝑗, because it measures dependence between the 
marginals (cf. P. K. Trivedi and D. M. Zimmer (2005)). 
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3. Empirical study 

3.1. The data  

The study covers the period from June 2003 to March 2012. During this 
period four sub-periods are extracted. The choice of these sub-periods is related to 
WIG and WIG 20 trading. The first - from July 2003 to June 2007 is a boom sub-
period; the second - from August 2007 to February 2009 - the bust one; the third - 
a post crisis sub-period, where both indices WIG and WIG20 rise again (from 
February 2009 to July 2011). The last sub-period (from July 2011 t o January 
2012) is determined as the bust one. Figure 1 and Figure 2 pr esent the trading 
WIG index and the trading WIG20 index in the searching sub-periods. 

The relationships between some selected stock indices are investigated 
separately in each sub-period. We will compare the stock markets in the following 
countries on the basis of the indices given in brackets: 
Poland (WIG and WIG20), Austria (ATX), Euronext Brussels (BEL20), Bulgaria 
(SOFIX), Canada (TSX), China (HSI), Czech Republic (PX), Finland (HEX), 
France (CAC40), Germany (DAX), Hungary (BUX), Japan (NIKKEI), Norway 
(OSE), Romania (BET), Russia (RTS), Slovakia (SAX), South Korea (KOSPI), 
Spain (IBEX), Switzerland (SMI), the Netherlands (AEX), the UK (FTM), the 
USA (DJIA), Turkey (ISE). 

Figure 1. The trading WIG index from January 2002 to March 2012.  
 

 
 

Source: gpw.pl, April 2012. 
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Figure 2. The trading WIG20 index from January 2002 to March 2012.  

 
Source: gpw.pl, April 2012. 
 

The investigation covers returns of market indices from the world. It includes 
the markets deemed as em erging as w ell as t hose already developed of North 
America, Europe and Asia. In the case of the USA, the DJIA index is taken into 
consideration. In addition, the BEL20, the benchmark stock market index of 
Euronext Brussels, is included in the research.  

It should be noted that the indices selected for testing represent wide or 
narrow market. So, to meet these constrains two indices: WIG and WIG20 are 
chosen as representatives of Polish market. 

The daily frequency data are taken into study. Missing data are filled by linear 
interpolation from the preceding to the following missing quotations. The return 
of indices is defined as )(ln 1−= ttt PPr  where Pt is an adjusted index value at 
period t.  

Some tests for conditional heteroskedasticity and autocorrelation are 
performed. The results of Engle test led us to assume that the choice of the 
GARCH model is justified while the Ljung-Box test results indicate the 
possibility of the autocorrelation presence. For all considered cases GARCH 
effect and the autocorrelation exist. These results are the reason for the 
introduction of AR(1)-GARCH(1,1) model to describe the indices returns 
behaviour. 

3.2. Estimation of the multivariate model  

In a preliminary step of our empirical work, we investigate the structure of the 
univariate marginal returns. The AR(1)-GARCH(1,1) model with the skewed  
t-Student’s conditional distribution is considered to describe returns modelling. 
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Thus, the procedure of testing the goodness-of-fit is carried out. For the testing 
purposes, we follow the procedure described in Diebold et al. (1998). If 
a marginal distribution is correctly specified, the margins denoting the transformed 
standardized AR(1) - GARCH(1,1) residuals should be iid Uniform (0,1). For the 
most of the analyzed time series the test results confirm the correctness of the 
chosen model. 

Prior to the main study, a preliminary analysis of relationship between WIG 
and WIG20 is carried out. The study is conducted using data from the whole 
sample. The estimated parameter of t-Student copula (𝜌 = 0.98) indicates a very 
strong correlation between these two indexes.  

This strong relationship makes very small differences between the parameters 
defining the dependence between the Polish market and other markets if we 
consider the WIG20 index instead of the WIG index. So, taking pairs of the 
Polish index with an index representing the market of another country, the 
parameters of the bivariate t-Student copula are estimated. If an index represents a 
narrow market the WIG20 index is a representative of the Polish market.  

Table 1 presents the correlation coefficients obtained from t-Student copula 
for Polish index with other indices considered in the boom and bust sub-periods. 
According to intuition, one would expect the dependencies with other markets 
should be greater during the boom sub-periods than during the bust  sub-periods. 

Table 1. The correlation coefficients obtained from t-Student copula for Polish 
index with other indices considered in the boom and bust periods 

Country  1th boom 1th bust 2nd boom 2nd bust 

Austria 
Belgium 
Bulgaria 
Canada 
China 
Czech Republic 
Finland 
France 
Germany 
Hungary 
Japan 
Norway 
Romania 
Russia 
Slovakia 
South Korea 
Spain 
Switzerland 
the Netherlands 
the UK 
the USA 
Turkey 

 0.39 0.67 0.61 0.72 
 0.43 0.66 0.63 0.76 
 0.05 0.19 0.26 0.27 
 0.27 0.36 0.43 0.57 
 0.08 0.15 0.21 0.15 
 0.46 0.68 0.66 0.67 
 0.43 0.60 0.63 0.77 
 0.44 0.67 0.68 0.77 
 0.40 0.65 0.62 0.77 
 0.54 0.64 0.64 0.64 
 0.28 0.35 0.27 0.34 
 0.43 0.55 0.65 0.73 
 0.06 0.41 0.44 0.49 
 0.42 0.56 0.64 0.68 
 0.04 -0.05 -0.03 0.04 
 0.33 0.34 0.35 0.43 
 0.43 0.63 0.61 0.68 
 0.40 0.62 0.61 0.70 
 0.46 0.66 0.68 0.76 
 0.48 0.67 0.66 0.75 
 0.21 0.34 0.48 0.60 
 0.36 0.66 0.55 0.68 
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The results confirm our prediction. The analysis of the estimated correlation 
coefficients indicates that the relationship of Polish market with other markets is 
stronger during the bust sub-periods than during the boom ones. The beginning of 
the first considered sub-period (as a reminder it is from June 2003 to July 2007) 
precedes the date of Poland's entry into the European Union. Under this sub-
period study the strongest correlation is observed only in the case of the 
Hungarian index. The relations with markets of the Eurozone are relatively weak. 
The correlation between Polish and Russian indices is similar to the correlations 
between Polish index and indices of Western Europe. It is noted that no 
significant relations of the Polish market with markets of Slovakia, Romania, 
Bulgaria or China exist. 

The stronger dependence between Poland and other markets is observed in the 
first bust sub-period. The Polish index is strongly correlated with indices of Czech 
Republic, Austria, Belgium, France, Germany, the Netherlands, the UK and 
Turkey (coefficients are greater than 0.65).  

In the second boom sub-period, quite strong correlation is observed between 
the Polish index and the indices of the Netherlands, France, Czech Republic, the 
UK, Norway, Hungary, Russia, Belgium, Finland, Germany, Austria, Spain and 
Switzerland (correlation coefficients are greater than 0.60). 

In the second bust sub-period the strength of relationship of Poland with other 
markets increases. In this sub-period there are the strongest dependences between 
the Polish and other studied markets. At that time Romania and Bulgaria are in 
the European Union, so a stronger correlation with those markets indices is found 
than in the previous sub-periods. At the same time Poland consolidates its 
position in the European Union so  much stronger relationship of Poland with the 
Eurozone countries is observed. 

It is worth noting that in the second boom sub-period the correlations between 
Poland and other markets are not significantly lower than under the previous 
boom sub-period study. So, one might conclude that the strength of relationships 
between markets increases, regardless of the economic situation. 

For all studied periods the weakest correlation is noted between Polish and 
Slovakian indices. It seems that Slovakian market is not linked with Polish market 
at all. 

A more complete picture of links between the markets is obtained using the 
clustering method based on these determined parameters. Although the correlation 
coefficient might be relatively high, the index might belong to another cluster. In 
the following part of the empirical study the results of grouping of indices in the 
considered periods are presented. The Ward algorithm is adopted for this purpose 
with the dissimilarity measure 𝑑𝑖𝑗 = 1 − 𝜌𝑖𝑗. Figure 3 presents the dendrograms 
for two boom periods. Figure 3a shows the results of grouping of indices for the 
first boom period, while Figure 3b presents clustering results for the second boom 
one. A similar analysis is performed for data from the two bust periods. Figure 4a 
shows the clustering results for the period of global crisis, while Figure 4b 
presents the results for the data of the last bust period. 
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Figure 3. The dendrograms for market indices in the two periods of boom; 
a) from July 2003 to June 2007; b) from February 2009 to July 2011 

 
Figure 4. The dendrograms for market indices in the two periods of bust;  

a) from August 2007 to February 2009; b) from July 2011 to January 2012 

 
 

For this research it is very important that the group included data obtained 
with a strong dependence (𝜌𝑖𝑗 close to one). So, it is assumed that the tree should 
be cut for d = 0,75. It can be noticed that clusters are being varied during the 
considered periods. In the first boom period there are four groups. First group 
concentrate markets from the Eurozone: Switzerland, Belgium, Spain, Germany, 
the Netherlands and France. The markets of Finland and the UK stand out against 
the background of European markets. The USA and Canada markets belong to 
one group. The Japan market is grouped with South Korea one. A separate group 
consists of markets from North, Central and Eastern Europe. There are three 
abstracted subgroups: first - Turkey and Russia, second - Austria and Norway - 
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and last - Poland, Hungary and Czech Republic. The isolated markets are: 
Slovakia, Bulgaria, Romania and China. When the dendrogram from the second 
boom period is analyzed similar grouping can be noticed.  

In the first bust sub-period, the indices of Austria, Finland, the UK, 
Switzerland, Spain, Belgium, Germany, the Netherlands and France are in the one 
subgroup, whereas indices of the Norway, Russia, Hungary, Turkey, Poland and 
Czech Republic are in the other. The rest of the analyzed indices form separate 
clusters. Similar grouping is observed in the second bust period. 

The Polish index is in the same subset as Hungarian, Czech Republic, Turkish 
and Russian indices regardless of the studying sub-periods.  

4. Conclusions  

The purpose of this paper is to investigate the relationships of Polish market 
with some European markets and main markets of America and Asia. As a 
measure of the relationship between the markets the correlation coefficient 
obtained from the t-Student copula is used. Returns are modelled by AR(1)-
GARCH(1,1) process. The study is conducted for the four sub-periods: two boom 
periods and two bust periods. These sub-periods are defined on the basis the WIG 
and WIG20 indices trading.  

The empirical results indicate that the relationship of Polish index with other 
indices is stronger during the bust sub-periods than during the boom ones. 
Furthermore, it is noted that the strength of the relationship between Polish 
market and others increased, regardless of the situation on the stock markets. The 
relationships between the Polish market and other markets may be affected by 
many factors, of which by Poland's entry into the European Union.  

As the results show the clustering methods yield different groupings 
depending on the considered sub-periods. The groupings in the boom sub-periods 
seem to be similar to each other although in the case of the second boom period, 
the binding to other markets took place on the lower levels (as evidenced by 
stronger  correlation coefficients). In the bust period, relatively large number of 
markets seemed to be in one class. Polish index occurs in one subset with 
Hungarian, Czech Republic, Turkish and Russian indices, regardless of the 
studied sub-periods. 
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JOINT LONGITUDINAL AND SURVIVAL DATA 
MODELLING: AN APPLICATION IN ANTI-DIABETES 

DRUG THERAPEUTIC EFFECT 

Atanu Bhattacharjee1, Dilip C. Nath2 

ABSTRACT  

The longitudinal and survival analyses are useful tools in the exploration of drug 
trial data. In both cases the challenge is to deal with correlated repeated 
observations. Here, the joint modelling for longitudinal and survival data has 
been carried out via Markov chain Monte Carlo (MCMC) method in type 2 
diabetes clinical trials to compare different combinations of drugs, viz. Metformin 
plus Pioglitazone and Gliclazide plus Pioglitazone. Despite the complexity of the 
model it has been found relatively easier to implement with WinBugs software. 
The results have been computed and compared with software R. In both types of 
the analyses it has been found that no estimates of treatment appear to have 
significant effect on the evolution of the matter of HBA1c, neither on the 
longitudinal part nor on the survival one. The Bayesian approach has been 
considered as an extended tool with classical approach for estimation of clinical 
trial data analysis.  

Key words: random effects, semi-parametric survival model, Weibull 
distribution, linked sub-models.  

1. Introduction  

The longitudinal and survival analyses are useful tools in exploring the drug 
trial data. In type diabetes drug trials, the level of HBA1c is a widely used 
biomarker for diabetes while studying the efficacy of the drugs in patients. In drug 
effect comparison the level of HBA1c is used to measure over follow-up periods 
in clinical trials. The repeated measurements of HBA1c on the same patients give 
the scope to application of longitudinal and survival data analysis. The level of 
HBA1c is an important indicator for measuring the endogenous glucose over a 
period of 2-3 months by recommendation of The International Expert Committee 
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Report (2009). HBA1c is the important diagnostic parameter for type 2 diabetes 
by the report of American Diabetes (2010). The mean HBA1c is a powerful 
predictive tool to determine the diabetes complications are concluded by Lind et 
al. (2008) and Stratton et al. (2000). The HBA1c is positively associated with 
blood sugar level has been concluded by DCCT Study Group, 1995. The 
Bayesian approach in autoregressive longitudinal data analysis in type 2 diabetes 
patients of India has been explained by Nath  and Bhattacharjee (2011). The 
Bayesian approach has been found the best choice in model variable selection by 
Nath  and Bhattacharjee (2011). The joint model is associated with sub-models by 
the longitudinal and survival process measurement model concluded by 
Henderson et al. (2000). In the last two decades, the field of longitudinal and 
survival data analysis was enriched through adjusting statistical inferences on 
longitudinal measurements by Carlin et al. (2000), Celeux et al. (2006), Chen 
(2006),  Schluchter (1992), DeGruttola  and Tu (1994), Elashoff and Li (2008), 
Little (1995), Henderson et al. (2000), Hogan and Laird (1997), and many others. 

In this context, the linear or random effect model is found more effective by 
Tsiatis et al. (1995). Li et al. (2009) proposed the joint model for longitudinal and 
survival data in the correlated repeated observations. Deslandes et al. (2010) 
concluded that the proportional cause-specific hazard model is the standard 
regression model of choice to compare the competing risks. However, the Cox 
analysis is a widely used method for the cause-specific hazard model. In this 
work, the joint longitudinal and survival models are applied to compare the 
updated mean value of HBA1c as the effect of different drug treatment. 

2. Objective  

The aim of this work is to compare the drug treatment effect with the result of 
HBA1c value during different visits in type 2 diabetes patients. The longitudinal 
and survival analysis is applied with prior assumption. The performance of a 
combined drug therapy, i.e., “Metformin with Pioglitazone” and “Gliclazide with 
Pioglitazone” is compared in reducing the HBA1c level. The Bayesian approach 
in the separate and joint modelling procedure is applied and compared to drug 
treatment effect in type 2 diabetes patients. 

3. Methods 

The linear model presented by Tsitaes et al. (1995) is  
R1i(g)=Z1i+Z2i(g).              (1) 

The parameter R1i(g) can be obtained by U1i and U2i, where (U1i, U2i) are 
subject-specific bivariate normal distributions with σ1

2,σ2
2 standard deviation. The 

next term R2i can be segregated to  
R2i(g)=λ1Z1i+ λ 2Z2i+ λ 3(Z1i+Z2i)+Z3i, where Z3~ N(0,σ3

2) and     (2)  
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where λ 1 can be taken as a coefficient. 
The sequence of the response variables Yi1,Yi2,……..Yin at times g11,g21,….gn1 

can be obtained from 
 Yij=μi(gij)            (3) 

where μi  is the link function for gij~N(0,σ2
2) which is a sequence of mutually 

independent measurement errors. It has also been assumed that μi(g)=x1i(g)’β, in 
which the vectors x1i(g) and β give the time-varying explanatory variable and 
their corresponding regression coefficient.  

In the case of survival modelling for the time t, the semi-parametric 
multiplicative model is extended into  

τi(g)=τ0(g)α0(g)exp{x2i(g)’β+R2i(g)},         (4) 

where α0(g) is unspecified and X for the covariate information. The term R2i is 
useful as a latent process.  The parameter τ0(g) is the baseline hazard function. 

3.1. Longitudinal data models 

To deal with longitudinal data with continuous outcome the widely used 
method is the linear mixed effects model. The linear mixed effect longitudinal 
models have had a long history in biostatistical theory and practice since the first 
published paper of Laird and Ware (1982). If Yi1,Yi2,… Yini is ith subject 
observations for the gi1, gi2, . . . , gini times then the model can be formulated to   

Yij=μi(gij)+R1i(gij)+εij                                              (5) 

where μi(gij) = x T
1i(g)β1 is the mean response, R1i(gij)=dT

1i(gij)Zi is applied to 
explain the subject-specific random effects, and εij ∼ N(0, σ2

ε) is for random error. 
The terms R1i(g) is applied for subject specific HBA1c observations. The time-
varying covariates are explained by the vectors x1i(g) and β1. The term Ui is used 
to represent the random factor of the covariates d1i(s) (as compartment of x1i(g)) 
and assumed distributed as N(0,Σ).  

3.2. Survival data models 

The semi-parametric survival model is becoming an attractive tool for the 
survival analysis. However, the parametric model is more attractive due its 
simplicity in the survival analysis. The widely applied statistical methods for the 
survival analysis are Weibull and Cox proportional hazard models.   

In the case of the parametric model the ith subject is assumed to follow the 
Weibull distribution by gi∼Weibull (r, ri(g)).  

where                      log(ri(g)) = xT
2i(g)β2+R2i(g) and r > 0.  (6) 

The x2i(g) and β2 are the covariates of interest and corresponding regression 
coefficients. The object R2i(g) is applied for the subject specific covariate and 
intercepts.   
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However, the event history can be formulated for time g by  

τi(g)= τ0(g)tr−1ri(g) = τ0(g)tr−1exp(xT
2i(g)β2+R2i(g)),                       (7) 

Guo et al. (2004) applied the semi-parametric proportional hazard model in 
clinical trial by 

τi(g)= τ0(g)exp(xT
2i(g)β2+R2i(g)),                                   (8) 

where τ0(g) is used for the baseline hazard function. The fundamental properties 
of the model were discussed by Cox and Oakes (1984). 

3.3. Joint model 

The joint model has been linked to sub-models by the measurement model for 
the longitudinal process and the intensity model for the survival process. The 
connection between longitudinal and survival analysis can be established by 
stochastic dependence between R1i and R2i. Henderson et al. (2000) discussed the 
joint modelling via latent zero-mean bivariate. The joint model can be classified 
into two linked sub-models, (i) the measurement model for the longitudinal 
process and (ii) the intensity model for the survival process. The joint model 
becomes applicable to the sub-model.  

The joint model in equations (3) and (4) can be formed by  

R1i(g)=Z1i+Z2i(g),                                                       (9) 

and  

R2i(g)=λ1Z1i+λ2Z2i+λ3(Z1i+Z2ig)+Z3i                                        (10) 

Equation (3) used the random intercept model as a link function to the 
longitudinal data. 

In equation (9) (Z1i, Z2i)T  follows the bivariate normal distribution with 
N(0,Σ), Z3i is independent and assumed to follow N(0,σ2). The parameters λ1,λ2 and 
λ3 in the survival model (9) measure the association between the two sub-model 
indicated by the random intercept, slopes and fitted longitudinal value at the even 
time R1i(g). 

The dependence between R1i andR2i is useful to describe the relation between 
longitudinal and survival processes.   

The longitudinal model (3) is basically the random effect model introduced by 
Laird and Ware (1982). In equation (6), the parameters λ1, λ2, and λ3 are functional 
to describe the association between two sub-models through random intercepts, 
via event R1i(g)at time t. It is assumed that the latent variables (Z1i,Z2i)T have 
bivariate Normal distribution N(0,Σ). More specially, Z3i is assumed with 
N(0, σ2

ε). The term U3i is assumed to be not dependent on (Z1i, Z2i)T. 
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4. Analysis of Metformin with Pioglitazone or Gliclazide with 
Pioglitazone data 

4.1. Sources of data  

The data set obtained as a secondary source has been taken from the clinical 
trial conducted in 2008. The patients are taken from the randomized, double blind 
and a parallel group study conducted in Menakshi Mission Hospital, Tamil Nadu. 
A total of 65 patients has been selected to participate in the study, 32 in (1) A 
combination of Metformin with pioglitazone, and 33 in the group of (2) A 
combination of Pioglitazone with Gliclazide.  

4.2. Description of data set 

The drug effectiveness is compared through longitudinal and survival data.  

Table 1. Description of HBA1c according to different treatment groups and visits 

Treatment Visits Min Max Mean SD Missing  
observation 

Available 
number of 

observations 
Metformin 
with 
pioglitazone 

HBA1c1st 7.0 12.6 9.52 0.23 0 32 
HBA1c 2nd 6.8 11.7 8.31 0.35 4 28 
HBA1c 3rd 6.3 10.8 7.52 0.29 10 22 

Gliclazide 
with 
pioglitazone 

HBA1c 1st 6.8 12.9 9.51 0.28 0 33 
HBA1c 2nd 6.7 11.9 8.62 0.33 4 29 
HBA1c 3rd 6.3 11 8.03 0.30 13 20 

 
Figure1. Estimated sex wise posterior density of the patient from joint analysis 
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In this trial, n =65, type 2 d iabetes who met the entry conditions were 
included and randomly allocated to receive either Metformin with Pioglitazone or 
Gliclazide with Pioglitazone. 

The HBA1c levels have been recorded at the study entry, 3and 12 m onth 
visits. The death of the subject has also been recorded. However, it is to be noted 
that the reason of death cannot be specify due to the drug effect. The recorded 
sample sizes for the drug group (Metformin plus Pioglitazone) in three visits are 
(32, 28 and 22) and (33, 29 and 20) for the (Pioglitazone plus Gliclazide) group. 
The estimated posterior density observed adjusted through male and females are 
given in Figure1. The data is highly affected by drop-out and missing data over 
time due to the occurrence of death. The Kaplan-Meier curve has been used to 
show the comparative figure of death between the two drug groups over the 
follow-up visits. It shows that the survival rate among both groups were same up 
to the initial 100 d ays after the randomization. Afterwards, survival in the 
Pioglitazone with Gliclazide group has been found to be better than Metformin 
with Pioglitazone group. The level of HBA1c is represented through Yij for ith 
observations of the jth individual. The considered dichotomous covariates are Sex 
(female=0, male=1), value of ECO and ECG (Normal level=0, otherwise 1), and 
Drug (Pioglitazone with Gliclazide=0 and Metformin with Pioglitazone = 1). The 
covariates value levelled with “0” is considered as reference value in the analysis. 

The objective of the study is to observe the effect of the drug on HBA1c and 
survival time in type 2 diabetes individuals.  

5. Analysis  

The analyses for the longitudinal and survival data in type 2 diabetes trial are 
compared with the Bayesian approach. The linear random effects model for 
HBA1c is specified as  

Yij=β11+β12*Drugi+β14
*Sexi+β15 *ECOi +β16

*ECGi+R1i(gij)+εij              (11) 

where R1i(gij)=Z1i+Z2igij. The term R1i(gij) is induced as a random factor for the 
intercept and slopes over the duration of study, where the Zi=(Z1i,Z2i)T∼ N (0,Σ). It 
gives the scope to assume that different individuals have different observations 
before as well during the study of HBA1c.  

The estimated regression coefficients have been obtained by R programming. 
In the case of longitudinal analysis, the rlm (http://cran.r-project.org/web/packages/) 
function has been applied in R, whereas in the case of survival analysis 
surv(http://cran.r-project.org/web/packages/) function has been used in survival 
library. The summarized results are given in the Table 2. As a results the 
estimated average mean for the Metformin with Pioglitazone is obtained with -
0.42 with 95% confidence interval of (-0.67, 0.17), proposing significant 
increment of HBA1c in the Metformin with Pioglitazone group as compared to 
Pioglitazone with Gliclazide group. 

http://cran.r-project.org/web/packages/
http://cran.r-project.org/web/packages/
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The comparative changes of HBA1c level are provided in the Figure 3. The 
estimated regression coefficient value for ECO with 95% confidence interval is 
observed with 0.23 (-0.01, 0.47). Hence, a patient who has randomized with Drug 
1 is found to be more effective to reduce the level of HBA1c in comparison with 
Drug 0. Other variables ECG and sex are observed with insignificant contribution. 
Similarly, ECG and ECO are found statistically not significant in survival 
analysis.  

Table 2. Classical analysis for type 2 diabetes drug treatment effect data 

Parameters Point estimate 95% Confidence 
Interval 

Longitudinal Data Analysis 
(Linear Mixed Effect Model) 
Intercept 
SEX(reference=female) 
ECO(reference=Normal) 
ECG(reference= Normal) 
DRUG(reference=Pioglitazone with Gliclazide) 
DRUGXTIME 
Survival Analysis  
Intercept 
SEX 
ECO 
ECG 
DRUG 
DRUGXTIME 

 
 

 9.58  
-0.29     
 0.23     
 0.12     
-0.42     
-0.18 

 
 9.55 
-0.12    
 0.14      
-0.18     
-0.33 
-0.11  

 
 
(9.32, 9.06)    
(-0.39, -0.19) 
(-0.01,0.47) 
(-0.13,0.37) 
(-0.67,0.17)   
(-0.42,0.06)   
 
 
(9.12,9.98) 
(-0.22,-0.03) 
 (-0.04,0.33) 
(-0.45,0.09) 
(-0.74,-0.08) 
(-0.24,-0.02) 

 
Figure 2. Kaplan-Meier Curve for the drug effect comparison in the type 

2 diabetes patients.  
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Figure 3. The comparative changes of HBA1c level throughout the study period 

in drug treatment group. 
 

Henderson et al. (2000) proposed to use the Bayesian approach to fit the joint 
longitudinal model. The Bayesian approach with the vague prior (Uniform (-1,1)) 
has been applied and compared with the classical approach. The vague prior has 
been used to make the possible comparison between the classical approach and 
the Bayesian approach in WINBUGS. The hyperparameter has been chosen for 
the minimum impact on t he relative data. In the longitudinal sub-model, the 
multivariate normal and inverse gamma priors have been assumed for the main 
effect β1 and the error variance σ2

ε, respectively.  In the same way the multivariate 
normal and inverse gamma priors have been assumed for the effects β2 and σ2

ε in 
the survival sub-model. The vectors β1 and β2 have been expressed by β1= (β11, β12, 
β13, β14, β15, β16) T and β2=(β21, β22, β23, β24, β25) T. The parameters γ1 and γ2 have 
been assumed to follow the normal distribution. Priors are selected to reflect the 
appearance of likelihood.  

6. Model selection 

The models under consideration are: 

Model 1:- Yij=μi(gij)+R1i(gij)+εij                           

Model 2- τi(g)=rtr−1μi(g) = rtr−1exp(xT
2i(g)β2+R2i(g)), 

Model 3:- Yij=μi(gij)+( Z1i+Z2i(g))(gij)+εij                       
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Model 4:- τi(g)=rtr−1μi(g) = rtr−1exp(xT
2i(g)β2+ (λ1U1i+λ2Z2i+λ3(Z1i+Z2ig)+ Z3i)      

The comparison between different models is an important issue in the 
statistical inference. In the case of the Bayesian approach, the widely applied tools 
are AIC, DIC, BIC and Bayes factor for model comparison. In this work, we have 
used the DIC.  Our priors are selected to make less influence on the likelihood. 
The model selection can be performed through AIC, BIC, Bayes factor and DIC. 
Like other selection methods, DIC also gives the model summary to single 
parameters, through a specific Bayesian inference. Let θ and y be the parameters 
of interest and the response variable is defined as  

𝑝𝐷 = 𝐸𝜃/𝑦[𝐷(𝜃)] −𝐷�𝐸𝜃/𝑦[𝜃]� = 𝐷� − 𝐷(𝜃̅)      (12) 

 The notation 𝐷(𝜃) is the deviance function and 𝐷(𝜃) = −2 log 𝑓(𝑦/𝜃) +
2 log𝑔(𝑦), where 𝑓(𝑦/𝜃) is the likelihood function is and 𝑔(𝑦) is the standard 
function of the data. Further, 𝐷(𝜃) can be formed through 𝐷(𝜃) ≈ 𝐷(𝜃̅) + 𝜒𝑝2. It 
is formulated through Bayesian Central limit Theorem and details are available in 
Carlin and Louis (2000). The model selection is obtained through  

𝐷𝐼𝐶 = 𝐷� + 𝑝𝐷           (13) 

Here, 𝑝𝐷 is the number of parameters. The posterior expectation of equation 
(12) is 𝐷� = 𝐸𝜃/𝑦[𝐷(𝜃)], small value of 𝑝𝐷 and corresponding minimum value of 
the DIC gives maximum effective model. The details about the DIC can be seen 
in the highly cited papers of Spiegelhalter et al. (2002). In WINBUG the 
parameters are obtained through MCMC technique. There are several versions of 
DIC available for model selection in recent articles, namely Celeux et al. (2006) 
and Chen (2006). 

 
The Table 3 gives the DIC values for different models of drug trial 

comparison data in type 2 diabetes patients. The results are obtained by the two 
parallel chains of MCMC sampling through 10,000 iterations. We st art with 
simple model of equation (1). As an extension, the term R1i has been added in the 
equation (1) and in both cases the DIC values have been obtained. The DIC value 
for the Model (1) is 2345 and for the Model (2) is 2356. In the case of survival 
analysis, the DIC values for the Model (3) and the Model (4) are found to be 2424 
and 2452, respectively. The minimum DIC value of the specific model can be 
considered as the best fitted model. The details about DIC can be cited with 
Spiegelhalter et al. (2002). Here, the minimum DIC value for the Model 1 has 
been found. So, it can be concluded that the Model 1 is the best.  

7. Comparison of separate and joint models 

The Table 2 gives the point estimates of regression coefficients for covariate 
of interest by the linear mixed effect model. The linear mixed effect model has 
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been computed with respect to sex (female=0), Drug (Metformin with 
Pioglitazone=1). The regression coefficient -0.29 in the case of sex showed that 
the male type 2 diabetes patients are reduced to lower amount of HBA1c in 
comparison to the female ones. The Table 3 gives the Highest Posterior Density 
(HPD) interval for the covariates in different models. The results for the 
longitudinal model have been obtained from the model in equation (5). The term 
R1i(gij) is applied as an extension of the joint model to the separate longitudinal 
model. The term R1i(gij) has also been separated to Z1i, Z2i by equation (9). The 
95% credible intervals for the survival model have been obtained from the 
equation (3) and equation (5) for the survival model, where R2i(g) is used as an 
extension over the separate model. The performances of both models are found 
similar. The regression coefficient 0.01 obtained through longitudinal sub-model 
with separate analysis confirmed that the male type 2 diabetes patients are 
reduced to higher amount of HBA1c in comparison to the female ones. On the 
other hand, in the case of sex regression coefficients, the longitudinal sub-model 
in joint analysis, survival sub-model with separate analysis and joint analysis 
follow the same pattern as observed in separate analysis in the longitudinal sub-
model. The covariates of interest, ECG and time, are observed with considerable 
extension, while only ECG is found significant in the case of the survival sub-
model. The regression coefficients from the classical approach are observed with 
0.12(-0.13, 0.37) and 0.23(-0.01,0.47) for ECG and ECO, respectively. In the case 
of joint modelling applied through the Bayesian approach the posterior means of 
the regression coefficients are obtained with 0.03(-0.39, 0.42) and -0.02(-0.45, 
0.42) for ECG and ECO, respectively.  

Table 3. Posterior estimates of the parameters observed through different models  

Parameter 
Separate analysis Joint analysis 

Posterior 
mean DIC 95% Credible 

interval 
Posterior 

mean DIC 95% Credible 
interval 

Longitudinal Sub-model 

Intercept(β11) 8.70 2345 (8.23,9.15) 8.72 2356 (8.21,9.17) 
Time(β11) -0.17 (-0.97,0.09) -0.19 (-0.93,0.07) 
Time*Drug(β12) 0.19  (-0.14, 0.53) 0.15 (-0.12,0.49) 
Sex(β13) 0.01  (-0.33,0.37) 0.03 (-0.35,0.39) 
ECG (β14) -.02  (-0.41,0.46) -.03  (-0.39,0.42) 
ECO (β15) -0.01 (-0.48,0.45) -0.02 (-0.45,0.42) 
Σ11 1.97  (1.41,2.67) 1.95  (1.38,2.63) 
Σ22 0.98  (0.73,1.5) 0.95  (0.70,1.2) 
Ρ -0.12 (-0.30,0.07) -0.10 (-0.27,0.05) 
σ2 0.95  (0.73,1.21) 0.93  (0.71,1.18 ) 

Survival Sub-model  

Intercept(β21) -15.31 2424 (-19.31,-8.75) -15.31 2452 (-19.36, -8.76) 
Drug(β22) -0.47  (-4.94,4.24 ) -0.49  (-4.99,4.28 ) 
Sex(β23)  2.81  (-0.75,5.85) 2.80  (-0.79,5.83) 
ECG (β24)  0.00  (-2.49,2.99) 0.01  (-2.53,3.01) 
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The separate analysis in longitudinal setup reveals the regression coefficients 
with -0.02(-0.41, 0.46) and -0.01(-0.48, 0.45) for ECG and ECO. The separated 
and joint survival analysis is computed with regression coefficients by 0.00(-2.49, 
2.99), 0.01(-2.53, 3.01) for ECG and 0.19(-2.72, 2.51), -0.17 (-2.12, 2.15) for 
ECO, respectively. It is concluded that the regression coefficients obtained 
through classical approach for ECG are higher in joint and separate approach in 
longitudinal setup and further followed by survival setup through prior 
assumption. The same pattern is obtained in the case of ECO. The highest value 
of the regression coefficient is found with frequency approach. In both types of 
analysis it is found that no estimates of the treatment appear to have significant 
effect on the evolution of the matter HBA1c either on the longitudinal part or on 
the survival. The rate reduction of HBA1c over the follow-up period is found 
higher in the Metformin with Pioglitazone group.  

8. Discussion 

In this paper, the Bayesian approach with the longitudinal and survival 
analysis is applied in the type 2 diabetes drug comparison. This type of the model 
is important in clinical trial. The models are also useful with other biochemical 
parameters. It is important to investigate how the biomarker of interest changes 
over time and its correlation with the treatment under study to better explore the 
therapeutic effect as pointed by Deslandes and Chevret (2010). The results are 
obtained through the freely available software and compared with R and 
WINBUGS. Due to intention-to-treat and other logistical reasons, the whole data 
set has not been provided to the authors for analysis. The work is carried out only 
on fully observed but partially data set. Therefore, the whole information about 
mortality of the patients could not be provided.  The aim of this paper is to 
compare two effects of drug treatment through HBA1c level among type 2 
diabetes. Nathan et al. (2009), Holman et al. (2007), Holman et al. (2009) and 
Meneghini et al. (2007) recommended the level of HBA1c as thresholds for 
starting insulin. Kilpatrick et al. (2008) discussed broadly the limitation of 
HBA1c for the screening test. Ginde el al. (2008) and Anand et al. (2003) 
examined the variation of HBA1c with different demographic characters in the 
US population. Mirzazadeh et al. (2009) found that the HBA1c can be affected by 
age distribution. Zahra et al. (2010) concluded that the low HBA1c is a strong 
evidence to rule out diabetes. However, we acknowledge the deficiency in not 
including the glucose tolerance test in this work. In addition, as another limitation 
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in this study, we have not used the life style parameters of the type 2 diabetes 
patients since some patients cannot be followed or died due to other reason. The 
analysis becomes complicated due to the presence of dropouts in the data. Thus, 
the analysis of  such type of data by separate analysis may generate biased and 
inappropriate results whereas the application of joint analysis is useful to deal 
with dropout observations. Recently, Chi (2006), Williamson  et al. (2008) and Li 
et al. (2009) discussed joint modelling in the longitudinal and survival data 
analysis. Actually, Guo (2004) has motivated our work to apply the Bayesian 
approach in longitudinal data analysis to obtain the posterior inference for any 
parameter. Thus, we have developed a fully Bayesian approach, implemented via 
MCMC in WINBUGS software. Recently, such a B ayesian approach for joint 
longitudinal and survival analysis has also been implemented by Li et al. (2009). 
This work illustrates how the joint model strategy may affect the results. Here, the 
joint analysis is found inferior in comparison with the separate analysis. It may be 
due to the presence of other complicated issues in the data set. Lind et al. (2008) 
concluded that the latent mixed effect is appropriate in the hazard model. In this 
work, it is found by joint longitudinal and separate analysis that Metformin plus 
Pioglitazone is equally effective to reduce the HBA1c level as co mpared to 
Gliclazide plus Pioglitazone.  

9. Conclusions 

Here, the HBA1c observations by longitudinal and survival analysis tools are 
compared with type 2 diabetes patients. The results confirm that the joint 
modelling approach is a useful tool for longitudinal data analysis, survival 
analysis and, consequently, for the actual application to the drug effect 
comparison in clinical trials. The Markov Chain Monte Carlo method is employed 
to effectively estimate HBA1c values for different visits in type 2 diabetes 
patients. The applied models can be useful in different fields like oncology, 
endocrinology and other specific drug research. It is confirmed that the 
combination of Metformin plus Pioglitazone is equally beneficial to reduce 
HBA1c level, hence the risk of type 2 diabetes. The Bayesian approach is 
considered as extending over the Frequency approach on longitudinal and survival 
data analysis.  
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BANKRUPTCY RATES IN POLAND 
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ABSTRACT 

The purpose of this paper is to analyze the number of insolvencies in Poland 
before and after the major bankruptcy code novelization in the second quarter of 
2009. Authors check whether the novelization had its intended effect of reducing 
bankruptcy rates. Therefore, econometric models have been implemented to 
investigate changes in bankruptcy rates using quarterly data from the period 
2003-2013. While controlling the variety of macroeconomic factors that have 
influenced insolvency rates, we found that after implementation of the 
novelization the aggregate bankruptcy rates significantly increased. 

Key words: small and medium firms, aggregate bankruptcy rates, amendments to 
the law. 

1. Introduction 

Insolvency, which is the result of either law regulations or the court 
judgement (i.e. bankruptcy), can happen despite the economic reasons, leading to 
the cessation of the company. Company’s liquidation regardless of its size, sphere 
of interest, territory or trade partners is the source of confusion and, more 
importantly, distress on the market (Zdyb, 2009). Economists agree that in a short 
period of time bankruptcy is harmful to the business market. However, in the long 
run the positive results of closing an ineffective company can be visible 
(Schumpeter, 1934). 

The market itself is often unable to eliminate the unsuccessful entrepreneurs, 
e.g. it cannot eliminate from the market the companies functioning on the verge of 
cost-effectiveness. The protection procedures against disastrous outcomes of their 
activity are regulated by the bankruptcy law. It helps to avoid or minimize the 
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negative consequences for the surrounding as a result of insolvency of the debtor. 
The regulations are necessary because no restrictions describe the conditions of 
setting up any business activity. The candidates to become entrepreneurs are not 
always suitable as well. Therefore, some of them fail due to the lack of 
competence, management errors and changes in the surrounding of a company.  

In order to protect firms and investors from some consequences of 
bankruptcy in recent years, the number of countries in the European Union 
reformed their bankruptcy legislations (e.g. France, Germany, the UK, 
Spain, Finland, Italy, Belgium), while several other EU members are going 
to introduce similar regulations in the future. The main aim of these 
reforms was changing traditional, old framework, which was solely 
focused on liquidation, into a modern framework which should combine 
reorganization and liquidation. The effort is concentrated on creating more 
transparent and efficient system. The legal regulation in the new system 
should encourage more reorganization instead of liquidation only. The 
respective guidelines were outlined by the European Commission and the 
World Bank in order to suggest the best practice bankruptcy procedures 
(EC 2003; World Bank 2001). Economists assume that applied reforms in 
the bankruptcy system could lower aggregate bankruptcy rates3. In the EU the 
majority of failure cases concerns SMEs which essentially contributes to GDP in 
EU countries (cf. Hudson, 1986). Therefore, the reduction of the bankruptcy rates 
of small businesses should be an important topic in a bankruptcy reform. In 
addition, not all suggested legal regulations in the EU seem to be beneficial or 
useful for smaller firms. This problem occurs across different business sectors. 
Some industries are more represented in a country’s economy than others and this 
fact can have significant implications. However, the mentioned problems have 
received not much attention in the economic literature. There is only little 
empirical evidence on the impact of bankruptcy legislation reform on aggregate 
bankruptcy rates in the EU besides UK. In the EU the financial system is based on 
banks. In Anglo-Saxon countries it is based on the market. Therefore, the impact 
of reforms in the Continental Europe is not always similar to the one in the 
Anglo-Saxon countries. In this context the question arises how the 
bankruptcy rates can be influenced by the implementation of 
recommendations of international best practices in the Continental Europe. 

At the turn of the century there still existed antiquated bankruptcy law from 
1934 in Poland. Therefore, in the nineties of the twentieth century Poland 
underwent long-anticipated, immense economical change. In the year 1990 there 
were about 1.2 million registered enterprises in Poland, whereas in the year 2000 
the number increased up to 3 m illion. The growing number of companies 

                                                           
3 The aggregate bankruptcy rates are measured as the percentage of liquidation type bankruptcies to 

the total company population. 
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influenced the bankruptcy issue which applied to a wider group of entrepreneurs 
and, due to the new market situation, the law had to be readjusted. The new 
Bankruptcy and Remedial Act came into force in February 2003. The Act had 
been worked out according to the guidance of the European Commission and the 
World Bank (Zedler, 2003). The aim of remedial proceedings was to repay 
creditors with simultaneous attempt to preserve the existence of a company. In the 
following years the application of this new act was analyzed and the necessity of 
further changes was alleged. As a result, the Act of 6 March 2009 amending 
Bankruptcy and Remedial Act, Bank Guarantee Fund Act and National Court 
Register Act was signed on 12 March 2009 (the Amendment). The Amendment 
introduced more than 150 changes in Act of February 2003. T he new solutions 
aimed at accelerating bankruptcy procedures and satisfying the creditor’s claims 
to the debtor. The Amendment significantly reformed the remedial proceeding, 
which previously was rarely instigated. Under the Amendment the entrepreneur is 
allowed to fill the declaration of bankruptcy along with a demand of permission to 
initiate a remedial proceeding. Additionally, present recovery proceedings may 
concern the restructuring of not only monetary liabilities, but all liabilities which 
can be subject to an arrangement (Kallaur, 2009).4  

Authors of this paper will examine if the introduced changes in the Polish 
legal system had significant statistical influence on aggregate bankruptcy rates in 
Poland. In particular, it will be tested if the aggregate bankruptcy rates after the 
novelization of 2009 were lower or higher than expected due to the existing 
macroeconomic conditions5. Visual inspection of the data suggests that the 
novelization in bankruptcy law in the second quarter of 2009 had positive effects 
on aggregate business bankruptcy rates in Poland. However, this first impression 
will be checked by means of quantitative tools. 

The remainder of the paper is organized as follows: Section 2 overviews the 
existing literature. Data and methodology are presented in Section 3. In Section 4 
the empirical results are discussed and Section 5 concludes. 

2. Literature overview 

Researchers of the insolvency are concentrated either on the risk of 
bankruptcy for specific firms or on modelling aggregate bankruptcy rates. The 
research stream concerning the bankruptcy of individual firms is reflected in the 
contribution by Greiner and Schein (1988). They argued that flexibility of the 
company depends mostly on t he abilities and creativity of the owner. The 
                                                           
4 In the second quarter of 2009 the Act of 5 December 2008 was also adopted. Since then natural 

person not engaged in economic activity earned the possibility to declare the so-called consumer 
bankruptcy. The consumer bankruptcy statistics are not included in our calculations. 

5 One may assume that the aggregate bankruptcy rates should have increased during the Global 
Financial Crisis.  
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companies adherent to old, uncompetitive solutions are swiftly eliminated from 
the market. In times of uncertainty and rapidly changing environment the lack of 
alterations inside the company often leads to its closure.  

In the late sixties of the twentieth century quantitative methods (e.g. 
discrimination methods) became commonly used to predict the risk of 
bankruptcy. Altman (1968) was a pioneer in this type of research. The grouping 
into firms vulnerable to bankruptcy and those not was done on t he basis of 
individual financial indicators of companies. Those ratios included: working 
capital to total assets ratio, retained earnings to total assets ratio (retained earnings 
- profits which were not paid out in dividends and which can be re-invested in the 
business), EBIT (Earnings Before Interest and Taxes) to the total assets ratio, the 
market value of equity to the book value of total liabilities and sales to total 
assets. Altman correctly classified up to 95 percent of companies the year before 
their bankruptcy and 83 percent two years before. The results of that research on 
the insolvency which uses discrimination methods can significantly differ from 
one another according to the country and time period. The reason is different 
propensity to bankruptcy in various periods. In addition, diverse indicators 
concerning situation of the company are applied. There is widely accepted point 
of view that researchers using the same set of variables but for companies from 
different countries or different time periods may obtain quite different results. 
Hence, some new attempts to form models are applied in order to allow to predict 
the bankruptcy.  

The second stream of research aims at modelling of aggregate bankruptcy 
rates. It refers to macroeconomic factors. In the literature there is no doubt that 
macroeconomic factors play an important role in respect of bankruptcy. In 
particular, Hudson (1986), Ilmakunnas and Topi (1999) and Liu (2004) found that 
GDP growth or business cycle indicators are negatively correlated with aggregate 
failure rates.  

Various authors argued that aggregate corporate birth rates (Hudson 1986, 
1997; Johnson and Parker, 1994) and inflation rate (Altman, 1983; Wadhwani, 
1986) are likely to have an impact on bankruptcy rates. However, the direction of 
the relationship is not clear as it may be either positive or negative. In the 
literature there is little evidence concerning the effect of macroeconomic 
environment on the bankruptcy of small enterprises.  

The competitiveness of the market has a significant impact on the number of 
bankruptcies. According to Foster and Kaplan (2001) the failure of the company 
is a consequence of two parallel processes, namely destruction and creation. The 
researchers claim that initiation, directing and controlling of the creative 
destruction is conducted by the financial markets. The bankruptcy is mainly a tool 
of control and protection of the market. 

Chen and Williams (1999) found that the US government assistance 
programmes lowered bankruptcy rates in high-technology industries. Australian 
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economists Everett and Watson (1998) established that in the case of small 
Australian retail enterprises between 30% and 50% of failures were caused by 
macroeconomic factors. The similar results with respect to small business failure 
in case of the US were derived by Peterson et al. (1983). On the basis on survey 
data they documented that economy wide factors are the reasons number two and 
three for small enterprises failure in the US (number one is a lack of management 
expertise). In line with these results Sullivan et al. (1999) proved that conditions 
in business surrounding are the most important reasons for bankruptcy.  

Besides the macroeconomic environment, the effects of institutional factors 
on the  aggregate bankruptcy rate attracted attention of economists. Claessens and 
Klapper (2005) demonstrated that formal bankruptcy in the economy depends on 
the  bankruptcy legislation. In addition, the research on the effects of institutional 
change supported the important impact of legal reform on aggregate failure rates.  

Fisher and Martel (2003) demonstrated that the 1992 Canadian bankruptcy 
reform had an influence on the number of filled corporate reorganization propos-
als. Cuthbertson and Hudson (1996) and Vlieghe (2001) based on the UK’s 1986 
Insolvency Act established a significant decrease in the corporate liquidation rate 
after the implementation of this reform. Liu and Wilson (2002) and Liu (2004) 
suggested that the beneficial effect became lower after about 4 years. 

Dewaelheyns and van Hulle (2008) pointed that continental European 
countries recently reformed their bankruptcy legislations to stimulate 
reorganization and firm survival. They argued that the Belgian 1997 bankruptcy 
code reform, which implemented several international best practice rec-
ommendations, significantly reduced aggregate small and micro business 
bankruptcy rates. The contributors supplied evidence that the beneficial effect of 
the reform is similar among small firms (i.e. stock corporations) and micro firms 
(i.e. partnerships). Therefore, it was only significant in some industries 
(manufacturing and trade). Their results showed that especially the measures 
taken to limit domino bankruptcy effects were likely to have a substantial impact. 

To summarize, from the literature discussed above we can learn that the 
corporate bankruptcy rates are related to numerous macroeconomic variables. The 
main goal of this paper is to examine if the legal reform also impacts aggregate 
bankruptcy rates in Poland. To fulfil this task the macroeconomic determinants of 
aggregate bankruptcy rates discussed in the literature above will be used in further 
calculations. These variables should be as complete and accurate as possible to 
describe the state of Polish economy before and after the legal reform. In 
particular, it should be remembered how difficult those years for the global 
economy were. There are strong links between the economic situation in Poland 
and other European countries, and because of that additional variables describing 
the relationship between the Polish and the EU economy will also be included in 
the further study.  
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3. Data and methodology 

3.1. Presentation of dataset 

The Polish law imposes on the Ministry of Justice a duty to report to public 
opinion information about bankruptcies pronounced in Polish courts. Acting on 
those reports authors calculated the aggregate bankruptcy rates from the period of 
2003-2013. The data released by the Central Statistical Office of Poland (GUS) is 
used to estimate the percentage of bankruptcies out of the total number of 
enterprises6. With the use of previously mentioned literature we have 
distinguished a group of macro variables which, according to the theory, have 
influenced failures. Among those variables we may find aggregated number of 
start-ups, real GDP growth, the OECD composite leading indicator (CLI) for the 
euro zone countries and for Poland, return on the Warsaw Stock Exchange Index 
(WIG), current economic condition indicator (BOSE), inflation and average 
exchange rates EURO/PLN. All of the collected data come from various sources 
such as Polish Ministry of Justice, the Central Statistical Office of Poland, the 
National Bank of Poland and the OECD. 

Table 1. Description of variables 

Variable Description (Δ stands for 1-Year change in) 

ΔBR quarterly business bankruptcy rate7 (%) 

ΔNEW quarterly corporate birth rate8 (%) 

ΔGDP growth in real GDP (%) 

ΔCLIeu OECD euro zone composite leading indicator (%) 

ΔCLIpl OECD Polish composite leading indicator (%) 

ΔBOSE current economic condition indicator (%) 

ΔWIG return on the Warsaw Stock Exchange Index (%) 

ΔINFL inflation (%, based on consumer price index) 

ΔEUR/PLN average exchange rates (%) 

 
All available statistical data apply to the period between the introduction of 

the act and the third quarter of 2013. They were divided in to pre- and post-
novelization periods (2003Q2-2009Q1; 2009Q2-2013Q3). Figure 1 shows 
quarterly bankruptcy rates in the concerned period. 

 
                                                           
6 It is important to realize that companies which managed to survive the bankruptcy procedure are 

not included in those statistics. 
7 Quarterly business bankruptcy rate was calculated as the number of bankruptcies divided by the 

number of companies in existence at end of previous quarter.  
8 Quarterly corporate birth rate was calculated as the number of new companies divided by the 

number of companies in existence at end of previous quarter. 
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Figure 1. Quarterly bankruptcy rates in Poland  

 
Source: Polish Ministry of Justice (iMSiG.pl) 

The first  conclusion derived from the visual examination of the picture is that 
overall bankruptcy rates significantly increased after the novelization. Previously, 
after the introduction of a new law in 2003, the indicator had been on a really high 
level, whereas later it started to decrease until reaching the lowest point in 2008. 
Immediately after the novelization in 2009 the number of failures considerably 
rose. In subsequent years quarterly bankruptcy rates were on the similar level 
reaching the values approximately twice higher than the ones in 2008. During the 
examined period 8134 companies bankrupted – before the novelization the mean 
was 190 bankruptcies per quarter, whereas after the novelization it increased to 
the level of 202. Of course, the rise of bankruptcy rates in Poland  s ince 2009 
reform may be, to some extent, not only the effect of novelization of 2009, but 
also of the essential slowdown of Polish economy as result of the world financial 
crisis in subsequent years. Table 2 shows the summary statistics and basic 
equality tests for selected variables in each selected period. It presents mean, 
median as well as the Kruskal-Wallis test for median (χ2 distributed) and t-test for 
equality of means. 

Table 2. Summary statistics and p-value for equality tests 

Variable 
Full period Period I Period II 

p-value for equality 
tests 

Kruskal-
Wallis test t-test 

median mean median mean median mean 
ΔBR 0.000 0.004 -0.001 -0.001 0.000 0.009 0.000*** 0.000 *** 
ΔNEW 0.121 0.067 0.118 0.086 0.148 0.044 0.977 0.622 
ΔGDP 4.275 4.082 5.443 5.125 3.097 2.854 0.001 *** 0.000 *** 
ΔCLIeu 0.302 0.101 0.302 -0.227 0.248 0.466 0.807 0.430 
ΔCLIpl -0.156 -0.207 -0.968 -0.686 0.057 0.356 0.044** 0.017** 
ΔBOSE 0.100 0.870 3.600 2.025 -1.100 -0.488 0.306 0.500 
ΔWIG 0.185 0.144 0.280 0.184 0.150 0.097 0.128 0.388 
ΔINFL -0.100 0.111 1.000 0.585 -0.450 -0.417 0.085 * 0.098* 
ΔEUR/PLN -0.018 -0.004 -0.047 -0.036 -0.047 0.032 0.026** 0.052* 
*** denotes significance at the 1% level;  ** denotes significance at the 5% level;  
   * denotes significance at the 10% level 
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The performed tests prove that both mean and median failure rates are 
significantly different across sub-periods. Finally, the data on m acro variables 
indicate significant differences in mean (median) for real GDP growth, change in 
the OECD Polish composite leading indicator, inflation and the average 
EUR/PLN exchange rate. It suggests that these conditions may have an important 
impact on bankruptcy rates. 

As it has already been mentioned for the proper analysis of changes in the 
aggregate bankruptcy rates it is necessary to take into account the effects of global 
economic crisis. It is usually considered to start in the years 2007-2008, but many 
economists relate it to the bankruptcy of the Lehman Brothers Holdings Inc. in 
September 2008. Therefore, a simple analysis concerning bankruptcy rates needs 
to be extended by statistical models containing previously chosen macroeconomic 
data.  

3.2. Outline of methodology 

In general, we assume that the aggregate failure rate depends on current and 
historical values of certain variables (Altman, 1983). It may be written in the form 
of finite distributed lag model (FDL): 

BRt = α0 + ∑ ∑ αi,jXi,t−j + εt,T
j=0

k
i=1        (1) 

where Xi is a macroeconomic variable, k is the number of variables and T is the 
maximum lag length.  

Estimation of parameters from FDL model leads to certain difficulties. In our 
case the number of periods T, covered by lag function is so large that the 
individual coefficients cannot be estimated with sufficient accuracy. In addition, 
our variables are highly autocorrelated. High levels of correlation among the 
regressors imply multicollinearity, which leads to unreliable coefficient estimates 
with large variances and standard errors. In both scenarios the Almon polynomial 
distributed lag (PDL) specification could be helpful. The method assumes that 
any αi,j can be approximated by a polynomial of order p: 

αi,j = βi,0 + βi,1j + βi,2j2 + ⋯+ βi,pjp.       (2) 

We begin with substituting equation (2) into (1): 

BRt = α0 + ���βi,0 + βi,1j + βi,2j2 + ⋯+ βi,pjp�Xi,t−j + εt

T

j=0

k

i=1

 

BRt = α0 + ∑ ∑ βi,n
p
n=0

k
i=1 �∑ jnXi,t−jT

j=0 � + εt      (3) 
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By defining new variables as follows: 

Zi,n,t = ∑ jnXi,t−jT
j=0           (4) 

we have a linear model of an ordinary form: 

BRt = α0 + ∑ ∑ βi,n
p
n=0

k
i=1 Zi,n,t + εt        (5) 

The method of polynomial approximation allows us to use all estimation 
methods which are appropriate for linear equations. In order to fulfil standard 
least squares assumptions, during our investigation we work on 1-year changes of 
macroeconomic variables. It helps to eliminate problems with stationarity and 
seasonality from time-series used in our research. 

4. The empirical results 

The problem of the autocorrelation is one of the basic problems for 
researchers of statistical relations between macroeconomic variables in time, and 
yet application of PDL model allows one to avoid the autocorrelation between 
historical values of the specific variable. Therefore, we start with estimation of 
PDL models containing only single variables. In order to correctly fit more 
complicated models, variables will be selected in a way to limit correlations 
between them. 

4.1. Models with single macroeconomic variable 

It is important to realize that before the approximation of coefficients begins, 
the decision about the lag length (T) and the order of polynomials (p) must be 
taken. In our case we used three criteria: the Schwartz information criterion, the 
Akaike information criterion and the Hannan–Quinn information criterion9. With 
the intention of examining whether amendments to the bankruptcy law influenced 
significantly the number of adjudicated bankruptcies we chose to use Chow 
Breakpoint Test. We decided to split the sample period (2003Q2 – 2013Q3) into 
pre- and post-reform period. The results of conducted estimations are reported in 
Table 3. On the left side parameters for models without break adjustment are 
presented and the right side of the table reports statistics for models including 
jump dummy to control for law change (SPLITDUM). Because of limited space 
available in Table 3 we decided to report only the sum of the lag term’s 
coefficients. The importance of the sum was verified using t-statistics based on 
Newey-West HAC standard errors. 

 

                                                           
9 In general, a lag length of 4 periods and polynomials of order 2 result in the best fit. 
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Table 3. Bankruptcy rates estimation: models with single macroeconomic  
        variable 

Macroeconomic variable 
no regime changes regime change 2009Q2 

lag_SUM Adj. R2 lag_SUM Chow TEST SPLITDUM Adj. R2 

ΔNEW  0.0011    0.0032 -0.0001 6.5633 *** 0.0006 *** 0.4048 

ΔGDP -0.0001 ***  0.1750 -0.0006 6.2085 *** 0.0013 * 0.5562 

ΔCLIeu -0.0001 ***  0.3117 -0.0011 14.2499 *** 0.0005 *** 0.5539 

ΔCLIpl -0.0004    0.0229 -0.0008 12.5859 *** 0.0007 *** 0.2070 

ΔBOSE -0.0000 ***  0.5446 0.0005 5.9641 *** 0.0005 *** 0.5925 

ΔWIG -0.0003 ***  0.5467 -0.0032 16.1954 *** 0.0007 *** 0.7165 

ΔINFL  0.0000   -0.0526 0.0005 3.1774 ** 0.0006 ** 0.0328 

ΔEUR/PLN  0.0047 ***  0.6237 -0.0005 2.4314 * 0.0004 ** 0.6805 

Notes: PDL models with yearly change in quarterly business bankruptcy rates as 
dependent variable; only cumulative lag coefficients reported; t-statistics based on 
Newey-West HAC standard errors used; Chow Breakpoint Test statistics for break in 
2009Q2. 
*** denotes significance at the 1% level; ** denotes significance at the 5% level;  
   * denotes significance at the 10% level 
 

The presented results confirm the existence of statistically significant 
relationship between selected macroeconomic variables and changes in aggregate 
business bankruptcy rates. According to calculations based on Newey-West HAC 
standard errors, the sum of the lag term coefficients proves to be significant for 
models with real GDP growth, the OECD composite leading indicator (CLI) for 
the euro zone countries, the BOSE indicator, return on the Warsaw Stock 
Exchange Index (WIG) and the average EUR/PLN exchange rates. Presented 
values for long run relationship between all proxies are in line with the literature 
and reasonable expectations. The bankruptcy rates increase as the birth rates for 
new companies, the inflation and EUR/PLN exchange rates decline. According to 
the adjusted R2 the model fit is the lowest for the inflation and the highest for 
changes in exchange rates. In all estimated models the Chow breakpoint test 
points to possible structural breaks in the second quarter of 2009 – when the 
novelization was introduced. The SPLITDUM, which has a value of 1 after the 
new legislation came into effect is significant for all models. It is worth noticing 
that models with the new dummy got considerably higher adjusted R2. The 
presented results suggest that aggregate bankruptcy rates after the novelization are 
higher than expected according to the macroeconomic conditions. 
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4.2. Model with multiple macroeconomic variables 

In the last part of this chapter we decided to use two stage least square (2SLS) 
for proper estimation of coefficients. This approach allows us to control expected 
endogeneity issues which are caused by multicollinearity of macroeconomic 
variables. While selecting variables to the model we used backward regression to 
eliminate insignificant and correlated variables. Therefore, as a r esult we 
estimated models having only four explanatory variables and using all remaining 
variables defined in Table 1 as instruments. The first two selected variables are 
year-to-year change in average exchange rates EUR/PLN and yearly return  
on WIG, as both had the highest adjusted R2 among models with single 
macroeconomic variables and both could be approximated by chosen instruments. 
Furthermore, only one general macroeconomic indicator is taken, as current 
economic condition indicator (BOSE) was shown to lead to the best fit. The jump 
dummy for change in bankruptcy law is also included. Table 4 reports the results 
of aggregate bankruptcy rates estimation using 2SLS method for selected 
variables10. 

Table 4. Bankruptcy rates estimation: model with multiple macroeconomic  
 variables 

Variable ΔBOSE ΔWIG ΔEUR/PLN SPLITDUM 
Cumulative lag 
coefficient -0.00006** -0.00381*** -0.00521*** 0.00075*** 

Adjusted R2 0.81141    

Notes: PDL model estimated by 2SLS with yearly change in quarterly business bankruptcy 
rates as dependent variable; instruments are: ΔNEW, ΔGDP, ΔCLIeu, ΔCLIpl, ΔINFL; 
only cumulative lag coefficients reported; results of t-test based on Newey-West HAC 
standard errors reported. 
*** denotes significance at the 1% level; ** denotes significance at the 5% level;  
    * denotes significance at the 10% level 
 

Table 4 confirms the findings from our previous research based on PDL 
models with single macroeconomic variable. Each of the chosen macroeconomic 
conditions has proven to be significant11. Calculated adjusted R2 is high and leads 
to conclusion that bankruptcy rates are well explained by the applied model. 
Estimated coefficients indicate that when BOSE indicator, Warsaw stock (WIG) 
and average EUR/PLN exchange rates increase, then in response the business 
bankruptcy rate (BR) declines. Nevertheless, the SPLITDUM dummy continues to 
be statistically significant with positive sign. It is worth to mention the 
correspondence between current results and those received from the previous 
                                                           
10 As a robustness check models with different sets of explanatory variables have been estimated. In 

all of these models, findings remain similar with those presented. 
11 Moreover we performed the Sargan test for testing over-identifying restrictions and the null 

hypothesis that the over-identifying restrictions are valid was rejected with p-value 0.26. 

http://en.wikipedia.org/w/index.php?title=Over-identifying_restrictions&action=edit&redlink=1
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subsection. Most importantly the result is in line with the main thesis of this paper 
which is the positive impact of the novelization in the bankruptcy law in the 
second quarter of 2009 on aggregate business bankruptcy rates in Poland. 

5. Conclusions 

The economic growth in Poland, as recorded since the nineties, resulted in the 
necessity of novelization in the bankruptcy legislation. The new bankruptcy law 
was introduced in 2003 and was originally designed in favour of the  
reorganization type of bankruptcy rather than liquidation. An efficient bankruptcy 
code should have allowed enterprises to be restructured. It included several 
international best practice recommendations adopted to the legal system. After six 
years it became clear that some of available formal procedures were not in use 
(i.e. they are superfluid) and the novelization of law was necessary. According to 
lawmakers new solutions improved insolvency procedures and made the whole 
bankruptcy process faster.  

Our findings prove that after the Amendment bankruptcy rates in Poland 
increased more significantly than expected due to the existing macroeconomic 
conditions. This conclusion is confirmed by analyses based on t wo general 
concepts of measuring differences in aggregate bankruptcy rates. The novelization 
extended variety of insolvency rules. We suggest that the further effort should be 
applied to create even more transparent and efficient legal system. The 
Amendment not only encouraged to conduct reorganization, but also broadened 
the range of companies that could benefit from such reorganization. However,  it 
is still impossible to start a r ecovery proceedings without an application for 
bankruptcy. Entrepreneurs often do not use this option, because the word 
'bankruptcy' has a negative connotation in the colloquial language and in their 
opinion it could harm their businesses. As a r esult entrepreneurs often start 
bankruptcy proceedings when it is too late to save their businesses. 

We recommend that future research should be concerned with the impact of 
differences in size and business sectors of firms on their failure rates.   
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REPORT 

International Conference on Small Area Estimation 
 (SAE 2014) 

The international conference on Small Area Estimation (SAE 2014) was held 
from 3rd to 5th September 2014 in Poznan, and was devoted to the methodology 
of small area statistics, which, following arrangements made by the European 
Working Group on Small Area Estimation, was organized by the Department of 
Statistics at the Poznan University of Economics (PUE). The conference was co-
organized by the Central Statistical Office (CSO) in Warsaw and the Statistical 
Office in Poznan. Professor Janusz Witkowski, President of CSO and Professor 
Marian Gorynia, Rector of the Poznan University of Economics took the 
Honorary Patronage over the conference. The conference was preceded by a 
special workshop devoted to using R in SAE conducted by Li-Chun Zhang from 
University of Southampton and Statistics Norway.  

The conference was partially financed by R Revolution Analytics with the 
support of the National Bank of Poland granted under the program of economic 
education. 

The Chairperson of the Organizing Committee of the Conference SAE 2014 
was Marcin Szymkowiak from the Department of Statistics, PUE. Other members 
of the committee included: Wojciech Adamczewski and Katarzyna Cichońska 
from the Central Statistical Office in Warsaw, Tomasz Józefowski, Tomasz 
Klimanek and Jacek Kowalewski from the Statistical Office in Poznan. The 
Programme Committee of the conference was headed by Professor Domingo 
Morales (Universidad Miguel Hernández de Elche). Other members of the 
programme committee included Professors: Ray Chambers (University of 
Wollongong), Grażyna Dehnel (University of Economics in Poznan), Elżbieta 
Gołata (University of Economics in Poznan), Malay Gosh (University of Florida), 
Jan Kordos (CSO), Partha Lahiri (University of Maryland), Risto Lehtonen 
(University of Helsinki), Isabela Molina (Universidad Carlos III de Madrid), Ralf 
Münnich (University of Trier), Jan Paradysz (University of Economics in 
Poznan), Danny Pfeffermann (Hebrew University of Jerusalem), J.N.K. Rao 
(Carleton University) and Li-Chun Zhang (University of Southampton). The 
Steering Board of the SAE 2014 Conference was chaired by Domingo Morales 
and included Ray Chambers, Elżbieta Gołata, Partha Lahiri and Danny 
Pfeffermann.  
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The idea behind the SAE 2014 conference was to provide a platform for the 
exchange of ideas and experiences between statisticians, scientists and experts 
from universities, statistical institutes, research centers as well as other 
governmental agencies, local government and private companies involved in 
developing and applying the methodology of regional surveys, in particular, small 
area estimation.  The Poznan conference was another one in the series of 
conferences (Jyväskylä 2005, P iza 2007, E lche 2009, Trier 2011), intended to 
combine theoretical considerations and practical applications of SAE in public 
statistics.  

The SAE 2014 conference was focused on applications of SAE in censuses, 
model-based estimation and its evaluation, the use of spatio-temporal models, 
robust methods, non-response, issues in sample selection, poverty estimation, 
teaching SAE and its applications in public statistics. The conference featured a 
discussion panel and a specialist workshop devoted to the theory and practice of 
indirect estimation methodology. 

The SAE 2014 conference was attended by 140 researchers and practitioners 
from 22 countries (Albania 2, Australia 6, China 1, Czech Republic 1, Finland 3, 
Spain 9, The Netherlands 3, Israel 1, Japan 2, Canada 2, Kuwait 1, Lithuania 3, 
Luxembourg 1, M alta 1, Germany 9, Norway 1, N ew Zealand 1, P oland 64, 
Thailand 1, Turkey 1, U SA 15, U nited Kingdom 6, Italy 6). The participants 
represented both domestic and foreign research centers. The SAE 2014 
conference was attended by scientists from 46 universities from around the world, 
representatives of statistical offices from nearly 30 countries, as w ell as 
representatives of  i nternational scientific organizations, the World Bank, the 
Central Statistical Office and statistical offices from Poland. 

The conference brought together some eminent experts in this field of 
statistics including: J.N.K. Rao, Malay Ghosh, Ray Chambers, Li-Chun Zhang, 
Partha Lahiri, Danny Pfeffermann, Risto Lehtonen, Ralf Münnich, Domingo 
Morales, Graham Kalton (Westat), Wayne Fuller (Iowa State University) and 
Isabel Molina.  

The conference featured two plenary sessions and special lectures given by 
Professors J.N.K. Rao and Malay Gosh. During the lecture entitled Inferential 
Issues in Model-Based Small Area Estimation: Some New Developments 
Professor J.N.K. Rao discussed developments in the theory and applications of 
small area estimation which have taken place especially over the past 15 years in 
response to a growing demand for reliable small area statistics. In particular, the 
lecture addressed some recent important developments concerning area level and 
unit level models, mainly addressing issues related to assumed models. During his 
talk Professor Rao specifically focused on t he bootstrap methods for mean 
squared error (MSE) estimation and confidence interval construction. Other 
subjects raised during the talk included recent work on robust estimation of small 
area means, informative sampling,  n ew developments in model selection and 
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checking, methods for the estimation of complex parameters such as small area 
poverty measures and the role of ’big data’ in small area estimation. 

Professor Malay Ghosh’s lecture, entitled Benchmarked Empirical Bayes 
Estimators for Multiplicative Area Level Models, was devoted to empirical 
Bayes and benchmarked empirical Bayes estimators of positive small area means 
under multiplicative models. In his presentation, he discussed the transformed 
Fay-Herriot model as a m ultiplicative model for estimating positive small area 
means and a weighted Kullback-Leibler divergence as a loss function.  Professor 
Malay Ghosh demonstrated that the resulting Bayes estimator is the posterior 
mean and that the corresponding benchmarked Bayes and empirical Bayes 
estimators retain the positivity constraint. The prediction errors of the suggested 
empirical Bayes estimators were investigated asymptotically, and their second-
order unbiased estimators were provided. In addition, bootstrapped estimators of 
these prediction errors were also provided. The performance of the considered 
procedures was investigated by the author through simulation and in an empirical 
study. 

The SAE 2014 conference included ten invited sessions organized by top 
specialists: 

• SAE: robust and nonparametric methods (Professor Ray Chambers, 
University of Wollongong),   

• Small Area Methods for Repeated Survey (Professor Partha Lahiri, 
University of Maryland), 

• SAE in poverty mapping (Professor Isabela Molina, Universidad Carlos 
III de Madrid), 

• SAE models: selection and checking (Professor Danny Pfeffermann, 
Hebrew University of Jerusalem), 

• SAE in official statistics (Professor Jan Kordos, CSO), 
• Teaching SAE (Professor Risto Lehtonen, University of Helsinki), 
• SAE applications (Professor Ralf Münnich, University of Trier), 
• Benchmarking, design issues and nonresponse in SAE (Professor Stefano 

Falorsi, ISTAT), 
• Population Census and SAE (Professor Li-Chun Zhang, University of 

Southampton), 
• Other topics related to SAE (Professor Domingo Morales, Universidad 

Miguel Hernández de Elche). 

During the session SAE: robust and nonparametric methods organized by 
Ray Chambers, and chaired by Graham Kalton, four papers were presented: 

• Raymond Chambers − Two Recent Developments in Robust and 
Semiparametric Small Area Estimation, 

• Beate Weidenhammer, Nikos Tzavidis, Timo Schmid, Nicola Salvati − 
Domain Prediction for Counts using Microsimulation via Quantiles, 
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• Payam Mokhtarian − On Outlier Robust Small Area Prediction of the 
Empirical Distribution Function, 

• Forough Karlberg − Small Area Prediction for Skewed Data in the 
Presence of Zeroes. 

In particular, Ray Chambers presented new developments in modeling for 
small area estimation including the spatial extension of recently published results 
on robust bias correction when asymmetric unit level and area level outliers in the 
survey data are used to predict a small area mean. Professor Chambers 
specifically focused on the extension of M-quantile modelling for small area 
estimation for count data rather than realizations of continuously distributed 
variables. Three other presentations were devoted to different aspects of robust 
and nonparametric methods in small area estimation and included the problem of 
estimation when outliers occur, the problem of estimation for asymmetric 
distribution with zeroes and using quantiles for the purpose of prediction of 
counts in the context of microsimulation. 

The invited session on Small Area Methods for Repeated Survey, 
organized by Partha Lahiri and chaired by Wayne Fuller, consisted of four 
presentations: 

• Partha Lahiri − An Overview of Small Area Estimation with Repeated 
Survey Data, 

• Jan A. van den Brakel, Sabine Krieg − Small area estimation with state-
space common factor models for rotating panels, 

• Enrico Fabrizi, Maria Rosaria Ferrante, Carlo Trivisano − Estimation of 
value added for firms cross-classified by region, industry and size using 
repeated survey data, 

• Carolina Franco, William R. Bell − Alternative Approaches to Borrowing 
Information Over Time  in  Small Area Estimation with Application to 
Data from the Census Bureau’s  American Community Survey. 

This session provided an overview of different small area estimation methods 
for repeated surveys. In particular, the main presentation, given by Partha Lahiri, 
highlighted the fact that repeated surveys not only offer opportunities for 
improving small area statistics that are usually produced in cross-sectional 
surveys, but they may also deliver reliable estimates of changes over time, which 
may be more important than estimating current time. Professor Lahiri also pointed 
out that repeated surveys could conveniently help statisticians explain the benefits 
of small area statistics to public policy makers. Three other presentations 
addressed different aspects of small area estimation methods for repeated surveys 
and covered such issues as modeling for rotating panels, estimation of value 
added in business statistics and the problem of borrowing strength over time. 

The third invited session on SAE in poverty mapping, organized by Isabel 
Molinaand chaired by Monica Pratesi, was devoted to issues connected with 
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poverty in the context of small area estimation methodology. This session 
consisted of four presentations: 

• Isabel Molina, J.N.K. Rao − An overview of small area estimation 
methods for poverty mapping, 

• Gauri Datta, Abhyuday Mandal − Small area estimation with uncertain 
random effects, 

• Domingo Morales − Partitioned area-level time models for estimating 
poverty indicators, 

• Roy Van der Weide − Estimation of Normal Mixtures in a Nested Error 
Model with an Application to Small Area Estimation of Poverty and 
Inequality. 

The main purpose of this session was to show how different techniques 
offered by small area estimation can be used in the field of poverty. This is 
especially very important for many institutions which have to conduct more 
effective and efficient policy at the regional level. During this session the main 
approaches for small area estimation techniques for poverty mapping were 
reviewed and their advantages and disadvantages were discussed. In particular, 
special attention was given to recent variants of the basic methods in the field of 
poverty mapping and inequality.   

The invited session on SAE models: selection and checking, organized by 
Danny Pfeffermann and chaired by Elżbieta Gołata, consisted of four 
presentations: 

• Danny Pfeffermann − Model Selection and Checking for Small Area 
Estimation, Graham Kalton – discussant, 

• Jay Breidt, Daniel Hernandez-Stumpfhauser, Jean D. Opsomer − 
Variational Approximations for Selecting Hierarchical Models of Circular 
Data in a Small Area Estimation Application, 

• Jiraphan Suntornchost, Partha Lahiri − Variable selection for Linear 
Mixed Models with Applications in Small Area Estimation, 

• Yahia El Horbaty − A Simple Score Test for Random Effects with 
Application to Small Area Models. 

The main aim of this session was to present recent developments in the field 
of modeling in small area estimation methodology. In his paper, Professor Danny 
Pfeffermann gave an overview of some methods proposed in the literature for 
small area model selection and checking, distinguishing between frequentist 
methods and Bayesian methods. He also discussed some issues related to the 
theoretical foundation of small area estimation models and in particular, the 
interpretation and role of the random effects. Three other presentations in this 
session were devoted to practical aspects of using proper chosen models in 
different surveys.  
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The invited session on SAE in official statistics, organized by Jan Kordos 
and chaired by William Bell, featured four presentations: 

• Jan Kordos − Small area estimation in official statistics  and  statistical 
thinking, 

• Danute Krapavickaite, Tomas Rudys − Application of small area 
estimation methods  for Lithuanian Labour force survey data,  

• Jan Paradysz, Karolina Paradysz − Indirect estimation of disability on the 
base of Polish National Census 2011, 

• Jan Kubacki, Alina Jędrzejczak − Small area estimation under spatial 
SAR model. 

This session was a response to the growing role of small area estimation 
methodology in official statistics. In the main presentation, Professor Jan Kordos 
outlined the general mission of national statistics institutes to produce high quality 
statistical information on the state and evolution of the population, the economy, 
the society and the environment. Professor Kordos paid special attention to the so 
called statistical thinking in the context of small area statistics and Total Quality 
Management. He also presented selected applications of Small Area Estimation 
procedures in official statistics in the context of an increasing demand for 
information. Other presentations in this session were more practical and focused 
on applications of SAE methodology, with particular emphasis on issues related 
to labour market and disability. 

The invited session on Teaching SAE, organized by Risto Lehtonen and 
chaired by Gauri Datta, was devoted to different aspects of teaching small area 
estimation methods and consisted of four presentations: 

• Risto Lehtonen − Experiences and challenges in teaching small area 
estimation,  

• Jan Pablo Burgard, Ralf Münnich − SAE teaching using simulations,  
• Elżbieta Gołata, Tomasz Klimanek − Challenges faced by academics and 

the NSI in SAE education, 
• Esther Lopez Vizcaino Lombardía Cortiña, M. José, Domingo Morales − 

mme: An R package for small area estimation with multinomial mixed 
models. 

This session was a response to the problems and issues related to the basic and 
fundamental question of how to teach small area estimation methodology at 
universities and within statistical offices. In the main presentation, Professor Risto 
Lehtonen argued that SAE teaching should be treated as one of the main 
components of the ‘ecosystem’, which consists of scientific conferences devoted 
to SAE, textbooks related to SAE, SAE chapters in edited books and hundreds of 
journal articles, active research groups, large-scale international research projects 
and programs, geo-coded and spatio-temporal databases, ’big data’ sources and a 
variety of software tools for computing and graphical illustration. In this context 
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some selected aspects of teaching SAE including problems, challenges and 
experiences were discussed in detail.  T hree other presentations in this session 
looked at different aspects of teaching SAE at universities and, in particular, 
raised issues related to using simulations while teaching SAE, using selected R 
packages in this field and challenges faced by the system of education in terms of 
the needs of both academics and statistical offices. 

The next invited session on SAE applications was organized by Ralf 
Münnich and chaired by Roy van der Weide from the World Bank. This session 
consisted of four presentations: 

• Ralf Münnich − Small area applications: some remarks from a d esign-
based view, 

• Ugarte, MD, Adín, A., Goicoa, T., Militino, A.F., López‐Abente, G. − 
Space‐time analysis of young people brain cancer mortality in Spanish 
provinces, 

• Rebecca C. Steorts − Constrained Smooth Bayesian Estimation,  
• William R. Bell, Mark Seiss − A Modeling Approach to Estimating the 

Mean Squared Error of Synthetic Small Area Estimators. 

This session was mainly devoted to different SAE applications using real data. 
From one point of view, there are only few National Statistical Institutes which 
use the SAE methodology in the production of statistical data. The reason is the 
difficulty of using model-based techniques in the production of small area 
estimates. On the other hand, statistical offices are increasingly responsible for 
delivering estimates at a lower level of spatial aggregation. This calls for 
applications using real data and taking into account practical situations which are 
faced by statistical offices. 

In the main talk, Professor Ralf Münnich highlighted the impact of sampling 
designs on small area estimation methods. He also presented real applications of 
using small area estimation methods in the context of household and business 
data. In addition to sampling designs, Professor Münnich also considered methods 
of benchmarking in order to provide coherent results between design-based and 
model-based estimates. Three other presentations in this session were devoted to 
different SAE applications and included: analysis of young people brain cancer 
mortality in Spanish provinces, analysis using data coming from U.S. Census’s 
Small Area Income and Poverty Estimates program and application of the 
modeling approach to a real application involving synthetic estimation of correct 
enumerations in the 2010 U.S. census using data from a post-enumeration follow-
up survey. 

The next invited session on Benchmarking, design issues and nonresponse 
in SAE was organized by Stefano Falorsi and chaired by Michel Hidiroglou. This 
session consisted of four presentations: 
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• Andrea Fasulo, Michele D’Alo’, Lorenzo Di Biagio, Stefano Falorsi, 
Fabrizio Solari − Benchmark constraints for space and time unit level 
EBLUP estimators, 

• Li-Chun Zhang, Alison Whitworth − Benchmarked synthetic small area 
estimation, 

• Serena Arima, Gauri S. Datta, Brunero Liseo − Multivariate Fay-Herriot 
model with structural measurement error, 

• Janusz Wywiał − On sampling design proportional to function of 
auxiliary variable order statistics. 

Some very important topics were raised during this session, which related to 
the negative impact of nonresponse in the process of estimation, benchmarking 
and design issues. In the main presentation delivered by Fasulo et al., the authors 
focused on small area estimators based on unit level nonparametric mixed models 
with area random effects. They also considered the benchmark problem for SAE 
estimates, which was consistently extended to the case o f space and time 
benchmark constraints. The presenters demonstrated practical applications of the 
issues raised in their presentation by reviewing two empirical studies and 
presenting their conclusions. The three other presentations were devoted to the 
problem of benchmarking, which is very crucial in production of statistical 
information as estimates for lower level of aggregations should add up to 
estimates at higher level, the problem of modeling using multivariate Fay-Herriot 
approach with structural measurement error and issues to do with basic properties 
of sampling strategies based on the sampling designs dependent on quintiles.   

The invited session on Population Census and SAE, organized by Li-Chun 
Zhang and chaired by Stephen Haslett, included four presentations: 

• Li-Chun Zhang − Census and SAE: Population size estimation,  
• Ralf Münnich − Small area estimation in the German Census 2011, 
• Paul Williamson, Karyn Morrissey, Ferran Espuny-Pujol − Survey 

reweighting as a means to SAE, 
• Angela Luna-Hernandez, Li-Chun Zhang − Multivariate Generalized 

Structure Preserving Estimation. 

The main aim of organizing this session was to present how small area 
estimation methodology can be used in the field of modern censuses, in which 
data are often collected using the mixed approach. In the main presentation 
delivered by Li-Chun Zhang, the author focused on the topic of census or census-
like population size estimation. The presentation reviewed common traditional 
direct estimation methods, as w ell as some new developments in the treatment 
and modeling of enumeration coverage errors. Prof. Li-Chun Zhang also 
discussed some perceived challenges to the indirect estimation of local population 
size as well as the question of how design-based and model-based estimation can 
be used in the context of modern censuses. In the next talk, Ralf Münnich 
discussed the use of small area estimation methodology in the German census 
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2011. Some aspects of survey reweighting and SPREE estimation were also 
discussed as part of this session.  

The last invited session, entitled Other topics related to SAE, which was 
organized by Domingo Morales and chaired by María Dolores Ugarte, included 
four talks: 

• Wayne Fuller, Andreea Erciulescu − Small Area Prediction under 
Alternative Model Specifications, 

• Domingo Morales, Miguel Boubeta, María José Lombardía − Empirical 
best prediction in Poisson mixed models, 

• M.A. Hidiroglou, Victor Estevao − A comparison of small area and direct 
estimators via simulation, 

• Monica Pratesi, Fosca Giannotti, Caterina Giusti, Stefano Marchetti, Dino 
Pedreschi, Nicola Salvati − Area level SAE models with measurement 
errors in covariates: an application to sample surveys and Big data 
sources. 

This session mainly covered issues related to small area estimation 
methodology and not discussed in detail in the others. During this session special 
attention was paid to issues concerning modeling in the field of SAE. That was 
the topic of the main presentation given by Wayne Fuller and Andreea Erciulescu. 
In their talk, they discussed the construction of small area predictors and 
estimation of the prediction mean squared error, given different types of auxiliary 
information and for different population models and illustrated the problem with a 
study of soil erosion.  The three other presentations also dealt with modeling and 
addressed such topics as the use of Poisson mixed models, area level SAE models 
with measurement errors in covariates and the comparison between SAE and 
direct estimators using a simulation approach. 

There were also six sessions of contributed papers organized during the SAE 
2014 conference, which covered different issues related to small area estimation 
methodology. Some of the topics covered included modeling in SAE, SAE 
applications, poverty mapping, SAE in business statistics and the use of Big Data 
in the context of SAE. In total, 72 talks and 10 poster presentations were 
delivered during the conference. 

One of the highlights of the SAE 2014 conference was the panel discussion 
organized and chaired by Professor Elżbieta Gołata from the Department of 
Statistics at the University of Economics in Poznan, which addressed the newest 
achievements in SAE both in the theoretical and practical field. The panel brought 
together nearly all of the organizers and chairs of the invited sessions, who gave 
an account of the most important issues raised within the ten invited sessions. The 
panel constituted a scientific summary of the whole conference and was a great 
opportunity to review recent developments both in the field of theoretical and 
practical use of SAE. 
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Detailed information about the SAE 2014 conference is available on the 
conference website at www.sae2014.ue.poznan.pl.   

The plan to organize future SAE conferences is an expression of the growing 
role of small area estimation methodology in the modern statistical world. 

It is worth noting that the next SAE 2016 conference in the series of 
conferences under the auspices of the EWORSAE group is planned to be held in 
the Netherlands. 

Moreover, the First Latin American International Statistical Institute Satellite 
Meeting on Small Area Estimation will be held on August 3-5, 2015, in Santiago, 
Chile. More details about this conference can be found at 
www.encuestasuc.cl/sae2015. 
 
 
Prepared by: 
Marcin Szymkowiak 
Poznan University of Economics 

http://www.sae2014.ue.poznan.pl/
http://www.encuestasuc.cl/sae2015
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BOOK REVIEW 

Sampling Elusive Populations: Applications to studies of child labour, by Vijay 
Verma. International Labour Organization, Geneva. 2013. XIX + 821 pp.   
ISBN 978-92-2-128321-8.  

Reviewed by Włodzimierz Okrasa 

Surveying populations difficult to find or to reach (hard-to-reach), elusive or 
invisible, mobile or intentionally avoiding statistical observation for some 
reasons, presents not only additional problems to those being faced by a survey 
maker in the context of researching regular populations. The problems involved in 
the former are often qualitatively different from those in the latter, at practically 
each stage of the process, from sampling populations with non-existing or 
imperfect frame, through data collecting and processing, to estimating the looked-
up parameters. Comparison of methodologies focused on researching basically the 
same units – such as ch ild workers – in both types of contexts can serve as a 
laboratory case f or demonstrating differences between the problems specific to 
surveying regular and irregular populations. We are now in a perfect position for 
making such type of methodological comparisons as Vijay Verma – the author of 
the widely acclaimed book (cf. Kordos' review in this journal, 2008) on Sampling 
for household-based surveys of child labour prepared within the framework of the 
ILO Statistical Information and Monitoring Programme on C hild Labour 
(SIMPOC) – has elaborated a complementary volume on Sampling Elusive 
Populations: Applications to studies of child labour, also published by the 
International Labour Organization.  

This book offers the comprehensive treatment of methods specifically 
designed to meet challenges posed by the irregular type of populations, in general, 
with extensive presentation of their applications to  formal and practical issues in 
researching children's work. As such, the book fills a key gap in the survey 
methods literature, on the one hand, while promoting the approach especially 
suited to dealing with this complex research objects. In a co nsequence, its 
usefulness goes far beyond studying child labour within the public statistics, but 
contributes also to economic and social analysis of labour market and work 
activities. With respect to the former, the book addresses also several problems 
fundamental to the methodology of surveying hard-to-survey populations, a 
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"common but not universal characteristic of (which) is that they are rare 
populations for which no separate sampling frames exist" (Kalton, 2014, p. 401). 
Such populations are becoming of growing interest to statisticians inspired also by 
economists, demographers and other social scientists in view of the fact that in 
addition to the problems with forming a list of potential respondents – hard-to-
sample populations – they are more and more frequently being faced with 
insurmountable sometimes difficulties to persuade members of such populations 
to take part, or to be interviewed. A good indication of the rising demand for 
operating knowledge, i.e., for manuals on dealing with such a type of challenges 
and problems – which are covered jointly by the term hard-to-survey populations 
– might be a book j ust under the title Hard-to-survey populations, edited by 
Roger Tourangeau et al., 2014, which was published recently. In addition to the 
first of the two ILO-issued books by Vijay Verma, this seems to complement its 
contents and the expected audience from the side of general survey methodology, 
including the post-sampling survey making procedures.     

At a glance, the enormous scope and richness of the issues addressed in Vijay 
Verma's book (Sampling Elusive Populations – for convenience an abbreviation 
SEP will stand for it in this text) can best be characterized by indicating its size – 
821 pages – and composition: fourteen chapters, written as self-contained 
thematic sub-manuals. With his extraordinary experience and knowledge of 
methods of surveying child labour – including awareness of the fact that 
"collecting comprehensive data on child labour is a challenging task, and no 
single survey method can satisfy all data needs " (SEP, p. 1) – the Author begins 
with useful introduction to the context of the questions covered by his manual. 
Starting with sketching main differences between household-based child labour 
survey – which misses working children not living  at home – and the specificity 
of such an elusive population as presented by labouring children (ill-defined 
population of a great heterogeneity, rare and highly mobile, partly hidden and 
reclusive, staying away from participation in a survey) the Author is constructing 
– not simply applying – a methodology of sampling especially suited to 
accounting for these characteristics. His understanding of the basic concept – 
elusive population – is given explicitly: "By elusive populations we mean 
populations for which – by virtue of their characteristics, or of the lack of suitable 
sampling frames, or difficulties in obtaining the required information – adequate 
samples cannot be defined, drawn or implemented using the normal procedures of 
general population sampling." (ibid., p. 4). Since the problems of under-coverage 
or of non-response may occur in a survey of populations considered 'normal', they 
also may be added to the most elusive population groups given that they are the 
ones of the greatest policy concern. The typology of populations in terms of 
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characteristics important from sampling standpoint (following Kish, 1991), along 
with the specification of the nature of the methodological problem involved, 
organize the book contents of this book.  

Accordingly, this well-organized (reader-friendly) manual – which is 
conceived as a complementary to the previous one – concentrates on various 
groups of working children not living at home. Their key characteristic is a degree 
of connection to their household as the starting  point for being identified or 
traced in a way. Also, some categories of children living at home and working 
away are included due to insufficient information available to their 
parents/guardians on the location or type of work they are doing. All the possible 
to imagine situations which can appear in a variety of configurations, given 
different circumstances of work and relations to the household,  make the survey 
(sample) designer open to any of the theoretically envisioned approaches, 
including the need to enumerate working children at the place of their work based 
on a sample of such places. 

An overview of the book's contents   

After providing the reader with preliminary ideas and concepts of working 
children as an example of elusive population – an object of chapter 1 – the Author 
concentrates on systematic presentation of available sampling methods, in a way 
facilitating also the proper choice of the one, most effective in the concrete 
problem context.  

In chapter 2, Child labour situations, data needs and sources, diverse and 
specific to the particular situation child labour problems are discussed  as the 
understanding of the situation to be studied is considered by the Author essential 
for choosing an appropriate survey methodology and sampling strategy. The 
chapter illustrates the variety of situations and types of child labour in order to 
provide the necessary background for the diverse sampling techniques discussed 
in subsequent chapters. The variety of forms of child labour covers diverse 
sectors: child domestic work; agriculture including commercial crops; fishing and 
aquaculture; mining and quarrying; manufacturing including handicrafts; 
construction; street work and the informal sector; and also various 
'unconditionally worst forms of child labour' including child trafficking, 
commercial sexual exploitation, forced or bonded labour, engaging or living in 
armed conflict, and children’s involvement in illicit activities, in particular in drug 
trafficking. 

It is followed by an overview of different data sources for different types of 
child labour: household-based surveys; supplementary sources or surveys (school-
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based surveys, community-level inquiries, general national household surveys, 
censuses, other secondary sources); employers' surveys; establishment surveys; 
baseline surveys and studies; and rapid assessments. Two major strategies of 
generating data on child labour – household-based surveys and rapid assessment 
studies – are characterized briefly. The former as a large probability sample of the 
general population; the latter as a small-scale but intensive survey. The two form 
two ends of the range of application of the various sampling techniques addressed 
in the book. 

Chapter 3, Basic sampling and estimation procedures, is devoted to 
providing a reminder of some basic principles concerning sample design and 
selection which underlie the more specialised techniques discussed in this book, 
such as: principles of probability sampling, common departures from simple 
random sampling (stratification, clustering, unequal selection probabilities), 
probability proportional to size (PPS) sampling, and systematic sampling. Also, 
the chapter reviews basic principles concerning weighting of sample data and 
estimation from a sample, along with sources of information for weighting and 
presentation of a step-by-step procedure for weighting (computation of design 
weights, adjustment for non-response, calibration against external standards, and 
trimming and scaling of the weights).   

The problem of sampling from imperfect frames is discussed in chapter 4, 
The sampling frame. It starts with reviewing shortcomings of sampling frames 
and basic concepts (the survey population, the sampling frame for single-stage 
and for multi-stage sampling). The surveys cover selected sectors; most of the 
establishments in the sectors are small and a high proportion employ child labour. 
Several common aspects concerning sampling frames are presented using  an 
illustrative material – the problems such as surveying a population in the absence 
of an existing sampling frame; including the cost and quality implications of the 
quantity of information to be collected for each unit during the operation; 
economising research by sharing the costs between different surveys; using the 
listing operation for making substantive estimates; and special problems related to 
the type of units in the frame (e.g. establishments versus other locations where 
working children are found). Basic requirements and desirable quality, efficiency 
and cost-related properties of area frames are also discussed. The problems of list 
frames are considered from a p ractical perspective, focusing on the 
correspondence between listing, sampling and analysis units. 

The second theme of the chapter is developing and explaining such important 
the concepts as: (i) correspondence between sampling and analysis units (any 
analysis unit is associated with at most one sampling unit in direct sampling, 
otherwise it would be 'indirect sampling'); (ii) sampling with multiplicity, as the 
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multiplicity estimator links many of the sampling techniques discussed in this 
book. Situations when the sample has to be obtained by exploiting links between 
analysis units themselves, link trace sampling, are also addressed (for being 
discussed in later chapters).  

Chapter 5, Sampling establishments employing children, discusses sampling 
aspects which apply equally to both small and informal sector establishments and 
to larger establishments, as they differ significantly in terms of sampling 
considerations and procedures. The main difference concerns the selection of 
establishments – for large and medium-sized establishments samples are often 
selected directly from lists, and the chapter describes sampling procedures for this 
type of selection procedures. However, the second type of design concerns 
samples for surveys of small and informal sector establishments which, like 
households, are small-scale, numerous and widely dispersed in the population. 
The commonly used samples for small and informal sector establishments are 
area-based and involve two (or sometimes more) stages of sampling. The 
technical issues discussed include: (a) characteristic features of small and 
informal sector establishments and their consequences for survey design; (b) the 
choice between integrated multi-sectoral and separate single-sector surveys; (c)  
stand-alone versus surveys attached as m odules to other surveys; (d) the 
construction and use of 'strata of concentration' of different types and sectors of 
establishments to control distribution of the sample; (e) procedures for selecting 
establishments within sample areas; and (f) issues in survey implementation. 

The rare populations are discussed in chapter 6: Sampling rare populations, 
the characteristic feature of  w hich is that sampling the whole population with 
normal procedures does not yield a representative sample of adequate size for the 
subpopulations of interest because of their small size. In surveying different types 
of child labour, the rare populations of interest – working children – are generally 
unevenly distributed among the general population of children. The Author 
discusses five aspects of the strategy: (1) locating concentrations of the rare 
population using existing large-scale sources; (2) partitioning the frame according 
to the degree of concentration of the rare population (using different techniques); 
(3) oversampling strata of concentration, making use of the patterns of 
concentration identified; (4) listing, screening and two-phase sampling, aimed at 
the identification and sampling of the final elements (households, children); (5) 
employing special procedures to increase selection probabilities of units in the 
rare population and thereby increase the achieved sample size. There are a 
number of other procedures discussed in subsequent chapters (such as multiplicity 
sampling, multiframe sampling and adaptive cluster sampling) and the common 
link between them is that they involve sampling with multiplicity.  



482                                                                                                                   Book review  

 

 

Multiplicity sampling is discussed in chapter 7,  focused on situations where 
the approach may be useful in surveying the rare populations of labouring 
children. Since the basis of multiplicity sampling is the relationship between 
sampling units and analysis units, sampling with multiplicity arises when an 
analysis unit is linked to more than one sampling unit. The Author discusses 
potential advantages and uses of multiplicity sampling, identifying situations 
where multiplicity sampling may be useful, but also addresses its limitations and 
the problems of the method. For instance, reporting biases are often larger for 
multiplicity counting rules than for ordinary unitary counting rules. Another 
concern is the increased complexity. There can also be serious ethical, 
confidentiality and privacy concerns in using the method. Procedures for 
estimation with multiplicity sampling are also explained in this chapter. The 
standard multiplicity estimator takes the weights as inversely proportional to the 
unit's multiplicity.  

The next, 8th chapter, is devoted to Multi-frame sampling, discussed in the 
context of child labour surveys, generally, in order to reduce coverage errors 
when no single sampling frame can provide a c omplete representation of the 
target population. Typically, the multiple sampling frames overlap and procedures 
such as constructing a new single frame without duplicates or by accounting for 
the duplicates in the estimation procedure need to be used. Therefore, the Author 
presents the main methods of removing the duplicates and constructing non-
overlapping frames, as well as the main procedures for accounting for 
duplications and estimation from overlapping frames.  B oth types of situation 
when multiple frames can involve multiplicity in the selection of units  a re 
considered: either a unit may appear in more than one frame, or within any of 
those frames the unit may appear more than once. The chapter considers practical 
aspects of implementing this procedure in the context of a child labour survey. 

Adaptive cluster sampling discussed in chapter 9 is a technique designed to 
obtain more adequate and efficient samples for a population which is rare and 
very unevenly distributed. The technique specifically involves selecting an 
additional sample in the neighbourhood of points where a concentration of the 
population of interest is found during implementation of the initial sample. It is 
presented as being most effective when the population of interest tends to be 
concentrated in relatively few and large clusters, but little information is available 
on the extent, location and patterns of its concentration – e.g., such populations 
include street children, children engaged in street trades and child beggars. 
Several technical aspects are discussed as well, such as: unequal unit selection 
probabilities; stratification with adaptive sampling; multistage sampling; 
multivariate criteria for adaptive sampling; adaptive sampling using 'order 
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statistics'; arbitrary rules for stopping the adaptive process; problem of imperfect 
detectability; and aspects of the estimation procedures with adaptive sampling. In 
addition to discussing issues involved in its implementation, the procedure is 
illustrated in detail on the basis of an artificially constructed small population. 
The illustration demonstrates how adaptive sampling can help in locating large 
concentrations of the population of interest by increasing the chance of their 
appearance in the sample, and hence also in obtaining a larger number of elements 
of interest (such as children working in a particular sector). 

Sampling mobile populations is described in chapter 10, i ncluding special 
problems and issues which arise in this approach, while stressing that the concept 
of 'mobile population' is more general than simply not having a fixed place of 
residence or work – sometimes it is necessary or preferable to sample and 
enumerate units through their mobility (movement).  

The following questions are involved in difficulties of enumerating such 
populations: (i) who are the eligible respondents for the survey, and (ii) where and 
(iii) when to find them; also (iv) what information concerning their mobility to 
ask them for, and (v) how to obtain the information; (vi) how to use sample data 
to produce valid estimates for the population, and (vii) how to assess variances 
and biases to which those estimates are subject. The Author develops a 
framework to organise the variety of circumstances, problems and solutions 
encountered in sampling mobile populations – four important concepts in the 
framework are: sampling locations, observation points, time segments, and 'time-
location primary sampling units'. Also, procedures for estimating the probability 
of selection and sample weight of a mobile individual are developed, along with 
quantitative expressions for variations in individual selection probabilities in a 
number of commonly encountered situations. 

The approach discussed in chapter 11, Capture-recapture sampling, is 
devoted to sampling techniques which involve taking two (or more) independent 
samples from the same population and using the overlap found between the 
samples to estimate the selection probabilities applied to obtain those samples and 
the total population size. Capture-recapture applications in the social field are 
usually based on a combination of sample surveys and administrative sources.  
The Author provides instructive illustrations of application of this technique, 
stressing its usefulness (and robustness) even in the situation of departures from 
the assumed statistical model, and the fact that statistical procedures have been 
developed to control the effect of certain departures from the original simple 
model. In the Author's view, a major technical contribution of the chapter 
concerns the development of procedures for the estimation of sample weights in a 
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more general situation, along with explanation of procedures for putting together 
all these effects. 

Controlled selection and balanced sampling discussed in Chapter 12 is a 
procedure to control the structure of the sample beyond what is possible with 
ordinary independent selection within strata. Surveys, in particular of mobile and 
other difficult-to-access populations, often have to be restricted to a limited area 
and to a small number of primary units. The Author provides several arguments 
for using controlled selection, especially when one has to select a small sample of 
primary units, but at the same time ensures that it is 'balanced' and 'representative' 
of the population in terms of many characteristics (or control variables). He also 
discusses this procedure in the context of the modern theory of balanced 
sampling, thus providing the possibility of dealing with a wider range of issues 
and more efficient sampling algorithms. These control variables may include one 
or more stratification variables, which correspond to controlled selection. The 
formal considerations are complemented by illustrations useful for a reader 
interested in practical applications. 

The reclusive populations are discussed in chapter 13, Snowball sampling, 
which is meant as a n approach to surveying reclusive populations of labouring 
children. In particular, the term snowball sampling refers to a convenience 
sampling mechanism in settings characterised by the lack of a serviceable 
sampling frame. A unit of the target population can enter the sample through 
direct selection into the initial sample, or by being identified (‘named’) for 
inclusion by someone already in the sample. There are a number of parameters 
which define the design of a snowball sample: the number of waves, number of 
contacts to request, and criteria for including a p articipant in the sample. The 
Author considers it especially useful in the context of an exploratory study, but 
accents its recent development and advantages within a more advanced analysis. 
The primary advantage of the method is its success in identifying individuals 
from unknown populations and from small, hidden groups dispersed within a 
large population; also, it provides a means of accessing social groupings which 
are vulnerable, etc. 

Noting also its deficiencies – in particular selection bias which limits the 
validity of the sample – the Author outlines a simplified procedure for estimating 
size of a hidden population. A number of illustrations from surveys in diverse 
settings present both positive and negative experiences in applying the method.   

Respondent-driven sampling (RDS), discussed in the last chapter (14th), is 
considered to be an improved variant of the usual snowball sampling, as both 
procedures are types of chain-referral sampling. As with snowball sampling, a 
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unit of the target population can enter the sample through direct selection into the 
initial sample, or by being identified for inclusion by someone already in the 
sample. In both cases, the process starts with a small number of peers, usually 
chosen non-randomly. However, as an improvement over ordinary snowball 
sampling, RDS is designed to produce a closer approximation to probability 
sampling. It incorporates features such as the direct recruitment of peers by their 
peers, a dual system of incentives (for participation and for recruiting), and 
recruitment quotas (e.g. a maximum of three recruits per respondent). As regards 
the assessment of the RDS procedure, the chapter analyses the experience with 
two sets of studies. The first set involves performance comparisons of the RDS 
and alternative sampling approaches. In the second set of examples, studies 
concerning assessment of RDS examine how well its procedures are implemented 
in terms of the theoretical assumptions of the model. For both of them numerous 
examples of studies undertaken for assessing comparative performance and 
validity of the RDS techniques are provided.  

 
A set of three annexes and references – bibliography, author index and subject 

index – concludes impressive contents of this very professionally prepared book, 
both by the Author and the  ILO editors. This book is for anyone interested in 
researching the labouring children, and also for all interested in surveying elusive 
populations, in general – students and academicians, as well as policy makers and 
practitioners. As mentioned earlier, it is a sel f-contained manual, providing the 
reader/user with a great piece of the subject-matter knowledge and an advanced 
methodology at work.   
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