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FROM THE EDITOR   

This issue is composed of eleven articles grouped in four sections, as follows: 

the first group of papers, devoted to sampling methods and estimation issues 

consists of three papers; the next four papers constitute the section of research 

articles, followed by other articles (containing just one conference paper), and the 

whole issue closes with research communicates and letters containing  two papers 

of the nature of 'work in progress'. They are briefly characterized below. 

In the first paper, Population Variance Estimation Using Factor Type 

Imputation Method, Ranjita Pandey and Kalpana Yadav propose a variance 

estimator based on factor type imputation in the presence of non-response. They 

describe properties of the new estimators along with their optimality conditions. 

The proposed classes of factor type ratio estimators are shown to be more 

efficient than some of the existing estimators – such as the usual unbiased 

estimator of variance, ratio-type, dual to ratio type and ratio cum dual to ratio 

estimators. Their performances in terms of relative efficiencies are illustrated with 

simulated and real data sets. In particular, one of the proposed estimators is shown 

to perform best from the point of view of increasing efficiency (but all the three 

proposed FT type estimators are the best estimators in the sense of having the 

largest PRE).  

Krzysztof Beck's paper, Bayesian Model Averaging and Jointness 

Measures: Theoretical Framework and Application to the Gravity Model of 

Trade discusses the Bayesian model averaging (BMA) along with the benefits 

due to combining the knowledge generated through the analysis of different 

models. The BMA structure is described together with its most important 

statistics (prior parameter proposals, prior model size distributions, and also the 

jointness measures). Its application is illustrated with the gravity model of trade, 

where determinants of trade are chosen from the list of nine different variables. It 

enabled the identification of four robust determinants: geographical distance, real 

GDP product, population product and real GDP per capita distance. All variables, 

except for population product, have coefficient signs predicted by the theory. For 

instance, the complementary relationship between real GDP product and 

population product allowed one to explain the negative sign of the population 

product coefficient. 

In the paper On Asymmetry of Prediction Errors in Small Area Estimation, 

Tomasz Żądło starts with an observation that the mean squared error (MSE), 

which reflects only the average prediction accuracy, is insufficient and even 

inadequate as a measure of overall quality since we are interested not only in the 
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average but in the whole distribution of prediction errors. Therefore, the author 

proposes to use an alternative measure of prediction accuracy in the context of 

small area estimation, taking into account a modified version of the empirical best 

predictor based on a generalization of the predictor presented by Molina and Rao 

(2010). The generalization results from the assumption of a longitudinal model 

and possible changes of the population and subpopulations in time. The 

considerations are supported by results of the real data application. 

The second part of this issue begins with an article by Mirosław Krzyśko and 

Łukasz Smaga, entitled An Application of Functional Multivariate Regression 

Model to Multiclass Classification. The authors propose the scale response 

functional multivariate regression model based on possible functions 

representation of functional predictors and regression coefficients. The proposed 

functional multivariate regression model is employed to multiclass classification 

for multivariate functional data. Computational experiments performed on real 

data sets demonstrate the effectiveness of the proposed method for classification 

for functional data. 

Tomasz Górecki’s and Maciej Łuczak’s article on Stacked Regression with 

a Generalization of the Moore-Penrose Pseudoinverse is devoted to the problem 

of making an optimal selection among available methods of classification. The 

authors propose a combined method that allows one to consolidate information 

from multiple sources in a better classifier. They discuss the stacked regression 

(SR) as a way of forming linear combinations of different classifiers toward 

improved accuracy of classification through employing the Moore-Penrose (MP) 

pseudoinverse to find the solution to a system of linear equations. Due to the 

computational difficulty with a greater number of features, they propose a genetic 

approach to handle the problem. Experimental results on various real data sets 

demonstrate that the improvements are efficient and that this approach 

outperforms the classical SR method, providing a significant reduction in the 

mean classification error rate. 

In the next article, An Additive Risks Regression Model for Middle-Censored 

Lifetime Data, P. G. Sankaran and S. Prasad discuss the middle-censoring data 

problem arising in situations where the exact lifetime of study subjects becomes 

unobservable, and whether it happens to fall in a random censoring interval. The 

authors propose a semiparametric additive risks regression model for analysing 

middle-censored lifetime data arising from an unknown population. They estimate 

regression parameters and the unknown baseline survival function by two 

different methods – the first method uses the martingale-based theory, and the 

second method is an iterative method. The finite sample behaviour of the 

estimators is assessed through simulation studies, and the utility of the model with 

a real life data set is demonstrated in the conclusions. 

The article by Luboš Marek, Stanislava Hronová and Richard Hindls, 

Option for Predicting the Czech Republic's Foreign Trade Time Series as 

Components in Gross Domestic Product, analyses the time series data for the 
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foreign trade of the Czech Republic (CR), and the issue of predictions in such 

series using the SARIMA and transfer-function models. The authors’ goal is to 

propose models suitable for describing the time series of the exports and imports 

of goods and services from/to the CR and to subsequently use these models for 

predictions in quarterly estimates of the gross domestic product’s component 

resources and utilization. They suggest a class of models with time lag as suitable, 

allowing for making predictions in the time series of the CR exports and imports 

several months ahead. 

In the next article, Subjective approach to assessing poverty in Poland – 

implications for social policy, Leszek Morawski and Adrian Domitrz discuss 

the effect of adopting a particular weigh system in constructing equivalised 

household income, such as based on the OECD recommendations concerning 

such scales. Poland is an interesting case for applying an alternative, subjective 

approach to calculating equivalent scales due to relatively large average size of  

households. The overall poverty rates for the two approaches are not distinctly 

different but they lead to significantly different distributions of poverty. For 

instance, the subjective approach suggests that one-person households and not 

large families should be considered most exposed to risk of material poverty. 

Since the relative positions of different policy-relevant groups of households in 

the distribution of income differ significantly, the respective programs of social 

transfers may need to be revised in order to be better targeted.  

The section other articles includes a conference paper (presented at the 

Multivariate Statistical Analysis conference held in Łódź, 2016) by Marek 

Walesiak and Andrzej Dudek, Selecting the Optimal Multidimensional Scaling 

Procedure for Metric Data with R environment. The authors start with an 

observation that the main decision problem of multidimensional scaling (MDS) 

procedure for the metric measurement data consists in making selection of the 

method of normalization of the values of the variables and of distance measure, 

and finally of a MDS model. The article proposes a solution that allows choosing 

the optimal multidimensional scaling procedure out of 18 normalization methods  

included in the analysis and of 5 distance measures for 3 types of MDS models 

using two criteria: Kruskal’s Stress-1 fit measure and Hirschman-Herfindahl HHI 

index. An empirical example provides illustration of the proposed procedure. 

Finally, there are two articles in the last section, research communicates and 

letters. In Sample Allocation in Estimation of Proportion in a Finite Population 

Divided into Two Strata Wojciech Zieliński and Dominik Sieradzki discuss the 

problem of estimating a proportion of objects with a particular attribute in a finite 

population Classical estimator is compared with the estimator, which uses the 

information that the population is distributed among two strata. In the numerical 

example it was shown that variance of stratified estimator may be smaller by one-

fourth compared to variance of classical estimator.  
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Remarks of the Estimation of Position Parameters by Czesław Domański 

concludes the issue. The author puts under reconsideration the classic problem of 

the level of accuracy of estimation of random variable parameter due to the lack 

of an unambiguous procedure to determine the scope of the distance between the 

value of an estimator and the real value of parameter. Some suggestions on how 

to deal with the situation when an obtained interval is too wide are provided.  

 

 

Włodzimierz Okrasa 

Editor  
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POPULATION VARIANCE ESTIMATION USING 

FACTOR TYPE IMPUTATION METHOD 

RANJITA PANDEY1, KALPANA YADAV2 

ABSTRACT 

We propose a variance estimator based on factor type imputation in the presence 

of non-response. Properties of the proposed classes of estimators are studied and 

their optimality conditions are derived. The proposed classes of factor type ratio 

estimators are shown to be more efficient than some of the existing estimators, 

namely, the usual unbiased estimator of variance, ratio-type, dual to ratio type 

and ratio cum dual to ratio estimators. Their performances are assessed on the 

basis of relative efficiencies. Findings are illustrated based on a simulated and 

real data set. 

Key words: auxiliary information, mean squared error, simple random sampling 

without replacement (SRSWOR). 

1. Introduction 

Estimation of population variance is of significant importance in the theory of 

estimation. Efficient variance estimation under auxiliary information has been 

widely discussed by various authors such as Das and Tripathi (1978), 

Srivenkatramana (1980), Isaki (1983), Singh et al. (1988), Singh and Katyar 

(1991), Rao and Shao (1992), Sarndal (1992), Agrawal and Sthapit (1995), Rao 

and Sitter (1995), Garcia and Cebrain (1996), Arcos et al. (2005), Kadilar and 

Cingi (2006, 2006a), Solanki and Singh (2013) and Yadav & Kadilar (2013).  

A common aspect of data collection is the inability to record all items under a 

response variable. Amputing incomplete observations from the collected or 

available data and proceeding with statistical analysis of the restricted complete 

data set is the most common and convenient approach of handling missing data. 

However, the process of replacing missing items with plausible values called 

imputation is popular among data analysts as it enables construction of standard 

programs based on some probability sampling models, for substituting missing 

data with a point estimate. Such models have potential to reduce bias and improve 

                                                           
1 Department of Statistics, University of Delhi, New Delhi. E-mail: ranjitapandey111@gmail.com. 
2 Department of Statistics, University of Delhi, New Delhi. E-mail: kalpana22yadav@gmail.com. 
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precision to a significant extent in comparison with the amputation approach. 

Rubin (1976), Fay (1991) and Rao (1996) have reviewed various imputation 

techniques.  

Large sample surveys are mostly accompanied either by unit non-response, 

where a sampled subject refuses/is unable to provide information for some 

variables, or item non-response, where several units on the study variable are 

missing. Variance estimation after imputation has been studied by Kim et al. 

(2001), Raghunath and Singh (2006), Beaumont at al. (2011) and Singh and 

Solanki (2009-2010) using auxiliary information in the presence of random non-

response. In the present paper, an improved factor type (FT) estimator of 

population variance based on an auxiliary variable is proposed, under non-

response. Our work is motivated by the theoretical properties of FT estimator 

introduced by Singh and Shukla (1987).    

2. Notations and estimators in literature 

Let  N,.....,,  2 1  be a finite population of N identifiable units. Let 

  Nixy ii ,...,3,2,1   ,,   be the observed value of study variable and auxiliary 

variable for ith individual from a finite population  . From a finite population of 

N identifiable units, a simple random units sample, s, of size n is drawn without 

replacement. r denotes the number of responding units in the sample s. The 

remaining (n-r) units are non-responding units. 

The following notations for the population are defined for study and auxiliary 

variables respectively: :
1

,
1

11





N

i

i

N

i

i X
N

XY
N

Y  

Population mean of the variables Y and X; 



n

i

i

n

i

i x
n

xy
n

y
11

1
,

1 represent sample 

means of the study variable y and the auxiliary variable x respectively; 

    :
1

1
,

1

1

1

22

)(

1

22

)( 




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S  population variances of variables 

Y and X;
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22
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.
N

n
f   B(.) represents bias and M (.) represents mean squared error of the 

respective estimators.  
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To obtain the bias and M.S.E. of existing and suggested estimators we 

additionally consider 

. 

such that       0;210  eEeEeE        ,1eE,1eE 041

2

1401

2

0   MM

   ;1eE 042

2

2  M

           1,1,1
222200422122110
  MeeEMeeEMeeE    where

,
11

1
Nr

M  ,
11

2
Nn

M   

The variance of the usual unbiased variance estimator 
2

)(NyS is given by: 

     140

4

1

2  NyNy SMSV          (1) 

Isaki (1982) (hereafter IK) discussed a ratio type variance estimator for 

estimating population variance and its properties. Under non-response we write 

2

)(

2

)(2

)(

rx

Nx

ryIK
s

S
st              (2) 

The estimator IK
t is found to be biased and its M.S.E. is given by: 

          1211
224004
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NyIK
SMtM     (3) 

Srivenkataramana and Tracy (1980) (hereafter SV) have given a dual to ratio 

estimator for variance estimator in sample surveys. Under non-response it can be 

modified as: 

 
   
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The M.S.E. of SV
t  is given by: 
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   (5) 

Yadav and Kadilar (2013) (hereafter YK) proposed the ratio-cum-dual to ratio 

type estimator for the population variance of the study variable. The ratio-cum-

dual type variance estimator under non-response is given by: 
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The M.S.E. of YK
t  is given by: 
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The M.S.E. of the proposed estimator is minimized for the optimum value  as 
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3. Proposed estimators and their properties 

Singh and Shukla (1987) proposed a family of FT ratio estimator of 

population mean for complete sample case. Unbiased, ratio, product and dual to 

ratio estimators are its special cases. An advantage of one-parameter class of 

estimators is that it requires only knowledge of the quantity 
x

y

C

C


 for 

making the best selection of the parameter. Population correlation 
coefficient between variables Y and X is represented by  and the respective 

coefficient of variation by yC and xC . The value of function 

x

y

C

C
  does not 

fluctuate considerably in repeated surveys and therefore could be guessed 

accurately from previous data or past experience or a pilot survey or otherwise 

[(Murthy (1967); Reddy, (1978)]. The proposed variance estimator is constructed 

as a function of some factors of the parameter termed as Factor-Type (F-T) 

estimator. This process of factorization makes it possible to yield more than one 

optimum value of the parameter so that at the same time bias of the estimator can 

also be controlled. The new class of FT ratio estimator for population variance of 

the study variable under non-response is proposed as: 

            (9) 
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fBssCA
k




   and 

 
     

     

.
22

22

3

rxNx

rxNx

CsSBfA

fBsSCA
k




  

where,   ,21  kkA   ,41  kkB    ,432  kkkC  k0 . 

Assume, 
CfBA

C

CfBA

fB





 21  , and 21  

 

1

1

04

22








K

    3,2,1;2  ikst
irySSi

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The properties of the proposed family of estimators are presented through the 

following theorems: 

Theorem 1:  

(i) The estimator 1SS
t  for population variance could be written in terms of 

 as 

   
020

2

22

2

1 2
1 eeeeeSt

NySS
           (10) 

with         11
042222

2

1
 MStB

NySS
            (11) 

and  M.S.E.           1121
042222401

4

1
2   MMMStM

NySS  
 (12) 

   The corresponding minimum M.S.E. at 
 
 

P





1

1

04

22




   is given by 

    

    
  














1

111

04

2

222044014

min1


 MM
StM

NySS
     (13) 

(ii) The estimator 2SS
t  in terms of 2,1,0; iei

is 

  
21

2

1020

2

21

2

2120

2

2 1
1 eeeeeeeeeeeSt

NySS
    (14) 

with          11
0422221

2

2
 MMStB

NySS
        (15) 

and            1121
04223401

4

2
  MMStM

NySS
      (16) 

   The minimum mean squared error of 
2SS

t  at 
 
 

P





1

1

04

22




  is given by 

    

    
  














1

111

04

2

223044014

min2


 MM
StM

NySS
    (17) 

(iii) The estimator 
3SS

t  for population variance could be written in terms of  

2,1,0; iei
 as     (18) 

with         11
042221

2

3
 MStB

NySS            (19) 

and           1121
0422401

4

3
2  MStM

NySS
       (20) 

   The minimum M.S.E. of 
3SS

t  at 
 
 

P





1

1

04

22




  is given by 

2,1,0; iei

  
10

2

210

2

3 1
1 eeeeeSt

NySS
 
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    

    
  














1

111

04

2

220440

1

4

min3



MStM

NySS
       (21) 

Proof:   

Substituting the value of   3,2,1;i ik  and using the concept of large 

sample approximation, we get 

     1
2

2
0

2

1 













eCBfCA

BefBfCA
eSt NySS

    -122210

2 111 eeeS Ny    

        1-

122122110

2

21

12
0

2

2 111  1 eeeeeS
BefeCCBfA

BefeCCBfA
eSt NyNySS  














 
     1

1

1
0

2

3 













eCBfCA

BefBfCA
eSt NySS     -112110

2 111 eeeS Ny    

Using Taylor’s expansion and ignoring terms of  1no  and higher order leads 

to equations (10), (14) and (18). 

Since we know that  

Therefore,  

     21

2

1020

2

21

2

2120

2

2 1
eeeeeeeeeeeEStB NySS    

and       
10

2

210

2

3 1
eeeeeEStB

NySS
   

Substituting the values of 2,1,0; iei
 using section 2, and simplifying, 

equations (11), (15) and (19) are obtained.  

Also,  

Substituting the values of estimators and solving it, and ignoring higher order 

terms, we get  

     2

2

2

20

2

0

4

1 2 eeeeEStM NySS    

     2

1

2

21

22

2

2

1020

2

0

4

2 222 eeeeeeeeeEStM NySS    

     2

1

2

10

2

0

4

3 2 eeeeEStM NySS    

    .3,2,1;2

3
 ikst

irySS


     .3,2,1;2  iStEtB NySSiSSi

     20

2

220

2

1 2
eeeeeEStB NySS  

     .3,2,1;
22  iStEtM

NySSiSSi
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Substituting the expectations values of 
0e 1,e and 2e  and solving it, leads to 

equations (12), (16) and (20). 

Now, differentiating these expressions with respect to P  and then equating to 

zero yields 
 

0
dP

tMd SSi  

Substituting the value of P in equation (12), (16) and (20), corresponding 

expressions for the minimum M.S.E.s are obtained. 

Remark 1: Multiple choices of k: 

The optimality condition   provides the equation 

                 0244224526523981 23  fPfkffPkffPkP ,  

(22) 

which is a cubic equation in k . Its roots are represented by 321  , , kkk (say), for 

which mean squared error is optimum. The best choice criterion for k , which 

controls the quantum of bias in the corresponding estimator, is outlined in the 

following algorithm: 

Step I: Compute  

Step II: For given i, choose jk as     
jj kSSi

j
kSSi

tBtB
3,2,1

min


 .  

Remark 2: Factor-type ratio estimator (Singh and Shukla (1987)) for population 

variance of the study variable (without imputation) is defined as: 

 
  22

22

xx

xx
SS

CsSBfA

fBsSCA
t




            (23) 

M.S.E. and minimum M.S.E. of estimator SSt  at 
 
 1

1

04

22









 are shown 

below: 

        1211 2204401

4 2  MStM ySS
    (24) 

  
    

  













1

111

04

2

220440
1

4

min 


MStM ySS

     (25) 

 
 1

1

04

22









P

P 21 

  3,2,1 ,   jifortB
jkSSi



382                                                                R. Pandey, K. Yadav: Population variance… 

 

 

4. Comparisons 

On pair-wise comparison of expressions for M.S.E.s (from section 2 and 

section 3) (i) among the proposed estimators (ii) between the proposed and some 

of the existing estimators, we obtain theoretical conditions of superiority, which 

are shown in Table 1 and Table 2. 

Table 1. Comparison within Proposed estimators 

Estimators 

(Minimum 

M.S.E.) 

More efficient than (Minimum 

M.S.E.) 
Condition 

2SS
t  

1SS
t  

122   

3SS
t  

3SS
t  

2SS
t  

 

Table 2. Comparison within Proposed estimators and Traditional estimators 

Estimators 

(Minimum 

M.S.E.) 

More efficient than (Minimum 

M.S.E.) 
Condition 

1SSt  

 
2

NyS  

122   

2SSt  

3SSt  

1SSt  

IKt  

  A
M

M

2

12

22 1   

2SSt    A
M

M

3

12

22 1   

3SSt    A
2

22 1  

1SSt  

SVt  

  B
M

M

2

12

22 1   

2SSt    B
M

M

3

12

22 1   

3SSt    B
2

22 1  

1SSt  

YKt  

122   

2SSt  122   

3SSt  is equal to 

where       1121 042204  A ;       1121 042204   ggB . 
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5. Simulation study 

An artificial population [Source: Shukla and Thakur (2008)] of size N = 200 

containing values of main variable Y and auxiliary variable X. 

Parameters of the population are given as below: 

Y  42.485; X 18.515; 2

yS 199.0598;       2

xS 48.5375;   0.8652;  

f 0.3;  22 2.47; 04 3.74;  40 2.56,     n = 60,  r = 50 

For the above data set, equation (22) provides three k -values: 1k  1.54; 

2k 2.94; 3k 6.67 

The simulation process comprises the following steps: 

Step 1: Draw a random sample of size n = 60 from the population of N  200 by 

SRSWOR. 

Step 2: Discard 10 randomly chosen units from each sample corresponding to Y. 

Step 3: Impute these discarded units of Y by the proposed methods and the 

available methods separately. Compute the value of different estimators and 

also for the proposed estimators. 

Step 4: Repeat the above steps 30,000 times, which provides multiple sample-

based estimates  

Step 5: Bias of 1̂t  is obtained by 

. 

Step 6: Mean squared error of ŷ  is computed by  

. 

Step 7: Percentage Relative efficiency (PRE) is computed from equation (26) and 

shown in Table 5: 

  
 

 
;4,3,2,1:100,

3,2,1;







j
tM

M
tPRE

iSSi

jSSi

    

(26)

 

such that   represents different existing methods. 

Bias and M.S.E.s of the existing and proposed estimators computed from 

30,000 repeated samples drawn by SRSWOR from population N  200 are 

shown in Table 3. 

     
.ˆ........ˆ,ˆ

000,3021 222 sss
ttt

      



000,30

1

22

000,30

1
ˆ

2

i

Nyrys
SstB

      
2000,30

1

22

000,30

1
ˆ

2 



i

Nyrys
SstM
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Table 3.  Bias, Mean Squared Error of Different Suggested and Traditional 

Estimators 

Traditional 

Estimators 
Bias M.S.E. 

Suggested 

Estimators 
 Bias M.S.E. 

 
2

NyS  -35.82 2417.27 

1SSt  

55.11 k  7.03 1572.64 

IKt  -40.51 1914.42 94.22 k  3.32 1800.42 

SVt  -45.04 2130.76 67.63 k  6.48 1602.47 

YKt  -43.86 1934.08 

2SSt  

55.11 k  20.61 1067.79 

   94.22 k  20.37 1047.37 

   67.63 k  20.57 1064.34 

   

3SSt  

55.11 k  1.27 1262.77 

   94.22 k  -3.79 1511.06 

   67.63 k  0.52 1293.07 

Computational results for efficiency loss due to imputation is measured as 

 
 
 SS

SSi
i

tM

tM
LI  such that,  SSitM  and  SStM  are the M.S.E.s of the proposed 

estimators with and without imputation (from Remark 2). The losses are reported 

in Table 4. 

Table 4. Loss due to Imputation 

Optimum k  55.11 k  94.22 k  67.63 k  

 1LI  0.74 0.72 0.75 

 2LI  0.68 0.75 0.70 

 3LI  0.75 0.72 0.75 

 



STATISTICS IN TRANSITION new series, September 2017 

 

385 

Table 5.  P.R.E. of suggested estimators with respect to different Traditional 

estimators 

Estimators 
Optimum 

k values 
  

1

2 , SSiNy tSPRE   
2

, SSiIK ttPRE   
3

, SSiSV ttPRE   
4

, SSiYK ttPRE  

1SSt  

55.11 k  153.71 121.73 135.49 122.98 

94.22 k  134.26 106.33 118.35 107.42 

67.63 k  150.85 119.47 132.97 120.69 

2SSt  

55.11 k  226.38 179.29 199.55 181.13 

94.22 k  230.79 182.78 203.44 184.66 

67.63 k  227.11 179.87 200.19 181.72 

3SSt  

55.11 k  191.43 151.61 168.74 153.16 

94.22 k  159.97 126.69 141.01 127.99 

67.63 k  186.94 148.05 164.78 149.57 

 

5.1. Values of k  for Unbiased Estimator .3,2,1; itSSi  

For unbiased estimator, 

  03,2,1; iSSitB  

       011 0422221      (27) 

Case 1:  21   = 0 0





CfBA

CfB
0 CfB   

         043241  kkkkkf  

         03214  kkkfk               (28) 

From (27) either   04 k 4'

1  kk  (29) 

or     0652  fkfk  

the remaining two roots of k are 

     
2

6455
2

'

2




fff
k       (30) 

     
2

6455
2

'

3




fff
k      (31) 

       011 04222

2  NyS
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On putting the value of f for the above data set, we get 

'

2k 3.5                (32) 

'

3k 1.8                (33) 

Case 2:       011 04222              (34) 

Since we know that 02 



CfBA

C
 . Then, on equating it with 

 
 1

1

04

22
2









 , we get a cubic equation in the form of k as follows: 

     2

222204

3

0422 1819 kfk    

       021422243152623 222204220422   fkf  

(35) 

On putting the values of 22 , 04  and f we get three different values of . 

'

4k 1.72, '

5k 2.60, '

6k 6.19         (36) 

6. Real data analysis 

A real data of size N = 66 is taken from Indian Institute of Sugarcane 

Research, which comprises annual production data (in ‘000 tonnes) represented as 

the auxiliary variable X and the corresponding cultivation area (in ‘000 ha.) 

represented as the study variable Y, over the time period of 1950-51 to 2015-16.   

Parameters of the above population are given as below: 

Y  22.30; X 193558.80; 2

yS 2278933.68; 2

xS 8658527591;  0.9904;  

f 0.3;   22 1.23;   04 1.77;   40 1.35,   n = 20,   r = 10 

For the above data set, equation (22) provides three k -values: 1k  1.68, 

2k 3.09 and 3k  5.23. Initially we selected 10,000 independent random 

samples of size n =20 from the above population of size N  66 by SRSWOR.  

The empirical bias and M.S.E.s of the existing and proposed estimators 

computed from these repeated samples are shown in Table 6. 

 
 1

1

04

22
2











k
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Table 6.  Bias, Mean Squared Error of Different Suggested and Traditional 

 Estimators 

Traditional 

Estimators 
Bias M.S.E. 

Suggested 

Estimators 
 Bias M.S.E. 

 
2

NyS  -1.03E+06 1.24E+12 

1SSt  

68.11 k  -1.01E+06 1.03E+12 

IKt  -1.34E+06 1.12E+12 09.32 k  -1.02E+06 1.05E+12 

SVt  -1.04E+06 1.08E+12 23.53 k  -1.02E+06 1.05E+12 

YKt  -1.12E+06 1.27E+12 

2SSt  

68.11 k  -1.03E+06 1.04E+12 

   09.32 k  -1.03E+06 1.04E+12 

   23.53 k  -1.02E+06 1.02E+12 

   

3SSt  

68.11 k  -1.01E+06 1.03E+12 

   09.32 k  -1.02E+06 1.05E+12 

   23.53 k  -1.01E+06 1.04E+12 

Table 7. Loss due to Imputation 

Optimum k  68.11 k  09.32 k  23.53 k  

 1LI  0.70 0.72 0.75 

 2LI  0.77 0.76 0.70 

 3LI  0.73 0.77 0.75 

Table 8.  P.R.E. of suggested estimators with respect to different Traditional 

 estimators 

Estimators 
Optimum 

k values 
  

1

2 , SSiNy tSPRE   
2

, SSiIK ttPRE   
3

, SSiSV ttPRE   
4

, SSiYK ttPRE  

1SSt  

55.11 k  120.39 108.74 104.85 123.30 

94.22 k  118.10 106.67 102.86 120.95 

67.63 k  118.10 106.67 102.86 120.95 

2SSt  

55.11 k  119.23 107.69 103.85 122.12 

94.22 k  119.23 107.69 103.85 122.12 

67.63 k  121.57 109.80 105.88 124.51 

3SSt  

55.11 k  120.39 108.74 104.85 123.30 

94.22 k  118.10 106.67 102.86 120.95 

67.63 k  119.23 107.69 103.85 122.12 
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6.1 Values of k  for Unbiased Estimator .3,2,1; itSSi  

 For unbiased estimator,   03,2,1; iSSitB  

       011 0422221        …(37) 

Case 1:  21   = 0 0





CfBA

CfB 0 CfB   

        043241  kkkkkf              

        03214  kkkfk             (38) 

From (28) either   04 k 4'

1  kk               (39) 

or      0652  fkfk  

the remaining two roots of k are 

     
2

6455
2

'

2




fff
k        (40) 

     
2

6455
2

'

3




fff
k        (41) 

 On putting the value of f for the above data set, we get 

'

2k 3.5                   (42) 

'

3k 1.8                   (43) 

Case 2:       011 04222              (44) 

Since we know that 02 



CfBA

C
 . Then, on equating it with 

 
 1

1

04

22
2









 , we get a cubic equation in the form of k as follows: 

     2

222204

3

0422 1819 kfk     

       021422243152623 222204220422   fkf  

(45) 

On putting the values of 22 , 04  and f we get two different values of . 

'

4k 0.72 and '

5k 7.53            (46) 

       011 04222

2  NyS

 
 1

1

04

22
2











k
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7. Conclusion 

The present paper suggests three new FT variance estimators under item non-

response on the study variable, in a bivariate sample data. FT estimator, a 

generalized class of estimators for ratio, product, dual to ratio and the usual 

unbiased estimator are found to be more efficient than some existing estimators. 

The FT variance estimator maintains an optimum balance between reduction of 

bias and that of reducing M.S.E through k. We can choose k values for different 

pair of  Pf ,  values. Thus, the FT variance estimator could be made almost 

unbiased by an appropriate choice of multiple available values. 

Table 5 and Table 8 show P.R.E. of the suggested estimators with respect to 

different traditional estimators based on simulated and real data. It is observed 

from these tables that the proposed FT estimators prove to be better than the usual 

unbiased, ratio, dual to ratio and ratio cum dual to ratio estimators, under non-

response. The proposed estimator 
2SSt  performs best among the three proposed 

estimators from the point of view of increasing efficiency. The three proposed FT 

type estimators are the best estimators in the sense of having the largest PRE 

among all the prevalent estimators discussed here. 
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BAYESIAN MODEL AVERAGING AND JOINTNESS 

MEASURES: THEORETICAL FRAMEWORK AND 

APPLICATION TO THE GRAVITY MODEL OF TRADE 

Krzysztof Beck1 

ABSTRACT 

The following study presents the idea of Bayesian model averaging (BMA), as 

well as the benefits coming from combining the knowledge obtained on the basis 

of analysis of different models. The BMA structure is described together with its 

most important statistics, g prior parameter proposals, prior model size 

distributions, and also the jointness measures proposed by Ley and Steel (2007), 

as well as Doppelhofer and Weeks (2009). The application of BMA is illustrated 

with the gravity model of trade, where determinants of trade are chosen from the 

list of nine different variables. The employment of BMA enabled the 

identification of four robust determinants: geographical distance, real GDP 

product, population product and real GDP per capita distance. At the same time 

applications of jointness measures reveal some rather surprising relationships 

between the variables, as well as demonstrate the superiority of Ley and Steel’s 

measure over the one introduced by Dopplehofer and Weeks. 

Key words: Bayesian model averaging, jointness measures, multi-model 

inference, gravity model of trade. 

1. Introduction 

In economics, a situation often arises when a vast number of different theories 

attempt to explain the same phenomenon. Although these theories may 

complement each other, it is very common that they contradict one another or are 

even mutually exclusive. In such cases, basing empirical verification on one or a 

few specifications of an econometric model turns out to be insufficient. Moreover, 

researchers applying varying specifications will arrive at different, very often 

incoherent or even contradictory, conclusions. Testing hypotheses on the basis of 

various economic model specifications can result in a situation in which a variable 

that is statistically significant in one research specification, may prove to be not 

significant in another one. 

                                                           
1 Lazarski University. E-mail: beckkrzysztof@gmail.com. 
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Brock and Durlauf (2001) draw attention to a problem they called theory 

open-endedness. It takes place in a situation where two or more competing 

models propose different explanations of the same phenomenon, and each of the 

variables proposed as an explanation can be expressed using a different measure. 

Moreover, some of the theories can complement each other, while other serve as 

substitutes or even contravene each other. In such a situation, inference based on a 

single model can lead to contradictory or false conclusions. 

The above-mentioned problem is clearly present in the context of the research 

into the determinants of international trade. The vast body of trade theories offers 

a great variety of explanations for international trade flows, which can be seen in 

any international economics textbook. What is more, there is considerable dispute 

over potential effects of participation in free trade agreements as well as monetary 

unions on international trade. Even though the gravity model of trade has been the 

backbone of international trade empirics for over half the century, it is still rather 

unclear which variables should accompany the core of the model. The literature is 

full of competing specifications without much attention paid to robustness checks. 

For these reasons, this paper pertains to the transition from statistical 

relevance to basing inference on the robustness of results against a change in the 

specifications of a model. However, in such a case it is necessary to apply 

inference and combination of knowledge coming from different model 

specifications. In such a situation, it is possible to apply BMA, i.e. Bayesian 

Model Averaging. Through the estimation of all the models within a given set of 

data, this procedure allows one to determine which variables are robust regressors 

regardless of the specification. It also allows one to unequivocally establish the 

direction and strength given regressors possess, and it makes it possible to choose 

the best models of all possible configurations. Furthermore, using the jointness 

measures that are available within the BMA framework enables the determination 

of the substitutional and complementary relationships between the studied 

variables. 
Therefore, for the above-mentioned reasons, BMA and jointness measures are 

the subject of this study. Theory and structure of Bayesian model averaging is 

presented in the first section while in the second one jointness measures are 

discussed. The third section provides an example of BMA application in the 

analysis of the gravity model of trade and comprises four sub-sections. In the first 

one, the gravity model of trade is presented, whereas the second shows the 

variables employed in the verification of the model. The third sub-section presents 

the results of applying BMA, and the fourth one demonstrates the results of the 

analysis using jointness measures. The last section provides the summary and 

conclusions of the article. 
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2. BMA – Bayesian Model Averaging 

For the space of all models, unconditional posterior distribution of coefficient 

β is given by: 
 

𝑃(𝛽|𝑦) =∑𝑃(𝛽|𝑀𝑗, 𝑦) ∗ 𝑃(𝑀𝑗|𝑦)                                    (1)

2𝐾

𝑗=1

 

 

where: y denotes data, j (j=1, 2,..,m) is the number of the model, K  being the total 

number of potential regressors, 𝑃(𝛽|𝑀𝑗, 𝑦)is the conditional distribution of 

coefficient β for a given model Mj, and 𝑃(𝑀𝑗|𝑦) is the posterior probability of the 

model. Using the Bayes' theorem, the posterior probability of the model (PMP – 

Posterior Model Probability) 𝑃(𝑀𝑗|𝑦) can be rendered as (Błażejowski et al., 

2016): 
 

𝑃𝑀𝑃 = 𝑝(𝑀𝑗|𝑦) =
𝑙(𝑦|𝑀𝑗) ∗ 𝑝(𝑀𝑗)

𝑝(𝑦)
,                                   (2) 

 

where PMP is proportional to the product of 𝑙(𝑦|𝑀𝑗) – model specific marginal 

likelihood – and 𝑃(𝑀𝑗) – model specific prior probability – which can be written 

down as 𝑃(𝑀𝑗|𝑦) ∝ 𝑙(𝑦|𝑀𝑗) ∗ 𝑃(𝑀𝑗). Moreover, because: 𝑃(𝑦) =

∑ 𝑙(𝑦|𝑀𝑗) ∗ 𝑃(𝑀𝑗)
2𝐾

𝑗=1 , weights of individual models can be transformed into 

probabilities through the normalization in relation to the space of all 2K models:  
 

𝑃(𝑀𝑗|𝑦) =
𝑙(𝑦|𝑀𝑗) ∗ 𝑃(𝑀𝑗)

∑ 𝑙(𝑦|𝑀𝑗) ∗ 𝑃(𝑀𝑗)
2𝐾
𝑗=1

.                                     (3) 

 

Applying BMA requires specifying the prior structure of the model. The value 

of the coefficients β is characterized by normal distribution with zero mean and 

variance σ2Voj, hence: 
 

𝑃(𝛽|𝜎2,𝑀𝑗)~𝑁(0, 𝜎
2𝑉𝑜𝑗).                                              (4) 

 

It is assumed that the prior variance matrix Voj is proportional to the 

covariance in the sample: (𝑔𝑋𝑗
′𝑋𝑗)

−1, where 𝑔 is the proportionality coefficient. 

The g prior parameter was put forward by Zellner (1986) and is widely used in 

BMA applications. In their seminal work on the subject of choosing the g prior 

Fernández et al. (2001) put forward the following rule, to choose the best g prior: 
 

𝑔 =
1

max (𝑛, 𝑘2)
,                                                         (5) 
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where 
1

𝑛
 is known as UIP – unit information prior (Kass and Wasserman, 1995), 

whereas 
1

𝑘2
 is convergent to RIC – risk inflation criterion (Foster and George, 

1994). For further discussion on the subject of g priors see: Ley and Steel (2009, 

2012); Feldkircher and Zeugner (2009); and Eicher et al. (2011). 

Besides the specification of g prior, it is necessary to determine the prior 

model distribution while applying BMA. For binomial model prior (Sala-I-Martin 

et al., 2004): 
 

𝑃(𝑀𝑗) ∝ (
𝐸𝑚

𝐾
)
𝑘𝑗

∗ (1 −
𝐸𝑚

𝐾
)
𝐾−𝑘𝑗

,                                 (6) 

 

where 𝐸𝑚 denotes the expected model size, while 𝑘𝑗 the number of covariate in a 

given model. When 𝐸𝑚 =
𝐾

2
  it turns into uniform model prior – priors on all the 

models are all equal (𝑃(𝑀𝑗) ∝ 1). Yet another instance of prior model probability 

is binomial-beta distribution (Ley, Steel, 2009): 
 

𝑃(𝑀𝑗) ∝ Γ(1 + 𝑘𝑗) ∗ Γ (
𝐾 − 𝐸𝑚

𝐸𝑚
+𝐾 − 𝑘𝑗).                           (7) 

 

In the case of binomial-beta distribution with expected model size K/2, the 

probability of a model of each size is the same ( 
1

𝐾+1
). Thus, the prior probability 

of including the variable in the model amounts to 0.5, for both binomial and 

binomial-beta prior with 𝐸𝑚 = 𝐾/2. 

Using the posterior probabilities of the models in the role of weights allows 

one to calculate the unconditional posterior mean and standard deviation of the 

coefficient 𝛽𝑖. Posterior mean (PM) of the coefficient 𝛽𝑖, independent of the space 

of the models, is then given with the following formula (Próchniak, Witkowski, 

2012): 
 

𝑃𝑀 = 𝐸(𝛽𝑖|𝑦) =∑𝑃(𝑀𝑗|𝑦) ∗

2𝐾

𝑗=1

�̂�𝑖𝑗,                                    (8) 

 

where 𝛽𝑖𝑗 = 𝐸(𝛽𝑖|𝑦,𝑀𝑗) is the value of the coefficient 𝛽𝑖 estimated with OLS for 

the model 𝑀𝑗. The posterior standard deviation (PSD) is equal to (Próchniak, 

Witkowski, 2014): 

 

𝑃𝑆𝐷 = √∑𝑃(𝑀𝑗|𝑦) ∗

2𝐾

𝑗=1

𝑉(𝛽𝑗|𝑦,𝑀𝑗) +∑𝑃(𝑀𝑗|𝑦) ∗ [�̂�𝑖𝑗 − 𝐸(𝛽𝑖|𝑦,𝑀𝑗)]
2

2𝐾

𝑗=1

,   (9) 
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where 𝑉(𝛽𝑗|𝑦,𝑀𝑗) denotes the conditional variance of the parameter for the 

model 𝑀𝑗. 
The most important statistic for BMA is posterior inclusion probability (PIP). 

PIP for the regressor 𝑥𝑖 equals: 

 

𝑃𝐼𝑃 = 𝑃(𝑥𝑖|𝑦) =∑1(𝜑𝑖 = 1|𝑦,𝑀𝑗) ∗

2𝐾

𝑗=1

𝑃(𝑀𝑗|𝑦)                    (10)  

 

where 𝜑𝑖 = 1 indicates that the variable 𝑥𝑖 is included in the model. 

PM and PSD are calculated for all models, even those whose value 𝜑𝑖 = 0, 

which means that the variable is not present. Due to that fact the researcher can be 

interested in the value of the coefficient in the models in which a given variable is 

present. For that purpose, the value of the conditional posterior mean (PMC), that 

is the posterior mean, can be calculated on condition that a variable is included in 

the model: 

 

𝑃𝑀𝐶 = 𝐸(𝛽𝑖|𝜑𝑖 = 1, 𝑦) =
𝐸(𝛽𝑖|𝑦)

𝑃(𝑥𝑖|𝑦)
=
∑ 𝑃(𝑀𝑗|𝑦) ∗
2𝐾

𝑗=1 �̂�𝑖𝑗

𝑃(𝑥𝑖|𝑦)
,               (11) 

 

whereas the conditional posterior standard deviation (PSDC) is given by: 
 

𝑃𝑆𝐷𝐶 = √
𝑉(𝛽𝑗|𝑦) + [𝐸(𝛽𝑖|𝑦)]

2

𝑃(𝑥𝑖|𝑦)
− [𝐸(𝛽𝑖|𝜑𝑖 = 1|𝑦)]

2.                     (12) 

 

Additionally, the researcher can be interested in the sign of the estimated 

parameter if it is included in the model. The posterior probability of a positive 

sign of the coefficient in the model [P(+)] is calculated in the following way: 
 

𝑃(+) = 𝑃[𝑠𝑖𝑔𝑛(𝑥𝑖)|𝑦] =

{
  
 

  
 
∑𝑃(𝑀𝑗|𝑦) ∗

 2𝐾

𝑗=1

𝐶𝐷𝐹(𝑡𝑖𝑗|𝑀𝑗),        𝑖𝑓  𝑠𝑖𝑔𝑛[𝐸(𝛽𝑖|𝑦)] = 1

1 −∑𝑃(𝑀𝑗|𝑦) ∗

2𝐾

𝑗=1

𝐶𝐷𝐹(𝑡𝑖𝑗|𝑀𝑗),   𝑖𝑓 𝑠𝑖𝑔𝑛[𝐸(𝛽𝑖|𝑦)] = −1

      

(13) 

 

where CDF denotes cumulative distribution function, while 𝑡𝑖𝑗 ≡ (�̂�𝑖/𝑆�̂�𝑖|𝑀𝑗). 
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3. Jointness measures 

All the statistics cited so far served to describe the influence of regressors on 

the dependent variable. However, the researcher should also be interested in 

relationships that emerge between the independent variables. To achieve that, one 

can utilize the measure of dependence between regressors, which is referred to as 

jointness.  
Two teams of scientists came up with jointness measures at the same time. 

The article by Ley and Steel (2007) was published first; however, in this paper the 

concept of Doppelhofer and Weeks (2009) shall be presented first due to the fact 

that Ley and Steel's article constitutes by and large the critique of Dopplehofer 

and Weeks' concepts. Measures allow the determination of the substitution and 

complementary relationships between explanatory variables. Below, the focus 

will be put only on the jointness relationships between pairs of variables. It must 

also be mentioned, however, that testing the relationships between triplets or even 

more numerous sets of variables is possible.  
We shall define posterior probabilities for the model 𝑀𝑗 as: 

 

(𝑀𝑗|𝑦) = 𝑃(𝜑1 = 𝑤1, 𝜑2 = 𝑤2, … , 𝜑𝐾 = 𝑤𝐾|𝑦,𝑀𝑗)                       (14) 

 

where 𝑤𝑖 can assume value 1 (if a variable is present in the model) and 0 if a 

variable is not present in the model. In the case of analysing two variables 𝑥𝑖 and 

𝑥ℎ the combined posterior probability of including two variables in the model can 

be expressed as follows: 
 

𝑃(𝑖 ∩ ℎ|𝑦) =∑1(𝜑𝑖 = 1 ∩  𝜑2 = 1|𝑦,𝑀𝑗) ∗

2𝐾

𝑗=1

𝑃(𝑀𝑗|𝑦).                      (15) 

 

Table 1. Points of probability mass defined on space {0,1}2 for uniform 

distribution 𝑃(𝜑𝑖 , 𝜑𝑙|𝑦). 

𝑃(𝜑𝑖 , 𝜑𝑙|𝑦) 𝜑ℎ = 0 𝜑ℎ = 1 Sum 

𝜑𝑖 = 0  𝑃(𝑖̅ ∩ ℎ̅|𝑦)  𝑃(𝑖̅ ∩ ℎ|𝑦) 𝑃(𝑖|̅𝑦) 

𝜑𝑖 = 1  𝑃(𝑖 ∩ ℎ̅|𝑦)  𝑃(𝑖 ∩ ℎ|𝑦) 𝑃(𝑖|𝑦) 

Sum 𝑃(ℎ̅|𝑦) 𝑃(ℎ|𝑦) 1 

Source: Doppelhofer, Weeks, 2009. 
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It can be thus stated that 𝑃(𝑖 ∩ ℎ|𝑦) is the sum of the posterior probability of 

the models, where variables marked by 𝑥𝑖 and 𝑥ℎ appear. Doppelhofer and Weeks 

observe that the relationships between variables𝑥𝑖 and 𝑥ℎ can be analyzed by 

comparing posterior probabilities of including these variables separately [𝑃(𝑖|𝑦) 
and 𝑃(ℎ|𝑦)] with probability of including and excluding both variables at the 

same time. The authors justify their reasoning by presenting an analysis of the 

case of a random vector (𝜑𝑖, 𝜑ℎ) of the combined posterior distribution 

𝑃(𝜑𝑖 , 𝜑𝑙|𝑦). The points of probability mass defined on space {0,1}2 are shown in 

Table 1. 
Table 1 shows distributions related to all the possible realizations of vector 

(𝜑𝑖, 𝜑ℎ). It is easy to read from the table that the marginal probability of including 

variable 𝑥𝑖 in the model can be calculated as: 
 

𝑃(𝑖|𝑦) =  𝑃(𝑖 ∩ ℎ|𝑦) + 𝑃(𝑖 ∩ ℎ̅|𝑦),                                 (16) 
 

whereas the probability of excluding the variable 𝑥𝑖 can be rendered as: 
 

𝑃(𝑖|̅𝑦) ≡ 1 − 𝑃(𝑖|𝑦) =  𝑃(𝑖̅ ∩ ℎ̅|𝑦) + 𝑃(𝑖̅ ∩ ℎ|𝑦).                    (17) 
 

If there is a correlation between variables 𝑥𝑖 and 𝑥ℎ, one should expect that 

expressions 𝑃(𝑖 ∩ ℎ|𝑦) and 𝑃(𝑖̅ ∩ ℎ̅|𝑦) will get higher values than expressions 

𝑃(𝑖 ∩ ℎ̅\y) and 𝑃(𝑖̅ ∩ ℎ|𝑦). On that basis, to follow Whittaker (2009), the authors 

observe that the natural measure of correlation between two binary random 

variables 𝜑𝑖 and 𝜑ℎ is the cross-product ratio (CPR), expressed as: 
 

𝐶𝑃𝑅(𝑖, ℎ|𝑦) =
𝑃(𝑖 ∩ ℎ|𝑦)

𝑃(𝑖 ∩ ℎ̅|𝑦)
∗
𝑃(𝑖̅ ∩ ℎ̅|𝑦)

𝑃(𝑖̅ ∩ ℎ|𝑦)
.                              (18) 

 

As the realizations of the vector (𝜑𝑖, 𝜑ℎ) for each of the variables can only 

amount to 1 or 0, 𝑃(𝑖 ∩ ℎ|𝑦) is the binomial distribution of the uniform posterior 

probability i, which can be rendered as follows: 
 

𝑃(𝜑𝑖 , 𝜑ℎ|𝑦) = 𝑃(𝑖 ∩ ℎ|𝑦)
𝜑𝑖𝜑ℎ ∗ 𝑃(𝑖 ∩ ℎ̅|𝑦)

𝜑𝑖(1−𝜑ℎ) ∗ 

 ∗ 𝑃(𝑖̅ ∩ ℎ|𝑦)(1−𝜑𝑖)𝜑ℎ ∗ 𝑃(𝑖̅ ∩ ℎ̅|𝑦)
(1−𝜑𝑖)(1−𝜑ℎ)                            (19) 

 

Logarithmized and put in order, the expressions take the following form: 
 

𝑙𝑛[𝑃(𝜑𝑖, 𝜑ℎ|𝑦)] = 𝑙𝑛[𝑃(𝑖̅ ∩ ℎ̅|𝑦)] + 𝜑ℎ𝑙𝑛 [
𝑃(𝑖̅ ∩ ℎ|𝑦)

𝑃(𝑖̅ ∩ ℎ̅|𝑦)
] + 

            +𝜑𝑖𝑙𝑛 [
𝑃(𝑖 ∩ ℎ̅|𝑦)

𝑃(𝑖̅ ∩ ℎ̅|𝑦)
] + 𝜑𝑖𝜑ℎ𝑙𝑛 [

𝑃(𝑖 ∩ ℎ)

𝑃(𝑖 ∩ ℎ̅\|)
∗
𝑃(𝑖̅ ∩ ℎ̅|𝑦)

𝑃(𝑖̅ ∩ ℎ\|)
]             (20) 
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The independence between variables 𝑥𝑖 and 𝑥ℎ is possible if and only if 

𝑙𝑛[𝑃(𝜑𝑖 , 𝜑ℎ|𝑦)] is additive for 𝑃(𝜑𝑖|𝑦) and 𝑃(𝜑ℎ|𝑦). Independence can 

therefore occur if and only if the natural logarithm of CPR is 0, which means CPR 

equals 1. 
On that basis, Doppelhofer and Weeks derive their jointness measure, which 

they define as: 

𝐽𝐷𝑤(𝑖ℎ) = 𝑙𝑛[𝐶𝑃𝑅(𝑖, ℎ|𝑦)] = 𝑙𝑛 [
𝑃(𝑖 ∩ ℎ|𝑦)

𝑃(𝑖 ∩ ℎ̅|𝑦)
∗
𝑃(𝑖̅ ∩ ℎ̅|𝑦)

𝑃(𝑖̅ ∩ ℎ|𝑦)
] = 

           = 𝑙𝑛 [
𝑃(𝑖|ℎ, 𝑦)

𝑃(𝑖|̅ℎ, 𝑦)
∗
𝑃(𝑖|̅ℎ̅, 𝑦)

𝑃(𝑖|ℎ̅, 𝑦)
] = ln[𝑃𝑂𝑖|ℎ ∗ 𝑃𝑂𝑖|̅ℎ̅].                          (21) 

 

The expression 𝑙𝑛[𝑃𝑂𝑖|ℎ ∗ 𝑃𝑂𝑖|̅ℎ̅] is the natural logarithm of the product of 

two quotients of posterior odds, where 𝑃𝑂𝑖|ℎ indicates posterior odds of including 

the variable 𝑥𝑖 to the model on condition that 𝑥ℎis included, while 𝑃𝑂𝑖|̅ℎ̅ indicates 

posterior odds of excluding the variable 𝑥𝑖 from the model on condition that the 

variable 𝑥ℎ is excluded. 
At this moment, it is worth pointing out that if the probability product of 

including and excluding both variables [(𝑃(𝑖 ∩ ℎ|𝑦) ∗ 𝑃(𝑖̅ ∩ ℎ̅|𝑦)] is greater than 

the probability product of including each of the variables one at a time [𝑃(𝑖 ∩

ℎ̅|𝑦) ∗ 𝑃(𝑖̅ ∩ ℎ|𝑦)], then the logarithm assumes positive values. Thus, for the 

positive values of the measure, complementary relationship has to occur: models 

that include both variables at the same time or reject both variables at the same 

time are characterized by the highest posterior probability. If the product of 

probabilities of including the variables separately is greater than the product of 

including both or neither at the same time, the logarithm takes negative values. In 

such an event, a substitutional relationship occurs. To sum up, Doppelhofer 

and Weeks' jointness measure assumes positive values if there is a complementary 

relationship between variables, whereas it assumes negative values when this 

relationship is of substitutional character. 
Ley and Steel (2007) set out to develop a jointness measure that would 

possess the following characteristics: 

1) Interpretability – a measure should have a formal statistical or intuitive 

interpretation. 

2) Calibration – values of a measure should be determined on a clearly defined 

scale based on formal statistical or intuitive interpretation. 

3) Extreme jointness – in a situation when two variables appear in all the 

analyzed models together (e.g. in the case of using MC3 methods), the 

maximum value of jointness measure should occur; 

4) Definability – jointness should be defined always if at least one of the 

considered variables is characterized by positive inclusion probability. 
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Ley and Steel claimed that Doppelhofer and Weeks' jointness measure is 

faulty as it is not defined in a situation when both regressors are included in all 

models and when one of the regressors is not taken into consideration in any of 

the models. Moreover, when the probability of including a variable in the model 

approaches 1, then the value of the measure is by and large dependent on the limit 

of the expression [𝑃(𝑖̅ ∩ ℎ̅|𝑦)]/[ 𝑃(𝑖̅ ∩ ℎ|𝑦)]. This means that a few models, 

excluding the variable 𝑥𝑖, that are characterized by a very low probability can 

strongly influence the value of the measure: both in the direction of 0 (if they 

include the variable 𝑥ℎ) or ∞ (if they do not include the variable 𝑥ℎ). Thus, the 

measure 𝐽𝐷𝑤(𝑖ℎ) does not contain features 1) and 4). 
What is more, the authors pointed out that the interpretation of Doppelhofer 

and Weeks' measure is not clear enough and, due to this fact, they proposed an 

alternative measure. This measure is the ratio of probability of including two 

variables simultaneously to the sum of probabilities of including each of the 

variables separately, with the exclusion of the probability of including two 

variables at the same time. This measure meets all the criteria laid out by the 

authors. Ley and Steel's jointness measure is given by: 
 

                𝐽𝐿𝑆(𝑖ℎ) = 𝑙𝑛 [
𝑃(𝑖 ∩ ℎ|y)

𝑃(𝑖 ∩ ℎ̅|𝑦) + 𝑃(𝑖̅ ∩ ℎ|𝑦)
]                      

= 𝑙𝑛 [
𝑃(𝑖 ∩ ℎ|𝑦)

𝑃(𝑖|𝑦) + 𝑃(ℎ|𝑦) − 2𝑃(𝑖 ∩ ℎ|𝑦)
].                           (22) 

 

The advantage of this measure is its interpretative clarity. The expression 

inside the natural logarithm represents the quotient of posterior odds of models 

including both variables to the models including each of them separately. Again, 

the logarithm of this expression takes positive values if the probability of the 

models including both variables is dominant, which testifies to the 

complementary relationship. The measure takes negative values if posterior odds 

of the models including variables separately are higher than in the case where 

variables appear in the model simultaneously, which testifies to a substitutional 

relationship. 
Doppelhofer and Weeks calculated the limit values of jointness measures, 

which allow qualifying variables to one of five categories. These values also hold 

in the case of Lay and Steel's jointness measure. The limit values of jointness 

measures with their corresponding classifications of relationships between 

variables are presented in Table 2. 
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Table 2.  Limit values of jointness measures and classification of relationships 

between variables 

Type of the relationship between the variables Value of the jointness measure (J) 

Strong substitutes J < (-2) 

Significant substitutes (-2) < J < (-1) 

Unrelated variables (-1) < J < 1 

Significant complements 1 < J < 2 

Strong complements 2< J 

Source: Błażejowski, Kwiatkowski, 2015. 

4. Application on the example of the gravity model of trade 

All the empirical analyses employing BMA were carried out using BMS 

package for R environment (Zeugner and Feldkircher, 2015). Jointness measures 

were computed using a package for gretl (Błażejowski and Kwiatkowski, 2015). 

4.1. Gravity model of trade 

In the simplest form, the equation describing the gravity model of trade 

(Anderson, 1979, 2011; Egger, 2002; Anderson, Wincoop, 2003) can be shown 

as: 

 

                                         𝑇𝑅𝐴𝐷𝐸 = 𝛼
(𝑅𝐺𝐷𝑃𝑝𝑟𝑜𝑑)𝛽1

𝐷𝐼𝑆𝑇𝛽2
,                                  (23) 

 

which can be easily transformed into a log-linear form: 

 

     ln(𝑇𝑅𝐴𝐷𝐸) = ln(𝛼) + 𝛽1 ln(𝑅𝐺𝐷𝑃𝑝𝑟𝑜𝑑) − 𝛽2 ln(𝐷𝐼𝑆𝑇),           (24) 
 

where TRADE stands for the amount of international trade, RGDPprod – product 

of real GDP of the two countries, DIST – distance between the countries, whereas 

𝛼, 𝛽1, 𝛽2 are parameters in the model. However, the model can be expanded by 

including additional explanatory variables, which was performed in this paper. 

4.2. Variables and source of data 

Data for 19 European Union countries was used, namely:  Austria, Belgium, 

Cyprus, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, 

Luxembourg, Malta, the Netherlands, Poland, Portugal, Spain, Sweden and the 

UK. All the variables are expressed bilaterally and as a result the size of the 
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sample for each variable amounts to 171 pairs of countries. The period of analysis 

spans the years between 1999 and 2007 for all the variables. 
Bilateral trade, which is expressed as logarithmized trade between partners, 

constitutes the response variable in the model:  
 

𝑇𝑅𝐴𝐷𝐸𝑖𝑗 = 𝑙𝑛 (
1

𝑇
∑𝐼𝑚𝑝𝑜𝑟𝑡𝑖𝑗𝑡 + 𝐸𝑥𝑝𝑜𝑟𝑡𝑖𝑗𝑡

𝑇

𝑡=1

),                 (25) 

 

where i and j are indexes of partner countries, and the measure itself is a mean for 

the entire analyzed period (1, 2, …, T). The data on bilateral trade are taken from 

IMF Directions of Trade. 
In the BMA analysis, 9 variables were employed. The first one constitutes the 

logarithm of the product of real GDPs: 
 

 𝑅𝐺𝐷𝑃𝑝𝑟𝑜𝑑𝑖𝑗 = 𝑙𝑛 (
1

𝑇
∑𝐺𝐷𝑃𝑖𝑡 ∗ 𝐺𝐷𝑃𝑗𝑡

𝑇

𝑡=1

),                       (26) 

 

also treated as a mean for the whole period. Data on the subject of real GDP are 

taken from the Penn World Table. The second of the main gravity variables is the 

natural logarithm of the distance between the capitals of the countries under 

consideration, which is marked as DIST.  
The basic explanatory variables in the gravity model of trade were 

complemented by additional 7. The first one is the similarity of the production 

structures measured by Krugman specialization index (1991): 
 

𝐾𝑆𝐼𝑖𝑗 =
1

𝑇
∑∑|𝑣𝑖𝑡

𝑙 − 𝑣𝑗𝑡
𝑙 |

17

𝑙

𝑇

𝑡=1

,                                       (27) 

 

where vit
l is the value added in the sector l expressed as the percentage of the 

value added in the entire economy of the country i in the period t, vit
l and is the 

value added in the sector l expressed as the percentage of the value added in the 

entire economy of a country j in the period t. The mean for the entire period and 

the division of the economy into 17 sectors were used, whereas the data on them 

were taken from EU KLEMS. The measure takes values from the interval [0,2], 

while the growth of the value of the measure is accompanied by the decrease in 

similarity of production structures. 
The next variable added to the gravity model is the average absolute value of 

the difference of natural log of GDP per capita for each pair of countries in the 

period between 1999 and 2007: 
 

𝑅𝐺𝐷𝑃𝑑𝑖𝑠𝑡𝑖𝑗 =
1

𝑇
∑|ln(𝐺𝐷𝑃𝑝𝑒𝑟𝑐𝑎𝑝𝑖𝑡𝑎𝑖𝑡) − ln(𝐺𝐷𝑃𝑝𝑒𝑟𝑐𝑎𝑝𝑖𝑡𝑎𝑗𝑡)|.

𝑇

𝑡=1

    (28) 
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The data on GDP per capita comes from the Penn World Table. The 

similarity of production structures and the distance of GDP per capita can be 

justified by the theory of monopolistic competition adopted by Linder (1961). The 

theory assumes that there is a tendency that, together with the increasing 

industrialization, the structures of consumption/production become more similar, 

which leads to a situation where countries at similar level of affluence will display 

a high level of intra-industry trade. These conclusions are supported by the works 

of: Grubel (1971), Grubel and Loyd (1975), Dixit and Stiglitz (1977), Krugman 

(1979, 1980), Lancaster (1980), Helpman (1981) and Gray (1980). 
What is more, averaged binary variables were used in the models in order to 

reflect the influence of participation in the European Union and Economic and 

Monetary Union. For the participation in the monetary union (MU), the variable 

takes the value equal to 1 if in a given year both countries were members of the 

Eurozone, and 0 for other years. Then, a mean for the whole period is calculated. 

Analogical construction was applied for the participation in the European Union 

(EU): 

Another potential determinant of bilateral trade is the natural logarithm of the 

population product of two analyzed EU countries in the period between 1990 and 

2007 – POPprod. The data on the size of population come from the Penn World 

Table. One can expect substitutional relationship between POPprod and 

RGDPprod. 

Moreover, two additional binary variables were used. They are: BORDER - a 

dummy variable assuming 1 if two countries share a common border, and LANG 

– a binary variable assuming 1 if a pair of countries share at least one official 

language. 

4.3. The results of applying BMA 

Below one can find the results of applying BMA after employing Fernández 

et al.  (2001) Benchmark Prior, which dictated the choice of unit information 

prior (UIP). Additionally, uniform model size prior was applied. This 

combination of priors was recommended by Eicher et al. (2011). The prior 

probability of including a given regressor is 0.5. As 9 regressors were used, the 

space of the model consists of 2K=29=512 elements, and the inference itself was 

carried out on the basis of all models. The results of applying BMA are presented 

in Table 3. 

The results indicate that 5 variables were qualified as robust determinants of 

bilateral trade: geographical distance, product of real GDPs, population product, 

GDP per capita distance, and common language. The remaining four display 

lower posterior than the prior probability of inclusion, which is 0.5. A stable sign 

of the coefficient among all the analyzed models also characterizes all the 

variables that were qualified as robust, and it is in accordance with expectations of 

the theory, with an exception of population product, which is characterized by 

negative posterior mean. DIST and RGDPprod turned out to be the most robust 
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determinants of trade – models including these variables take the lion’s share of 

posterior probability mass. This ascertains the gravity model of trade capacity to 

explain international trade flows. RGDPpc has a negative impact on trade. This 

gives support to the theories that suggest a positive relationship between GDP per 

capita and the volume of intra-industry trade. On the other hand, similarity of the 

production structure is marked as fragile. It will be instructive to look at the value 

of the jointness measures for RGDPdist and KSI. 

Table 3.  BMA statistics with the use of uniform prior model size distribution 

(dependent variable - bilateral trade). 

Variable PIP PM PSD CPM CPSD P(+) 

DIST 1.000 -0.879 0.097 -0.879 0.097 0.000 

RGDPprod 1.000 1.169 0.180 1.169 0.180 1.000 

POPprod 0.827 -0.311 0.176 -0.376 0.114 0.000 

RGDPdist 0.739 -0.336 0.242 -0.455 0.159 0.000 

LANG 0.627 0.299 0.275 0.476 0.190 1.000 

BORDER 0.380 0.139 0.209 0.365 0.180 1.000 

KSI 0.369 -0.465 0.723 -1.260 0.645 0.000 

EU 0.244 0.162 0.364 0.662 0.461 0.916 

MU 0.152 0.022 0.069 0.146 0.116 1.000 

 

A cultural similarity captured by the common language dummy proved to 

have a robust and positive impact on trade. Unexpected result was obtained for 

the population product. The variable is robust but is characterized by a negative 

posterior mean. This result is especially surprising when we look at correlation 

coefficient between RGDPprod and POPprod – 0.96. This suggests a 

substitutional dependence between those two variables. 

The common border dummy was classified as fragile. This might be explained 

by potential substitutional relationship with geographical distance or language 

dummy – these variables most certainly carry the same information. Similarly, the 

membership in the European Union and the Eurozone are considered fragile. In 

instances of both of these variables one might expect a substitutional relationship 

with other regressors, e.g. RGDPdist (European Union/Eurozone members are 

characterized by lower GDP per capita distances compared with pairs with 

countries outside these entities) or BORDER.  

The next step requires an inquiry on whether the conclusions rely upon the 

undertaken assumptions. Impact of changing g prior, as well as, model size prior 

is depicted in the Figure 1. No matter what prior model specification is chosen 

DIST, RGDPprod, POPPprod and RGDPdist are robust determinants of 

international trade. LANG depends on the chosen prior combination, which deem 

questioning robustness of this variable.  
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This point shows the superiority of BMA over the classical methods. 

Applying BMA allows one not only to use knowledge coming from many models 

but also to check the robustness of the results over the changes in prior 

specification: both in terms of g prior and model size prior. The classical approach 

based on statistical significance relies upon the knowledge coming from just one 

model. Model averaging procedures used in classical econometrics rely on a given 

specific set of prior assumptions, yet one more time making entire analysis more 

limited and vulnerable to criticism. 

 

* Uniform, Betabinomial, Binomial2, Binomial8 – denotes uniform, binomial-

beta with 𝐸𝑚 = 4.5, binomial with 𝐸𝑚 = 2 and binomial with 𝐸𝑚 = 8 model 

prior respectively. 

Figure 1. Posteriori inclusion probabilities in different specifications of g prior 

and model size prior 

4.4. Jointness measures 

To uncover the character of the correspondence between regressors, jointness 

measures were employed. They were calculated for BMA with unit information 

prior and uniform model size prior. Results for both measures are shown in Table 

4. The values of Doppelhofer and Weeks measures (JDW) are located above the 

primary diagonal and for Ley and Steel's measure (JLS) above. 



STATISTICS IN TRANSITION new series, September 2017 

 

407 

Table 4.  Jointness measures: JDW (below primary diagonal) and JLS (above 

primary diagonal) 

x 
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T
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MU x -2.48 -1.76 -1.73 -1.72 -2.30 -1.73 -1.97 -1.88 

EU -0.38 x -1.96 -1.13 -2.48 -1.99 -1.13 -1.09 -1.84 

RGDPdist 0.11 -1.85 x 1.03 1.14 -0.72 1.03 -0.02 -1.31 

RGDPprod nan nan nan x 1.56 -0.48 0.00 0.53 -0.53 

POPprod 0.24 -5.68 2.03 nan x -0.41 1.56 0.07 -0.49 

BORDER -0.45 -0.58 -0.13 nan 0.88 x -0.48 -1.49 -0.98 

DIST nan nan nan nan nan nan x 0.53 -0.53 

LANG -0.28 0.50 -0.22 nan -0.74 -1.57 nan x -0.86 

KSI 0.14 -0.38 -1.72 nan 0.73 0.37 nan -0.09 x 

 

In Table 4, strong substitutes are highlighted in dark grey, whereas light grey 

indicates relevant substitutes. Employing the measure JDW allowed the 

establishing of four pairs of substitutes, one pair of strong substitutes and one pair 

of complements. EU is a strong substitute of POPprod and a significant one of 

RGDPdist Border and language dummies are also substitutes, which might be 

reasonably explained in the following way: countries that are located closer to 

each other tend to share the same language more often. KSI exhibits substitutional 

relationship with RGDPpc. This result might be explained by U-shaped 

relationship between GDP per capita and degree of specialization described by 

Imbs and Wacziarg (2003): differences in GDP per capita are determining 

specialization patterns, and those in turn determine the patterns of trade. 

Moreover, using JDW allowed for the identification of one pair of complements 

marked with the grey font: POPprod and RGDPdist. 

Results in Table 3 reveal a few weaknesses related to the application of JDW, 

which were mentioned in section 3. First, the measure did not identify many 

relationships between the variables. Second, an abbreviation "nan” (not a 

number), which denotes an undefined numeric value, is given in the table. In this 

case it is the result of the operations in the form of x/0. For that reason, it is worth 
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employing Ley and Steel's measure (JLS), for which such problems are not 

present. The values of JLS are located above the primary diagonal in Table 4. 
The values of measure JLS better justify the results obtained in section 4.3. The 

measure identifies 3 pairs of strong substitutes, 14 pairs of significant substitutes 

and 5 of significant complements. The JLS measure indicates that the participation 

in the European Union and the Eurozone are either strong or significant 

substitutes for all the remaining variables. It explains why those variables 

themselves, despite their strong position in the literature and empirical analyses in 

the past, turned out to be fragile in the analysis described in section 4.3. Similarly 

to the JDW measure, JLS classified border and language dummy, as well as real 

GDP per capita and similarity of production structures as significant substitutes. 

Geographical distance was labelled complement of POPprod and RGDPdist. 

Finally, JLS captured the complementary relationship between RGDPprod, 

POPprod and RGDPpc. This might help provide two explanations for the 

negative coefficient on POPprod. Firstly, the higher the real GDP product, the 

bigger the economies and the greater their capacity to trade. At the same time, the 

higher the population product, the lower GDP per capita, and capacity for 

purchasing of individuals, which could explain negative coefficient on POPprod. 

This effect is present only if RGDPprod and POPprod are both present in the 

model. In this instance, RGDPdist allows one to control for structural similarity 

(in terms of both production and consumption) and participation in the EU or the 

Eurozone. 

The second explanation relies upon economies of scale: the bigger the 

countries, the higher their capacities to explore economies of scale internally and 

lower the need to trade with outside world. In that instance, RGDPprod captures 

countries capacity to trade and POPprod captures their capacity to explore 

economies of scale internally. In this case, RGDPdist additionally allows for 

controlling differences in welfare between nations.  

Therefore, the application of the measure allows one to explain all the results 

that defy the predictions made according to the theory. It also confirms the 

criticism levelled against Dopplehofer and Weeks' measure by Ley and Steel. JLS 

is not only free form computational difficulties of JDW, but also provides better 

explanations to the obtained results. 

5. Conclusions 

The following study presents the idea of Bayesian approach to statistics and 

econometrics, as well as the benefits coming from combining knowledge obtained 

on the basis of analysis of different models. In the first part, the BMA structure 

was described together with its most important statistics and g prior, as well as 

prior model proposals. The second part outlined jointness measures that were put 

forward by Ley and Steel, as well as Dopplehofer and Weeks. 
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The empirical part presents the results obtained from the analysis of the 

determinants of bilateral international trade. The application of Bayesian Model 

Averaging enabled the identification of four robust determinants: geographical 

distance, real GDP product, population product and real GDP per capita distance. 

Those four variables are robust to changes in both g prior and model size prior. 

Language and border dummy, similarity of production structures and participation 

in the EU were classified as robust for some prior specifications of BMA. 

The applied procedure also showed that the model that is the closest to the 

true one is the model containing the following five independent variables: 

geographical distance, real GDP and population product, real GDP per capita 

distance and the language dummy. All variables, except for population product, 

have coefficient signs predicted by the theory. Owing to the application of Ley 

and Steel's jointness measure, it was possible to explain why some variables 

firmly rooted in theory were classified as fragile. Participation in the EU and the 

Eurozone are characterized by substitutional relationship with all other variables. 

Fragile border dummy and similarity of production structures are substitutes with 

language dummy and real GDP per capita distance respectively, ergo contained 

the same information as the variables classified as robust.  

Finally, the complementary relationship between real GDP product and 

population product enabled two possible explanations of the negative sign of the 

population product coefficient to be proposed. The first uses the welfare effect 

reflected in real GDP per capita, and the second points to the exploitation of 

internal economies of scale. It is worth mentioning that the performed exercise 

demonstrated the superiority of Ley and Steel’s jointness measure over the one 

introduced by Dopplehofer and Weeks. 
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ON ASYMMETRY OF PREDICTION ERRORS 
IN SMALL AREA ESTIMATION 

Tomasz Żądło1 

ABSTRACT 

The mean squared error reflects only the average prediction accuracy while the 
distribution of squared prediction error is positively skewed. Hence, assessing or 
comparing accuracy based on the MSE (which is the mean of squared errors) is 
insufficient and even inadequate because we should be interested not only in the 
average but in the whole distribution of prediction errors. This is the reason why 
we propose to use different than MSE measures of prediction accuracy in small 
area estimation. In the prediction accuracy comparisons we take into account our 
proposal for the empirical best predictor, which is a generalization of the 
predictor presented by Molina and Rao (2010). The generalization results from 
the assumption of a longitudinal model and possible changes of the population 
and subpopulations in time.  

Key words: empirical best predictor, prediction errors, small area estimation. 

1. Introduction 

Nowadays, estimates of the population and large subpopulations 
characteristics are not sufficient for decision-makers. They require accurate 
estimates for subpopulations with small or even zero sample sizes. However, 
because of cost constraints, it is not possible to increase sample sizes continuously 
to make the estimation of smaller and smaller subpopulations possible using 
classical methods. The problem is solved using small area estimation methods 
"borrowing strength" from other subpopulations or time periods. There are three 
aims of our paper, with the first the main one and the second and the third the 
supplementary aims.  

Firstly, our observation that the distribution of squared prediction errors has 
strong positive asymmetry (values of the third standardized moments obtained in 
the simulation study based on real data are presented in Table 1) has become 
a focus of our attention. It implies that their mean (known as MSE – Mean 
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Squared Error) does not have to be a good measure of prediction accuracy in 
terms of the average and, what is in our opinion even more important, their whole 
distribution should be studied. Hence, the main purpose of the paper is our 
proposal for assessing the prediction accuracy using new univariate and 
multivariate prediction measures based on quantiles of the distribution of absolute 
prediction errors. It will be shown that even if the accuracies of two predictors in 
terms of the average are similar, the accuracy comparison based on right tails of 
distributions of absolute prediction errors can give different results (which will be 
presented in e.g. Figure 4). 

Secondly, in the accuracy comparisons resulting from the main aim we will 
include a generalization of the Empirical Best Predictor (EBP) proposed by 
Molina and Rao (2010). They proposed the predictor under a model assumed for 
data from surveys conducted in one period. We will propose a predictor assuming 
a longitudinal model. It means that in the case of longitudinal surveys we will be 
able to use information from previous periods to increase the prediction accuracy 
in the period of interest. 

Thirdly, in the proposed longitudinal model we will take into account that the 
population and subpopulations may change in time. It will cover many 
longitudinal models known from small area estimation (which are special cases of 
the general linear mixed models) including models studied by: 
 Saei and Chambers (2003), who assume mutually independent two random 

effects (domain-specific and time-specific) and random components (and the 
generalization, where AR(1) process is assumed for time-specific random 
effects), 

 Saei and Chambers (2003), where domain-and-time-specific random effects 
with independent distributions in domains and AR(1) model in time are taken 
into account, 

 Stukel and Rao (1999) and Nissinen (2009) p. 22 with mutually independent 
two random effects (domain-specific and element-specific) and random 
components, 

 Nissinen (2009) p. 60, who assumes independent domain-specific random 
effects and autocorrelated (assuming AR(1)) random components in time, 

 Molina, Morales, Pratesi, Tzavidis (2010) pp. 143-180 with independent 
domain-specific random effects, independent for domains and autoccorelated 
(assuming AR(1)) in time domain-and-time-specific random effects and 
heteroscedastic random components. 

In the simulation study the properties of the proposed predictor (in terms of 
MSE and the proposed accuracy measures) will be studied under the proposed 
model taking into account the model misspecification as well.  
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2. Alternative prediction accuracy measures 

In the case of positive asymmetry usually the mean is not the only measure 
used to describe the distribution. The MSE is the mean of squared errors (which 
have positive or even strong positive asymmetry) and it is usually used as the only 
accuracy measure. Moreover, a better predictor is usually defined as the one with 
smaller MSE. Żądło (2013) proposed a new measure of prediction accuracy 
Quantile of Absolute Prediction Error defined for the problem of prediction in the 
dth domain as follows: 

                                   ( ) inf : dQAPE p x P U x p   ,                          (1) 

where ˆ
d d dU     is the prediction error of d̂ , which is the predictor of d  in 

the dth domain. It means that (1) is the quantile of order p of dU . It means that at 

least p100% of realizations of absolute prediction errors in the dth domain are 
smaller or equal to ( )QAPE p . In Żądło (2013) it was used to measure prediction 
accuracy of the empirical best linear unbiased predictor. 

Żądło (2015) proposes multivariate versions of (1), which allow us to measure 
and compare accuracy in the case of simultaneous prediction in all of domains. It 
can be treated as the alternative to the average mean squared error studied, e.g. by 
Fabrizi and Trivisano (2010). Let prediction errors in  D  domains be denoted by 

ˆ
d d dU    , where 1,2,...,d D . Let us define the multivariate version of 

QAPE  as follows:  

                                  
1

( ) inf :
D

d
d

MQAPE p x P U x Dp


 
   

 
 .                     (2) 

It means that it is the quantile of order p of a distribution of a mixture of 
random variables 1 ,..., ,...,d DU U U  with equal weights. It means that at least 

p100% of realizations of absolute prediction errors in all domains are smaller or 
equal to ( )MQAPE p . 

Let relative prediction errors be denoted by 
ˆ

d d d
d

d d

U
W

 
 


  , where 

1,2,...,d D . Let us define relative MQAPE  as follows: 

                           
1

( ) inf :
D

d
d

rMQAPE p x P W x Dp


 
   

 
 .                         (3) 

It means that it is the quantile of order p of a distribution of a mixture of 
random variables 1 ,..., ,...,d DW W W  with equal weights. It means that at least 

p100% of realizations of moduli of relative prediction errors in all domains are 
smaller or equal to ( )rMQAPE p . 

The estimation of (1), (2) and (3) is possible using a well-known parametric 
bootstrap method studied, e.g. by González-Manteiga et al. (2007, 2008) and 
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Molina and Rao (2010). Using the method, the estimator of the MSE is given by 
the mean of squared bootstrap realizations of prediction errors. Similarly, by 
computing quantiles of bootstrap realizations of:  
 moduli of prediction errors in one of domains we can estimate (1),  
 moduli of prediction errors in all of domains we can estimate (2) and  
 moduli of relative prediction errors in all of domains we can estimate  (3).  

3. Model and predictor 

We consider longitudinal data in periods 1,2,...,t M , where the population 

of size tN  in the period t is denoted by t . The population is divided into D 

disjoint subpopulations (domains) dt  each of size dtN , where 1,2,...,d D . 

A sample in the period t of size tn  is denoted by ts . Let dt t dts s   and 

dt dts n . The d*th domain of interest in the period of interest t* will be denoted 

by * *d t . Let rdt dt dts   ,  rdt dt dtN N n  , 
1

M

t
t

  , N  , 
1

,
M

dt d
t

   

d dN  , 
1

M

rdt rd
t

  , rd rdN  , 
1

M

t
t

s s


 , s n , 
1

M

dt d
t

s s


 , d ds n .  

Let idM  be the number of periods when the ith population element belongs to 

the dth domain and idm  – the number of periods when the ith population element 

(which belongs to the dth domain) is observed. Let rid id idM M m  . It is 
assumed that the population may change in time and that one population element 
may change its domain affiliation in time. Hence, sets of population elements d  

(where 1,2,...,d D ) may overlap.  
The assumption that one population element may change its domain affiliation 

in time is very important in practice of longitudinal surveys. For example, let us 
consider the population of households and the division of the population into 
domains made according to the household size. In this case we should assume that 
some households can change their sizes in time, which causes the change of the 
domain affiliation. If a human population is under the study one may be interested 
in its characteristics for subpopulations defined according to some social or 
economic criteria. In the case of business surveys the population of firms may be 
divided into subpopulations according to some economic or financial criteria, 
what can imply even stronger changes of domains affiliations.   

Values of the variable of interest (or the variable of interest after 
a transformation) are realizations of idjY ’s for the ith population element, which 

belongs to the dth domain in the period ijt , where 1,2,...,i N ; 1,2,..., idj M ; 
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1,2,...,d D . The vector  
1id

idj M
Y


   idY  will be called the profile and the vector 

1id
idj m

Y


   sidY  will be called the sample profile. Let the vector 
1rid

idj M
Y


   ridY  

be the profile for non-observed realizations of random variables. 
Let us introduce assumptions of the following longitudinal model, which is 

a special case of the general linear mixed model (e.g. Datta and Lahiri, 2000). The 
difference is introduced in the sizes of matrices, which allows us to take into 
account longitudinal data and possible changes in population and subpopulations 
in time. We assume that 

2

2

( ) ( )

( ) ( )

( , )

D

D

Cov







  
 
 
 

Y Xβ Zv e

v G δ

e R δ

v e 0

,                         (4) 

where   is the superpopulation model, 1 1
( )

d
d D i N

col col   
 idY Y , 

1 1
( )

d
d D i N

col col   
 ide e , where ide  is the 1idM   vector of random components, 

1 1
( )

d
d D i N

col col   
 idX X , where idX  is the known matrix of size idM p , β  is 

the 1p  vector of unknown parameters, Z  is  the known matrix of size 

1 1

N D

id
i d

M h
 

 , v  is the vector of random effects of size 1h , δ  is the vector of 

q  unknown in practice parameters called variance components. 
Let us consider the following decomposition of the vector Y : 

      
TT T

s r   Y Y Y ,                     (5) 

where sY  is the vector of size 
1 1

1
N D

id
i d

m
 

  of random variables, whose 

realizations are known, and rY  is the vector of size 
1 1

1
N D

rid
i d

M
 

  of random 

variables, which are not observed in the longitudinal survey. Then, 

2 2 ( ) ( )
( ) ( )

( ) ( )
ss srs

rs rrr

D D 

   
     

  

V δ V δY
Y V δ

V δ V δY
,            (6) 

where under (4): 
 ( ) ( ) ( )T V δ ZG δ Z R δ .  (7) 

Let us consider the problem of predicting any given function of the random 
vector Y  denoted by ( ) Y  or shortly by  . Among predictors ̂  of  , the Best 
Predictor (BP) is defined as the one, which minimizes (e.g. Molina and Rao 
2010):  
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                                                2ˆ ˆ( ) ( )MSE E     .                                         (8) 

Hence, it is given by: 

                                                     ˆ ( | )BP sE  Y ,                                              (9) 

which means that it may be obtained as a conditional expected value of   
assuming that the conditional distribution of |r sY Y  is known.  

We assume that the conditional distribution of |r sY Y  can be derived 
(the example is presented in Remark 1 in this section). In practice, it depends on 
the vector of unknown parameters, which will be denoted by τ . If we replace the 
parameters by their estimators, we obtain the Empirical Best Predictor (EBP) 

denoted by ÊBP . Hence, the value of the EBP of ( ) Y  can be obtained through 
the Monte Carlo approximation algorithm presented below (for prediction in 
surveys conducted in one period see Molina and Rao 2010). 

(a) We estimate τ  based on the realization of sY  and we obtain the value of 

the estimator denoted by τ̂ . 
(b) Assuming that the distribution of |r sY Y  can be derived, we generate 

L vectors rY  (denoted by ( )l
rY , where 1,2,...,l L ) from the distribution 

of  | ,r sY Y  where the unknown vector τ  is replaced by τ̂ . 

(c) We make L  vectors denoted by ( )lY , where ( ) ( ) Tl T l T
s r   Y Y Y  and 

1,2,...,l L , what means that L vectors ( )lY  include the same realization 

of sY  and different realizations of rY .  

(d) The value of the EBP of ( ) Y  is obtained as follows: 

1 ( )

1

ˆ ( )
L

l
EBP

l

L 



  Y .  

Due to the estimation of an unknown in practice vector of model parameters 
denoted by τ , the resulting predictor generally is not unbiased and it does not 
minimize the MSE (as the BP) but its value should be very close to the BP. Its 
MSE estimator, which takes into account the uncertainty resulting from the 
estimation of τ , can be obtained using parametric bootstrap method as in Molina 
and Rao (2010), where their model is replaced by (4). 

Remark 1. If we additionally assume that the vector Y  (which may be the 
vector of the variable of interest after a transformation) is normally distributed, 
which can be written as follows ~ ( , ( ))NY Xβ V δ  (where under (4) ( )V δ  is 

given by (7)),  then 
TT T   τ β δ  and                         

     1 1| ~ ( ) ( ) , ( ) ( ) ( ) ( )r s r rs ss s s rr rs ss srN    Y Y X β V δ V δ Y X β V δ V δ V δ V δ . (10) 
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Hence, in the step (b) of the procedure presented above, vectors ( )l
rY , where 

1,2,...,l L  are generated based on (10), where parameters are replaced by their 
estimates. 

The idea of using EBPs was presented earlier by Molina and Rao (2010) but 
for studies conducted in one period. They study the general case assuming the 
general linear mixed model for studies conducted in one period. In the special 
case of their considerations Y  is the vector of the variable of interest after the 

following transformation: ( )TY Y , where Y  is the variable of interest, and 

                                                    ( ) ln( )T c Y Y  ,                                            (11) 

where c  is a constant. Then, they study the following model  

                                                   T
id id d idY v e  x β ,                                          (12)

where 1,2,...,d D ; 1,2,...,i N , 2~ (0, )
iid

d vv N  , 2~ (0, )
iid

id ee N  , ide  and dv  are 

independent, 2 2 T

e v    δ .  

4. Simulation study – real data 

We consider data on 378N   Polish poviats (NUTS-4 level) from years 
2010-2012 (M=3). We have excluded one observation because of the lack of the 
data and one outlying observation (Warsaw). The problem of prediction of totals 
of the sold production of industry in 16D   domains (voivodships – NUTS-2 
level) for companies with at least 10 employees is considered. The number of 
companies with at least 10 employees is the auxiliary variable. In the first period 
a sample of 38 poviats is drawn at random with probabilities proportional to the 
values of the auxiliary variable. Sample sizes in the domains are random and 
equal from 0 to 5 (with mean 2.375). The balanced panel survey is considered –
elements sampled in the first period are observed until the end of the longitudinal 
survey (which gives 114 observations in 3 periods).  

Because empirical best predictors are studied, the distribution of the variable 
of interest must be assumed. We consider the transformation of the variable of 
interest given by (11) and logarithmic transformation of the auxiliary variable. To 
test the distribution of the variable of interest, we use the transformation of 
residuals based on the Cholesky decomposition of the inverse of variance-
covariance matrix (see, e.g. Jacqmin-Gadda et al. 2007). For the model chosen 
based on the AIC and BIC criteria (more details will be presented in the next 
paragraph) p-values for Shapiro-Wilk, Jarque-Bera and adjusted Jarque-Bera tests 
obtained for the sample equal 0.2297; 0.6046 and 0.446 respectively. For the 
considered model but without the transformations of both variables, p-values for 
the tests of normality were smaller than 1210 . But if we test normality based on 
the whole population data (based on 3 378 1134M N     observations) in 
both cases (with and without transformations of variables) we should reject the 
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null hypothesis on normality. That is why the problem of model misspecification 
will be taken into account in the simulation study as well. 

To choose the appropriate model we consider different models: classic and 
mixed linear models with and without the auxiliary variable, with and without 
constant, nested-error models and models with random slopes. For mixed models 
with random slope we consider time-specific, domain-specific, time-and-domain-
specific and finally profile-specific random effects. In models with nested errors 
we consider one random effect (time-specific, domain-specific, time-and-domain-
specific and profile-specific) or two random effects (firstly: domain-specific and 
profile-specific; secondly: domain-specific and domain-and-time-specific). The 
model with the smallest both AIC and BIC criteria was the following model 
studied earlier by Stukel and Rao (1999) and Nissinen (2009) p. 22: 

1 0idt idt d id idtY x u v e      ,                                       (13) 

where idtY  is the variable of interest after transformation (11), idtx  is the auxiliary 

variable after logarithmic transformation, 1,2,...,i N , 1,2,...,d D , 
1,2,...,t M , du , idv  and idte   are mutually independent with zero expected 

values and variances given by 2
u , 2

v  and 2
e  respectively. Permutation test 

(with the test statistic given by the loglikelihood) was used to test the significance 
of the model parameters – at the significance level 0.05 tested parameters were 
significantly different from zero. Good properties of these tests are presented by 
Krzciuk and Żądło (2014a, 2014b).  

The model-based simulation study was prepared using R software (R Core 
Team 2016). To mimic the real data, values of the variable of interest after 
transformation (11) are generated based on the model (13) with one auxiliary 
variable and the constant, where the parameters of the model are replaced by 
REML estimates obtained based on all of the observations (sampled and 
unsampled) of the real data. Hence, both random effects and random components 
are generated with zero expected values and variances 2

u , 2
v  and 2

e  equal 
REML estimates based on (13) and the whole population data. Random effects 
and random components du , idv  and idte   are generated independently from: 
 normal distributions, 
 shifted exponential distributions (the third standardized moment is equal  

to 2),  
 shifted gamma distributions (with the value of third standardized moment 

equal to 4) and  
 shifted Pareto distributions (with the value of third standardized moment 

equal to 5).  
It means that in the case of the normal and the shifted exponential distributions, 
the assumed values of the mean and the variance give explicitly values of the 
parameters of the distributions used in the simulation study. The case of the 
shifted gamma and the shifted Poisson distributions is more interesting because it 
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is possible to set the values of the parameters of these distributions to obtain not 
only the assumed values of the mean and the variance but also the prespecified 
value of the third standardized moment (4 - for the shifted gamma and 5 - for the 
shifted Pareto distributions, as listed above). 

In each iteration of the simulation study model parameters are estimated using 
restricted maximum likelihood, which gives consistent estimates even if the 
normality assumption is not met (Jiang 1996). The number of iterations equals 
5000. 

We study properties of the following predictors: 
 the empirical best predictor based on the longitudinal model (13) under 

normality of random effects and random components (EBP), 
 the empirical best predictor studied earlier by Molina and Rao (2010) based 

on the model (12) assumed for transformed data (EBP-MR), 
 the empirical best linear unbiased predictor based on the Royall (1976) 

theorem for the longitudinal model with the smallest AIC and BIC criteria 
assumed for the untransformed data, i.e. for the mixed model with random 
regression coefficient with the profile-specific random effect (EBLUP),  

 the synthetic regression estimator given by (SYNT-REG) given by (e.g. 
Bracha 1996, p. 260):  

1

1 1

t t

dt ti ti ti
i s i s

N y 


 

 

 
  
 
 

1

1 1 1
*

dt t t

dt dt t i ti ti ti
i i s i s

N B N x x 


  

  

  
        

    ,  

for 1,2,...,d D , where 
1 1

1 1 1 1 1
*

21

1 1 1

t t t t t

t t t

ti t i ti ti ti ti ti ti ti
i s i s i s i s i s

ti ti ti ti ti
i s i s i s

x x y y

B

x x

    

  

 

    

    



  

  

     
                

  
       

    

  
, and ti  is 

the inclusion probability of the ith population element in the period t. 

Because of small sample sizes in the domains (in some domains: 0) we study 
only indirect predictors and estimators. In each out of 5000 Monte Carlo iterations 
values of both empirical best predictors are computed based on 200L   
generated population vectors. 

Relative prediction biases for the considered estimators and predictors are 
presented in Figure 1. Each boxplot presents 16D   values of biases of 
a predictor of 16D   domains totals. For example, the values presented in the 
top-left boxplot are from ca 0.3% to ca 2.1%. The value 2.1% means that for one 
of the domains the relative bias of EBP predictor equals 2.1% (in this domain the 
value of the predictor is larger than the domain total on average by 2.1%). If the 
distributions of the random components and random effects for the transformed 
variables are normal, the biases of all predictors and estimators are small. EBP in 
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this case is used under the correctly specified longitudinal model – the 
transformation of the variables, the assumed normal distribution and the assumed 
formula of the model (13) are correct. EBP-MR is used under the misspecified 
formula of the model (assumed for one period instead of the longitudinal data) but 
under the correct transformation of the variables and assuming correct (i.e. 
normal) distribution. Both EBLUP and SYNT-REG do not take into account the 
transformation of the variables. If the distribution is asymmetric, the biases are 
very large in many cases.  

 
Figure 1. Relative prediction biases (in %) for different predictors and different  

distributions of random effects and random components (each boxplot 
presents values for D=16 domains) 

Results of the comparisons of the accuracy between the proposed empirical 
best predictor EBP and other estimators and predictors based on the MSE are 
presented in Figure 2. Each boxplot presents 16D   values of ratios of the MSE 
of a predictor to the MSE of EBP for 16D   domains totals. For example, the 
values presented in the top-left boxplot are from ca 1.02 to ca 1.06. The value 
1.06 means that for one of the domains the ratio of the MSE of EBP-MR predictor 
to the MSE of EBP predictor equals 1.06 (in this domain the value of the MSE of 
EBP-MR is higher than the MSE of EBP by 6%). If we compare the MSE of 
EBP-MR to the MSE of the EBP for other distributions, we see that the values of 
ratios are also very close to 1. In all of the cases the maximum gain in accuracy 
due to the usage of the proposed predictor measured by the MSE is smaller than 
10%. The reasons of the results will be studied in the next section. 

What is interesting, in the results presented in Figure 2 is the lack of stability 
comparing results for different distributions of random effects and random 

SYNT-REG

EBLUP

EBP-MR

EBP

after transformation: normal

-40 -20 0 20 40

after transformation: exponential

SYNT-REG

EBLUP

EBP-MR

EBP

-40 -20 0 20 40

after transformation: gamma after transformation: Pareto
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components. The reason of unstable results is strong positive asymmetry of the 
distribution of absolute prediction errors, especially if the distribution of random 
effects and random components is not normal (see values of the third standardized 
moments of absolute prediction errors presented in Table 1). Because the values 
of the prediction MSE (the values of the mean of squared errors) are strongly 
affected by outlying absolute prediction errors, results for alternative measures of 
prediction accuracy defined in section 2 will be presented as well. 

 
Figure 2.  Values of MSE(.)/MSE(EBP) for different predictors and different 

distributions of random effects and random components (each boxplot 
presents values for D=16 domains) 

Table 1.  Third standardized moments of absolute prediction errors for different 
predictors and different distributions of random effects and random 
components (minimum and maximum for D=16 domains) 

 
After transformation: 

normal 
shifted 

exponential 
shifted 
gamma 

shifted  
Poisson 

SYN-REG 1.3-4.0 8.3-52.7 24.4-70.6 33.1-70.7 

EBLUP 1.2-3.6 12.4-55.4 28.7-70.6 34.3-70.7 

EBP-MR 1.6-4.4 13.8-61.6 17.5-70.7 44.7-70.7 

EBP 1.5-4.5 13.7-61.6 17.5-70.7 44.7-70.7 

SYNT-REG

EBLUP

EBP-MR

after transformation: normal

1 2 3 4 5 6

after transformation: exponential

SYNT-REG

EBLUP

EBP-MR

1 2 3 4 5 6

after transformation: gamma after transformation: Pareto
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Firstly, we will compare the accuracy of the predictors based on the same real 
data. In this case we will use ( )QAPE p  for (0.5, 0.75, 0.9, 0.95)p   for each 
domain. It is worth mentioning that the results presented in Figure 3 (and Figures 
6-8 in Appendix) are more stable than the results presented in Figure 2. Each 
boxplot in Figure 3 presents 16D   values of ratios of the (0.5)QAPE  of 

a predictor to the (0.5)QAPE  of EBP for 16D  domains totals. As it was defined 

and discussed in the section 3, (0.5)QAPE  is the median of absolute prediction 
errors. For example, the values presented in the top-left boxplot are from ca 1 to 
ca 1.05. The value 1.05 means that for one of the domains the ratio of the 

(0.5)QAPE  of EBP-MR predictor to the (0.5)QAPE  of EBP predictor equals 

1.05 (in this domain the value of the (0.5)QAPE  of EBP-MR is higher than the 

(0.5)QAPE  of EBP by 5%).  

 

Figure 3.  Values of QAPE0.50(.)/QAPE0.50(EBP) for different predictors and 
different distributions of random effects and random components (each 
boxplot presents values for D=16 domains) 

 
Additionally, in Figure 4 the values of ( )rMQAPE p  for 
(0.5, 0.75, 0.9, 0.95)p   are presented. As an example, we will interpret the value 

presented by the point in the top-left part of Figure 7 (for EBP under normal 
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distribution of random effects and random components for the variable of interest 
after the transformation), which equals (0.5) 18.2%rMQAPE  . It means that at 
least 50% of moduli of relative prediction errors for all of the domains are smaller 
or equal to 18.2% and at least 50% of moduli of relative prediction errors for all 
of the domains are larger or equal to 18.2%. But (0.5)rMQAPE  informs only 
about the average (i.e. median) of absolute prediction errors. If we are interested 
in the right tail of the distribution of the absolute prediction errors, we can 
compute ( )rMQAPE p  for 0,5p  , e.g. (0.75) 32.8%rMQAPE  , 

(0.9) 51.2%rMQAPE   and finally (0.95) 67%rMQAPE   (see the top-left part of 
Figure 4 and top-left part of Figure 9 in Appendix).  

 

Figure 4.  Values of rMQAPE(p) for p=(0.5, 0.75, 0.9, 0.95), different predictors 
and different  distributions of random effects and random components - 
all results 

 
It should be stressed that although values of (0.5)rMQAPE  for each predictor 

are quite similar even in the case of model misspecification (see the first point for 
each predictor in Figure 4 or Figure 9 in Appendix), the difference in the accuracy 
measured in right tails of the distribution of absolute prediction errors by 

(0.95)rMQAPE  can differ substantially especially in the case of model 
misspecification (see the last point for each predictor in Figure 4). For example in 
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bottom-right panel in Figure 4, values of (0.5)rMQAPE  for EBP and SYNT-

REG equal 27% and 45%, respectively, which means that (0.5)rMQAPE  for 
SYNT-REG is 1.67 times higher than for EBP. However, values of 

(0.95)rMQAPE  for EBP and SYNT-REG equal 102% and 776%, respectively, 

which means that (0.95)rMQAPE  for SYNT-REG is 7.6 times higher than for 
EBP. To sum up, the prediction accuracy measures presented in section 2 give us 
more detailed information on prediction accuracy, which is not limited to the 
average values (as in the case of the MSE). What is more, using QAPE we obtain 
more stable results of accuracy comparisons, especially in the case of model 
misspecification. 

5. Simulation study – artificial data 

In the previous section two problems were considered – the comparison of the 
accuracy and the choice of the appropriate measures of accuracy. One of the 
conclusions was the small difference in the accuracy (less than 10% in terms of 
the MSE for all considered distributions) between the proposed empirical best 
predictor for longitudinal surveys and the empirical best predictor proposed by 
Molina and Rao (2012) for surveys conducted in one period. To identify the 
reasons, we compare some results from the previous section (the column “real 
data” in Table 2) with two additional simulation scenarios, all of them under 
normality of random effects and random components for data after transformation 
(11) and assuming model (13) or its special case. 

 

Table 2.  Maximum values of ratios of accuracy measures for different 
simulation scenarios over D=16 domains under normality of random 
effects and random components  

 Simulation scenario 

ratio of accuracy measures 
real 
data 

independent 
values of x 

without x 

MSE(EBP-MR)/MSE(EBP)  1.058  1.257 1.123 

QAPE0.50(EBP-MR)/QAPE0.50(EBP)  1.046  1.119 1.040  

QAPE0.75(EBP-MR)/QAPE0.75(EBP)  1.023  1.134 1.028 

QAPE0.90(EBP-MR)/QAPE0.90(EBP)  1.029 1.117   1.042  

QAPE0.95(EBP-MR)/QAPE0.95(EBP)  1.047 1.154 1.047 
 
In the first scenario (results in Table 2 in the column “independent values 

of x”), we generate values of the variable of interest based on model (13) with 
values of all model parameters obtained for the real data (as in the previous 



STATISTICS IN TRANSITION new series, September 2017 

 

427 

section), but where the real auxiliary variable is replaced by the artificial one. 
Values of the auxiliary variable were generated independently from shifted 
gamma distribution assuming real values of the mean, variance and the third 
standardized moment for each year. In this case the maximum gain in accuracy of 
our EBP measured by MSE is 25.7% and measured by QAPE  is higher than 
10%. It means that in the case of longitudinal surveys we should use auxiliary 
variable, which is weakly autocorrelated but even in this case the gain in accuracy 
will not be very large. 

In the second scenario (results in Table 2 in the column “without x”) we do 
not use the uxiliary variable both in the model and at the estimation stage. Hence, 
we compare prediction accuracy of empirical best predictors only under random 
parts of models (13) and (12). The accuracy measured by MSE of our EBP is 
higher by 12.3% compared with EBP-MR (by less than 5% in terms of QAPE ). 
The reason is that model (13) chosen based on AIC and BIC for real longitudinal 
data is quite similar to the model (12) assumed by Molina and Rao (2010). In both 
models we have domain-specific random effects, although in the case of (13) it 
additionally implies non-zero covariances between observations within domains 
in different periods. The main difference between the models is the profile 
(element)-specific random effect in model (13), but results in the last column of 
Table 2 show that it does not imply a large gain in prediction accuracy. It means 
that the larger gain in accuracy can be obtained when the longitudinal model 
explains the variability of the variable of interest considerably better than the 
model assumed for one period. 

To sum up, in this section based on the Monte Carlo analysis we have 
identified  two reasons of the relatively small gain in accuracy, which was 
presented in the previous section, comparing our predictor with the predictor 
proposed by Molina and Rao (2010). Firstly, it has been autocorrelation in time of 
the auxiliary variable. Secondly, we have presented similarity of the proposed 
longitudinal model and the model studied by Molina and Rao (2010). Moreover, 
we have shown that in the studied cases the maximum gain in accuracy 
comparing these two predictors can be even higher than 25% in terms of MSE. 

6. Real data application 

In this section we consider values of the same predictors and estimators, the 
same data and the same sample as discussed in section 4. However, in this case 
their values are computed once based on the real data (they are not generated as in 
the simulation studies presented in section 4). Because the whole population data 
are available, we are able to compare estimates with real values of D=16 domains 
totals (see Figure 5). The largest differences between estimates and real values for 
the considered sample are observed for SYNT-REG and EBLUP, whereas the 
values of EBP-MR and the proposed EBP are very similar. 
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Figure 5. Values of estimates and real domain totals  

7. Conclusions 

In the paper the problem of assessing and comparing the prediction accuracy 
is studied. Because of strong positive asymmetry of absolute prediction error, it is 
shown that prediction accuracy measures alternative to the MSE should be used. 
These measures allow us to assess the prediction accuracy not limited to the 
average values and to obtain more stable results of accuracy comparisons, 
especially in the case of the model misspecification. In the accuracy comparisons 
based on the Monte Carlo simulation studies our proposal for the empirical best 
predictor is taken into account. Although its prediction accuracy was only slightly 
better for the considered data compared with the empirical best predictor 
proposed by Molina and Rao (2012), we present how to obtain a substantial gain 
in accuracy. The considerations are also supported by real data application. 
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Figure 6.  Values of QAPE0.75(.)/QAPE0.75(EBP) for different predictors  
and different distributions of random effects and random components  
(each boxplot presents values for D=16 domains) 

 

Figure 7.  Values of QAPE0.90(.)/QAPE0.90(EBP) for different predictors and 
different distributions of random effects and random components (each 
boxplot presents values for D=16 domains) 
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Figure 8.  Values of QAPE0.95(.)/QAPE0.95(EBP) for different predictors and 
different distributions of random effects and random components (each 
boxplot presents values for D=16 domains) 

 

Figure 9.  Values of rMQAPE(p) for p=(0.5, 0.75, 0.9, 0.95), different predictors 
and different  distributions of random effects and random components – 
selected results 
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AN APPLICATION OF
FUNCTIONAL MULTIVARIATE REGRESSION
MODEL TO MULTICLASS CLASSIFICATION

Mirosław Krzyśko1, Łukasz Smaga2

ABSTRACT

In this paper, the scale response functional multivariate regression model is con-
sidered. By using the basis functions representation of functional predictors and
regression coefficients, this model is rewritten as a multivariate regression model.
This representation of the functional multivariate regression model is used for mul-
ticlass classification for multivariate functional data. Computational experiments
performed on real labelled data sets demonstrate the effectiveness of the proposed
method for classification for functional data.
Key words: functional data analysis, multi-label classification problem, multivari-
ate functional data, regression model.

1. Introduction

In recent decades, the analysis of data given as functions or curves has become a
very popular branch of statistics. In the literature, such data are called functional
data and have a broad perspective of applications, for example, in economics and
medicine. The aim of functional data analysis (FDA) is to develop methods for
analysing functional data. For instance, the books Ramsay and Silverman (2005),
Ferraty and Vieu (2006), Horváth and Kokoszka (2012) and Zhang (2013), and the
references therein, offer a broad perspective of such methods.

Methods for analysing multivariate functional data (e.g. vectors of functions)
are of particular interest. Some solutions of such problems as analysis of variance,
canonical correlation analysis, classification, cluster analysis, linear regression and
prediction, or principal component analysis are known in the literature. For exam-
ple, we refer to the following papers by Górecki and Smaga (2017), Górecki et al.
(2016), Górecki et al. (2015), Jacques and Preda (2014), Collazos et al. (2016) and
Berrendero et al. (2011), respectively, and the references therein.

1Inter-Faculty Department of Mathematics and Statistics, The President Stanisław Wojciechowski
State University of Applied Sciences in Kalisz, Poland. E-mail: mkrzysko@amu.edu.pl.

2Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poland. E-mail:
ls@amu.edu.pl.
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This paper discusses the multiclass classification problem for multivariate func-
tional data. The classifiers are constructed based on the scale response functional
multivariate regression model and basis functions representation of functional pre-
dictors and coefficients. The presented results may be seen as extensions of those
given in Górecki et al. (2015) from binary to multi-label case.

The rest of the paper is organized as follows. We first (Section 2) construct and
rewrite (using the basis functions representation of predictors and coefficients) the
scale response functional multivariate regression model. We consider two versions
of this model, i.e. with and without intercepts. In Section 3, we apply these results
to the multi-label classification problem for multivariate functional data. Section 4
contains the description of computational experiments for comparison of the pro-
posed classifiers and a discussion of their results. We conclude in Section 5 with
discussion of possible improvement of performance of the proposed method.

2. Functional multivariate regression model

In this Section, we consider the scalar response functional multivariate regression
model, which can be seen as an extension of the one-dimensional model studied, for
example, in Horváth and Kokoszka (2012).

Let L2(T ) denote the Hilbert space of square integrable functions over T = [a,b].
Assume that we have measured p (scalar) responses Y1, . . . ,Yp and the same set of
k (functional) predictors x1(t), . . . ,xk(t) belonging to L2(T ) on each sample unit.
Moreover, suppose that the responses follow the scalar regression models, i.e.

Yj =
k

∑
i=1

∫
T

xi(t)ξ ji(t)dt + e j, j = 1, . . . , p,

where ξ ji ∈ L2(T ) are the unknown functional coefficients and e j are the random
errors such that e> = [e1, . . . ,ep] has zero expectation and covariance matrix ΣΣΣ.
When we have a sample of N independent observations Y1, . . . ,YN of the vector
[Y1, . . . ,Yp]

>, the scalar response functional multivariate regression model is formu-
lated as follows:

Y =
∫

T
X(t)ΞΞΞ(t)dt +E, (1)

where

Y=

 Y>1
...

Y>N

 , X(t)=

 x>1 (t)
...

x>N (t)

 , ΞΞΞ(t)=
[
ξξξ 1(t), . . . ,ξξξ p(t)

]
, E=

 e>1
...

e>N

 , (2)
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and x>i (t)= [xi1(t), . . . ,xik(t)], i= 1, . . . ,N, ξξξ
>
j (t)=

[
ξ j1(t), . . . ,ξ jk(t)

]
, j = 1, . . . , p.

To handle the model (1), we assume that the predictors and functional co-
efficients can be represented by a finite number of orthonormal basis functions
(ϕmn(t))∞

n=0, m = 1, . . . ,k in L2(T ), i.e. for i = 1, . . . ,N and j = 1, . . . , p

xim(t) =
Bm

∑
n=0

cimnϕmn(t), ξ jm(t) =
Bm

∑
n=0

d jmnϕmn(t), (3)

where cimn and d jmn are the unknown coefficients. More precisely, cimn are the ran-
dom variables with finite variance (see Ramsay and Silverman, 2005). To estimate
the coefficients cimn (for each predictor separately), the least squares method can be
used (see, for instance, Krzyśko and Waszak, 2013). The selection method of the
values Bm may depend on the aim of the research. For example, when we want to
obtain the best fit, the Bayesian information criterion should perhaps be used (see
Shmueli, 2010). Different bases can be used for different predictors.

For easier presentation of our results, we represent the equations (3) in matrix
notation. Let

ΦΦΦ(t) =


ϕϕϕ>1 (t) 0>B2+1 . . . 0>Bk+1
0>B1+1 ϕϕϕ>2 (t) . . . 0>Bk+1

...
...

. . .
...

0>B1+1 0>B2+1 . . . ϕϕϕ>k (t)

 ,
where ϕϕϕ>l (t) = [ϕl0(t), . . . ,ϕlBl (t)] for l = 1, . . . ,k and 0n is an n×1 vector of zeros.
Then, the equations given in (3) can be rewritten as follows:

xi(t) = ΦΦΦ(t)ci, ξξξ j(t) = ΦΦΦ(t)d j (4)

for i = 1, . . . ,N and j = 1, . . . , p, where c>i = [ci10, . . . ,ci1B1 , . . . ,cik0, . . . ,cikBk ] and
d>j = [d j10, . . . ,d j1B1 , . . . ,d jk0, . . . ,d jkBk ].

By (4), for i = 1, . . . ,N and j = 1, . . . , p, we have∫
T

x>i (t)ξξξ j(t)dt =
∫

T
c>i ΦΦΦ

>(t)ΦΦΦ(t)d jdt

= c>i
∫

T
ΦΦΦ
>(t)ΦΦΦ(t)dt d j (5)

= c>i d j,

since the bases (ϕmn(t))∞
n=0, m = 1, . . . ,k, are orthonormal, i.e.

∫
T ΦΦΦ

>(t)ΦΦΦ(t)dt is
the identity matrix of size ∑

k
l=1 Bl + k. From (2), it follows that
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∫
T

X(t)ΞΞΞ(t)dt =


∫

T x>1 (t)ξξξ 1(t)dt . . .
∫

T x>1 (t)ξξξ p(t)dt
...

. . .
...∫

T x>N (t)ξξξ 1(t)dt . . .
∫

T x>N (t)ξξξ p(t)dt

 .
Thus, by (5), we obtain

∫
T

X(t)ΞΞΞ(t)dt =

 c>1 d1 . . . c>1 dp
...

. . .
...

c>N d1 . . . c>N dp



=

 c>1
...

c>N

 [d1, . . . ,dp]

= CD.

Hence, the model (1) can be rewritten as

Y = CD+E, (6)

which is the multivariate regression model with the parameter matrix D. Therefore,
the problems connected with the functional multivariate regression model (1) (e.g.
estimation of ΞΞΞ(t)) can be replaced by the ones in the multivariate regression model
(6). In the next Section, this relation is used for multiclass classification for multi-
variate functional data. Other results of such type and their usage are presented, for
instance, in Kayano and Konishi (2009), Matsui and Konishi (2011), Matsui (2014),
Górecki et al. (2015) and Collazos et al. (2016).

In the model (1), the intercepts were not considered. However, adding them
to the model may improve the classification procedure based on it as we will see
in Section 4. Thus, we extend the above results to the functional multivariate re-
gression model with intercepts. Now, the scalar responses Yj are modelled by the
following regression models

Yj = ξ j0 +
k

∑
i=1

∫
T

xi(t)ξ ji(t)dt + e j, j = 1, . . . , p,

where ξ j0 are the (unknown) intercepts, and further the model (1) is replaced by

Y = ΞΞΞ0 +
∫

T
X(t)ΞΞΞ(t)dt +E, (7)
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where ΞΞΞ0 = [ξ101N , . . . ,ξp01N ] and 1N is the N×1 vector of ones. Using the basis
functions representation of predictors and functional coefficients given in (4), the
model (7) can be rewritten as

Y = [1N ,C]

[
ξξξ
>
0

D

]
+E = C∗D∗+E, (8)

where ξξξ
>
0 = [ξ10, . . . ,ξp0]. Thus, the parameter matrix has one row more than in the

earlier model.

3. Multiclass classification for functional data

In this Section, we investigate the multi-label classification problem for multivariate
functional data by using the functional multivariate regression model considered in
Section 2. More general information and results on classification problems based
on regression models can be found in Krzyśko et al. (2008).

Assume that there are K ≥ 2 populations and the objects are characterized by k
features, which are given as functions in the space L2(T ). Let

x>i (t) = [xi1(t), . . . ,xik(t)] , i = 1, . . . ,N

be a sample from these populations. Each vector of functions xi(t) is accompanied
by the group label given by the K×1 vector

Y>i = [0, . . . ,0,1,0, . . . ,0]

with 1 in the lth place when the ith observation belongs to lth population.

In a classification problem, one wants to determine a procedure by which a
given object can be assigned to one of K populations. For this purpose, the rela-
tion between vectors xi(t) and Yi, i = 1, . . . ,N is described by the scalar response
functional multivariate regression model (1) or (7). Here we use the rewritten form
(6) or (8) of it. The parameter matrices D and D∗ in the models (6) and (8) can be
estimated by the least squares method. The obtained estimators are of the form

D̂ = (C>C)+C>Y, D̂∗ = (C>∗ C∗)+C>∗ Y,

where M+ is the Moore-Penrose pseudoinverse of the matrix M. Then, the predicted
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matrix is given by the formula

Ŷ =

{
CD̂ = C(C>C)+C>Y, for model (1),

C∗D̂∗ = C∗(C>∗ C∗)+C>∗ Y, for model (7).

To obtain the prediction for a new observation xnew(t), first its components have to
be represented by a finite number of orthonormal basis functions, as it was described
in Section 2, i.e.

xnew(t) = ΦΦΦ(t)cnew.

Hence, the predicted vector Ŷ(xnew) for the new observation is of the form

Ŷ(xnew)
> = [Ŷ1(xnew), . . . ,ŶK(xnew)] =

{
c>newD̂, for model (1),[

1,c>new
]

D̂∗, for model (7).

The lth component of the vector Ŷ(xnew) is the estimated value of the posterior
probability of belonging to the lth population. Unfortunately, the components of
this vector may not belong to the interval [0,1]. However, this may not matter if we
get good predictions. Moreover, it can be shown that the sum of the components
of Ŷ(xnew) is equal to one (see, for example, Krzyśko et al., 2008). Therefore, the
classifier is given by the following formula

d̂(xnew) = arg max
l=1,...,K

Ŷl(xnew). (9)

In practice, the performance of this simple classifier may be satisfactory, as indi-
cated by the real data examples of the next Section.

4. Computational experiments

In this Section, the accuracy of the proposed classifiers is examined using six real
labelled data sets. All computational experiments were performed with R envi-
ronment (R Development Core Team, 2015), and the codes are available from the
authors.

The experiments were carried out on the following data sets: Arabic digits, Aus-
tralian language, Character trajectories, Japanese vowels, ECG and Wafer. Table 1
shows the information on them. The first four data sets originate from Bache and
Lichman (2013), and the remaining ones from Olszewski (2001). The discrete func-
tional samples in each data set are of different lengths (see Table 1). For this reason,
all discrete functional variables in a given data set were extended to the same length
of the longest one by the method described and used, for example, in Górecki et al.
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(2015) (see also Rodriguez et al., 2005).

Table 1. Summary of data sets
Data sets k N K Max length Min length
Arabic digits 13 8800 10 93 4
Australian language 22 2565 95 136 45
Character trajectories 3 2858 20 205 109
ECG 2 200 2 152 39
Japanese vowels 12 640 9 29 7
Wafer 6 1194 2 198 104

To obtain the basis functions representation (3) of the observations, the or-
thonormal Fourier basis and the least squares method of estimating the coefficients
were used (see Krzyśko and Waszak, 2013). As we noted in Section 2, the quanti-
ties Bm, m = 1, . . . ,k in (3) can be chosen depending on the problem at hand. In our
classification problem, we choose these quantities which minimize the classification
error. In computational experiments, since we used the Fourier basis, we took into
account B1 = · · ·= Bk = B and B ∈ {3,5, . . . , I}, where I is the greatest odd number
less than or equal to the number of design time points of a given data set, i.e. points
on which functions are observed in practice.

The classifiers (9) based on models (1) and (7) were used for the classification
process. The classification error rates are calculated by 10-fold cross-validation
method. Figure 1 and Table 2 present the results. Observe that both classifiers give
very good classification results for the data sets Arabic digits, Character trajecto-
ries, Japanese vowels and Wafer. However, the classification error rates are not so
satisfactory for the data sets Australian language and ECG. This suggests that they
are difficult to recognize.

Table 2. The smallest 10-fold cross-validation error rates (as percentages) and B’s
for which they are achieved by using classifiers (9) based on models (1) and (7)

Model (1) Model (7)
Data sets 10CV error B 10CV error B
Arabic digits 4.35 15 4.01 27 or 33
Australian language 13.1 11 13.3 11
Character trajectories 1.23 175 1.19 127 or 171
ECG 11.5 31 11.5 31
Japanese vowels 1.88 5 1.41 5
Wafer 0.50 25 or 27 or 39 0.50 25 or 27 or 39

It seems that the classifier based on model (7) with intercepts performs at least
as good as or even better than that based on model (1) without intercepts in most
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Figure 1: 10-fold cross-validation error rates (as percentages) for different values of
B by using classifiers (9) based on models (1) and (7)

situations. However, for the data set Australian language, the smallest classification
error rate of the method based on model (1) is slightly smaller than these of the
second one (see Table 2). Therefore, for a given practical problem, both models
may be examined, and we choose the one which minimizes the classification error.

From Figure 1 and Table 2, we see that the 10-fold cross-validation error rates
behave differently for different values of B. In some cases, the best classification
results are obtained for small values of B (e.g. for Japanese vowels) while in others
for greater ones (e.g. for Character trajectories). Moreover, the values of B, for
which the smallest classification error rates were achieved, may not be the same for
classifiers based on models (1) and (7).

5. Conclusions

This paper discusses the construction of the scale response functional multivariate
regression model and its application to multiclass classification problem for multi-
variate functional data. The computational experiments based on real labelled data
sets suggest good performance of the proposed classification methods. From models
with and without intercepts, the first one seems to be preferable.

For simplicity, in our real data examples, we used the orthonormal Fourier basis
and equal lengths of basis functions representation of the observations, i.e. equal
Bm’s in (3). However, in practice, the performance of the considered classifiers may
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be improved by using more appropriate orthonormal bases to different features and
more varied values of Bm in (3).
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STACKED REGRESSION WITH A GENERALIZATION
OF THE MOORE-PENROSE PSEUDOINVERSE

Tomasz Górecki1, Maciej Łuczak2

ABSTRACT

In practice, it often happens that there are a number of classification methods. We
are not able to clearly determine which method is optimal. We propose a combined
method that allows us to consolidate information from multiple sources in a better
classifier. Stacked regression (SR) is a method for forming linear combinations of
different classifiers to give improved classification accuracy. The Moore-Penrose
(MP) pseudoinverse is a general way to find the solution to a system of linear equa-
tions.

This paper presents the use of a generalization of the MP pseudoinverse of a
matrix in SR. However, for data sets with a greater number of features our exact
method is computationally too slow to achieve good results: we propose a ge-
netic approach to solve the problem. Experimental results on various real data sets
demonstrate that the improvements are efficient and that this approach outperforms
the classical SR method, providing a significant reduction in the mean classification
error rate.
Key words: stacked regression, genetic algorithm, Moore-Penrose pseudoinverse.

1. Introduction

Suppose that a training sample has been collected by sampling from a population P
consisting of K subpopulations or classes G1, . . . ,GK . The ith observation is a pair
denoted by (xi,yi), where xi is a d-dimensional feature vector and yi is the label for
recording class membership. The corresponding pair for an unclassified observa-
tion is denoted by (x,y). In this case x is observed, but the class label y is unob-
served. The goal of classification is to construct a classification rule for predicting
the membership of an unclassified feature vector x ∈ P. An automated classifier can
be viewed as a method of estimating the posterior probability of membership of G j.
The classification rule assigns x to the group with the largest posterior probability
estimate. We denote the posterior probability of membership of Gk by

pk(x) = P(y = k|x). (1)

1Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87,
61-614 Poznań, Poland. E-mail: tomasz.gorecki@amu.edu.pl.

2Faculty of Civil Engineering, Environmental and Geodetic Sciences, Koszalin University of Tech-
nology, Śniadeckich 2, 75-453 Koszalin, Poland. E-mail: mluczak@wilsig.tu.koszalin.pl.
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In practice, it is not clear how one should choose a classifier. An even more
practical difficulty in choosing a classifier is that different classifiers have differ-
ent merits and, as a result, in a given situation one classifier may perform better
than another. Consider the following typical situation (Mojirsheibani (2002)). Sup-
pose that there are 3 classes, two of which are approximately multivariate normal
distributions, while the third class is non-normal. Then linear or quadratic classi-
fication function might work best for separating the first two classes (the normal
distributions), while the nearest neighbor rule is perhaps more appropriate in the
non-normal case. This example suggests that perhaps one should consider methods
that somehow combine the best features of different individual classifiers. Some
possible benefits of such combined methods are as follows:

1. Lowering the risk of choosing the wrong classifier.

2. Obtaining more stable prediction performance, since in combining different
methods certain biases inherited from particular models could be offset.

3. Producing a better prediction of the classification of new observations, since
the combined method gives decision-makers additional information from dif-
ferent sources.

The purpose of ensemble learning is to construct a learning rule which combines a
number of base methods, so that the final classifier gives better performance than
any individual classifier (Rokach (2010)). Three groups of combining methods
could be distinguished as follows (Duin and Tax (2000)):

• Parallel combining of classifiers computed for different feature sets. Parallel
classifiers are often of the same type.

• Stacked combining of different classifiers computed for the same feature space.
Stacked classifiers may be of a different nature, e.g. the combination of a neu-
ral network, a nearest neighbor classifier and a parametric decision rule.

• Combining weak classifiers. In this case, large sets of simple classifiers are
trained on modified versions of the original data set.

For all cases, the question arises how the classifiers should be combined. The most
intuitive approach is a simple majority vote (Kuncheva (2004)), whereby every clas-
sifier computes a class label and the label that receives the most votes is the output
of the ensemble. In addition, one may also train a classifier using, e.g. the BKS
method (Huang and Suen (1995)), Wernecke’s method (Wernecke (1992)) or the
fuzzy integral (Cho and Kim (1995)). Currently, the most interesting ensemble
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methods are bagging (Breiman (1996b)) and boosting (Schapire (1990)), random
forests (Breiman (2001)), and finally SR, introduced by Wolpert (1992). In SR, the
posterior probability estimates are combined by weighted sums, where the weights
are obtained by classical least squares regression. Stacking is still used in practice
(Sehgal et al. (2005), Doumpos and Zopounidis (2007), Marqués et al. (2012)).
Although SR is applied to real-world problems less frequently than other ensemble
methods, such as bagging or boosting, the exponential growth of data as well as
the diversity of these data continue to make SR an interesting alternative (Sesmero
et al. (2015)). There are also some new papers which propose extensions to SR
(Džeroski and Ženko (2004), Rooney et al. (2004a), Rooney et al. (2004b), Xu et
al. (2007), Ozay and Vural (2008), Ni et al. (2009)), Ledezma et al. (2010), Shun-
mugapriya and Kanmani (2013). An informative overview of SR methods can be
found in Sesmero et al. (2015).

Sigletos et al. (2005) pointed out that stacking using probabilities performs
comparably or significantly better than voting. This result has inspired us to con-
sider some extension of SR. The classical stacked regression method uses the MP
inverse of a matrix to solve a set of normal equations, whereas we try to find a
specific generalization of the MP inverse. We construct a parametric family of gen-
eralized MP inverses and use it in the SR model. Then we choose models with the
lowest cross-validation (leave-one-out) error rate and combine them by a mean rule
(Kuncheva (2004)).

However, for most datasets there are too many models to compute the cross-
validation (CV) error for all of them. The problem is too complex to find an ex-
act solution (or if done, it takes too long to calculate the solution exactly). The
most feasible approach, then, is to use a meta-heuristic method (Michalewicz, Fo-
gel (2004)). A genetic algorithm (GA) is meta-heuristic, which means it estimates
a solution. Therefore, we propose GA to solve our problem. GA has a number of
advantages. It can quickly scan a vast solution set. Bad proposals do not negatively
affect the end solution, as they are simply discarded. It can solve every optimization
problem which can be described with the chromosome encoding. It solves problems
with multiple solutions. Since the genetic algorithm execution technique is not de-
pendent on the error surface, we can solve multi-dimensional, non-differential, non-
continuous, and even non-parametric problems. It is a method which is very easy to
understand and it demands practically no mathematical knowledge.

In this paper, we first present the main ideas of SR (Section 2). In the same
section we describe generalized inverses of matrices. At the end of this section we
explain our concept for extended SR and we precisely describe the genetic approach
to our extension. In the paper the performances of the methods are compared and
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the bootstrap error of classification is considered. A total of 15 real data sets are
used. The methods and data sets used are described in Section 3. Section 4 contains
the results of our experiments on the described real data sets. The results of the re-
search are explained, the differences between the classifiers being shown accurately.
The same section contains a statistical comparison of the described methods. Final
conclusions are given in Section 5.

2. Methods

2.1. Stacked regression

Wolpert (1992) presented an interesting idea for the combining of classifiers, known
as stacked generalization. He was not searching for the best classifier in the set of
all c classifiers, but for a linear combination of them. Since each single one has
some advantages, combining them is reasonable. Wolpert’s proposal was translated
into the language of statistics by Breiman (1996a). He called it SR. Then, Leblanc
and Tibshirani (1996) took advantage of it to construct a combined classifier in dis-
criminant analysis. Stacking was shown by them theoretically to be a bias-reducing
technique. A combined classifier is a linear combination of estimated posterior
probabilities. An estimate of pk(x) obtained by the jth classifier is denoted by

p̂ j
k(x); k = 1,2, . . . ,K; j = 1,2, . . . ,c. (2)

We have c classifiers and K classes, so we have K · c estimates, which are arranged
in the vector:

p̂(x) = (p̂1
1(x), . . . , p̂1

K(x), . . . , p̂c
1(x), . . . , p̂c

K(x))
′. (3)

These estimates are arranged in the stack as rows of the matrix P. Let uk be a vector
having a 1 in the ith position if the observation belongs to class k and 0 otherwise,
so

ui,k =

{
1, if yi = k,

0, if yi 6= k.
(4)

The SR model has the form:

uk = Pβββ k +εεεk, (5)

where βββ k is a K · c×1 vector of unknown SR coefficients and εεεk a vector of errors
with zero mean. A least-squares estimate of β̂ββ k can be obtained by solving the
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following equation:

P′Pβββ k = P′uk (6)

with respect to βββ k.
The estimates of posterior probability obtained from the classifiers sum to one,

so

K

∑
k=1

p̂ j
k = 1; j = 1,2, . . . ,c. (7)

Hence, the columns of matrix P are subject to c linear constraints, P is not full
column rank and P′P is a singular matrix. We can use the MP generalized inverse
of the matrix P′P (Breiman (1996)), denoted by (P′P)+, and

β̂ββ k = (P′P)+P′uk. (8)

Given the estimates β̂ββ 1, . . . ,β̂ββ K , we classify x using the dot product:

û0,k = p̂′(x)β̂ββ k. (9)

We select the class with the largest values of û0,k. These scalar products are called
discriminant indices.

2.2. Algorithm

In SR, the MP generalized inverse A+ is used to compute the coefficients β̂ββ k (see
Equation (8)). The main idea of this paper is to use another generalized inverse.
The MP pseudoinverse is a general way to find the solution to a system of linear
equations (eg. Ben-Israel and Greville (2003), Kyrchei (2015)).

We consider a general (real) matrix AAA of order m×n and rank which may be less
than min(m,n). If M,NM,NM,N are positive definite matrices, and there exist factorizations
N̂NN
′
N̂NN =NNN, M̂MM

′
M̂MM =MMM, then

AAA+
MNMNMN = N̂NN

−1
(M̂MMAAAN̂NN

−1
)+M̂MM, (10)

satisfies the condition

‖AAA+
MNMNMNyyy‖n ≤ ‖xxx‖n (11)

∀xxx ∈ {xxx : ‖AxAxAx−yyy‖m ≤ ‖AzAzAz−yyy‖m∀zzz ∈ Rn},
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where ‖xxx‖n =
√

xxx′NxNxNx and ‖yyy‖m =
√

yyy′MyMyMy are norms in Rn and Rm, respectively.
AAA+

MNMNMN is referred to as the minimum NNN-norm MMM-least-squares g-inverse of AAA. When
MMM and NNN are identity matrices, we use the notation AAA+ and call it the MP inverse
(pseudoinverse). The matrix AAA+

MNMNMN is also called the weighted Moore-Penrose inverse
of AAA. The weighted MP inverse of a matrix has many important applications eg. in
statistics, prediction theory and curve fitting. For a wider survey and more details
we refer readers to Rao and Mitra (1971).

If MMM is positive semi-definite, then ‖yyy‖m is a seminorm and the right side of
Equation (10) does not need to be a g-inverse. We denote it by AAA∗MNMNMN and AAA∗MMM if
N = IN = IN = I.

In our method we use A∗M with a special form of matrix M instead of A+.
Precisely, we use Equation (10) with the assumptions

N̂ = N = I, M̂ = M =


a1 0 . . . 0
0 a2 . . . 0
. . . . . . . . . . . .

0 0 . . . am

 (12)

where ai = 0 or 1 for i = 1, . . . ,m (m = K · c). This leads to the seminorm

‖x‖=
√

x′Mx =
√

x2
i1 + x2

i2 + · · ·+ x2
ik , 1≤ k ≤ m (13)

for x = (x1,x2, . . . ,xm) ∈ Rm. Then Equation (10) has the form

A∗M = (MA)+M. (14)

Thus, we can calculate SR coefficients β̂ββ k by the formula

β̂ββ k = (P′P)∗MP′uk = (MP′P)+MP′uk. (15)

In the algorithm the matrix N corresponds to the norm ‖ · ‖n in Equation (11).
In the case of SR the norm operates on the space of probabilities, so it seems that
the simplest choice is to take the Euclidean norm, i.e. N = I.

We only take ones and zeros in the diagonal of the matrix MMM because it has been
proven (Górecki, Łuczak (2013)) that the value of AAA∗MMM depends only on whether the
coefficients ai are zeros or not. Each zero in the diagonal trims a part (but not all)
of the information about one pair consisting of a class and a classifier.

The number of models (diagonals) which have to be tested by the CV process
at the learning phase is equal to 2K·c, where c and K depends neither on the number
of elements of the learning data set nor on the number of features of the data.
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In our algorithm we choose the best combinations of ones and zeros in the di-
agonal of matrix M using the genetic algorithm, and form the SR model with the
lowest CV error rate. If there is more than one best model the mean classifier is
performed for them; the classification index of our method is the mean of indices
for the best models (in the sense of CV) that joins all the information from them.
We will call this method generalized stacked regression (GSR).

2.3. Genetic algorithm

The sequence of steps in a basic GA is shown in Fig. 1. The population consists of
individuals (genotypes) which are diagonal of matrix MMM. Each individual is a binary
vector (genes) that corresponds to numbers (ones or zeros) in the diagonal of MMM. All
populations in the algorithm have a constant number n of individuals.

Figure 1: Genetic algorithm

Initial population: This is generated randomly. We construct n individuals
where each position in the vector (diagonal) may be 0 or 1 with probability of 0.5.
Fitness evaluation: The fitness function value is computed by the leave-one-out CV
method. The CV error rate is the fitness value of any individual. The smaller the
value, the better fitness an individual has. Selection: We use tournament selection.
Two individuals are chosen from the population at random. The one with higher
fitness is selected for mutation and crossover. This is repeated n times to make a
new population. Mutation: We use standard one-point mutation. For each indi-
vidual each position in the vector has the same probability of mutation pm. The
mutation is negation of the number (0 or 1) in the position (Fig. 2). It is repeated
an appropriate number of times to make a new population of size n. Crossover:
We use a standard one-point crossover operation. Each individual can be chosen
to crossover with constant probability pc. For every pair of chosen individuals, the
point of crossing is fixed at random. Then the positions to the right of the point
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are exchanged with one another (Fig. 2). The operation is repeated an appropriate
number of times to make a new population of size n.

Figure 2: Reproduction

Stop condition: We do not use a fixed number of generations in GA. For so many
different data sets, the algorithm needs different numbers of steps to reach a satis-
factory result. The process is repeated until a stop condition has been reached. The
stop condition depends on the behaviour of the mean fitness value in the populations
over k steps of the algorithm. If during k steps the mean does not become smaller
than the smallest value of the mean up to the current generation, the algorithm is
terminated. We shall call the number k the stop condition number.

3. Computational experiments

Data sets

We performed experiments on 15 real data sets. The description of the data sets
used is presented in Table 1.

The data set beetles comes from Seber (1984), chemistry and irradiation come
from Morrison (1976), and football is from Gleim (1984). The other data sets orig-
inate from the UCI Machine Learning Repository (Frank and Asuncion (2010)).

Experimental setup

The classification errors were estimated by the leave-one-out and bootstrap meth-
ods. Leave-one-out was used to find the best diagonals (those with the smallest
error rates) of matrix M. The method was used to compute the value of the fitness
function in the GA. The number of individuals per population was fixed at a con-
stant value of n = 20. We chose probabilities of mutation pm = 0.01 and crossover
pc = 0.8. As a selection method we use tournament selection. Different stop con-
dition numbers were tried, k = 0, . . . ,10. For the final result of our method we
assumed the best case k = 10. For each data set we repeated the algorithm 10 times.
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Table 1: The description of the data sets used.

Name
Number of Number of Number of

features classes instances

beetles 2 3 64
breast tissue 9 6 106
chemistry 3 4 45
flags 28 6 194
football 6 3 90
glass 9 6 214
heart_c 13 5 297
heart_h 10 5 261
heart_s 10 5 105
iris 4 3 150
irradiation 3 4 45
libras 90 15 360
sonar 60 2 208
wine 13 3 178
zoo 16 7 100

In the next step, the mean classifier was performed for models with each of these di-
agonals. We calculated the bootstrap classification error rate (1000 repetitions). We
finally fixed the mean of these bootstrap error rates as the error rate of our method.

The success of stacked generalization depends on the methods that are com-
bined. Obviously, if all the methods provide the same class assignments, then a
combined model will not provide any improvement in classification accuracy. The
classification performance of the methods is of rather limited interest in this context,
i.e. one is not interested in combining highly accurate methods, but in combining
methods that are able to consider different aspects of the problem and the data used.
Of course, it is rather difficult to find which methods meet this requirement. How-
ever, it is expected that consideration of different types of methods (e.g. methods
which are not simple variations of one another) should be beneficial in stacking
(Wolpert (1992)). We performed computations for three basic classifiers:

1. Nearest neighbors classifier with 5 neighbors (5NN). Objects are assigned
based on a majority vote among the classes of the 5 nearest training points.
The 5NN variant of the nearest neighbor classifier was chosen on the one
hand to avoid an excess of zero posterior probabilities, and on the other hand
because too large a number of neighbors leads to an excessive number of ties,
whose resolution can be problematic (Górecki, (2005)). Too many neigh-
bors may also be problematic for small data sets and for data sets with small
classes.
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2. Naive Bayes classifier (NB). We assume that the value of a particular fea-
ture is independent of the value of any other feature, given the class variable.
This reduces the problem to d one-dimensional density estimation problems,
within each of the K groups. We adopted a typical assumption that the contin-
uous values associated with each class are distributed according to a Gaussian
distribution. NB classifier works quite well in many complex real-world situ-
ations. In addition, Zhang (2004) investigated the optimality of NB under the
Gaussian distribution, and presented the explicit sufficient condition under
which NB is optimal, even though the independence assumption is violated.

3. Binary decision tree classifier (TREE). The algorithm computes a binary de-
cision tree on a multi-class data set. Thresholds are set such that the Gini
impurity is minimized in each step. Early pruning is used in order to avoid
overtraining (Breiman et al. (2005)).

We focus on methods with a fast implementation (at the same time popular and rel-
atively efficient), because GA itself is very time-consuming. The methods should
be also significantly diversified in order for the ensemble method to yield better re-
sults (Kuncheva and Whitaker (2003)). Noteworthy is also Table 2 in Sesmero et
al. (2015), where one can find information about base classifiers used in SR. The
methods we selected are commonly used and meet the criteria of fast implementa-
tion and efficiency. More details about the methods we use can be found in Webb
(2002).

In the computational process we used the program PRTools 4.2.1 (http://www.
prtools.org). This is a Matlab (version R2011a) based toolbox for pattern recog-
nition (van der Heijden et al. (2004)). In each procedure we used the default param-
eters.

Results

Graphs of example runs of our algorithm are shown in Fig. 3. We can observe
rather standard behaviour of GA. We use tournament selection, which is not an
elitist selection, so we can observe that the minimum of the fitness function does
not decrease monotonically. The mean tends to a minimum and the algorithm is
terminated if the stop condition is reached, i.e. if the mean does not decrease for a
number of generations.

The results of the research are presented below in tabular form. Bootstrap error
rates are presented in Table 2. From left to right the columns show the errors made
by individual methods, SR, and our GSR. 5NN performed clearly the best on 2 of
the data sets, NB on 3 and GSR on 10.
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Figure 3: Runs of GA for example data sets. Fitness function value (mean (· · · ) and
minimum (—) of CV error rate) depending on the generation number. From left:
flags, heart_c, libras data set.

Table 2: Bootstrap error rates (in %). Clearly the best results are marked with the
symbol •.

Data set 5NN NB TREE SR GSR

beetles 6.08 6.84 5.34 4.95 • 4.34
breast tissue 48.72 38.49 43.29 41.17 • 37.47
chemistry 65.38 70.15 66.93 66.92 • 64.67
flags 66.39 35.77 43.50 40.64 • 33.47
football 40.49 • 32.60 40.51 38.99 32.65
glass 34.40 39.67 37.34 34.98 • 33.65
heart_c 57.36 41.52 52.13 51.41 • 41.48
heart_h 50.19 37.09 53.98 54.00 • 35.39
heart_s 64.86 63.76 66.53 66.55 • 63.20
iris • 4.41 5.98 9.77 7.38 5.88
irradiation 70.62 72.06 71.76 71.79 • 70.21
libras • 27.92 40.97 56.68 35.09 35.81
sonar • 23.34 25.71 32.29 32.29 23.39
wine 30.67 • 3.35 11.72 5.14 3.69
zoo 10.34 8.36 10.90 9.82 • 5.54
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In Table 3 we present relative differences of bootstrap error rates between SR
and other methods (a positive value means that SR is better in that case). We may
use the mean ratio of error rates across data sets as a measure of relative performance
(Bauer and Kohavi (1998)).

Table 3: Average relative bootstrap error rates (in%) on all data sets.

5NN−SR
SR

NB−SR
SR

TREE−SR
SR

GSR−SR
SR

MEAN 34.51 -7.02 17.65 -16.08

A direct comparison of SR with our revised version strongly favors the revised
method. A graphical comparison of GSR and SR is presented in Fig. 4. We see
that the new method, GSR, is clearly superior to SR on most of the examined data
sets (with a 16.08% average relative error reduction for all data sets). The error rate
of our method is slightly greater than for standard stacked regression in only one
case (libras). One of the models is the standard SR (for M = I), so if it is the best
model then it should be chosen. It sometimes fails because of the procedure for
finding parameters. If we tried another, more sophisticated, method of finding the
best model instead of CV, we would have better results.
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Figure 4: Comparison of test errors.

To distinguish between the methods, we performed a statistical comparison.
We tested the hypothesis that there are no differences between the classifiers. We
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used Iman and Davenport’s (1980) rank test, which is a less conservative variant
of Friedman’s ANOVA test. We compare the mean ranks of classifiers. The p-
value from this test is equal to 5.29E-6. We can therefore proceed with the post hoc
tests to detect which classifiers are significantly different from each other. Garcia
and Herrera (2008) showed that the dynamic procedure of Bergmann and Hommel
(1988) is the most powerful post hoc test. The results of multiple comparisons are
given in Table 4 and Table 5. We finally obtained, at the significance level α = 0.05,
two homogeneous groups of classifiers: GSR and the rest of classifiers. Hence, GSR
is significantly better than the other examined classifiers.

Table 4: p-values in the Bergmann–Hommel post hoc test.

i Hypothesis p-value

1 TREE vs. GSR 1.65×10−5

2 SR vs. GSR 0.004
3 5NN vs. GSR 0.011
4 NB vs. GSR 0.032
5 NB vs. TREE 0.196
6 5NN vs. TREE 0.220
7 TREE vs. SR 0.332
8 NB vs. SR 1.000
9 5NN vs. SR 1.000

10 5NN vs. NB 1.000

Table 5: Results of the Bergmann–Hommel post hoc test.

Procedure Ranks mean

GSR 4.60 a
NB 3.07 b
5NN 2.87 b
SR 2.63 b
TREE 1.83 b

4. Conclusions

Our research has shown that the use of a generalization of the MP pseudoinverse
of a matrix in the SR model of object classification gives good results. In the gen-
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eral case our method seems to outperform SR and often even the best individual
classifier. Owing to the parametric approach and the genetic optimization method,
the proposed method enables one to choose an appropriate model for any data set
and any individual classifiers. On the other hand, our method seems to prevent
overfitting. Due to the high nonlinearity, the method does not easily lead to a rigor-
ous theoretical analysis. However, the experiments that we have conducted provide
evidence of the power and usefulness of our method.

REFERENCES

BAUER, E., KOHAVI, R., (1999). An experimental comparison of voting classi-
fication algorithms: bagging, boosting, and variants. Machine Learning, 36,
105–139.

BEN-ISRAEL, A., GREVILLE, T.N.E. (2003). Generalized inverses. Theory and
applications. Springer.

BERGMANN, G., HOMMEL, G., (1988). Improvements of general multiple test
procedures for redundant systems of hypotheses. In Multiple Hypotheses Test-
ing. P. Bauer, G. Hommel and E. Sonnemann (eds.) Springer, 110–115.

BREIMAN, L., (1996a). Stacked regression. Machine Learning, 24, 49–64.
BREIMAN, L., (1996b). Bagging predictors. Machine Learning, 24, 123–140.
BREIMAN, L., (2001). Random forests. Machine Learning, 45, 5–32.
BREIMAN, L., FRIEDMAN, J.H., OLSHEN, R.A., STONE, C.J., (1984). Classi-

fication and regression trees, Wadsworth, California.
CHO, S.B., KIM, J.H., (1995). Multiple network fusion using fuzzy logic. IEEE

Transactions on Systems, Man, and Cybernetics, 6, 497–501.
DOUMPOS, M., ZOPOUNIDIS, C., (2007). Model combination for credit risk as-

sessment: A stacked generalization approach. Annals of Operations Research,
151, 289–306.

DUIN, R., TAX, D., (2000). Experiments with classifier combining rules. Lecture
Notes in Computer Science, 1857, 16–29.

DŽEROSKI, S., ŽENKO, B., (2004). Is combining classifiers with stacking better
than selecting the best one? Machine Learning, 54, 255–273.

FRANK, A., ASUNCION, A., (2010). UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml Irvine, CA: University of California, School of
Information and Computer Science.

GARCIA, S., HERRERA, F., (2008). An extension on ”statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons. Journal of
Machine Learning Research, 9, 2677–2694.



STATISTICS IN TRANSITION new series, September 2017 457

GLEIM, G., (1984). The profiling of professional football players. Clinical Sport
Medicine, 3(1), 185–97.

GÓRECKI, T., (2005). Effect of choice of dissimilarity measure on classification
efficiency with nearest neighbor method. Discussiones Mathematicae Proba-
bility and Statistics, 25(2), 217–239.

GÓRECKI, T., ŁUCZAK, M., (2013). Linear discriminant analysis with a gen-
eralization of Moore-Penrose pseudoinverse. International Journal of Applied
Mathematics and Computer Science, 26(2), 463–471.

HUANG, Y.S., SUEN, C.Y., (1995). A method of combining multiple experts for
the recognition of unconstrained handwritten numerals. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17, 90–93.

IMAN, R., DAVENPORT, J., (1980). Approximations of the critical region of the
Friedman statistic. Communications in Statistics - Theory and Methods, 9(6),
571–595.

KUNCHEVA, L.I., (2004). Combining Pattern Classifiers: Methods and Algo-
rithms. Wiley.

KUNCHEVA, L., WHITAKER, C., (2003). Measures of diversity in classifier
ensembles. Machine Learning, 51, 181–207.

KYRCHEI, I., (2015). Cramer’s rule for generalized inverse solutions. In Advances
in Linear Algebra Research I. Kyrchei (ed.) Nova Science Publishers, 79–132.

LEBLANC, M., TIBSHIRANI, R., (1996). Combining estimates in regression and
classification. Journal of the American Statistical Association, 91, 1641–1650.

LEDEZMA, A., ALER, R., SANCHIS, A., BORRAJO, D., (2010). GA-stacking:
evolutionary stacked generalization. Intelligent Data Analysis, 14, 89–119.

MARQUÉS, A., GARCÍA, V., SÁNCHEZ, J., (2012). Exploring the behavior of
base classifiers in credit scoring ensembles. Expert Systems with Applications,
39(11), 10244–10250.

MICHALEWICZ, Z., FOGEL, D.B., (2004). How To Solve It: Modern Heuristics.
Springer.

MOJIRSHEIBANI, M., (2002). A comparison study of some combined classifiers.
Communications in Statistics - Simulation and Computation, 31(2), 245–260.

MORRISON, D.F., (1976). Multivariate Statistical Methods. McGraw-Hill.
NI, W., BROWN, S., MAN, R., (2009). Stacked partial least squares regression

analysis for spectral calibration and prediction. Journal of Chemometrics, 23,
505–517.

OZAY, M., VURAL, F.T.Y., (2008). On the performance of stacked generalization
classifiers. Lecture Notes in Computer Science, 5112, 445–454.



458 T. Górecki, M. Łuczak: Stacked regression...

RAO, C.R., MITRA, S.K., (1971). Generalized Inverse of Matrices and its Appli-
cations. Wiley.

ROKACH, L., (2010). Ensemble-based classifiers. Artificial Intelligence Review,
33, 1–39.

ROONEY, N., PATTERSON, D., ANAND, S., TSYMBAL, A., (2004). Dynamic
integration of regression models. Lecture Notes in Computer Science, 3077,
64–173.

ROONEY, N., PATTERSON, D., NUGENT, C., (2004). Reduced ensemble size
stacking. Tools with Artificial Intelligence. ICTAI 6th IEEE International
Conference, 266–271.

SCHAPIRE, R.E., (1990). The strength of weak learnability. Machine Learning, 5,
197–227.

SEBER, G.A.F., (1984). Multivariate Observations. New York: Wiley.
SEHGAL, M.S.B., GONDAL, I., DOOLEY, L., (2005). Stacked regression en-

semble for cancer class prediction. Industrial Informatics INDIN 3rd IEEE
International Conference, 831–835.

SESMERO, M., LEDEZMA, A., SANCHIS, A., (2015). Generating ensembles
of heterogeneous classifiers using Stacked Generalization. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 5(1), 21–34.

SHUNMUGAPRIYA, P., KANMANI, S., (2013). Optimization of stacking ensem-
ble configurations through artificial bee colony algorithm. Swarm and Evolu-
tionary Computation, 12, 24–32.

SIGLETOS, G., PALIOURAS, G., SPYROPOULOS, C.D., HATZOPOULOS, M.,
(2005). Combining information extraction systems using voting and stacked
generalization. Journal of Machine Learning Research, 6, 1751–1782.

WERNECKE, K., (1992). A coupling procedure for discrimination of mixed data.
Biometrics, 48, 497–506.

WOLPERT, D., (1992). Stacked generalization. Neural Networks, 5, 241–259.
VAN DER HEIJDEN, F., DUIN, R.P.W., DE RIDDER, D., TAX. D.M.J., (2004).

Classification, Parameter Estimation and State Estimation: An Engineering
Approach Using Matlab, New York: Wiley.

WEBB, A., (2002). Statistical Pattern Recognition. New York: Wiley.
XU L., JIANG J.H., ZHOU Y.P., WU H.L., SHEN G.L., YU R.Q., (2007). MCCV

stacked regression for model combination and fast spectral interval selection
in multivariate calibration. Chemometrics and Intelligent Laboratory Systems,
87(2), 226–230.

ZHANG, H., (2004). The Optimality of Naive Bayes. 17. FLAIRS Conference
2004: Miami Beach, Florida, USA 562–567.



STATISTICS IN TRANSITION new series, September 2017 459

STATISTICS IN TRANSITION new series, September 2017
Vol. 18, No. 3, pp. 459–479, DOI 10. 21307

AN ADDITIVE RISKS REGRESSION MODEL FOR
MIDDLE-CENSORED LIFETIME DATA

P. G. Sankaran1, S. Prasad2

Abstract

Middle-censoring refers to data arising in situations where the exact lifetime of
study subjects becomes unobservable if it happens to fall in a random censoring in-
terval. In the present paper we propose a semiparametric additive risks regression
model for analysing middle-censored lifetime data arising from an unknown pop-
ulation. We estimate the regression parameters and the unknown baseline survival
function by two different methods. The first method uses the martingale-based the-
ory and the second method is an iterative method. We report simulation studies to
assess the finite sample behaviour of the estimators. Then, we illustrate the utility
of the model with a real life data set. The paper ends with a conclusion.

Key words: additive risks model, counting process, martingales, middle-censoring.

1. Introduction

Middle-censoring introduced by Jammalamadaka & Mangalam (2003) occurs in sit-
uations where a data point becomes unobservable if it falls inside a random censor-
ing interval. In such situations, the exact values are available for some individuals
and for others, random censoring intervals are observed. To be more precise, let T
be the random variable representing the lifetime of interest and let (U,V ) be a bivari-
ate random variable, representing the censoring interval, such that P(U < V ) = 1.
Under the middle-censored set-up, the exact lifetime T becomes unobservable if
T ∈ (U,V ), and in such instances we only observe the censoring interval (U,V ).
Otherwise we observe T . We may find several such situations in survival studies
and reliability applications. For example, in a prognostic study, the patients under
observation may be withdrawn from the study for a short period of time for some
unforeseen reasons and may return to the study with a changed status of event of
interest. In reliability applications, it may happen that a failure of equipment occurs
during a period of time when we accidentally fail to observe the study subjects. In

1Department of Statistics, Cochin University of Science and Technology, Kerala, India. E-mail:
sankaran.p.g@gmail.com

2Department of Statistics, Cochin University of Science and Technology, Kerala, India. E-mail:
hariprasadtvpm@gmail.com(Corresponding Author).
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such contexts we only observe a censorship indicator and the interval of censorship.
As was pointed out by Jammalamadaka & Mangalam (2003), one can observe

that the left censored data and right censored data are in fact special cases of this
more general censoring scheme, by suitable choices of the interval, and also that
such a censoring scheme is not complementary to the usual double censoring dis-
cussed in Klein & Moeschberger (2005) and Sun (2006).

Jammalamadaka & Mangalam (2003) pointed out various applications of middle-
censoring scheme and developed a nonparametric maximum likelihood estimator
(NPMLE) of the distribution function of the random variable. They proved that the
NPMLE is always a self-consistent estimator (SCE) (Tarpey & Flury, 1996). Some
rigorous treatments of this censoring scheme are found in Jammalamadaka & Iyer
(2004), Iyer et al. (2008), Mangalam et al. (2008), Jammalamadaka & Mangalam
(2009), Shen (2010, 2011), Davarzani & Parsian (2011) and Davarzani et al. (2015).

In survival studies, covariates or explanatory variables are usually used to rep-
resent heterogeneity in a population. The main objective in such situations is to
understand and exploit the relationship between the lifetime and covariates. To this
end we generally employ regression models. In the presence of covariates, Sankaran
& Prasad (2014) discussed a parametric proportional hazards regression model for
the analysis of middle-censored lifetime data. Jammalamadaka & Leong (2015)
analysed discrete middle-censored data in the presence of covariates with an ac-
celerated failure time regression model. Recently, Jammalamadaka et al. (2016)
developed an iterative algorithm for analysing a semiparametric proportional haz-
ards regression model under middle-censoring scheme, while Bennett et al. (2017)
considered a parametric accelerated failure time regression model under this cen-
soring scheme.

One extensively used semiparametric regression model is the well-known pro-
portional hazards (PH) model by Cox (1972). It is a multiplicative hazards model in
the sense that if T has a baseline hazard function h0(t) and if z is a p×1 vector of
the recorded covariates then the hazard function of T conditional on z is modelled
as

h(t|z) = h0(t)exp(z>θ),

where θ = (θ1,θ2, ...,θp)
> is the vector of regression coefficients and h0(t) is left

arbitrary. Here, a> represents the transpose of vector a . In this model the effect
of the covariates is acting multiplicatively on the baseline hazard function. But it is
well known that in many occasions the PH model does not fit a given lifetime data
well. One important alternative to the PH model is the additive risks (AR) model
introduced by Aalen (1989) and later studied by Lin & Ying (1994). The model
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associates the conditional hazard function with the covariates by

h(t|z) = h0(t)+ z>θ . (1)

In contrast to the PH model, the AR model given in (1) specifies that the hazard rate
associated with a given set of covariates is the sum of the baseline hazard function
and the regression function of covariates. This kind of model assumption is particu-
larly useful in tumorigenicity experiments that investigate the dose effect on tumor
risk, since the excess risk is often the quantity of interest (Breslow & Day, 1987).
For a comprehensive review on properties and inference procedures of model (1),
one may refer to Aranda-Ordaz (1983), Cox & Oakes (1984), Thomas (1986), Bres-
low & Day (1980), and Lin & Ying (1994). For a nonparametric treatment of model
(1) one may refer to Aalen (1980, 1989). Model (1) is further explored in the con-
text of left truncated current status data by Wang et al. (2015).

In the present work, we aim at estimating the unknown baseline survival func-
tion S0(t) of a continuous type lifetime variate T , which is subject to middle-
censoring, and estimation of the unknown regression coefficients under model (1).
We propose two different inference methods in Section 2. Simulation studies to
assess the performance of the estimators under both methods for practical sample
sizes are carried out and the results are compared in Section 3. The utility of the
methods are illustrated with the help of a real life example in Section 4. Finally,
some important conclusions are provided in Section 5.

2. Inference Procedure

Let the lifetime variate T admit an absolutely continuous cumulative distribution
function (cdf) F0(t). Assume that T is middle-censored by the random censoring
interval (U,V ) having bivariate cdf given by G(u,v) = P(U ≤ u,V ≤ v). Let us
further assume that under model (1), T is independent of (U,V ), given the covariate
z. Thus, one can observe the vector (X ,δ ,z), where

X =

{
T if δ = 1

(U,V ) if δ = 0,

and δ = I (X = T ) is the uncensoring indicator. Now, we state an important assump-
tion regarding the identifiability of the cdf F0(t). Let [a,b], a ≤ b be any arbitrary
interval in the support of T . Define, for r ∈ [a,b],

A0(r) = G(r−,∞)−G(r−,r) = P(U < r <V ). (2)
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Now, consider a situation where A0(r) = 1 for r ∈ [a,b] for which F0(b)> F0(a−).
i.e. censoring occurs with probability 1 on this interval where F0 has a positive
mass. Consequently, there will not be any exact observation in this interval, making
it impossible to distinguish two distributions which are identical outside [a,b] but
differ only on [a,b]. To overcome this issue we make the following assumption.
A1: The probability defined in (2) is strictly less than one.

In the following we describe two different estimation methods: one makes use
of the classic martingale theory and the other by using of an iterative method.

2.1. Martingale Method

Here we provide an inference procedure based on the martingale feature associated
with the observed data. First a partial likelihood function is developed under model
(1), similar to the one for the Cox PH model (Kalbfleisch & Prentice, 2011). Then,
the stochastic integral representation of the score function derived from the partial
likelihood function is used to infer about the unknown regression coefficient.

The observed data consists of n independent and identically distributed repli-
cates (Xi,zi, δi) of (X ,z,δ ), 1 ≤ i ≤ n. When the lifetime is subject to middle-
censoring, we shall define the counting process corresponding to the i’th individual
as Ni(t) = I(Xi ≤ t,δi = 1), t ≥ 0, which indicates whether the event occurred at
time t, for i = 1,2, ...,n. The at-risk process may be similarly defined as Ri(t) =
I(Xi ≥ t,δi = 1)+ I(Ui ≥ t,δi = 0) which is a 0-1 predictable process, where the
value 1 indicates whether the i’th individual is at risk at time t, for i = 1,2, ...,n,
i.e., whether it is uncensored and waiting for a possible event at the epoch t. De-
note the filtration σ{Ni(u),Ri(u+),zi : i = 1,2, ...,n; 0 ≤ u ≤ t} by Ft . Under
model (1) the conditional cumulative hazard rate for the i’th individual is given by
H(t|zi) = H0(t)+z>i θ t, where H0(t) =

∫ t
0 h0(a)da is the baseline cumulative hazard

function. Model (1) assumes that

E[Ni(t)|Ft−] = (h0(t)+θ
>zi)Ri(t)dt,

and the intensity function corresponding to the counting process Ni(t) can thus be
written as Ri(t)dH(t|zi) = Ri(t){dH0(t)+ z>i θdt}. With this, the counting process
can be uniquely decomposed so that for every i and t,

Ni(t) = Mi(t)+
∫ t

0
Ri(a)dH(a|zi), (3)
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where Mi(·) is a local square integrable martingale (Andersen & Gill, 1982). From
(3), we have

dNi(t) = dMi(t)+Ri(t)dH(t|zi), (4)

so that
n

∑
i=1

dMi(t) =
n

∑
i=1

[dNi(t)−Ri(t)(dH0(t)+θ
>zidt)] = 0. (5)

To estimate θ , let us now consider the partial likelihood function suggested by Cox
(1972) and further discussed in Cox (1975). It is defined as

L(θ) =
k

∏
i=1

h(t(i)|z(i))
∑

n
l=1 Rl(t(i))h(t(i)|zl)

, (6)

where t(1), t(2), ..., t(k) are the k observed exact lifetimes which are arranged in in-
creasing order of magnitude. The motivation for (6) is that when we have the in-
formation that an event occurs at time point t and that the at-risk set is R(t), the
right-hand side of (6) is precisely the probability that it is individual i ∈ R(t), who
registered the event. Since T is assumed to be of continuous type, the possibility of
ties is ruled out. However, (6) is not a usual likelihood, as it is not obtained from
the probability of some observable events. A detailed discussion on this is available
in Lawless (2011). Under the model assumption (1), we can rewrite (6) as

L(θ) =
k

∏
i=1

h0(t(i))+ z>(i)θ

∑
n
l=1 Rl(t(i))

(
(h0(t(i))+ z>l θ

) . (7)

The value of θ that maximizes (7) can be obtained by maximizing

l(θ) = log(L(θ)) =
k

∑
i=1

[
log
(

h0(t(i))+ z>(i)θ
)
−

log
( n

∑
l=1

Rl(t(i))
(
(h0(t(i))+ z>l θ

))]
. (8)

In terms of the counting process defined earlier, we can rewrite (8) as

C(θ) =
n

∑
i=1

∫
∞

0
log
(

h0(s)+ z>i θ

)
dNi(s)−∫

∞

0
log
( n

∑
l=1

Rl(s)
(
h0(s)+ z>l θ

))
dN̄(s), (9)
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where N̄(s) = ∑
n
i=1 Ni(s). The score function is simply the derivative of (9) with

respect to θ , and is given by

U(θ) =
n

∑
i=1

∫
∞

0

(
h0(s)+ z>i θ

)−1

zidNi(s)−

∫
∞

0

( n

∑
l=1

Rl(s)
(
(h0(s)+ z>l θ

))−1( n

∑
l=1

Rl(s)zl

)
dN̄(s). (10)

Using the idea of Lin & Ying (1994), we propose to estimate the true regression
coefficient θ 0 from the following estimating equation, which is obtained by an al-
gebraic simplification of (10).

U(θ) =
n

∑
i=1

∫
∞

0
zi{dNi(t)−Ri(t)dĤ0(θ , t)−Ri(t)z>i θdt},

which is equivalent to

U(θ) =
n

∑
i=1

∫
∞

0
{zi− z̄}{dNi(t)−Ri(t)z>i θdt}, (11)

where z̄ = ∑
n
i=1 ziRi(t)/∑

n
i=1 Ri(t), with the convention that 0/0 = 0. The identity

(11) is based on a simple fact that when θ 0 is the true parameter value, U(θ 0) is a
martingale integral and therefore has mean zero. Note that (11) is linear in θ and
the resulting estimator takes an explicit form given by

θ̂ =
[ n

∑
i=1

∫
∞

0
[zi− z̄]⊗2Ri(t)dt

]−1 n

∑
i=1

∫
∞

0
[zi− z̄]dNi(t), (12)

where a⊗2 = aa>. Since Mi(t) is a martingale, we have ∑
n
i=1 dMi(t) = 0. Thus,

from the representation given in (3), a Breslow type estimator (Breslow, 1972) for
the cumulative hazard function H0(t) can be obtained as

Ĥo(θ̂ , t) =
∫ t

0

∑
n
i=1{dNi(a)−Ri(a)z>i θ̂da}

∑
n
i=1 Ri(a)

. (13)

This naturally leads to the following estimator of conditional survival function S(t|z).

Ŝ(t|z) = exp{−Ĥ0(θ̂ , t)− z>θ̂ t}. (14)
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An algebraic manipulation of (4) yields

U(θ) =
n

∑
i=1

∫
∞

0
(zi− z̄)dMi(t), (15)

which is a martingale integral. It follows from standard counting process theory that
n−1/2U(θ 0) converges weakly to a p-variate normal with mean zero and a covari-
ance matrix that can be estimated consistently by

A =
1
n

n

∑
i=1

∫
∞

0
(zi− z̄)⊗2dNi(t). (16)

Also, the random vector n1/2(θ̂ −θ 0) converges weakly to a p-variate normal dis-
tribution with mean zero and a covariance matrix that can be consistently estimated
by B−1AB−1, where

B =
1
n

n

∑
i=1

∫
∞

0
Ri(t)(zi− z̄)⊗2dt. (17)

Specifically, (B−1AB−1)
− 1

2 (θ̂ − θ 0) converges in distribution to N(0, I). It can be
observed that neither A nor B involves the regression parameters. The estimator
(13) provides the basis for estimating survival probabilities. Using standard count-
ing process techniques, it follows that the process

√
n(Ĥ0(θ̂ , t)−H0(t)) converges

weakly to a zero mean Gaussian process, whose covariance function at (t,s), t ≥ s
can be estimated consistently by∫ s

0

n∑
n
i=1 dNi(a)

(∑n
1 Ri(a))2 +C′(t)B−1AB−1C(s)−C′(t)B−1D(s)−C′(s)B−1D(t),

where C(t) = z̄t and D(t) =
∫ t

0
∑

n
1(zi−z̄)dNi(a)

∑
n
1 Ri(a)

with k′(a) = dk(a)/da.
Using functional delta method (Andersen et al., 2012), it follows that the process√

n(Ŝ(t|z)−S(t|z)) converges weakly to a zero-mean Gaussian process, whose co-
variance function at (t,s), t ≥ s can be estimated consistently by

Ŝ(t|z)Ŝ(s|z)
(∫ s

0

n∑
n
i=1 dNi(a)

(∑n
1 Ri(a))2

+W ′(t,z)B−1AB−1W (s,z)+W ′(t,z)B−1D(s)+W ′(s,z)B−1D(t)
)
,

where W (t,z) = (z− z̄)t.
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2.2. The Iterative Method

In this section, an iterative method is proposed for estimating the unknown baseline
survival function S0(t) of the lifetime variate T and the regression coefficient vector
θ under model (1). Assume that T is middle-censored by the random censoring
interval (U,V ) such that, given the covariate z, T and (U,V ) are independently
distributed. Let the observed data be as before. For convenience let us assume
that the first n1 observations are exact lifetimes, and the remaining n2 are censored
intervals, with n1+n2 = n. Now, the likelihood corresponding to the observed data,
excluding the normalizing constant, can be written as

L(θ) =
n1

∏
i=1

f (ti|zi) ·
n1+n2

∏
i=n1+1

(S(ui|zi)−S(vi|zi)) . (18)

Under the model assumption given in (1), the conditional survival function is ob-
tained as

S(t|z) = S0(t)exp(−θ
>zt), (19)

where S0(t) = exp(−H0(t)). Thus, the density function of T given z is given by

f (t|z) = exp(−θ
>zt)

(
θ
>zS0(t)−S′0(t)

)
. (20)

Therefore, (18) becomes

L(θ) =
n1

∏
i=1

exp(−θ
>ziti)

(
θ
>ziS0(ti)−S′0(ti)

)
×

n1+n2

∏
i=n1+1

(
S0(ui)exp(−θ

>ziui)−S0(vi)exp(−θ
>zivi)

)
. (21)

The log-likelihood is given by

l(θ) = logL(θ) =
n1

∑
i=1

(
−θ

>ziti + log(θ>ziS0(ti)−S′0(ti))
)
+

n1+n2

∑
i=n1+1

log
(
S0(ui)exp(−θ

>ziui)−S0(vi)exp(−θ
>zivi)

)
, (22)

and its partial derivative with respect to θr, for r = 1,2, ..., p, is given by
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∂ l(θ)
∂θr

=
n1

∑
i=1

zir(ti +(θ>ziS0(ti)−S′0(ti))
−1S0(ti))+

n1+n2

∑
i=n1+1

zir

(
S0(ui)exp(−θ

>ziui)−

S0(vi)exp(−θ
>zivi)

)−1(
viS0(vi)exp(−θ

>zivi)−uiS0(ui)exp(−θ
>ziui)

)
,

(23)

where zir is the r’th component in the covariate vector corresponding to i’th in-
dividual. Note that (23) involves both unknown quantities θ and S0(t) and explicit
solution for θ cannot be obtained directly from it. We provide an iterative algorithm
to estimate the maximum likelihood estimates of these two quantities, where at each
iteration a better update is obtained. To begin with the algorithm we consider the
SCE of the baseline survival function as an initial approximation.

In the case of middle-censored data, Jammalamadaka & Mangalam (2003) showed
that the NPMLE of S0(t) is always an SCE, which takes the form

Ŝ0(t) = 1− 1
n

n

∑
i=1

{
δiI(Ti ≤ t)+(1−δi)I(Vi ≤ t)+(1−δi)I(t ∈ (Ui,Vi))

F̂0(t)− F̂0(Ui)

F̂0(Vi−)− F̂0(Ui)

}
. (24)

Now, we give the algorithm in the following few steps.
Step 1. Set the vector θ = 0.
Step 2. At the first iteration, find the SCE S(1)0 (t) of S0(t) using (24) and substitute
this in (23) and solve ∂ l(θ)/∂θr = 0,r = 1,2, ..., p to get the estimator θ

(1) of θ .
Step 3. Find t̃i(1) = S(1)

−1

0

(
S(1)0 (ti)exp(−θ

(1)>ziti)
)

and similarly find ũ(1)i and ṽ(1)i
as our updated observations at the first iteration.
Step 4. At the j’th iteration ( j > 1), use t̃i( j−1), i= 1,2, ...,n1 and (ũ( j−1)

i , ṽ( j−1)
i ), i=

n1 + 1, ...,n as our data points in (24) and obtain S( j)
0 (t). Substitute S( j)

0 (t) in (23)
and solve ∂ l(θ)/∂θr = 0,r = 1,2, ..., p to obtain the j’th iterated update θ

( j) of θ .
Step 5. Repeat Step 4 until convergence is met, say when ‖θ (k)−θ

(k+1)‖< 0.0001
and sup

t

{∣∣∣S(k)0 (t)−S(k+1)
0 (t)

∣∣∣}< 0.001, for some finite positive integer k.

Note that Step 3 in the algorithm is justified, because if ai = S(1)0 (ti)exp(−θ
(1)>ziti),

then the ai ’s have a uniform distribution over [0,1]. Therefore, to scale these back
to baseline distribution we need to find t̃i = inf{t : S(1)0 (t) ≤ ai}. Thus, the correct

choice is t̃i = S(1)
−1

0 (ai) = S(1)
−1

0

(
S(1)0 (ti)exp(−θ

(1)>ziti)
)

.
We now define our parameter space to be (Θ,Φ), where Θ⊆Rp contains θ and



468 P. G. Sankaran, S. Prasad : An additive risks regression model...

Φ= {φ(t) : [0,∞]→ [0,1] and φ(·) is absolutely continuous and nonincreasing} con-
tains S0(t). Let us name the estimator obtained for θ as θ̂ (n) and that for S0(t) as
Ŝ0(n)(t). Besides the identifiability condition A1, the following conditions are also
assumed to hold for establishing the consistency property.
A2: Conditional on z, T is independent of (U,V ).
A3: The joint distribution of (U,V,z) does not depend on the true parameter (θ 0,S0

0(t)).
A4: The covariate space is bounded. That is, there exist some finite M > 0 such that
P{‖z‖ ≤M}= 1, where ‖ · ‖ is the usual metric on Rp.
A5: Distribution of z is not concentrated on any proper affine subspace of Rp.

Theorem: Suppose that Θ ∈ Rp is bounded and assumptions (A1) to (A5) hold.
Then, the estimator (θ̂ (n), Ŝ0(n)(t)) is consistent for the true parameter (θ 0,S0

0(t)) in
the sense that if we define a metric d : Θ×Φ→ R by

d
(
(θ 1,S01(t)),(θ 2,S02(t))

)
= ‖θ 1−θ 2‖+

∫
|S01(t)−S02(t)|dF0(t)+[∫ (

(S01(u)−S02(u))2 +(S01(v)−S02(v))2)dG(u,v)
] 1

2

, (25)

where θ 1,θ 2 ∈ Θ and S01(t),S02(t) ∈ Φ, then d
(
(θ̂ (n), Ŝ0(n)(t)),(θ

0,S0
0(t))

)
→ 0

almost surely (a.s.).

Proof:
In the following discussion we denote Yi = (Xi,δi). Let the probability function of
Y = (X ,δ ) be given by

p(y;θ ,S0(t)) =
n

∏
i=1

f (ti|zi)
δi [S0(ui)exp(−θ

>ziui)−S0(vi)exp(−θ
>zivi)]

1−δi×

g(ui,vi|zi)q(zi), (26)

where g is the joint density of (U,V ), conditional on z and q is the density of z.
Using (A2) and (A3), the log-likelihood function scaled by 1/n for the sample
(yi,zi), i = 1,2, ...,n, up to terms not depending on (θ 0,S0

0(t)) is

l(θ ,S0(t)) =
1
n

n

∑
i=1

{
δi log f (ti|zi)+(1−δi) log [S0(ui)exp(−θ

>ziui)−

S0(vi)exp(−θ
>zivi)]

}
. (27)

We write pn(y)= p(y; θ̂ (n), Ŝ0(n)(t)) and p0(y)= p(y;θ
0,S0

0(t)) where (θ̂ (n), Ŝ0(n)(t))
is the MLE that maximizes the likelihood function over Θ×Φ and (θ 0,S0

0(t)) ∈
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Θ×Φ. Therefore,
n

∑
i=1

log pn(Yi)≥
n

∑
i=1

log p0(Yi)

and hence
n

∑
i=1

log
pn(Yi)

p0(Yi)
≥ 0.

By the concavity of the function x 7→ logx, for any 0 < α < 1,

1
n

n

∑
i=1

log
(
(1−α)+α

pn(Yi)

p0(Yi)

)
≥ 0. (28)

The left hand side can be written as∫
log
(
(1−α)+α

pn(Yi)

p0(Yi)

)
d(Pn−P)(Y )+

∫
log
(
(1−α)+α

pn(Yi)

p0(Yi)

)
dP(Y ),

(29)

where Pn is the empirical measure of Y and P is the joint probability measure of Y .
Let us assume that the sample space Ω consists of all infinite sequences Y1,Y2, ...,
along with the usual sigma field generated by the product topology on ∏

∞
1 (R3×

{0,1}) and the product measure P. For p defined in (26) let us define a class
of functions P =

{
p(y,θ ,S0(t)) : (θ ,S0(t)) ∈ (Θ×Φ)

}
and a class of functions

H =
{

log(1−α +α p/p0) : p ∈P
}

, where p0 = p(y,θ 0,S0
0(t)). Then, it follows

from Huang & Wellner (1995) that H is a Donsker class. With this and Glivenko-
Cantelli theorem, there exists a set Ω0 ∈ Ω with P(Ω0) = 1 such that for every
ω ∈ Ω0, the first term of (29) converges to zero. Now, fix a point ω ∈ Ω0 and
write θ̂ (n) = θ̂ (n)(ω) and Ŝ0(n)(·) = Ŝ0(n)(·,ω). By our assumption Θ is bounded,
and hence for any subsequence of θ̂(n), we can find a subsequence converging to
θ ∗ ∈Θ

C, the closure of Θ. Also, by Helly’s selection theorem, for any subsequence
of Ŝ0(n)(t), we can find a further subsequence converging to some nonincreasing
function S0∗(t). Choose the convergent subsequence of θ̂ (n) and the convergent
subsequence of Ŝ0(n)(t) so that they have the same indices, and without loss of gen-
erality, assume that θ̂ (n) converges to θ ∗ and that Ŝ0(n)(t) converges to S0∗(t). Let
p∗(y) = p(y,θ ∗,S0∗(t)). By the bounded convergence theorem, the second term of
(29) converges to ∫

log
(
(1−α)+α

p∗(y)
p0(y)

)
dP(y)

and by (28) this is nonnegative. But by Jensen’s inequality, it must be non-positive.
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Therefore, it must be zero and it follows that

p∗(y) = p0(y) P− almost surely.

This implies
S0∗(t) = S0

0(t) F0− almost surely.

Therefore, by bounded convergence theorem,∫
|Ŝ0(n)(t)−S0

0(t)|dF0(t)→ 0. (30)

Also,
S0∗(u)exp(−θ

>
∗ zu) = S0

0(u)exp(−θ
0>zu) P− almost surely

and
S0∗(v)exp(−θ

>
∗ zv) = S0

0(v)exp(−θ
0>zv) P− almost surely.

This together with (A5) imply that there exist z1 6= z2 such that for some c > 0,

S0∗(c)exp(−θ
>
∗ z1c) = S0

0(c)exp(−θ
0>z1c)

and
S0∗(c)exp(−θ

>
∗ z2c) = S0

0(c)exp(−θ
0>z2c).

Since S0∗(c) > 0 and S0
0(c) > 0, this implies (θ ∗− θ

0>)(z1− z2) = 0. Again, by
(A5), the collection of such z1 and z2 has positive probability and there exist at least
p such pairs that constitute a full rank p× p matrix. It follows that θ ∗ = θ

0. This in
turn implies that

S0∗(u) = S0
0(u) and S0∗(v) = S0

0(v) G− almost surely.

Therefore, by bounded convergence theorem,∫ (
(Ŝ0(n)(u)−S0

0(u))
2 +(Ŝ0(n)(v)−S0

0(v))
2)dG(u,v)→ 0. (31)

Equations (30) and (31) together with θ ∗ = θ
0 hold for all ω ∈Ω0 with P(Ω0) = 1.

This completes the proof.
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Table 1: Absolute bias, MSE and bootstrap coverage probability (BCP) of the estimator of
θ under Method-1 and Method-2 with mild (10%) censoring

n = 30 n = 50 n = 75
λ θ Method Bias MSE BCP Bias MSE BCP Bias MSE BCP

0.1 0.25 1 0.0033 0.0008 0.903 0.0061 0.0054 0.900 0.0091 0.0067 0.898
2 0.0347 0.0011 0.940 0.0380 0.0051 0.937 0.0396 0.0073 0.934

1.0 0.5 1 0.0104 0.0009 0.895 0.0134 0.0021 0.893 0.0163 0.0069 0.889
2 0.0373 0.0018 0.928 0.0405 0.0063 0.924 0.0454 0.0078 0.920

2.5 -0.50 1 0.0077 0.0019 0.921 0.0089 0.0037 0.916 0.0108 0.0073 0.915
2 0.0247 0.0012 0.926 0.0259 0.0049 0.925 0.0307 0.0067 0.921

4.0 -0.01 1 0.0336 0.0017 0.924 0.0366 0.0029 0.922 0.0410 0.0055 0.918
2 0.0448 0.0013 0.934 0.0484 0.0062 0.931 0.0507 0.0106 0.929

Table 2: Absolute bias, MSE and bootstrap coverage probability (BCP) of the estimator of
θ under Method-1 and Method-2 with moderate (20%) censoring

n = 30 n = 50 n = 75
λ θ Method Bias MSE BCP Bias MSE BCP Bias MSE BCP

0.1 0.25 1 0.0047 0.0024 0.901 0.0085 0.0095 0.897 0.0109 0.0114 0.893
2 0.0366 0.0021 0.938 0.0401 0.0063 0.936 0.0424 0.0111 0.930

1.0 0.5 1 0.0121 0.0027 0.894 0.0152 0.0075 0.891 0.0197 0.0088 0.886
2 0.0385 0.0028 0.927 0.0418 0.0102 0.922 0.0493 0.0126 0.918

2.5 -0.5 1 0.0091 0.0031 0.919 0.0101 0.0052 0.914 0.0139 0.0114 0.910
2 0.0265 0.0025 0.925 0.0278 0.0078 0.923 0.0344 0.0115 0.917

4.0 -0.01 1 0.0346 0.0036 0.923 0.0402 0.0061 0.918 0.0435 0.0077 0.916
2 0.0465 0.0032 0.932 0.0512 0.0083 0.927 0.053 0.0118 0.924

Table 3: Absolute bias, MSE and bootstrap coverage probability (BCP) of the estimator of
θ under Method-1 and Method-2 with heavy (30%) censoring

n = 30 n = 50 n = 75
λ θ Method Bias MSE BCP Bias MSE BCP Bias MSE BCP

0.1 0.25 1 0.0057 0.0042 0.900 0.0118 0.0107 0.894 0.0151 0.0129 0.889
2 0.0384 0.0031 0.937 0.0415 0.0079 0.934 0.0441 0.0147 0.925

1.0 0.5 1 0.0141 0.0041 0.892 0.0163 0.0121 0.889 0.0222 0.0143 0.882
2 0.0405 0.0044 0.925 0.0429 0.0139 0.919 0.0539 0.0174 0.916

2.5 -0.5 1 0.0104 0.0050 0.918 0.0143 0.0097 0.909 0.0170 0.0151 0.904
2 0.0283 0.0038 0.923 0.0296 0.0090 0.918 0.0372 0.0156 0.915

4.0 -0.01 1 0.0361 0.0056 0.921 0.0432 0.0088 0.916 0.0462 0.0101 0.913
2 0.0484 0.0044 0.931 0.0541 0.0096 0.925 0.0561 0.0131 0.921

Remark 2.1

The asymptotic distributions of the estimators θ̂ (n) and Ŝ0(n)(t) do not seem to be
easy to establish under the iterative method. We consider this as a problem for future
research.

Remark 2.2

A likelihood ratio test can be carried out to test the significance of regression coef-
ficients. The null hypothesis H0 : θ = 0 can be tested against H1 : θ 6= 0, where 0
is the null vector of the same order, with the test statistic −2log L(0)

L(θ̂)
, which follows

χ2
(p) distribution. The test results in rejecting the null hypothesis for small P-values.
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3. Simulation Studies

A simulation study is carried out to assess the finite sample properties of the esti-
mators. We consider the exponential distribution with mean λ−1 as the distribution
of lifetime variable T . Also, we choose independent exponential distributions with
fixed means λ

−1
1 and λ

−1
2 as the distributions for the censoring random variate U

and the interval of censorship V −U respectively, and these two distributions are
assumed to be independent of T . We consider a single covariate z in the present
study, which is generated from uniform distribution over [0,10] and let θ be the cor-
responding regression coefficient. Under the AR model in (1), the survival function
of T given z may be written as

S(t|z) = S0(t)exp(−θzt), (32)

where S0(t) = exp(−λ t). It can be observed that (32) is the survival function cor-
responding to an exponential variate with mean (λ + θz)−1. A large number of
observations are generated from (32) for fixed values of λ and θ . Now correspond-
ing to each observation on T , a random censoring interval is generated from (U,V ),
where the distribution parameters are fixed as λ

−1
1 = 20 and λ

−1
2 = 10. If we find

T /∈ (U,V ) then T is selected in the sample, otherwise we choose the interval as the
observation. As we generate large number of observations we can now choose a
sample of required size n. We consider three different censoring rates: 10% (mild),
20% (moderate) and 30% (heavy) for our inference. The martingale-based infer-
ence procedure, denoted as Method-1, and iterative inference procedure, denoted as
Method-2, which are described in Section 2, are employed to obtain the estimates
of S0(t) and θ and using 1000 iterations for various choices of λ and θ . The abso-
lute bias and mean squared error (MSE) are computed and are given in Table 1 to
Table 3. Also in each case, a 95% bootstrap confidence interval for regression pa-
rameter is computed. The proportion of times the true parameter value lies in such
intervals is called bootstrap coverage probabilities (BCP). They are also reported in
Table 1 to Table 3. It is evident that both bias and MSE are small in each case and
they decrease as the sample size increases. The bootstrap coverage probabilities are
found fairly large, close to one. Further, as the censoring rate increases the bias and
MSE increase, while the BCP decreases. Also, for each combination of parameter
values, and with sample size 75, we shall find out a cubic polynomial estimate of
the form S0(t) = c0+c1t+c2t2+c3t3 with each of its coefficients being the average
of corresponding coefficients obtained for all the iterations, for the baseline survival
function. These estimated survival curves corresponding to both methods are plot-
ted in Figure 1 to Figure 3, where continuous curve represents the true baseline
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Figure 1: Plots of baseline survival curve and its estimates under Method-1 (dashed curve)
and Method-2 (dotted curve) with mild (10%) censoring
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Figure 2: Plots of baseline survival curve and its estimates under Method-1 (dashed curve)
and Method-2 (dotted curve) with moderate (20%) censoring
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Figure 3: Plots of baseline survival curve and its estimates under Method-1 (dashed curve)
and Method-2 (dotted curve) with heavy (30%) censoring

survival function and dashed curve represents the corresponding the estimate under
Method-1 and dotted curve represents the corresponding estimate under Method-2.
We see that both the estimated curves are close to the true curve.

4. Illustrative Data Analysis

The proposed methods are applied to a real life data studied by Ichida et al. (1993).
The data deals with an evaluation of a protocol change in disinfectant practices in
a medical center where patients are suffering from burn wounds. The control of
infection is the major concern in burn management and the study aims at comparing
two different controlling methods: routine bathing care method and body cleans-
ing method. The time (in days) until a patient develops staphylococcus infection
is considered as the lifetime variable. Although the original study involves several
covariates, for the illustration purpose we consider two of them, namely treatment
(z1), which is coded as 1-for routine bathing and 2-for body cleansing, and per-
centage of total surface area burned (z2). Let θ1 and θ2 respectively be the unknown
regression coefficients. A random censoring interval (U,V ), where U and V −U are
independent exponential variates with means λ

−1
1 = 20 and λ

−1
2 = 10 is generated

first. Then, an individual from among all exact 48 lifetimes is selected at random
and if lifetime of the patient happens to fall in the generated censoring interval, that
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Table 4: Estimates of coefficients of survival curve and regression coefficients under
Method-1 and Method-2.

S0(t) θ

Method c0 c1 c2 c3 θ1 θ2

1 0.93665 -0.04872 0.000635 -9.223e-6 0.0112 0.1005
2 0.96574 -0.05991 0.00121 -9.256e-6 0.00895 0.1760

lifetime is assumed to have middle censored and that interval is considered as the
corresponding observation. Otherwise the lifetime is maintained. This process is re-
peated until around 25% of the observations are censored. The data resulted consists
of twelve censored observations. We apply the two methods of estimation given in
Section 2 and obtained the estimates of the baseline survival function of the form
S0 = c0 + c1t + c2t2 + c3t3 and the regression coefficient θ . The estimated values,
under both methods, of the coefficients of survival curves as well as regression coef-
ficients are listed in Table 4. To test the significance of the covariate effect under the
iterative method, we consider the null hypothesis H0 : θ = 0, where θ = (θ1,θ2) and
0 is null vector of the same order, and we use the likelihood ratio test described in
Remark 2.2. The P-value of 0.008 indicates that the covariate effects are significant.

Now, we check the overall fit of the model by using Cox-Snell residuals (Cox
& Snell, 1968). Suppose that the AR model given in (1) is fitted to the data. If the
model assumption is correct then the probability integral transform of the true death
time T assumes a uniform distribution over [0, 1] or equivalently the random vari-
able H(Tj|z j), which is the true cumulative hazard function corresponding to (1),
has an exponential distribution with hazard rate 1. Then, the Cox-Snell residuals
are defined to be the fitted cumulative hazard function values r̂ j = Ĥ0(t j)+ z>j θ̂ t j

with the estimated parameters. If the model is reasonable and the estimates of the
parameters are close to the true values, then these quantities should look like a cen-
sored sample from unit exponential distribution. To check whether the r j’s behave
as a sample from the unit exponential distribution we compute the Nelson-Aalen es-
timator of the cumulative hazard rate of r j’s. If the unit exponential distribution fits
the data, then this estimator should be approximately equal to the cumulative hazard
rate of the unit exponential distribution. Thus, a plot of r j’s versus their estimated
cumulative hazard rates should be a straight line through origin and with a slope of
1. Figure 2 shows the plots so obtained under both the models. The curves are close
to the straight line indicating AR assumption is reasonable.
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Figure 4: Plot of r j’s against estimated cumulative hazard rates under (a) Method-1
and (b) Method-2.

5. Conclusion

The present study discussed the semiparametric regression problem for the analysis
of middle-censored lifetime data. We considered two different methods of estimat-
ion, one making use of martingale-based theory and the other based on an iterative
method for which a maximization procedure for finding the NPMLE is developed.
Large sample properties including consistency and weak convergence of the estima-
tors were established under the martingale-based method. Consistency of estima-
tors was proved under the iterative method, whereas their weak convergence do not
appear to be easy to establish, although one can perhaps extend the ideas used in
(Huang & Wellner, 1995). Simulation studies showed that the inference procedures
were efficient. The model was applied to a real data set. Although we consid-
ered time-fixed covariates in this work, the procedure can easily be extended to the
case of time-varying covariates, as in the work of Lin & Ying (1994). The middle-
censored data has a connection with mixed interval-censored (MIC) data (Yu et al.,
2001). Although both sampling schemes differ in character, the observed data from
MIC will reduce to data from middle-censoring, when there are no left censored or
right censored observations. For a detailed discussion on this interrelationship one
may refer to Shen (2011).
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FOREIGN TRADE TIME SERIES AS COMPONENTS IN 

GROSS DOMESTIC PRODUCT 

Luboš Marek1, Stanislava Hronová2, Richard Hindls3 

ABSTRACT 

This paper analyses the time series observed for the foreign trade of the Czech 

Republic (CR) and predictions in such series with the aid of the SARIMA and 

transfer-function models. Our goal is to find models suitable for describing the 

time series of the exports and imports of goods and services from/to the CR and 

to subsequently use these models for predictions in quarterly estimates of the 

gross domestic product (GDP) component resources and utilization. As a result 

we get suitable models with a time lag, and predictions in the time series of the 

CR exports and imports several months ahead.  

Key words: transfer-function models, SARIMA models, quarterly estimates of 

the Gross Domestic Product (GDP), imports and exports of goods and services, 

exchange rate. 

1. Introduction 

Imports and exports of goods and services are ranked among the most 

important economic indices. The data of imports and exports describe the 

economic relationships from the viewpoint of goods and services circulation 

among residents and non-residents (in this sense, we consider the so-called 

national concept to foreign trade, based on the goods circulation as the change in 

ownership. Another possible approach is that of the so-called cross-border one, 

i.e. the principle of the goods passing the state borders); they express the extent to 

which the economy is open (regarding GDP). In this respect, they not only play 

an indispensable role for assessing economic performance, but are also significant 

components in the GDP estimate by the expense method.  
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Short-term (quarterly) estimates of GDP are based on two fundamental 

methods related to the two fundamental data sources: the production method is 

based on the estimates of the gross value added created in individual industries of 

the national economy, i.e. the GDP resources; and the expense method stems from 

the estimated components of GDP, i.e. final consumption, gross capital formation, 

and net imports. By making the estimates more accurate and better balanced, we 

get to the sole GDP value informing us about the economy evolution in the past 

quarter.  

As data collection and processing become faster, and the economic evolution 

more turbulent during the year, the demands put forth by the users of statistical 

data are naturally growing with respect to the speed and quality of the short term 

estimates. These two parameters, speed and quality, go in opposite directions 

from the viewpoint of governmental statistics; if the user requires quality (i.e. as 

accurate as possible) statistical information, it must be derived from rather 

extensive surveys. Naturally, such surveys need time for preparation, collection 

and processing of data and, logically, such procedures are summarily used for 

annual data, or annual national accounts. If the user requires data as quickly as 

possible upon the completion of the period under consideration, each statistical 

office must necessarily take into account limited data sources and prefer 

modelling to direct findings. As s result we get quick estimates of the economy 

evolution during the year, but the user must allow for the estimates to be 

subsequently made more accurate. The quarterly estimates must be a kind of a 

trade-off between the speed and quality. If the GDP components are concerned, 

they must provide, as quickly as possible, reliable information on economic 

circulation during the year. The criterion of this reliability should be according to 

the ability to provide the source information for the initial estimates of the GDP 

annual values that would ensure the smallest possible deviations from the annual 

values based on extensive annual surveys. Hence, the quality of estimating the 

GDP components (imports and exports of goods and services, final consumption, 

and gross capital formation) plays the decisive role in this respect. Demands have 

been ever-growing for how quickly the initial information on the GDP evolution 

should be provided. Currently, it is expected that the initial estimates on the GDP 

growth rate should be available within 30 days from the end of the respective 

quarter in all EU countries; a more accurate GDP estimate together with the 

structure of resources and utilization within 60 days from that date; and the 

complete sector accounts within 90 days from that date.  

The goal of the present paper is to provide a new, original methodological 

support to those quick model estimates – here they are focused on the estimates of 

imports and exports of goods and services as significant components of the 

expense method for the GDP estimate. The proposed original methodology will 

enable us not only to estimate the values for the imports and exports of goods and 

services, but also to calculate their estimates quicker, as source data for estimating 

the quarterly GDP. This model has been verified on the data for the imports and 

exports of goods and services to/from the Czech Republic found in the database 



STATISTICS IN TRANSITION new series, September 2017 

 

483 

of the Czech Statistical Office (the data is stated in tsd. CZK) and the data of the 

exchange rate evolution taken from the database of the Czech National Bank. The 

analysis was carried out in the SCA software and eViews software.  

2. Formulation of Problem 

The issues connected with the short-term estimates for macroeconomic 

aggregates are inseparably connected with the effort to provide users of statistical 

data with reliable information about the evolution of the national economy as 

quickly as possible. Should such information be consistent, it must necessarily be 

viewed within a wider context of the system of macroeconomic statistical data, 

that is, the national accounts. In this sense, the short-term estimates are only 

relevant for a limited number of macroeconomic aggregates, namely, those 

entering the relationships in the GDP creation and utilization, based on the 

production and expense methods for estimating GDP (we are not going to 

consider the context of completing the quarterly national accounts in this paper; 

cf. e.g. Eurostat (2013a), Eurostat (2013b) or Marini (2016) for more details). 

The GDP quarterly estimate, therefore, is based, on the one hand, on 

estimated gross value added, created in individual industries of the national 

economy (the estimates for resources, i.e. the gross value added in individual 

industries in the Czech Republic, are considered in the paper by Marek et al. 

(2016)) and, on the other hand, on the estimated expense components (imports 

and exports of goods and services, final consumption and gross capital formation) 

with subsequent balancing so that the sole value of the quarterly GDP is achieved. 

For modelled (indirect) estimates of macroeconomic aggregates, a number of 

approaches can be utilized, stemming from the methods for time series analysis or 

regression analysis taking into account the relationships between annual and 

quarterly values. These methods are: 

 without the quarterly or monthly data in the form of a reference index, 

 using a reference index. 

The estimating methods not utilizing a reference index enable us to get 

preliminary estimates of quarterly values, exclusively using formal mathematical 

procedures and criteria, providing smoothed quarterly estimates fulfilling a 

constraint that the sum of quarterly values over all four quarters equals the 

respective annual value. In other words, the annual value is disaggregated into 

quarters on the basis of purely formal criteria, without any knowledge about the 

evolution of the chosen index (or other indices) during the year. The best-known 

methods of this type include BFL (cf. e.g. Boot et al. (1967) or Wei and Stram 

(1990), Al-Osh (1989)). The usual models of time series (ARIMA) can also be 

viewed as members of this group. Such methods should only be used if a suitable 

reference index cannot be established, and for less important values. A natural 

utilization of them would also be a correction of an estimate obtained in the first 

step of desegregation with the aid of a reference index (for example, one variant 
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of the BFL method is based on minimizing the sum of squares of second 

differences, which criterion can also be used for corrections of an estimate after 

the first step). 

The methods with the aid of a reference index make use of external quarterly, 

or even monthly, information about a related index (or several related indices). 

The main feature of these procedures is the use of a quarterly or monthly 

established index that is factually tied with the value of an annual aggregate, to 

facilitate the distribution of the annual value into quarterly ones. Mathematically, 

a formal (regression) model is used for the relationship between the annual value 

of the aggregate to be estimated and a quarterly (usually average) value of the 

reference index. This model makes it possible to get an initial estimate of the 

aggregate; in the second step this estimate is corrected so that the sum of all four 

quarterly values equals the annual value of the aggregate (in particular, the INSEE 

method is used, created by Bournay and Laroque (1979); more information about 

this method can be found in, e.g. Nasse (1973) or Dureau (1991); approaches 

making use of a dynamic variable can also be classified into this group, e.g. 

Moauro and Savio (2005) or Mitchell et al. (2005)).  

In parallel with this traditional method of disaggregation with subsequent 

correction, methods of disaggregation without subsequent corrections have been 

developed and utilized; that is, methods which establish already at the first step 

such estimates for the aggregate's quarterly values that their sum complies with its 

annual value (this group of models contains, for example, those described by 

Chow and Lin (1971), and Kozák et al. (2000)). 

Indisputably, the core aspect of the estimation quality in this group of 

methods is finding a suitable reference index. In the range of all indices coming 

into consideration, i.e. fulfilling the above-stated conditions, we have to seek for 

the one that best corresponds to the short-term evolution of the aggregate in 

question. This suitability should be observed on a prolonged time horizon and 

separately for each aggregate whose values are to be estimated with the aid of the 

disaggregation method. This stage requires thorough analytical work, which must 

not be either neglected or underestimated. When applying indirect methods, we 

need not only to create a formal statistical model but also to build up an entire 

system of short-term statistical data. 

Another category of short-term estimating methods is focused on predicting 

quarterly values of aggregates (regardless of their relationships to the annual 

values) with the aid of methods used in time series analysis. Having in mind the 

nature of the problem, we can use classical decomposition, linear dynamic models 

or spectral analysis (more details of these methods can be found in, e.g. Green 

(2008), Pankratz (1991), Wei (2006), Anderson (1976), and Granger and 

Newbold (1986), Proietti (2011), Bikker (2013)). This paper offers one option for 

the utilization of the available short-term survey results in deriving estimates of 

the quarterly values from the underlying model. As a result of this approach, 

based on the analysis of time series, we obtain a stable and factually relevant 

model for estimating the quarterly values of imports and exports of goods and 
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services as components in the expense method for estimating GDP while using a 

suitable reference index. On a long-term basis, this model can be used for 

estimating quarterly values of other aggregates concerning the formation and use 

of GDP provided that the reference index is chosen appropriately.  

This model is based on the utilization of the reference index and a time lag, 

due to which unknown values of imports and exports of goods and services can be 

estimated even without knowledge of the value of the reference index in the 

current (i.e. currently estimated) or future periods. 

In this article, we focused precisely on a quick estimate of imports and exports 

of goods and services. This is especially due to the significance of foreign 

exchange for the Czech economy. Imports of goods and services in the Czech 

Republic is currently around 83% of GDP and exports of goods and services, 

about 77% of GDP (it is recalled that exports of goods and services are in FOB 

prices and imports of goods and services at CIF prices). The development of the 

values of these indicators is very closely related to the phases of the economic 

cycle because the basis of exports is mainly the products of the manufacturing 

industry and the basis of the import of raw material. For this reason, a timely and 

reliable estimate of the value of imports and exports of goods and services can be 

used to make a faster estimate of the quarterly GDP. 

Imports and exports of goods and services are monitored in the Czech 

Republic in the so-called national concept. This is in line with the national 

accounts methodology, i.e. with the concept of other macroeconomic indicators. 

The national concept of foreign trade statistics follows up the actual trade in 

goods carried out between Czech and foreign entities, i.e. trade, where there is a 

change of ownership between residents and non-residents. Thus, the national 

concept of foreign trade reflects the export and import performance of the Czech 

economy better than the so-called cross-border concept. Conversely, the cross-

border conception of foreign trade only reflects the physical movement of goods 

across the Czech Republic, irrespective of whether there is trade between Czech 

and foreign entities. These data, which only refer to the physical movement of 

goods from and into the territory of the Czech Republic, are surveyed for the 

purpose of international comparison of the movement of goods and services. 

However, they are not suitable indicators for monitoring the development of the 

economy in relation to GDP growth.  

3. Methodology and results 

In each of the above-mentioned groups classifying the time series analysis, 

there are many other approaches, and choosing from among them is governed by 

the character of the underlying data. For the time series we encounter here, we 

have selected a combination of models from the areas of stochastic methods and 

linear dynamic models to describe not only the behaviour of each time series 

separately, but also how values of one time series depend on those of another, and 
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to reflect this relationship in the model as well. As a prerequisite to the utilization 

of such a model in efficient short-term predictions, the time lag must be 

incorporated. When selecting suitable models, we viewed ARIMA and SARIMA 

ones (cf. Anderson (1976), Box et al. (1994), Granger and Newbold (1986), Wei 

(2006)), as well as transfer-function models (cf. Pankratz (1991), SCA Statistical 

System (1991)).  

The sources of our data were the monthly series of imports and exports of 

goods and services to/from the Czech Republic (in tsd. CZK and current prices; 

source: www.czso.cz), and the time series of monthly average values of the 

CZK/EUR exchange rates (source: www.cnb.cz). These series were available 

from January 1999 to September 2016 for imports and exports (213 observations), 

and from January 1999 to October 2016 for exchange rates (214 observations). 

The complete analysis was carried out in the SCA software. The values of the 

imports and exports of goods and services are published monthly by the Czech 

Statistical Office and, due to the character of this data (relationships to the 

quarterly and annual national accounts) they are reviewed several times. On the 

other hand, the values of the CZK/EUR exchange rates (monthly averages) are 

published by the Czech National Bank immediately upon the end of the respective 

month and are not reviewed any more. 

We consider the stochastic models of time series in their general form: 

 ( ) ( )( ( ( ) ( )) )
d DL L

p P t q Q tB B 1- B 1- B Y  = B B      (1) 

where Yt  is the output series, t is the random variable (white noise), is 

the shift operator (BYt = Yt-1), L is the length of season, p is the order of AR 

process, q is the order of MA process, P is the order of seasonal AR process, Q is 

the order of seasonal MA process, d is the order of differencing, D is the order of 

seasonal differencing, p is the autoregressive operator of order p, q is the 

moving average operator of order q, 
P is the seasonal autoregressive operator of 

order P and Q  is the seasonal moving average operator of order Q (cf. e.g. Box, 

Jenkins, Reinsel (1994)). 
For model identification, the values of the autocorrelation and partial 

autocorrelation functions (ACF, PACF), and also the extended and inverse 

autocorrelation functions (EACF, IACF) were mainly used. The output is very 

extensive; hence only the most important aspects are explicitly mentioned. All the 

time series under analysis were non-stationary and had to be transformed to 

achieve stationarity (mostly by current and seasonal differentiating). The 

stationarity was tested by several approaches – the unit root, homoscedasticity, 

and Dickey-Fuller tests. 

The values of the cross-correlation function (CCF) were calculated to prove 

the linear dependence between the analysed (already transformed, i.e., stationary) 

time series. These values confirmed the linear dependence between the 

transformed series of imports and exports of goods and services to/from the 
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Czech Republic and the transformed series of exchange rates. Afterwards, the 

general transfer-function model was applied: 

 0 1 1 2 2
11

1
...

( ))(1 ( ))(1
t t t t K t K tL

Y c X X X X
B B

    


        
 

  (2) 

where Yt is the output series of exports, or imports (after the relevant 

transformations); Xt is the input series of the CZK/EUR exchange rates (again 

after the relevant transformations); and the last term is the perturbation series, 

denoted by Nt in the literature. The LTF method – cf. Pankratz (1991) and SCA 

Statistical System (1991) – was used for the parameter estimates. The resulting 

model was used for the predictions. The quality of the predictions was evaluated 

with the aid of the Theil coefficient of inequality. 
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When predicting, we first shortened the analysed time series and created the 

so-called dormant predictions, i.e. predictions for the periods in which we had 

already known the actual values of the time series. This approach enabled us to 

compare the predictions with the actual values and thus to assess the model 

quality in the most objective way. Only afterwards we predicted for several 

periods ahead. We cannot aim at a too ambitious horizon for the predictions 

because the economic conditions under which the time series evolves are quickly 

changing in time. Moreover, predictions for longer horizons are not necessary 

with respect to the nature of the problem in question. 

3.1. CR Exports  

The time series of the CR exports (denoted by Exports in our analyses) is 

seasonal and non-stationary. We applied current and seasonal differentiation to 

the series to achieve stationarity. The tests carried out confirmed our approach.  

First of all, a SARIMA model suitable for this series was established. After a 

thorough analysis and study of ACF, PACF, EACF, IACF, and unit root, 

homoscedasticity, and Dickey-Fuller tests, we identified our model as (cf. the 

SCA output): 

3 10 12(1 0.3856 0.177 ) (1 0.6119 )(1 0.5628 )t tB B Y B B       

where 12(1 )(1 )t tY B B Export   , t is the white noise, and B is the classical 

backward-shift operator ( k
t t kB Y Y  ). This model was successful at all stages of 

verification and was proven as fully adequate; this fact is also indicated by the 

value of the index of determination, which amounts to 0.983.  
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Table 1. Model parameter estimates for the output series (SCA software output) 

SUMMARY FOR UNIVARIATE TIME SERIES MODEL Exports 

-----------------------------------------------------------------------  

VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING                          

          VARIABLE   OR CENTERED                                         

EXPORTN    RANDOM     ORIGINAL     (1-B  ) (1-B  )                       

-----------------------------------------------------------------------  

PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-   VALUE      STD     T 

   LABEL      NAME    DENOM.               TRAINT              ERROR  VALUE 

  1    TH    EXPORTN    MA     1      1     NONE     .6119     .0635   9.64 

  2   TH12   EXPORTN    MA     2     12     NONE     .5628     .0686   8.21 

  3   PHI3   EXPORTN    AR     1      3     NONE     .3856     .0723   5.33 

  4  PHI10   EXPORTN    AR     1     10     NONE    -.1770     .0693  -2.55 

                                                                            

EFFECTIVE NUMBER OF OBSERVATIONS . .         185                            

R-SQUARE . . . . . . . . . . . . . .        .983                            

RESIDUAL STANDARD ERROR. . . . . .   .100513E+08 

 

Subsequently, we determined the model for the CZK/EUR exchange rate 

series (denoted by EUR below). The corresponding SARIMA model is: 

(1 ) (1 0.2186 )t tB X B     

where Xt = EURt, with the index of determination at 0.991. It is clear from the 

model that current differentiating was used to achieve stationarity. 

Table 2. Model parameter estimates for the input series (SCA software output) 

SUMMARY FOR UNIVARIATE TIME SERIES MODEL --   EUR                          

-----------------------------------------------------------------------     

VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING                             

          VARIABLE   OR CENTERED                                            

                                        1                                   

  EURN     RANDOM     ORIGINAL     (1-B  )                                  

-----------------------------------------------------------------------     

PARAMETER   VARIABLE  NUM./  FACTOR  ORDER   CONS-    VALUE     STD    T 

   LABEL      NAME    DENOM.               TRAINT              ERROR  VALUE 

   1   PHI     EURN     AR      1     1     NONE     .2186     .0633   3.45 

                                                                           

EFFECTIVE NUMBER OF OBSERVATIONS . .         206                          

R-SQUARE . . . . . . . . . . . . . .        .991                          

RESIDUAL STANDARD ERROR. . . . . .   .364515E+00                          
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Another output from the SCA software shows the values of the cross-

correlation function between (now already stationary) time series 
12(1 )(1 ) tB B Y   and (1 ) tB X . The Cross-Correlation Function (CCF) values 

indicate not only the intensity of mutual linear dependence between the 

differentiated series, but also the direction of that dependence. 

Both the values and the curve imply what the significant value of CCF is 

(95% confidence interval) at time t-1. We identified significant linear dependence 

between the transformed time series of exports at time t and the transformed time 

series of the CZK/EUR exchange rates at time t-1. 

 

 

Figure 1. CCF evolution (95% confidence interval), eViews output 

 

Next we identified the transfer-function model. The LTF method – cf. 

Pankratz (1991) – was used for this identification. The value of the ν1 weight was 
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the only one that was significantly different from zero; it means that the values of 

the output series of exports depend on those of the input series of the CZK/EUR 

exchange rates with a time lag equal to one. This fact had already been indicated 

by the CCF values. The remaining weights were identified as insignificant by our 

testing. After a thorough analysis we had thus established a suitable model and 

estimated its parameters. The resulting transfer-function model hence is: 

3 10

12
-1

(1 0.4387 0.1394 )  

=-5,706,000 7,253,000* (1 0.6316 )(1 0.5541 )

t

t t

B B Y

X B B 

  

   
  

where 12(1 )(1 )t tY B B Export       and   (1 )*t tX B EUR  . 

Table 3. Parameter estimates for the TFM model (SCA software output) 

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- EXPORT1                      

-----------------------------------------------------------------------  

VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING                          

          VARIABLE   OR CENTERED                                         

                                        1      12                        

EXPORTN    RANDOM     ORIGINAL     (1-B  ) (1-B  )                       

                                        1      12                        

  EURN     RANDOM     ORIGINAL     (1-B  ) (1-B  )                       

-----------------------------------------------------------------------  

PARAMETER  VARIABLE  NUM./  FACTOR  ORDER   CONS-    VALUE     STD     T     

   LABEL       NAME    DENOM.               TRAINT            ERROR  VALUE  

  1    V0      EURN    NUM.    1     0     NONE -.5706E+07  .165E+07  -3.45  

  2    V1      EURN    NUM.    1     1     NONE  .7253E+07  .166E+07   4.37  

  3   PHI    EXPORTN    MA     1     1     NONE      .6316     .0634   9.97  

  4  PHI12   EXPORTN    MA     2    12     NONE      .5541     .0698   7.94  

  5   PHI3   EXPORTN    AR     1     3     NONE      .4387     .0705   6.22  

  6  PHI10   EXPORTN    AR     1    10     NONE     -.1394     .0659  -2.12  

                                                                             

EFFECTIVE NUMBER OF OBSERVATIONS . .        185                              

R-SQUARE . . . . . . . . . . . . . .       .984                              

RESIDUAL STANDARD ERROR. . .. . .   .956100E+07 

 

This model was successfully verified (with the aid of the above-mentioned 

procedures and methods) and established as fully adequate. Its quality is, among 

other things, confirmed by the value of the index of determination, amounting 

to 0.984. The CCF values between the residuals of the SARIMA and transfer-

function models did not significantly differ from zero, which can be seen in the 

output cited below. In other words, the model we established complied with one 

of the most important verification criteria. 
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Figure 2. Evolution of CCF residuals (95% confidence interval) 

Therefore, we can say that the value of the time series of imports (after the 

current and seasonal differentiating) at time t depends on the past values of the 

series itself (with time lag values of 3 and 10), the values of the time series of the 

CZK/EUR exchange rates (after current differentiating) at time t–1, and the past 

values of the random component (with a seasonal parameter).  

Let us now have a look at the predictions because of which both of the above-

described estimates were predominantly derived. As of the time of writing the 

present paper, the values of the time series of exports are known up to August 

2016, but those of the exchange rates up to October 2016. Therefore, we were 

able to make use of the time lag, and input into the transfer-function model not 

predictions (which would be usual) but the actually observed values. Of course, 

we expected improvement of the predictions from this step. The situation is 

illustrated in the following Figure: 

 

Figure 3. Linear relationship between the exports and CZK/EUR exchange rates 

3.2. Predictions for Exports 

Table 4 shows the five-month-ahead predictions of the shortened time series 

of exports as derived with the aid of the SARIMA and the transfer-function 

(TFM) models. Thanks to our shortening the time series by five values, we can 

compare the predictions with the actual values. 
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Table 4. Exports – predictions versus actual values 

 Predictions Actual values 

Month SARIMA TFM 
 

May 300,450,000 307,651,000 328,285,676 

June 319,340,000 329,600,000 349,080,472 

July 287,780,000 287,840,000 277,464,937 

August 286,780,000 296,590,000 309,977,136 

September 316,340,000 326,160,000 347,200,140 

 

Table 5 sums up the standard deviation values of the predictions. The 

comparison between the predicted and actual values is satisfactory (cf. Table 6). 

Somewhat more accurate predictions and smaller values of the standard deviation 

are in favour of the TFM model. 

 

Table 5. Exports – standard deviations of predictions 

 Standard deviations 

Month SARIMA TFM 

May 9,274,300 9,221,400 

June 9,978,900 9,948,600 

July 1,063,700 1,063,100 

August 1,268,200 1,260,600 

September 1,355,400 1,354,800 

 

Table 6. Exports – comparison of predictions versus actual values 

 
Difference (prediction minus 

actual value) 
Ratio (prediction/actual value) 

Month SARIMA TFM SARIMA TFM 

May -27,835,676 -20,634,676 0.885 0.937 

June -29,740,472 -19,480,472 0.858 0.944 

July 10,315,063 10,375,063 1.037 1.037 
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August -23,197,136 -13,387,136 0.861 0.957 

September -30,860,140 -21,040,140 0.882 0.939 

Table 7. Theil coefficient of inequality 

SARIMA TFM 

0.3985 0.1879 

 

The Theil coefficient of inequality clearly indicates that TFM is better. 

After comparing the models with the actual values, we decided for the 

transfer-function one. Making use of the full available length of the time series, 

we predict five months ahead. The results are shown in Table 8. Of course, the 

actual values are unknown to the authors at the time of writing this paper; hence 

the accuracy can only be measured after five additional months. 

 

Table 8. Exports – predictions 

Month TFM 

October 336,240,000 

November 360,020,000 

December 299,350,000 

January 314,050,000 

February 332,310,000 

3.3 CR Imports 

Let us now analyse the time series of imports. The procedure is identical with 

the one we used for exports. Again, we created the SARIMA model, this time for 

the time series of imports, and the TFM one – imports depending on the 

CZK/EUR exchange rates. We made the predictions and compared them.  

Here, we only state the particular models and predictions, without detailed 

reasoning and software output (except for the resulting TFM model).  

3.4 Predictions for Imports 

The following formula describes the suitable SARIMA model for the time 

series of imports:  

3 5 10 12(1 0.3368 0.2126 0.2968 ) (1 0.6029 )(1 0.6622 )t tB B B Y B B       , 
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where 12(1 )(1 ) ot tY B B Imp rt   , and t  is the white noise. This model 

successfully passed the complete verification stage. The index of determination 

equals 0.978 – hence we would hardly be able to find a better model. 

The SARIMA model for the series of the CZK/EUR exchange rates was 

already identified when constructing the model for exports. We can directly 

continue to the construction of the TFM model. According to the SCA output 

stated below, the TFM formula is:  

3 5 10 12
-1(1 0.3331 0.2036 0.3227 ) 1,070,000* (1 0.6289 )(1 0.7207 )t t tB B B Y X B B       

where 12(1 )(1 )* ot tY B B Imp rt          and       (1 )*t tX B EUR   

This model also passed successfully all stages of the verification procedure 

and was found fully adequate, with the value of the index of determination 

amounting to 0.977. Table 10 shows the prediction values and Table 11 their 

standard deviation values. 

Table 9. Parameter estimates for the TFM model (SCA software output) 

SUMMARY FOR UNIVARIATE TIME SERIES MODEL -- IMPORTS1        

----------------------------------------------------------------------- 

VARIABLE   TYPE OF    ORIGINAL     DIFFERENCING        

          VARIABLE   OR CENTERED                       

                                        1      12      

 IMPORT    RANDOM     ORIGINAL     (1-B  ) (1-B  )     

                                        1                    

  EURN     RANDOM     ORIGINAL     (1-B  )                   

-----------------------------------------------------------------------     

PARAMETER  VARIABLE  NUM./  FACTOR ORDER   CONS-     VALUE      STD     T    

   LABEL       NAME    DENOM.             TRAINT               ERROR  VALUE  

                                                                             

  1    V1     EURN    NUM.     1     1     NONE  .1070E+07  .834E+06   1.28  

  2    TH    IMPORT    MA      1     1     NONE      .6289     .0620  10.15  

  3   TH12   IMPORT    MA      2    12     NONE      .7207     .0528  13.65  

  4   PHI3   IMPORT    AR      1     3     NONE      .3331     .0703   4.74  

  5   PHI5   IMPORT    AR      1     5     NONE      .2036     .0677   3.01  

  6  PHI10   IMPORT    AR      1    10     NONE     -.3227     .0691  -4.67  

                                                                             

EFFECTIVE NUMBER OF OBSERVATIONS . .        190                           

R-SQUARE . . . . . . . . . . . . . .       .977                           

RESIDUAL STANDARD ERROR. . . .. .   .962642E+07                           
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Table 10. Imports – predictions versus actual values 

 
Predictions Actual values 

Month SARIMA TFM 
 

May 290,450,000 289,300,000 286,759,551 

June 299,340,000 299,600,000 302,126,184 

July 287,780,000 272,840,000 250,955,952 

August 266,780,000 269,590,000 275,437,737 

September 306,340,000 305,160,000 298,809,680 

 

At first sight we can see that the SARIMA and TFM predictions do not differ 

from each other to a great extent. However, the TFM predictions are closer to the 

actual values – this can also be seen in Table 12. In Table 11, we can see the 

standard deviations of the predictions, which are again smaller for TFM. 

 

Table 11. Imports – standard deviations of predictions 

Month SARIMA TFM 

May 9,274,300 9,021,400 

June 9,978,900 9,548,600 

July 1,062,700 913,100 

August 1,262,800 1,005,600 

September 1,395,400 1,054,800 

 

Table 12. Imports – comparison of predictions versus actual values 

 
Difference (prediction minus actual 

value) 
Ratio (prediction/actual value) 

Month SARIMA TFM SARIMA TFM 

May 3,690,449 2,540,449 1.013 1.009 

June -2,786,184 -2,526,184 0.991 0.992 

July 36,824,048 21,884,048 1.147 1.087 
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August -8,657,737 -5,847,737 0.969 0.979 

September      7,530,320   6,350,320 1.025 1.021 

 

Table 13. Theil coefficient of inequality 

SARIMA TFM 

0.3772 0.1415 

 

The Theil coefficient of inequality clearly indicates that TFM is better. 

For the imports, the transfer-function model was also established as better. 

We made the five-month-ahead predictions within an approach identical to that 

for the exports. The results are shown in Table 14.  

 

Table 14. Imports – predictions 

Month TFM 

October 962,640,000 

November 314,880,000 

December 270,950,000 

January 278,410,000 

February 288,920,000 

 

The above-presented model clearly shows that the theory of stochastic models 

for time series was used (whether SARIMA or the theoretically more demanding 

TFM models); this theory by itself is more complex than, for example, the often-

used decomposition of time series. Both models provide good results. However, 

the transfer-function model (TFM) is better with respect to accuracy of 

predictions, values of the standard deviation of the estimates, as well as to the 

Theil coefficient of inequality. For these reasons, the authors prefer the TFM 

model despite the fact that this model is more complex. Our analysis has clearly 

established that using simpler models is out of the question due to the nature of 

the data. Of course, the analysis itself is very demanding and laborious for the 

same reason.  

Both SARIMA and TFM are relatively complex models. Those who deal with 

such models know very well that it would certainly be possible (having in mind 

the duality between auto-regression and moving averages) to identify more 

models with a different (or similar) structure of independent variables, and such 

models could be used for predicting alternatively. However, such models would 
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hardly be simpler and there is a question whether better predictions would be 

achieved using them. The authors deal with such models and predictions based on 

them on a long-term basis. On the basis of empiric experience it can be confirmed 

that the given models are robust, i.e. relatively stable in time regarding the 

individual variables (components) in the model. It means that the parameter 

estimates are changing in time, but the models as such remain stable regarding the 

structure of the variables. 

When the present paper is being published, other data have been published for 

the foreign-trade time series (the data for several months have been modified 

and/or added; and later data for approximately the last two years have been 

changed within the framework of regular reviews of the quarterly and annual 

national accounts). But the data for the exchange rates will remain unchanged. A 

question hence arises whether or not our predictions become useless. The answer 

is, of course, that they do not: the above-described predictions are valid for the 

given data and model and are important at the time of being calculated, because 

they can be used for subsequent analyses, source information for decision-

making, and future considerations. The validity of predictions and reviews of the 

original data represent a far more general problem; this problem is valid for most 

data published by each and every statistical office. What is most important in this 

context is the model robustness. If the model is robust, it can be used even when 

the data changes, recalculating just the values of the parameters and predictions.  

4. Conclusions 

The goal of the present paper is to establish models for the time series of 

exports and imports of goods and services from/to the Czech Republic suitable for 

the construction of short-term predictions. Our analysis has proved mutual linear 

dependence between monthly time series (exports and imports) of the foreign 

trade of the Czech Republic, expressed in million CZK in current prices, and the 

time series of the CZK/EUR exchange rates (monthly averages).  

Within the framework of our analysis, we created suitable SARIMA models 

for all the time series concerned. We have also derived transfer-function models 

for the series of exports and imports, in which the input time series were those of 

the CZK/EUR exchange rates. When predicting in a TFM model, predictions of 

the input series are usually used, on the basis of which predictions of the output 

series are calculated. Thanks to the linear dependence (with a time shift) between 

the series we have proved within the analysis, as well as the different times of 

publishing the time series values (the exchange rate values are published several 

months earlier than those of the foreign trade), we can utilize the actual values of 

the input series (i.e. the exchange rates) instead of their predictions in the TFM 

model. This approach, logically, leads to better quality of predictions for the 

output series (exports or imports for our case). All these facts can be utilized in 

estimating the evolution of the CR foreign trade on a short time horizon of two to 
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three months. Nevertheless, it should be noted that (and this comment is even 

more important at the time of a crisis) predictions of economic time series are 

purposeful only a few periods ahead because the external influences on their 

evolution are quickly changing, thus in principle disabling the creation of good-

quality long-term predictions. Moreover, we should realize that the time series 

values of the CR foreign trade published on the website of the Czech Statistical 

Office are just initial estimates for the most recent periods. Such initial estimates 

are subsequently reviewed and made more accurate (related to the reviews of the 

quarterly and annual national accounts). On the other hand, the models described 

in the present paper enable us, at a relatively high level of quality, to provide 

estimates of closely watched economic time series that substantially affect 

quarterly estimates of GDP. 

The authors feel that the importance of such an analysis is characterized not 

so much by publishing the actual values of the predictions but rather by the 

methods, procedures and models used – those can be instructive for predicting in 

time series of the foreign trade of the Czech Republic, as important components 

of quick estimates of GDP. 
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SUBJECTIVE APPROACH TO ASSESSING POVERTY 

IN POLAND – IMPLICATIONS FOR SOCIAL POLICY 

Leszek Morawski1, Adrian Domitrz2 

ABSTRACT 

The poverty rates based on the OECD scales are frequently used in public debate. 

In this scale, large families are usually identified as those most in need of 

financial support. Poland is an interesting case for applying an alternative, 

subjective approach to calculating equivalent scales, as Poland has a large mean 

size for households, and is dependent on means-testing in social policymaking. 

The overall poverty rates for the two approaches are not distinctly different but 

they lead to significantly different distributions of poverty, as different types of 

households are considered in line with the result in Bishop et al. (2014) for the 

eurozone countries. The subjective approach suggests that one-person 

households, not large families, should be considered most at risk of material 

poverty. Futhermore, the relative positions of households in the income 

distributions also differ considerably. As a consequence, the current shape of 

social policy in Poland may need to be reconsidered in order to distribute public 

transfers more accurately.   

Key words: subjective poverty, household equivalence scale, social policy. 

Introduction 

In 2010, households with two adults and three or more children were at the 

relatively highest risk of poverty in Poland. The at-risk-of-poverty rate calculated 

for the poverty line set at 60% of median equivalised income was 32.8% in this 

group. This value for one-person households was 24.5%, for two adults with one 

child it was 12.3%, while for households classified as “at least three adults with a 

child” it was 19.5% in the same year. The overall rate in 2010 was 17.7%. The 

equivalised income applied in those calculations was based on a modified OECD 

equivalence scale that gave a weight of 1.0 to the first adult in a household, a 
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weight of 0.5 to the second one and to each subsequent person aged 14 and over, 

and a weight of 0.3 to each child aged under 14.3 

The Eurostat data clearly pointed to “large households” as those units at 

which social transfers need to be targeted. The poverty statistics published by the 

Polish Central Statistical Office (CSO) make this conclusion even stronger. The 

recently published information has revealed the poverty rate among parents with 4 

and more children to be equal to 43.7% and among parents with 3 children to 

reach 25.8%. The overall rate published was 16.7%. These rates were calculated 

using expenditure data and the original OECD equivalence scale with weights 

equal to: 1, 0.7, and 0.5 (GUS, 2011a). 

Despite growing literature on the non-income factors influencing “subjective 

well-being” and the multidimensional character of poverty, financial transfers still 

play a major role among the used solutions. The discussion about the official 

poverty statistics that are based on the OECD scales may significantly influence 

the allocation of social financial transfers. For example, in the parliamentary 

campaigns in Poland in 2007 and 2011, all major parties proposed policies 

targeted toward large families, which were perceived as needing special 

assistance on the grounds of the official poverty statistics. Recently, the new 

Polish government launched a very generous social programme called the 

“Family 500+”. According to this regulation, 500 PLN (117 Euro) per month will 

be paid unconditionally for the second and each additional child in a family. The 

income criteria as 800 PLN per month per person (1200 PLN in the case of a 

disabled child in a family) was introduced for families with one child. It is 

estimated that about 3.7 children is eligible for that benefit.  

Using subjective information on income evaluation is not a new idea and it 

may be partially attributed to the criticism of  the “revealed preferences” concept 

as an indicator of “true” individual well-being by behavioural welfare economists 

(Veenhoven, 2002; Schokkaert et al., 2011). This may be attributed to the fact that 

the equivalence scales derived from the consumer demand data using the basis of 

the revealed preferences theory suffer from identification problems and, thus, 

some extra conditions are needed in order to calculate them with such an 

approach (Pollak and Wales, 1979, Blundell and Lewbel, 1991). Some authors 

suggested using subjective information from survey declarations about happiness 

or income satisfactions as a solution to the identification problem (Lewbel and 

Pendakur, 2008). Apart from that, there are authors developing other empirical 

methods such as matching estimators or indifference equivalence scales, both 

based on scrutiny of individual level behaviour. 

In practice, simple OECD scales, either the “original” or the “modified” ones 

are commonly used. Two recent studies show significant differences between the 

subjective and the OECD scales (Bollinger et al., 2012; de Ree et al., 2013). The 

study of Bollinger et al. (2012) for England suggests, for example, larger scale 
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economies within couples and substantial diseconomies due to any additional 

person after considering subjective information on income evaluation. We believe 

that considering subjective information about income evaluation may lead to  

interesting results that may be not consistent with those obtained with 

conventional OECD scales. Also, additional motivation for this paper is the fact 

that, to our knowledge, subjective poverty in Poland is quite limited despite the 

fact that the works regarding subjective equivalence scale were initiated already 

in the 1990s by Podgórski (1990, 1991, 1994). His research showed much flatter 

equivalence scales implied by the subjective approach than the commonly used 

OECD scales. More recent works applying a subjective approach for Poland are 

those of Dudek (2009), Dudek (2012),  Dudek and Landmesser (2012), 

Kalbarczyk-Stęclik (2016).  The subjective approach to poverty is discussed in 

Panek and Czapiński (2015) in research based on data from the Social Diagnosis 

Program (Diagnoza Społeczna). 

The household sector in Poland is dominated by a small size structure (in 

terms of number of people). A significant share of multi-person households may 

be of importance to poverty analysis results since the difference between the 

OECD scales and subjective scale is increasing in household size. This is exactly 

the case of Poland, which with 2.8 people per household belongs to the group of 

countries with the largest average household size among EU countries. A similar 

household size is observed in other less-developed European countries such as 

Slovakia, Cyprus, Romania, Malta and Bulgaria, while Germany, Netherlands, 

France, United Kingdom and all the Scandinavian countries are the ones with 

much smaller average household sizes. At the same time, the structure of the 

household sector regarding the number of children in a household observed in 

Poland is very similar to the EU25 average - in the case of households with 4 

children the fractions are 2.7% and 2.6%, for those with 3 children 8.6% and 

9.0%, while for those with 2 children it is as high as 35.2% and 38.9% (Iacovou 

and Skew, 2010).  

Frequent use of the statistics based on the OECD scales in public discussion, 

the size structure of the household sector together, as well as differences between 

the OECD scale and subjective scale, make Poland an interesting case for asking 

what would happen if politicians used the subjective scale instead of the OECD 

scale as reference. In this paper we ask whether the conclusion about the need for 

special treatment of large families is sensitive to a choice of equivalence scales. 

Although many other approaches to equivalence scales and to poverty analysis as 

a whole are possible, we take a closer look at comparison of these two methods in 

detail: OECD (the so-called expert scales) and subjective (known as Leyden 

Poverty Line) scales. Such an approach allows us to focus on the range and nature 

of discrepancies between them and to open a broader discussion on avenues of 

future research on such differences. We restrict our analysis to income poverty 

keeping in mind the importance of non-monetary measures and 

multidimensionality of poverty. In the paper we concentrate on the income 

dimension since we consider it to be most important, as justified by the 
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Atkinson’s argument against that the separation between inequality of outcome 

and inequality of opportunity. According to his argument, the current inequality 

of outcome directly determines the future inequality of opportunity (Atkinson, 

2017). The aim of the paper – comparison of the subjective equivalence scales 

with the OECD scales - is very closely related to the paper by Bishop et al. 

(2013), who made a similar exercise for the eurozone countries using the EU-

SILC data. 

The structure of the paper is as follows. The first section describes the 

methodology, namely the Leyden Poverty Line method. The second section 

contains the results of the estimation of the Leyden Poverty Line for Poland for 

2010. The third section compares poverty incidence implied by the subjective 

approach with the results based on the OECD equivalence scales. The last section 

summarises our results and contains the final conclusion.  

1. Method 

In this paper, poverty is defined by the level of welfare that is just sufficient 

enough for a household to function properly in a society (as in: Van Praag, 1971; 

Van Praag and Van der Sar, 1988; Van den Bosch, 2002). If we narrow this 

concept solely to the question of income, we can say that “poverty” begins when a 

household’s material situation (or income) is somehow too low to maintain a 

basic living standard without serious difficulty. The subjective poverty approach 

lets every person evaluate his or her income according to his or her feelings or 

needs. A subjective poverty line can be derived upon these evaluations. This is in 

significant contrast to the objective poverty approach, in which experts define 

either absolute or relative poverty lines. The objective approach is straightforward 

to use in practice but ignores a person’s perception of income. On the other hand, 

the subjective method that takes into account a person’s opinion about the actual 

material needs assumes cardinality of the utility function, which is a disputable 

issue. However, the subjective approach to empirical research in social science 

has been getting some popularity because of the recognition that many economic 

indicators or concepts that had been considered to use ordinal utility, de facto 

assume some sort of cardinality. Such indicators include, among others, the 

commonly used equity measures as they ascribe certain values to, for example, 

income inequality in order to say and compare which income distribution is better 

or worse (Ferrer-i-Carbonelland and Frijters, 2002; Van Praag and Ferrer-i-

Carbonell, 2004; Binder and Coad; 2011).  

In this research we return to the approach postulated by the Leyden school 

based on the Income Evaluation Question, in which a person (presumably the 

head of the household) declares income amounts corresponding to certain verbal 

qualifiers. Following the Leyden approach, we assume that 1) households are able 

to evaluate income in general as well as their own income, also in terms of verbal 

labels; 2) it is possible to sensibly convert the labels into a numerical evaluation 
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of welfare on a bounded scale such as an interval [0,1]. These claims are based on 

an assumption that if a respondent tries to do his best in describing his welfare 

using a five-label scale, he should respond as if the differences of welfare between 

all income levels were identical since it maximizes the information value of the 

respondent’s answer. Such claims were criticized by Seidel (1994) and defended 

in Van Praag and Kapteyn (1994). 

The empirical specification used below follows Kapteyn and Van Herwaarden 

(1981) claims that a log-normal cumulative distribution function fits best the 

responses from the Income Evaluation Question. That is why we assume the 

following relation between income and welfare:  

Λ(yi; μi, σi) ≡ Φ(
log(yi)−μi

σi
),            (1) 

with Φ(. ) being a standardized cumulative distribution function, μi describing the 

needs of a household measured by the income demanded by it to satisfy a certain 

level of welfare and σi which defines the welfare sensitivity of income. This 

allows us to write the (logarithm of) δ-specific poverty line for a household with 

income yi as:  

          log(𝑦𝑖(𝛿)) = μi + σi ∗ 𝛷
−1(𝛿),         (2) 

A parameter μi  can be estimated by a sample mean of the declared log-

incomes for each of welfare points. Estimator of σi that reflects how much income 

a household requires to change its welfare evaluation from one level to another is 

a sample standard deviation of declared log-incomes. We estimate individual 

effects μi by the Ordinary Least Squares regression, while σi is set at the value of 

sample average as it was found to be difficult to explain. The basic specification 

for μi includes only household size and income: 

   log(𝑦(𝛿)) = (𝛽0 + 𝛽1 ∗ log (𝐿) +  𝛽2 ∗ log(𝑦)) + 𝜎 ∗ 𝛷−1(𝛿) 

(3) 

Equation (3) is called a Social Standard Function and it allows us to calculate 

the income 𝑦𝛿 that is needed for a certain household size to achieve a social 

standard (welfare) δ (Van Praag and Ferrer-i-Carbonell, 2004). It differs from the 

individual Welfare Function of Income (eq. (2)) in three points: 1) it concerns 

social standard income yδ  instead of the current individual income; 2) it takes into 

account the interaction between current income and household needs, which is a 

phenomenon called a preference drift; 3) it yields welfare of a social group 

(defined by household of size L) instead of the individual value. Defining the 

poverty line as the income y, which brings the welfare δ for a household with the 

current income equal to y, allows us to write: 

𝑦(𝐿, 𝛿) = exp (
𝛽0 + 𝛽1∗log(𝐿)+�̅�∗𝛷

−1(𝛿)

1−𝛽2
).        (4) 
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Other factors such as the income of a reference group, age of the head of the 

household, age of children and other socio-economic variables can also be 

included in the financial needs regression (Van Praag, 1971; Van den Bosch, 

2002). This leads to more complex poverty lines in the form of 𝑦(𝐿, 𝑋, 𝛿), where 

X includes other variables explaining financial needs. Van den Bosch (2002) 

suggested using either the level 0.5 (as poverty risk) or 0.4 (as poverty). Many of 

the studies using the above approach were conducted by researchers closely 

related to Van Praag and by Van Praag himself, for example: Van Praag (1971), 

Van Praag and Kapteyn (1976), Van Praag and Van der Sar (1988),  De Vos and 

Garner (1991) or Van Praag and Ferrer-i-Carbonell (2004). In most cases, the 

functional form of the household needs or minimum income regression included 

income and household or family size as the only explanatory variables. Apart 

from the models with only income and household size as explanatory variables, 

other variables used were: age of the head of the household, age of children, 

gender of the head of the household, working status or number of workers in a 

household, education level and occupation of the head of the household. 

Generally, there is a lot of diversity in the results of the Leyden poverty incidence, 

presumably caused by the differences in functional forms of the regression. The 

comparability of results across countries is difficult due to a multitude of reasons 

such as differences in methodology of surveys, size of samples, as well as cultural 

aspects concerning, for example, life aspirations in a society and understanding of 

terms such as poverty, welfare, or minimum standards. Nonetheless, the direction 

of explanatory variables influence is quite similar in most studies and generally 

the equivalence scales implied by the Leyden approach indicate considerable 

economies of scale within households. 

2. Data and results 

All calculations in this paper are based on the Polish Household Budget 

Survey dataset (orig. Badanie Budżetów Gospodarstw Domowych, BBGD). The 

data comes from the 2010 wave of the HBS that includes the IEQ with five levels: 

“very bad”, “hardly sufficient”, ”sufficient”, “good”, and “very good”. The PHBS 

is a countrywide survey based on a random sample of households that is 

conducted every year by the Central Statistical Office (further: CSO; orig. 

Główny Urząd Statystyczny - details on the Polish HBS survey methodology can 

be found in GUS, 2011b).  The monthly rotation of households method is applied, 

which means that households participate in a survey for only one month. 

Consequently, all the information reflects a state of the household in the very 

moment of taking part in the survey, in particular: income obtained and 

expenditures made are recorded throughout the month of the interview. All these 

questions are asked at the end of the month of the interview and are recorded at 

the household level. Asking income evaluation questions after a month of 

conducting a diary of incomes and expenditures should give more reliable 
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answers. Work, disability or marital status, age, educational level, etc., are 

recorded at the beginning of the month, and are updated at the end of the month. 

Altogether, the HBS provides extraordinarily detailed information on each 

household and its members. Specifically, there are personal characteristics, labour 

market activity, incomes from work and outside of work – available at the 

individual level; as well as housing conditions, expenditures and, above all, 

subjective evaluation of income – recorded at the household level. 

The total sample size of the HBS 2010 exceeds 37 thousand households and 

corresponds to about 13.3 million households after applying the population 

weights. Within these households there are altogether almost 108 thousand 

persons, equivalent to about 37.7 million people in Poland. The most frequent 

group of households is the one-person household that accounts for almost one-

fourth of the population. Only slightly less frequent is the household with two 

members – over 23% of population. The other household types are in quite 

similar proportions as without weighing: three- and four-person households 

account for ca. 20% and 18%, respectively, five-person households for about 8% 

and the “6+” group for almost 6% of all households (Table A1 in Appendix).  

The amounts declared by the households in the IEQ differ considerably for 

each of the evaluation levels. Declarations of “very bad” income range from 50 

PLN to as high as 25 000 PLN per household, reaching its mean at about 1320 

PLN, and its median at exactly 1000 PLN. Similar variations apply for the other 

levels, but the answers seem consistent in that their mean and median values are 

always higher for each subsequent level. In the whole database there are no 

records of declarations, for example, stating higher amount of “very bad” income 

than for “sufficient” one. High variability of income evaluations proves that 

households’ perception of income needs is quite heterogeneous - suggesting that 

the same amount of money for one household brings different satisfaction (or 

welfare) for the other one. In fact, it is one of the reasons for utilizing the Leyden 

approach. 

Table 1 presents the estimation results corresponding to the equation (3) for 

two specifications. The basic form contains two explanatory variables: current 

income and number of household members, while the extended one includes 

information about the number of persons aged 14 or over, the number of persons 

aged 13 or less in a household, education, socio-economic household type 

(farmers, pensioners, those living on unearned sources), and town size. A 

dependent variable is declared available income, which refers to the total monthly 

net household income as defined by the Central Statistical Office. It comprises 

income from hired work, income from a private farm in agriculture, income from 

self-employment other than a private farm in agriculture, income from freelance 

work,  income from property, income from rental of a property or land, social 

insurance benefits and other social benefits and other income. Independent 

variables explain more than 60.00% of the total variance of μ, although even more 

important is the fact that standard errors of estimators are low. 
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Table 1. Comparison of diagnostic results and parameter estimates from basic 

and extended models 

 Basic model Extended model  

No. of observations 37 106 37 106 

R-squared 62.06% 64.54% 

_constant 4.043 (142.0) 4.614 (122.9) 

log(household_size) 0.151 (43.9) x 

log(adults) x 0.189 (44.8) 

log(children+1) x 0.422 (6.1) 

log(income) 0.449 (117.3) 0.390 (81.0) 

log(income)*log(children+1) x -0.431 (-5.04) 

higher_education (d) x 0.079 (17.4) 

Socio-economic groups:   

farmers (d) x -0.030 (-2.8) 

pensioners (d) x -0.060 (-16.5) 

unearned_sources (d) x -0.128 (-12.6) 

Town size:   

town_medium (d) x -0.119 (-25.5) 

town_rural (d) x -0.176 (-34.6) 

link test (square of fitted values 

t-statistic, p-value) 
-5.0 (0.000) -1.0 (0.298) 

Source: Own calculations; HBS 2010. 

Notes: Incomes lower than 1 PLN dropped out and incomes truncated at 0.1% and 99.9% 

centile. Robust covariance matrix is applied. For link test there are test statistics values 

and p-values in parenthesis; for explanatory variables there are parameter estimates and  

t-statistics in parenthesis. All variables are significant at 1% level; (d) stands for dummy 

variables; the base level for socio-economic groups contains households of workers and 

the self-employed; the base level for town size is a large city (above 500 thous. 

inhabitants). 

 

Two interesting observations follow from these estimates. First, there is a 

positive relation between the current income and the financial needs as is 

generally postulated by the literature (Stevenson and Wolfers, 2008). For 

example, according to a basic model a financial need of a single household with 

an income of 500 PLN is 928 PLN and of a 4-person household with such income 
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needs 1141.5 PLN. The needs for the same types of households are much higher 

if they have 5000 PLN - the respective values are 2610 PLN and  3218 PLN. Such 

positive preference drift in income valuation means that the ex-ante income 

valuation is higher than the ex-post valuation. 

Second, the family size elasticity is rather low and equal to 0.27. According to 

the presented estimates in Table 1, a childless couple needs an income that is  

higher by 11.75% than a single household, while parents with a child should have 

an income 15.02% higher than a childless couple to reach the same utility level.  

The extended model suggests more complicated relation between the financial 

need, current income and household size. Still, a positive sign for the estimates on 

income is still  the evidence of positive preference drift, whereas a negative value 

of the interaction suggests a decreasing drift in the number of children. 

The coefficients of categorical variables look sensible, as the highest material 

needs are obtained for households of employees and the self-employed, living in a 

large city and with an educated head of household, e.g. a household where the 

head is highly educated needs about 8% more income to be equally satisfied than 

a household where the head does not have higher education. Having estimated 

household needs regression allows us to calculate the poverty lines for all 

household sizes. A modified version of equation (4) takes the form of: 

𝑦(𝛿) =  exp (
𝛽0 + 𝛽1∗log (𝑎𝑑𝑢𝑙𝑡𝑠)+ 𝛽2∗log(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛+1)+∑ 𝛽𝑑𝑥𝑑𝑑 +𝜎 ∗𝛷−1(𝛿)

1−𝛽3−𝛽4∗log (𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛+1)
),     (5) 

where ∑ 𝛽𝑑𝑥𝑑𝑑  stands for summing up dummy variables coefficients. 

In regard to the financial needs, the extended model gives a much wider 

picture of household diversity than the basic one, which shows that the subjective 

income evaluation is based also on variables other than the household size.  

The results from the models fit well with those published by the Polish 

official statistics. In 2010 the poverty line for a single household was estimated by 

the CSO at PLN 1187, and for a couple with two children at PLN 1770 (GUS, 

2011a). The poverty line at the average values of all explanatory variables except 

for the number of adults and children obtained from the extended model is PLN 

1212 for a single household and PLN 1797 for a couple with two children. The 

basic model yields a line of PLN 1182 for a single household and PLN 1725 for a 

four-person household. The differences between the CSO estimates and our 

results are rather small and may be attributed to such issues as the treatment of 

negative incomes or a model specification, as well as the fact that the CSO 

estimates are only for data from the 4th quarter of the year. 

Table 2 compares equivalence scales implied by both models with the 

modified and original OECD equivalence scales for three selected household 

types. 
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Table 2. Equivalence scales implied by basic and extended models compared 

with OECD scales 

 1 adult 2 adults 1 adult+1 child 
2 adults+3 

children 

basic model 1.000 1.208 1.208 1.552 

extended model 1.000 1.240 1.134 1.545 

modified OECD 1.000 1.500 1.300 2.400 

original OECD 1.000 1.700 1.500 3.200 

Source: Own calculations. HBS 2010. 

Notes: All equivalence scales are shown in relation to a one-adult household, where an 

adult is defined as a person aged 14 or older. In the case of subjective models, the 

equivalence scale is obtained by dividing the subjective poverty line of a household of 

certain type by a line of a reference household. For example, if we take as a reference a 

one-person household, then the equivalence scale for a two-person household will be 

equal to the ratio of subjective poverty lines of these two types of households. For an 

extended model for sample average values of education, town size and socio-economic 

group variables are taken. The original OECD scale (known also as the Oxford scale) 

assigns a value of 1 to the first household member, of 0.7 to each additional adult and of 

0.5 to each child. The modified OECD scale assigns a value of 1 to the first household 

member, of 0.5 to each additional adult and of 0.3 to each child.  

 

Both subjective scales are much flatter than the OECD which corresponds 

well to results in the literature (e.g. de Ree et al., 2013; Bollinger et al., 2012; 

Bishop et al, 2014). In other words, the objective scales underestimate economies 

of scale within the households relative to subjective perception of income 

situation. The smallest difference is visible between the basic model and the 

modified OECD scale for a “1+1” household (1.208 compared to 1.300). In other 

cases, the differences are high, especially for a couple with three children. The 

results of the basic and the extended model yield slightly different equivalence 

scale. The extended model suggests a higher “cost” of the second adult (1.24) 

than the basic model (1.21). Even more, the “cost” of the first child (1.13) in the 

extended model is lower than in all other specifications. It means that the 

extended model better accounts for the households’ heterogeneity than the basic 

one.   
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Table 3 presents the results for the PHBS 2010 data in respect to a biological type 

of a household and by the approach to estimation of poverty. 4  

Table 3.  Poverty incidence (headcount ratio) 2010 by household biological type 

 Total 1+0 1+1 2+0 2+1 2+2 2+3 2+4+ 
other 

w.ch. 

other w/o 

ch. 

basic model 13.13 30.83 22.74 5.93 6.24 7.16 10.76 11.77 6.09 7.77 

extended 

model 13.49 29.86 22.78 5.60 8.00 8.80 13.64 14.36 7.22 7.75 

modified 

OECD 14.72 16.38 24.88 6.38 10.40 14.96 28.62 45.46 20.65 12.29 

original 

OECD 15.67 9.93 27.35 5.97 11.76 20.23 38.10 61.32 28.52 13.75 

Source: Author’s calculations, HBS 2010. 

Notes: HCR  for the OECD scales calculated as 60% of the median equivalent income. 

The lowest overall headcount ratio (HCR) occurs in the basic model and 

amounts to 13.13% of the households. The extended model yields only a slightly 

higher rate (13.49%). The objective poverty rates are higher, namely the 

headcount ratio calculated using the modified OECD scale is higher by about 

1.2%, and using the original OECD – by 2.2%. The basic model yields the highest 

HCR (over 30%) for single households. The HCR for the extended model is 

slightly lower (almost 30%) but for the modified OECD scale the HCR is only 

about a half (16%) while for the original OECD scale – about one third (10%). An 

opposite conclusion may be drawn for larger households, e.g. for a couple with 

two children: the basic model yields HCR of 7.2%, the extended model – about 

8.8%, while the traditional poverty lines lead to significantly higher rates: for the 

modified OECD scale it equals 15% and for the original OECD scale it is as much 

as 20%. 

The results for the subjective models and these implied by the OECD scales 

are qualitatively different. The first approach suggests that a one-person 

household and single parents should be targeted by social policy. On the other 

hand, according to this approach large families are in a significantly better 

situation that the one postulated by the OCED. Different policy implications are 

also seen from the results presented in Table 4. It is visible that the basic model 

                                                           
4 The relative poverty measures can differ due to differences in income distributions and in values of 

poverty lines when two different equivalence scales are applied. If we are interested only in the 

impact of the definition of the equivalence scale on the extent of relative poverty, then in both 

cases the same poverty line should be used. In this paper, following Bishop et al. (2013), we adopt 

a different approach and we allow for different poverty lines in each method.  
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classifies households quite similarly as the extended one. However, there are still 

almost 225 thousand households that are poor in the basic model but not in the 

extended one and 272 thousand – vice versa. Almost 1.5 million households are 

treated as poor in both models, thus the ratio of “classified differently” to 

“classified poor in both models” equals 1:3. In the case of the OECD scales, the 

differences are  significantly larger.  

Table 4. Cross-tabulation of households indicated as poor and non-poor, extended 

model compared with basic model and with the OECD-scales poverty 

(in thous. households) 

 basic model modified OECD scale original OECD scale 

extended 

model: 
non-poor poor non-poor poor non-poor poor 

non-poor 11 091 225 10 674 642 10 346 969 

poor 272 1 492 481 1 283 684 1 080 

Source: Author’s calculations, HBS 2010. 

 

Table 5 presents extra information on the differences in poverty classifications 

for the two approaches – the modified OECD scale and the extended subjective 

scale. As one may expect, the biggest differences are observed for the one-person 

households, for couples with 3 children – “2+3” – and couples with 4 or more 

children –“2+4+”. There are about 440 thous. one-person households that are 

classified as being poor only when the subjective approach is applied. This 

accounts for as much as 13.5% of the total number of such units. For single 

parents the difference in classification results is small. There are 4.6% households 

that are classified as poor only for the OECD scale and about 2.5% for the 

subjective approach. Small differences are observed also for couples without a 

child and those with one or two dependent children. However, a small fraction of 

“2+2” households that are poor only for the OECD scale – 6.4%, is accompanied 

by a large absolute number of 93 thous. units. 

The relative differences are large for “2+3”, “2+4+” and “other household 

with child”. Almost every third of households of parents with 4 and more children 

(“2+4+”) is classified as poor only when the OECD scale is used. Respective 

fractions for “other household with child” and "couple with 3 children" are 13.7% 

and 15.0%. In terms of the absolute numbers, a group of “other household with 

child” is the largest one that is classified as poor only for the OECD approach. 

There are more than 250 thous. households that are not poor by the subjective 

standard but when the traditional approach is applied they are regarded as poor.  
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Table 5. Household classification in subjective approach (extended model) and 

expert  

 

 Poor in expert approach 

Total 

No Yes No  Yes 

Poor in subjective approach 

 No No Yes Yes 

  % No. % No. % No. % No. % No. 

1+0 70.1 2 281.3 0.0 0.5 13.5 438.3 16.4 532.9 100.0 3 253.0 

1+1 72.6 175.3 4.6 11.1 2.5 6.0 20.3 49.0 100.0 241.4 

2+0 93.0 2 172.0 1.4 32.8 0.6 14.4 5.0 116.5 100.0 2 335.7 

2+1  89.2 1 269.1 2.9 40.6 0.5 6.4 7.6 107.5 100.0 1 423.6 

2+2 84.8 1 226.4 6.4 92.7 0.3 3.6 8.6 123.7 100.0 1 446.4 

2+3  71.4 306.6 15.0 64.4 0.0 0.0 13.6 58.6 100.0 429.6 

2+4+  54.5 91.0 31.1 51.9 0.0 0.0 14.4 23.9 100.0 166.8 

oth w.ch.  79.1 1 469.4 13.7 254.2 0.2 3.0 7.1 131.0 100.0 1 857.6 

oth w/o 

ch. 
87.3 1 680.5 5.0 96.2 0.4 8.5 7.3 140.7 100.0 1 925.9 

Total 81.6 10 671.6 4.9 644.2 3.7 480.3 9.8 1 283.9 100.0 13 080.0 

Source:  Author’s calculations, HBS 2010 Notes: The category of “other household with 

 child” includes “a couple with a child and other person” “single parent with a child 

 with other person” and “other persons with a child.” The category of “other 

 household without child” is a residual one consisting of units not classified elsewhere.  

 In the Appendix the differences in deciles classifications are compared 

(Tables A2 a-c in Appendix). It shows that both approaches lead to different 

conclusions about the relative income situation not only for those who are at risk 

of poverty but also for those whose situation is relatively good. For example, 70% 

of one-person households are classified in the second decile by the OECD 

approach end up in the first decile if the subjective approach is used.  An even 

more striking conclusion may be drawn for the middle part of distribution for the 

OECD scale. It is observed that 20% of those from the 5th decile are in the 2nd 

decile according to the alternative approach. Large movements are seen also for 

higher deciles. Generally, in the case of one-person households, the relative 

position of the household implied by the subjective approach is worse or at best 

the same as in the traditional approach. The opposite situation takes place when 

larger households are considered (Table A2b and Table A2c in Appendix). For 

instance, among the 2nd decile households with 3 children in the OECD-scale 

distribution, almost 60% of the households are classified in the 3rd decile and over 
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25% in the 4th decile when the subjective approach is applied. An even stronger 

divergence can be seen among multifamily units, where over 20% of households 

are in the 5th decile using the subjective approach, although they were classified in 

2nd decile in the objective approach. The “migrations” from the above deciles 

seem fully consistent with our results concerning poverty rates within different 

household types.  

3. Discussion on policy implications 

The results presented above prove how complex and ambiguous the task to 

find an appropriate way of targeting social policy is. A seemingly simple question 

about monetary status of households turns out to be biased from the very 

beginning because we cannot reliably compare neither material needs nor socio- 

and psychological traits of different compositions of households. Despite this, the 

daily routine in policy-making is to take into account equivalised incomes - 

implicitly assuming the largely simplified OECD scales - without deeper 

investigation of the consequences of such an approach. Then, the results based on 

that simplified approach are used in deciding who should be the target group of 

social transfers. As we show in the paper, this group will be significantly different 

if we base the identification process on the subjective approach to equivalence 

scale. This raises the interesting question that is beyond the scope of the paper of 

whether we shall help people who find themselves poor or rather people who are 

objectively poor even if they do not consider themselves as such. Changing the 

current approach to the equivalence scale would mean that the whole wide range 

of social tools currently used should be assessed in order to verify who finally 

receives the transfers. 

Our study suggests that at least two changes in social policy should have been 

considered if the subjective approach to equivalence scale had been taken 

seriously. First, persons living alone are the most overlooked social group with a 

much higher poverty risk than has been assumed so far. Simultaneously, we find 

larger households feeling much better about their current material situation than 

the objective poverty measures would imply. Joining these two facts together, it is 

a serious question whether the social budget should be distributed in a different 

way, so that a part of social tools should be terminated and perhaps a new tool 

proposed in its place. Second, equivalence scales are important in a discussion 

about tax and benefit regulations, since they have direct consequence on estimates 

of relative child costs. According to our results, the subjective equivalence scales 

suggest lower relative child cost than is embodied in the OECD modified scale. 

Also, the differences between subjective poverty rates and the expert rates are 

increasing in the number of children (Tab. 5).  The fact that positional rankings of 

families with more children in the income distribution are better when the 

subjective scale is used means that we have found  support for the conclusion in 

Bishop et al. (2013) about fixed costs of having children that are not accounted 
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for by the OECD scale. This has a clear policy implication since the fixed costs 

have to be taken into account in devising any fertility-enhancing programme.  

Also, the subjective approach to equivalence scales can have even broader 

consequences for macroeconomic and regional policies in general, because it 

provides completely different income distribution across countries. An analysis of 

deciles migration between the presented approaches proves that there are 

substantial differences throughout the whole distribution and not only in its low 

end. As a consequence, all policy tools that include means-testing or in a different 

way take into account income of a household can bring a new light on the old 

issues.   

4. Conclusion 

Economic thinking on social policy is often based on very advanced models 

relying on the utility maximization principle and revealed preferences that, at least 

in theory, lead to complicated equivalence scales. On the other side, solutions 

used in practice are extremely simple and arguments based on poverty rates 

calculated with the OECD equivalence scale are often heard in public discussion. 

It seems that the simple practical solutions based on the OECD approach are 

located far away from the complex and logically consistent theoretical models.  

We believe that a middle ground can be found and that subjective income 

evaluations give valuable information for public policy judgments, even though 

the possible measurement errors and the issue of comparing interpersonal 

satisfaction are involved while using such an approach. Accepting such 

imperfections does not seem to us to be a worse solution than applying the same 

three weights (1, 0.5, and 0.3) to all households.  

This study used subjective information from surveys in order to compare the 

results with those based on the OECD. Being aware of the controversial nature of 

the method, we believe that subjective data can enrich our knowledge from the 

conventional approach, which may be valuable for policy evaluation. It turns out 

that although total poverty rates between those two approaches do not differ 

considerably, there are huge differences for specific sub-groups of households. 

We found out that the subjective equivalence scales are much flatter in the 

household size than the OECD ones, which corresponds well to results in the 

literature (e.g. Bishop et al., 2014; Podgórski, 1994). The range of economies of 

scale within the households postulated by the subjective approach is wider than 

the one from the OECD scales. This leads to policy suggestions different from 

those that are currently discussed. It follows that social groups that are most 

vulnerable to poverty are totally different in the two approaches. The official 

statistics based on either the Eurostat or CSO data point to large families as those 

who are in the relatively worst financial position. Thanks to the availability of the 

PHBS data, we have shown that more attention should be paid toward small 

households, and that the large ones are not in as bad situation as it is commonly 
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thought. In a country like Poland, where there is a relatively big share of large 

households and where income support policy uses income-testing heavily, such a 

conclusion might significantly change the allocation of public transfers.  
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APPENDIX 

 

Table A1. Sample characteristics of Household Budget Survey 2010 

 Data set size 

 Sample frequency Population frequency 

No. of 

households 
37 412 13 332 320 

No. of persons 107 967 37 726 497 

 Household size 

 Sample 

 frequency 

Sample 

 percentage 

Population 

frequency 

Population 

percentage 

1 6 700 17.91 3 307 035 24.80 

2 11 087 29.63 3 097 050 23.23 

3 7 838 20.95 2 653 892 19.91 

4 6 737 18.01 2 405 045 18.04 

5 3 003 8.03 1 085 993 8.15 

6+ 2 047 5.47 788 003 5.91 

Source: Own calculations on HBS 2010. 

 

Table A2a. One-person households (%) 

  Subjective approach deciles  

  1 2 3 4 5 6 7 8 9 10 Total 

O
E

C
D

 a
p

p
ro

ac
h

 d
ec

il
es

 

1 100 0 0 0 0 0 0 0 0 0 10.67 

2 70.17 29.72 0.1 0 0 0 0 0 0 0 12.44 

3 15.4 73.71 10.89 0 0 0 0 0 0 0 12.84 

4 6.22 38.56 50.81 4.28 0.12 0 0 0 0 0 11.99 

5 0.87 20.57 44.03 31.84 2.58 0.12 0 0 0 0 10.83 

6 0 7.34 22.53 44.11 24.62 1.4 0 0 0 0 9.35 

7 0 1.55 12.44 29.61 36.99 17.03 2.39 0 0 0 8.24 

8 0 0 2.93 16.64 25.54 30.97 22.22 1.51 0.18 0 7.06 

9 0 0 0 1.8 12.74 23.98 30.08 25.58 5.82 0 7.96 

10 0 0 0 0 0 1.65 10.14 21.11 31.63 35.47 8.61 

 Total 22.22 20.82 15.61 11.84 8.46 5.79 5.04 3.96 3.2 3.06 3 250 550 

Source: Own calculations on HBS 2010. 
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Table A2b. Parents with three children (%) 

  Subjective approach deciles  

  1 2 3 4 5 6 7 8 9 10 Total 

O
E

C
D

 a
p

p
ro

ac
h

 d
ec

il
es

 

1 45.39 44.56 7.83 2.23 0 0 0 0 0 0 20.72 

2 0 11.56 57.12 26.21 5.1 0 0 0 0 0 14.84 

3 0 0 8.73 38.78 39.66 11.42 1.41 0 0 0 13.66 

4 0 0 0 3.17 40.32 45.4 9.26 1.86 0 0 10.89 

5 0 0 0  2.39 6.85 36.89 42.99 10.87 0 0 9.71 

6 0 0 0 0 8.17 9.69 29.81 46.53 5.81 0 8.42 

7 0 0 0 0 0 1.65 23.71 48.74 24.75 1.14 6.45 

8 0 0 0 0 0 0 6.07 30.27 52.25 11.4 7.45 

9 0 0 0 0 0 0 0 2.55 32.67 64.78 4.49 

10 0 0 0 0 0 0 0 0 6.86 93.14 3.37 

 Total 9.41 10.95 11.29 10.23 11.92 11.01 9.86 10.69 7.68 6.97 429 133 

Source: Own calculations on HBS 2010. 

 

 

 

Table A2c. Other households with a child (%) 

  Subjective approach deciles  

  1 2 3 4 5 6 7 8 9 10 Total 

O
E

C
D

 a
p

p
ro

ac
h

 d
ec

il
es

 

1 35.56 30.84 22.66 8.28 2.14 0.52 0 0 0 0 14.01 

2 1 8.72 22.53 34.2 22.56 8.74 2.05 0.2 0 0 13.90 

3 0 2.74 7.52 21.09 33.67 22.68 10.34 1.8 0.17 0 12.05 

4 0 0.15 2.36 9.8 17.18 31.88 24.22 12.49 1.92 0 11.32 

5 0 0 0.19 5.08 7.9 20.83 33.7 25.52 6.29 0.49 11.32 

6 0 0 0 0.6 3.08 10.31 20.05 40.65 24.24 1.06 10.12 

7 0 0 0 0.16 1.43 4.45 12.93 24.52 46.89 9.61 9.49 

8 0 0 0 0 0 0.9 3.32 12.34 49.35 34.09 7.84 

9 0 0 0 0 0 0 0.51 3.24 24.1 72.15 6.41 

10 0 0 0 0 0 0 0 0 1.96 98.04 3.53 

 Total 5.12 5.88 7.5 10.22 10.78 11.52 11.64 12.16 13.34 11.84 1 855 766 

Source: Own calculations on HBS 2010. 
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SELECTING THE OPTIMAL MULTIDIMENSIONAL 

SCALING PROCEDURE FOR METRIC DATA 

WITH R ENVIRONMENT 

Marek Walesiak1, Andrzej Dudek2 

ABSTRACT 

In multidimensional scaling (MDS) carried out on the basis of a metric data 

matrix (interval, ratio), the main decision problems relate to the selection of the 

method of normalization of the values of the variables, the selection of distance 

measure and the selection of MDS model. The article proposes a solution that 

allows choosing the optimal multidimensional scaling procedure according to the 

normalization methods, distance measures and MDS model applied. The study 

includes 18 normalization methods, 5 distance measures and 3 types of MDS 

models (ratio, interval and spline). It uses two criteria for selecting the optimal 

multidimensional scaling procedure: Kruskal’s Stress-1 fit measure and 

Hirschman-Herfindahl HHI index calculated based on Stress per point values. 

The results are illustrated by an empirical example. 

Key words: multidimensional scaling, normalization of variables, distance 

measures, HHI index, R program. 

1. Introduction 

Multidimensional scaling is a method that represents (dis)similarity data as 

distances in a low-dimensional space (typically 2 or 3 dimensional) in order to 

make these data accessible to visual inspection and exploration (Borg, Groenen, 

2005, p. 3). The dimensions are not directly observable. They have the nature of 

latent variables. MDS allows the similarities and differences between the 

analyzed objects to be explained. 

Multidimensional scaling is a widely used technique in many areas, including 

psychology (Takane, 2007), sociology (Pinkley, Gelfand, Duan, 2005), linguistics 
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(Embleton, Uritescu, Wheeler, 2013), marketing research (Cooper, 1983), tourism 

(Marcussen, 2014) and geography (Golledge, Ruhton, 1972). 

The starting point of multidimensional scaling is a distance matrix 

(dissimilarities) between objects in m-dimensional space  ikδ , where 

nki ,...,1,   is the number of the object. Methods of determining the distance 

matrix  ikδ  can be divided into direct (typically result from similarity ratings 

on object pairs, from rankings, or from card-sorting tasks) and indirect (they can 

be derived from other data) methods (see, e.g. Borg, Groenen, 2005, pp. 111-133).  

The article uses an indirect method in which the starting point is a metric data 

matrix ][ ijxX  ( ijx  – the value of the j-th variable for the i-th object, mj ,...,1  

– the number of metric variable), for which observations are obtained from 

secondary data sources. It is a typical situation in socio-economic research.  

The normalization of variables is carried out when the variables describing the 

analyzed objects are measured on metric scales (interval or ratio). The 

characteristics of measurement scales were discussed, e.g. in the study by 

(Stevens, 1946). The purpose of normalization is to achieve the comparability of 

variables. 

Metric data that requires normalization of variables complicates the problem 

of choosing a multidimensional scaling procedure. The article proposes a solution 

that allows the choice of the optimal multidimensional scaling procedure, carried 

out on the basis of metric data (interval, ratio), according to the normalization 

methods, distance measures and MDS model applied. The study included 18 

normalization methods, 5 distance measures and MDS models (ratio, interval and 

spline – e.g. polynomial function of second or third degree). For instance, ten 

normalization methods, five distance measures and four MDS models give 200 

multidimensional scaling procedures. 

The authors of the monograph (Borg, Groenen, Mair, 2013, chapter 7) pointed 

out the typical mistakes made by users of multidimensional scaling. A frequent 

mistake on the part of users of MDS results is to evaluate Stress mechanically 

(rejecting an MDS solution because its Stress seems “too high”). In their opinion 

(Borg, Groenen, Mair, 2013, p. 68) “An MDS solution can be robust and 

replicable, even if its Stress value is high” and “Stress, moreover, is a summative 

index for all proximities. It does not inform the user how well a particular 

proximity value is represented in the given MDS space”. In addition, we should 

take into account Stress per point measure (the average of the squared error terms 

for each point) and acceptability of MDS results (based on “Shepard diagram”). 

To solve the problem of choosing the optimal multidimensional scaling 

procedure, two criteria were applied: Kruskal’s Stress-1 (Stress – Standardized 

residual sum of squares) fit measure and the Hirschman-Herfindahl HHI index, 

calculated based on Stress per point values (spp). The article proposes an 
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algorithm that allows the selection of the optimal multidimensional scaling 

procedure with implementation in mdsOpt package of R program (Walesiak, 

Dudek, 2017b). 

The results are illustrated by an empirical example. 

2. Multidimensional scaling based on metric data 

A general scheme of multidimensional scaling performed on metric data is as 

follows: 

 ISXAP  VdδZX , (1) 

where:  

P  – choice of research problem, 

A  – selection of objects, 

X  – selection of variables, 

X  – collecting data and construction of data matrix nxmijx ][X  for 

nki ,...,1,   and mj ,...,1  ( ijx  – the value of the j-th variable for the i-th 

object), 

Z  – choice of variable normalization method and construction of normalized 

data matrix nxmijz ][Z  for nki ,...,1,   and mj ,...,1  ( ijz  – the 

normalized value of the j-th variable for the i-th object), 

δ  – selection of distance measure (see Table 3) and construction of distance 

matrix in m-dimensional space  
nxnik )(Zδ   for nki ,...,1,  , 

S  – perform multidimensional scaling (MDS): )()(: VZ ikik df   for all 

pairs ( ki, ) – mapping distances in m-dimensional space )(Zik  into 

corresponding distances )(Vikd  in q-dimensional space ( mq  ) by a 

representation function f. The distances )(Vikd  are always unknown, i.e. 

MDS must find a configuration V  of predetermined dimensions q on 

which the distances are computed, 

d  – Euclidean distance matrix in q-dimensional space ( mq  , typically q 

equals 2 or 3)  
nxnikd )(Vd   for nki ,...,1,  , 

V  – configuration of objects in q-dimensional space nxqijv ][V , 

I  – interpretation of multidimensional scaling results in q-dimensional space. 
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In SMACOF (Scaling by Majorizing a Complicated Function) algorithm we 

minimize Stress (2) over the configuration matrix V  by an iterative procedure 

(see Borg, Groenen, 2005, pp. 204-205): 

  1. Set 
]0[

VV  , where 
]0[

V  is some nonrandom or random start configuration. 

Starting solution is usually Torgerson-Gower classical scaling (Torgerson, 

1952; Gower, 1966). Set iteration counter 0k . Set ε to a small positive 

constant (convergence criterion), i.e. 000001.0 . 

  2. Find optimal disparities ikd̂  for fixed distances )( ]0[
Vikd . 

  3. Standardize (to avoid degenerated solution) ikd̂  so that .2/)1(2
ˆ  nn
d

   

  4. Compute Stress function ),ˆ( ]0[]0[
Vdrr   : 

 



ki

ikikikr ddw 2)ˆ)((),ˆ( VVd  

 



ki

ikikik

ki

ikik

ki

ikik ddwdwdw )(ˆ2)(ˆ 22
VV  

 ),ˆ(2)(22
ˆ VdV  
d

. (2) 

where: ikd̂  – d-hats, disparities, target distances or pseudo distances (see Borg, 

Groenen 2005, p. 199). )(ˆ
ikik fd   by defining f in different ways: 

kiik bd ˆ  – ratio MDS; kiik bad ˆ  – interval MDS, 

2ˆ
ikkiik cbad    – spline MDS (polynomial function of second 

degree); 

1ikw  – for object pair ki,  a dissimilarity has been observed, 0ikw  –

otherwise. 

Set ]0[]1[

rr   . 

  5. While 0k  or (   ][]1[ k

r

k

r  and k  maximum iterations) do 

  6. Increase iteration number k by one ( 1:  kk ). 

  7. Compute Guttman transform 
][k

V  (see Borg, Groenen, 2005, p. 191; De 

Leeuw, Mair, 2009, p. 5). 

  8. Find optimal disparities ikd̂  for fixed distances )( ][k

ikd V . 

  9.  Standardize ikd̂  so that 2/)1(2
ˆ  nn
d

 . 

10.  Compute ),ˆ( ][][ k

r

k

r Vd  . 

11.  Set 
][k

VV  , 

12.  End while. 
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A flowchart of the SMACOF algorithm is given in Figure 1. 

Compute optimal 

for distances of V[k]

Start: set initial V[0]

k: = 0

Standardize         so that

sd ik
ˆ

sd ik
ˆ

Compute          

2/)1(
2

ˆ  nn
d



][k

r

Update V[k] by

Guttman transform

k: = k+1

k    0 ?

or k = maxiter?

 
 ][]1[ k

r

k

r

no

no

End

yes

Figure 1. The flowchart of the majorization algorithm (SMACOF) 

Source: Borg, Groenen, 2005, p. 205. 

In other multidimensional scaling algorithms, different fit measures are 

applied (see, e.g. Borg, Groenen, 2005, pp. 250-254): Kruskal’s Stress-1, Kruskal 

and Carroll Stress-2, the Guttman-Lingoes coefficient of alienation, S-Stress of 

Takane, Young and De Leeuw. 

3. Criteria for the selection of the optimal multidimensional scaling 

 procedure 

The article proposes a solution that allows the optimal multidimensional 

scaling procedure to be chosen. The study uses the function smacofSym of 
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smacof package od R program (R Development Core Team, 2017). In the 

function smacofSym of smacof package (Mair et al., 2017) basic decision 

problems involve the following selection: 

– normalization method (the analysis included 18 normalization methods), 

– distance measure (the analysis included 5 distance measures),  

– MDS model (the analysis included: ratio MDS, interval MDS, spline MDS). 

Table 1 presents normalization methods, given by linear formula (3), which 

were used in the selection of the optimal MDS procedure (see Jajuga, Walesiak, 

2000, pp. 106-107; Zeliaś, 2002, p. 792): 

 
j

j

ij

jj

jij

jijjij
B

A
x

BB

Ax
axbz 




1
 )0( jb , (3) 

where: 
ijx  – the value of j-th variable for the i-th object, 

ijz  – the normalized value of j-th variable for the i-th object, 

jA  – shift parameter to arbitrary zero for the j-th variable, 

jB  – scale parameter for the j-th variable, 

jjj BAa  , 
jj Bb 1  – parameters for the j-th variable presented in 

Table 1. 

Table 1. Normalization methods 

Type Method 
Parameter 

Scale of 

variables 

jb  
ja  BN AN 

n1 Standardization js1  
jj sx  ratio or 

interval 
interval 

n2 
Positional 

standardization jmad1  
jj madmed  ratio or 

interval 
interval 

n3 Unitization jr1  
jj rx  ratio or 

interval 
interval 

n3a Positional unitization jr1  
jj rmed  ratio or 

interval 
interval 

n4 
Unitization with zero 

minimum jr1  jij
i

rx }{min  ratio or 

interval 
interval 

n5 
Normalization in range 

[–1; 1] jij
i

xx max

1
 

jij
i

j

xx

x





max
 ratio or 

interval 
interval 

n5a 
Positional normalization 

in range [–1; 1] jij
i

medx max

1
 

jij
i

j

medx

med





max
 ratio or 

interval 
interval 

 



STATISTICS IN TRANSITION new series, September 2017 

 

527 

Table 1. Normalization methods  (cont.) 

Type Method 
Parameter 

Scale of 

variables 

jb  
ja  BN AN 

n6 

Quotient 

transformations 

js1  0 ratio ratio 

n6a jmad1  0 ratio ratio 

n7 jr1  0 ratio ratio 

n8 }{max1 ij
i
x  0 ratio ratio 

n9 jx1  0 ratio ratio 

n9a jmed1  0 ratio ratio 

n10  

n

i ijx1
1  0 ratio ratio 

n11  

n

i ijx1

21  0 ratio ratio 

n12 Normalization 
 


n

i jij xx
1

2)(

1
 

 




n

i jij

j

xx

x

1

2)(

 ratio or 

interval 
interval 

n12a Positional normalization 
 


n

i jij medx
1

2)(

1
 

 




n

i jij

j

medx

med

1

2)(

 ratio or 

interval 
interval 

n13 
Normalization with zero 

being the central point 2/

1

jr
 

2/j

j

r

m
  

ratio or 

interval 
interval 

BN – before normalization, AN – after normalization, 
jx  – mean for the j-th variable, 

js  

– standard deviation for the j-th variable, 
jr  – range for the j-th variable, 

2

}{min}{max ij
i

ij
i

j

xx
m


  – mid-range for the j-th variable, )( ij

i
j xmedmed   – median 

for the j-th variable, )( ij
i

j xmadmad   – median absolute deviation for the j-th 

variable. 

Source: Based on (Jajuga, Walesiak, 2000; Walesiak, Dudek, 2017a). 

 

Column 1 in Table 1 presents the type of normalization method adopted as the 

function data.Normalization of clusterSim package (Walesiak, Dudek, 

2017a). Similar procedure for data normalization is available as the function 

scale of base package. In this function the researcher defines the parameters 

jA  and 
jB .  

Due to the fact that the groups of A, B, C and D (see Table 2) normalization 

methods give identical multidimensional scaling results, further analysis covers 
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the first methods of the identified groups (n1, n2, n3, n9), as well as the other 

methods (n5, n5a, n8, n9a, n11, n12a). 

 

Table 2. The groups of normalization methods resulting in identical distance matrices 

Groups of 

normalization 

methods 

Normalization methods 

GDM1 distance 
Minkowski distances, squared 

Euclidean distance* 

A n1, n6, n12 n1, n6, n12 

B n2, n6a n2, n6a 

C n3, n3a, n4, n7, n13 n3, n3a, n4, n7, n13 

D n9, n10 n9, n10 

* after dividing distances in each distance matrix by the maximum value. 

Source: Own presentation. 

Table 3 presents selected distance measures for metric data that have been 

used in the selection of the optimal multidimensional scaling procedure. 

Distance GDM1 is available as a function of dist.GDM of clusterSim 

package (Walesiak, Dudek, 2017) and the remaining distances in Table 3 are 

available in the function dist of stats package (R Development Core Team, 

2017). 

The initial point of the application of smacofSym function is to determine 

the following values of arguments: 

– convergence criterion (eps=1e-06), 

– maximum number of iterations (itmax=1000). 

These parameters can be changed by the user. 

The selection of the optimal procedure for multidimensional scaling takes 

place in several stages: 

1. Set the number of dimensions in MDS to two (ndim=2). 

2. Taking into account in the analysis 10 normalization methods, 5 distance 

measures and 2 MDS models, there are 100 multidimensional scaling 

procedures. Multidimensional scaling is performed for each procedure 

separately. It then orders the procedures by increasing Stress-1 fit measure (see 

e.g. Borg, Groenen, Mair, 2013, p. 23): 

 



ki

ik

ki

ikikp dddStress )(]ˆ)([ 22
VV1- , (4) 

where: 100,...,1p  – multidimensional scaling procedure number. 
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Table 3. Distance measures for metric (interval, ratio) data 

Name Distance ik  Range 
Allowed 

normalization 

Minkowski )1( p  p m

j

p

kjij zz 


1
 );0[   n1-n13 

– Manhattan )1( p   


m

j kjij zz
1

 );0[   n1-n13 

– Euclidean )2( p    


m

j kjij zz
1

2
 );0[   n1-n13 

– Chebyshev 

(maximum) (p

)  
kjij

j
zz max  );0[   n1-n13 

Squared Euclidean   


m

j kjij zz
1

2
 );0[   n1-n13 

GDM1 
2

1

1 1

2

1 1

2

1 1

,

1

)()(2

))(())((

2

1




















 

  

 





m

j

n

l

ljkj

m

j

n

l

ljij

m

j

m

j

n

kil

l
ljkjljijijkjkjij

zzzz

zzzzzzzz

 ]1;0[  n1-n13 

nlki ,,1,,   – object number, m – the number of objects, mj ,,1  – variable 

number, m – the number of variables, ),( ljkjij zzz  – the normalized value of the j-th 

variable for the i-th (k-th, l-th) object. 

Source: Based on (Everitt et al., 2011, pp. 49-50; Jajuga, Walesiak, Bąk, 2003). 

3. Based on Stress per point (spp) values (Stress contribution in percentages), the 

Hirschman-Herfindahl index is calculated (Herfindahl, 1950; Hirschman, 

1964): 

 



n

i

pip sppHHI
1

2
, (5) 

where: ni ,...,1  – object number. 

The pHHI  index takes values in the interval 








000,10;

000,10

n
. The value 

n

000,10
 

means that the distribution of errors for individual objects is uniform (
n

sppi
i

100
 ). 

The maximal value appears when summary fit measure (Stress-1) is the result of 

loss assigned only to one object. For other objects, loss function will be equal to 

zero. The optimal situation for a multidimensional scaling procedure is the 

minimal value of the pHHI  index. 

4. The chart with pStress 1-  fit measure value on x-axis and pHHI  index on y-

axis for p procedures of multidimensional scaling is drawn. 
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5. The maximal acceptable value of 1-Stress  is assumed as s. For all 

multidimensional scaling procedures for which sStress p 1- , we chose the 

one for which }{min p
p
HHI  occurs. 

6. Multidimensional scaling for the selected procedure is performed along with 

checkout that in the sense of interpretation results are acceptable. Based on the 

Shepard diagram, the correctness of the model scaling will be evaluated. If the 

results are acceptable the procedure ends, otherwise it returns to step 1 and 

multidimensional scaling for three dimensions is performed (ndim=3). 

4. Empirical results 

The empirical study uses the statistical data presented in the article (Gryszel, 

Walesiak, 2014) and referring to the attractiveness level of 29 Lower Silesian 

counties. The evaluation of tourist attractiveness of Lower Silesian counties was 

performed using 16 metric variables (measured on a ratio scale): 

x1 – beds in hotels per 1 km2 of a county area, 

x2 – number of nights spent daily by resident tourists (Poles) per 1,000 

inhabitants of a county, 

x3 – number of nights spent daily by foreign tourists per 1,000 inhabitants of a 

county, 

x4 – gas pollution emission in tons per 1 km2 of a county area, 

x5 – number of criminal offences and crimes against life and health per 1,000 

inhabitants of a county, 

x6 – number of property crimes per 1,000 inhabitants of a county, 

x7 – number of historical buildings per 100 km2 of a county area, 

x8 – % of a county forest cover, 

x9 – % share of legally protected areas within a county area, 

x10 – number of events as well as cultural and tourist ventures in a county, 

x11 – number of natural monuments calculated per 1 km2 of a county area, 

x12 – number of tourist economy entities per 1,000 inhabitants of a county 

(natural and legal persons), 

x13 – expenditure of municipalities and counties on tourism, culture and 

national heritage protection as well as physical culture per 1 inhabitant of 

a county in Polish zlotys (PLN), 

x14 – cinema attendance per 1,000 inhabitants of a county, 

x15 – museum visitors per 1,000 inhabitants of a county, 

x16 – number of construction permits (hotels and accommodation buildings, 

commercial and service buildings, transport and communication 

buildings, civil and water engineering constructions) issued in a county in 

the years 2011-2012, per 1 km2 of a county area. 
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The statistical data were collected in 2012 and come from the Local Data 
Bank of the Central Statistical Office of Poland; the data for x7 variable only were 
obtained from the regional conservation officer. 

Variables (x4, x5 and x6) take the form of destimulants, x9 is a nominant 
(50% level was adopted as the optimal one). The other variables represent 
stimulants, whereas x9 nominant was transformed into a stimulant. The 
definitions of stimulants, destimulants and nominants are available in the study, 
e.g. (Walesiak, 2016).  

A pattern object and an anti-pattern object were added to the set of 29 
counties (see Walesiak, 2016). Therefore, the data matrix covers 31 objects 
described by 16 variables. The coordinates of a pattern object cover the most 
preferred preference variable (stimulants, destimulants and nominants) values. 
The coordinates of an anti-pattern object cover the least preferred preference 
variable values. 

The article uses its own script of package mdsOpt of R program (Walesiak, 
Dudek, 2017b) to choose the optimal procedure for multidimensional scaling due 
to normalization methods, selected distance measures and MDS models 
(developed in accordance with the methodology described in section 3). 

The measurement of variables on a ratio scale accepts all normalization 
methods (hence the study covered 18 methods). Due to the fact that the groups of 
A, B, C and D normalization methods give identical multidimensional scaling 
results (see Table 2), further analysis covers the first methods of the identified 
groups (n1, n2, n3, n9), as well as the other methods (n5, n5a, n8, n9a, n11, n12a). 

Ordering results of 100 multidimensional scaling procedures (10 
normalization methods x 5 distance measures x 2 MDS models) according to 
formula (4) are presented in Table 4. In addition, Table 4 shows values of pHHI  
index for each MDS procedure. 

Table 4. Ordering results of 100 multidimensional scaling procedures 

p nm 
MDS 

model 

Distance 

measure 
Stress-1 HHI p nm 

MDS 

model 

Distance 

measure 
Stress-1 HHI 

1 2 3 4 5 6 7 8 9 10 11 12 

1 n9a interval euclidean 0.0311 844 51 n2 ratio seuclidean 0.1391 1328 

2 n2 interval euclidean 0.0369 685 52 n11 ratio GDM1 0.1391 495 

3 n9a ratio euclidean 0.0404 715 53 n5a interval seuclidean 0.1400 663 

4 n9a interval maximum 0.0408 1276 54 n5 ratio seuclidean 0.1402 797 

5 n9a ratio maximum 0.0441 1230 55 n5a interval euclidean 0.1405 508 

6 n2 interval maximum 0.0505 908 56 n11 ratio manhattan 0.1414 453 

7 n2 ratio euclidean 0.0546 520 57 n5a ratio seuclidean 0.1436 791 

8 n2 ratio maximum 0.0576 794 58 n9 ratio euclidean 0.1473 464 

9 n9a interval manhattan 0.0627 867 59 n9a ratio seuclidean 0.1478 1289 

10 n9a ratio manhattan 0.0687 645 60 n8 ratio manhattan 0.1483 428 

11 n2 interval manhattan 0.0704 755 61 n3 ratio manhattan 0.1502 419 

12 n2 interval GDM1 0.0770 605 62 n1 ratio manhattan 0.1530 410 

13 n9a interval GDM1 0.0793 593 63 n5 ratio manhattan 0.1531 421 



532                                                           M. Walesiak, A. Dudek: Selecting the optimal… 

 

 

Table 4. Ordering results of 100 multidimensional scaling procedures  (cont.) 

p nm 
MDS 

model 

Distance 

measure 
Stress-1 HHI p nm 

MDS 

model 

Distance 

measure 
Stress-1 HHI 

1 2 3 4 5 6 7 8 9 10 11 12 

14 n2 ratio manhattan 0.0839 521 64 n12a ratio manhattan 0.1543 409 

15 n2 ratio GDM1 0.0894 887 65 n5a ratio manhattan 0.1548 422 

16 n9a ratio GDM1 0.0969 924 66 n8 interval GDM1 0.1598 486 

17 n9 interval manhattan 0.0985 577 67 n8 ratio GDM1 0.1608 489 

18 n9 interval euclidean 0.1056 580 68 n9 interval maximum 0.1610 554 

19 n9 interval seuclidean 0.1087 813 69 n3 interval GDM1 0.1640 473 

20 n11 interval manhattan 0.1092 500 70 n3 ratio GDM1 0.1653 476 

21 n8 interval manhattan 0.1149 476 71 n1 interval GDM1 0.1677 431 

22 n11 interval seuclidean 0.1149 739 72 n1 ratio GDM1 0.1691 435 

23 n3 interval manhattan 0.1155 469 73 n11 ratio euclidean 0.1698 427 

24 n2 interval seuclidean 0.1161 865 74 n12a interval GDM1 0.1718 430 

25 n9 ratio seuclidean 0.1164 1102 75 n12a ratio GDM1 0.1732 434 

26 n9 interval GDM1 0.1166 545 76 n5 interval GDM1 0.1737 494 

27 n9 ratio GDM1 0.1166 545 77 n5 ratio GDM1 0.1738 494 

28 n11 interval euclidean 0.1168 497 78 n5a interval GDM1 0.1774 493 

29 n11 ratio seuclidean 0.1179 922 79 n5a ratio GDM1 0.1774 493 

30 n1 interval manhattan 0.1186 457 80 n11 interval maximum 0.1874 494 

31 n12a interval manhattan 0.1199 455 81 n9 ratio maximum 0.1878 489 

32 n9a interval seuclidean 0.1204 791 82 n8 ratio euclidean 0.1883 419 

33 n5 interval manhattan 0.1207 479 83 n1 ratio euclidean 0.1908 399 

34 n5a interval manhattan 0.1225 479 84 n5 ratio euclidean 0.1914 420 

35 n8 interval seuclidean 0.1255 688 85 n3 ratio euclidean 0.1921 411 

36 n9 ratio manhattan 0.1257 486 86 n12a ratio euclidean 0.1923 398 

37 n3 interval seuclidean 0.1263 694 87 n5a ratio euclidean 0.1925 418 

38 n8 ratio seuclidean 0.1274 803 88 n1 interval maximum 0.2229 437 

39 n3 ratio seuclidean 0.1279 802 89 n12a interval maximum 0.2242 441 

40 n1 interval seuclidean 0.1280 719 90 n11 ratio maximum 0.2260 442 

41 n8 interval euclidean 0.1292 474 91 n8 interval maximum 0.2307 460 

42 n1 ratio seuclidean 0.1297 845 92 n5a interval maximum 0.2368 424 

43 n12a interval seuclidean 0.1300 718 93 n3 interval maximum 0.2398 463 

44 n1 interval euclidean 0.1303 421 94 n5 interval maximum 0.2442 443 

45 n3 interval euclidean 0.1307 461 95 n1 ratio maximum 0.2547 396 

46 n12a ratio seuclidean 0.1318 845 96 n12a ratio maximum 0.2557 395 

47 n12a interval euclidean 0.1322 421 97 n5a ratio maximum 0.2606 394 

48 n5 interval seuclidean 0.1369 666 98 n8 ratio maximum 0.2618 414 

49 n11 interval GDM1 0.1381 493 99 n3 ratio maximum 0.2652 418 

50 n5 interval euclidean 0.1382 500 100 n5 ratio maximum 0.2667 405 

nm – normalization method; seuclidean – squared Euclidean distance. 

Source: Authors’ compilation using mdsOpt package and R program. 
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In the conducted study the maximal acceptable value of pStress 1-  fit measure 

has been set to 0.15. Figure 2 presents the chart with pStress 1-  fit measure value 

on x-axis and pHHI  index on y-axis for p procedures of multidimensional 

scaling. 

Among acceptable multidimensional scaling procedures, for which 

15.01 pStress - , we chose the one for each occurs }{min p
p
HHI  has been 

chosen. It is the procedure 47: n12a normalization method (positional 

normalization), interval MDS model, Euclidean distance. 

 

 

Figure 2. The values of 
pStress 1-  fit measure and pHHI  index 

for p multidimensional scaling procedures 

Source: Authors’ compilation using mdsOpt package of R program. 

 

The results of multidimensional scaling (procedure 47) of 31 objects (29 

Lover Silesian counties, pattern and anti-pattern object) according to the level of 

tourist attractiveness are presented on Figure 3. 



534                                                           M. Walesiak, A. Dudek: Selecting the optimal… 

 

 

a) b) 

  

c) 

 

Figure 3. The results of multidimensional scaling (procedure 47) of 31 objects 

(29 Lover Silesian counties, pattern and anti-pattern) according to the 

level of tourist attractiveness ( ikd  – Configuration Distances, ik  – 

Dissimilarities) 

Source: Authors’ compilation using R program. 
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Figure 3c (Configuration plot with bubble) presents additional quota of each 
object in total error is shown by the size of radius of the circle around each object. 
Shepard diagram (Figure 3a) confirms the correctness of the chosen scaling model 
(Pearson correlation coefficient 0.9794r ). Figure 3c (Configuration plot with 
bubble) shows the axis of the set, which is the shortest connection between the 
pattern and anti-pattern of development. It indicates the level of development of 
the tourist attractiveness of counties. Objects that are closer to the pattern of 
development have higher levels of tourist attractiveness. The isoquants3 of 
development (curves of similar development) have been established from the 
point indicating pattern object. Figure 3c shows six isoquants. The same level of 
development may be achieved by objects from different locations on the same 
isoquant of development (due to different configuration of values of variables). 

As opposed to the best MDS procedure (47) we show the results for one of the 
worst procedures (4): n9a normalization method, interval MDS model, 
maximum (Chebyshev) distance. Overall Stress for procedure 4 (0.0408) is 
significantly better than for procedure 47 (0.1322). The results of 
multidimensional scaling for procedure 4 according to the level of tourist 
attractiveness are presented in Figure 4. 

Figure 4b (Stress Plot) indicates that objects Jeleniogórski, Anti-pattern and 
Zgorzelecki contribute most to the overall Stress (55.6%). It also shows (see 
Shepard diagram – in the lower left-hand corner) that two points (distance 
between Jeleniogórski county and Anti-pattern object; Jeleniogórski county and 
Zgorzelecki county) are outliers. These outliers contribute over-proportionally to 
the total Stress. MDS configuration (Figure 4c) does not represent all proximities 
equally well. Jeleniogórski county is one of the best of Lover Silesian counties in 
terms of the level of tourist attractiveness. In Figure 4c (Configuration plot with 
bubble) this county lies near Anti-pattern object (the worst object). The greater 
the value of the pHHI  index, the worse is the effect of multidimensional scaling 
in terms of representing real relationships between objects. 

5. Summary and limitations of presented proposal 

The article proposes a methodology that allows the selection of the optimum 
procedure due to the used methods of normalization, distance measures and 
scaling model of multidimensional scaling carried out on the basis of the metric 
data matrix. The study includes 18 methods of normalization, 5 distance measures 
and 3 models of scaling (ratio, interval and spline scaling). 

Own package mdsOpt of R program to choose the optimal procedure for 
multidimensional scaling due to the normalization methods of variable values, 
distance measures and scaling models has been developed. On the basis of the 
proposed methodology research results are illustrated by an empirical example 
with the use of the function smacofSym of smacof package in order to find the 

                                                           
3 Isoquants were illustrated using draw.circle function of plotrix package (Lemon et al., 

2017). 
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optimal procedure for multidimensional scaling of set of objects representing 29 
counties in Lower Silesia according to the level of tourist attractiveness. 

a) 

 

b) 

 
c) 

 

Figure 4. The results of multidimensional scaling (procedure 4) of 31 objects (29 

Lover Silesian counties, pattern and anti-pattern) according to the level 

of tourist attractiveness 

Source: Authors’ compilation using R program. 
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The proposed methodology uses two criteria for selecting the optimal 

procedure for multidimensional scaling: Stress-1 loss function and the value of 

the Hirschman-Herfindahl HHI index calculated on the basis of the decomposition 

Stress-1 error by objects. 

In step 5 the maximal acceptable value of fit measure sStress 1-  has been 

arbitrary assumed. The extent to which error distribution for each object may 

deviate from the uniform distribution is not determined. Among the procedures of 

multidimensional scaling for which sStress p 1- , the one for which 

}{min p
p
HHI  occurs is selected. This constraint does not essentially limit the 

presented proposal as the additional criteria for acceptability of the results of 

multidimensional scaling plots, such as “Shepard diagram” and “Residual plot”, 

make it possible to evaluate the fit quality of the chosen scaling model, and to 

identify outliers (De Leeuw, Mair, 2015). 
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SAMPLE ALLOCATION IN ESTIMATION OF
PROPORTION IN A FINITE POPULATION DIVIDED

AMONG TWO STRATA

Dominik Sieradzki1, Wojciech Zieliński2

ABSTRACT

The problem of estimating a proportion of objects with a particular attribute in
a finite population is considered. The classical estimator is compared with the
estimator, which uses the information that the population is divided among two
strata. Theoretical results are illustrated with a numerical example.
Key words: survey sampling, sample allocation, stratification, estimation, propor-
tion.

1. Introduction

Consider a population U = {u1,u2, . . . ,uN}which contains a finite number of N units.
In this population we can observe objects which have a given characteristic (pro-
perty), for example sex, defectiveness, support for a particular candidate in elec-
tions, etc. Let M denote an unknown number of units in the population with a given
property. We would like to estimate M, or equivalently, a proportion (fraction)
θ = M

N . A sample of size n is drawn using simple random sampling without repla-
cement scheme. In the sample the number of objects with a particular attribute is
observed. This number is a random variable. To be formal, let ξ be a random varia-
ble describing number of units having a certain attribute in the sample. The random
variable ξ has hypergeometric distribution (Zieliński 2010) and its statistical model
is

({0,1, . . . ,n} ,{H (N,θN,n) ,θ ∈ 〈0,1〉}) , (1)

with probability distribution function

Pθ ,N,n {ξ = x}=
(

θN
x

)(
(1−θ)N

n−x

)(N
n

) , (2)

1Department of Econometrics and Statistics, Warsaw University of Life Sciences.
E-mail: dominik_sieradzki@sggw.pl

2Department of Econometrics and Statistics, Warsaw University of Life Sciences.
E-mail: wojciech_zielinski@sggw.pl
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for integer x from interval 〈max{0,n− (1−θ)N},min{n,θN}〉. Unbiased estima-
tor with minimal variance of the parameter θ is θ̂c =

ξ

n (Bracha 1998). Variance of
that estimator equals

D2
θ θ̂c =

1
n2 D2

θ ξ =
θ(1−θ)

n
N−n
N−1

for all θ . (3)

It is easy to calculate that variance D2
θ

θ̂c takes on its maximal value at θ = 1
2 .

2. Stratified estimator

Let contribution of the first strata be w1, i.e. w1 = N1/N. Hence, the overall propor-
tion θ equals

θ = w1θ1 +w2θ2, (4)

where w2 = 1−w1. It seems intuitively obvious to take as our estimate of θ ,

θ̂w = w1
ξ1

n1
+w2

ξ2

n2
, (5)

where n1 and n2 denote sample sizes from the first and the second strata, respec-
tively. Now, we have two random variables describing the number of units with
a particular attribute in samples drawn from each strata:

ξ1 ∼ H (N1,θ1N1,n1) , ξ2 ∼ H (N2,θ2N2,n2) . (6)

The whole sample size equals n = n1 +n2. The question now arises: how shall we
choose n1 and n2 to obtain the best estimate of θ? This problem concerns sample
allocation between strata. One of known approaches to this problem is proportional
allocation (Armitage 1943, Cochran 1977). Sample sizes n1 and n2 are proportional
to w1 and w2,

n1 = w1n and n2 = w2n. (7)

The second approach to sample allocation is Neyman Allocation (Neyman 1934).
This method gives values of n1 and n2, which minimize the variance of estimator
θ̂w for given θ1 and θ2. The values of n1 and n2 are as follows

ni =
wi
√

θi(1−θi)

∑i wi
√

θi(1−θi)
n, i = 1,2. (8)

Neyman Allocation requires knowledge of the parameters θ1 and θ2. Those magni-
tudes would be known exactly when the population were subjected to exhaustive
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sampling. Usually values θ1 and θ2 are estimated from a preliminary sample. In
some cases fairly good estimates of θ1 and θ2 are available from past experience
(Armitage 1943).

Since our aim is to estimate θ , hence the parameter θ1 will be considered as
a nuisance one. This parameter will be eliminated by appropriate averaging. Note
that for a given θ ∈ [0,1], parameter θ1 is a fraction M1/N1 (it is treated as the
number, not as the random variable) from the set

A =

{
aθ ,aθ +

1
N1

,aθ +
2

N1
, . . . ,bθ

}
, (9)

where

aθ = max
{

0,
θ −w2

w1

}
and bθ = min

{
1,

θ

w1

}
(10)

and let Lθ be cardinality of A .
Theorem. Estimator θ̂w is an unbiased estimator of θ .
Proof. Note that for a given θ there are Lθ values of θ1 and θ2 giving θ . Hence,
averaging with respect to θ1 is made assuming the uniform distribution of θ1 on the
set {aθ , . . . ,bθ}. We have

Eθ θ̂w = Eθ

(
w1

ξ1

n1
+w2

ξ2

n2

)
=

1
Lθ

∑
θ1∈A

(
w1

n1
Eθ1ξ1 +

w2

n2
E θ−w1θ1

w2

ξ2

)

=
1

Lθ
∑

θ1∈A

(
w1

n1

θ1N1n1

N1
+

w2

n2

θ−w1θ1
w2

N2n2

N2

)
= θ

(11)

for all θ .
Averaged variance of estimator θ̂w equals:

D2
θ θ̂w = D2

θ

(
w1

ξ1

n1
+w2

ξ2

n2

)
=

=
1

Lθ
∑

θ1∈A

((
w1

n1

)2

D2
θ1

ξ1 +

(
w2

n2

)2

D2
θ−w1θ1

w2

ξ2

)
=

=
1

Lθ
∑

θ1∈A

[
w2

1
n1

θ1(1−θ1)
N1−n1

N1−1
+

w2
2

n2

θ −w1θ1

w2

(
1− θ −w1θ1

w2

)
N2−n2

N2−1

]
.

(12)

Let f = n1
n denote the contribution of the first strata in the sample. For 0 < θ < w1
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variance of θ̂w equals
(

aθ = 0 and bθ = θ

w1

)
:

h( f )
−6(N1−1)(N2−1)N f (1− f )n

θ

+
(N2−1)N1− (N(n+1)−2(N1 +n)) f +(N−2)n f 2

3(N1−1)(N2−1) f (1− f )n
θ

2,

(13)

where

h( f ) = N1(N2−3N1(N2−1)−1)

+
(
3N2

1 (N2−1)+3N2
2 +2n+N1

(
6N2n−3N2

2 −4n+1
)
−N2(4n+1)

)
f

+2(N1(2−3N2)+2N2−1)n f 2

(14)

For w1 ≤ θ ≤ 1−w1 variance of θ̂w equals (aθ = 0 and bθ = 1):

(N2− (1− f )n)
(N2−1)(1− f )n

θ(1−θ)+

−
N1
(
2(N +1) f 2 +(3NN2 +N2−N1−2n(N +1)) f −N1(N2−1)

)
6N2(N2−1)n f (1− f )

(15)

To obtain explicit formula for variance of θ̂w for 1−w1 < θ < 1 it is sufficient to
replace θ by 1− θ in (13). Observe that variance D2

θ
θ̂w depends on size n of the

sample, size N of the population, contribution w1 of the first strata in population and
contribution f of the first strata in the sample. In Figure 1 variances of θ̂w and θ̂c are
drawn against θ , for N = 100000, n = 100, w1 = 0.4 and f = 0.3.

Source: Own calculations.
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It is easy to note that D2
θ

θ̂w = D2
1−θ

θ̂w and D2
0θ̂w = 0.

Maximum of variance D2
θ

θ̂w determines for which value of unknown parameter
θ estimation of θ is the worst one. After the analysis of variance of θ̂w, it is seen
that the maximal variance may be in the one of the intervals: (0,w1), (w1,1−w1) or
(1−w1,1). It depends on the values of w1 and f . In Figures 2, 3, 4 and 5 variance
of θ̂w as well as variance of θ̂c is drawn for N = 100000, n = 100, w1 = 0.4 and
f = 0.2,0.4,0.6,0.9.

Source: Own calculations.

The point at which D2
θ

θ̂w takes on the maximal value may be located in interval
(0,w1) or in interval (w1,1−w1). Hence, to find the global maximum due to θ , we
have to find local maximum in both intervals. Denote by θ ∗ a local maximum point
in interval (0,w1) (local maximum point in interval (1−w1,1) is 1− θ ∗). In an
interval (w1,1−w1) local maximum is achieved at θ = 1/2. Let θ̃ denote a global
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maximum point, i. e. θ̃ = 1/2 or θ̃ = θ ∗, hence

max
θ∈〈0,1〉

D2
θ θ̂w = max

{
D2

0.5θ̂w,D2
θ ∗ θ̂w

}
. (16)

Regardless of which point is the global maximum point (1/2 or θ ∗), the maximum
of the variance D2

θ
θ̂w depends on size n of the sample, size N of the population,

contribution w1 of the first strata in the population and the contribution f of the first
strata in the sample. Values N,n,w1 are treated as given. It may be seen that for
given w1, variance D2

θ
θ̂w may be smaller as well as greater than D2

θ
θ̂c. We would

like to find optimal f , which minimizes maximal variance D2
θ̃

θ̂w.

3. Results

A general formula for the optimal f is unobtainable, because of complexity of sym-
bolic computation. But for given N, w1 and n numerical solution is easy to obtain.
Table 1 shows some numerical results for N = 100000 and n = 100.

Table 1. Maximal variances D2
θ̃

θ̂w

w1 f opt nopt
1 D2

θ̃
θ̂w D2

0.5θ̂c

(
1−

D2
θ̃

θ̂w

D2
0.5θ̂c

)
·100%

0.05 0.018 2 0.0004645 0.0025 81%
0.10 0.041 4 0.0008404 0.0025 66%
0.15 0.071 7 0.0011328 0.0025 55%
0.20 0.111 11 0.0013493 0.0025 46%
0.25 0.166 17 0.0015004 0.0025 40%
0.30 0.250 25 0.0015984 0.0025 36%
0.35 0.350 35 0.0017045 0.0025 32%
0.40 0.400 40 0.0017982 0.0025 28%
0.45 0.450 45 0.0018544 0.0025 26%
0.50 0.500 50 0.0018731 0.0025 25%

Source: Own calculations.

In the first column of Table 1. the values of w1 are given. In the second column,
optimal contribution of the first strata in the sample is shown. It is a value f , which
gives minimum of D2

θ̃
θ̂w. Column nopt

1 shows optimal sample size from the first
strata (called averaged sample allocation). The values of minimal (maximal) va-
riances D2

θ̃
θ̂w are given in the fourth column. The next column contains maximal

variance D2
0.5θ̂c. The last column shows how much estimator θ̂w is better than θ̂c.
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4. Summary

In the paper a new approach to the sample allocation between strata was proposed.
Two estimators of an unknown fraction θ in the finite population were considered:
standard estimator θ̂c and stratified estimator θ̂w. It was shown that both estimators
are unbiased. Their variances were compared. It appears that for a given sample
size there exists its optimal allocation between strata, i.e. the allocation for which
variance of θ̂w is smaller than variance of θ̂c. Since a theoretical comparison seems
to be impossible, hence a numerical example was presented. In that example it was
shown that variance of the stratified estimator may be smaller at least 25% with
respect to variance of the classical estimator. For such an approach there is no need
to estimate unknown θ1 and θ2 by preliminary sample. It will be interesting to
generalize the above results to the case of more than two “subpopulations". Work
on the subject is in progress.
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REMARKS ON THE ESTIMATION  

OF POSITION PARAMETERS 

Czesław Domański1 

ABSTRACT 

The article contains some theoretical remarks about selected models of position 

parameters estimation as well as numerical examples of the problem. We ask a 

question concerning the existence of possible measures of the quality of interval 

estimation and we  mention some popular measures applied to the task. Point 

estimation is insufficient in practical problems and it is  rather interval estimation 

that is in wide use. Too wide interval suggests that the information available is 

not sufficient to make a decision and that we  should look for more information, 

perhaps by increasing the sample size. 

Key words: estimation, the positional parameters, statistical models 

1. Introduction 

When it is impossible  to state what the level of accuracy of estimation of 

random variable parameter is, the question arises whether there are any methods 

which help to determine the distance between the estimator assessment and the 

real value of parameter. The answer to this question is provided by J. Neyman – 

the author of the interval estimation (1937). Sometimes the interval we obtain is 

too wide. Too wide intervals allow us to draw a conclusion that the available 

information is not sufficient to take a decision, and therefore we need to search 

for more information, either by widening the scope of research or by running 

another series of experiments. 

The interval estimation includes almost all types of statistical analyses. In 

public opinion polls, for instance, when we state that 58% of citizens of the 

Republic of Poland trust the president  usually a footnote should be added stating 

that the poll is biased with „an error of plus or minus 3%”. This means that 58% 

of the interviewees trust the president. As the research was based on a 

representative sample, the parameter sought is the percentage of all people who 

think in this way. Due to a small sample size a reasonable “guess” is that the 
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parameter can encompass the interval 55% (54% minus 3%) to 61% (57% 

plus 3%). 

How should the results of the interval estimation be interpreted? Can 

probability assumptions be made on the basis of interval estimation? How certain 

is the researcher that the parameter searched for will be included in a given 

interval?  

Neyman (1935) proposed an accessible way of constructing interval 

estimation, defining  how accurate the estimation is and calling the new procedure  

„confidence intervals”, and the ends of confidence intervals – „confidence limits”. 

Neyman (1937) went back to the frequency definition of a real probability.  

In his later works he  provided a more detailed explanation of confidence intervals 

stating that they should be perceived  not as an individual conclusion but rather as 

a process. In the long term the statistician who always calculates 95% confidence 

intervals will see that in 95% of cases the real value of parameter  can be found in 

the determined intervals. It is worth mentioning that Neyman was right saying 

that the probability connected with confidence interval was not a probability. 

It rather represents the frequency of correct conclusions drawn by a statistician 

using this method over a longer period of time but says nothing about the 

„accuracy” of the current estimation. 

Majority of researchers find 90% or  95% confidence limits and continue as if 

they were certain that the interval encompassed the real value of parameter. 

2. Statistical models 

Every statistical analysis of a certain real phenomenon must be based on 

a mathematical model (i.e. a model expressed in the form of mathematical 

dependencies where the way of obtaining information was taken into account).  

The researcher should aim at a situation where the applied model is a modest 

description  of nature. This means that the functional form of the model should be 

simple and the number of its parameters and elements as small as possible.   

As we know there are no perfect models which perfectly copy the behaviour 

of the modelled object. Each new observation and an analysis of the discrepancy 

between the mathematical model and the real object leads to new, more accurate 

mathematical models. The main reasons for the discrepancy between the model 

and the modelled phenomenon are as follows (Domański et al. (2014)): 

1) the present state of knowledge on the examined phenomenon; 

2) high level of dependence of the modelled phenomenon, which prevents the 

application of the mathematical model encompassing all qualities of the 

object; 

3) variety and changeability of the object’s environment where  modelling of 

the  real reasons for the object’s  condition  becomes impossible; 

4) costs related to the model’s application can become a barrier to the model’s 

complexity. It may occur that a simpler model despite being less accurate  
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turns out to be better, as the profits connected with giving up complicated 

measurement often exceed the losses resulting from using a less accurate 

model. 

The starting point for our discussions is always a certain random element X  

(random variable, finite or non-finite series of random variables). Most frequently 

it will be called an experiment result, a measurement result, an observation result 

or, simply an observation. The set of all values of the random element X  will be 

denoted by   and called space   of the sample. Space   will be a finite or a 

countable set, or a certain area in a finite dimensional space nR . 

Let   be a set of elementary events  and let   be   - a body of subsets of 

the set  . An ordered triple  P,,  is called a probabilistic space, where P  

denotes probability.  

Let A  be a distinguished  -body of subsets of the set ,nRX   and X a 

measured transformation    .,, A  Distribution     AXPAPX 1  is a 

measure on space  ., A  In statistical problems it is assumed that distribution P  

belongs to a certain defined class of distributions P  on  A, . Knowing the 

class and having the results of observation of the random variable X, we want to 

draw correct conclusions about an unknown distribution P. Thus, a mathematical 

basis for statistical research is a measured space  A,  and a family of 

distributions P . Probabilistic space  P,,  plays a subordinate role. The 

term: a probabilistic space  P,, is given, which means that a probabilistic 

model of a certain phenomenon or experiment is known  i.e. we know what are 

the possible results of the experiment, what events are distinguished and what 

probabilities are assigned to these events. To sum up, the  a priori knowledge of 

the subject of research is given in the form of certain probabilistic models. 

Probability may result from the very nature of the examined phenomenon or it can 

be introduced by a researcher. 

Let us note that    :PP  is a family of distributions of probability 

on a given  -body of random events in .  

The sample space together with a family of distributions P , i.e. the object: 

    :, P              (1) 

is called a statistical model (statistical space), while representations from  in  
kR  – statistics or  k -dimensional  statistics. 

If  TnXXX ...,,, 21X , while nXXX ....,,, 21  are independent random 

variables with a uniform distribution, we will also use a denotation: 

  nP   :,              (2) 
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where   is a set of values of the random variable X (and each of variables  

nXXX ...,,, 21 ) and P  is a distribution of the random variable. It is also 

accepted to use the following terms: nXXX ...,,, 21  is a sample from distribution  

P  or a sample from population  P  for a given  .  

 

3. Confidence intervals for expected value  

To estimate a certain unknown, real parameter  we get suitable observations  

𝑋1, … , 𝑋𝑛 of this value. Each observation 𝑋𝑗, 𝑗 = 1, … , 𝑛, was different from  by 

a certain random value  𝜀𝑗 (statistical observation error). If nothing is known 

about the nature of the error 𝜀, then consequently nothing can be said about the 

size of . However, if we can describe the random error 𝜀 in terms of the theory 

of probability, i.e. if we can say something about the distribution of the 

probability of  this random error, then we can in the same terms answer various 

questions about  parameter . Thus, the statistical inference becomes a result of 

the prior knowledge about the parameter and the knowledge obtained from the 

sample  𝑋1, … , 𝑋𝑛. 

Let a distribution of random error probability  be denoted by 𝐹; then the 

sample has a distribution 𝐹 so that 𝐹(𝑥) = 𝐹(𝑥 − ). 

Let us now, on the other hand, analyse four  general models of our 

observations  𝑋1, … , 𝑋𝑛. 

 Model 1: 𝐹 is a normal distribution 𝑁(0, 𝜎) with a known standard 

deviation 𝜎. 

 Model 2: 𝐹 is a normal distribution 𝑁(0, 𝜎) with an unknown standard 

deviation  𝜎. 

 Model 3: 𝐹 is a known distribution with a continuous and strictly ascending 

distribution function. 

 Model 4: 𝐹 is an unknown distribution with a continuous and strictly 

ascending distribution function. In this case it seems that „in actual fact we 

know nothing”, yet it turns out that knowing that the distribution function is 

continuous and strictly monotonous is sufficient to say something  more 

interesting  about the parameter  , especially when we combine this with data 

from observation 𝑋1, … , 𝑋𝑛. 

In the first model the estimation of parameter  𝜇 by a mean value from 

observation  

                         �̅�𝑛 =
1

𝑛
∑ 𝑋𝑗

𝑛
𝑗=1                                                   (3) 

It is assumed that 𝑋 has a distribution 𝑁(𝜇, 𝜎), then the mean  �̅�𝑛 is a random 

variable with a normal distribution 𝑁(𝜇, 𝜎/√𝑛), in other words  √𝑛(�̅�𝑛 − 𝜇)/𝜎 is 
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a random variable with a normal distribution 𝑁(0,1) and for an arbitrarily 

selected  𝛾 ∈ (0,1) we get  

                   𝑃𝜇{|√𝑛(�̅�𝑛 − 𝜇)/𝜎| ≤ 𝑢(1+𝛾)/2} = 𝛾                              (4) 

where  𝑢𝛼 is a quantile of  an order  𝛼 of a normal distribution  𝑁(0,1). 

This can be denoted in the form 

𝑃𝜇 {�̅�𝑛 − 𝑢(1+𝛾)/2
𝜎

√𝑛
≤ 𝜇 ≤ �̅�𝑛 + 𝑢(1+𝛾)/2

𝜎

√𝑛
} = 𝛾                   (5) 

and interpreted in the following way: with a selected probability 𝛾, a random 

interval 

(�̅�𝑛 − 𝑢(1+𝛾)/2
𝜎

√𝑛
, �̅�𝑛 + 𝑢(1+𝛾)/2

𝜎

√𝑛
 )                                  (6) 

includes the unknown, estimated value of parameter 𝜇. 
In the second model the estimation of parameter 𝜇  is based on the t Student 

distribution. In the case under consideration we deal with a random variable 

 

�̅�𝑛−𝜇

𝜎
√𝑛

√𝑛𝑆2

𝜎2 /(𝑛−1)

=
�̅�𝑛−𝜇

𝑆
√𝑛 − 1                                           (7) 

with the t Student distribution and with (𝑛 − 1) degrees of freedom. 

The possibility of inference on parameter 𝜇 changes, because the random 

variable 
�̅�𝑛−𝜇

𝑆
√𝑛 − 1 with the t Student distribution is more dispersed around 

zero than the random variable √𝑛(�̅�𝑛 − 𝜇)/𝜎 with the normal distribution.  

Then, for the estimated parameter 𝜇 we get a confidence interval at a given 

level of confidence  𝛾 of the form : 

(�̅�𝑛 − 𝑡𝑛−1 (
1+𝛾

2
)

𝑆

√𝑛−1
, �̅�𝑛 + 𝑡𝑛−1 (

1+𝛾

2
)

𝑆

√𝑛−1
)                        (8) 

where 𝑡𝑛−1(𝛼) is a quantile of order   𝛼 of the  t Student distribution  with  𝑛 − 1 

degrees of freedom. 

When the standard deviation  𝜎 was known like in the first model, the length 

of the confidence interval (2d) at the confidence level 𝛾 could be expressed with 

the formula 2 𝑢(1+𝛾)/2
𝜎

√𝑛
 and on this basis the required accuracy of the estimation 

of parameter 𝜇 could be obtained. If the unknown standard deviation 𝜎 is replaced 

with its estimation 𝑆,  then the length of interval calculated in this way will be 

random. The problem consists in selecting 𝑛, in such a way that  the random 

variable never exceeds the pre-assigned number 2d. There are various methods of 

solving this problem. The simplest and the most transparent method is the so-

called two-stage Stein procedure (1956). 

In the third model it is the  median 𝑀𝑛which is the third estimated position 

parameter. Median 𝜇 of the distribution of observations will be estimated with the 
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use of median 𝑀𝑛 from a sample 𝑋1, … , 𝑋𝑛. According to a generally accepted 

agreement the median 𝑀𝑛 from a sample is expressed by the following formula: 

    𝑀𝑛 = {

1

2
(Xn

2
:n + Xn

2
+1:n) , for even n,

Xn+1

2
:n

, for uneven  n .
                               (9) 

Let us now analyse the problem of the biasedness of estimator 𝑀𝑛. The basic 

definition where estimator 𝑇 is called the unbiased parameter 𝜃 if  𝐸𝜃𝑇 = 𝜃 for 

every 𝜃, cannot be applied here due to the fact that the median 𝑀𝑛 cannot have 

the expected value. We can introduce the notion of  median unbiasedness. We say 

that estimator 𝑇 is the  median-unbiased estimator of parameter 𝜃 if for every 𝜃 its 

median is 𝑀𝑒𝑑𝜃𝑇 = 𝜃. In other words, 𝑇 is the median-unbiased estimator of 

parameter 𝜃 if  

                    𝑃𝜃{𝑇 ≤ 𝜃} = 𝑃𝜃{𝑇 ≥ 𝜃} =
1

2
 , for every  𝜃                      (10) 

under the assumption that, similarly to the distribution of observation  𝑋, also the 

distribution of estimator  𝑇 has a continuous and strictly  ascending distribution 

function, that is an unambiguous median. 

If the sample 𝑋1, … , 𝑋𝑛 has an uneven number of elements 𝑛, then the median 

𝑀𝑛 from the sample is a median-unbiased estimator of median 𝜇 of distribution  

𝐹𝜇 of observation 𝑋. It can be noticed  that the distribution function of the k-th 

position statistics 𝑋𝑘,𝑛, when the sample comes from a distribution with the 

distribution function 𝐹 takes the following form: 

      𝐹𝑘,𝑛(𝑥) = ∑ (
𝑛
𝑗 )𝑛

𝑗=𝑘 𝐹𝑗(𝑥)(1 − 𝐹(𝑥))
𝑛−𝑗

                            (11) 

Let us recall here the formula combining  binominal distribution with beta 

distribution: 

∑ (
𝑛
𝑗 )𝑛

𝑗=1 𝑥𝑗(1 − 𝑥)𝑛−𝑗 = 𝐵(𝑥; 𝑘, 𝑛 − 𝑘 + 1)                        (12) 

Following from (11) and (12) the distribution function of median  𝑀𝑛 is given 

by the formula: 

𝑃𝜇{𝑀𝑛 ≤ 𝑥} = 𝐵 (𝐹(𝑥 − 𝜇);
𝑛+1

2
,

𝑛+1

2
),                                     (13) 

therefore  

        𝑃𝜇{𝑀𝑛 ≤ 𝑥} = 𝐵 (𝐹(0);
𝑛+1

2
,

𝑛+1

2
) = 𝐵 (

1

2
;

𝑛+1

2
,

𝑛+1

2
) =

1

2
               (14) 

In the case of the sample 𝑋1, … , 𝑋𝑛 with the even number of elements the 

median 𝑀𝑛, which was defined by formula (9), is not the median-unbiased  

estimator of the median 𝜇 and for some distributions 𝐹𝜇 of observations 𝑋 the 

difference between the median of estimator  𝑀𝑛 and the median   𝜇 can be very 

significant. 
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Our considerations are now limited to the case of uneven number of 

observations 𝑛 in a sample. For the case like this the distribution of the median 

from a sample is given by the formula (13). 

Now, let 𝑥𝛾(𝑀𝑛) be the quantile of the order 𝛾 of estimator 𝑀𝑛, i.e. such a 

number that  

                         𝑃𝜇{𝑀𝑛 ≤ 𝑥𝛾(𝑀𝑛)} = 𝛾                                     (15) 

On the basis of (13) we get:  

𝑥𝛾(𝑀𝑛) = 𝜇 + 𝐹−1 (𝐵−1 (𝛾;
𝑛+1

2
,

𝑛+1

2
))                         (16) 

and hence the unilateral confidence interval on the confidence level  𝛾 takes the 

form: 

(𝑀𝑛 − 𝐹−1 (𝐵−1 (𝛾;
𝑛+1

2
,

𝑛+1

2
)) , +∞).                         (17) 

Similarly, taking as a basis the relation  

𝑃𝜇 {|𝑀𝑛| ≤ 𝑥1+𝛾

2

(𝑀𝑛)} = 𝛾,                                     (18) 

we get a bilateral confidence interval at the confidence level 𝛾:  

        (𝑀𝑛 − 𝐹−1 (𝐵−1 (
1+𝛾

2
;

𝑛+1

2
,

𝑛+1

2
)) , 𝑀𝑛 + 𝐹−1 (𝐵−1 (

1+𝛾

2
;

𝑛+1

2
,

𝑛+1

2
)))    

       (19) 

where 𝐹 is a normal distribution  𝑁(0, 𝜎). 

In the fourth model the confidence interval for median is presented. First, we  

consider constructing the confidence interval for a quantile 𝑥𝑞 = 𝐹−1(𝑞) of an 

arbitrary order 𝑞 ∈ (0,1), then the confidence interval for the median is a special 

case for 𝑞 =
1

2
. 

As we analyse the unilateral interval of the form (𝑋𝑖:𝑛, +∞) with an assumed 

level of confidence 𝛾, we should choose index  𝑖 ∈ {1,2, … , 𝑛} so that 𝑃𝐹{𝑋𝑖:𝑛 ≤

𝑥𝑞} ≥ 𝛾 for every  𝐹 ∈ ℱ. As  𝑋𝑖:𝑛 < 𝑋𝑗:𝑛, when  𝑖 < 𝑗, it is reasonable to choose 

the biggest number 𝑖 = 𝑖(𝑛. 𝛾) which satisfies the given condition. Making use of  

the distribution of the 𝑖 −th position statistics  from a sample  𝑋1, … , 𝑋𝑛, of the 

form  (11), we get: 

𝑃𝐹{𝑋𝑖:𝑛 ≤ 𝑥𝑞} = 𝑃𝐹{𝑋𝑖:𝑛 ≤ 𝐹−1(𝑞)}

= ∑ (
𝑛
𝑗 ) (𝐹(𝐹−1(𝑞)))

𝑗
𝑛

𝑗=𝑖

(1 − 𝐹(𝐹−1(𝑞)))
𝑛−𝑗

 

                                 = ∑ (
𝑛
𝑗 ) 𝑞𝑗(1 − 𝑞)𝑛−𝑗𝑛

𝑖 .                                              (20) 
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The solution is the biggest  𝑖 = 𝑖(𝑛, 𝑞)  so that  

                          ∑ (
𝑛
𝑗 ) 𝑞𝑗(1 − 𝑞)𝑛−𝑗 ≥ 𝛾𝑛

𝑗=𝑖(𝑛,𝛾)                                 (21) 

The confidence interval at the level 𝛾 for the quantile of the order  𝑞 ∈ (0,1) 

only exists when  

∑ (
𝑛
𝑗 ) 𝑞𝑗(1 − 𝑞)𝑛−𝑗 ≥ 𝛾𝑛

𝑗=𝑖                                         (22) 

i.e. when  (1 − 𝑞)𝑛 ≤ 1 − 𝛾. 

As a conclusion we get the unilateral confidence interval for median 

(𝑋𝑖:𝑛, +∞), where  𝑖 = 𝑖 (𝑛,
1

2
) ∈ {1, … , 𝑛} is the biggest number such that  

                     2−𝑛 ∑ (
𝑛
𝑠

)𝑛
𝑠=𝑖(𝑛,𝛾) ≥ 𝛾                                              (23) 

Due to the discreteness of the distribution the actual confidence interval  

𝛾∗ = 2−𝑛 ∑ (
𝑛
𝑗 )𝑛

𝑗=𝑖(𝑛,𝛾)                                              (24) 

can obviously be bigger  than the assumed 𝛾. 

The bilateral confidence interval  (𝑋𝑖:𝑛, 𝑋𝑗:𝑛) takes the form: 

𝑃𝐹{𝑋𝑖:𝑛 ≤ 𝐹−1(𝑞) ≤ 𝑋𝑗:𝑛} = 𝑃𝐹{𝑋𝑖:𝑛 ≤ 𝐹−1(𝑞)} − 𝑃𝐹{𝑋𝑗:𝑛 > 𝐹−1(𝑞)} 

= ∑ (
𝑛
𝑠

)
𝑗−1
𝑠=1 𝑞𝑠(1 − 𝑞)𝑛−𝑠                                       (25) 

and the problem of selection of indexes  (𝑖, 𝑗) arises, so  that  

∑ (
𝑛
𝑠

)
𝑗−1
𝑠=𝑖 𝑞𝑠(1 − 𝑞)𝑛−𝑠 ≥ 𝛾. 

An attempt of solving this problem was presented in the work of  Zieliński 

(2011). In our research we assume that: 

𝑃{𝑋𝑖:𝑛 ≤ 𝐹−1(𝑞) ≤ 𝑋𝑗:𝑛} = (
1

2
)

𝑛
∑ (

𝑛
𝑠

) ≈ 𝛾
𝑗=1
𝑠=1 . 

Applications of other estimators are given in the monograph of Lehmann 

(1991). 

4. Assessment of accuracy of position parameters estimation 

Let us now follow the obtained results  and assess the accuracy of statistical 

inference in the four models under consideration. The accuracy of inference will 

be assessed with the use of the width of confidence interval for . Obviously, it 

depends on the distribution 𝐹 of error and on the size  𝑛 of the sample 𝑋1, … , 𝑋𝑛. 

Confidence intervals of models (1) and (3) have a deterministic length 

depending only on 𝑛. Half of their length is denoted by 𝐷 (1) and 𝐷 (3), 
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respectively. Intervals (2) and (4) have a random length so for further 

consideration the expected values of their lengths will be taken and  denoted by 𝐷 

(2) and  𝐷 (4), respectively. Then, we get: 

𝐷(2) = 𝑡𝑛−1 (
1 + 𝛾

2
)

𝐸(𝑆)

√𝑛 − 1
 

𝐸(𝑆) = √
2

𝜋

Γ(
𝑛

2
)

Γ(
𝑛−1

2
)
. 

For 𝐷(4) we get: 

𝐷(4) =
1

2
(𝐸𝑁(0,1)𝑋𝑗:𝑛 − 𝐸𝑁(0,1)𝑋𝑖:𝑛), 

where by 𝐸𝑁(0,1)𝑋𝑗:𝑛 we denoted the expected value of the j-th position statistics 

from the sample 𝑋1, … , 𝑋𝑛, when the sample comes from the standard normal 

distribution  𝑁(0,1). 

Table 1. Assessment of accuracy of position parameters estimation 

n   D(1) D(2) D(3) D(4) 

15 

0.90 0.424699 0.462405 0.524439 0.515701 

0.95 0.506061 0.563081 0.625379 0.714877 

0.99 0.665076 0.781524 0.823391 0.947689 

25 

0.90 0.328971 0.345613 0.408676 0.408597 

0.95 0.391993 0.416926 0.487204 0.463971 

0.99 0.515166 0.565007 0.641052 0.700479 

30 

0.90 0.300308 0.312812 0.373624 0.382351 

0.95 0.357839 0.376531 0.445383 0.473288 

0.99 0.470280 0.507456 0.585921 0.672498 

50 

0.90 0.232617 0.238289 0.290265 0.304216 

0.95 0.277180 0.285621 0.345961 0.356962 

0.99 0.364277 0.380902 0.454954 0.494328 

100 

0.90 0.164485 0.166455 0.205701 0.214301 

0.95 0.195996 0.198918 0.245140 0.252810 

0.99 0.257583 0.263298 0.322272 0.331143 

Source: own calculations 

The numbers included in Table 1 clearly show a great significance of both the 

choice  of the statistical model and the statistics, that is the estimator of a suitable 

position parameter (expected value, median or an arbitrary quantile). The statistics 

serves as a basis for statistical inference on values which are of interest to the 

researcher. What is particularly striking are the differences in assessment of 

accuracy of position parameters for sample sizes  𝑛 ≤ 30. 
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5. Final remarks 

In any statistical research we have a set statistical observations and some 

incomplete information about the distribution of these observations. 

It is necessary to analyze the questions which we expect to answer by 

applying a suitable statistical procedure and the initial assumptions that have to be 

made so that our answers would be justified. A procedure dependent on some 

prior assumptions impossible to be verified by the observations collected or 

logically derived cannot be applied here. Statistical methods, therefore, should be 

treated not as a tool for a given detailed model but rather as an assisting tool to 

interpret data for different models. 

This article presents certain problems connected with the choice of the 

procedure appropriate for the assumed statistical model along with the verification 

of its assumptions on the one hand, and the assessment of the data set and their 

distribution on the other. It is very important to analyze the behaviour of  

statistical procedures in very varied conditions. 
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