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STATISTICS IN TRANSITION new series, December 2017 

Vol. 18, No. 4, pp. 563−566 

FROM THE EDITOR   

With this issue we conclude the year 2017, during which Statistics in 
Transition new series published 37 articles written by 73 authors from 7 countries. 
Relatively most frequently – fourteen articles – were devoted to the sampling 
methods and estimation, or were classified as research papers. There were also 
substantial number of 61 reviewers involved in the process of evaluation of, and 
decision-making on publishing each of these articles. We highly appreciate this 
collaboration and support since the reviewer's generosity in knowledge sharing 
makes it possible to qualify papers for publication and contributes to the overall 
quality of the journal. The acknowledgement of this honorary service is attached 
to this note.  

The Statistics in Transition new series continues to expand also in terms of its 
visibility and recognition. In addition to such prestigious indexation bases as 
Scopus, RepEc, Index Copernicus, Central and Eastern European Online Library 
(CEEOL), Central European Journal of Social Sciences and Humanities (CEJSH), 
EconPapers, ERIH Plus, Google Scholar, InfoBase Index, IC Journals Master List 
and BazEkon, which have already included  SiTns  into their systems, several new 
started recently to monitor our publications during the last year. These are: 
BASE/Bielefeld Academic Search Engine, Current Index to Statistics (CIS), 
JournalGuide, JournalTOCs, Keepers Registry, MIAR, OpenAIRE, ProQuest-
Summon and WorldCat. We hope to progress along this line also during the year 
2018. One of the technical facilitation which will serve to this aim is an 
improvement in placing the journal's icon on the portal of the Central Statistical 
Office (www.stat.gov.pl) – it will appear directly in it as the SiTns window, with 
no need to further digging to search for it. 

Out of nine articles published in this issue, four are concerned with topics 
related to the sampling and estimation; two are the so-called research papers; the 
next two are of research communicates, and one is a post-conference paper.  

Paper by Kumari Priyanka and Richa Mittal, New approaches using 
exponential type estimator with cost modelling for population mean on 
successive waves treats on sampling over successive waves taking into account 
the fact that the ancillary information may also be subjected to the time lag 
(between two successive waves). For this, the authors propose new approaches to 
estimate population mean (over two successive waves) using four exponential 
ratio type estimators. The properties of the proposed estimators have been 
elaborated theoretically, including the optimum rotation rate and cost models to 
minimize the total cost of the survey design over two successive waves. The 
prevalence of using the proposed estimators over well-known existing estimators 
has been shown, and simulation techniques allowed corroborating the theoretical 
results. 
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In the next paper, Bayesian estimation of measles vaccination coverage 

under ranked set sampling Radhakanta Das, Vivek Verma, Dilip C. Nath 

discuss the problem of estimating an unknown population proportion p (of a 

certain population characteristic in a dichotomous population) using the data 

collected through ranked set sampling (RSS) strategy. Assuming that the 

proportion p is a random quantity (not fixed) and that the prior density of p 

belongs to the family of Beta distributions, the authors propose a Bayes estimator 

of p under squared error loss function. The performance of the proposed RSS-

based Bayes estimator is compared with that of the corresponding classical 

version estimator based on maximum likelihood principle. The proposed 

procedure is used to estimate measles vaccination coverage probability among the 

children of age group 12-23 months in India using the real-life epidemiological 

data from National Family Health Survey-III. 

Marcin Szymkowiak, Andrzej Młodak, Łukasz Wawrowski in the paper 

on Mapping poverty at the level of subregions in Poland using indirect 

estimation present the results of estimation of the poverty indicator at the level of 

subregions in Poland (NUTS 3), using the small area estimation methodology – 

specifically, the EBLUP estimator based on the Fay-Herriot model – applied to 

data from the European Survey on Income and Living Conditions (EU-SILC). By 

optimally choosing covariates derived from sources unaffected by random errors, 

the authors obtained results with satisfactory precision. However, they are aware 

of the fact that the efficiency of their approach needs to be verified accounting for 

specific characteristics of the social and economic situations in the areas of 

interest. 

In the paper A new estimator of mean using double sampling, Kalyan Rao 

Vadlamudi, Stephen A. Sedory, Sarjinder Singh consider the problem of 

estimation of population mean of a study variable by making use of first-phase 

sample mean and first-phase sample median of the auxiliary variable at the 

estimation stage. The proposed new estimator of the population mean is compared 

to the sample mean estimator, ratio estimator and the difference type estimator for 

the fixed cost of the survey by using the concept of two-phase sampling. The 

magnitude of the relative efficiency of the proposed new estimator has been 

investigated through simulation study.  

The research articles section starts with Devendra Kumar's and Mansoor 

Rashid Malik's paper Relations for moments of progressively Type-II right 

censored order statistics from Erlang-truncated exponential distribution, in 

which the authors establish some new recurrence relations for the single and 

product moments of progressively Type-II right censored order statistics from the 

Erlang-truncated exponential distribution. These relations generalize those 

established by Aggarwala and Balakrishnan for standard exponential distribution. 

These recurrence relations enable computation of mean, variance and covariance 

of all progressively Type-II right censored order statistics for all sample sizes in a 

simple and efficient manner. By using these relations, the authors tabulate the 
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means and variances of progressively Type-II right censored order statistics of the 

Erlang-truncated exponential distribution. 

Housila P. Singh, Swarangi M. Gorey in the paper A generalized 

randomized response model discuss properties of the suggested generalized 

version of the Gjestvang and Singh (2006) model. They show that the randomized 

response models due to Warner (1965), Mangat and Singh (1990), Mangat (1994) 

and Gjestvang and Singh (2006) are members of the proposed RR model. The 

conditions are obtained in which the suggested RR model is more efficient than 

several other models (Warner's model, Mangat's and Singh's model, and 

Gjestvang's and Singh's model). The results of the study are supported by a 

numerical illustration. 

The next section is opened by the paper by Małgorzata Kalbarczyk, Agata 

Miazga and Anna Nicińska, The inter-country comparison of the cost of 

children maintenance using housing expenditure devoted to a comparative 

study of the cost of maintenance of children between selected countries. 

Specifically, an analysis of the equivalence scales in Austria, Italy, Poland and 

France was conducted using data from the European Income and Living 

Condition (EU-SILC) for mono- and duo-parental households, for the first and 

second child. The four countries share common European cultural context, yet 

differ with respect to social environment, in particular to family policy. The 

results are consistent with other studies, which also showed that the cost of the 

first child is higher than that of a later child. The scale values are not the same 

across all the countries involved, with the highest cost observed in Italy and the 

lowest in Poland. 

Andrzej Szymański's and Agnieszka Rossa's paper Improvement of fuzzy 

mortality models by means of algebraic methods starts with an overview of  

models of forecasting of mortality, including their historical development, while 

distinguishing between the so-called static or stationary models and dynamic 

models. The authors propose a new class of fuzzy mortality models based on a 

fuzzy version of the Lee-Carter model, the essential idea of which is to focus on 

representing a membership function of a fuzzy number as an element of C*-

Banach algebra, combined with Ishikawa (1997) proposed foundations of the 

fuzzy measurement theory and termed C*-measurement. The authors use the 

Hilbert space of quaternion algebra as an introduction to the mortality models. 

This approach is still under further research. 

This issue concludes with an article based on a presentation at the 

Multivariate Statistical Analysis 2016 – Łódź. The paper by Alina Jędrzejczak 

and Jan Kubacki, Estimation of small area characteristics using multivariate 

Rao-Yu model discusses advantages of the EBLUP estimation based on 

multivariate Rao-Yu model, involving both autocorrelated random effects 

between areas and sampling errors. The authors demonstrate them next by 

providing the estimation of incomes and expenditures of Polish households using 

data from the Polish Household Budget Survey and administrative registers. The 
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calculations were performed using the packages for R-project environment. Direct 

estimates were performed using the WesVAR software, and the precision of the 

direct estimates was determined using a balanced repeated replication (BRR) 

method. However, the authors consider their analysis as requiring further 

comparisons between the Rao-Yu method and dynamic models, panel 

econometric models and nonlinear models. 

 

 

Włodzimierz Okrasa 

Editor  
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NEW APPROACHES USING EXPONENTIAL TYPE 

ESTIMATOR WITH COST MODELLING FOR 

POPULATION MEAN ON SUCCESSIVE WAVES  

Kumari Priyanka1, Richa Mittal2 

ABSTRACT  

The key and fundamental purpose of sampling over successive waves lies in the 

varying nature of study character, it so may happen with ancillary information if 

the time lag between two successive waves is sufficiently large. Keeping the 

varying nature of auxiliary information in consideration, modern approaches have 

been proposed to estimate population mean over two successive waves. Four 

exponential ratio type estimators have been designed. The properties of proposed 

estimators have been elaborated theoretically including the optimum rotation 

rate.Cost models have also been worked out to minimize the total cost of the 

survey design over two successive waves. Dominances of the proposed estimators 

have been shown over well-known existing estimators. Simulation algorithms 

have been designed and applied to corroborate the theoretical results. 

Key words: Successive sampling, Exponential type estimators, Dynamic 

ancillary information Population mean, Bias, Mean squared error, Optimum 

rotation rate. 

Mathematics Subject Classification: 62D05. 

1. Introduction 

Real life facts always carry varyingnatures which are time dependent. In such 

circumstances where facts change over a period of time, one time enquiry may not 

serve the purpose of investigation since statistics observed previously contain 

superannuated information which may not be good enough to be used after a long 

period of time. Therefore surveys are being designed sophistically to make sure 

no possible error gets a margin to escape at least in terms of design. For this 

longitudinal surveys are considered to be best since in longitudinal surveys, facts 

are investigated more than once i.e. over the successive waves, Also a frame is 

                                                           
1  Department of Mathematics, Shivaji College University of Delhi, India-110027. 

  E-mail: priyanka.ism@gmail.com. 
2  Department of Mathematics, Shivaji College University of Delhi, India-110027. 

  E-mail: sovereignricha@gmail.com. 

mailto:priyanka.ism@gmail.com
mailto:sovereignricha@gmail.com
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provided for reducing the cost of survey by a partial replacement of sample units 

in sampling over successive waves. 

Jessen (1942) is considered to be the pioneer for observing dynamics of facts 

over a long period of time through partial replacement of sample units over 

successive waves. The approach of sampling over successive waves has been 

made more fruitful by using twisted and novel ways to consider extra information 

along with the study character. Enhanced literature has been made availableby 

Patterson (1950), Narain (1953), Eckler (1955), Sen(1971, 1972, 1973), Gordon 

(1983), Singh et al. (1991), Arnab and Okafor (1992), Feng and Zou (1997), 

Biradar and Singh (2001), Singh and Singh (2001), Singh (2005), Singh and 

Priyanka (2006, 2007, 2008),Singh and Karna (2009), Singh and Prasad (2010), 

Singh et al. (2011),  Singh et al. (2013), Bandyopadhyay and Singh(2014), 

Priyanka and Mittal (2014), Priyanka et al. (2015), Priyanka and Mittal (2015a, 

2015b)etc.  

It has been theoretically established that, in general, the linear regression 

estimator is more efficient than the ratio estimator except when the regression line 

y on x passes through the neighbourhood of the origin; in this case the efficiencies 

of these estimators are almost equal. Also in many practical situations where the 

regression line does not pass through the neighbourhood of the origin, in such 

cases the ratio estimator does not perform as good as the linear regression 

estimator. Here exponential type estimators play a vital role in increasing the 

precision of the estimates.Motivated with this idea we are aspired to develop 

unexampled estimators for estimating population mean over two successive 

waves applying the concept of exponential type ratio estimators. In this line of 

work, an attempt has been made to consider the dynamic nature of ancillary 

information also because as the time passes by, not only the nature of study 

variable changes but the nature of ancillary information also varies with respect to 

time in many real life phenomenon where time lag is very large between two 

successive waves. 

For example, in a social survey one may desire to observe the number of 

females human trafficked from a particular region, the number of girls child birth 

may serve as ancillary information which is completely dynamic over a period of 

8-10 years of time span. Similarly in a medicinal survey one may be interested to 

record the number of survivors from a cancerous disease, here the number of 

successfully tested drugs for the disease may not sustain to be stable over a period 

of 10 or 20 years. Likewise, in an economic survey the government may like to 

record the labor force, the total number of graduates in country may serve as an 

ancillary character to the study character but it surely inherent dynamic nature 

over a period of 5 or 10 years. Also in a tourism related survey, one may seek to 

record the total income (profit) from tourism in a particular country or state. In 

this kind of survey, total number of tourists visiting to the concerned place may be 

considered as the auxiliary information as communications and transportations 

services have emerged drastically to enhance the commutation of people from one 

place to another. 
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So such situations cannot be tackled considering the ancillary character to be 

stable since doing so will affect the final findings of the survey. Keeping the 

drawback of such flaws in consideration, this work deals in bringing modern 

approaches for estimating population mean over two successive waves.Four 

estimators have been habituated with a fine amalgamation of completely known 

dynamic ancillary information with exponential ratio type estimators.Their 

properties including optimum rotation rate and a model for optimum total cost 

have been proposed and discussed. Also detailed empirical illustrations have been 

done by doing a comparison of proposed estimators with well-known existing 

estimators in the literature of successive sampling. Simulation algorithms have 

been devised to make the proposed estimators work in practical environment 

efficiently. 

2. Survey Design and Analysis 

2.1. Sample Structure and Notations 

Let  1 2 NU = U ,U , ... , U  be the finite population of N units, which has been 

sampled over two successive waves. It is assumed that size of the population 

remains unchanged but values of units change over two successive waves. The 

character under study be denoted by x (y) on the first (second) waves respectively. 

It is assumed that information on an ancillary variable  1 2z z  dynamic in nature 

over the successive waves with completely known population mean  1 2
Z Z  is 

readily available on both the successive waves and positively correlated to x and y 

respectively.Simple random sample (without replacement) of n units is taken at 

the first wave. A random subsample of m = nλ units is retained for use at the 

second wave. Now at the current wave a simple random sample (without 

replacement) of u= (n-m) = nµ units is drawn afresh from the remaining (N-n) 

units of the population so that the sample size on the second wave remains the 

same. Let μ and  λ μ + λ=1  are the fractions of fresh and matched samples 

respectively at the second (current) successive wave. The following notations are 

considered here after: 

1 2
X, Y, Z , Z : Population means of the variables x, y, 1z  and 2z  

respectively. 

       u u m m 1 2 n 1 2
y , z , x , y , z m , z m , x , z n , z n : Sample mean of respective 

variate based on the sample sizes shown in suffice. 

1 2 1 2 1 2yx xz xz yz yz z z
ρ , ρ , ρ , ρ , ρ , ρ : Correlation coefficient between the variables 

shown in suffices. 
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1 2

2 2 2 2

x y z z
S , S , S , S : Population mean squared of variables x, y, 1z  and 2z  

respectively. 

2.2 Design of the Proposed Estimators  i j i, j=1, 2Ť  

For estimating the population mean Y at the current wave, two sets of 

estimators have been proposed. The first set of estimators is based on sample of 

size u drawn afresh at current occasion and is given by 

   u 1u 2ut , t ,Ť
                                                                                   

(1) 

where  
 

2
1u u

2

Z
t = y

z u

 
  
                                                                                   

(2)

 

 
2 2

2u u

2 2

Z - z u
t = y  exp

Z + z u

 
  
                                                                   

(3) 

The second set of estimators is based on sample of size m common to both 

occasion and is  

 m 1m 2mt , t ,Ť
                                                                                  

(4) 

where 
 

 
2 2n

1m m

m 2 2

Z - z mx
t = y  exp 

x Z + z m

  
    

                                                           

(5) 

*
* n

2m m *

m

x
t = y

x

 
 
                                                                                           

(6) 

where 
 

 
* 2 2

m m

2 2

Z - z m
y = y  exp 

Z + z m

 
 
 

, 
 

 
* 1 1

m m

1 1

Z - z m
= x  exp 

Z + z m
x

 
 
 

   and 

 

 
* 1 1

n n

1 1

Z - z n
= x  exp 

Z + z n
x

 
 
 

. 

Hence, considering the convex combination of the two sets u m and Ť Ť , we 

have the final estimators of the population mean Y  on the current occasion as  

   i j ij iu ij jmt + 1- t ; i, j=1, 2 Ť
                                         

(7) 

where  iu jm u mt , t   Ť Ť  and i j are suitably chosen weights so as to 

minimize the mean squared error of the estimators  i j i, j=1, 2Ť . 
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2.3. Analysis of the estimators  i j i, j=1, 2Ť
 

2.3.1.  Bias and Mean Squared Errors of the Proposed Estimators  

  i j i, j=1, 2Ť  

The properties of the proposed estimators  i j i, j=1, 2Ť  are derived under the 

following large sample approximations 

           

           

u 0 m 1 m 2 n 3 2 2 4

2 2 5 1 1 6 1 1 7 i

y = Y 1 + e ,  y = Y 1 + e ,  x = X 1 + e , x = X 1 + e , z u = Z 1 + e ,

z m = Z 1 + e , z m =  Z 1 + e and z n = Z 1 + e such that |e | < 1  i = 0,...,7.

 

The estimators belonging to the sets  u m and i, j=1, 2Ť Ť  are ratio, 

exponential ratio, ratio to exponential ratio and chain type ratio to exponential 

ratio type in nature respectively. Hence they are biased for population mean Y . 

Therefore, the final estimators  i j i, j=1, 2Ť defined in equation (7) are also biased 

estimators of Y . The bias  B . and mean squared errors  M . of the proposed 

estimators  i j i, j=1, 2Ť are obtained up to first order of approximations and thus 

we have following theorems: 

Theorem 2.3.1. Bias of the estimators  i j i, j=1, 2Ť  to the first order of 

approximations are obtained as 

        i j i j iu i j jmB    B t  + 1 -  B t Ť ; (i, j=1,2),            (8) 

where   0002 0101
1u 2

2 2

C C1
B t  = Y  - 

u Z Y Z

 
 
 

,                                                                 (9) 

    0002 0101
2u 2

2 2

C C1 3 1
B t  = Y  - 

u 8 Z 2 Y Z

 
 
 

,                                                (10) 

  2000 0002 1100 0101 1001 1100 2000 1001

1m 2 2 2

2 2 2 2

1 C 3 C C 1 C 1 C 1 C C 1 C
B  = Y  +  -  -  + +  -  - 

m X 8 Z XY 2 YZ 2 XZ n XY X 2 XZ
t

    
    

    

,        

(11) 

and  

 
2m

2000 0020 0002 1100 1010 1001 0110 0101 0011

2 2 2

1 2 1 2 1 2 1 2

002 2000 1100 1010 1001 0101

2 2

1 1 2 2

B = Y

                     + 

1 C 1 C 3 C C 1 C 1 C 1 C 1 C 1 C
- + - - + + -

m X 8 Z 8 Z XY 2 XZ 2 XZ 2 YZ 2 YZ 4 Z Z

1 1 C C C 1 C 1 C 1 C 1
- + + -  - +

n 8 Z X XY 2 XZ 2 XZ 2 YZ 4

t -
  
  

 

0011

1 2

C

Z Z

 
 

 

              

(12) 
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where         
r s t q

rstq i i 1i 1 2i 2C = E x - X y  - Y z  - Z z  - Z 
 

;  r, s, t, q 0 . 

Theorem 2.3.2.Mean squared errors of the estimators  i j i, j=1, 2Ť  to the first 

order of approximations are obtained as 

           
22

i j i j iu i j jm i j i j iu jm   M t  + 1 - M t + 2 1 - Cov t , tM    Ť ; 

(i,j=1,2)                                                                                     (13) 

where   2

1u 1 y

1
M t  =  A  S

u
                                      (14) 

   2

2u 2 y

1
M t  =  A  S

u
                    (15) 

   2

1m 3 4 y

1 1
M t  =  A  +   A  S

m n

 
 
 

               (16) 

   2

2m 5 6 y

1 1
M t  =  A  +   A  S

m n

 
 
 

               (17) 

 iu jmCov t , t =0,  
21 yzA = 2 1 - ρ ,

22 yz

5
A =  - ρ

4
,

2 23 yx yz xz

9
A =  - 2ρ  - ρ + ρ ,

4

24 yx xzA = 2ρ - ρ - 1 ,

1 2 1 2 1 2 1 2 1 1 25 yx xz xz yz yz z z 6 yx xz xz yz z z

5 1 1 5
A = - 2ρ - ρ + ρ + ρ - ρ - ρ  and  A = 2ρ + ρ - ρ -  ρ + ρ -   .

2 2 2 4

 

2.3.2.  Minimum Mean Squared Errors of the Proposed Estimators

  i j i, j=1, 2Ť  

Since the mean squared errors of the estimators  i j i, j=1, 2Ť given in 

equation (13) are the functions of unknown constants  i j i, j = 1, 2 , therefore, 

they are minimized with respect to i j  and subsequently the optimum values of 

 i j i, j = 1, 2 and    i j opt.
M i, j=1, 2Ť  are obtained as 

 
 

   opt.

jm

i j

iu jm

M t
 = 

M t  + M t
 ;(i, j = 1, 2)                         (18) 

  
   
   

 
i u j m

i j opt.
i u j m

M t  . M t
M = ;  i, j = 1, 2

M t  + M t
Ť                       (19) 
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Further, substituting the values of the mean squared errors of the estimators 

defined in equations (14)-(17) in equation (18)-(19), the simplified values of 

opt.i j and  i j opt.
M Ť  are obtained as 

 
 

 opt.

11 11 4 3 4

11 2

11 4 11 3 4 1 1

μ μ  A  - A + A
= 

μ  A  - μ A + A  - A  - A


  

  

             (20) 

 
 

 opt.

12 12 6 5 6

12 2

12 6 12 5 6 1 1

μ μ  A  - A + A
= 

μ  A  - μ A + A  - A  - A


  

  

                      (21) 

 
 

 opt.

21 21 4 3 4

21 2

21 4 21 3 4 2 2

μ μ  A  - A + A
= 

μ  A  - μ A + A  - A  - A


  

  

            (22) 

 

 opt.

22 22 6 5 6

22 2

22 6 22 5 6 2 2

μ μ  A  - A + A
= 

μ  A  - μ A + A  - A  - A


  

  

             (23) 

 
  2

11 1 2 y

11 2opt.

11 4 11 3 1

μ  B  - B S1
M = 

n μ  A  - μ  B  - A  

Ť                         (24)    

 
  2

12 4 5 y

12 2opt.

12 6 12 6 1

μ  B  - B S1
M =  

n μ  A  - μ  B  - A  

Ť                        (25) 

 
  2

21 7 8 y

21 2opt.

21 4 21 9 2

μ  B  - B S1
M = 

n μ  A  - μ  B  - A  

Ť                        (26) 

 
  2

22 10 11 y

22 2opt.

22 6 22 12 2

μ  B  - B S1
M = 

n μ  A  - μ  B  - A  

Ť                        (27) 

where

1 1 4 2 1 3 1 4 3 3 4 1 4 1 6 5 1 5 1 6
B = A A ,     B = A A  + A A ,      B = A  + A  - A ,    B = A A ,   B = A A  + A A ,

6 5 6 1 7 2 4 8 2 3 2 4 9 3 4 2 10 2 6
B = A  + A  - A ,    B = A A ,    B = A A  + A A ,    B = A  + A  - A ,    B = A A

 11 2 5 2 6 12 5 6 2 i j
B = A A  + A A  , B = A  + A  - A   and   μ i, j = 1, 2 are the fractions of 

the sample drawn afresh at the current(second) wave. 

2.3.3. Optimum Rotation Rate for the Estimators  i j i, j=1, 2Ť  

Since the mean squared errors of the proposed estimators  i j i, j=1, 2Ť are 

the function of the  i jμ i, j = 1, 2 , hence to estimate population mean Y with 

maximum precision and minimum cost,an amicable fraction of sample drawn 

afresh is required at the current wave. For this the mean squared errors of the 
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estimators  i j i, j=1, 2Ť in equations (24) – (27) have been minimized with 

respect to  i jμ i, j = 1, 2 . Hence an optimum rotation rate has been obtained for 

each of the estimators  i j i, j=1, 2Ť  and given as: 

2

2 2 1 3

11

1

C  ±  C  - C  C
μ  = 

C
                        (28) 

2

5 5 4 6

12

4

C  ±  C  - C  C
μ  = 

C
             (29) 

2

8 8 7 9

21

7

C  ±  C  - C  C
μ  = 

C
             (30) 

2

11 11 10 12

22

10

C  ±  C  - C  C
μ  = 

C
             (31) 

where 

1 4 1 2 4 2 3 1 1 2 3 4 6 4 5 6 5 6 1 4 5 6C = A B ,  C = A B ,  C = A B + B B ,  C = A B ,  C = A B ,   C = A B + B B

7 4 7 8 4 8 9 2 7 8 9 10 6 10 11 6 11 12 2 10 11 12C = A B ,  C = A B ,  C = A B + B B ,  C = A B ,  C = A B  and  C = A B + B B .

 

The real values of  i j
μ i, j = 1, 2  exist, iff 2

2 1 3C  - C  C 0,
2

5 4 6C  - C  C 0,

2

8 7 9C  - C  C 0, and 2

11 10 12C  - C  C 0 respectively. For any situation, which 

satisfies these conditions, two  real values of  i j
μ i, j = 1, 2  may be possible , 

hence to choose a value of  i j
μ i, j = 1, 2 , it should be taken care of that 

i j
0 μ 1   , all other values of  i j

μ i, j = 1, 2  are inadmissible. If both the real 

values of  i j
μ i, j = 1, 2  are admissible, the lowest one will be the best choice as 

it reduces the total cost of the survey. Substituting the admissible value of i j
μ  say  

 (0)

i jμ i, j = 1, 2  from equation (28) - (31)  in equation (24) - (27) respectively , 

we get the optimum values of the mean squared errors of the estimators

 i j i, j = 1, 2Ť  with respect to i j as well as  i jμ i, j = 1, 2 which are given as 

  
(0) 2

* 11 1 2 y

11 (0) 2 (0)opt.

11 4 11 3 1

μ  B  - B  S
M = 

n μ  A  - μ  B  - A

  

  

Ť                        (32) 



STATISTICS IN TRANSITION new series, December 2017 

 

577 

  
(0) 2

* 12 4 5 y

12 (0) 2 (0)opt.

12 6 12 6 1

μ  B  - B  S
M = 

n μ  A  - μ  B  - A

  

  

Ť                        (33) 

  
(0) 2

* 21 7 8 y

21 (0) 2 (0)opt.

21 4 21 9 2

μ  B  - B  S
M = 

n μ  A  - μ  B  - A

  

  

Ť                        (34) 

  
(0) 2

* 22 10 11 y

22 (0) 2 (0)opt.

22 6 22 12 2

μ  B  - B  S
M = 

n μ  A  - μ  B  - A

  

  

Ť                        (35) 

3. Cost Analysis 

The total cost of survey design and analysis over two successive waves is 

modelled as: 

T f r sC = nc + mc + uc             (36) 

where fc : The average per unit cost of investigating and processing data at 

previous (first)wave, 

rc : The average per unit cost of investigating and processing retained data at 

current wave, 

sc : The average per unit cost of investigating and processing freshly drawndata 

at current wave. 

Remark 3.1: f r sc < c < c , when there is a large gap between two successive 

waves, the cost of investigating a single unit involved in the survey sample should 

be greater than before (at previous occasion) since as time passes by different 

commodities (software) and services (human resources, daily wages and 

conveyance) become expensive so the cost incurring at second occasion increases 

in a considerable amount. Also the average cost of investigating a retained unit 

from previous wave should be lesser than investigating a freshly drawn sample 

unit since survey investigator as well as respondent has some experiences from 

the previous wave. 

Theorem 3.1.1: The optimum total cost for the proposed estimators 

 i j i, j=1, 2Ť  is derived as 

     (0)

T i j f s ij r sopt.
C = n c + c + 1 - μ c - c  i, j=1, 2Ť

                 
(37) 

Remark 3.2:The optimum total costsobtained in equation (37) are dependent on 

the value of n. Therefore, if a suitable guess of n is available, it can be used for 

obtaining optimum total cost of the survey by above equation. However, in the 

absence of suitable guess of n, it may be estimated by following Cochran (1977). 
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4. Efficiency Comparison 

To evaluate the performance of the proposed estimators, the estimators

 i j i, j=1, 2Ť at optimum conditions, are compared with the sample mean 

estimator ny , when there is no matching from previous wave and the estimator 
ˆ
Y  

due to Jessen (1942) given by 

   '

u mŶ = ψ y + 1 - ψ y ,                                               (38) 

where    '

m m y x n my  = y + β x - x , y xβ  is the population regression coefficient of 

y on x and ψ  is an unknown constant to be determined so as to minimize the 

mean squared error of the estimator Ŷ . The estimators ny  and Ŷ are unbiased for 

population mean, therefore variance of the estimators n

ˆy  and Y  at optimum 

conditions are given as 

  2

n y

1
V y  = S

n
,                                              (39) 

   
2*
y2

y x
opt.

S1ˆV Y = 1 + 1 - ρ
2 n

 
 
 

,                                 (40) 

and the fraction of sample to be drawn afresh for the estimator 
ˆ
Y  

J
2

yx

1
μ =

1 +  1 - ρ
                                                                

(41) 

The percent relative efficiencies i j i jE (M) and  E (J) of the estimator 

 i j i, j=1, 2Ť  (under optimum conditions) with respect to ny and Ŷ are 

respectively given by 

 

 
n

i j *

i j opt.

V y
E (M)=  × 100

    M Ť
and 

 
 

*

opt.

i j *

i j opt.

ˆV Y

E (J) =  × 100
M Ť

(i, j=1, 2).        

(42)  
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5. Numerical Illustrations and Simulation 

5.1. Generalization of empirical study  

A generalized study has been done to show the impact of varying ancillary 

information in enhancing the performance of the proposed estimators 

 
i j

i, j=1, 2Ť . To elaborate the scenario, various choices of correlation 

coefficients of study and auxiliary variables have been considered. The results 

obtained have been shown in Table 1.  

Table 1. Generalized empirical results while the proposed estimators 

 
i j

i, j=1, 2Ť  have been compared to the estimators 
n 

ˆ
y Yand  for  

1 2
yz yz 1

ρ = ρ = ρ  and 
1 2

xz xz 2
ρ = ρ = ρ .  

z z yx1 2
ρ = ρ = 0.5  

2
ρ
 

1
ρ
 

J
μ  

(0)

11
μ
 

(0)

12
μ
 

(0)

21
μ
 

(0)

22
μ
 

 
11

E M

 

 
12

E M

 

 
21

E M

 

 
22

E M

 

 
11

E j

 

 
12

E j

 

 
21

E j

 

 
22

E j

 

0.4 
0.6 0.53 0.66 0.58 0.44 0.41 119.69 114.58 135.48 128.91 111.67 106.90 126.41 120.28 

0.8 0.53 0.33 0.32 0.42 0.37 197.61 176.31 187.18 166.66 184.38 164.50 174.64 155.50 

0.5 
0.6 0.53 0.61 0.58 0.42 0.41 117.08 114.58 132.04 128.91 109.24 106.90 123.20 120.28 

0.8 0.53 0.33 0.32 0.40 0.37 191.44 176.31 181.18 166.66 178.61 164.50 169.04 155.50 

0.6 
0.6 0.53 0.58 0.58 0.41 0.41 114.58 114.58 128.91 128.91 106.90 106.99 120.28 120.28 

0.8 0.53 0.33 0.32 0.39 0.37 185.89 176.31 175.84 166.66 173.44 164.50 164.06 155.50 

0.7 
0.6 0.53 0.55 0.58 0.40 0.41 112.22 114.58 126.04 128.91 104.70 106.90 117.60 120.28 

0.8 0.53 0.32 0.32 0.38 0.37 180.88 176.31 171.03 166.66 168.76 164.50 159.57 155.50 

z z1 2 yx
ρ = 0.6= ρ  

2
ρ
 

1
ρ
 

J
μ  

(0)

11
μ
 

(0)

12
μ
 

(0)

21
μ
 

(0)

22
μ
 

 
11

E M

 

 
12

E M

 

 
21

E M

 

 
22

E M

 

 
11

E j

 

 
12

E j

 

 
21

E j

 

 
22

E j

 

0.4 
0.6 0.55 0.87 0.69 0.46 0.44 124.52 121.01 143.54 137.34 112.07 108.91 129.18 123.60 

0.8 0.55 0.29 0.33 0.45 0.40 212.25 188.59 201.85 178.44 191.02 169.73 181.58 160.54 

0.5 
0.6 0.55 0.73 0.69 0.45 0.44 122.31 121.01 139.24 137.34 110.08 108.91 125.36 123.60 

0.8 0.55 0.32 0.33 0.43 0.40 204.53 188.59 193.99 178.44 184.08 169.73 174.59 160.59 

0.6 
0.6 0.55 0.66 0.69 0.44 0.44 119.69 121.01 135.48 137.34 107.72 108.91 121.94 123.60 

0.8 0.55 0.33 0.33 0.42 0.40 197.61 188.59 187.18 178.44 177.85 169.73 168.46 160.54 

0.7 
0.6 0.55 0.61 0.69 0.42 0.44 117.08 121.01 132.04 137.34 105.37 108.91 118.84 123.60 

0.8 0.55 0.33 0.33 0.40 0.40 191.44 188.59 181.18 178.44 172.29 169.73 163.06 160.59 

Note: The values for 
(0)

22

(0) (0) (0)

j 11 12 21
μ , μ , μ  μ and μ,  have been rounded off up to two places of decimal for 

presentation. 
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5.2.  Generalized study based on correlation coefficients andoptimum total 

 cost model  

To validate the proposed cost model, a hypothetical survey design has been 

assumed in which various choices of correlation coefficient and different input 

costs have been considered over two successive waves. 

Table 2.  Optimum total cost of the survey design at the current wave of the 

proposed estimators  
i j

i, j=1, 2Ť  

yx
0.5 30,ρ n== ,  fc = ₹ 50.00, rc = ₹ 75.00 and sc = ₹ 80.00 

2
ρ  

1
ρ  

J
μ  

(0)

11
μ  

(0)

12
μ  

(0)

21
μ  

(0)

22
μ   

T
C J

 
 

T
C 11   

T
C 12   

T
C 21   

T
C 22  

0.5 
0.6 0.53 0.61 0.58 0.42 0.41 3830.4 3842.7 3837.5 3814.4 3812.8 

0.8 0.53 0.33 0.32 0.40 0.37 3830.4 3799.9 3798.2 3811.2 3806.3 

0.6 
0.6 0.53 0.58 0.58 0.41 0.41 3830.4 3837.5 3837.5 3812.8 3812.8 

0.8 0.53 0.33 0.32 0.39 0.37 3830.4 3799.5 3798.2 3809.3 3806.3 

0.7 
0.6 0.53 0.55 0.58 0.40 0.41 3830.4 3833.4 3837.5 3811.4 3812.8 

0.8 0.53 0.32 0.32 0.38 0.37 3830.4 3798.9 3798.2 3807.7 3806.3 

yx
0.6 30,ρ n== ,  fc = ₹ 50.00, rc = ₹ 75.00 and sc = ₹ 80.00 

2
ρ  

1
ρ  

J
μ  

(0)

11
μ  

(0)

12
μ  

(0)

21
μ  

(0)

22
μ   

T
C J

 
 

T
C 11   

T
C 12   

T
C 21   

T
C 22  

0.5 
0.6 0.55 0.73 0.69 0.45 0.44 3833.3 3860.9 3854.8 3817.9 3817.0 

0.8 0.55 0.32 0.33 0.43 0.40 3833.3 3798.9 3799.8 3815.5 3810.2 

0.6 
0.6 0.55 0.66 0.69 0.44 0.44 3833.3 3849.9 3854.4 3816.1 3817.0 

0.8 0.55 0.33 0.33 0.42 0.40 3833.3 3833.3 3799.8 3813.2 3810.2 

0.7 
0.6 0.55 0.61 0.69 0.42 0.44 3833.3 3842.7 3854.8 3814.4 3817.0 

0.8 0.55 0.33 0.33 0.40 0.40 3833.3 3833.3 3799.9 3811.2 3810.2 

yx
0.5 40,ρ n== ,  fc = ₹ 50.00, rc = ₹ 75.00 and sc = ₹ 80.00 

2
ρ  

1
ρ  

J
μ  

(0)

11
μ  

(0)

12
μ  

(0)

21
μ  

(0)

22
μ   

T
C J

 
 

T
C 11   

T
C 12   

T
C 21   

T
C 22  

0.5 
0.6 0.53 0.61 0.58 0.42 0.41 5107.2 5123.7 5116.7 5085.8 5083.8 

0.8 0.53 0.33 0.32 0.40 0.37 5107.2 5066.6 5064.3 5081.5 5075.0 

0.6 
0.6 0.53 0.58 0.58 0.41 0.41 5107.2 5116.7 5116.7 5083.8 5083.8 

0.8 0.53 0.33 0.32 0.39 0.37 5107.2 5066.0 5064.3 5079.1 5075.0 

0.7 
0.6 0.53 0.55 0.58 0.40 0.41 5107.2 5111.2 5116.7 5081.9 5083.8 

0.8 0.53 0.32 0.32 0.38 0.37 5107.2 5062.2 5064.3 5077.0 5075.0 

yx
0.6 40,ρ n== ,  fc = ₹ 50.00, rc = ₹ 75.00 and sc = ₹ 80.00 

2
ρ  

1
ρ  

J
μ  

(0)

11
μ  

(0)

12
μ  

(0)

21
μ  

(0)

22
μ   

T
C J

 
 

T
C 11   

T
C 12   

T
C 21   

T
C 22  

0.5 
0.6 0.55 0.73 0.69 0.45 0.44 5111.1 5147.9 5139.7 5090.5 5089.3 

0.8 0.55 0.32 0.33 0.43 0.40 5111.1 5065.1 5066.3 5087.3 5080.3 

0.6 
0.6 0.55 0.66 0.69 0.44 0.44 5111.1 5133.3 5139.7 5088.1 5089.3 

0.8 0.55 0.33 0.33 0.42 0.40 5111.1 5066.5 5066.3 5084.2 5080.3 

0.7 
0.6 0.55 0.61 0.69 0.42 0.44 5111.1 5123.7 5139.7 5085.8 5089.3 

0.8 0.55 0.33 0.33 0.40 0.40 5111.1 5066.6 5066.3 5081.5 5080.3 
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5.3. Monte Carlo Simulation 

Monte Carlo simulation has been performed to get an overview of the 

proposed estimators in practical scenario through considering different choices of 

n and μ for better analysis. 

Following set has been considered for the simulation study 

Set I: n = 20, μ  = 0.15, (m = 17,u = 3). 

5.3.1. Simulation Algorithm 

(i)  Choose 5000 samples of size n=20 using simple random sampling 

without replacement on first wave for both the study and auxiliary 

variable. 

(ii)  Calculate sample mean n | kx  and  1 | kz n  for k =1, 2, - - -, 5000. 

(iii)  Retain m=17 units out of each n=20  sample units of the study and 

auxiliary variables at the first wave. 

(iv)  Calculate sample mean m | kx and  1 | kz m for k= 1, 2, - - -, 5000. 

(v)  Select u=3 units using simple random sampling without replacement from 

N-n=31 units of the population for study and auxiliary variables at second 

(current) wave. 

(vi)  Calculate sample mean u | ky  and   2 | kz m for k = 1, 2, - - -, 5000. 

(vii)  Iterate the parameter   from 0.1 to 0.9 with a step of 0.2. 

(viii)  Iterate ψ  from 0.1 to 0.9 with a step of 0.1 within (ix). 

(ix)  Calculate the percent relative efficiencies of the proposed estimator

 
i j

i, j=1, 2Ť  with respect to estimator to 
n

ˆ
y  and Y as 

 

     
i j i j

i j i j

i j i j

5000 5000  2 2

n | k  | k

k=1 k=1

5000 5000 2  2

k=1 k=1

| k | k

| k | k

M J

ˆ
- y - Y

E  =  × 100  and   E =  × 100  ; i , j=1, 2  k=1, 2, ..., 5000., , ,

  
   

   
   

 

 
Ť Ť

Ť Ť

Ť Ť
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Table 3.  Simulation Results when proposed estimator  
i j

i, j=1, 2Ť have been 

compared to 
n

y  

                   
ij  

SET 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

I 

 
11

ME ,Ť  218.44 244.19 271.66 303.33 333.45 364.67 393.36 419.85 439.71 

 
12

ME ,Ť  461.69 514.46 566.60 619.47 665.56 703.63 731.26 746.47 743.76 

 
21

ME ,Ť  231.69 260.16 283.97 304.00 306.75 299.67 281.22 256.46 228.66 

 
22

ME ,Ť  505.81 562.87 585.67 578.89 529.97 467.34 397.98 334.78 280.42 

 

Table 4.  Simulation results when the proposed estimator 
11

Ť  is compared with 

the estimator 
ˆ
Y  

     11
  

ψ  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 182.55 153.16 137.82 159.12 205.37 293.91 390.68 499.10 660.27 

0.2 209.72 166.19 153.72 179.11 229.31 301.97 423.52 550.37 732.32 

0.3 229.76 184.83 170.77 196.28 255.02 336.89 470.10 618.90 818.38 

0.4 252.68 205.47 188.91 216.26 278.49 376.42 523.01 679.76 908.90 

0.5 278.45 227.24 209.50 239.44 304.72 411.04 574.21 748.40 994.88 

0.6 303.72 249.08 229.98 261.05 333.80 449.52 625.62 813.86 1085.2 

0.7 327.71 270.01 249.29 281.45 362.61 482.77 674.92 882.95 1164.0 

0.8 350.68 287.18 267.02 300.12 385.81 515.96 718.68 947.91 1240.0 

0.9 366.09 300.07 280.72 315.76 404.82 541.84 752.31 995.79 1298.8 

 

Table 5.  Simulation results when the proposed estimator 
12

Ť  is compared with 

the estimator 
ˆ
Y  

      12  

ψ
 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 427.90 343.13 312.59 375.43 472.41 634.04 887.31 1166.2 1504.7 

0.2 475.65 373.99 347.93 407.95 521.89 684.91 962.09 1278.4 1656.4 

0.3 516.76 407.22 383.11 444.72 572.07 757.85 1047.3 1398.8 1833.6 

0.4 556.92 445.77 416.14 480.80 614.70 829.45 1138.9 1507.8 1992.2 

0.5 596.58 480.22 449.92 516.79 655.86 884.66 1221.4 1616.5 2127.7 

0.6 627.38 510.46 477.32 544.38 696.06 935.55 1286.6 1703.9 2248.6 

0.7 650.44 531.63 496.40 562.32 724.39 961.78 1335.1 1767.5 2313.1 

0.8 663.15 538.25 507.13 569.47 733.17 977.60 1353.2 1808.1 2343.7 

0.9 654.95 532.58 504.31 567.16 727.56 972.56 1343.2 1799.6 2322.1 
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Table 6:  Simulation results when the proposed estimator 
21

Ť  is compared with 

the estimator 
ˆ
Y  

 

Table 7:  Simulation results when the proposed estimator 
22

Ť  is compared with 

the estimator 
ˆ
Y  

     22
 

ψ  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 471.41 378.45 347.07 417.54 523.23 700.91 985.84 1294.1 1660.1 

0.2 528.24 417.18 384.72 451.31 575.64 760.29 1077.0 1413.8 1830.2 

0.3 341.14 430.65 402.61 465.7 597.23 788.46 1112.2 1462.5 1926.8 

0.4 527.18 420.54 394.10 451.06 576.66 772.73 1081.0 1434.4 1888.2 

0.5 485.30 388.39 363.79 412.40 530.19 709.26 990.21 1314.4 1732.8 

0.6 425.04 341.89 318.71 361.92 465.0 622.42 863.99 1149.0 1510.5 

0.7 355.08 291.67 267.62 306.67 392.04 532.08 733.74 974.43 1290.4 

0.8 299.61 244.69 227.33 255.76 329.85 444.27 610.04 811.62 1072.3 

0.9 250.56 202.66 188.41 213.37 275.45 370.39 508.81 677.67 893.24 

7. Interpretations of Results 

7.1. Results from Generalized Empirical Study 

a) The optimum values 
(0) (0) (0) (0)

11 12 21 22
μ , μ , μ  and μ   exist for almost each combination 

of correlation coefficients. For increasing values of correlation of study and 

ancillary information, the values 
(0) (0) (0) (0)

11 12 21 22
μ , μ , μ  and μ  decrease, which in 

accordance with Sukhatme et al (1984.) 

b) As the correlation between study and ancillary information is increased, the 

percent relative efficiencies increase and the proposed estimators perform 

better than n

ˆy  and Y . 

     21
 

ψ  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 194.16 162.27 147.18 169.77 218.56 290.84 417.32 531.93 700.09 

0.2 226.59 179.69 165.54 192.53 246.92 327.07 458.49 592.66 787.86 

0.3 244.65 197.87 182.29 208.92 270.87 359.27 503.59 657.30 870.32 

0.4 259.87 210.16 193.93 220.93 284.73 384.16 536.82 700.23 931.24 

0.5 266.55 215.90 199.93 226.91 291.38 391.08 548.24 717.8 951.67 

0.6 261.83 212.32 196.50 222.57 286.35 384.76 536.17 701.89 930.06 

0.7 244.56 200.80 185.50 209.60 269.14 363.34 504.47 663.99 879.04 

0.8 224.81 183.61 170.18 191.41 246.68 331.87 458.85 606.02 800.17 

0.9 200.96 162.94 151.25 171.04 220.55 296.36 409.10 542.09 714.32 
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c) The proposed estimators provide a lesser fraction of fresh sample drawn 

afresh as compared to the estimator 
ˆ
Y for almost every considered choice of 

correlation coefficients.  

d) The estimator 21
Ť performs best in terms of percent relative efficiency and 

the estimator 22
Ť performs best in terms of sample drawn afresh at current 

occasion. 

e) As a result, it is also observed that the proposed estimators are working 

efficiently even for low and moderate correlation values of study and 

dynamic auxiliary variable on both the occasions. 

7.2. Results based on Cost Analysis 

a) Theoretically, it is expected that if auxiliary and study variable possess high 

correlation then this should contribute in reducing the total cost of survey. It 

is quite evident from the cost analysis that the optimum total cost of the 

survey decreases for increasing correlation between study and ancillary 

character.  

b) The estimator 21 22
andŤ Ť   requires the least total cost for the survey at the 

current occasion and they both are good in terms of efficiency as well. 

7.3 Simulation Results  

a) From Table 3to Table 7, it can be seen that the proposed estimators 

 i j
i, j=1, 2Ť are efficient over

n

ˆy  and Y for the considered set. 

b) Also in simulation study, it is observed that the estimator 22
Ť  is most 

efficient over the estimators ny and
ˆ
Y  for the considered set. 

8. Ratiocination 

The entire detailed generalized and simulation studies attest that 

accompanying dynamic ancillary character with the study character certainly 

serves the purpose in long lag of two successive waves. The proposed estimators 

 i j
i, j=1, 2Ť prove to be worthy in terms of precisionas compared to the 

estimators
n

y and estimator due to Jessen (1942). The minute observation suggest 

that the estimators 21 22
and  Ť Ť are providing approximately same fraction of 

sample to be drawn afresh at the current occasion but the total cost of survey is 

least for the estimator 22
Ť  and

21
Ť  is best in terms of efficiency . Since both the 
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estimators 21 22
and  Ť Ť are better than the sample mean estimator and the 

estimator due to Jessen (1942) but for little amount of precision, the cost of 

survey cannot be put on stake, therefore 22
Ť  may be regarded as best in terms 

cost and 
21

Ť may be regarded best in terms of precision. Hence according to the 

requirement of survey, one is free to choose any of the estimators out of 

21 22
 and Ť Ť . Hence the proposed estimators are recommended to the survey 

statisticians for their practical use. 
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BAYESIAN ESTIMATION OF MEASLES
VACCINATION COVERAGE UNDER RANKED SET

SAMPLING

Radhakanta Das1, Vivek Verma2, Dilip C. Nath3

ABSTRACT

The present article is concerned with the problem of estimating an unknown pop-
ulation proportion p, say, of a certain population characteristic in a dichotomous
population using the data collected through ranked set sampling (RSS) strategy.
Here, it is assumed that the proportion p is not fixed but a random quantity. A
Bayes estimator of p is proposed under squared error loss function assuming that
the prior density of p belongs to the family of Beta distributions. The performance
of the proposed RSS-based Bayes estimator is compared with that of the corre-
sponding classical version estimator based on maximum likelihood principle. The
proposed procedure is used to estimate measles vaccination coverage probability
among the children of age group 12-23 months in India using the real-life epidemi-
ological data from National Family Health Survey-III.

Key words: Bayes estimator, maximum likelihood principle, square error loss, risk
function and immunization coverage.

1. Introduction

Ranked Set Sampling (RSS) was first introduced by McIntyre (1952). This is an
alternative method of sampling procedure that is used to achieve the greater effi-
ciency in estimating the population characteristics. Generally the most appropriate
situation for employing RSS is where the exact measurement of sampling units is
expansive in time or effort; but the sample units can be readily ranked either through
subjective judgement or via the use of relevant concomitant variables. The most ba-
sic version of RSS is balanced RSS where the same number of observations is drawn
corresponding to each judgement order statistic. In order to draw a balanced ranked
set sample of size n, first an integer s is chosen such that n = ms, for some positive
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3Department of Statistics, Gauhati University, Guwahati, 781014, Assam, India. E-mail:
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integer m. Then we select s2 units from the population at random and the units are
divided into sets of s units each. Within each set, s units are ranked according to
the characteristic of interest by judgement or with the help of one or more auxiliary
variables. From the ith set (i = 1,2, · · · ,s) we observe the actual measurement cor-
responding to only the ith ordered unit in that set. This entire procedure, which may
be called a cycle, is repeated m times independently to obtain a ranked set sample
of size n = ms.

Let X[i] j denote the quantified ith judgement order statistic from the jth cycle.
Thus, the sampling scheme yields the following ranked set sample of size n.

X[1]1, · · · ,X[1] j, · · · ,X[1]m

...
...

...

X[i]1, · · · ,X[i] j, · · · ,X[i]m (1.1)
...

...
...

X[s]1, · · · ,X[s] j, · · · ,X[s]m

It is obvious that the observations within each row of above observation matrix are
independently and identically distributed (iid), and the observations within any col-
umn are independently but not identically distributed. To acquire depth in theories
and logistics of RSS methodology one can go through the book by Chen et al.(2004).

In the present investigation we assume that the variable of interest is binary; that
is, there are only two possible outcomes, generally called success (denoted as 1) and
failure (denoted as 0). Thus, the study variable is supposed to follow Bernoulli dis-
tribution with success probability p (0 < p < 1), say. Here, the ranking of s binary
observations in each set, where there are only 0 and 1 runs in the series, is done sys-
tematically as discussed by Terpstra and Nelson (2005). For instance, suppose s = 4
and the observations are, say, X1 = 1;X2 = 0;X3 = 1, and X4 = 0. Then, a possible
ordered arrangement of the observations might be (X2,X4,X1,X3), or (X4,X2,X1,X3)

or (X2,X4,X3,X1) or (X4,X2,X3,X1). But for the sake of uniqueness we take the
arrangement (X2,X4,X1,X3) where the suffix of X in each run is in increasing or-
der and hence we get the ordered statistics as X(1) = X2; X(2) = X4; X(3) = X1 and
X(4) = X3. The same systematic rule can easily be extended in the ranking of a
polytomous variable also. For a binary population the success probability p can be
viewed as a proportion of individuals possessing certain known characteristic in the
population. In classical inference on a population proportion, the ranked set sam-
pling with binary data has already been introduced and used by many researchers
like, among others, Lacayo et al. (2002), Kvam (2003), Terpstra (2004), Terpstra
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and Liudahl (2004), Chen et al. (2005, 2006, 2007, 2009), Terpstra and Nelson
(2005), Terpstra and Miller (2006), Chen (2008), Gemayel etal.,(2012) used RSS
for auditing purpose, Wolfe (2010, 2012) and Zamanzade and Mahdizadeh (2017,
2017) discussed application of RSS to air quality monitoring. Jozani and Mirkamali
(2010, 2011) used ranked set sample for binary data in the context of control charts
for attributes. In earlier works, estimation of p using ranked set samples is based on
the assumption that the parameter p is an unknown but a fixed quantity. But there
may be situations where some prior knowledge on p may be available in terms of its
changing pattern over time or with respect to other factors, which amounts to treat
p as a random quantity. In this article a Bayesian estimation of p in the domain of
ranked set sample is considered.

We organize the paper in the following way. In section 2, a Bayes estimator
of the population proportion is proposed. As a natural competitor of the proposed
estimator, a classical version estimator based on maximum likelihood principle is
discussed in section 3. Section 4 provides an efficiency comparison of the estima-
tors in terms of risk under square error loss function. In section 5 the proposed
procedure is used to estimate measles vaccination coverage probability among the
children of age group 12-23 months in India using the real-life epidemiological data
from National Family Health Survey-III. Lastly, section 6 gives a brief concluding
remark.

2. Bayes Estimators of p

Let X be the variable of interest assumed to follow Bernoulli (p) distribution with
p being the success probability. It has been found in the literature (e.g. Stokes
(1977)) that the use of a single concomitant variable for ranking is effective re-
gardless of whether the association of the concomitant variable of interest is pos-
itive or negative. Suppose, after applying judgement ranking made on the ba-
sis of a readily available auxiliary variable, say Y , we have a ranked set sample
{X[i] j, i = 1(1)s, j = 1(1)m} of size n = ms, where X[i] j denotes the quantified ith

judgement order statistics in the jth cycle. It can easily be justified that, for each
i= 1(1)s, the observations in the ith ranking group X[i]1, · · · ,X[i] j, · · · ,X[i]m constitute
a simple random sample (SRS) of size m from Bernoulli distribution with success
probability denoted by p[i], say. So, for each i = 1(1)s, p[i] represents the probability
of assuming the value 1 (which corresponds to success) for the ith judgement order
statistic X[i]1. Immediately we get the following result.
Result 2.1: Suppose an observation with a higher judgement order is more likely to
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be a ‘success’. Then, we have

p[i] = Ip(s− i+1, i), for each i = 1,2, · · · ,s (2.1)

and
1
s

s

∑
i=1

p[i] = p, (2.2)

where Ix(a,b), x ∈ (0,1), is the standard incomplete beta integral given by

Ix(a,b) =
Γ(a+b)
Γ(a)Γ(b)

x∫
0

ta−1(1− t)b−1dt.

The above result is standard (see Tepstra (2004)) and hence omitted.

Note 2.1: If an observation with a lower judgement order is more likely to be a
success, then, for every i = 1,2, · · · ,s, that

p[i] = Ip(i,s− i+1) (2.3)

and (2.2) also holds in this case.

In this section the proportion parameter p is assumed to be a random variable
and the randomness is quantified in terms of suitable prior density, say τ(p) of p
over the interval [0,1]. Here, we derive a Bayesian estimator of p by incorporating
the available prior information on p along with the information provided by the
ranked set sample data. By the virtue of ranked set sampling all the observations
X[i] j,∀i = 1(1)s, ∀ j = 1(1)m are independent. Let us define the variables

Zi =
m

∑
j=1

X[i] j, ∀i = 1(1)s.

Obviously, the variables Z1,Z2, · · · ,Zs are independently distributed as Zi ∼ Bino-
mial (m, p[i]). For each i, 1≤ i≤ s, p[i] is a function of the basic parameter p, so we
denote it as p[i](p). With this notation one can easily write the likelihood function
of p, given the ranked set sample data z = (z1,z2, · · · ,zs) as

L(p|z) =
s

∏
i=1

P[Zi = zi|p[i](p)]

=
s

∏
i=1

(
m
zi

)
[p[i](p)]zi [1− p[i](p)](m−zi) (2.4)
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where z is a particular realization of the random vector Z = (Z1,Z2, · · · ,Zs). Thus,
the posterior density of p, given Z = z, with respect to the prior τ(p) for p is given
by

h(p|z) =
L(p|z)τ(p)

1∫
0

L(p|z)τ(p)d p

⇔ h(p|z) ∝ L(p|z)τ(p)

⇔ h(p|z) ∝

s

∏
i=1

[p[i](p)]zi [1− p[i](p)](m−zi)τ(p). (2.5)

The information regarding unknown parameter is upgraded in the light of the ob-
served data and is quantified through the posterior distribution h(p|z) w.r.t. the prior
τ(p) and hence any statistical inference regarding p is made on the basis of its pos-
terior distribution given the ranked set sample data. Here, the posterior distribution
does not have any standard form. In such a situation, to make any statistical infer-
ence on p one should use Monte Carlo simulation technique which provides a great
deal of computational facilities. According to this method, a sufficiently large num-
ber, say N of observations are drawn at random independently from the posterior
distribution h(p|z) and let it be denoted as p(1), p(2), · · · , p(N). Then the posterior
mean and variance of p can be approximated as

E(p|z) =

1∫
0

ph(p|z)d p

' 1
N

N

∑
j=1

p( j) (2.6)

and

V (p|z) =

1∫
0

{p−E(p|z)}2h(p|z)d p

' 1
N

N

∑
j=1

[p( j)]2−

[
1
N

N

∑
j=1

p( j)

]2

(2.7)

Thus, under square error loss function the Bayes estimate (p̂B) of p w.r.t. the prior
τ(p) is given by the mean of the posterior distribution h(p|z), that is, for sufficiently
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large N,

p̂B '
1
N

N

∑
j=1

p( j). (2.8)

Alternative Bayes Esimator of p:

An alternative Bayes estimator of p can easily be constructed as the average of the
Bayes estimators of p[i]’s by assuming that the probabilities p[1], p[2], · · · , p[s] are all
unknown parameters, although all of them are the functions of the basic parameter p,
satisfying the relation (2.2). Suppose p[1], · · · , p[s] are independently and identically
distributed with common prior density given below.

τ(θ) =
1

B(α,β )
θ

α−1(1−θ)β−1 , 0 < θ < 1, α > 0, β > 0. (2.9)

Then, under squared error loss function the Bayes estimator of p[i], based on Zi, can
easily be obtained as (see Ferguson (2014))

p̂∗B[i] =
Zi +α

m+α +β
, for i = 1, ..s. (2.10)

After having the estimators p̂∗B[i]; i = 1,2, · · · ,s, we are in a position to construct, by
virtue of the relation (2.2), a Bayesian estimator of p as

p̂∗B =
1
s

s

∑
i=1

p̂∗B[i] (2.11)

which, by using (2.10), takes the form

p̂∗B =
mX̄ +α

m+α +β
, (2.12)
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where X̄

(
= 1

ms

s
∑

i=1

m
∑
j=1

X[i] j

)
is the grand mean of ms sample observations. Note

that, under square error loss, the risk function of p̂∗B is given as

Rp̂∗B(p) = E(p̂∗B− p)2

= E
(

mX̄ +α

m+α +β
− p
)2

= (m+α +β )−2E {(mX̄−mp)+α− p(α +β )}2

= (m+α +β )−2

[
1
s2

s

∑
i=1

mp[i](1− p[i])+{α− p(α +β )}2

]

=
m

(m+α +β )2s2

s

∑
i=1

p[i](1− p[i])+
{α− p(α +β )}2

(m+α +β )2 . (2.13)

3. Estimator of p based on Maximum Likelihood Principle

Here, we briefly describe a classical version estimator of p based on the maximum
likelihood (ML) principle. For this we first assume that the proportion parameter p
is an unknown fixed number lying between 0 and 1. Now, all the observations in the
ranked set sample are independently distributed, the likelihood function of p based
on the given ranked set sample X = x can be expressed as

L1(p|x) =
s

∏
i=1

m

∏
j=1

[p[i](p)]x[i] j [1− p[i](p)]1−x[i] j

=
s

∏
i=1

[p[i](p)]zi [1− p[i](p)]m−zi

=
s

∏
i=1
{Ip(s− i+1, i)}zi{I1−p(i,s− i+1)}m−zi . (3.1)

Equivalently, the log-likelihood function of p is given as

l(p|x) = logeL1(p|x) =
s

∑
i=1

zilogeIp(s− i+1, i)+
s

∑
i=1

(m− zi)logeI1−p(i,s− i+1),
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and hence the likelihood equation for determining MLE of p is obtained as

d
d p

l(p|x) = 0

⇔
s

∑
i=1

zib(p|s− i+1, i)
Ip(s− i+1, i)

=
s

∑
i=1

(m− zi)b(1− p|i,s− i+1)
I1−p(i,s− i+1)

(3.2)

where b(x|α,β ) represents the probability density function of Beta(α,β ) distribu-
tion. Due to the complicated nature of the above likelihood equation it is difficult to
get an explicit solution for p and hence the RSS-based MLE of p does not have any
closed form.

As an alternative way out we can obtain an estimate of p by indirectly us-
ing the maximum likelihood principle. For this we first consider the probabilities
p[1], p[2], · · · , p[s] as the unknown parameters, although all of them are the functions
of the basic parameter p. Then we determine the maximum likelihood estimates
of those parameters separately and substitute these estimates in the relation (2.2) of
Result 2.1 to get an estimate of p. Given the ranked set sample X = x, the likelihood
function of the parameters p[1], p[2], · · · , p[s] is written as

L1(p[1], p[2], · · · , p[s]|x) =
s

∏
i=1

m

∏
j=1

[p[i]]
x[i] j [1− p[i]]

1−x[i] j

=
s

∏
i=1

[p[i]]
zi [1− p[i]]

m−zi (3.3)

and the corresponding log-likelihood function is given by

l(p[1], p[2], · · · , p[s]|x) =
s

∑
i=1

ziloge p[i]+
s

∑
i=1

(m− zi)loge(1− p[i]).

Thus, by solving s maximum likelihood equations, ∂

∂ p[i]
l(p[1], p[2], · · · , p[s]|x) = 0,

for i = 1,2, · · · ,s, we easily get the MLE of p[i] as

p̂[i] =
Zi

m
, i = 1,2, · · · ,s.

Then, after replacing p[i]’s by p̂[i]’s in the relation (2.2) we get an estimate of p as

p̂M =
1
s

s

∑
i=1

p̂[i]. (3.4)
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Note 3.1: It is easy to argue that the ML estimates p̂[1], p̂[2], · · · , p̂[s] are statistically
independent as the variables Zi’s are independently distributed. Again, substituting
the value Zi

m of p̂[i] in the equation (3.4), the estimate p̂M can be shown to be identical
with the overall mean of the given ranked set sample. It is also readily verified that
p̂M is an unbiased estimator of p.

4. Comparison Between p̂B, p̂∗B and p̂M

The goal of this section is to compare the estimators of p derived in sections 2
and 3. Since the posterior mean, by definition, minimizes the Bayes risk under
squared error loss function, it is not surprising that a Bayes estimator of an unknown
parameter is often superior to the corresponding MLE in respect of mean squared
error (MSE). However, MLE neither requires any specification of prior distribution
for the parameter nor it involves any particular loss function. Thus, the comparison
should be made on the basis of a criterion which does not bother about the particular
nature of prior information regarding unknown parameter. However, as MSE of an
estimator can be regarded as risk under squared error loss, one can use risk function
for comparison purpose. The expressions for risk functions of the estimators are
described below. Under square error loss the risk of p̂B is given as

Rp̂B(p) = E(p̂B− p)2, (4.1)

which cannot be further simplified analytically. On the other hand, the risk of p̂M

has a theoretical expression obtained as

Rp̂M(p) = E(p̂M− p)2

= V

(
1
s

s

∑
i=1

p̂[i]

)

=
1

ms2

s

∑
i=1

p[i](1− p[i]), (4.2)

after using the fact that p̂[i]’s are independent with V (p̂[i]) =
1
m p[i](1− p[i]).

Result 4.1: The risk function R p̂M(p) of the estimator p̂M is symmetric around
’p = 1

2 ’.
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Proof: By (2.1) we rewrite Rp̂M(p) as

Rp̂M(p) =
1

ms2

s

∑
i=1

Ip(s− i+1, i)[1− Ip(s− i+1, i)]

=
1

ms2

s

∑
i=1

Ip(s− i+1, i)I1−p(i,s− i+1), for p ∈ [0,1].

Now, for any ξ ∈ [0,1], we see that

ms2Rp̂M

(
1
2
+ξ

)
=

s

∑
i=1

I 1
2+ξ

(s− i+1, i) I 1
2−ξ

(i,s− i+1)

=
s

∑
j=1

I 1
2+ξ

( j,s− j+1) I 1
2−ξ

(s− j+1, j), putting j = s− i+1

=
s

∑
j=1

I 1
2−ξ

(s− j+1, j) I 1
2+ξ

( j,s− j+1)

= ms2R p̂M

(
1
2
−ξ

)
,

and hence the required proof follows.

In the present situation we compare the performances of the estimators p̂B, p̂∗B
and p̂M by plotting their risk functions in the same co-ordinate axes. The estimator
p̂B performs uniformly better than the estimator p̂M if

Rp̂B(p)≤ Rp̂M(p),

for all p ∈ [0,1] with strict inequality for at least one value of p. Here, we conve-
niently choose Beta(α,β ) distribution as a prior for p, that is,

τ(p) = {B(α,β )}−1 pα−1(1− p)β−1, 0 < p < 1,α > 0,β > 0.

In the numerical computation we take, in particular, (s,m)= (3,50), (5,30), (3,100),
(5,60) and (α,β ) = (1

2 ,
1
2), (2,2), (

1
2 ,3), (3,

1
2). Here, we compute the risk values

for the Bayes estimator p̂B by simulation technique with the help of Metropolis-
Hasting’s algorithm (given in Appendix) and then plot them over the whole range
of p. The plotted risk functions are shown in Figures 1-4 given in Appendix. These
figures show that the risk curves corresponding to Bayes estimators p̂B and p̂∗B com-
pletely lie below the risk curve of p̂M implying that the proposed Bayes estimators
are uniformly better than the estimator based on ML principle so far as the given
parametric combinations are concerned. Again it is observed that the risk curves
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corresponding to Bayes estimators p̂B and p̂∗B are not significantly distinct and hence
we can conclude that these two estimators are more or less equally good.

5. Estimation of Measles Vaccination Coverage Probability

In public health related studies, the virus of measles is regarded as highly epidemic
and is responsible for severe diseases. According to the Medical Dictionary, the
virus of measles infects the lungs at childhood which may cause pneumonia and in
older children it can lead to inflammation of the brain, called encephalitis, which
can cause seizures and brain damage (Perry and Halsey, 2004). As precautionary
measures the proper vaccination is introduced from the very beginning of the child-
hood to acquire the immunity against measles viruses. According to the Integrated
Child Development Services (ICDS) program in India, a child should have received
basic vaccinations (BCG, polio, DPT and measles) in the 12-23 months of their age.

Here, our objective is to illustrate the proposed procedures for estimating the
vaccination coverage of the measles among the children of age group 12-23 months
(the age by which children should have received all basic vaccinations) in India
2005-06. The study data has been taken from the website of the Measure DHS-
Demographic and Health Surveys (DHS) (http://www.measuredhs.com). DHS
provides national and state estimates of fertility, child mortality, the practice of fam-
ily planning, attention to mother and child and access to services for mothers and
children. For this study, data set of National Family Health Survey-III (NFHS-
III,2005-2006) for the year 2005-06 of India is considered. Here, the samples of
DHS are treated as our population of interest and those children who are in the
12-23 months of their age considered as our study population.

The event of receiving vaccination for a child usually depends on awareness of
the child’s mother regarding vaccination. The higher the educational qualification
of a mother during child bearing period, the higher would be the awareness as ex-
pected. Therefore, mother’s educational qualification is used as auxiliary variable
for ranking purpose in ranked set sampling. The observations are obtained through
the following steps.

1. A simple random sample of s2 units is drawn from the target population and
is randomly partitioned into s sets, each having s units.

2. In each of s sets the units are ranked according to the mother’s qualification
{1 = “No education", 2 = “Primary", 3 = “Secondary", 4 = “Higher"}. The
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ranking process could also be based on the individuals’ duration (in terms of
years) of study. Here, samples in different sets are ranked based on mother’s
qualification denoted as (1, 2, 3, 4) and duration (in terms of years) of study.
Obviously, there is a high chance of having ties. Then in that situation the ob-
servations are ordered systematically in the sequence, as discussed by Terp-
stra and Nelson (2005).

3. From the first set, the unit corresponding to the mother with lowest qualifi-
cation (or duration of study) is selected. From the second set, the unit corre-
sponding to the mother with the second lowest qualification is selected and
so on. Finally, from the sth set, the unit corresponding to the mother with the
highest qualification is selected. The remaining s(s− 1) sampled units are
discarded from the data set.

4. The Steps 1 - 3, called a cycle, are repeated m times to obtain a ranked set
sample of size n = ms.

Here, in particular, we take (s,m)= (4,100). Corresponding to each selected mother,
information regarding whether her child is administrated with measles vaccina-
tion or not is collected. Suppose X is the binary response that takes value ‘1’ if
the child is vaccinated and ‘0’ otherwise. With this notation we have the sam-
ple {X[1]1,X[1]2, · · · ,X[4]100} of size 400, where X[r] j takes the values ‘1’ or ‘0’ ac-
cordingly as the jth child in the rth ranking class is vaccinated or not. Obviously,
p[r] is the proportion, in rth class, of children who received the vaccination and
p is the overall proportion of children receiving the vaccine in entire target pop-
ulation. The implementation of the proposed Bayes approach requires assuming
the prior distributions of p[r]’s. Here we use Beta (α,β ) priors with (α,β ) =

(0.5,0.5),(1,1),(2,2),(5,5),(1,2),(2,1) and (5,3). With these parametric com-
binations we compute the estimates p̂B, p̂∗B and p̂M. We also calculate the estimated
relative risk of Bayes estimators w. r. t. p̂M defined by

ρ̂ p̂B =
R̂(p̂M)

R̂(p̂B)

ρ̂ p̂∗B =
R̂(p̂M)

R̂(p̂∗B)

and all computed results are summarized in Table 5.1. From the table, it is observed
that the Bayes estimate of the proportion of children receiving measles vaccine is
very close to that based on ML approach. Also, both the estimates are very close
to the value 58.8%, which is the estimated value of p reported by NFHS-III(2005-
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Table 5.1: Estimates of the proportion and Relative Efficiency

Bayesian approach ML
Symmetric prior Asymmetric prior

Estimate α = 0.5 α = 1 α = 2 α = 5 α = 1 α = 2 α = 5
β = 0.5 β = 1 β = 2 β = 5 β = 2 β = 1 β = 3

p̂B 0.562 0.562 0.562 0.562 0.562 0.562 0.564 0.578
p̂∗B 0.577 0.576 0.575 0.570 0.570 0.580 0.581 0.578
ρ̂ p̂B 2.13 2.02 2.14 2.25 2.37 2.02 2.15
ρ̂ p̂∗B 1.02 1.03 1.05 1.10 1.03 1.04 1.09

06). It is also clear that the proposed Bayes procedure, especially the estimator p̂B,
shows greater efficiency than the corresponding ML based procedure.

6. Concluding Remarks

The present work is concerned with the problem of estimating unknown population
proportion p based on ranked set sample (RSS) drawn from a binary population.
Since the RSS-based likelihood function of p is complicated, the direct applica-
tion of Bayes principle (in the context of Bayesian paradigm) or maximum like-
lihood principle (in connection with classical framework) is not straightforward
for estimating p. In Bayesian framework the RSS-based Bayes estimator does
not have a simple explicit form even if we choose the simplest distribution, i.e.
Uniform(0,1) (≡ Beta(1,1)) as a possible prior for p. The RSS-based likelihood
function of p can easily be expressed in the form of polynomial in p. Thus, under
the assumption of Beta(α,β ) prior for p, the posterior distribution can be shown,
through a routine calculation, to be a mixture of several Beta distributions. Also,
the explicit form of the Bayes estimator is not so convenient from the computa-
tional point of view. Obviously, the posterior distribution does not belong to the
Beta-family and hence Beta(α,β ) prior is not a conjugate prior in this case. In fact,
there does not exist any conjugate prior in standard form due to complexity in the
functional form of RSS-based likelihood of p.

As a natural competitor of the Bayes estimator of p, we have used here a very
common estimator indirectly based on maximum likelihood principle used in find-
ing MLEs of intermediate parameters p[1], p[2], · · · , p[s]. On the other hand, one can
directly use the MLE of p as considered by Tepstra (2004) for comparison purpose.
However, this estimator does not exist in a closed form but can be computed through
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numerical methods. Since our main focus lies in the Bayesian approach of estima-
tion by incorporating available prior information regarding the parameter of interest.
We here consider a commonly used estimator for comparison purpose only.

In Bayesian statistics the selection of the prior distribution is crucial to the anal-
ysis of data because the final conclusion depends on this particular choice. In our
proposed procedure we have considered the Beta prior due to its important features,
viz., proper interpretability according to the model (see Paolino (2001)), less compu-
tational complexity of posterior distribution (see Gupta and Nadarajah (2004)), hav-
ing reasonable reflection of prior uncertainty (see Ferrari and Cribari-Neto (2004)),
capability to extend to higher dimensions (see Pham-Gia (1994)), etc. However,
the Beta-Binomial conjugate analysis may not be adequately robust. Thus, the pre-
cision of the prior is important and the sensitivity analysis regarding the prior is
necessary. Keeping these in mind one can carry out a robust Bayesian analysis us-
ing non-conjugate priors. One such way out might be the use of Cauchy priors after
expressing the likelihood of binary data in terms of its exponentially family form,
and this Cauchy-Binomial model for binary data might be more robust (see Fuquene
et al. (2008)). Several other robust approaches are also discussed in, among oth-
ers, Berger et al. (1994) and Wang and Blei (2015). The consideration of robust
Bayesian approach is beyond the scope of the present work and will be considered
in a separate issue.
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APPENDIX

Algorithm: Metropolis-Hastings algorithm

The purpose of the Metropolis-Hastings (MH) algorithm is to simulate samples from
a probability distribution by utilizing the full joint density function and (indepen-
dent) proposals distributions corresponding to each variable of interest. The steps
of Algorithm mainly consist of three components and are given below:

Initialize x(0) ↑ q(x)
Initialize the sample value for each random variable (this value is often sampled
from the variable’s prior distribution).
for iteration i = 1,2, · · · do

Propose: xcand ↑ q(x(i)|x(i−1))

Generate a proposal (or a candidate) sample xcand from the proposal distribution
q(x(i)|x(i−1))

Acceptance Probability:

α (xcand |x(i−1)) = Min

{
1,

q(x(i)|xcand)π(xcand)

q(xcand |x(i−1))π(x(i−1))

}

u ∼ Uniform (u;0,1)
Compute the acceptance probability via the acceptance function α (xcand |x(i−1))

based on the proposal distribution and the full joint density π(.)

if u < α then
Accept the proposal: x(i)← xcand

else
Reject the proposal: x(i)← x(i−1)

end if
Accept the candidate sample with probability α , the acceptance probability, or re-
ject it with probability 1−α

end for
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Figure 1: Risk curves for the estimators p̂M, p̂B and p̂∗B when s = 3,m = 50 at
different choices of α and β

Figure 2: Risk curves for the estimators p̂M, p̂B and p̂∗B when s = 5,m = 30 at
different choices of α and β
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Figure 3: Risk curves for the estimators p̂M, p̂B and p̂∗B when s = 3,m = 100 at
different choices of α and β

Figure 4: Risk curves for the estimators p̂M, p̂B and p̂∗B when s = 5,m = 60 at
different choices of α and β
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MAPPING POVERTY AT THE LEVEL OF
SUBREGIONS IN POLAND USING INDIRECT

ESTIMATION

Marcin Szymkowiak1, Andrzej Młodak2, Łukasz Wawrowski3

ABSTRACT

The European Survey on Income and Living Conditions (EU–SILC) is the basic
source of information published by CSO (the Central Statistical Office of Poland)
about the relative poverty indicator, both for the country as a whole and at the
regional level (NUTS 1). Estimates at lower levels of the territorial division than
regions (NUTS 1) or provinces (NUTS 2, also called ’voivodships’) have not been
published so far. These estimates can be calculated by means of indirect estimation
methods, which rely on information from outside the subpopulation of interest,
which usually increases estimation precision. The main aim of this paper is to show
results of estimation of the poverty indicator at a lower level of spatial aggregation
than the one used so far, that is at the level of subregions in Poland (NUTS 3)
using the small area estimation methodology (SAE), i.e. a model–based technique
– the EBLUP estimator based on the Fay–Herriot model. By optimally choosing
covariates derived from sources unaffected by random errors we can obtain results
with adequate precision. A territorial analysis of the scope of poverty in Poland at
NUTS 3 level will be also presented in detail4. The article extends the approach
presented by Wawrowski (2014).

Key words: EU–SILC, poverty, direct estimation, indirect estimation, EBLUP,
Fay–Herriot model.

1. Introduction

In modern statistics there is a growing demand for information concerning the qual-
ity of life, especially poverty. This demand is necessitated by a number of social
policy strategies aimed at reducing social and economic disparities. Such activities

1Department of Statistics, Poznań University of Economics and Business, Center for Small Area
Estimation, Statistical Office in Poznań. E-mail: m.szymkowiak@ue.poznan.pl
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4The views expressed in this paper are those of the author(s) and do not necessarily reflect the
policies of the Central Statistical Office of Poland.
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are more and more often initiated and implemented by agencies of local govern-
ment. To achieve these objectives, they require relevant statistical data characteris-
ing the diversification of the population in terms of living conditions at a relatively
low level or for smaller subpopulations (for instance lower level units of territorial
division) and functional areas. Because most regular statistical surveys are based on
relatively small samples of the population and do not guarantee the required quality
when processed using traditional methods of estimation, more advanced methods of
small area estimation should be applied.

The literature devoted to the analysis of poverty using small area estimation
techniques is very rich. One comprehensive source of information regarding the use
of SAE methods for poverty measurement is the book by Pratesi et al. (2016). This
monograph provides a review of SAE methods for poverty mapping and demon-
strates many applications of SAE techniques in real-life case studies. In particu-
lar, the authors pay special attention to advanced methods and techniques which
have been developed recently in the survey data analysis literature devoted to SAE.
This includes, for instance, issues related to small area estimation modelling and
robustness, spatio-temporal modelling of poverty and small area estimation of the
distribution function of income and inequalities. A comprehensive description of
different small area estimation techniques for poverty can also be found in many
recently published articles, see for instance, Molina and Rao (2010), Molina et al.
(2014), Guadarrama et al. (2016). Poverty has also been at the center of inter-
est at many conferences devoted to small area estimation methodology (Jyväskylä
2005, Pisa 2007, Elche 2009, Trier 2011, Bangkok 2013, Poznan 2014, Santiago
2015, Maastricht 2016 and Paris 2017)5. All of this indicates the importance of the
problem of poverty and its status as one of the main trends in small area estimation
methodology.

The article describes an experimental study aimed at exploring the possible use
of SAE tools to obtain efficient estimates of the poverty indicator for Polish regions
for the purpose of a regular production of reliable poverty maps, which would pro-
vide an important source of knowledge about the spatial variation of poverty and
inform decision making in cohesion policies, see. Bedi et al. (2007).

Poverty mapping in Poland has been developing intensively in recent years.
Apart from the study described in this paper, Polish statistics was engaged in ex-
ploring possibilities of estimating some of the Laeken indicators of poverty in the
period 2005–2012, included in the Europe 2020 strategy:

• at–risk–of–poverty and social exclusion (AROPE),

5A full list of conferences on SAE can be found on the website http://sae2017.ensai.fr/
useful-links-2/.
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• at–risk–of–poverty threshold (ARPT),

• indicator of low work intensity in households (LWI),

• indicator of severe material deprivation (SMD).

Work in this field was conducted as part of subprojects created under the Oper-
ational Programme – Technical Assistance financed by the European Commission.
These experimental studies were aimed at estimating these indicators at various ter-
ritorial levels (NUTS1, NUTS 2 and NUTS 3). A variety of statistical methods were
tested: direct and indirect estimators, the Fay–Herriot model, a synthetic taxonomy-
based measure used as an auxiliary variable in estimation, etc. The results of such
studies indicate that relatively efficient estimation is possible at NUTS 1 and NUTS
2 levels but for NUTS 3 units it is much more problematic due to the lower qual-
ity of the most efficient model with optimally chosen auxiliary variables, which are
strongly correlated with the target indicator and as weakly as possible with one an-
other. One possible cause of this problem is the fact that an increase in the number
of observations severely affects the linear correlation, i.e. one can observe a de-
crease in the correlation coefficient as the number of observations increases. Some
attempts were made to assess to what extent increasing the EU-SILC sample would
improve estimation precision.

This paper presents an attempt to estimate the poverty rate6. It is defined as
the percentage of people whose equivalised disposable income (after social trans-
fer) is below the at–risk–of–poverty threshold set at 60% of the national median
equivalised disposable income, CSO (2012). This definition is used in the Euro-
pean Survey on Income and Living Conditions. Data collected in the EU–SILC are
the basic source of information published by CSO about this indicator both for the
country as a whole and at the macro-regional level (NUTS 1). However, nowadays
users of statistical data expect reliable estimates of this indicator for lower levels of
spatial units. To meet this demand, CSO’s Department of Social Surveys and Living
Conditions started cooperation with the World Bank and the Centre for Small Area
Estimation in order to test various techniques of small area estimation for creating
poverty maps at the level of subregions (NUTS 3). The main purpose of this cooper-
ation was to address issues concerning the selection of covariates for the appropriate
model to estimate the poverty rate.

The present paper presents results of an analysis and calculations from the method-
ological, experimental, study. Estimates at lower levels of territorial division than
regions (NUTS 1) or provinces (NUTS 2, in Poland called "voivodships") can be

6Throughout this paper the term ’scope of poverty’ is used interchangeably with the poverty indi-
cator and at–risk–of–poverty rate.
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calculated by means of indirect estimation methods. They are based on informa-
tion from outside the subpopulation of interest, which usually increases estimation
precision. Since the estimation process used in these techniques is model–based,
the indirect estimation methodology poses a challenge for official statistics in many
countries. This paper tries to address this challenge by presenting an attempt to es-
timate the poverty indicator at a lower level of spatial aggregation than the one used
so far, that is at the level of subregions in Poland (NUTS 3).

In the literature devoted to small area estimation methodology different poverty
indicators can be estimated at area level under the design-based, model-assisted or
model-based approach, see. Pratesi et al. (2016). In the simplest case, direct esti-
mates are produced only on the basis of information from one sample survey, while
in the model-assisted or model-based approach the quality and accuracy of survey
estimates can be improved by using auxiliary variables and appropriate models. In
most cases, auxiliary information comes from censuses, administrative registers or
from other surveys. There are many SAE methods which can be applied to estimate
different indicators of poverty. They include direct estimation, the EBLUP based
on the Fay-Herriot area-level model (Fay and Herriot, 1979), the method of Elbers
et al. (2003), the empirical Best/Bayes (EB) method of Molina and Rao (2010),
the hierarchical Bayes (HB) method of Molina et al. (2014) and the M-Quantile
approach of Chambers and Tzavidis (2006). A comprehensive review of most of
these methods can be found in Guadarrama et al. (2016). In this paper, we discuss
advantages and disadvantages of each technique from a practical point of view.

In this article the authors focused on the Fay–Herriot regression model (Fay and
Herriot (1979)), whose parameters and area effects are estimated using the feasible
generalized least squares (FGLS) method (Greene (2003)) and, apart from propos-
ing special models relevant to the Polish statistical reality, extend the methodologi-
cal approach suggested by Quintaes et al. (2011) by analysing the gain in precision
between the direct and indirect estimator.

In Section 2, we describe our estimation model, which is based on the Fay–
Herriot regression, and ways of assessing its precision. Section 3 contains a de-
scription of data sources which can be used to obtain relevant variables required for
an efficient estimation of poverty. In Section 4 we present properties of the final
model, including their quality assessment in terms of spatial variability of residuals
and variation of covariates. Finally, Section 6 includes some concluding remarks.
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2. The model

The task of estimating poverty was conducted using a model–based approach. Con-
sidering the form of available data7, we chose the Fay–Herriot model on account of
its good empirical properties and inherent simplicity. The choice of variables for the
model was motivated by qualitative considerations and was based on the relationship
between the poverty indicator and selected independent variables, using regression.
Whether or not a given variable was to be included in the model depended on model
validity, that is on the degree to which the model reflected the relationship. After
selecting a variable, a comprehensive analysis was conducted to determine whether
the significance level and the sign of the coefficient present next to a given variable
matched the reality. In the course of the study references were made to publications
concerning the labour market and living conditions. Variables were also considered
in terms of their potential to increase the coefficient of determination R2. In other
words, we analysed how much the coefficient of determination increased if a given
variable was added to the model. The second – but even more important – criterion
of selection was a strong link between the target variables and poverty. Because the
assessment of the strength of these relationships was largely subjective, our decision
regarding the final form of the model was based on the opinion of experts. More
details concerning the justification of our choice are given in Section 4.

As mentioned above, we used the Fay-Herriot model to estimate the at-risk-
of-poverty rate in Poland. This model is constructed in two stages, see Pratesi et
al. (2016). In the first stage, the so-called sampling model is used to represent the
sampling error of the direct estimator. Assuming that µd is the variable of interest in
the d-th area and ŷd is a direct estimator of µd , the sampling model can be expressed
as follows:

ŷd = µd + εd , d = 1, . . . ,D, (1)

where D is the number of areas/domains, εd are sampling errors, which, given µd ,
are independent and normally distributed with known variances: εd |µd

iid∼ N(0,ψd).
We assume that ψd is known, design-based variance of direct estimator ŷd , d =

1, . . . ,D. In the second stage, we assume that the true area characteristics µd vary
linearly with p area-level auxiliary variables as follows:

µd = xT
d β +ud , d = 1, . . . ,D, (2)

where xT
d denotes a vector containing the aggregated (population) values of p auxil-

iary variables for area d, β is a vector of regression coefficients, ud are model errors,

7Owing to statistical confidentiality, unit-level data could not be used.
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which are assumed to be independent and identically distributed, ud
iid∼ N(0,σ2

u ) and
the vector ud is independent of the vector εd , i.e. ud⊥εd , d = 1, . . . ,D. Combining
(1) and (2) we obtain a linear mixed model as follows:

ŷd = xT
d β +ud + εd , d = 1, . . . ,D. (3)

The model is mostly used if only data for a given subpopulation are available (Pfef-
fermann (2013)).

Since the sample size in subpopulations (subregions) varies, ud is frequently
heteroskedastic. In such cases, the feasible generalized least squares (FGLS), which
uses an estimated variance–covariance matrix, is more effective than the classic
method of least squares. Under the classic approach to the estimation of regression
model parameters, the random error is assumed to be homoskedastic.

After estimating the vector of regression coefficients using FGLS, the estimator
based on the Fay–Herriot model, given by (3), is the best linear unbiased predictor
(BLUP), which is a weighted mean of the direct and synthetic regression estimator:

µ̂d = γd ŷd +(1− γd)xd β̃ , (4)

where

β̃ (σ2
u ) =

(
∑
d

xdxT
d /(ψd +σ

2
u )

)−1(
∑
d

xd ŷd/(ψd +σ
2
u )

)
, (5)

γd =
σ2

u

σ2
u +ψd

. (6)

After replacing σ2
u by its estimate — σ̂2

u in formulas (5) and (6), we obtain an
empirical best linear unbiased predictor (EBLUP):

µ̂d = γ̂d ŷd +(1− γ̂d)xd β̂ , (7)

where

β̂ = β̃ (σ̂2
u ) =

(
∑
d

xdxT
d /(ψd + σ̂

2
u )

)−1(
∑
d

xd ŷd/(ψd + σ̂
2
u )

)
, (8)

γ̂d =
σ̂2

u

σ̂2
u +ψd

(9)

and σ̂2
u is the variance of the random error of the model and ψd is the direct estimator
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variance for a specific area. As mentioned above, ψd is assumed to be known, but, in
practice, they are estimated from the data. Datta et al. (2005) show that the method
of ψd estimation can affect the mean square error and its bias. The variance σ̂2

u can
be estimated using maximum likelihood (ML) and restricted maximum likelihood
(REML). We used the Bayes approach, which is designed to estimate the uncertainty
of parameters of the between-area variance by integrating over the posterior density
for σ2

u
ψd

in the case of an area-level model (Rao (2003)) and it is implemented in
hbsae R package, see Boonstra (2012).

In equation (9), it can be seen that the direct estimator component has a larger
weight when ψd is small. It means that the EBLUP is (approximately) equal to
the direct estimator when it has desirable precision, or is equal to the synthetic
component otherwise, see Boonstra and Buelens (2011). It is well known from
the literature (Rao (2003)) that this linear combination provides better results than
each of its components on its own.

EBLUP can be also expressed as:

µ̂d = xd β̂ + ûd , (10)

where: ûd = γ̂d(ŷd − xd β̂ ). In equation (10) it can be seen that for unrepresented
subpopulations, estimates of the target variable are obtained only from the regres-
sion model:

µ̂d = xd β̂ .

To calculate the Mean Square Error (MSE) of the EBLUP, we set the following
regularity conditions:

(i) ψd are uniformly bounded,
(ii) sup1≤d≤D xT

d

(
∑

D
d=1 xdxT

d

)−1 xd = O
(
D−1

)
.

Under normality of the errors ud and εd associated with model (3) and the above
regularity conditions, a second order approximation to the MSE is given by:

MSE(µ̂d) = g1,d(σu2)+g2,d(σu2)+g3,d(σu2)+O
(
D−1) , (11)

where:
g1,d(σ

2
u ) = σ

2
u ψd/(σ

2
u +ψd) = γdψd (12)

is the random error component,

g2,d(σ
2
u ) = (1− γd)

2xT
d

(
∑
d

xdxT
d /(σ

2
u +ψd)

)−1

xd (13)
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is the component accounting for the variation of the vector of regression coefficients
in the Fay–Herriot model and

g3,d(σ
2
u ) = ψ

2
d (ψd +σ

2
u )

−3V̄ (σ̂2
u ) (14)

is the random-effect component where V̄ (σ̂2
u ) is the asymptotic variance of the esti-

mator σ̂2
u of σ2

u .
After replacing σ2

u by its estimate – σ̂2
u and γd by γ̂d in formulas (12)–(14) the

estimator of MSE given by (11) can be calculated using equation (15):

mse(µ̂d) = g1,d(σ̂
2
u )+g2,d(σ̂

2
u )+2g3,d(σ̂

2
u ). (15)

The standard error of the EBLUP is, of course, represented by the square root of
mse, given by (15).

A gain-in-precision index (GPI) was also calculated from equation (16):

GPId =

√
ψd√

mse(µ̂d)
, (16)

where:
√

ψd is the direct estimator error,
√

mse(µ̂d) – the error of the estimator
based on the Fay–Herriot model. This index shows how much the estimation error
could be reduced after applying EBLUP in relation to the direct estimator.

In addition to assessing the precision of Fay-Herriot poverty estimates, we cal-
culated empirical bias using the following bootstrap algorithm:

1. Use model (10) to obtain estimates of σ̂2
u and β̂ .

2. Generate a vector ω∗
1∼N(0,1) containing the number of values equal to the

number of domains. Calculate u∗ = σ̂2
u ω∗

1 and θ ∗ = xT β̂ + u∗, where xT

denotes a vector containing the aggregated (population) values of p auxiliary
variables.

3. Generate a vector ω∗
2∼N(0,1) containing the number of values equal to the

number of domains, independently of the ω∗
1 . Calculate e∗ =

√
ψdω∗

2 .

4. Construct bootstrap data θ̂ ∗ = θ ∗+ e∗ = xT β̂ +u∗+ e∗.

5. Fit model (10) to the new independent variable θ̂ ∗ and obtain new bootstrap
estimates of σ̂2∗

u and β̂ ∗.

6. Calculate EBLUP as θ̂ E∗ = xT β̂ ∗+ σ̂2∗
u

σ̂2∗
u +ψd

(θ̂ ∗−xT β̂ ).



STATISTICS IN TRANSITION new series, December 2017 617

7. Repeat steps 2–6 B times. Let θ̂ E∗(b) be the bootstrap EBLUP and θ ∗(b) be
the bootstrap true value obtained in b-th bootstrap replication.

8. Estimated bootstrap bias is given by:

BIAS = B−1
B

∑
b=1

(θ̂ E∗(b)−θ
∗(b)). (17)

Values obtained from equation (17) will be compared with the empirical bias of
the direct estimator.

It is worth noting that in the literature many different extensions of the model
(3) have been proposed. These include a multivariate generalization studied by
González-Manteiga et al. (2008) and models where time and spatial correlations
play a crucial role. The problem of borrowing strength over time was considered
by Choudry and Rao (1989), who extended the basic Fay-Herriot model by taking
into account the impact of time and considering an autocorrelated structure for sam-
pling errors, which for each domain are assumed to follow an autoregressive process
AR(1). More precisely they considered the following model:

ŷdt = xT
dtβ +ud + εdt , d = 1, . . . ,D, t = 1, . . . ,T (18)

where
εdt = ρεd,t−1 + εdt , |ρ|< 1, εdt

iid∼ N(0,ψd). (19)

Esteban et al. (2011) considered a very similar model as in (18):

ŷdt = xT
dtβ +udt + εdt , d = 1, . . . ,D, t = 1, . . . ,T (20)

but the authors assumed that random effects udt follow an AR(1) stochastic process.
The problem of spatial correlation in the data was considered by Singh et al.

(2005), Petrucci and Salvati (2006) and Pratesi and Salvati (2008), who extended
the basic Fay-Herriot model by assuming that area effects ud follow a spatial au-
toregressive process of order 1 or SAR(1). In general, the authors demonstrated that
if there is unexplained spatial correlation in the data, then it is possible to improve
model efficiency by taking into account the fact that data from neighbouring areas
are correlated.

The problem of borrowing strength simultaneously across areas and over time
was considered by Rao and Yu (1994). They proposed the following model:

ŷdt = xT
dtβ +u1d +u2dt + εdt , d = 1, . . . ,D, t = 1, . . . ,T, (21)
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where area effects u1d are constant over time and follow the usual assumptions
adopted in the basic Fay-Herriot model and u2dt are time-varying effects that follow
an AR(1) process and are independent across areas. This model was extended, for
instance, by Marhuenda et al. (2013) by considering spatial correlation in domain
random effects u1d , which follow a SAR(1) process. A very comprehensive review
of different extensions of the basic Fay-Herriot model is also provided in Pratesi et
al. (2016), where a new modification of the model (21) with moving average MA(1)
of correlated random effects is also proposed.

Extensions of the Fay-Herriot model which allow for spatial correlation assume
spatial stationarity, i.e. parameters of the associated regression model for the small
area characteristic of interest do not vary spatially. Chandra et al. (2015) proposed
an extension of the Fay-Herriot model, which accounts for the presence of spatial
nonstationarity, i.e., where parameters of this regression model vary spatially.

It is worth noting that in the basic Fay-Herriot model, it is assumed that direct
survey estimators are a linear function of covariates, an assumption which, in prac-
tice, may not hold. As a consequence, this may lead to biased estimators of the
small area parameters. A remedy for this inconvenience may be a semiparamet-
ric specification of the Fay-Herriot model proposed by Giusti et al. (2012), which
allows nonlinearity in the relationship between the response variable and auxiliary
variables by using penalized splines.

The basic Fay-Herrtiot model discussed in this article has both good and bad
properties. According to Guadarrama et al. (2016), the advantages (a–d) and dis-
advantages (e–i) of using the Fay-Herriot model, also in the context of poverty,
include:

a) the Fay-Herriot estimator automatically borrows strength for areas where it is
necessary,

b) if parameter γd > 0, then it makes use of the sampling weights through the
direct estimator ŷd , thus it is design-consistent (as nd → ∞),

c) because it relies on aggregated data, it is not very much affected by isolated
unit-level outliers,

d) it only requires area-level auxiliary information and therefore avoids confi-
dentiality issues associated with micro-data,

e) the sampling variances ψd are assumed to be known, but in practice they have
to be estimated,

f) the number of observations used to fit the Fay-Herriot model is equal to the
number of areas, which, in most cases, is relatively small; as a result, model
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parameters are estimated with less efficiency compared to unit-level models,
where the number of observations is much greater than the number of areas,

g) it requires normality of µd and εd for MSE estimation; it is very difficult to
fulfil this assumption for complex poverty indicators,

h) in order to estimate several indicators that depend on a common continuous
variable, it is necessary to fit a different model and search for good covariates
for each indicator,

i) after fitting the model at the area level, small area estimates µ̂d cannot be
further disaggregated for subareas/subdomains within the areas unless a new
good model is found at that subarea level.

Finally, although there are many extensions of the classical Fay-Herriot area-level
model in the literature, we decided to apply the basic one. For one thing, we could
only use area-level data. Another important factor was the relative simplicity of
this model, which is especially important in the context of official statistics, where
the use of complex models is still limited (Brakel and Bethlehem, 2008). This is
also true of official statistics in Poland, which generally relies on more traditional
design-based approaches. Finally, the basic assumptions of the Fay-Herriot model
were fulfilled, which prompted us to apply it to the estimation of poverty rate in
Poland across subregions.

3. Basic sources of data required for estimation

The model constructed in the study was based on data from a few statistical sources.
The only variable (response variable) taken from the EU–SILC survey was the
poverty indicator, since the use of other variables as independent variables would
only have contributed to a higher random error and generated biased estimates of β

parameters in the model. For this reason, explanatory variables came from the 2011
National Census of Population and Housing and the Local Data Bank data from
2005–2011.

The amount of random error depends on the sample size, the amount of variabil-
ity associated with a given variable and the sampling scheme used. In the case of a
full census, there is no random error. However, as a mixed-mode census, the 2011
National Census of Population and Housing included a 20% sample of Poland’s
population, i.e. about 8 million people were surveyed. In contrast, the sample size
in the 2011 EU-SILC survey was only 28,305 respondents, corresponding to 0.075%
of the total. The level of random error in both cases is incomparable, and with re-
spect to the survey part of the 2011 National Census of Population and Housing, for
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general cross classifications with large sample sizes, can be regarded as negligible.
The sample size in subregions in the 2011 National Census of Population and Hous-
ing ranged from 41,014 respondents (the city of Szczecin) to 216,923 (the region
of Ostrołęka–Siedlce). For example, for the variable the percentage of single people
aged over 25 by subregion, the coefficient of variation ranged from 0.66% to 1.48%,
which is a very low value. However, in the estimation theory a variety of models
that account for estimation errors in auxiliary variables have been discussed. For
instance, Buonaccorsi (1995) considered a modification of the estimation models
and discussed the question when to correct the model by the measurement error and
what method of estimating the standard deviation of the prediction to use in this
situation. He justified the necessity of such corrections especially when the MSE
of estimates of covariates varies. Moreover, Ybarra and Lohr (2005) proposed the
best measurement error estimator and discussed some of its asymptotic properties.
They concluded that if MSEs of auxiliary variables are larger, the target indicator is
underestimated. The application of the measurement error estimation can improve
the quality of final estimates expressed in terms of their MSE, but – on the other
hand – the estimator of the variance of the model error is often greater. Their results
imply that if estimators for auxiliary variables are unbiased, have the least possible
variance and are based on relatively large samples, then their errors have no sig-
nificant impact on the final quality. This fact and properties of our data justify the
assumption of negligibility of such errors for covariates.

In order to build the final model at the level of subregions, we considered the
following variables:

• demographic information, including population structure in terms of age, sex,
education level and marital status;

• division into urban and rural areas;

• economic activity status: the number of economically active, employed, un-
employed in a given population;

• housing infrastructure: dwelling size per person, access to electricity, sewer-
age system, central heating, gas, shower, bathtub;

• household indicators: number of employed persons, unemployed, economi-
cally active (aged 15–64), number of people in a household, number of rooms
per person, the level of education of household members;

• budgets of territorial units;

• road infrastructure;
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• environmental conservation: gas and particle pollution;

• health care and social welfare, including pre–school care;

• migration balance for specific years;

• territorial division: peripheral subregions; metropolitan cities, former provin-
cial capitals, area of subregions, cities with populations exceeding 100,000.

A total of over 200 independent variables were considered and analysed. The vari-
ables were then used to construct the model, with special emphasis on determinants
presented in the publication by CSO (2013). Apart from data collected during the
2011 National Population and Housing Census in Poland, we investigated covari-
ates with similar properties from many other sources, e.g. Local Data Bank of
the Central Statistical Office(https://bdl.stat.gov.pl), containing data at var-
ious local levels compiled from such primary sources as the Head Office of Land
Surveying and Cartography, the Polish Population Register (PESEL), Polish Tax
Register (POLTAX), reports provided by register offices and provincial courts, etc.
During the selection of variables various models of verification of regressors were
applied: a multiple linear model with the control of the coefficient of determina-
tion and Student’s t–test as well as stepwise regression based on the forward and
backward approach, where choice/elimination of variables is made in subsequent
steps according to optimization of the F test. To achieve this objective, we relied on
the approach developed by the World Bank in cooperation with national statistical
institutes of numerous European countries to estimate poverty at the NUTS 3 level
or lower (Bedi et al. (2007)).

4. The model and its properties

If the dependent variable is subjected to arcsin square-root transformation, esti-
mates will be included in [0;1] interval and variance will be stabilised (Burgard
et al. (2015)). After applying this approach to direct estimates of the poverty rate at
subregions level in Poland, the distribution of target variable was less skewed (from
0.83 to 0.49). However, the obtained model was only slightly better than the model
based on raw data — a very small increase in R2. It is worth noting that the variance
of the direct estimator at subregion level does not vary considerably. Moreover,
since this model was intended for official statistics, the use of simple techniques
was preferred. The use of raw data has yet another advantage — β coefficients are
easy to interpret.

The problem of the optimal selection of correlates of poverty is widely discussed
in the literature. For example, Bedi et al. (2007) discuss the per capita consumption



622 M. Szymkowiak, A. Młodak, Ł. Wawrowski: Mapping poverty...

in households. However, they use this variable only at the national level. In contrast,
we deal with much lower territorial units, for which such information is unavail-
able8. This problem was in some sense confirmed by Chandra et al. (2016), who
investigated possibilities of estimating household consumption in Italian subregions
– the final CVs of some estimates exceeded 50% and in extreme cases were even
several times greater. A more interesting collection of correlates (for Italian NUTS
3 provinces) was proposed by Quintano et al. (2007) – their model uses several
demographic variables, Gross Domestic Product (GDP), Growth Enterprises Rate
and four binary variables determining the macro-region which these provinces are
located in. It is worth noting that their approach is mainly based on GDP and leaves
out some important aspects of living conditions, which cannot be fully reflected by
GDP. A much poorer set of covariates was considered by Morales et al. (2015) for
estimating poverty in Spanish provinces – it consists of only three variables: age
group 50–65, secondary education completed and unemployed persons, but uses an
interesting method of estimation based on some natural partitioning of spatial units.
Salvati et al. (2014) used some key household characteristics as poverty covariates:
mean income, percentage of divorced households, ownership of the dwelling where
the household lives and – depending on the region – ratio of widowed to married
households and the percentage of households with an employed person. These vari-
ables were used only for large regions.

The final model included 6 explanatory variables, which are listed below, to-
gether with their sources given in round brackets:

• the percentage of single people aged over 25 (2011 National Population and
Housing Census);

• the number of rooms per one household member (2011 National Population
and Housing Census);

• the percentage of households with a bathroom or shower (2011 National Pop-
ulation and Housing Census);

• the percentage of households with two persons aged over 25 with no more
than vocational education (2011 National Population and Housing Census);

• population density (it is a ratio of the population to the area of a given spatial
unit: population data were derived from the 2011 National Population and

8These data are collected only during the Household Budget Survey, where the sample size is too
small to ensure the sufficient quality of estimates at this level.
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Housing Census, and data about the area from the Local Data Bank – the
Head Office of Land Surveying and Cartography (as of 31 December 2011))9;

• the ratio of people deregistered to the number of people registered for perma-
nent residence in the subregion (Local Data Bank: based on the National Cen-
sus and the PESEL register, reports provided by register offices and provincial
courts (as of 31 December 2011)).

It was observed that as the percentage of single people aged 25+ in a subre-
gion increases, the poverty indicator increases as well. On the other hand, with
the increasing number of rooms per one household member and the rising percent-
age of households with a bathroom, the poverty indicator gradually decreases. It
was also observed that the poverty indicator was positively correlated with the per-
centage of households with two persons having no more than vocational education.
However, the direction of this correlation is ambiguous, i.e. without a detailed anal-
ysis it is hard to determine whether poverty is caused by the low level of education
or vice versa (Haughton and Khandker (2009)). Subregions with lower population
density and a higher ratio of people deregistered to the number of people registered
for permanent residence exhibited a higher poverty rate. More precisely, low pop-
ulation density is a key feature of rural or deindustrialized areas, where poverty is
naturally higher. On the other hand, larger than average population density could
also contribute to an increase in poverty, but only in overpopulated cities, where sus-
tainable development of population cannot be achieved (it is the classical definition
of overpopulated areas – see, e.g. Kamaraj et al. (2014)). However, this problem
currently does not exist in Poland. Another phenomenon positively correlated with
poverty is intensive emigration from a given area – if there is no other, e.g. polit-
ical, reason – owing to a high risk of poverty (caused by, e.g. insufficient number
of workplaces). Inversely, high immigration indicates that the recipient region is
attractive for incoming people who want to improve their standard of living.

The model based on these variables explained 60% of the variation in the poverty
indicator. Table 1 shows a summary of estimation results obtained by applying the
model based on the regression dependence of the poverty indicator on the explana-
tory variable and the assessment of its quality. We present the adjusted coefficient
of determination R2, Fisher’s test and estimates of particular regression coefficients
with relevant standard errors, t–statistics and its ex post significance level (p–value).

9More precisely, a binary variable was created, taking the value of 1 if the subregion’s population
density was below the 33rd percentile of the population density distribution for all subregions, or
0 otherwise. The variable was used to identify subregions with low population density. If a given
subregion is in the group of subregions with population density below 33rd percentile of population
density distribution in subregions, then it is reasonable to suppose that it will negatively affect the
at–risk–of–poverty indicator.
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The overall quality of this model seems to be high. The degree of determination
is quite satisfactory, as indicated by the high value of the F–test statistic showing
that the vector of β coefficients is significant.

Table 1. The final model – diagnostics

σ2
u 0.0017 F–statistic 16.96

Model Adj.R2 59.56 DF 59
Coefficient Standard error t–statistic p–value

Intercept 0.7437 0.2239 3.32 0.0015 **
The share of households
with bath or shower

-0.7854 0.1606 -4.89 0.0000 ***

The percentage of single
people (aged 25+)

1.3958 0.5209 2.68 0.0095 **

The number of rooms
per one person

-0.1464 0.0768 -1.91 0.0614 .

The share of households
with two persons having
no more than vocational
education

0.3031 0.1903 1.59 0.1166

The ratio of people
deregistered to the num-
ber of people registered
for permanent residence

0.0199 0.0327 0.61 0.5458

Population density
(lower than 33rd per-
centile)

0.0187 0.0153 1.22 0.2285

Significance codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Three covariates – the share of households with two persons with not more than
vocational education, the ratio of people deregistered to the number of people reg-
istered for permanent residence and population density (lower than 33rd percentile)
– are statistically less significant than the others, but their information value from
the point of view of the target estimation is high. That is, a low level of educa-
tion is usually one of the main factors contributing to increasing the risk of poverty.
The relevance of the level of migration and population density was presented ear-
lier. Elimination of such covariates would significantly deteriorate the quality of the
model. Hence – according to our experience and following the advice of specialists
from the World Bank – we retained them in the model. The share of households
with a bath or shower and the number of rooms per person are negatively correlated
with the poverty indicator (the higher they are, the lower the risk of poverty).
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4.1. Model checking

The requirement for applying the Fay-Herriot model is that a number of assump-
tions, mainly concerning normality, should be satisfied. This part of the paper is
dedicated to model checking. Firstly, the results were analysed to check for non-
normality of residuals and outliers — Figure 1.
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Figure 1. Q-Q plot of Fay-Herriot model residuals and area effects

If the residuals are normally distributed, the dots will be plotted along the line.
As can be seen in Figure 1, the dots are very close to the line but there are two
evident outliers (standardized residual more than 3). These values are connected
with Tarnowski and Gorzowski subregion. Nonetheless, the Pearson correlation
coefficient is quite high and equals ρ = 0.94. It must be emphasized that each
residual represented by one point on the plot has a different variance (ψd). The
distribution of residuals and area random effects in the Fay-Herriot model seems
to be normal. This is confirmed by the Kolmogorow-Smirnov normality test with
p-value equal to 0.575 for residuals and 0.438 for area effects, which means that
there is no evidence against the null hypothesis.

We also tested multicollinearity and homogeneity of variance. Variance In-
flation Factors are less than 2 for all independent variables, so there is no multi-
collinearity.
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5. Results of estimating the at–risk–of–poverty rate

The final estimates of the at–risk–of–poverty rate were calculated using the empiri-
cal best linear unbiased predictor EBLUP expressed by the equation (7). Estimates
of the at–risk–of–poverty rate based on the Fay-Herriot model and covariates from
Table 1 at NUTS 3 level are presented in Figure 2.

Figure 2. The poverty indicator at the level of subregions based on the final model
shown on a 7–class color scale

The results reveal a strong territorial variation in the poverty indicator. The car-
togram shows that Poland can be divided into two parts: Central and Eastern Poland
on the one hand, and Western Poland, on the other. Western Poland is characterized
by a much lower percentage of poor people than Central and Eastern Poland.

According to CSO data, the poverty indicator for Poland based on the EU-SILC
survey amounts to 17.7% (CSO (2012)). Estimates presented in this paper provide
information about the scope of poverty in Poland at the level of subregions (NUTS
3 - 66 units). So far, poverty statistics have not been published at this level of ag-
gregation. A preliminary analysis of the poverty map reveals a difference between
Central and Eastern Poland (with a higher poverty rate) and Western Poland, char-
acterised by a lower scope of poverty. The highest percentage of poor persons in
the population (at least 29%) was observed in 4 subregions located in Lubelskie
province (3 subregions), and Świętokrzyskie province (1 subregion). On the other
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hand, the lowest level of poverty (below 9%) can be observed in 5 major cities (with
the exception of Łódź), which constitute separate subregions, i.e. in Warszawa,
Kraków, Tri–City (Gdańsk, Gdynia and Sopot), Wrocław and Poznań.

The highest at–risk–of–poverty rate (the poverty indicator over 29%) is es-
timated for people living in households located in 4 subregions in the province
of Lublin (the subregions of Biała Podlaska, Puławy, and Chełm–Zamość) and
Świętokrzyskie (the subregion of Sandomierz–Jędrzejów). The lowest values of
the poverty indicator can be observed in big cities (with the exception of Łódź at
14.2%). The poverty rate in Warszawa was estimated at the level of 6.3%, followed
by the Tri–City (Gdańsk, Gdynia and Sopot) subregion (7.4%) and the subregion
of Wrocław (7.5%), Poznań (8.5%) and Kraków (8.7%). It should also be noted that
most subregions surrounding big cities exhibit significantly lower levels of poverty
(below 13%) than other subregions in the same province.

Detailed information about direct estimates, their standard errors, EBLUP esti-
mates and their standard errors and GPI can be found in Table 2 in the appendix. In
the table estimates of the poverty indicator obtained by means of the direct estimator
are compared with those generated by the model using equation (7) for particular
subregions ordered according to code values used in the territorial units register. In
addition, it presents the gain-in-precision index expressed as a ratio of the standard
error of the direct estimator to the standard error of the EBLUP estimator given
by equation (16), showing the number of times the standard error was reduced by
the model–based estimator in comparison with the direct estimator.

It is interesting that the gain-in-precision index is usually smaller for highly–
urbanized areas (Warszawa, Kraków, Łódź, etc.) or areas located within func-
tional zones of large cities (e.g. Warszawski wschodni and Warszawski zachodni
subregions). Conversely, the largest values of the GPI are achieved for regions
with the prevalence of agriculture and a low level of industrialization (Przemyski,
Szczeciński, ełcki, etc.), where the poverty indicator is relatively high. This can be
associated, firstly, with the obviously greater representation of large cities and their
surroundings in the sample and, secondly, with the efficient choice of covariates in
the final model.

Figure 3 is a cartogram showing differences between estimates of the at–risk–
of–poverty rate obtained by the direct and EBLUP estimator. It was used to analyze
the estimation results obtained using different estimators and find possible system-
atic patterns. As can be seen, the distribution of residuals does not reveal systematic
spatial patterns.

Another aspect worth analysing is whether the differences between direct and
EBLUB estimates are significant. The result of the classical t–test is 1.63 (p–
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value=0.1082). In other words, the hypothesis that the expected value of the dif-
ference is zero cannot be rejected. However, the value of the pooled F–test is 1.63
(p–value=0.0509). In other words, for the ex ante significance level greater than
0.051, the variances can be regarded as different. Alternatively, we can perform
the Satterthwaite’s or Cochran’s test, but they give similar – and even stronger –
results in the classical case (their p–values are slightly greater than 0.48). These
tests indicate that comparisons based only on point estimates, like those performed
in this case, could not express all important differences, but analysis of variability
can exhibit them more clearly.

Figure 3. Differences between estimates of the poverty indicator obtained by
means of the direct and EBLUP estimators

Further analysis focuses on bias and standard errors of the estimates. Its results
are presented in Figure 4. Bias estimation was based on the bootstrap procedure
described in Section 2 with B = 500 replicates. The left panel of Figure 4 shows
the spread of the EBLUP estimator for unplanned domains is larger than that of
the direct estimator. Nevertheless, mean bias of direct estimates is equal to 0.01,
compared to -0.03 for the Fay-Herriot model. It is clear from the right panel of
Figure 4 that the EBLUP estimator is significantly more efficient than the direct
one.
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Figure 4. Bias and standard errors of the estimates of the poverty rate.

6. Conclusion

The study described in the article shows that given a carefully selected set of co-
variates that come from sources which are either not burdened with random error
(e.g. administrative registers) or where this kind of error is very low (for instance
censuses), it is possible to construct efficient models of the composite EBLUP es-
timator, which provide reliable estimates at lower levels of aggregation than those
currently available. Although there are many possible ways of building such mod-
els, the selection of the final model can be optimized on the basis of various impor-
tant criteria determined by the objectives of the study and properties of the depen-
dent variable and explanatory variables as well as correlations between them. In our
case, we considered cause–effect relations, the degree and precision of determina-
tion of dependence of the poverty indicator on explanatory variables, their informa-
tion value and the quality of estimates obtained using EBLUP with the Fay–Herriot
model based on these covariates. It is worth noting that in the case of EBLUP,
weights associated with the direct estimator were relatively high and the variation
in EBLUP estimates was significantly lower than in the case of the direct estimator.

Therefore, our model can be efficiently applied in statistical practice. It gives
much more precise estimates of poverty based on covariates, which can be treated
as indicators; as a result, not only can they be regarded as high–quality statistical
outputs but can also be used as a reliable criterion of assessing comparability of
the poverty indicator over time and across areas (Młodak (2013)). However, one
should remember that our model – like any econometric model – is a simplification
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of reality and hence there is a risk that under some circumstances estimates of the
at–risk–of–poverty rate may not reflect the actual status in this respect. Therefore,
its efficiency should be verified taking into account specific characteristics of the
social and economic situation in areas of interest. Nevertheless, in general, this
approach seems to be better than other similar attempts.
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Appendix – results

Table 2. Estimated scope of poverty (in %) together with values of the standard
error (in percentage points).

Subregion (NUTS 3) Direct Standard EBLUP Standard Precision
estimate error estimate error gain

Jeleniogórski 15.7 3.4 17.1 1.7 2.00
Legnicko–Głogowski 14.4 3.8 14.5 1.6 2.34
Wałbrzyski 15.3 2.9 20.5 1.9 1.55
Wrocławski 11.3 3.2 12.6 1.6 1.96
City of Wrocław 6.2 1.9 7.5 1.4 1.30
Bydgosko–Toruński 11.5 2.9 12.1 1.5 1.98
Grudziądzki 26.1 4.4 22.9 1.9 2.30
Włocławski 18.3 3.9 22.6 1.9 2.08
Bialski 35.2 6.0 29.4 2.2 2.76
Chełmsko–Zamojski 34.7 3.9 30.2 2.1 1.86
Lubelski 24.0 3.9 18.5 2.1 1.86
Puławski 35.4 4.9 29.5 2.1 2.33
Gorzowski 31.0 6.1 16.4 2.2 2.79
Zielonogórski 21.7 4.2 17.7 1.8 2.27
Łódzki 14.1 3.5 15.1 1.8 1.92
City of Łódź 13.9 2.9 14.2 1.8 1.59
Piotrkowski 23.6 3.7 21.6 1.8 2.02
Sieradzki 21.5 4.3 24.4 1.8 2.38
Skierniewicki 21.5 4.5 23.4 1.8 2.48
Krakowski 17.7 3.9 17.4 2.0 1.99
City of Kraków 8.4 2.4 8.7 1.5 1.57
Nowosądecki 28.8 4.7 23.2 2.3 2.05
Oświęcimski 12.0 3.2 14.3 1.6 2.03
Tarnowski 40.9 5.5 24.6 2.6 2.12
Ciechanowsko–Płocki 18.2 3.6 21.3 1.8 2.06
Ostrołęcko–Siedlecki 21.1 3.4 25.7 1.8 1.87
Radomski 23.5 3.8 24.5 2.0 1.93
City of Warszawa 6.2 1,3 6.3 1.1 1.16
Warszawski wschodni 12.8 2.8 14.4 1.7 1.68
Warszawski zachodni 10.8 2.1 10.3 1.4 1.47
Nyski 12.2 3.4 16.5 1.8 1.86
Opolski 14.2 3.7 11.5 1.8 2.01
Krośnieński 25.9 5.1 24.1 1.9 2.73
Przemyski 28.6 6.1 26.1 2.1 2.96

continued on the next page
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Subregion (NUTS 3) Direct Standard EBLUP Standard Precision
estimate error estimate error gain

Rzeszowski 14.7 3.2 18.0 1.7 1.85
Tarnobrzeski 19.7 4.3 20.9 1.8 2.37
Białostocki 12.0 4.2 13.4 1.7 2.50
Łomżyński 21.4 5.2 24.6 2.1 2.51
Suwalski 18.5 7.5 22.2 1.9 3.87
Gdański 11.0 2.9 11.9 1.7 1.75
Słupski 29.7 4.8 20.8 2.1 2.27
Starogardzki 17.3 4.2 22.0 1.8 2.30
Tri–City∗ 13.3 3.6 7.4 1.9 1.85
Bielski 10.5 2.2 11.1 1.5 1.51
Bytomski 24.1 5.3 13.9 1.9 2.71
Częstochowski 15.2 3,2 14.6 1.6 2.03
Gliwicki 13.4 3.8 14.1 1.7 2.20
Katowicki 13.6 2.6 14.6 1.6 1.66
Rybnicki 10.1 2.0 10.4 1.6 1.25
Sosnowiecki 9.5 2.1 10.2 1.5 1.43
Tyski 10.3 2.9 9.9 1.6 1.85
Kielecki 22.2 3.5 21.3 1.8 1.98
Sandomiersko–Jędrzejowski 34.0 5.9 29.8 2.0 2.91
Elbląski 17.6 4.0 20.7 1.8 2.21
Ełcki 17.5 6.3 20.8 1.8 3.39
Olsztyński 14.8 3.4 17.2 1.8 1.89
Kaliski 17.5 3.5 16.7 1.7 2.11
Koniński 21.3 3.8 19.4 1.7 2.20
Leszczyński 18.0 5.1 17.0 2.2 2.31
Pilski 21.6 5.7 19.8 1.9 2.97
Poznański 13.4 3.8 11.0 1.9 1.98
City of Poznań 7.7 3,1 8,5 2,0 1,58
Koszaliński 21.9 4.6 16.6 2.0 2.32
Stargardzki 17.3 8.3 18.7 2.1 4.03
City of Szczecin 11.6 4.1 9.6 1.7 2.38
Szczeciński 16.5 6.6 12.1 1.8 3.73
Mean 18.4 4.0 17.6 1.8 2.17
Standard deviation 7.6 1.3 6.0 0.2 0.57
Minimum 6.2 1.3 6.3 1.1 1.16
Lower quartile 12.9 3.2 12.8 1.7 1.86
Median 17.4 3.8 17.2 1.8 2.04
Upper quartile 21.9 4.7 21.9 2.0 2.36
Maximum 40.9 8.3 30.2 2.6 4.03

∗ Tri–City is a metropolitan area in Poland consisting of three cities: Gdańsk, Gdynia and
Sopot.
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A NEW ESTIMATOR OF MEAN USING  

DOUBLE SAMPLING 

Kalyan Rao Vadlamudi1, Stephen A. Sedory, Sarjinder Singh 

ABSTRACT 

In this paper, we consider the problem of estimation of population mean of a 

study variable by making use of first-phase sample mean and first-phase sample 

median of the auxiliary variable at the estimation stage.  The proposed new 

estimator of the population mean is compared to the sample mean estimator, ratio 

estimator and the difference type estimator for the fixed cost of the survey by 

using the concept of two-phase sampling.  The magnitude of the relative 

efficiency of the proposed new estimator has been investigated through 

simulation study. 

Key words: Two-phase sampling, relative efficiency, analytical and empirical 

comparison. 

1.Introduction 

Consider a population   consisting of N  units. Let ),( ii xy , Ni ,...,2,1  

be the values of the study variable Y and auxiliary variable X  for the ith unit in 

the population.   

Let  
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N
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1
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             (1.1) 

and  
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be the population means of the study and auxiliary variables respectively. Survey 

statisticians are often interested in estimating the population mean Y  of the study 

variable. It is also well known that if the population mean X  of an auxiliary 

variable is known then it can be used to improve estimation strategies in survey 

sampling. Examples of such estimators are the ratio estimator due to Cochran 
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(1940) and the linear regression estimator due to Hansen, Hurwitz and Madow 

(1953).   

If such auxiliary information of the population mean X  is not known or 

complete auxiliary information is not known, then it can be relatively cheaper to 

obtain information on the auxiliary variable by taking a large preliminary sample 

for estimating population mean of the auxiliary variable to be used at the 

estimation stage.  In other words, in the case of single auxiliary variable ,X  if the 

population mean X  of the auxiliary variable is unknown then we consider taking 

a preliminary large sample of m  units by using simple random and without 

replacement sampling (SRSWOR) from the population of N  units.  In the sample 

1s  of m  units, we observe only the auxiliary variable ix  , mi ,...,2,1 . From 

the given first-phase sample 1s  of m  units, we select another subsample 2s  of n  

units by using SRSWOR sample.  In the sample 2s , we measure the ordered pairs 

),( ii xy , ni ,...,2,1 of the study and auxiliary variables.  Then an unbiased 

estimator of the population mean X  based on the first-phase sample information 

as the sample mean is given by: 
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            (1.3) 

The unbiased estimators of the population means Y  and X  of the study and 

auxiliary variables based on the second-phase sample information are, 

respectively, given by: 
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Neyman (1938) invented this sampling technique called double sampling or 

two-phase sampling, and later work related to this scheme is extensively reviewed 

in Singh (2003). It leads to ratio and regression type estimators of the population 

mean Y in two-phase sampling as: 

 











n

m
n

x

x
yyrat(d)           (1.6) 

and 

  nmn xxyy  reg(d)        (1.7) 

 



STATISTICS IN TRANSITION new series, December 2017 

 

639 

The variances of the sample mean, ratio and regression type estimators are, 

respectively, given by; 
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To our knowledge, the pioneer contributors, to the problem of estimating 

median, are Kuk and Mak (1989) by proposing very clear estimators of median in 

the presence of auxiliary information. Singh, Joarder and Tracy (2001) extended 

their idea to the situation of median estimation in two-phase sampling. The 

importance of double sampling and improvements on the estimation of population 

mean can also be seen in several publications by Vishwakarma and Kumar 

(2015),  Vishwakarma and Gangele (2014), Vishwakarma and Singh (2011), 

Amin et al. (2016), and Sanaullah et al. (2014). However, none of these papers 

deal with the situation of making use of estimator of median of the auxiliary 

variable at the estimation stage of population mean of the study variable in two-

phase sampling. This motivated the authors to think on these lines if some 

improvements can be seen by making the use of first-phase median of the 

auxiliary variable. 

In the next section, we introduce a new estimator of the population mean in 

two-phase sampling which makes use of first-phase sample mean and sample 

median of the auxiliary variable. 

2. Estimator 

Let 
*ˆ
xM  be the median of the auxiliary variable X  based on the first phase 

sample 1s  of m  units. Let xM̂  be the median of the auxiliary variable X  based 

on the second phase sample 2s  of n  units.   
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Suppose      mxxx ,...,, 21  are the x  values of first-phase sample units in the 

ascending order.  Further, let 1t be an integer such that    111  txt XMX  and 

let ntp 11   be the proportion of X  values in the first phase sample that are 

less than or equal to the median value ,xM  an unknown population parameter.  If 

1p̂  is a predictor of ,1p  the first-phase sample median 
*ˆ
xM  can be written in 

terms of quintiles as  ,ˆˆ
1pQx  where .5.0ˆ1 p  

Suppose      nxxx ,...,, 21  are the x  values of second-phase sample units in 

the ascending order.  Further, let 2t be an integer such that 

   122  txt XMX  and let ntp 22   be the proportion of X  values in the 

second phase sample that are less than or equal to the median value ,xM  an 

unknown population parameter.  If 2p̂  is a predictor of ,2p  the first-phase 

sample median xM̂  can be written in terms of quintiles as  ,ˆˆ
2pQx  where 

.5.0ˆ 2 p  

Now we define a new estimator of the population mean Y  in two-phase 

sampling as: 
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where  
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1  and 

*
2  are unknown partial regression coefficients to be determined 

such that the variance of the estimator is minimum. 

It may be worth pointing out that the proposed estimator kaly  is an extension 

of the recent estimator of due to Lamichhane, Singh and Diawara (2015) from 

single-phase sampling to two-phase sampling. 

To study the asymptotic properties of the proposed estimator, kaly  , let us 

define the following error terms: 
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Note that we used the following main result from Kuk and Mak (1989) in 

deriving the variance and co-variance expressions for the sample means and 
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sample median, that is, if xF  be the cumulative distribution function of X , then 

the sample median can be approximated as: 
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The new estimator kaly  in terms of ,i 4,3,2,1,0i can be written as  
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Now we have the following theorems: 

Theorem 2.1. The new proposed estimator kaly  is an unbiased estimator of the 

population mean Y . 

Proof.  Taking expected value on both sides of (2.2), we get 
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Thus the new estimator kaly  is an unbiased estimator ofY  and it proves the 

theorem. 

Theorem 2.2. The minimum variance, to the first order of approximation, of the 

new proposed estimator kaly  is given by 
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Proof. By the definition of variance, the variance of the unbiased estimator kaly  

is given by 
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On substituting (2.6) – (2.10) into (2.5), we have 
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On differentiating )( kalyV  with respect to 
*
1  and  

*
2  and each equating to 

zero, we have,  
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On solving the system of linear equations, the optimum values of 
*
1  and  

*
2  are given by 
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On substituting the optimum values of 
*
1  and  

*
2 , the minimum variance is 

given  by  
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which proves the theorem. 

 

Remark:  It may be worth pointing out that the replacement of 
*
1  and 

*
2  with 

their consistent estimates lead to a new estimator of the population mean in two 

two-phase sampling which has same mean square error up to the first order of 

approximation as the minimum variance in (2.14). Such changes do not affect the 

results up to the first order of approximation. ((6.1) and (6.2) in Singh, Singh, and 

Upadhayaya (2007)). 

3. Comparison of different estimators 

Note that  

      025.0 22 
xXMx SS  
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4

1
2

2



x

xXM

S

S
              (3.1) 

Thus the proposed new estimator kaly  is always more efficient than the 

sample mean, ratio and the regression type estimator in two-phase sampling.  

It may be worth pointing out that the final minimum variance of the proposed 

estimator is free from the value of )( xx Mf , hence from computational point. 

In the next section, we focus on the cost analysis in two-phase sampling because 

it is considered as one among the list of cost effective sampling schemes in survey 

sampling.   

4. Cost Analysis 

In this section we consider comparison of different estimators with cost 

aspects. Let 0C  be the overhead cost, 1C  be the cost of information from one unit 

in the first phase sample; and 2C  be the cost of information from one unit in the 

second phase sample. Note that the value of 1C  is always smaller than that of 2C

. Thus the total cost function is given by 

 210 nCmCCC            (4.1) 

Now we have the following results 

For the fixed cost C  of the survey, the minimum variance of the proposed 

estimator kaly   is given by 
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The optimum values of m  and n  are given by 
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which proves the theorem.   

In case of single-phase sampling, the total cost function is given by 

 20 nCCC              (4.5) 

From (4.11), we have the optimum sample size as: 
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The optimum values of m and n  for the ratio estimator are given by 
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The minimum variance of the ratio estimator for the fixed cost is given by: 
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The optimum values of m and n  for the regression type estimator )(dregy  

are given by 

  

 
reg

xyyxyy

xyy
m

SCSCC

SCC
m 





 




22
2

22
11

22
0

1

)(




     (4.11) 

and 

 
 

reg

xyyxyy

xyy
n

SCSCC

SCC
n 





 




22
2

22
11

22
0

1

1)(




     (4.12) 

Note that for the fixed cost of the survey, the variances of the regression type 

estimator )(dregy  is given by 
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The percent relative efficiency of the new proposed estimator kaly  with 

respect to the sample mean estimator )( ny , ratio estimator )( rat(d)y , and 

regression type estimators )( reg(d)y : 
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In order to see the magnitude of the relative efficiency of the proposed 

estimator kaly  over the mean, ratio and the regression type estimator, we did 

simulation study. 

5. Simulation Study 

From (3.1), it is clear that the maximum value of 2

x

xXM

S
S  . We consider 

many populations of size 000,50N , ,50X  ,20Y  52 yS , 102 xS  and 
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different values of the correlation coefficient xy . Note that it is very likely that 

the possible value of 5.00 
xXMS  and 5.00 

xYMS . Consider a situation of 

having total cost 5000$C , overhead cost 500$0 C , cost of collecting 

information from one unit in the first-phase sample 4$1 C , and the cost of 

collecting information from one unit in the sample 10$2 C . We wrote R-codes 

to compute the percent relative efficiency values and the optimum sample sizes 

for the four estimators. There are many situations where the proposed estimator 

performs better than the existing estimators, and in the simulation study we stored 

only those combinations of xy , xXMS  and xYMS  where the value of )2(RE  is 

greater than 105%.  In other words, the proposed estimator is at least 105% more 

efficient than the linear regression type estimator in double sampling. The results 

so obtained are presented in Table 5.1 

Table 5.1.  Percent relative efficiency of the proposed new estimator over the 

 three estimators and optimum sample sizes  

xy  
xXMS  

xYMS  
un  ratm

 
ratn  regm  

regn  
kalm  

kaln  )0(RE  )1(RE  )2(RE  

0.80 0.05 0.40 450 483 406 515 386 540 370 107.7 108.3 105.4 

0.80 0.05 0.45 450 483 406 515 386 550 364 110.1 110.6 107.8 

0.80 0.05 0.50 450 483 406 515 386 565 354 113.4 114.0 111.0 

0.80 0.10 0.45 450 483 406 515 386 544 368 108.7 109.2 106.4 

0.80 0.10 0.50 450 483 406 515 386 556 360 111.4 112.0 109.1 

0.80 0.15 0.45 450 483 406 515 386 539 371 107.5 108.1 105.3 

0.80 0.15 0.50 450 483 406 515 386 549 364 109.8 110.4 107.5 

0.80 0.20 0.50 450 483 406 515 386 543 368 108.5 109.0 106.2 

0.80 0.25 0.50 450 483 406 515 386 538 371 107.4 107.9 105.1 

0.85 0.05 0.35 450 516 385 568 352 600 332 115.4 112.8 106.8 

0.85 0.05 0.40 450 516 385 568 352 616 322 118.9 116.3 110.1 

0.85 0.05 0.45 450 516 385 568 352 637 309 123.9 121.2 114.8 

0.85 0.05 0.50 450 516 385 568 352 670 288 131.7 128.8 122.0 

0.85 0.10 0.35 450 516 385 568 352 594 336 113.8 111.3 105.4 

0.85 0.10 0.40 450 516 385 568 352 606 328 116.6 114.1 108.0 

0.85 0.10 0.45 450 516 385 568 352 623 317 120.7 118.1 111.8 

0.85 0.10 0.50 450 516 385 568 352 649 301 126.7 123.9 117.3 

0.85 0.15 0.40 450 516 385 568 352 598 333 114.8 112.3 106.4 

0.85 0.15 0.45 450 516 385 568 352 613 324 118.2 115.6 109.4 

0.85 0.15 0.50 450 516 385 568 352 633 311 122.9 120.2 113.8 

0.85 0.20 0.45 450 516 385 568 352 604 330 116.1 113.6 107.5 

0.85 0.20 0.50 450 516 385 568 352 620 319 120.0 117.3 111.1 

0.85 0.25 0.45 450 516 385 568 352 596 334 114.4 111.9 106.0 

0.85 0.25 0.50 450 516 385 568 352 610 326 117.6 115.0 108.9 

0.85 0.30 0.50 450 516 385 568 352 602 331 115.7 113.2 107.1 
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Discussion: From the simulation study, it is observed that a high value of 

correlation coefficient xy  and a high value of 
xYMS  is required for the 

proposed new estimator to show percent relative efficiency of at least 105%. For 

example, if 80.0xy , 05.0
xXMS , 40.0

xYMS , with a total cost of $5000, if 

instead of we use only single phase sample mean estimator with optimum sample 

size 450un , we should use the proposed estimator with optimum sample sizes 

540kalm  and 370kaln , then the percent relative efficiency value is 

%7.107)0( RE . Instead of using the ratio estimator with optimum sample sizes 

483ratm  and second-phase sample size 406ratn , if one uses the proposed 

estimator with optimum sample sizes 540kalm  and 370kaln  then the percent 

relative efficiency value is %3.108)1( RE . In the same way, if we use the 

proposed estimator with optimum sample sizes 540kalm  and 370kaln , then 

the relative efficiency of the proposed estimator over the regression method of 

estimation with optimum sample sizes 515regm  and 386regn  is 

%4.105)2( RE .  

Note that )450()406()386()370(  uratregkal nnnn . The optimum 

second-phase sample size remains lowest in case of the proposed estimator, thus 

the proposed estimator reduces efforts for collecting data on the second-phase of 

the sample for the fixed cost of the survey and provides efficient results. The rest 

of the results in Table 5.1 can also be interpreted in the same way. We conclude 

that there exist several situations where the proposed new estimator can be used 

more efficiently for a fixed cost of the survey.  
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RELATIONS FOR MOMENTS OF PROGRESSIVELY
TYPE-II RIGHT CENSORED ORDER STATISTICS

FROM ERLANG-TRUNCATED EXPONENTIAL
DISTRIBUTION

Mansoor Rashid Malik1, Devendra Kumar2

ABSTRACT

In this paper, we establish some new recurrence relations for the single and product
moments of progressively Type-II right censored order statistics from the Erlang-
truncated exponential distribution. These relations generalize those established by
Aggarwala and Balakrishnan (1996) for standard exponential distribution. These
recurrence relations enable computation of mean, variances and covariances of all
progressively Type-II right censored order statistics for all sample sizes in a simple
and efficient manner. Further an algorithm is discussed which enable us to compute
all the means, variances and covariances of Erlang-truncated exponential progres-
sive Type-II right censored order statistics for all sample sizes n and all censoring
schemes (R1, R2,..., Rm), m < n. By using these relations, we tabulate the means
and variances of progressively Type-II right censored order statistics of the Erlang-
truncated exponential distribution.
Key words: Censoring, progressive Type-II right censored order statistics, sin-
gle moments, product moments, recurrence relations, Erlang-truncated exponential
distribution.

1. Introduction

Practitioners and statisticians are often faced with incomplete or censored data. In
life testing, censored samples are present whenever the experimenter does not ob-
serve the failure times of all units placed on the life test. This may happen intention-
ally or unintentionally and may be caused, e.g. by time constraints on the test dura-
tion like in Type-I censoring, by requirements on the minimum number of observed
failures, or by the structure of a technical system. Naturally, the probabilistic struc-
ture of the resulting incomplete data depends heavily on the censoring mechanism
and so suitable inferential procedures become necessary. Progressive censoring can
be described as a censoring method where units under test are removed from the life
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test at some prefixed or random inspection times. It allows for both failure and time
censoring. Many modifications of the standard model have been developed, but the
basic idea can be easily described by progressive Type-II censoring, which can also
be considered as the most popular model. Under this scheme of censoring, from a
total of n units placed simultaneously on a life test, only m are completely observed
until failure. Then, given a censoring plan (R1,R2, · · · ,Rm):
i) At the time x1,m:n of the first failure, R1 of the n−1 surviving units are randomly
withdrawn (or censored) from the life-testing experiment.
ii) At the time x2,m:n of the next failure, R2 of the n− 2−R1 surviving units are
censored, and so on.
iii) Finally, at the time xm,m:n of the mth failure, all the remaining Rm = n−m−R1−
R2−·· ·−Rm−1 surviving units are censored.

Note that censoring takes place here progressively in m stages. Clearly, this
scheme includes the complete sample situation and the conventional Type-II right
censoring scenario as special cases. The ordered failure times X (R1,R2,··· ,Rm)

1,m:n ≤
X (R1,R2,··· ,Rm)

2,m:n ≤ ·· · ≤ X (R1,R2,··· ,Rm)
m,m:n arising from such a progressively Type-II right

censored sample are called progressively Type-II censored order statistics. These
are natural generalizations of the usual order statistics that were studied quite ex-
tensively during the past century. For more details one can refer to Balakrishnan
and Cramer (2014). The following notations are used throughout this paper. In
progressive censoring, the following notations are used:

(i) n,m,R1,R2....Rm are all integers.
(ii) m is the sample size (which may be random in some models).
(iii) n is the total number of units in the experiment.
(iv) R j is the number of (effectively employed) removals at the j− th censoring

time.
(v) (R1,R2, · · · ,Rm) denotes the censoring scheme.
Recurrence relations for single and product moments for any continuous distri-

bution can be used to compute all means, variances and covariance of such a dis-
tribution. Several authors obtained the recurrence relation for progressively type-II
right censored order statistics for different distributions such as Cohin (1963), Mann
[ (1971), Thomas and Wilson (1972), Arnold (1992), Balakrishnan et al. (2012),
Nikulin and Haghighi (2006), Nadarajah and Haghighi (2011), Joshi (1978), Bal-
akrishnan and Malik (1986), Arnold et al. (1992), Viveros and Balakrishnan (1994),
Balakrishnan and Sandhu (1995), Aggarwala and Balakrishnan (1996), Balakrish-
nan and Aggarwala (1998), Balakrishnan and Sultan (1998), Abd El-Baset and Mo-
hammed (2003), David and Nagaraja (2003), Fernandez (2004), Balakrishnan et al.
(2004), Sultan et al. (2006), Mahmoud et al. (2006), Balakrishnan (2007), Bal-
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akrishnan et al. (2011), Balakrishnan and Saleh (2013). The moments of order
statistics have been recursively derived, see Salah et al. (2008), Kumar and Sanku
(2017) and Kumar et al. (2017), for a complete sample.

If the failure times are based on an absolutely continuous distribution function
F(x) with probability density function f (x), the joint probability density function
of the progressively censored failure times X1:m:n,X2:m:n, · · · ,Xm:m:n, is given by [see
Balakrishnan and Aggarwala (2000).

fX1:m:n,X2:m:n,...,Xm:m:n(x1,x2, · · · ,xm)

= A(n,m−1)
m

∏
i=0

f (xi)[1−F(xi)]
Ri ,−∞ < x1 < x2 < · · ·< xm < ∞, (1)

where f (x) and F(x) are respectively the pdf and the cdf of the random sample and

A(n,m−1) = n(n−R1−1) · · ·(n−R1−R2−·· ·−Rm−1−m+1). (2)

The exponential distribution is the simplest distribution in terms of expression and
analytical tractability. It is also widely used in reliability engineering. There is
no doubt that the wide applicability of the exponential distribution even in inap-
propriate scenarios is motivated by its simplicity. However, the exponential distri-
bution has a major problem of constant failure/hazard rate property, which makes
it inappropriate for modelling data-sets from various complex life phenomena that
may exhibit increasing, decreasing or bathtub hazard rate characteristics. El-Alosey
(2007) proposed a two parameter Erlang-truncated exponential distribution. The
probability density function (pdf) is given by

f (x;β ,λ ) = β (1− e−λ )e−βx(1−e−λ ), x≥ 0,β ,λ > 0, (3)

and the corresponding cumulative density function (cdf) is

F(x;β ,λ ) = 1− e−βx(1−e−λ ), x≥ 0,β ,λ > 0. (4)

Now in the view of (3) and (4), we have

f (x) = β (1− e−λ )[1−F(x)]. (5)

where β is the shape parameter and λ is the scale parameter. It is important to note
that the Erlang-truncated exponential distribution has a constant hazard rate func-
tion. The standard exponential distribution is the special case of Erlang-truncated
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distribution for β (1− e−λ ) = 1. We shall use the (5) in the following sections
to derive some recurrence relations for single and product moments of proressively
Type-II right censored order statistics arising from Erlang-truncated exponential dis-
tributions.

The inability of the Erlang-truncated exponential distribution to adequately model
a variety of complex real data-sets, particularly lifetime ones, has stirred huge con-
cern amongst distribution users and researchers alike and has summoned enormous
research attention over the last two decades. Khan et al. (2010) obtained the re-
currence relations for single and product moments of generalized order statistics of
this distribution. Kulshrestha et al. (2013) obtained the marginal and joint moment
generating functions of generalized order statistics and Kumar (2014) obtained the
explicit expression for generalized order statistics.

Let X1,X2, · · · ,Xn be a random sample from the Erlang-truncated exponential
distribution with pdf and cdf given in (3) and (4) respectively. The corresponding
progressive Type-II right censored order statistics with censoring scheme (R1,R2, · · ·
Rm), m≤ n will be

X (R1,R2,··· ,Rm)
1:m:n ,X (R1,R2,··· ,Rm)

2:m:n , · · · ,X (R1,R2,··· ,Rm)
m:m:n .

The single moments of the progressive Type-II right censored order statistics
from the Erlang-truncated exponential distribution can be written as follows:

µ
(R1,R2,··· ,Rm)

(k)

i:m:n = E
[

x(R1,R2,··· ,Rm)
(k)

i:m:n

]
= A(n,m−1)

∫ ∫
· · ·
∫

0<x1<x2<···<xm<∞

xk
i f (x1)

× [1−F(x1)]
R1 f (x2)[1−F(x2)]

R2 f (x3)[1−F(x3)]
R3 · · · f (xm)

× [1−F(xm)]
Rmdx1dx2dx3 · · ·dxm, (6)

where f (.) and F(.) are given respectively in (3), (4), and A(n,m− 1) as defined
in (2). When k = 1, the superscript in the notation of the mean of the progressive
Type-II right censored order statistics may be omitted without any confusion.

The outline of this note is as follows. Recurrence relations for single moments
of progressive Type-II right censored order statistics from Erlang-truncated expo-
nential distribution are given in section 2. Section 3 describes the recurrence re-
lations for product moments of progressive Type-II right censored order statistics
from Erlang-truncated exponential distribution. The recurrence algorithm is carried
out in section 4 for Erlang-truncated exponential distribution. Further computations
of means and variances from Erlang-truncated exponential progressive Type-II right
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censored order statistics for some sample sizes n and some censoring schemes (R1,
R2,..., Rm), m < n are tabulated in section 5.

2. Single moments of progressivley Type-II censored order statistics

In this section, we establish several new recurrence relations satisfied by the sin-
gle moments of progressive Type-II right censored order statistics from the Erlang-
truncated exponential distribution. These recurrence relations may be used to com-
pute the means, variances and covariances of Erlang-truncated exponential progres-
sive Type-II right censored order statistics for all sample sizes n and all censoring
schemes (R1,R2, · · · ,Rm), m≤ n.
Theorem 2.1: For 2≤ m ≤ n and k ≥ 0,

µ
(R1,R2,··· ,Rm)

(k+1)

1:m:n =
k+1

(1+R1)β (1− e−λ )
µ
(R1,R2,··· ,Rm)

(k)

1:m:n

− (n−R1−1)
(1+R1)

µ
(R1+1+R2,··· ,Rm)

(k+1)

1:m−1:n . (7)

Proof: From equations (5) and (6), we have

µ
(R1,R2,··· ,Rm)

(k)

1:m:n = A(n,m−1)
∫ ∫

· · ·
∫

0<x1<x2<···<xm<∞

× L(x2) f (x2)[1−F(x2)]
R2 f (x3)[1−F(x3)]

R3 · · · f (xm)

× [1−F(xm)]
Rmdx2dx3 · · ·dxm, (8)

where

L(x2) =
∫ x2

0
xk

1 f (x1)[1−F(x1)]
R1dx1. (9)

Using (5) in (9), we get

L(x2) =
∫ x2

0
xk

1

{
β (1− e−λ )[1−F(x1)]

}
[1−F(x1)]

R1dx1

= β (1− e−λ )
∫ x2

0
xk

1[1−F(x1)]
R1+1dx1. (10)

Integrating (10) by parts, we get after simplification

=
β (1− e−λ )

k+1

[
[1−F(x2)]

R1+1xk+1
2 +(R1 +1)

∫ x2

0
xk+1

1

× [1−F(x1)]
R1 f (x1)dx1

]
. (11)
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Substituting the value of L(x2) from (11) in (8) and using (6), we simply have

µ
(R1,R2,··· ,Rm)

(k)

1:m:n =
β (1− e−λ )

k+1

[
(n−R1−1)µ(R1+1+R2,··· ,Rm)

(k+1)

1:m−1:n

+ (1+R1)µ
(R1,R2,··· ,Rm)

(k+1)

1:m:n

]
,

rearranging the above equation gives the result in (7).
Theorem 2.2: For m = 1,n = 1,2, · · ·and k ≥ 0,

µ
(n−1)(k+1)

1:1:n =
k+1

nβ (1− e−λ )
µ
(n−1)(k)

1:1:n . (12)

Proof: Theorem 2.2 may be proved by following exactly the same steps as those
used in proving Theorem 2.1, which is presented above.
Remark 1. We may use the fact that the first progressive Type-II right censored
order statistics is the same as the first usual order statistic from a sample of size n,
regardless of the censoring scheme employed.
Theorem 2.3: For 2≤ i ≤ m−1, m≤ n and k ≥ 0,

µ
(R1,R2,··· ,Rm)

(k+1)

i:m:n =
1

1+Ri

[ k+1
β (1− e−λ )

µ
(R1,R2,··· ,Rm)

(k)

i:m:n

− (n−R1−R2−·· ·−Ri− i)

× µ
(R1,R2,··· ,Ri−1,Ri+Ri+1+1,Ri+2,··· ,Rm)

(k+1)

i:m−1:n

+ (n−R1−R2−·· ·−Ri−1− i+1)

× µ
(R1,R2,··· ,Ri−2,Ri−1+Ri+1,Ri+1,··· ,Rm)

(k+1)

i−1:m−1:n

]
. (13)

Proof: Theorem 2.3 may be proved by following exactly the same steps as those
used in proving Theorem 2.1, which is presented above.
Theorem 2.4: For 2≤ m ≤ n, and k ≥ 0,

µ
(R1,R2,··· ,Rm)

(k+1)

m:m:n =
k+1

(1+Rm)β (1− e−λ )
µ
(R1,R2,··· ,Rm)

(k)

m:m:n

+ µ
(R1,R2,··· ,Rm−2,Rm−1+Rm+1)(k+1)

m−1:m−1:n . (14)

Proof: Theorem 2.4 may be proved by following exactly the same steps as those
used in proving Theorem 2.1, which is presented above.
Remark 2. Using these recurrence relations, we can obtain all the single moments
of all progressive Type-II right censored order statistics for all sample sizes and
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censoring schemes (R1,R2, · · · ,Rm) in a sample recursive manner. The recursive
algorithm will be described in detail in section 4.
Corollary 2.1: For β (1− e−λ ) = 1 in (7), we get the recurrence relation for sin-
gle moments of progressively Type-II consored order statistics from the standard
exponential distribution.

µ
(R1,R2,··· ,Rm)

(k+1)

1:m:n =
1

(1+R1)

[
(k+1)µ(R1,R2,··· ,Rm)

(k)

1:m:n

− (n−R1−1)µ(R1+1+R2,··· ,Rm)
(k+1)

1:m−1:n

]
, (15)

as obtained by Aggarwala and Balakrishnan [2].
Corollary 2.2: For β (1− e−λ ) = 1 in (12), we get

µ
(n−1)(k+1)

1:1:n =
k+1
(n)

µ
(n−1)(k)

1:1:n , (16)

as obtained by Aggarwala and Balakrishnan [2].
Corollary 2.3: For β (1− e−λ ) = 1 in (13), we get

µ
(R1,R2,··· ,Rm)

(k+1)

i:m:n =
1

1+Ri

[
(k+1)µ(R1,R2,··· ,Rm)

(k)

i:m:n

− (n−R1−R2−·· ·−Ri− i)

× µ
(R1,R2,··· ,Ri−1,Ri+Ri+1+1,Ri+2,··· ,Rm)

(k+1)

i:m−1:n

+ (n−R1−R2−·· ·−Ri−1− i+1)

× µ
(R1,R2,··· ,Ri−2,Ri−1+Ri+1,Ri+1,··· ,Rm)

(k+1)

i−1:m−1:n

]
, (17)

as obtained by Aggarwala and Balakrishnan [2].
Corollary 2.4: For β (1− e−λ ) = 1 in (14), we get

µ
(R1,R2,··· ,Rm)

(k+1)

m:m:n =
k+1

1+Rm
µ
(R1,R2,··· ,Rm)

(k)

m:m:n

+ µ
(R1,R2,··· ,Rm−2,Rm−1+Rm+1)(k+1),
m−1:m−1:n (18)

as obtained by Aggarwala and Balakrishnan [2].
Deductions: For the special case R1 = R2 = · · · = Rm = 0 so that m = n in which
the progressive censored order statistics become the usual order statistics
X1:n,X2:n, · · · ,Xn:n, then
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(i) From Eq. (7): For k ≥ 0,we get

µ
(k+1)
1:n =

k+1
β (1− e−λ )

µ
k
1:n

− (n−1)µ(1,0,0,··· ,0)(k+1)

1:n−1:n (19)

(ii) From Eq. (13): For k ≥ 0,we get

µ
(k+1)
i:n =

k+1
β (1− e−λ )

µ
(k)
i:n

− (n− i)µ(k+1)
i:n +(n− i+1)µ(k+1)

i−1:n (20)

3. Product moments of progressivley Type-II censored order statistics

In this section, we establish some recurrence relations for product moments of the
progressive Type-II right censored order statistics from the Erlang-truncated expo-
nential distribution. The (r,s)th product moment of the progressive type-II right
censored order statistics can be written as

µ
(R1,R2,··· ,Rm)
r,s:m:n = E

[
x(R1,R2,··· ,Rm)

r:m:n x(R1,R2,··· ,Rm)
s:m:n

]
= A(n,m−1)

∫ ∫
...
∫

0<x1<x2<···<xm<∞

xr

× xs f (x1)[1−F(x1)]
R1 f (x2)

× [1−F(x2)]
R2 · · · f (xm)[1−F(xm)]

Rmdx1dx2dx3 · · ·dxm, (21)

where f (.) and F(.) are given respectively in (3) and (4) and A(n,m−1) is defined
in (2).
Theorem 3.1: For 1≤ i < j ≤ m−1 and m≤ n,

µ
(R1,R2,··· ,Rm)
i, j:m:n =

1
R j +1

[ 1
β (1− e−λ )

µ
(R1,R2,··· ,Rm)
i:m:n

− (n−R1−1−·· ·−R j− j)µ(R1,R2,··· ,R j−1,R j+R j+1+1,···Rm)
i, j:m−1:n

+ (n−R1−1−·· ·−R j−1− j+1)

× µ
(R1,R2,··· ,R j−1+R j+1,··· ,Rm)
i, j−1:m−1:n

]
. (22)
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Proof: Using (5) and (6), we have

µ
(R1,R2,··· ,Rm)
i:m:n = A(n,m−1)

∫ ∫
· · ·
∫

0<x1<···<x j−1<x j+1<···<xm<∞

×
{∫ x j+1

x j−1

β (1− e−λ )[1−F(x j)]
R j+1dx j

}
× xi f (x1)[1−F(x1)]

R1 · · · f (x j−1)

× [1−F(x j−1)]
R j−1 f (x j+1)[1−F(x j+1)]

R j+1 · · · f (xm)

× [1−F(xm)]
Rmdx1dx2 · · ·dx j−1dx j+1 · · ·dxm. (23)

Integrating the innermost integral by parts, we obtain

β (1− e−λ )
∫ x j+1

x j−1

[1−F(x j)]
R j+1dx j = β (1− e−λ )

[
x j+1[1−F(x j+1)]

1+R j

− x j−1[1−F(x j−1)]
1+R j +(1+R j)

×
∫ x j+1

x j−1

[1−F(x j)]
R j f (x j)x jdx j

]
,

which, when substituted into equation (23) and using (21), we have

µ
(R1,R2,··· ,Rm)
i:m:n = β (1− e−λ )

[
(n−R1−1−·· ·−R j− j)

× µ
(R1,R2,··· ,R j−1,R j+R j+1+1,···Rm)
i, j:m−1:n − (n−R1−1−·· ·−R j−1− j+1)

× µ
(R1,R2,··· ,R j−1+R j+1,··· ,Rm)
i, j−1:m−1:n +(R j +1)µ(R1,R2,··· ,Rm)

i, j:m:n

]
.

Upon rearrangement of this equation, we obtain the relation in (22).
Theorem 3.2: For 1≤ i≤ m−1 and m≤ n,

µ
(R1,R2,··· ,Rm)
i,m:m:n =

1
Rm +1

[ 1
β (1− e−λ )

µ
(R1,R2,··· ,Rm)
i:m:n

+ (n−R1−1−·· ·−Rm−1−m+1)

× µ
(R1,R2,··· ,Rm−1+Rm+1,··· ,Rm)
i,m−1:m−1:n

]
. (24)

Proof: The theorem 3.2 may be proved by following exactly the same steps as those
used earlier in proving Theorem 3.1.
Remark 3. Using these recurrence relations, we can obtain all the product moments
of progressive Type-II right censored order statistics for all sample sizes and cen-
soring schemes (R1,R1, · · · ,Rm). The detailed recursive algorithm will be described
in section 4.
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Corollary 3.1: For β (1− e−λ ) = 1 in (22), we get the recurrence relation for prod-
uct moments of progressively Type-II consored order statistics from the standard
exponential distribution.

µ
(R1,R2,··· ,Rm)
i, j:m:n =

1
R j +1

[
µ
(R1,R2,··· ,Rm)
i:m:n − (n−R1−1−·· ·−R j− j)

× µ
(R1,R2,··· ,R j−1,R j+R j+1+1,···Rm)
i, j:m−1:n

+ (n−R1−1−·· ·−R j−1− j+1)

× µ
(R1,R2,··· ,R j−1+R j+1,··· ,Rm)
i, j−1:m−1:n

]
,

as obtained by Aggarwala and Balakrishnan [2].
Corollary 3.2: For β (1− e−λ ) = 1 in (24), we get

µ
(R1,R2,··· ,Rm)
i,m:m:n =

1
Rm +1

[
µ
(R1,R2,··· ,Rm)
i:m:n

+ (n−R1−1−·· ·−Rm−1−m+1)

× µ
(R1,R2,··· ,Rm−1+Rm+1,··· ,Rm)
i,m−1:m−1:n

]
,

as obtained by Aggarwala and Balakrishnan [2].

4. Illustration of the recursive computational algorithm

In this section, we describe the recursive computational algorithm that will produce
all the means, variances and covariances of all progressively Type-II right censored
order statistics for all sample sizes n and all choices of m and (R1,R2, · · ·Rm) from
the Erlang-truncated exponential distribution.

4.1. Single moments

All the frist and second order moments with m = 1 for all sample sizes n can be
obtained by setting k = 0 in equation (12) and then again setting k = 1 in the same
equation. Next using equation (7), we can determine all the moments of the form
µ
(R1,R2)
1,2:n ,n = 2,3 · · · ,which can in turn be used again with (7), to determine all mo-

ments of the form µ
(R1,R2)

2

1,2:n ,n = 2,3 · · · . (14) can then be used to obtain µ
(R1,R2)
2,2:n

for all R1,R2 and n ≥ 2 and these values can be used to obtain all moments of the

form µ
(R1,R2)

2

1,2:n by using equation (14) again. (7) can now be used again to obtain

µ
(R1,R2,R3)
1,3:n , µ

(R1,R2,R3)
2

1,3:n for all n, R1,R2 and R3 and equation (13)can be used next to
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obtain all moments of the form µ
(R1,R2,R3)
2,3:n , µ

(R1,R2,R3)
2

2,3:n . Finally, equation (14) can be

used to obtain all moments of the form µ
(R1,R2,R3)
3,3:n , µ

(R1,R2,R3)
2

3,3:n .
This process can be continued until all desired first and second order moments and
hence all variances are obtained.

4.2. Product moments

From (24), all moments of the form form µ
(R1,R2,··· ,Rm)
m−1,m:m:n , m = 2,3, · · · ,n, can be deter-

mined, since only single moments, which have already been obtained, are needed to
calculate them. Then, using (22), all moments of the form µ

(R1,R2,··· ,Rm)
i−1,i:m:n , 2≤ i < m,

can be obtained. From this point, using (24), we can obtain all moments of the form
µ
(R1,R2,··· ,Rm)
m−2,m:m:n , m = 3,4, · · · ,n, and subsequently, using (22), all the moments of the

form µ
(R1,R2,··· ,Rm)
i−2,i:m:n , 3≤ i < m. Continuing this way, all the desired product moments

and hence all covariances can be obtained.

5. Numerical results

The recurrence relations obtained in the preceding sections allow us to evaluate
the means„variances and covairances of Erlang-truncated exponential progressive
Type-II right censored order statistics for all sample sizes n and all censoring schemes
(R1, R2,..., Rm), m< n. These quantities can be used for various inferential purposes;
for example, they are useful in determining BLUEs of location/scale parameters
and BLUPs of censored failure times. In this section we compute the means and
variances of Erlang-truncated exponential progressive Type-II right censored order
statistics for sample sizes up to 20 and for different choices of m and progressive
schemes (R1, R2,..., Rm), m < n.
In Table 1-2, we have computed the values of means of the progressive Type-II right
censored order statistics for λ = 2,3, β = 3,5 and different values of m and n. One
can see that the means are increasing with respect to m and n but decreasing with
respect to β and λ . In Table 3-4, we have computed the variances of the progressive
Type-II right censored order statistics for λ = 2,3, β = 3,5 and different values of
m and n. We can see that variances are decreasing with respect to m, n and β , λ .
Tables for the skewness, kurtosis, product moments and covariances of the progres-
sive Type-II right censored order statistics are not presented here but are available
from the author on request. All computations here were performed using Mathemat-
ica. Mathematica like other algebraic manipulation packages allows for arbitrary
precision, so the accuracy of the given values is not an issue.
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Table 1. Means of progressively Type-II right censored order statistics for λ = 2 β = 3.
m ↓ n ↓ Scheme Mean

2 5 (0,3) 0.077101 0.173477
2 5 (3,0) 0.077101 0.462607
2 8 (6,0) 0.048188 0.433694
2 8 (0,6) 0.048188 0.103260
2 10 (8,0) 0.038550 0.424056
2 10 (0,8) 0.038550 0.081384
2 12 (10,0) 0.032125 0.417631
2 12 (0,10) 0.032125 0.067171
2 15 (13,0) 0.025700 0.411206
2 15 (0,13) 0.025700 0.053236
2 18 (16,0) 0.021416 0.406922
2 18 (0,16) 0.021416 0.044093
2 20 (18,0) 0.019275 0.404781
2 20 (0,18) 0.019275 0.039565
3 5 (2,0,0) 0.077101 0.269854 0.655359
3 5 (0,0,2) 0.077101 0.173477 0.301979
3 8 (5,0,0) 0.048188 0.240941 0.626447
3 8 (0,0,5) 0.048188 0.103260 0.167511
3 10 (7,0,0) 0.038550 0.231303 0.616809
3 10 (0,0,7) 0.038550 0.081384 0.129572
3 12 (9,0,0) 0.032125 0.224878 0.610384
3 12 (0,0,9) 0.032125 0.067171 0.105722
3 15 (12,0,0) 0.025700 0.218453 0.603959
3 15 (0,0,12) 0.025700 0.053236 0.082890
3 18 (15,0,0) 0.021416 0.214169 0.599675
3 18 (0,0,15) 0.021416 0.044093 0.068187
3 20 (17,0,0) 0.019275 0.212028 0.597534
3 20 (0,0,17) 0.019275 0.039565 0.060982
4 5 (1,0,0,0) 0.077101 0.205603 0.398356 0.783861
4 5 (0,0,0,1) 0.077101 0.173477 0.301979 0.494732
4 8 (4,0,0,0) 0.048188 0.176690 0.369443 0.754949
4 8 (0,0,0,4) 0.048188 0.103260 0.167511 0.244612
4 10 (6,0,0,0) 0.038550 0.167052 0.359805 0.745311
4 10 (0,0,0,6) 0.038550 0.081384 0.129572 0.184645
4 12 (8,0,0,0) 0.032125 0.160627 0.353380 0.738886
4 12 (0,0,0,8) 0.032125 0.067171 0.105722 0.148556
4 15 (11,0,0,0) 0.025700 0.154202 0.346955 0.732461
4 15 (0,0,0,11) 0.025700 0.053236 0.082890 0.115016
4 18 (14,0,0,0) 0.021416 0.149918 0.342671 0.728177
4 18 (0,0,0,14) 0.021416 0.044093 0.068187 0.093888
4 20 (16,0,0,0) 0.019275 0.147777 0.340530 0.726036
4 20 (0,0,0,16) 0.019275 0.039565 0.060982 0.083658
5 5 (0,0,0,0,0) 0.077101 0.173477 0.301979 0.494732 0.880238
5 8 (3,0,0,0,0) 0.048188 0.144564 0.273066 0.465819 0.851325
5 8 (0,0,0,0,3) 0.048188 0.103260 0.167511 0.244612 0.340989
5 10 (5,0,0,0,0) 0.038550 0.134927 0.263429 0.456181 0.841687
5 10 (0,0,0,0,5) 0.038550 0.081384 0.129572 0.184645 0.248896
5 12 (7,0,0,0,0) 0.032125 0.128501 0.257003 0.449756 0.835262
5 12 (0,0,0,0,7) 0.032125 0.067171 0.105722 0.148556 0.196744
5 15 (10,0,0,0,0) 0.025700 0.122076 0.250578 0.443331 0.828837
5 15 (0,0,0,0,10) 0.025700 0.053236 0.082890 0.115016 0.150062
5 18 (13,0,0,0,0) 0.021416 0.117793 0.246295 0.439048 0.824554
5 18 (0,0,0,0,13) 0.021416 0.044093 0.068187 0.093888 0.121424
5 20 (15,0,0,0,0) 0.019275 0.115651 0.244153 0.436906 0.822412
5 20 (0,0,0,0,15) 0.019275 0.039565 0.060982 0.083658 0.107753
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Table 2. Means of progressively Type-II right censored order statistics for λ = 3 β = 5.
m ↓ n ↓ Scheme Mean
5 5(0,3) (0,3) 0.042095 0.094715
5 5(3,0) (3,0) 0.042095 0.252574
8 8(6,0) (6,0) 0.026309 0.236789
8 8(0,6) (0,6) 0.026309 0.056378
10 10(8,0) (8,0) 0.021047 0.231527
10 10(0,8) (0,8) 0.021047 0.044434
12 12(10,0) (10,0) 0.017539 0.228019
12 12(0,10) (0,10) 0.017539 0.036674
15 15(13,0) (13,0) 0.014031 0.224511
15 15(0,13) (0,13) 0.014031 0.029066
18 18(16,0) (16,0) 0.011693 0.222172
18 18(0,16) (0,16) 0.011693 0.024074
20 20(18,0) (18,0) 0.010523 0.221003
20 20(0,18) (0,18) 0.010523 0.021601
5 5(2,0,0) (2,0,0) 0.042095 0.147335 0.357814
5 5(0,0,2) (0,0,2) 0.042095 0.094715 0.164875
8 8(5,0,0) (5,0,0) 0.026309 0.131549 0.342028
8 8(0,0,5) (0,0,5) 0.026309 0.056378 0.091458
10 10(7,0,0) (7,0,0) 0.021047 0.126287 0.336766
10 10(0,0,7) (0,0,7) 0.021047 0.044434 0.070744
12 12(9,0,0) (9,0,0) 0.017539 0.122779 0.333258
12 12(0,0,9) (0,0,9) 0.017539 0.036674 0.057722
15 15(12,0,0) (12,0,0) 0.014031 0.119271 0.329750
15 15(0,0,12) (0,0,12) 0.014031 0.029066 0.045256
18 18(15,0,0) (15,0,0) 0.011693 0.116932 0.327411
18 18(0,0,15) (0,0,15) 0.011693 0.024074 0.037229
20 20(17,0,0) (17,0,0) 0.010523 0.115763 0.326242
20 20(0,0,17) (0,0,17) 0.010523 0.021601 0.033295
5 5(1,0,0,0) (1,0,0,0) 0.042095 0.112255 0.217495 0.427974
5 5(0,0,0,1) (0,0,0,1) 0.042095 0.094715 0.164875 0.270114
8 8(4,0,0,0) (4,0,0,0) 0.026309 0.096469 0.201709 0.412188
8 8(0,0,0,4) (0,0,0,4) 0.026309 0.056378 0.091458 0.133554
10 10(6,0,0,0) (6,0,0,0) 0.021047 0.091207 0.196447 0.406926
10 10(0,0,0,6) (0,0,0,6) 0.021047 0.044434 0.070744 0.100812
12 12(8,0,0,0) (8,0,0,0) 0.017539 0.087699 0.192939 0.403418
12 12(0,0,0,8) (0,0,0,8) 0.017539 0.036674 0.057722 0.081108
15 15(11,0,0,0) (11,0,0,0) 0.014031 0.084191 0.189431 0.399910
15 15(0,0,0,11) (0,0,0,11) 0.014031 0.029066 0.045256 0.062796
18 18(14,0,0,0) (14,0,0,0) 0.011693 0.081852 0.187092 0.397571
18 18(0,0,0,14) (0,0,0,14) 0.011693 0.024074 0.037229 0.051261
20 20(16,0,0,0) (16,0,0,0) 0.010523 0.080683 0.185923 0.396402
20 20(0,0,0,16) (0,0,0,16) 0.010523 0.021601 0.033295 0.045676
5 5(0,0,0,0,0) (0,0,0,0,0) 0.042095 0.094715 0.164875 0.270114 0.480594
8 8(3,0,0,0,0) (3,0,0,0,0) 0.026309 0.078929 0.149089 0.254328 0.464808
8 8(0,0,0,0,3) (0,0,0,0,3) 0.026309 0.056378 0.091458 0.133554 0.186173
10 10(5,0,0,0,0) (5,0,0,0,0) 0.021047 0.073667 0.143827 0.249066 0.459546
10 10(0,0,0,0,5) (0,0,0,0,5) 0.021047 0.044434 0.070744 0.100812 0.135892
12 12(7,0,0,0,0) (7,0,0,0,0) 0.017539 0.070159 0.140319 0.245558 0.456038
12 12(0,0,0,0,7) (0,0,0,0,7) 0.017539 0.036674 0.057722 0.081108 0.107418
15 15(10,0,0,0,0) (10,0,0,0,0) 0.014031 0.066651 0.136811 0.242051 0.452530
15 15(0,0,0,0,10) (0,0,0,0,10) 0.014031 0.029066 0.045256 0.062796 0.081931
18 18(13,0,0,0,0) (13,0,0,0,0) 0.011693 0.064313 0.134472 0.239712 0.450191
18 18(0,0,0,0,13) (0,0,0,0,13) 0.011693 0.024074 0.037229 0.051261 0.066295
20 20(15,0,0,0,0) (15,0,0,0,0) 0.010523 0.063143 0.133303 0.238543 0.449022
20 20(0,0,0,0,15) (0,0,0,0,15) 0.010523 0.021601 0.033295 0.045676 0.058831
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Table 3. Variances of progressively Type-II right censored order statistics for λ = 2 β = 3.
m ↓ n ↓ Scheme Variance
2 5 (0,3) 0.005944 0.015233
2 5 (3,0) 0.005944 0.154559
2 8 (6,0) 0.002322 0.150936
2 8 (0,6) 0.002322 0.005355
2 10 (8,0) 0.001486 0.150100
2 10 (0,8) 0.001486 0.003320
2 12 (10,0) 0.001032 0.149646
2 12 (0,10) 0.001032 0.002260
2 15 (13,0) 0.000660 0.149275
2 15 (0,13) 0.000660 0.001418
2 18 (16,0) 0.000458 0.149073
2 18 (0,16) 0.000458 0.000972
2 20 (18,0) 0.000371 0.148986
2 20 (0,18) 0.000371 0.000783
3 5 (2,0,0) 0.005944 0.043098 0.191713
3 5 (0,0,2) 0.005944 0.015233 0.031745
3 8 (5,0,0) 0.002322 0.039475 0.188090
3 8 (0,0,5) 0.002322 0.005355 0.009483
3 10 (7,0,0) 0.001486 0.038639 0.187254
3 10 (0,0,7) 0.001486 0.003320 0.005643
3 12 (9,0,0) 0.001032 0.038185 0.186800
3 12 (0,0,9) 0.001032 0.002260 0.003746
3 15 (12,0,0) 0.000660 0.037814 0.186428
3 15 (0,0,12) 0.000660 0.001418 0.002298
3 18 (15,0,0) 0.000458 0.037612 0.186227
3 18 (0,0,15) 0.000458 0.000972 0.001553
3 20 (17,0,0) 0.000371 0.037525 0.186140
3 20 (0,0,17) 0.000371 0.000783 0.001241
4 5 (1,0,0,0) 0.005944 0.022457 0.059611 0.208225
4 5 (0,0,0,1) 0.005944 0.015233 0.031745 0.068899
4 8 (4,0,0,0) 0.002322 0.018834 0.055988 0.204603
4 8 (0,0,0,4) 0.002322 0.005355 0.009483 0.015427
4 10 (6,0,0,0) 0.001486 0.017998 0.055152 0.203767
4 10 (0,0,0,6) 0.001486 0.003320 0.005643 0.008675
4 12 (8,0,0,0) 0.001032 0.017544 0.054698 0.203313
4 12 (0,0,0,8) 0.001032 0.002260 0.003746 0.005581
4 15 (11,0,0,0) 0.000660 0.017173 0.054326 0.202941
4 15 (0,0,0,11) 0.000660 0.001418 0.002298 0.003330
4 18 (14,0,0,0) 0.000458 0.016971 0.054125 0.202739
4 18 (0,0,0,14) 0.000458 0.000972 0.001553 0.002213
4 20 (16,0,0,0) 0.000371 0.016884 0.054037 0.202652
4 20 (0,0,0,16) 0.000371 0.000783 0.001241 0.001756
5 5 (0,0,0,0,0) 0.005944 0.015233 0.031745 0.068899 0.217514
5 8 (3,0,0,0,0) 0.002322 0.011610 0.028123 0.065276 0.213891
5 8 (0,0,0,0,3) 0.002322 0.005355 0.009483 0.015427 0.024716
5 10 (5,0,0,0,0) 0.001486 0.010774 0.027287 0.064441 0.213055
5 10 (0,0,0,0,5) 0.001486 0.003320 0.005643 0.008675 0.012804
5 12 (7,0,0,0,0) 0.001032 0.010320 0.026833 0.063986 0.212601
5 12 (0,0,0,0,7) 0.001032 0.002260 0.003746 0.005581 0.007903
5 15 (10,0,0,0,0) 0.000660 0.009948 0.026461 0.063615 0.212230
5 15 (0,0,0,0,10) 0.000660 0.001418 0.002298 0.003330 0.004558
5 18 (13,0,0,0,0) 0.000458 0.009747 0.026259 0.063413 0.212028
5 18 (0,0,0,0,13) 0.000458 0.000972 0.001553 0.002213 0.002972
5 20 (15,0,0,0,0) 0.000371 0.009659 0.026172 0.063326 0.211941
5 20 (0,0,0,0,15) 0.000371 0.000783 0.001241 0.001756 0.002336
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Table 4. Variances of progressively Type-II right censored order statistics for λ = 3 β = 5.
m ↓ n ↓ Scheme Variance
5 5(0,3) (0,3) 0.001772 0.004540
5 5(3,0) (3,0) 0.001772 0.046073
8 8(6,0) (6,0) 0.000692 0.044993
8 8(0,6) (0,6) 0.000692 0.001596
10 10(8,0) (8,0) 0.000443 0.044744
10 10(0,8) (0,8) 0.000443 0.000989
12 12(10,0) (10,0) 0.000307 0.044609
12 12(0,10) (0,10) 0.000307 0.000673
15 15(13,0) (13,0) 0.000196 0.044498
15 15(0,13) (0,13) 0.000196 0.000422
18 18(16,0) (16,0) 0.000136 0.044438
18 18(0,16) (0,16) 0.000136 0.000290
20 20(18,0) (18,0) 0.000110 0.044412
20 20(0,18) (0,18) 0.000110 0.000233
5 5(2,0,0) (2,0,0) 0.001772 0.012847 0.057148
5 5(0,0,2) (0,0,2) 0.001772 0.004540 0.009463
8 8(5,0,0) (5,0,0) 0.000692 0.011767 0.056069
8 8(0,0,5) (0,0,5) 0.000692 0.001596 0.002826
10 10(7,0,0) (7,0,0) 0.000443 0.011518 0.055819
10 10(0,0,7) (0,0,7) 0.000443 0.000989 0.001682
12 12(9,0,0) (9,0,0) 0.000307 0.011383 0.055684
12 12(0,0,9) (0,0,9) 0.000307 0.000673 0.001116
15 15(12,0,0) (12,0,0) 0.000196 0.011272 0.055573
15 15(0,0,12) (0,0,12) 0.000196 0.000422 0.000685
18 18(15,0,0) (15,0,0) 0.000136 0.011212 0.055513
18 18(0,0,15) (0,0,15) 0.000136 0.000290 0.000463
20 20(17,0,0) (17,0,0) 0.000110 0.011186 0.055487
20 20(0,0,17) (0,0,17) 0.000110 0.000233 0.000370
5 5(1,0,0,0) (1,0,0,0) 0.001772 0.006694 0.017769 0.062071
5 5(0,0,0,1) (0,0,0,1) 0.001772 0.004540 0.009463 0.020538
8 8(4,0,0,0) (4,0,0,0) 0.000692 0.005614 0.016689 0.060991
8 8(0,0,0,4) (0,0,0,4) 0.000692 0.001596 0.002826 0.004598
10 10(6,0,0,0) (6,0,0,0) 0.000443 0.005365 0.016440 0.060742
10 10(0,0,0,6) (0,0,0,6) 0.000443 0.000989 0.001682 0.002586
12 12(8,0,0,0) (8,0,0,0) 0.000307 0.005230 0.016305 0.060606
12 12(0,0,0,8) (0,0,0,8) 0.000307 0.000673 0.001116 0.001663
15 15(11,0,0,0) (11,0,0,0) 0.000196 0.005119 0.016194 0.060496
15 15(0,0,0,11) (0,0,0,11) 0.000196 0.000422 0.000685 0.000992
18 18(14,0,0,0) (14,0,0,0) 0.000136 0.005059 0.016134 0.060435
18 18(0,0,0,14) (0,0,0,14) 0.000136 0.000290 0.000463 0.000659
20 20(16,0,0,0) (16,0,0,0) 0.000110 0.005033 0.016108 0.060409
20 20(0,0,0,16) (0,0,0,16) 0.000110 0.000233 0.000370 0.000523
5 5(0,0,0,0,0) (0,0,0,0,0) 0.001772 0.004540 0.009463 0.020538 0.064840
8 8(3,0,0,0,0) (3,0,0,0,0) 0.000692 0.003461 0.008383 0.019458 0.063760
8 8(0,0,0,0,3) (0,0,0,0,3) 0.000692 0.001596 0.002826 0.004598 0.007367
10 10(5,0,0,0,0) (5,0,0,0,0) 0.000443 0.003211 0.008134 0.019209 0.063511
10 10(0,0,0,0,5) (0,0,0,0,5) 0.000443 0.000989 0.001682 0.002586 0.003816
12 12(7,0,0,0,0) (7,0,0,0,0) 0.000307 0.003076 0.007998 0.019074 0.063375
12 12(0,0,0,0,7) (0,0,0,0,7) 0.000307 0.000673 0.001116 0.001663 0.002355
15 15(10,0,0,0,0) (10,0,0,0,0) 0.000196 0.002965 0.007888 0.018963 0.063264
15 15(0,0,0,0,10) (0,0,0,0,10) 0.000196 0.000422 0.000685 0.000992 0.001358
18 18(13,0,0,0,0) (13,0,0,0,0) 0.000136 0.002905 0.007827 0.018903 0.063204
18 18(0,0,0,0,13) (0,0,0,0,13) 0.000136 0.000290 0.000463 0.000659 0.000886
20 20(15,0,0,0,0) (15,0,0,0,0) 0.000110 0.002879 0.007801 0.018877 0.063178
20 20(0,0,0,0,15) (0,0,0,0,15) 0.000110 0.000233 0.000370 0.000523 0.000696
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6. Concluding remarks

In this paper, we have established several recurrence relations for the single and
product moments of progressively Type-II right censored order statistics from the
Erlan-truncated exponential distribution. These relations produce in a simple syst-
matic manner all the means, variances and covariances of progressively Type-II
right censored order statistics for all sample sizes and all progressive censoring
schemes. we have computed the means and variances of Erlang-truncated expo-
nential progressive Type-II right censored order statistics for sample sizes up to 20
and for different choices of m and progressive schemes (R1, R2,..., Rm), m < n.
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ABSTRACT 

In this paper we have suggested a generalized version of the Gjestvang and Singh 

(2006) model and have studied its properties. We have shown that the 

randomized response models due to Warner (1965), Mangat and Singh (1990), 

Mangat (1994) and Gjestvang and Singh (2006) are members of the proposed RR 

model. The conditions are obtained in which the suggested RR model is more 

efficient than the Warner (1965) model, Mangat and Singh (1990) model and 

Mangat (1994) model and Gjestvang and Singh (2006) model. A numerical 

illustration is given in support of the present study. 

Key words: sensitive variable, population proportion, Gjestvang and Singh’s 

model, variance, efficiency. 

AMS Subject Classification: 62D05. 

1. Introduction 

The collection of data through personal interviews surveys on sensitive issues 

such as induced abortions, alcohol and drug abuse (Weissman et al., 1986, Fisher 

et al., 1992) as well as on attitudes (Antonak and Livnech, 1995), on sexual 

behaviour (Williams and Suen, 1994, Jarman, 1997) and family income is a 

serious issue. Warner (1965) introduced an ingenious technique known as the 

randomized response technique for estimating the proportion   of people bearing 

a sensitive attribute, say A, in a given community from which a sample is 

collected. For estimating , a simple random sample of n respondents is selected 

with replacement from the population. For collecting information on the sensitive 

characteristic, Warner (1965) made use of randomization device. The 

randomization device consists of a deck of cards with each card having one of the 

following two statements: 

(i)  I belong to sensitive group A; 

(ii) I do not belong to sensitive group A, 
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represented with probabilities 0p  and  0p1  respectively in the deck of cards. 

Each respondent in the sample is asked to select a card at random from the well-

shuffled deck. Without showing the card to the interviewer, the interviewee 

answers the question, “Is the statement true for you?” the number of respondents 

1n  that answer “yes” is binomially distributed with parameters 

    1p1p 00 . The maximum likelihood estimator   exists for 
2

1
p0   

and is given by 

 
   

 1p2

p1nn
ˆ

0

01
w




                                       (1.1) 

which is  unbiased and has the variance 

  
   

 20

00
w

1p2n

p1p

n

1
ˆV







 .                               (1.2) 

Mangat and Singh (1990) envisaged a two-stage randomized response model. 

In the first stage, each respondent was requested to use a randomization device, 

1R , such as a deck of cards with each card containing one of the following two 

statements: (i) “I belong to sensitive group A”, (ii) “Go the randomization device 

2R ”. The statements occur with probabilities 0T  and  0T1 , respectively, in 

the first device 1R . In the second stage, if directed by the outcome of 1R , the 

respondent is requested to use the randomization device 2R , which is the same as 

the Warner (1965) device. Under the two-stage randomized response model, an 

unbiased estimator of the population proportion , due to Mangat and Singh 

(1990) is given by  
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ˆ
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with the variance  
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0000
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



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Mangat (1994) investigated another randomized response model where each 

respondent selected in the sample was requested to report “yes” if he/she 

belonged to the sensitive group A; otherwise, he/she was instructed to use the 
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Warner (1965) device. Under this model, Mangat (1994) obtained an unbiased 

estimator of the population proportion   given by 

 

 
   

0

01
m

p

p1nn
ˆ


                                        (1.5) 

with the variance  

  
 

,
np

1
ˆV

2
0

mm
m


                                       (1.6) 

where   0m p11  .  

It is to be mentioned that the Mangat (1994) RR model is more efficient than 

both the Warner (1965) and Mangat and Singh (1990) models. 
A rich growth of literature on randomized response procedure has been 

accumulated in Chaudhuri and Mukherjee (1987, 1988). Further, a detailed 

review on randomized response sampling can be found in Singh (2003). Some 

related work on the randomized response sampling can be also be found in 

Odumade and Singh (2008, 2009a, 2009b, 2010) Bouza et al. (2010) and 

Chaudhuri et al. (2016). 

It is noted that the Mangat (1994) model has been improved by Gjestvang and 

Singh (2006). In this paper we have made an effort to suggest a generalized 

randomized response model which includes Warner (1965), Mangat and Singh 

(1990), Mangat (1994), Gjestvang and Singh (2006) randomized response model. 

It has been shown that the proposed model is superior to the models suggested by 

Warner (1965), Mangat and Singh (1990), Mangat (1994) and Gjestvang and 

Singh (2006) under some realistic conditions. Numerical illustration is given in 

support of the present study.    

2. Suggested Randomized Response Model 

In this section we propose a generalized randomized response model. For 

estimating , the proportion of respondents in the population belonging to the 

sensitive group A, a simple random sample of n respondents is selected with 

replacement from the population. If the person who is selected in the sample 

belongs to the sensitive group A, then he or she is requested to use the 

randomization device 1R  that is described below. Similar to Gjestvang and Singh 

(2006), let 1  and 1  be any two positive real numbers such that 

 111p   is the probability in the randomization device 1R  directing the 

selected respondent to report a scrambled response (or indirect response) as 
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 111 Sw1  , and    111p1   is the probability in the randomization 

device 1R  directing the selected respondent to report a scrambled response as 

 111 Sw1  , where 1w  is a known real number and 1S  is any non-directional 

scrambling variable, i.e. 1S  can take positive, zero and negative values. If the 

person who is selected in the sample does not belong to the sensitive group A, 

then he or she is requested to use the randomization device 2R  that is described 

below. Let 2  and 2  be any two positive real numbers (similar to Gjastvang 

and Singh (2006)) such that  222T   is the probability in the 

randomization device 2R  directing the selected respondent to report a scrambled 

response 222 Sw  , and let    222T1   be the probability in the 

randomization device 2R  directing the selected respondent to report scrambled 

response as 222 Sw  , where 2w  is a known real number and 2S is any non-

directional scrambling variables. The main difference from the existing 

randomization response models is that here the distribution of the scrambling 

variables 1S  and 2S  may or may not be known. Gjestvang and Singh (2006) have 

noted that the negative response will not disclose the privacy of any respondent 

belonging to non-sensitive or sensitive group because they come from both 

groups. Here we also note that if the mean i  and variance 
2
i  of the ith 

scrambling variable iS (i=1,2) are known before start of the survey, then in such a 

situation, the value of iw  may be the function of the known quantities  2
ii ,  , 

i=1,2. 

 

Theorem 2.1 An unbiased estimator of the population proportion   is given by  

 


n

1i
iHS y

n

1
ˆ                                              (2.1) 

Proof The observed response in the proposed method has the distribution  
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y

222
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i









               (2.2) 

  

Let 1E  and 2E  denote the expected values over all possible samples and over 

the randomization device. Then we have  

   HS21HS ˆEEˆE   
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

n
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i21 yEE
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1
.                                  (2.3) 

where  
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Let   112 SE  and   222 SE  . Then we have  
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          2222111111 T1Tw1w1p1w1p  , 

   
 

   












































22

22

22

22
22

11

11

11

11
11 w1w1 , 

  1 , 
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Putting (2.4) in (2.3) we get 

  


n

1i
1HS E

n

1
ˆE  

                  

which proves the theorem. 

 

Theorem 2.2 The variance of the estimator HS̂  is given by  

 
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Proof The responses are independent, thus the variance of the estimator HS̂  is 

given by  
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.                                  (2.6) 

Let 1V  and 2V  denote the variance over all possible samples and the variance 

over the randomization device respectively. Then we have  

              i21i21i yEVyVEyV   

                      1i21 VyVV  
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           i21 yVE .                                                     (2.7) 

Let the variance of the scrambling variables be   2
11SV   and   2

22SV  . 

Then  
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Thus from (2.6), (2.7) and (2.8) we have  
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which proves the theorem. 

Corollary 2.1 Assuming that 
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2
2  [similar to Gjestvang and Singh (2006,p.525)] and  

www 21   (say), the variance of the estimator HS̂  in (2.5) reduces to  
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Proof is simple so omitted. 

The variance in (2.10) of the proposed estimator HS̂ can be estimated as  
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It should be remembered here that  22 ,,w   are known quantities in the 

variance expression (2.10). As mentioned in Gjestvang and Singh (2006), we also 

show that models due to Warner (1965), Mangat and Singh (1990), Mangat 

(1994) and Gjestvang and Singh (2006) are special cases of the suggested RR 

procedure (model). If we set  

(i)       0111111 pw1p1w1p   and  

        022222 p1T1Tw  , 

(ii)         00111111 T1p1w1p1w1p   and  
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(iii)       1w1p1w1p 111111   and 

        022222 p1T1Tw   

(iv)    1,1w,w 21   

the proposed RR model respectively reduces to the Warner (1965), Mangat and 

Singh (1990), Mangat (1994) and Gjestvang and Singh (2006) models. 

3. Efficiency Comparison 

In the proposed procedure, if we set 1ww 21  , then the procedure 

investigated by Gjestvang and Singh (2006, sec.2, p.524) becomes special case 

(or member of the present proposed procedure). 

In the Gjestvang and Singh (2006) model, the observed response has the 

distribution  
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This can be also obtained just by putting 1ww 21   in (2.2). 

An unbiased estimator of   due to Gjestvang and Singh (2006) is given by 
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ˆ .                                           (3.2) 

The variance of GS̂  is given by  
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Assuming that  
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and 12
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2
2  , then variance of GS̂  in (3.3) reduces to  
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From (2.5) and (3.3) we have  
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which is positive if  

  0w1 2
i  , i=1,2; 

i.e. if  

1w1 i  , i=1,2 

i.e. if  1w i  , i=1,2 

Thus, we established the following theorem. 

Theorem 3.1 The proposed estimator HS̂  (i.e. proposed procedure) is always 

better than Gjeatvang and Singh’s (2006) estimator GS̂  (i.e. Gjestvang and 

Singh’s (2006) procedure) if  

1w i  , i=1,2.                                          (3.6) 

Further, from (2.10) and (3.4) we have  
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which is always positive if  

0w1 2   

i.e. if   1w  .                                             (3.8) 

Thus, we established the following corollary. 

Corollary 3.1 Under the assumption  
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and  

www 21   (a real number, say). 

The proposed estimator HS̂  is more efficient than Gjestvang and Singh’s 

(2006) estimator GS̂  if 1w  . 

Assume that the values of  2,1i,,,, 2
iiii   are predetermined before 

conducting the survey and are assumed to be known. Note that 1  and 2  are 

non-directional. From (1.2) and (2.10) we have that     wHS ˆVˆV   if  

 
 

 20

00
22

1p2

p1p
w




                                         (3.9) 

which is free from the parameter   under investigation and depends on the 

parameters of the randomization devices. We also note that the condition (3.9) is 

also very flexible. 

From (1.4) and (2.10) we have  
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This condition is also free from the parameter   under investigation and 

depends on the parameters of the randomization devices. 

Further, from (1.6) and (2.10) we have that    HSm ˆVˆV   if  
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Thus, the proposed RR model is more efficient than Warner’s (1965) model, 

Mangat and Singh’s (1990) model and Mangat’s (1994) model as long as the 

conditions (3.9), (3.10) and (3.11) are respectively satisfied. 

4. Some Members of the Proposed Procedure 

I. Assume that the values of 1 , 1 , 2 , 2 , 1 ,
2
1 , 2  and 

2
2  are 

predetermined before conducting the survey and are assumed to be known. Note 

that 1  and 2  are non-directional [see Gjestvang and Singh (2006), sec.3, 

p.525)]. In our model, if we take 
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then the observed response has the distribution: 
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Thus, an unbiased estimator of the population proportion   is given by  
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From (3.3) and (4.3) we have  
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which is always positive provided 21   and 22  . Thus, the proposed RR 

model (4.1) is always better than the RR model (3.1) due to Gjestvang and Singh 

(2006). In the situation where ii  ,(i=1,2), both the models are equally 

efficient. 
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  in (2.2), then the observed response 

has the distribution: 
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Thus, an estimator of the population proportion   is given by 
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Inserting 
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From (3.3) and (4.7) we have  
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which is always positive. Thus, the RR model proposed in (4.5) is superior to 

Gjestvang and Singh’s (2006) RR model (3.1). 

Assuming that  
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the variance of  2HS̂   reduces to  
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From (3.4) and (4.10) we have  
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Thus, the proposed estimator  2HS̂  is more efficient than the Gjestvang and 

Singh (2006) estimator GS̂  as long as the condition 12
2   satisfied. 

III. If we set 
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Thus, an unbiased estimator of the population proportion   is defined by 
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Putting 
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variance of the estimator  3HS̂  as  
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From (3.3) and (4.14) we have  
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which is always positive. Thus, it follows from (4.15) that the proposed estimator 

 3HS̂  is more efficient than Gjestvang and Singh’s (2006) estimator GS̂ , i.e. 

the RR model suggested in (4.9) is superior to the RR model in (3.1) due to 

Gjestvang and Singh (2006). 

Assuming that  
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the variance of the estimator  3HS̂  in (4.14) is reduced to  
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It can be seen from (3.4) and (4.17) that  
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Thus, the proposed estimator  3HS̂  is more efficient than Gjestvang and 

Singh’s (2006) estimator GS̂  as long as the condition (4.18) is satisfied. 
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  one can get the randomized response models always better than 

Gjestvan and Singh’s (2006) randomized response models. 
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Many more suitable choices of 1w  and 2w  can be considered (which may be 

either the function of  2,1i,, ii   or not) for which we can obtain the model 

superior to the Gjestvang and Singh (2006). 

5. Relative Efficiency 

It is assumed that the values of 
2
22

2
112211 and,,,,,,   are known 

before the start of the survey. It is to be noted that the Mangat (1994) model 

remains more efficient than the Mangat and Singh (1990) model. Also, Gjestvang 

and Singh (2006) have proved that the estimator GS̂  proposed by them can 

always be made more efficient than the Warner (1965), Mangat and Singh (1990) 

and Mangat (1994) estimators for various choices of known parameters of the 

model. Thus, it is acceptable to compare the proposed model only with Gjestvang 

and Singh (2006). 

To see the magnitude of the gain efficiency of the suggested randomized 

response model, we compute the percent relative efficiency (PRE) of the proposed 

estimator HS̂  with respect to Gjestvang and Singh’s (2006) estimator GS̂  as 

follows. 
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or equivalently (by using (2.9) and (3.3) in (5.1)) 
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 (5.2) 

Further, for the simplicity we have assumed     12
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[similar to Gjestvang and Singh (2006), p.526] and www 21   (a real 

constant) under these assumptions, the  GSHS ˆ,ˆPRE   in (5.2) reduces to : 
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We have computed the  GSHS ˆ,ˆPRE   by using (5.3) for 

  9.01.01.0,05.0 , and for three sets of s'i , s'i (i=1,2) values as (i) 

6.01  , 4.01  , 3.02  , 7.02   (ii) 8.01  , 2.01  , 4.02  ,
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6.02  (iii) 5.02211  w 0.05,0.1(0.1)0.9. Findings are 

compiled in Table 5.1. 

Table 5.1. The percent relative efficiency of the proposed model with respect to 

 Gjestvang and Singh’s (2006) model 

6.01  , 4.01  , 3.02  , 7.02   

 w  

  

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.05 104.85 104.81 104.65 104.40 104.05 103.60 103.06 102.42 101.70 100.89 

0.1 104.81 108.51 108.23 107.77 107.13 106.32 105.34 104.21 102.94 101.53 

0.3 104.65 119.93 119.21 118.03 116.41 114.40 112.03 109.36 106.43 103.29 

0.5 104.40 133.35 132.02 129.85 126.94 123.38 119.29 114.79 110.00 105.04 

0.7 104.05 160.55 157.66 153.06 147.06 140.00 132.24 124.11 115.89 107.80 

0.9 293.17 288.97 273.32 250.69 224.65 198.18 173.24 150.80 131.20 114.35 

8.01  , 2.01  , 4.02  , 6.02   

w  

  

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.05 102.90 102.87 102.78 102.64 102.43 102.16 101.84 101.46 101.03 100.54 

0.1 105.22 105.17 105.01 104.74 104.36 103.87 103.28 102.60 101.82 100.95 

0.3 112.66 112.56 112.13 111.42 110.45 109.23 107.77 106.10 104.23 102.19 

0.5 121.56 121.36 120.58 119.30 117.55 115.38 112.84 109.97 106.84 103.50 

0.7 139.58 139.16 137.53 134.89 131.37 127.10 122.24 116.96 111.40 105.71 

0.9 225.60 223.49 215.43 203.21 188.27 172.00 155.57 139.79 125.15 111.86 

1 1 2 5.02   

w  

  

0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.05 104.37 104.34 104.20 103.98 103.66 103.25 102.76 102.19 101.54 100.80 

0.1 107.92 107.85 107.59 107.17 106.58 105.84 104.94 103.90 102.72 101.42 

0.3 119.42 119.25 118.56 117.42 115.87 113.93 111.65 109.07 106.24 103.20 

0.5 133.22 132.89 131.58 129.45 126.58 123.08 119.05 114.61 109.89 104.99 

0.7 161.16 160.42 157.53 152.95 146.96 139.92 132.18 124.07 115.87 107.79 

0.9 294.21 289.98 274.19 251.39 225.17 198.54 173.47 150.94 131.27 114.38 

 

It is observed from Table 5.1 that the values of  GS,HS ˆˆPRE   are larger 

than 100 for the given parametric values. It follows that the suggested estimator 

HS̂  can always be made more efficient than Gjestvang and Singh’s (2006) 

estimator GS̂  and hence more efficient than the Warner (1965), Mangat and 
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Singh (1990) and Mangat (1990) estimators. For larger values (or even 

moderately large values) of andw , the considerable gain in efficiency is 

observed by using the proposed estimator HS̂  over Gjestvang and Singh’s 

(2006) estimator GS̂ . Thus, we see that the proposed procedure is an 

improvement over Gjestvang and Singh’s (2006) procedure. 

We have further computed the percent relative efficiencies (PRE’s) of the 

proposed estimators  1HS̂ ,  2HS̂  and  3HS̂  with respect to Gjestvang and 

Singh’s (2006) estimator GS̂  by using the formulae: 

          
     
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22221111
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2
2

2
211

2
1

2
1

GS1HS 



      

(5.4) 

          
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111
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2
2

2
211

2
1

2
1

GS2HS 



     

(5.5) 

 

          
    

100
11

11
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2
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2
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2
211
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1

2
1

GS2HS 



     

(5.6) 

for    50.0,6.0, 2
11  ,    36.0,8.0, 2

22  ,    4.0,6.0, 11  , 

   95.0,05.0, 22   [similar to Gjestvang and Singh (2006), section 4, 

p.527]. Findings are given in Table 5.2. 

Table 5.2. The percent relative efficiencies of  1HS̂ ,  2HS̂  and  3HS̂  with 

 respect to Gjestvang and Singh’s (2006) estimator GS̂  

    GS1HS ˆ,ˆPRE     GS2HS ˆ,ˆPRE     GS3HS ˆ,ˆPRE   

0.1 101.31 121.74 130.67 

0.2 100.87 118.69 121.04 

0.3 100.71 118.65 118.30 

0.4 100.64 119.90 117.70 

0.5 100.62 122.23 118.33 

0.6 100.63 125.93 120.07 

0.7 100.68 131.88 123.27 

0.8 100.78 142.27 128.99 

0.9 100.96 164.23 140.46 
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It is observed from Table 5.2 that the percent relative efficiencies of the 

proposed estimators  1HS̂ ,  2HS̂  and  3HS̂  with respect to Gjestvang and 

Singh’s (2006) estimator GS̂  are larger than 100. It follows that the proposed 

estimators are more efficient than Gjestvang and Singh’s (2006) estimator GS̂ . 

We note that there is a marginal gain in efficiency by using the proposed 

estimator  1HS̂  over Gjestvang and Singh’s (2006) estimator GS̂  while the 

gain in efficiency is substantial by using the suggested estimators   2HS̂  and 

 3HS̂ . The proposed estimator  2HS̂  is more efficient than the estimator 

 3HS̂  as long as 3.0 . On the other hand, if 3.0  the proposed estimator 

 3HS̂  is better than the estimator  2HS̂ . However, the proposed estimators  

 2HS̂  and  3HS̂  are more efficient than the estimator  1HS̂ . Thus, we 

conclude that the proposed estimator  2HS̂  is a suitable choice for 3.0 , 

whereas for 3.0 , the estimator  3HS̂ is the appropriate choice for estimating 

the population proportion  3HS̂ . 

Finally, we conclude that the suggested general procedure is justifiable in the 

sense of obtaining better estimators from the proposed generalized estimator HS̂  

for appropriate values of  21 w,w . 
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OF CHILDREN MAINTENANCE USING HOUSING 
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ABSTRACT 

It is interesting to compare maintenance costs of children between countries with 

similar yet different family policy regimes because this could yield valuable 

lessons for researchers and policy-makers and also for the sake of methodological 

development.  

In this study, we aim to conduct a comparative analysis of the equivalence scales 

in Austria, Italy, Poland and France taking into account the age of children. To 

this end, we use data from the European Income and Living Condition (EU-

SILC) to calculate equivalence scales for mono- and duo-parental households for 

the first and second child. The four countries share common European cultural 

context, yet differ with respect to social environment, in particular to family 

policy. We apply the Engel estimation method proposing the share of housing 

spending in total expenditures as a tool to obtain commodity-specific equivalence 

scales. 

Our results are consistent with other studies showing that the cost of a first child 

is higher than that of a later child. The scale values are not the same across all the 

countries concerned, with the highest cost observed in Italy and the lowest in 

Poland.  

Key words: equivalence scales, EU-SILC, housing expenses, Engel curves 
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1. Introduction 

The calculation of equivalence scales measuring the maintenance cost of 

children may be based on multiple estimation methods (Barten, 1964; Betti, 

Lundgren 2012; Gorman, 1976; Pashardes, 1991; Pollak, Wales, 1979; Szulc, 

2009). Obviously, the choice of an appropriate method of estimation depends 

primarily on the research objectives and, secondly, on the availability of data. 

Typically, in the case of the analysis for a single country, researchers have a much 

wider choice of options than in the case of an analysis aimed at international 

comparisons, where the method selection is much more frequently restricted by 

the availability of data comparable between respective countries. Many methods 

of estimations, commonly used in international comparisons, are based on the 

expenditures on food as a measure of welfare. In this paper, we attempt to verify 

whether equivalence scales calculated on the basis of housing expenses are 

capable of indicating internationally comparable costs of children maintenance. In 

particular, we aim at distinguishing between the maintenance cost of the first and 

the second child and between different age categories of children. 

The study was carried out for four European countries: Austria, France, Italy 

and Poland. The choice of these countries was driven by differences in 

implemented family policies and in family benefits spending, which may impact 

on the dominant model of care and, consequently, maintenance costs of children. 

As for the level of family-related public spending, in 20135 France was the most 

generous from all these countries, with approximately 3.65% of Gross Domestic 

Product (GDP) transferred to families in the form of various childcare benefits 

(OECD, 2016a). These transfers were lower in Austria (2.61% GDP), Italy 

(1.97%) and Poland (1.61% in 2012). Children’s participation rate in the 

preschool institutions (creches and nursery schools) was highly differentiated too, 

with the lowest value in Poland and the highest in France (OECD, 2016b). 

Making a reference to Esping-Andersen’s (1990) typology of welfare state 

regimes, we can distinguish Austria and Italy, where the public support for 

families is dominated by direct financial transfers making up for incomes lost by a 

parent taking care of children, and France that combines direct financial transfer, 

important fiscal deductions and an extended public infrastructure of pre-school 

institutions. In Poland, where the family policy is still underdeveloped as 

compared to the three other countries of analysis, relatively long family leaves are 

accompanied by financial direct transfers and limited infrastructure of pre-school 

institutions. Different levels of public spending and different types of family-

related policy instruments in these countries may affect importantly the level of 

children maintenance costs. 

This paper is organized as follows. In the first part, we review estimation 

methods used in the calculation of the equivalence scales. In the second part, we 

present the data used for estimations, elaborate on our method and discuss the 

                                                           
5 The latest year for which the most updated data were available. 
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results that we obtained for four European countries. Concluding remarks include 

our reflexion on the use of housing expenses in international comparisons of 

maintenance costs of children. 

2. Measures of the cost of child maintenance 

There are a vast number of methods for estimating the cost of children in the 

economic literature. The cost of children is most frequently defined as the 

incremental income the parents must spend after the birth of a first or later child. 

Firstly, this does not account for the public cost of children incurred by the 

government. Secondly, alternative costs, the major one being the cost of lost 

income resulting from partial or full withdrawal from professional activity for the 

sake of childcare, are not considered. The easiest way of estimating such 

individual direct costs is to compare the budgets of childless persons to those who 

have children, i.e. by calculating equivalence scales (Panek, 2011). By using 

equivalence scales, one can estimate how much more a household of a certain 

demographic structure must spend as compared to a reference household, e.g. a 

childless one, in order to achieve an equal level of welfare (Szulc, 2007).   

Equivalence scales are calculated according to the demographic structure and 

the expenses of a household, rather than its income for three main reasons. Firstly, 

when declaring their expenses, respondents tend to be more accurate than in 

assessing their incomes. Secondly, expenses are a better indicator of permanent 

income, that is an income earned in a lifetime perspective and, thirdly, they more 

accurately reflect the respondents’ standards of living (Dudek, 2011). The 

demographic structure of a household most frequently means the composition of 

the household, including the number of both adults and children. 

Equivalence scales may be calculated in many ways and we distinguish, most 

basically, two types of scales: normative and empirical. The former, also referred 

to as expert scales as independent experts assess the welfare needs of adults and 

children, include the OECD scale, Luxembourg Income Study (LIS) scale or 

scales devised by national offices of statistics in individual countries (Ciecieląg, 

2003). Their advantage is the simplicity of calculations and ease of comparisons, 

the drawback being the arbitrary selection of weights (Dudek, 2009).  

Empirical scales, in turn, are based on the observation of actual consumption 

of households (in the so-called objective approach) or their subjective declared 

assessment of the capability to maintain on their own (subjective approach) 

(Dudek, 2011). Among the objective approximate methods, the method described 

by Engel (1895) is the oldest and, at the same time, most popular. It involves the 

comparison of spending between families of different demographic structure and 

the same welfare level, which is measured by the share of expenditures on food in 

the total spending of households.  

In order to calculate the Engel scale, the so-called Engel curves have to be 

estimated on the basis of single-equation econometric models (Panek 2011). The 
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dependent variable in these models is the share of expenditures on food in all 

expenditures, whereas the explanatory variables include income and demographic 

characteristics of households. In the next step, in order to calculate equivalence 

scales, the shares of food spend of the reference household is compared to the 

respective share of a household with the selected number of children. Equivalence 

scales are obtained by comparing total spending x of households with different 

demographic structure with total spending of the reference household x0.  

The main objection raised against the Engel method (Ciecieląg 2003, Dudek 

2011) is that it only considers expenses on food. Another objection concerns the 

fallacy of the assumption as to the equality of preferences of children and adults. 

Despite these objections, the method is frequently used in empirical studies, 

mainly due to its simplicity and high availability of required data. 

An alternative to the Engel method is constituted by the welfare indicator 

proposed by Rothbarth (1943), who measured households’ welfare on the basis of 

the absolute level of spending on the so-called adult goods, i.e. those consumed 

by adults only, such as for instance alcohol and cigarettes. Most researchers claim 

that, contrary to the Engel method, the cost of children maintenance obtained 

using the Rothbarth method is underestimated (Dudek 2011). This is because no 

change of preferences as regards adult goods is admitted following the birth of a 

next family member. 

Another group of methods for estimating the cost of children, which seems 

more accurate but also more difficult to apply, is represented by methods based on 

utility functions, also known as complete demand models (Muellbauer 1974). 

These scales are a function of utility, which is not observable in the reality. This is 

the strongest objection against this type of equivalence scales, known as the issue 

of equivalence scales identifiability (Ciecieląg 2003, Dudek 2011). In order to 

identify the model, which is the basis for estimating the equivalence scales, it is 

necessary to input additional information on households or to make additional 

assumptions (Blundell 1998, Lewbel and Pendakur 2006), e.g. as to the 

independence of the scales on the utility level according to the ESE (Equivalence 

Scale Exactness) or IB (Independence of Base) option (Ciecieląg 2003). 

Controversies around the results obtained through the above-described 

objective methods led to the emergence of subjective methods that, however, are 

still not as commonly used as the approximate methods (Dudek 2011). Instead of 

real spending data, subjective methods rely on respondents’ opinions about their 

incomes. The opinions are gathered by the means of a questionnaire in which the 

respondents indicate the level of income corresponding, in their opinion, to 

specific ranking level (Leiden method). Usually, the following ranking scale is 

used for the income level: very bad, bad, insufficient, barely sufficient, good and 

very good (van Praag, van der Sar 1988). 

Each of the above methods has both advantages and disadvantages. In short, 

normative scales, mostly used for international comparisons, are established by 

expert and need not to reflect empirical results of estimations. The Engel scale 

does not consider the effect of scale arising when a new family member is born, 
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thus overestimating the maintenance costs. On the contrary, the Rothbarth method 

underestimates these costs as no assumption is made that the consumption of the 

so-called adult goods changes when a family enlarges. Deaton and Muellebauer 

(1986) discuss the limitations of these methods in more detail. Methods based on 

utility functions seem more precise, although distinctly more complicated. And 

subjective methods require collecting additional statistical data, which is time- 

and cost-consuming. 

3. Empirical analysis 

3.1. Data and methodology 

Data used in this study were derived from the European Union Statistics on 

Income and Living Conditions (the EU-SILC) database for the year 2010. The 

EU-SILC study is carried out according to a harmonized questionnaire on a 

sample of around 130 thousand households in 27 countries of the European 

Union, as well as Island and Norway. The EU-SILC database provides 

comparable multidimensional microdata on incomes, poverty, social exclusion, 

labour, education and health, both at the household and individual level. The EU-

SILC household budget survey used in this study captures the income and living 

conditions for majority of European countries, including social and demographic 

characteristics of the respondents, their income and spending.  

In this analysis, we applied the Engel method for the calculation of the cost of 

children. However, in contrast to the original approach, we used the share of 

housing expenses in total spending as a tool to compute the commodity-specific 

equivalence scales. Our results should be interpreted very carefully because 

housing is rather a public household good whereas food is rather private. Methods 

based on food expenditure overestimate and those based on housing expenditure 

underestimate child costs due to economies of scale. In absolute terms, the levels 

of housing expenses and incomes remain varied in Austria, France, Italy and 

Poland (Table 1), for households with positive income. In particular, Poland 

registers a considerably lower level of expenses and incomes than the other three 

countries. In relative terms, the share of housing expenses in the average income 

is very similar in Austria (11.5%), France (10.4%) and Italy (9.3%), and visibly 

higher in Poland (14.0%). Meanwhile, the average number of children is the most 

elevated in Polish households (1.25), mostly because of visibly higher proportion 

of households with children aged 6 and over. This may be due to the facts that 

fertility rates were still high in Poland at the turn of the 1980s and 1990s, and that 

Polish adolescent leave their family houses relatively late, as compared to their 

counterparts in three other countries of our analysis. 
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Table 1.  Descriptive statistics of EU-SILC data for Austria, France, Poland and 

Italy 

Country Austria France Poland Italy 

 

Average yearly income (Euro)  43,417 44,875 10,473 36,441 

 

Average monthly housing expenses (Euro) 500.85 465.44 146.73 339.09 

 

Average number of children 1.01 1.18 1.25 0.88 

 Share of children: under age of 3 4.99 6.25 6.63 4.56 

 aged 3-6 6.51 7.64 7.73 6.46 

 aged 6-18 21.08 23.21 26.28 20.26 

 aged 18-25 8.07 10.13 15.82 10.76 

 Number of observations 6,188 11,044 12,930 19,147 

 Source: Author’s own analysis based on EU-SILC data. 

Based on the EU-SILC data, the equivalence scales were calculated by 

comparing the share of housing expenses in total spending for households with 

different demographic structure. Several assumptions were made here. Firstly, the 

scales were calculated separately for single parents and households with both 

parents raising the children together. In the first case, a single individual without 

children was taken as the reference household, while in the second one it was a 

household constituted by a couple with no children. For all cases, other 

individuals cohabiting with the family in a single household, apart from the 

children and parents, are possible. 

Secondly, two definitions of a child were considered. According to one, this 

means any individual up to the age of 18. According to the other, apart from 

individuals up to the age of 18, the term includes also those under the age of 25 

who continue their studies and remain to be supported by their parents. The 

analysis distinguishes also various age groups of children, assuming age brackets 

that are at least partly aligned with the applicable education system. The group of 

children were broken down by age into the following brackets: age up to 3, 3-6 

years, 6-18 years and 18-25 years.  

Thirdly, the presented results were limited only to households with one child 

or two children. As the percentage of households with three children in the 

analysed sample was at the very low level of 3.73% (lowest in Italy – 2.35%, 

highest in Poland – 4.91%), the estimates of the cost of a third and later child 

would have been inaccurate. Accordingly, the calculated equivalence scales show 

the cost of a first and a second child. 

3.2. Equivalence scales by child’s order 

Table 2 presents the equivalence scales estimated using the share of housing 

expenses in total spending as the welfare measure for four countries of Europe, 

separately for households with one parent and with two parents. The highest cost 
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of children raised in households with two parents is observed in Italy (Table 2). 

The cost of a first child reaches around 55% of the spending of a childless 

household of two adults, and the marginal cost of a second child in Italy 

corresponds to additional 17% of the reference household spending. The marginal 

costs of a first and second child in a two-parent household remain lower in 

Austria and France, but still higher than in Poland. We observe the lowest 

marginal costs of a first and second child were observed in the latter, both in the 

case of single-parent households (19 percentage points and 12 p.p., respectively) 

and two-parent households (approx. 29 p.p. and approx. 9 p.p., respectively).  

Table 2. Marginal cost of children in Austria, France, Poland and Italy 

Country Austria France Poland Italy 

Child age limit 18 25 18 25 18 25 18 25 

Single parent  

  1st child 0.229 0.224 0.339 0.333 0.193 0.188 0.276 0.277 

  2nd child 0.139 0.145 0.184 0.190 0.119 0.124 0.215 0.214 

Two parents  

  1st child 0.369 0.391 0.322 0.345 0.285 0.307 0.547 0.541 

  2rd child 0.155 0.158 0.112 0.115 0.094 0.096 0.172 0.171 

 Source: Authors’ own analysis based on EU-SILC data. 

The difference in the level of cost of child maintenance in Poland and Italy is 

striking as the countries are characterised by similar family policy and, at least at 

first glance, traditional approach to the involvement of women in the care 

activities. Despite numerous similarities, Poland differs from Italy in terms of 

professional activity of women. According to Eurostat data, in 2014 the 

employment rate among women in production age in Poland was 55%, and in 

Italy it was lower by 8 p.p., standing at 47% (Eurostat 2015). Many Polish women 

decide to set up a family only after they gain the eligibility to financial benefits 

during the leave, and return to professional activity once their children become 

more self-reliant. Italian women much more frequently remain permanently 

professionally inactive. Additionally, the maternity benefit in Poland is 

characterised by the highest income replacement rate (100%) while in Italy it is 

lower (80%) and paid only over 13 weeks (EP 2014). Salaries and benefits 

obtained by working mothers may explain the differences in the cost of children 

in Poland and Italy.  

Social policy supporting single parents results in slightly lower marginal cost 

of a first child in all the countries. This effect is most strongly visible in Italy, 

especially for a first child. Consequently, the costs of a first child in single-parent 

households in Italy are lower than in France. However, the marginal cost of a 

second child again is the highest in Italy. In all countries except Austria, the 



694                    M. Kalbarczyk, A. Miazga, A. Nicińska: The inter-country comparison… 

 

 

marginal cost of a second child is higher in single-parent households than in those 

with two parents. 

In all countries, the economies of scale are visible as the marginal cost of a 

second child is lower than the marginal cost of a first child. The largest economies 

of scale in the case of single parents are observed in France, which is probably 

largely driven by the design of the local family policy with strong incentives for 

having a second child and later children. In the case of parents raising children 

together, the largest economies of scale are seen in Italy, which is not surprising 

considering the very high cost of a first child.  

3.3. Equivalence scales by child’s age and number of parents in household  

While in France and Austria the older the child, the lower its marginal 

maintenance cost (Tables 3 and 4), we obtained different results for Italy and 

Poland. In the former the relationship was opposite, whereas in the latter it is non-

linear – highest values relate to the middle child age group. In each country the 

same pattern was maintained, regardless of the number of parents and children, 

assuming that in the case of two children, both belong to the same age group.  

Table 3.  Marginal cost of children up to 18 years old in single-parent households 

by child age group 

Country Austria France Poland Italy 

Child age limit 18 25 18 25 18 25 18 25 

One child 

Child age 

       

  

  cat1 0.278 0.256 0.459 0.437 0.187 0.170 0.209 0.213 

  cat2 0.244 0.224 0.419 0.399 0.236 0.214 0.271 0.276 

  cat3 0.166 0.192 0.140 0.163 0.156 0.181 0.348 0.341 

Two children 

Child age 

       

  

  cat1, cat1 0.442 0.417 0.710 0.684 0.303 0.285 0.388 0.392 

  cat2, cat2  0.390 0.368 0.648 0.626 0.376 0.350 0.484 0.490 

  cat3, cat3   0.276 0.322 0.231 0.271 0.258 0.302 0.605 0.593 

  cat1, cat2 0.416 0.392 0.679 0.655 0.339 0.317 0.435 0.440 

  cat1, cat3 0.356 0.368 0.451 0.463 0.281 0.294 0.492 0.489 

  cat2, cat3 0.332 0.345 0.424 0.438 0.316 0.326 0.543 0.540 

Note: cat1 – children under age of 3, cat2 – children aged 3-6, cat3 – children aged 6-18. 

Source: Authors’ own analysis based on EU-SILC data. 

In Austria, France and Poland the cost of children in households with a second 

little child is the lowest when the first child belongs to the oldest age group. This 

is probably due to the fact that the costs of children decrease with age in those 
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countries. The relationship is observed both in single-parent and two-parent 

households. In Poland, as opposed to Austria and France, the cost of children in 

the first years of life is lower when the first child is in the same, lowest, age 

bracket, rather than the middle bracket, independently of the number of parents in 

the household. In this respect, Poland and Italy are similar. This relationship may 

be explained by limited access to public care for youngest children in these 

countries. Economies of scale allow limiting the cost of formal and informal care 

in the case when both children are of similar age. 

Table 4. Marginal cost of children in two-parent households by child age group 

Country Austria France Poland Italy 

Child age limit 18 25 18 25 18 25 18 25 

One child 

Child age 

       

  

  cat1 0.451 0.463 0.356 0.368 0.281 0.294 0.492 0.489 

  cat2 0.424 0.438 0.332 0.345 0.316 0.326 0.543 0.540 

  cat3 0.231 0.271 0.276 0.322 0.258 0.302 0.605 0.593 

Two children 

Child age 

       

  

  cat1, cat1 0.663 0.672 0.491 0.498 0.372 0.382 0.629 0.626 

  cat2, cat2 0.618 0.628 0.451 0.459 0.429 0.434 0.713 0.711 

  cat3, cat3 0.299 0.353 0.361 0.422 0.336 0.396 0.816 0.799 

  cat1, cat2 0.640 0.650 0.471 0.478 0.400 0.408 0.670 0.668 

  cat1, cat3 0.470 0.504 0.424 0.459 0.354 0.389 0.720 0.710 

  cat2, cat3 0.450 0.484 0.405 0.440 0.382 0.415 0.764 0.755 

 Note: cat1 – children under age of 3, cat2 – children aged 3-6, cat3 – children aged 6-18. 

 Source: Authors’ own analysis based on EU-SILC data. 

Only in France the cost of children appears higher in households with a single 

parent than in households with two parents. It should be noted that the cost of 

children of single parents is calculated referring to single-person households 

rather than to childless couple households, as in the case of two-parent 

households. When comparing the two types of households with children, we are 

not in the position to discern the impact of child presence from the impact of 

different spending structures for single-person households and couple households 

respectively. 

If, for the sake of this study, we accept an assumption that the spending 

structure of all households with no children is the same, regardless of the number 
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of adults, the following relationships may be observed. The smallest difference 

between households with one and two parents in the cost of children occurs in 

Poland, and the largest in Italy, irrespective of the child age. The largest 

difference in the cost of a first child between households with a single parent and 

two parents, respectively, is observed for the youngest children in Poland and in 

Italy, and for the children from the middle age bracket in Austria. As far as the 

cost of a large number of children is considered, there is no constant pattern 

reflecting the effects of the support for single parents in the countries concerned. 

4. Conclusions 

The study presents the calculation results of the cost of children using the 

share of housing expenses in total spending. Consistently with other studies 

(Balli, Tiezzi, 2013; Kot, 2014), the equivalence scales calculated using the Engel 

method indicate that the cost of a first child is higher than that of a later child, be 

it in Austria, France, Poland or Italy. The differences in the cost of children 

depending on the assumed upper child age limit are insignificant, and for two 

children practically unnoticeable. This means that the maintenance cost of adult 

children is negligible. The scale values are not the same across all the countries 

concerned, with the highest cost observed in Italy and the lowest in Poland.  

Analyses comparing the cost of children between countries are rare. To the 

best of the authors’ knowledge, in the literature there is no study based on an 

objective method to cover the four countries (Austria, France, Italy and Poland). 

An analysis carried out by Bishop et al. (2014) and Kalbarczyk-Stęclik et al. 

(2017) based on a subjective method considers a wide set of European countries. 

Unfortunately, the comparison of results obtained with two distinctive approaches 

is considerably limited. We observe that the cost of children calculated using 

housing expenses is higher than the one calculated with the subjective method, 

both in the case of the first and the second child, which is a common result of the 

two methods' comparison.  

It should be noted that the above conclusions were drawn using a commodity-

specific equivalence scale rather than overall household equivalence scale. Our 

results are comparable in terms of main patterns of cost distribution by child order 

in a family, child’s age and type of a household, to the results obtained with the 

use of original Engel’s method, which supports our approach.  

However, the share of housing expenses is strongly determined by the 

ownership structure on the property market of a given country. In the case of 

countries characterised by highly diversified structure of housing property 

ownership and a different level of development of property rental and purchase 

markets the method relying on housing expenses could be more applicable to cost 

calculation on domestic level rather than to international comparisons.  
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APPENDIX 

Table A1.  Estimation results of Engel curves for Austria, France, Poland  

and Italy 

Country Austria France Poland Italy 

Child age limit 18 25 18 25 18 25 18 25 

  Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. Coeff. 

log income -0.019** -0.019** -0.022** -0.021** -0.020** -0.020** -0.029** -0.029** 

log hhsize 0.005** 0.004** 0.005** 0.004** 0.005** 0.004** 0.012** 0.013** 

share of kids 

aged 0-3 0.002 0.003 0.009** 0.011** 0.000 0.001 -0.006 -0.006 

aged 3-6 0.001 0.002 0.008** 0.009** 0.001 0.003 -0.003 -0.003 

aged 6-18 0.002 0.003 0.005** 0.006** 0.001 0.002 -0.003 -0.003* 

aged 18-25 

 

0.006** 

 

0.004* 

 

0.004** 

 

-0.002 

constant 0.211** 0.210** 0.235** 0.234** 0.193** 0.193** 0.302** 0.302** 

  

        Number of observations 6,187 6,185 11,029 11,029 12,710 12,710 18,986 18,986 

F test 576** 482** 801** 669** 1,013** 846** 1,434** 1,195** 

Note: ** - significant at 1%, * - significant at 5%. 

Source: Authors’ own analysis based on EU-SILC data. 
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IMPROVEMENT OF FUZZY MORTALITY MODELS  

BY MEANS OF ALGEBRAIC METHODS 

Andrzej Szymański, Agnieszka Rossa1 

ABSTRACT 

The forecasting of mortality is of fundamental importance in many areas, such as 

the funding of public and private pensions, the care of the elderly, and the 

provision of health service. The first studies on mortality models date back to the 

19th century, but it was only in the last 30 years that the methodology started to 

develop at a fast rate. Mortality models presented in the literature form two 

categories (see, e.g. Tabeau et al., 2001, Booth, 2006) consisting of the so-called 

static or stationary models and dynamic models, respectively. Models contained 

in the first, bigger group contains models use a real or fuzzy variable function 

with some estimated parameters to represent death probabilities or specific 

mortality rates. The dynamic models in the second group express death 

probabilities or mortality rates by means of the solutions of stochastic differential 

equations, etc.  

The well-known Lee-Carter model (1992), which is widely used today, is 

considered to belong to the first group, similarly as its fuzzy version published by 

Koissi and Shapiro (2006). In the paper we propose a new class of fuzzy 

mortality models based on a fuzzy version of the Lee-Carter model. Theoretical 

backgrounds are based on the algebraic approach to fuzzy numbers (Ishikawa, 

1997a, Kosiński, Prokopowicz and Ślęzak, 2003, Rossa, Socha and Szymański, 

2015, Szymański and Rossa, 2014). The essential idea in our approach focuses on  

representing a membership function of a fuzzy number as an element of C*-

Banach algebra. If the membership function µ(z) of a fuzzy number is strictly 

monotonic on two disjoint intervals, then it can be decomposed into strictly 

decreasing and strictly increasing  functions (z), (z), and  the inverse functions  

f(u)=−1(u) and  g(u)=−1(u), u ∈ [0, 1] can be found.  

Ishikawa (1997a) proposed foundations of the fuzzy measurement theory, which 

is a general measurement theory for classical and quantum systems. We have 

applied this approach, termed C*-measurement, as the theoretical foundation of 

the mortality model. Ishikawa (1997b) introduced also the notions of objective 

and subjective C*-measurement called real and imaginary C*-measurements. In 

our proposal of the mortality model the function f is treated as an objective C*-

measurement and the function g as an subjective C*-measurement, and the  
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membership function µ(z) is represented by means of a complex-valued function 

f(u) + ig(u), where i is the imaginary unit. We use the Hilbert space of quaternion 

algebra as an introduction to the mortality models. 

Key words: C*-Banach algebra, non-commutative C*-algebra, quaternion 

algebra, fuzzy mortality model. 

1. Introduction 

Long-lasting observations of mortality rates or death probabilities lead to the 

conclusion that in developed countries they decline for most age groups, whereas 

the upper limit of human lifetime is moving upwards. Other life-table parameters 

also change in time. The mortality trends and patterns observed in developed 

countries in the second half of the 20th century can be summed up as follows (see 

also Wilmoth and Horiuchi, 1999): 

– the normal lifetime drifts toward older ages, 

– ages at deaths are concentrating around the normal lifetime, 

– the survival curve is undergoing rectangularization (because of the 

aforementioned trends), 

– the life expectancy is increasing, 

– in the young population (especially among young males aged 20+), the 

number and percentage of deaths from external causes (injuries, accidents, 

poisoning) is rising. 

These measures are therefore not constant in time. They are rather functions 

of time or, in broader terms, stochastic processes showing some variability. Past 

works on this subject have used, for instance, time-series analysis tools to 

examine the stochastic nature of these processes. One of the most popular is the 

Lee-Carter mortality model (Lee and Carter, 1992). 

2. The Lee-Carter mortality model 

Let 𝑚𝑥(𝑡) denote an age-specific (central) death rate for the subset of a 

population that is between exact ages x and x+1  

𝑚𝑥(𝑡) =
𝐷𝑥(𝑡)

𝐿𝑥(𝑡)
,      x=0,1,2,…,X,   t=1,2,…,T,     (2.1) 

where 

𝐷𝑥(𝑡) – the number of deaths at age x in the year t, 

𝐿𝑥(𝑡) – the midyear population at the age x in the year t, 

x=0,1,…,X –  index of one-year age groups, 

t=1,2,…,T – years of observation period. 
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The measure 𝑚𝑥(𝑡) is the ratio of deaths between ages x and x + 1 to the 

midyear population alive at age x in the given year t, also referred to as the mean 

population in the year t. The measure is described as the central rate because the 

midyear population is used in the denominator.  

The Lee-Carter model can be written as 

 ln 𝑚𝑥(𝑡)  =  𝛼𝑥  +  𝛽𝑥𝜅𝑡  + ϵ𝑥𝑡,          x=0,1,…,X, t=1,2,…,T    (2.2) 

or, equivalently, as  

 𝑚𝑥(𝑡)  =  exp{𝛼𝑥  +  𝛽𝑥𝜅𝑡  +  𝜖𝑥𝑡},         x=0,1,…,X, t=1,2,…,T,   (2.3) 

where mx(t), t ∈ N are age-specific mortality rates, αx, βx and κt are the model 

parameters, of which αx, βx depend on age  x and κt on time t. The double-indexed 

terms εx,t are error terms, which  are assumed to be independent and to have the 

same normal distributions with an expected value of 0 and constant variance.   

The parameters αx, x=0,1,…,X indicate the general shape of the mortality 

schedule, the time-varying parameters κt, t=1,2,…,T represent the time-trend 

indices of the general mortality level, whereas βx indicate the pattern of deviations 

from the age profile when the general level of mortality κt changes. In general, βx 

could be negative at some ages, indicating that mortality rates at those ages tend 

to rise when falling at other ages. In other words, the shape of βx  profile tells 

which rates decline rapidly and which slowly over time in response to change of 

κt.  

Because of the form of (2.2), the Lee-Carter model is called a bilinear model. 

The system of equations (2.2) or (2.3) cannot be explicitly solved unless 

additional restrictions are imposed. Let us assume, for instance, that for a set of 

parameters {αx},{βx}, and {κt} the model (2.2) is valid. It is easy to see that the 

model holds true also for any constant c and parameters {αx − cβx}, {βx}, {κt + c} 

or {αx}, {cβx}, {κt/c}. 

To make sure that an unambiguous solution is obtained, some additional 

restrictions must be defined. To this end, it is assumed that the sum of parameters 

βx  over age index x is 1 and the sum of parameters κt over time index t is equal to 

0, i.e. 

 ∑ 𝛽𝑥 = 1,
𝑋
𝑥=0   ∑ 𝜅𝑡 = 0.

𝑇
𝑡=1          (2.4) 

Parameters αx and βx  do not depend on time t, which means that once they 

have been established  they can also be used for the future period, i.e. t > T. The 

time-varying rates are κt. They can be further modelled using, for instance, the 

time series analysis methods. 

Lee and Carter (1992) proposed a random walk model, but the range of 

proposals discussed in the literature is wider. A random walk process with a drift 

is given by the formula 

 κt = δ + κt−1 + ξt,             (2.5) 

where δ is a constant (a drift), and ξt  is a random term. 
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Parameter δ in (2.5) mostly takes negative values that point to declining 

mortality. Random fluctuations around this trend are represented by independent 

random terms ξt, each having a normal distribution with the expected value of 0 

and finite variance.  
With the values of κt predicted from (2.5) and the estimations of αx  and βx the 

partial death rates can be forecasted, as well as other life-table mortality rates. 

The method of parameter estimation proposed by Lee and Carter is based on 

the method of Singular Value Decomposition (SVD), which decomposes a data 

matrix M = [ln mx(t) − ax] into a matrix of singular values D and two matrices W 

and V of left and right singular vectors. 

Let ax, bx, kt represent the estimators of parameters αx, βx, κt. Assuming that 

random terms 𝜖𝑥𝑡 in model (2.2) have an expected value of 0, we have 

 E(𝜖𝑥𝑡) = 0.             (2.6) 

This property will be used to find ax. To this end, we will determine the 

analogous first row moment from the sample, i.e. from time series {ln mx(t), t = 

1,2,...,T} for x = 0,1,2,...,X we calculate the sum 

 ∑ [ln𝑚𝑥(𝑡) − (𝑎𝑥 + 𝑏𝑥𝑘𝑡)]
𝑇
𝑡=1 ,       (2.7) 

then by comparing (2.7) with 0  

 ∑ [ln𝑚𝑥(𝑡) − (𝑎𝑥 + 𝑏𝑥𝑘𝑡)] = 0,
𝑇
𝑡=1       (2.8) 

we obtain the following equality  

 𝑇𝑎𝑥 + 𝑏𝑥 ∑ 𝑘𝑡 = ∑ ln𝑚𝑥(𝑡)
𝑇
𝑡=1

𝑇
𝑡=1 .       (2.9) 

By allowing additionally for condition ∑ 𝑘𝑡 = 0
𝑇
𝑡=1 , we arrive at 

 𝑎𝑥 =
1

𝑇
∑ ln𝑚𝑥(𝑡) .
𝑇
𝑡=1          (2.10) 

To estimate x, κt the first singular value and the first vector of matrices W 

and V are used. For a general case, all singular values and singular vectors can be 

employed, which gives the following extension of the model (2.2) 

 ln𝑚𝑥(𝑡) = 𝑥 + ∑ 𝑥
(𝑖)𝜅𝑡

(𝑖)𝑟
𝑖=1 ,       x=0,1,…,X, t=1,2,…,T,     (2.11) 

where r is the number of non-zero singular values. 

3. The Koissi-Shapiro model  

One of the most interesting generalisations of the Lee-Carter model, referring 

to the algebra of fuzzy numbers, was proposed by Koissi and Shapiro (2006). 

Their version of the Lee-Carter model (FLC model) assumes a fuzzy 

representation of the central death rates. It allows taking account of uncertainty 

involved in mortality rates and entering a random term into the fuzzy structure of 

the model. 
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Their approach builds on the assumption that the real rates of mortality are not 

exactly mx(t), but rather around mx(t), thus the role of the explanatory variable is 

played by fuzzified mortality rates.  

It is well-known that death statistics are subject to reporting errors of several 

kinds. They may be reported for incorrect year, area, or assigned statistics that are 

incorrect, e.g. age. Moreover, the midyear population data that serve as the 

denominators of mortality rates are also the subject of errors. It is regarded as the 

population at July 1 and is assumed to be the point at which half of the deaths in 

the population during the year have occurred. Such an estimate can be actually 

underestimated or overestimated. For these reasons, fuzzy representation of the 

central death rates seems to be justified. 

Koissi and Shapiro proposed fuzzy representation of the logarithms of age-

specific mortality rates ln mx(t), by converting them into symmetric, triangular 

fuzzy numbers (basic notions of the fuzzy numbers are given in Rossa, Socha, 

Szymański (2015, appendix) presented as 

  𝑌𝑥𝑡 = (𝑦𝑥𝑦, 𝑒𝑥𝑡),   x = 0,1,...,X,   t = 1,2,...,T,        (3.1) 

where yxt = ln mx(t) and ext  are the spreads of the membership functions of 

triangular fuzzy numbers. 

In fuzzification approach, a fuzzy least-squares regression based on minimum 

fuzziness criterion was employed, and – for simplicity – triangular symmetric 

fuzzy numbers were considered.  

Given the log-central death rates yxt= ln mx(t)  for age x in year t, the task is to 

find symmetric triangular fuzzy numbers A0 = (c0x, s0x), A1 = (c1x , s1x ) and Yxt = 

(yxt, ext) with centers c0x, c1x, yxt and spreads s0x, s1x, ext such that  

 (yxt, ext ) = (c0x, s0x)+( c1x, s1x)×t .             (3.2) 

To find the fuzzy numbers A0 and A1, the approach is as follows: 

1. First, ordinary least-squares (OLS) regression is used to find the center values 

c0x and c1x such that  

 𝑦𝑥𝑡  =  𝑐𝑜𝑥  +  𝑐1𝑥𝑡 + 𝜀𝑥𝑡,   for each x,         (3.3) 

where yxt = ln mx(t) are the observed log-central death rates, t is time variable, and 

𝜀𝑥𝑡 represent random terms. 

2. The spreads (s0x and s1x) are obtained by using the minimum fuzziness 

criterion. This consists in minimizing the following optimization problem, 

which can be solved through standard optimization software, i.e. minimize     

 𝑇𝑠0𝑥 + 𝑠1𝑥∑ 𝑡𝑇
𝑡=1                (3.4) 

subject to  

 ∀𝑡  𝑠0𝑥, 𝑠1𝑥 ≥ 0   

 c0x+ c1xt+ (s0x+s1xt) ≥ yxt,     and   c0x+ c1xt−(s0x+s1xt) ≤ yxt . 
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Once the log-central death rates are fuzzified, the FLC model can be defined 

as 

 Yxt = Ax ⊕Tw (Bx ⊗Tw Kt),      x = 0,1,...,X,  t = 1,2,...,T,         (3.5)  

where Yxt are known fuzzy log-central mortality rates, Ax, Bx, Kt are unknown 

parameters, and ⊕Tw, ⊗Tw are the addition and multiplication operators of fuzzy 

numbers in the norm 𝑇𝑤, respectively. For the definition of the norm 𝑇𝑤  see 

Koissi and Shapiro (2006). 

The authors assumed that the model parameters can be estimated by 

minimizing the criterion function based on the Diamond distance measure 

between fuzzy variables. The criterion can be expressed as the following sum 

∑ ∑ [3𝑎𝑥
2 + 3𝑏𝑥

2𝑘𝑡
2 + 3𝑦𝑥𝑡

2 + 6𝑎𝑥𝑏𝑥𝑘𝑡 − 4𝑦𝑥𝑡(𝑎𝑥 + 𝑏𝑥𝑘𝑡) + 2𝑒𝑥𝑡
2 ] +

𝑇

𝑡=1

𝑋

𝑥=0
 

  (3.6) 

+2∑ ∑ [(max{𝑠𝐴𝑥 , |𝑏𝑥|𝑠𝐾𝑡 , |𝑘𝑡|𝑠𝐵𝑥})
2𝑇

𝑡=1

𝑋

𝑥=0

− 2𝑒𝑥𝑡max{𝑠𝐴𝑥 , |𝑏𝑥|𝑠𝐾𝑡 , |𝑘𝑡|𝑠𝐵𝑥}]. 

However, the FLC model poses major problems in the estimation algorithm, 

because expression max{𝑠𝐴𝑥 , |𝑏𝑥|𝑠𝐾𝑡 , |𝑘𝑡|𝑠𝐵𝑥} in the criterion (3.6) prevents the 

standard use of non-linear optimization methods.  

In the rest of the paper, modification to the fuzzy mortality model based on 

fuzzified mortality rates with exponential membership functions will be proposed. 

The model simplifies both operations on fuzzy numbers and the model estimation. 

The essential idea in this approach is representing the membership functions of 

fuzzy numbers as elements of C*-Banach algebra. 

4.  A new class of mortality models based on algebraic approach to 

fuzzy numbers  

4.1. The theoretical background for the new mortality model 

 Fuzzification of data depends on the assumption about membership functions 

of fuzzy numbers. Koissi and Shapiro (2006) adopted triangular symmetric 

membership functions and used fuzzy least-squares regression. In our approach, 

we will assume exponential membership functions derived from relative 

frequencies of residuals in the least-squares regression model. 

Suppose that the membership function 𝜇(𝑧) of a fuzzy number is strictly 

monotonic on two disjoint intervals. Following Nasibov and Peker (2011), we 

will consider an exponential membership function of the form 
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 𝜇(𝑧) =

{
 

 exp {−(
𝑐−𝑧

𝜏
)
2
} ,      for  𝑧 ≤ 𝑐,

exp {−(𝑧−𝑐
𝜈
)
2
} ,    for  𝑧 > 𝑐,

        (4.1) 

where  𝑐, 𝜏, 𝜈  are scalars. 

Note that we can decompose 𝜇(𝑧) into two parts – strictly increasing and 

strictly decreasing functions (𝑧) and  (𝑧) of the form 

 

(𝑧) = exp {−(𝑐−𝑧
𝜏
)
2
} ,    for  𝑧 ≤ 𝑐,

(𝑧) = exp {−(𝑧−𝑐
𝜈
)
2
} , for  𝑧 > 𝑐.

             (4.2) 

Then, there exist inverse functions  

   −1(𝑢) = 𝑐 + 𝜓(𝑢),      −1(𝑢) = 𝑐 + 𝜑(𝑢),   𝑢 ∈ [0,1],    (4.3) 

where ψ(𝑢) and φ(𝑢) are expressed as follows 

 𝜓(𝑢) = −𝜏(−ln𝑢)
1
2,       𝜑(𝑢) = 𝜈(− ln𝑢)

1
2,   𝑢 ∈ [0,1].       (4.4) 

Example 1. Figure 1(a) illustrates an exponential functions (4.2) for fixed values 

of parameters c=0.03, 𝜏 = 0.08, 𝜈 = 0.09, Figure 1(b) presents respective inverse 

functions (4.3).   

Figure 1.  An example of an exponential membership function, c=0.03, τ =0.08,

ν =0.09 

(a) (b) 

 

 
 

Source: developed by the authors. 
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4.2. Transformation of membership functions into complex-valued functions 

Let us consider the complex functions  

𝑓(𝑢) = 𝑐 + 𝑖𝜓(𝑢),     and      𝑔(𝑢) = 𝑐 + 𝑖𝜑(𝑢),      𝑢 ∈ [0,1],      (4.5) 

where i = √−1 is an imaginary unit. 

Assuming that functions ψ(𝑢) and φ(𝑢) are expressed as in (4.4) we get 

𝑓(𝑢) = 𝑐 − 𝑖𝜏(− ln𝑢)
1
2,    and     𝑔(𝑢) =  𝑐 + 𝑖𝜈(− ln 𝑢)

1
2,      𝑢 ∈ [0,1].   (4.6) 

The pair of two complex functions (𝑓(𝑢), 𝑔(𝑢)) is called a quaternion. 

 

An illustration of a quaternion (𝑓(𝑢), 𝑔(𝑢)) on the complex plane for c=0.03, 

𝜏=0.08, 𝜈=0.09 is presented in Figure 2. 

Figure 2. A quaternion (𝑓(𝑢), 𝑔(𝑢)), with 𝑓(𝑢) and 𝑔(𝑢) defined in (4.4) with  τ =
0.08, ν = 0.09 

 

Source: developed by the authors. 

 

The modules of 𝑓(𝑢) and 𝑔(𝑢)  are as follows 

 |𝑓(𝑢)|2 = 𝑐2 + 𝜏2(− ln𝑢),  𝑢 ∈ [0,1],            (4.7) 

 |𝑔(𝑢)|2 = 𝑐2 + 𝜈2(− ln𝑢),  𝑢 ∈ [0,1].         (4.8) 

After integrating both sides of (4.7) and (4.8) on the interval [0,1] we obtain 

     ∫ |𝑓(𝑢)|2𝑑𝑢
1

0
= 𝑐2 + 𝜏2 ∫ (− ln𝑢)

1

0
𝑑𝑢 = 𝑐2 + 𝜏2,         (4.9) 

  ∫ |𝑔(𝑢)|2𝑑𝑢
1

0
= 𝑐2 + 𝜈2 ∫ (− ln𝑢)

1

0
𝑑𝑢 = 𝑐2 + 𝜈2.            (4.10) 
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4.3. Basic properties of quaternions 

It is well known that the complex numbers could be viewed as ordered pairs 

of real numbers. By analogy, the quaternions can be treated as ordered pairs of 

complex functions  

 (𝑧, 𝑤),    where   𝑧 = 𝑎 + 𝑖𝑏,    𝑤 = 𝑐 + 𝑖𝑑   and  𝑖 = √−1.   (4.11) 

The algebra of quaternions is often denoted by 𝑯. Quaternions were first 

described by Irish mathematician William Hamilton in 1843. The space 𝑯 is 

equipped with three operations: addition, scalar multiplication and quaternion 

multiplication. 

The sum of two elements of 𝑯 is defined as the sum of their components. 

Therefore, we have 

 (𝑧, 𝑤) + (𝑢, 𝑥) = (𝑧 + 𝑢,𝑤 + 𝑥).        (4.12) 

The product of an element of 𝑯 by a real number R  is defined to be the 

same as the product by scalar of both components 

 𝛼(𝑧, 𝑤) = (𝛼𝑧, 𝛼𝑤).           (4.13) 

To define the product of two elements in 𝑯 a choice of the basis for 𝑹4 is 

needed. The elements of this basis are customarily denoted as 1, 𝑖, 𝑗 and 𝑘. Each 

element of  𝑯 can be uniquely denoted as a linear combination 𝑎 ∙ 1 + 𝑏𝑖 + 𝑐𝑗 +
𝑑𝑘, where 𝑎, 𝑏, 𝑐, 𝑑 are real numbers.  

The basis element 1 could be viewed as the identity element of 𝑯. It means 

that multiplication by 1 does not change the value, and elements of 𝑯 can be 

uniquely denoted as 

 (𝑧, 𝑤) = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘,           (4.14) 

where 𝑎, 𝑏, 𝑐, 𝑑 are real numbers. Therefore, each element of 𝑯 is determined by 

four numbers and hence the term “quaternion”.   

The possible products of basic elements 𝑖, 𝑗, 𝑘 can be described as follows 

 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1,          (4.15) 

 𝑖𝑗 = 𝑘, 𝑗𝑖 = −𝑘,             (4.16) 

 𝑗𝑘 = 𝑖, 𝑘𝑗 = −𝑖,              (4.17) 

 𝑘𝑖 = 𝑗, 𝑖𝑘 = −𝑗.              (4.18) 

Quaternions can be represented as pairs of complex numbers as a 

generalization of the construction of the complex numbers being pairs of real 

numbers.  
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Let C be a two-dimensional vector space over the complex numbers. Let us 

choose a basis consisting of two elements 1 and j. For 𝑧, 𝑤 ∈ 𝐶 of the form 𝑧 =
𝑎 + 𝑏𝑖 and  𝑤 = 𝑐 + 𝑑𝑖, we can write 

 𝑞 = 𝑧 + 𝑤𝑗 = (𝑎 + 𝑏𝑖) + (𝑐 + 𝑑𝑖)𝑗 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑖𝑗.      (4.19) 

If we denote 𝑘 = 𝑖𝑗 then  

 𝑞 = 𝑧 + 𝑤𝑗 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘.          (4.20) 

Thus, the vector (𝑧, 𝑤) corresponds to a quaternion 𝑞 = 𝑎 + 𝑏𝑖 + 𝑐𝑗 + 𝑑𝑘. 

Then, each quaternion 𝑞 ∈ 𝑯 is uniquely represented by 

 𝑞 = 𝑧 + 𝑤𝑗.                   (4.21) 

Multiplication of quaternions could be defined in the form 

 (𝑧, 𝑤)(𝑢, 𝑥) = (𝑧𝑢 − 𝑤𝑥̅, 𝑧𝑥 + 𝑤𝑢̅),         (4.22) 

where 𝑥̅, 𝑢̅ denote conjugations of 𝑥 and 𝑢.   

Multiplication of quaternions is associative and distributive with respect to 

addition, however it is not commutative, since, for example, we have 

 (𝑖, 0)(0,1) = (0, 𝑖),              (4.23) 

but 

 (0,1)(𝑖, 0) = (0,−𝑖).             (4.24) 

Let us denote 

 𝑞∗ = 𝑧 − 𝑤𝑗              (4.25) 

as the conjugate of 𝑞.  

Conjugation is an involution. It means that for 𝑝, 𝑞 ∈ 𝑯 we have 

  (𝑞∗)∗ = 𝑞,     (𝑝𝑞)∗ = 𝑞∗𝑝∗,      (𝑝 + 𝑞)∗ = 𝑝∗ + 𝑞∗.     (4.26) 

The square root of the product of a quaternion with its conjugate is called 

a norm, and is denoted ‖𝑞‖. This is expressed as follows 

 ‖𝑞‖ = √𝑞𝑞∗ = √𝑞∗𝑞 = √𝑎2 + 𝑏2 + 𝑐2 + 𝑑2.   (4.27) 

It is always a non-negative real number, and it is the same as the Euclidean 

norm on 𝑯 considered as the vector space 𝑹4 . Multiplying a quaternion by a real 

number scales its norm by the absolute value of this number 

 ‖𝛼𝑞‖ = |𝛼|‖𝑞‖.               (4.28) 

This is a special case of the following property 

 ‖𝑝𝑞‖ = ‖𝑝‖‖𝑞‖               (4.29) 

for any two quaternions p and q.  

http://en.wikipedia.org/wiki/Norm_(mathematics)
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The norm (4.27) allows us to define the distance 𝑑(𝑝, 𝑞) between p and q as 

the norm of their difference 

 𝑑(𝑝, 𝑞) = ‖𝑝 − 𝑞‖.             (4.30) 

This defines 𝑯 as a metric space.  

According to (4.6) we have  

           𝑓(𝑢) = 𝑐 + 𝑖𝜓(𝑢),     𝑢 ∈ [0,1], 

and       

           𝑔(𝑢) = 𝑐 + 𝑖𝜑(𝑢),      𝑢 ∈ [0,1], 

where 𝜓,𝜑 are defined in (4.4). 

Hence, 

|𝑓(𝑢)|2 = 𝑐2 +  𝜓2(𝑢),       and       |𝑔(𝑢)|2 = 𝑐2 +  𝜑2(𝑢). 

Let us denote 

 𝑃(𝑢) = (𝑓(𝑢), 𝑔(𝑢)),    𝑢 ∈ [0,1].        (4.31) 

The function P is a quaternion-valued function.  The norm of 𝑃(𝑢) could be 

expressed as follows 

 ‖𝑃(𝑢)‖2 = |𝑓(𝑢)|2 + |𝑔(𝑢)|2 = 𝑐2 + 𝜓2(𝑢)+𝑐2 + 𝜑2(𝑢),    (4.32) 

and from (4.9) and (4.10) we have  

∫|𝑓(𝑢)|2𝑑𝑢

1

0

< ∞     𝑎𝑛𝑑     ∫|𝑔(𝑢)|2𝑑𝑢

1

0

< ∞. 

Integrating both sides in (4.32) we receive also 

 ∫ ‖𝑃(𝑢)‖2𝑑𝑢
1

0
= ∫ |𝑓(𝑢)|2𝑑𝑢

1

0
+ ∫ |𝑔(𝑢)|2

1

0
𝑑𝑢 < ∞.     (4.33) 

Thus, the functions f and g are the elements of the Hilbert space 𝐿2[0,1], and 

the quaternion-valued function 𝑃 is integrable with squared norm on the interval 

[0,1]. Let us denote the space of such functions as 𝐿2(𝑯). 

5. A mortality model based on quaternion-valued functions 

5.1. Formulation of the model 

We will assume that  𝑌̃𝑥,𝑡 = (𝑓𝑌𝑥,𝑡 , 𝑔𝑌𝑥,𝑡) are quaternions with complex 

functions 𝑓𝑌𝑥,𝑡 , 𝑔𝑌𝑥,𝑡 of the form 

𝑓𝑌𝑥,𝑡(𝑢) = 𝑦𝑥𝑡 − 𝑖𝜏𝑥(− ln𝑢)
1
2,       𝑔𝑌𝑥,𝑡(𝑢) =  𝑦𝑥𝑡 + 𝑖𝜈𝑥(− ln𝑢)

1
2,      𝑢 ∈ [0,1], 

http://en.wikipedia.org/wiki/Metric_space


712                                                         A. Szymański, A. Rossa: Improvement of fuzzy… 

 

 

where i is an imaginary unit, 𝑦𝑥𝑡 = ln𝑚𝑥(𝑡), and τ𝑥 , 𝜐𝑥 are known parameters 

evaluated by means of Nasibov-Peker method (see section 5.3 for more details). 

Similarly, we will assume that 𝐴̃𝑥 = (𝑓𝐴𝑥 , 𝑔𝐴𝑥),  𝐾̃𝑡 = (𝑓𝐾𝑡 , 𝑔𝐾𝑡) are 

quaternions determined by complex functions 

 𝑓𝐴𝑥(𝑢) = 𝑎𝑥 − 𝑖(− ln𝑢)
1
2𝑠𝐴𝑥
𝐿 ,     𝑔𝐴𝑥(𝑢) = 𝑎𝑥 + 𝑖(− ln𝑢)

1
2𝑠𝐴𝑥
𝑅 ,    𝑢 ∈ [0,1]     

(5.1) 

 𝑓𝐾𝑡(𝑢) = 𝑘𝑡 − 𝑖(− ln 𝑢)
1
2s𝐾𝑡  ,     𝑔𝐾𝑡(𝑢) = 𝑘𝑡 + 𝑖(− ln𝑢)

1
2s𝐾𝑡,     𝑢 ∈ [0,1].     

(5.2) 

As in other models based on functional analysis, we postulate the following 

mortality model based on quaternion-valued functions  

 𝑌̃𝑥,𝑡 = 𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡,             𝑥 = 0,1,… , 𝑋, 𝑡 = 1,2,… , 𝑇,          (5.3) 

where 𝑌𝑥,𝑡 are fuzzified log-central mortality rates expressed in terms of 

quaternion-valued functions in the Hilbert space 𝐿2(𝑯), 𝑏𝑥 ∈ 𝑹, 𝑥 = 0,1,… , 𝑋, is 

a set of unknown scalar parameters, and quaternions 𝐴̃𝑥 , 𝐾̃𝑡  represent unknown 

parameters in 𝐿2(𝑯) determined by the complex functions (5.1) and (5.2). The 

proposed model (5.3) will be termed Complex Number Mortality Model 

(CNMM). 

Note that the quaternions  𝐴̃𝑥 = (𝑓𝐴𝑥 , 𝑔𝐴𝑥),  𝐾̃𝑡 = (𝑓𝐾𝑡 , 𝑔𝐾𝑡) on the right-hand 

side of (5.3) reflect fuzzy numbers 𝐴𝑥,  𝐾𝑡 with exponential membership 

functions 𝜇𝐴𝑥(𝑧) and 𝜇𝐾𝑡(𝑧) (see sections 4.1 and 4.2) 

 𝜇𝐴𝑥(𝑧) =

{
 
 

 
 exp {−(𝑎𝑥−𝑧

𝑠𝐴𝑥
𝐿 )

2

} ,      for  𝑧 ≤ 𝑎𝑥 ,

exp {−(𝑧−𝑎𝑥
𝑠𝐴𝑥
𝑅 )

2

} ,    for  𝑧 > 𝑎𝑥 ,

        (5.4) 

 

 𝜇𝐾𝑡(𝑧) =

{
 
 

 
 exp {− (𝑘𝑡−𝑧

𝑠𝐾𝑡
)
2
} ,      for  𝑧 ≤ 𝑘𝑡 ,

exp {−(𝑧−𝑘𝑡
𝑠𝐾𝑡
)
2
} ,    for  𝑧 > 𝑘𝑡 .

       (5.5) 

Using the properties (4.12) and (4.13) the complex functions defining the 

quaternion 𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡 on the right-hand side of (5.3) are as follows 

 𝑓𝐴𝑥+𝑏𝑥𝐾𝑡(𝑢) = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 − 𝑖(− ln 𝑢)
1
2(𝑠𝐴𝑥

𝐿 + 𝑏𝑥𝑠𝐾𝑡),  𝑢 ∈ [0,1],    (5.6) 

 𝑔𝐴𝑥+𝑏𝑥𝐾𝑡(𝑢) = 𝑎𝑥 + 𝑏𝑥𝑘𝑡 + 𝑖(− ln 𝑢)
1
2(𝑠𝐴𝑥

𝑅 + 𝑏𝑥𝑠𝐾𝑡),  𝑢 ∈ [0,1].     (5.7) 
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It means that 𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡 reflects a fuzzy number 𝑊𝑥𝑡  with an exponential 

membership function  

 𝜇𝑊𝑥𝑡(𝑧) =

{
 
 

 
 exp {−(𝑎𝑥+𝑏𝑥𝑘𝑡−𝑧

𝑠𝐴𝑥
𝐿 +𝑏𝑥𝑠𝐾𝑡

)
2

} ,      for  𝑧 ≤ 𝑎𝑥 + 𝑏𝑥𝑘𝑡,

exp {−(𝑧−𝑎𝑥−𝑏𝑥𝑘𝑡
𝑠𝐴𝑥
𝑅 +𝑏𝑥𝑠𝐾𝑡

)
2

} ,    for  𝑧 > 𝑎𝑥 + 𝑏𝑥𝑘𝑡.

     (5.8) 

5.2. Estimation of the model parameters 

In order to estimate the parameters 𝑎𝑥 , 𝑏𝑥, 𝑘𝑡 , 𝑠𝐴𝑥
𝐿 , 𝑠𝐴𝑥

𝑅 , 𝑠𝐾𝑡 we will use the 

notion of the norm  (4.32) defined in the space of quaternion-valued functions. 

Thus, the following distance between left- and right-hand sides of the model (5.3) 

will be defined for fixed  𝑥  and  𝑡 

𝑑𝑥,𝑡 = ∫ ‖𝑌̃𝑥,𝑡 − (𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡)‖
2
𝑑𝑢

1

0

= ∫|𝑓𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢)|
2
𝑑𝑢

1

0

+∫|𝑔𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢)|
2

1

0

𝑑𝑢. 

Let us find functions 𝑓𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢) and 𝑔𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢) determining 

the difference of quaternions 𝑌̃𝑥,𝑡 − (𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡). We have 

 𝑓𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢) = 𝑦𝑥,𝑡−(𝑎𝑥 + 𝑏𝑥𝑘𝑡) − 𝑖(− ln𝑢)
1
2(𝜏𝑥 − 𝑠𝐴𝑥

𝐿 − 𝑏𝑥𝑠𝐾𝑡),      

(5.9) 

 

 𝑔𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢) = 𝑦𝑥,𝑡−(𝑎𝑥 + 𝑏𝑥𝑘𝑡) + 𝑖(− ln𝑢)
1
2(ν𝑥 − 𝑠𝐴𝑥

𝑅 − 𝑏𝑥𝑠𝐾𝑡).   

     (5.10) 

Hence, 

|𝑓𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢)|
2
= (𝑦𝑥,𝑡−(𝑎𝑥 + 𝑏𝑥𝑘𝑡))

2
+ (− ln𝑢)(𝜏𝑥 − 𝑠𝐴𝑥

𝐿 − 𝑏𝑥𝑠𝐾𝑡)
2
,    

(5.11) 

 

|𝑔𝑌𝑥,𝑡−(𝐴𝑥+𝑏𝑥𝐾𝑡)(𝑢)|
2
= (𝑦𝑥,𝑡−(𝑎𝑥 + 𝑏𝑥𝑘𝑡))

2
+ (− ln𝑢)(ν𝑥 − 𝑠𝐴𝑥

𝑅 − 𝑏𝑥𝑠𝐾𝑡)
2
.     

(5.12) 

Integrating (5.11) and (5.12) on the interval [0,1] we receive  

         𝑑𝑥,𝑡 = ∫ ‖𝑌̃𝑥,𝑡 − (𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡)‖
2
𝑑𝑢

1

0

= 

= 2(𝑦𝑥,𝑡−(𝑎𝑥 + 𝑏𝑥𝑘𝑡))
2
+ (𝜏𝑥 − 𝑠𝐴𝑥

𝐿 − 𝑏𝑥𝑠𝐾𝑡)
2
+ (𝜈𝑥 − 𝑠𝐴𝑥

𝑅 − 𝑏𝑥𝑠𝐾𝑡)
2
. 

       (5.13) 
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By the analogy to the Lee-Carter model and restrictions (2.4) we will assume 

that 

 ∑ 𝑘𝑡 = 0,
𝑇
𝑡=1   ∑ 𝑏𝑥 = 1.

𝑋
𝑥=0              (5.14) 

An additional restriction will be also imposed on the sum of 𝑠𝐾𝑡  

 ∑ 𝑠𝐾𝑡 = (𝑋 + 1)
𝑇
𝑡=1 √∑ (𝑦̅𝑡 − 𝑦̅)

2𝑇
𝑡=1 ,          (5.15) 

where 𝑦̅𝑡=
1

𝑋+1
∑ 𝑦𝑥𝑡
𝑋
𝑥=0   and  𝑦̅ =

1

𝑇(𝑋+1)
∑ ∑ 𝑦𝑥𝑡

𝑋
𝑥=0

𝑇
𝑡=1 . 

Thus, the criterion used to estimate model parameters takes the form 

𝐹(𝑎𝑥 , 𝑏𝑥 , 𝑘𝑡, 𝑠𝐴𝑥
𝐿 , 𝑠𝐴𝑥

𝑅 , 𝑠𝐾𝑡 , 𝜆1, 𝜆2, 𝜆3) =  

∑ ∑ 𝑑𝑥,𝑡
𝑇
𝑡=1 +𝑋

𝑥=0 𝜆1(∑ 𝑏𝑥 − 1
𝑋
𝑥=0 ) + 𝜆2∑ 𝑘𝑡 + 𝜆3

𝑇
𝑡=1 (∑ 𝑠𝐾𝑡 −

𝑇
𝑡=1

(𝑋 + 1)√∑ (𝑦̅𝑡 − 𝑦̅)
2𝑇

𝑡=1 ), 

(5.16) 

where 𝜆1, 𝜆2, 𝜆3 represent Lagrange multipliers.    

To minimize (5.16) it is necessary to compute its first derivatives with respect 

to 𝑎𝑥 , 𝑏𝑥 , 𝑘𝑡, 𝑠𝐴𝑥
𝐿 , 𝑠𝐴𝑥

𝑅 , 𝑠𝐾𝑡 , 𝜆1, 𝜆2, 𝜆3.  We have 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝜕𝐹

𝜕𝑎𝑥
= −4∑ (𝑦𝑥𝑡 − 𝑎𝑥 − 𝑏𝑥𝑘𝑡)

𝑇
𝑡=1 ,                                                                                            

𝜕𝐹

𝜕𝑏𝑥
= −2∑ [2𝑘𝑡(𝑦𝑥𝑡 − 𝑎𝑥 − 𝑏𝑥𝑘𝑡) + 𝑠𝐾𝑡(𝜏𝑥 + 𝜈𝑥 − 𝑠𝐴𝑥

𝐿 − 𝑠𝐴𝑥
𝑅 − 2𝑏𝑥𝑠𝐾𝑡)]

𝑇
𝑡=1 + 𝜆1 

𝜕𝐹

𝜕𝑘𝑡
= −4∑ 𝑏𝑥(𝑦𝑥𝑡 − 𝑎𝑥 − 𝑏𝑥𝑘𝑡)

𝑋
𝑥=0 + 𝜆2                                                                            

𝜕𝐹

𝜕𝑠𝐴𝑥
𝐿 = −2∑ (𝜏𝑥 − 𝑠𝐴𝑥

𝐿 − 𝑏𝑥𝑠𝐾𝑡)
𝑇
𝑡=1                                                                                          

𝜕𝐹

𝜕𝑠𝐴𝑥
𝑅 = −2∑ (𝜈𝑥 − 𝑠𝐴𝑥

𝑅 − 𝑏𝑥𝑠𝐾𝑡)
𝑇
𝑡=1                                                                                          

 
𝜕𝐹

𝜕𝑠𝐾𝑡
= −2∑ 𝑏𝑥(𝜏𝑥 + 𝜈𝑥 − 𝑠𝐴𝑥

𝐿 − 𝑠𝐴𝑥
𝑅 − 2𝑏𝑥𝑠𝐾𝑡)

𝑋
𝑥=0 + 𝜆3                                                 

𝜕𝐹

𝜕𝜆1
= ∑ 𝑏𝑥

𝑋
𝑥=1 − 1                                                                                                                      

𝜕𝐹

𝜕𝜆2
= ∑ 𝑘𝑡

𝑇
𝑡=1                                                                                                                                 

𝜕𝐹

𝜕𝜆3
= ∑ 𝑠𝐾𝑡 − (𝑋 + 1)

𝑇
𝑡=1 √∑ (𝑦̅𝑡 − 𝑦̅)

2𝑇
𝑡=1                                                                            

  

 

   (5.17) 

 

https://en.wikipedia.org/wiki/Lagrange_multiplier
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Then, setting each derivative in (5.17) equal to zero and solving for required 

parameters yields the set of normal equations 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝑎𝑥 =

1

𝑇
∑ 𝑦𝑥𝑡 =
𝑇
𝑡=1 𝑦̅𝑥                                                 

𝑏𝑥 =
∑ [2𝑘𝑡(𝑦𝑥𝑡−𝑎𝑥)+𝑠𝐾𝑡(𝜏𝑥+𝜈𝑥−𝑠𝐴𝑥

𝐿 −𝑠𝐴𝑥
𝑅 )]𝑇

𝑡=1 −
𝜆1
2

2∑ (𝑘𝑡
2+𝑠𝐾𝑡

2 )𝑇
𝑡=1

        

𝑘𝑡 =
∑ 𝑏𝑥(𝑦𝑥𝑡−𝑎𝑥)−

𝜆2
4

𝑋
𝑥=0

∑ 𝑏𝑥
2𝑋

𝑥=0
                                              

𝑠𝐴𝑥
𝐿 = 𝜏𝑥 −

1

𝑇
𝑏𝑥 ∑ 𝑠𝐾𝑡

𝑇
𝑡=1                                            

𝑠𝐴𝑥
𝑅 = 𝜈𝑥 −

1

𝑇
𝑏𝑥∑ 𝑠𝐾𝑡

𝑇
𝑡=1                                            

                                                                                        

𝑠𝐾𝑡 =
∑ 𝑏𝑥(𝜏𝑥+𝜈𝑥−𝑠𝐴𝑥

𝐿 −𝑠𝐴𝑥
𝑅 )−

𝜆3
2

𝑋
𝑥=0

2∑ 𝑏𝑥
2𝑋

𝑥=0
                               

∑ 𝑏𝑥
𝑋
𝑥=1 = 1                                                                 

∑ 𝑘𝑡
𝑇
𝑡=1 = 0                                                                 

∑ 𝑠𝐾𝑡 − (𝑋 + 1)
𝑇
𝑡=1 √∑ (𝑦̅𝑡 − 𝑦̅)

2𝑇
𝑡=1 = 0             

          (5.18) 

Note that the last three equations in (5.18) satisfy restrictions (5.14) and (5.15).  

 

This set of normal equations  can be solved numerically by means of an 

iterative procedure. After choosing a set of starting values, equations are 

computed sequentially using the most recent set of parameter estimates obtained 

from the right-hand side of each equation. In addition to numerical solution of the 

normal equations, there are also other minimizing algorithms, e.g. computer 

routines available in several mathematical packages (e.g. quasi-Newton or 

simplex methods). 

Prediction of the log-central death rates with the CNMM can be performed in 

three steps. First, the random-walk model with a drift (2.5) should be used to 

predict  time parameters 𝑘𝑡 for future periods t>T. Next, functions (5.6) and (5.7) 

should be determined using estimated parameters 𝑎𝑥 , 𝑏𝑥, 𝑠𝐴𝑥
𝐿 , 𝑠𝐴𝑥

𝑅 , 𝑠𝐾𝑡 and the 

sequence of predicted time indices  𝑘𝑡, 𝑡 > 𝑇. Note that the functions  (5.6) and 

(5.7) define the right-hand side of the mortality model (5.3) for 𝑡 > 𝑇, i.e. they 

define quaternions 𝐴̃𝑥 + 𝑏𝑥𝐾̃𝑡  for future periods. Finally, these quaternions 𝐴̃𝑥 +
𝑏𝑥𝐾̃𝑡 can be transformed into fuzzy numbers 𝑊𝑥𝑡 using exponential membership 

function 𝜇𝑊𝑥𝑡(𝑧) given in (5.8). They also can be further defuzzified into crisp 

numbers 𝑤𝑥𝑡, if necessary, i.e. by means of the centroid defuzzification method  

 𝑤𝑥𝑡 =
∑  𝑧𝜇𝑊𝑥𝑡

(𝑧)1
𝑧=𝜖

∑ 𝜇𝑊𝑥𝑡
(𝑧)1 

𝑧=𝜖
,                 (5.19) 

where 𝜖 > 0 denotes a small positive number. 
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The crisp values 𝑤𝑥𝑡 represent predicted fuzzy log-central death rates for t>T , 

whereas 𝑊𝑥𝑡 are their fuzzy counterparts. 

5.3. Fuzzification of log-central death rates  

Fuzzification of the log-central death rates 𝑦𝑥𝑡 = ln𝑚𝑥(𝑡) for x=0,1,...,X, t =  

1,2,...,T by means of exponential membership functions (4.1) will be based on the 

method proposed by Nasibov and Peker (2011), which allows us to determine 

parameters 𝑥 , 𝑥 for a fixed x based on an empirical distribution of a sequence of 

data. The main results of their work are introduced in this section. 

Assume that {𝑟𝑡, 𝑡 = 1,2, … , 𝑇} is a sequence of T observations in a data set. 

Assume that observation are grouped into a frequency table with k mutually 

exclusive class intervals (Table 1). 

Table 1. Frequency table 

Class intervals 
Midpoints  

zi 

Frequencies 

 fi 

Relative 

frequencies pi 

𝑟1- 𝑟2 z1=( 𝑟1+𝑟2)/2 f1 p1=f1/T 

𝑟2- 𝑟3 z2= (𝑟2+𝑟3)/2 f2 p2=f2/T 

… … … … 

𝑟𝐾−1- 𝑟𝐾   𝑟𝑘 = (𝑟𝐾−1+ 𝑟𝐾)/2 fk pk=fk/T 

Source: developed by the authors. 

Let us consider  the exponential membership function (4.1). To find estimates 

of parameters  ≡ 𝑥 ,  ≡ 𝑥  the following criterion will be used 

   ∑ (ln(− ln 𝑝̃𝑖) − 2 ln(
𝑐−𝑧𝑖
𝜏
))
2
+ ∑ (ln(− ln 𝑝̃𝑖) − 2 ln(

𝑧𝑖−𝑐

𝜈
))
2
,𝑘

𝑖=𝑚+1   𝑚−1
𝑖=1   

  (5.19) 

where c denotes the midpoint of m-th class interval with maximum relative 

frequency 𝑝𝑚 = max (𝑝1, 𝑝2, … , 𝑝𝑘), and 𝑝̃𝑖, 𝑖 = 1,2,… , 𝑘 are normalized 

frequencies for separate class intervals 

 𝑝̃𝑖 =
𝑝𝑖

𝑝𝑚
, 𝑖 = 1,2, … , 𝑘.            (5.20) 

It is worth noting that normalized frequencies (5.20) are included in the 

criterion (5.19) in order to find an exponential membership function of a fuzzy 

number similar to an empirical histogram.  

The expressions (5.21) and (5.22) give the minimum of (5.19) with respect to 

the unknown parameters 𝜏, 𝜈 (see Nasibov and Peker (2011) for more details). 

Thus, we have 

 𝜏̂ = exp (
2∑ ln(𝑐−𝑧𝑖)−∑ ln(− ln 𝑝̃𝑖)

𝑚−1
𝑖=1

𝑚−1
𝑖=1

2(𝑚−1)
),        (5.21) 

 𝜈̂ = exp (
2∑ ln(𝑧𝑖−𝑐)−∑ ln(− ln 𝑝̃𝑖)

𝑚−1
𝑖=1

𝑚−1
𝑖=1

2(𝑘−𝑚)
).         (5.22) 
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Example 3. Let us consider the data aggregated in the frequency Table 2.  

Table 2. Frequency table 

Class intervals Midpoints  

zi 

Frequencies  

fi 

Relative 

frequencies pi 

Normalized 

frequencies 𝑝𝑖  

0.00 – 0.03 0.015 3 0.0698 0.3333 

0.03 – 0.06 0.045 7 0.1628 0.7778 

0.06 – 0.09 0.075 9 0.2093 1.0000 

0.09 – 0.12 0.105 8 0.1860 0.8889 

0.12 – 0.15 0.135 6 0.1395 0.6667 

0.15 – 0.18 0.165 5 0.1163 0.5556 

0.18 – 0.21 0.195 3 0.0698 0.3333 

0.21 – 0.24 0.225 2 0.0465 0.2222 

Source: developed by the authors. 

The maximum relative frequency refers to the third class interval, thus we 

obtain m=3, 𝑝𝑚 = 0.2093, and c=0.075. The membership function with 𝜈̂, 𝜏̂ 
derived from (5.21)–(5.22) is illustrated on Figure 3. 

Figure 3.  Normalized frequencies and a fitted membership function for τ̂ =
0.059,   ν̂ = 0.106 

 

Source: developed by the authors. 
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5.4. Evaluation of the proposed mortality model based on real data 

To illustrate theoretical discussions presented in the previous chapters dealing 

with the proposed mortality model based on quaternion-valued functions the 

estimates of model parameters will be calculated using real data to compare the 

ex-post forecasting errors with errors yielded by the standard Lee–Carter model 

(LC). 

The analysis is based on the log-central death rates for males and females in 

Poland from the years 1958–2014. The necessary data were sourced from the 

Human Mortality Database (www.mortality.org) and from the GUS database 

(stat.gov.pl). The 2001–2014 death rates served the purpose of evaluating the 

models’ forecasting properties and were not used in estimations.  

Estimates ax, bx, kt of the parameters of the quaternion mortality model (5.3) 

were obtained with the log-central death rates for males and females from the 

years 1958–2000. Parameters 𝑥 , 𝑥 were derived for each separate x using the 

Nasibov-Peker method, with {𝑟𝑡, 𝑡 = 1,2, … , 𝑇} represented by standardized 

residuals from the ordinary least regression (3.3). 

To ensure the clarity of data presentation, the parameter estimates are plotted 

as shown in Figures 4-6. 

 

Figure 4.  Parameters ax, x = 0,1,...,100 estimated with the CNMM model for 

males and females 

 

 

Source: developed by the authors. 
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Figure 5.  Parameters bx, x = 0.1,...,100 estimated with the CNMM model for 

males and females 

 

Source: developed by the authors. 

Figure 6.  Parameters kt, t = 1958,...,2000 estimated with model CNMM  (males 

and females) 

 

Source: developed by the authors. 

The interpretation of the model parameters’ estimates ax, bx, kt is similar as in 

the standard Lee-Carter approach, meaning that ax, x=0,1,…,X indicate the 
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general shape of the mortality schedule, the time-varying parameters kt, t=1,2,…,T 

represent the general mortality level, and bx, x=0,1,…,X indicate the pattern of 

deviations from the age profile when the general level of mortality kt changes.  

The conclusion that can be drawn by comparing two curves plotted in Figure 

4 is that average mortality in almost all age groups was higher for men than for 

women. Despite this fact the shapes of mortality profiles for both sexes seem rather 

similar, i.e. with a high mortality among children under two years of age, relatively 

low mortality for children aged 8–12, rising rapidly in the older age groups.  

The arrangement of curves in Figure 5 shows that in some age groups the 

absolute values of bx are higher for males than for females (i.e. for young or 

middle ages). It means that the log-central death rates clearly are more sensitive to 

the temporal changes in mortality for males than those noted for females. What is 

more, some negative values of bx are  estimated, i.e. for males at age group (34, 

67) years. They indicate that male log-central mortality rates at those ages grew in 

some years of the period under consideration when declining at other ages in 

response to change of kt.  Figure 6 also shows that the overall mortality trend was 

generally declining, but at a varying rate. It is also worth noting that this general 

mortality trend (expressed by kt) was faster in the subpopulation of women. 

The forecasting properties of LC and CNMM models were compared based 

on the ex-post errors measured for each year in the period 2001–2014, i.e. the 

period which was omitted from parameter estimation. The ex-post errors were 

determined using crisp forecasts of log-central death rates (5.23). Two types of 

prediction accuracy measures will be used, i.e. a mean squared error (MSE) and a 

mean absolute deviation (MAD). The results are summarized in Table 3. 

Table 3.  Comparison of ex-post errors (MSE and MAD) for LC and CNMM 

models  
Year Males Females 

MSE MAD MSE MAD 

LC CNMM LC CNMM LC CNMM LC CNMM 

2001 0.197 0.121 0.182 0.093 0.098 0.140 0.083 0.114 

2002 0.204 0.119 0.185 0.091 0.122 0.120 0.107 0.096 

2003 0.215 0.120 0.195 0.087 0.122 0.124 0.109 0.098 

2004 0.223 0.111 0.206 0.081 0.132 0.113 0.117 0.089 

2005 0.230 0.097 0.214 0.070 0.146 0.117 0.129 0.093 

2006 0.232 0.110 0.214 0.081 0.152 0.105 0.130 0.083 

2007 0.238 0.106 0.219 0.077 0.172 0.116 0.152 0.091 

2008 0.257 0.107 0.234 0.083 0.174 0.111 0.156 0.086 

2009 0.281 0.114 0.250 0.090 0.191 0.124 0.170 0.092 

2010 0.330 0.137 0.302 0.110 0.190 0.095 0.167 0.072 

2011 0.341 0.149 0.307 0.119 0.218 0.108 0.191 0.081 

2012 0.373 0.174 0.335 0.137 0.215 0.105 0.185 0.081 

2013 0.406 0.204 0.359 0.160 0.246 0.138 0.221 0.108 

2014 0.469 0.257 0.430 0.212 0.273 0.148 0.245 0.117 

Source: developed by the authors 
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It is worth noting that the CNMM model generates markedly smaller ex-post 

errors (in terms of MSE or MAD measures) than the LC model, which is visible 

especially for last years of prediction. For instance, for the prediction years 2010, 

2011, 2012, 2013 and 2014  the ex-post errors obtained with the CNMM model 

are less than half of what was obtained with the LC model.  

A comparison between empirical log-central death rates and those rates 

obtained from the CNMM model for some age groups is illustrated in Figures 7 

and 8. It is worth noting that the models’ parameters were estimated using the 

1958–2000 data, therefore the log-central death rates estimated for the years 

2001–2014 represent the ex-post forecasting.   

 

 

Figure 7. Real and predicted log-central death rates for some age groups (males) 

 

 
 

Source: developed by the authors. 
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Figure 8.  Real and predicted log-central death rates for some age groups 

(females) 

 
Source: developed by the authors. 

6. Final remarks 

We should explain to the reader why we have applied the exponential 

functions while building the theoretical function space as a basis of our new 

mortality model.  

This approach has theoretical and practical advantages. Practical ones are 

delivered in the paper of Nasibov and Peker (2011), where an easy and useful 

fitting algorithm is proposed. Based on this algorithm it is possible to fit an 

exponential functions to the empirical distributions of the observed data, or – as in 

our case – to the normalized frequencies of residuals in the regression model.  

The theoretical advantage of applying exponential membership functions lies 

in the desirable theoretical properties, because such functions can be transformed 

into the Hilbert spaces of quaternion valued functions. It is possible that other 

functions offer better fit to the observed data. This approach will be the subject of 

further research. 
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ABSTRACT 

The growing demand for high-quality statistical data for small areas coming from 

both the public and private sector makes it necessary to develop appropriate 

estimation methods. The techniques based on small area models that combine 

time series and cross-sectional data allow for efficient "borrowing strength" from 

the entire population and they can also take into account changes over time. In 

this context, the EBLUP estimation based on multivariate Rao-Yu model, 

involving both autocorrelated random effects between areas and sampling errors, 

can be useful. The efficiency of this approach involves the degree of correlation 

between dependent variables considered in the model. In the paper we take up the 

subject of the estimation of incomes and expenditure in Poland by means of the 

multivariate Rao-Yu model based on the sample data coming from the Polish 

Household Budget Survey and administrative registers. In particular, the 

advantages and limitations of bivariate models have been discussed. The 

calculations were performed using the sae and sae2 packages for R-project 

environment. Direct estimates were performed using the WesVAR software, and 

the precision of the direct estimates was determined using a balanced repeated 

replication (BRR) method. 

Key words: small area estimation, EBLUP estimator, Rao-Yu model, 

multivariate analysis. 

1. Introduction 

The motivation for the paper is twofold. First,  the growing demand for high-

quality statistical data at low levels of aggregation, observed over the last few 

decades, has attracted much attention and concern amongst survey statisticians, 

but only a few works have been devoted to the small area estimation involving the 

combination of cross-sectional and time-series data.  Second,  the evidence on 

income distribution and poverty gathered for OECD countries in the latter part of 
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the first decade of the 2000s confirms that there has been an significant increase 

in income inequality, which has grown since at least the mid-1980 and there are 

still substantial differences in regional income levels (see: Growing Unequal?, 

OECD 2008; Divided We Stand. Why Inequality Keeps Rising. OECD 2011). Due 

the problem of high disparities between regions it is becoming crucial to provide 

reliable estimates of income distribution characteristics for small areas.  The task 

is rather difficult as heavy-tailed and extremely asymmetrical income 

distributions can yield many estimation problems even for large domains.  For 

some population divisions (by age, occupation, family type or geographical area) 

the problem becomes more severe and estimators of income distribution 

characteristics can be seriously biased and their standard errors far beyond the 

values that can be accepted by social policy-makers for making reliable policy 

decisions. That latter case is  the area of applications for small area estimation.  

Within the framework of survey methodology and small area estimation one 

can apply several methods to improve the estimation quality. Making use of 

auxiliary data coming from administrative registers or censuses within the 

traditional framework of survey methodology (ratio and regression estimators) 

can obviously improve the quality of estimates. However, the most important 

issue is the synthetic estimation that moves away from the design-based 

estimation of conventional direct estimates to indirect (and usually model-

dependent) estimates that „borrow strength” from other small areas or other 

sources in time and/or in space.  The term „borrowing strength” means increasing 

the effective sample size and is related to using additional information from larger 

areas, which can be applied for both interest (Y) and auxiliary variables (X). 

A large variety of small-area techniques, including small area models, have been 

described in Rao (2003), Rao, Molina (2015). In the paper we are especially 

interested in the multivariate case of the Rao-Yu model, the extension of the Fay-

Herriot model, which “borrows strength” from other domains and over time.  

Multivariate models can account for the correlation between several 

dependent variables and can specifically be applied to the situations when 

correlated income characteristics are involved. Multivariate models, being 

extensions of basic small area models,  have been studied in some papers within 

the framework of  small area estimation literature. In particular, interesting studies 

concerning multivariate linear mixed models can be found in the  papers by Fay 

(1987) and Datta et al. (1991). In Datta et al. (1996) one can find the  application 

of multivariate Fay-Herriot model in the context of hierarchical model with the 

application to estimating the median income of four-person families in the USA. 

Recently, some papers have been published where the multivariate linear mixed 

models were employed, including the works by Benavent and Morales (2016), 

Porter et al. (2015). The interesting applications related to the victimization 

surveys in the USA can be found in Fay and Diallo (2012), in Fay and in Li, 

Diallo and Fay (2012).  Also, some applications of Rao-Yu model have been 

published. Here, we can mention the works by Janicki (2016) and Gershunskaya 

(2015). One of the applications for the univariate case of the Rao-Yu model can 
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be found in the previous paper of the authors (Jędrzejczak, Kubacki (2016)). The 

increase in the number of applications in this area can also be related to the 

recently published package sae2 for R-project environment (Fay, Diallo (2015)).  

The aim of this paper is to present the method for estimating small area means 

on the basis of sample and auxiliary data coming from other areas and different 

periods of time. The authors’ proposition is to use two-dimensional models which 

can be applied to simultaneously estimate correlated income variables. The 

example of the application is based on the micro data coming from the 2003–2011 

Polish Household Budget Survey on income and expenditure assumed as 

dependent variables, and administrative registers. In the application two-

dimensional Rao-Yu model is compared with simpler estimation techniques.  

2. Univariate and multivariate Rao-Yu model 

Various small area models can be utilized in order to improve the quality of 

estimation in the presence of insufficient sample sizes. They can account for 

between-area variability beyond that explained by traditional regression models 

and thus make it possible to adjust for specific domains. Most of these models are 

special cases of the general linear mixed model. 

General linear mixed model is a statistical linear model containing both fixed 

and random effects, which can be described as follows (see e.g.: Rao (2003), 

Chapter 6.2):  

𝐲 = 𝐗𝜷 + 𝐙𝐯 + 𝐞                                              (1) 

In the equation given above y is a  𝑛 × 1 vector of the observations that can 

come from a sample survey, X and Z are known 𝑛 × 𝑝 and 𝑛 × ℎ matrices that 

can represent  auxiliary data,  v and e are independently distributed random 

variables with covariance matrices G and R respectively, related to the model 

variance components. Depending on the variance-covariance structure many 

variants of the model (1) can be specified, among them the model with block-

diagonal covariance structure, which has been the basis for many small area 

models, including the popular Fay-Herriot model or the  Rao-Yu model. They are 

the examples of area-level model in contrast to the unit-level models that are not 

considered in the paper.  

Univariate model 

Rao-Yu small area model, which incorporates time series and cross-sectional 

data, is a special case of the general linear mixed model with block diagonal 

covariance structure as described in Rao and Yu (1994) and in Rao (2003). A 

linear mixed model for the population values, 𝜃𝑖𝑡 ,  for the domain i (i=1,…m) in 

time t (t=1,…,T ) is the following 

𝜃it = 𝐱𝑖
𝑇𝜷 + vi + u𝑖𝑡                                              (2) 
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where: 

                 x𝑖
𝑇     is a row vector of known auxiliary variables,  

                 β      is a vector of fixed effects,  

                 vi     is a random effect for the area i,  𝑣𝑖

 𝑖𝑖𝑑
~
 

𝑁(0, 𝜎𝑣
2), 

                 uit     is a random effect for the area i  and time t, representing  the 

stationary time-series described  by AR(1) process   

𝑢𝑖𝑡 = 𝜌𝑢𝑖,𝑡−1 + 𝜖𝑖𝑡 

with constraint  |ρ|<1  and  εit

 𝑖𝑖𝑑
~
 

N(0, σ2).  

Based on the model (2) we can obtain the corresponding model for the 

observed sample values, yit ,  which takes the form: 

                                  𝑦𝑖𝑡 = 𝜃𝑖𝑡 + 𝑒𝑖𝑡 = 𝐱𝑖
𝑇𝜷 + 𝑣𝑖 + 𝑢𝑖𝑡 + 𝑒𝑖𝑡                              (3) 

where: 

                  eit    is a random sampling error for the area i and time t, with 

 𝐞𝑖 = (𝑒𝑖1, … , 𝑒𝑖𝑇)𝑇 

                 following T-variate normal distribution with the mean 0 and known   

covariance matrix Σ.  

It is worth noting that the random variables vi , εi  and  ei  are mutually 

independent and  the matrix Σ with diagonal elements equal to sampling variances 

for the domain i corresponds to the matrix R from the model (1).  

The crucial role in the model is played by the random terms v and u. They are 

two components constituting the total random effect of the Rao-Yu model. The 

first one (v) accounts for the between-area variability while the second one (u) 

accounts for the variability across time. In particular: vi’s are independent and 

identically distributed random effects that describe time-independent differences 

between areas; the ui’s follow the autoregressive process with ρ being temporal 

correlation parameter for all the areas of interest.   

Multivariate model   

Assume 𝛉𝑖𝑡 = (𝜃𝑖𝑡,1, … , 𝜃𝑖𝑡,𝑟)
𝑇

 as a vector of unknown population 

parameters. Let yit be a vector of direct estimators of r parameters of interest 

related to sample observations which can be expressed as 𝐲𝑖𝑡 = (𝑦𝑖𝑡,1, … , 𝑦𝑖𝑡,𝑟)
𝑇
. 

The multivariate population model for the j-th variable of interest (j=1,...,r) takes 

the following form (similar model can be found in Fay et al. (2012)): 

𝜃𝑖𝑡,𝑗 = 𝐱𝑖𝑡,𝑗
𝑇 𝜷𝑗 + 𝑣𝑖,𝑗 + 𝑢it,j                                        (4) 

where: 

                 𝐯𝑖 = (𝑣𝑖,1, … , 𝑣𝑖,𝑟)
𝑇

 
𝑖𝑖𝑑
~
 

 𝑁𝑟(0, 𝝈𝒗
𝟐)   is a vector of random effects for  the 

area i , 
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                 uit     is a random effect for the area i  and time t, representing  the 

stationary time-series described  by AR(1) process   

𝑢𝑖𝑡,𝑘 = 𝜌𝑢𝑖,𝑡−1,𝑘 + 𝜖𝑖𝑡,𝑘 

with constraint  |ρ|<1  and  𝛆𝑖𝑡 = (𝜀𝑖𝑡,1, … , 𝜀𝑖𝑡,𝑟)𝑇  
𝑖𝑖𝑑
~
 

  N𝑟(0, 𝛔𝟐).  

It is worth noting that the model (4) also posits a single autoregression 

parameter ρ and the random variables vi , εi  and   

 𝐞𝒊 = (𝑒𝑖1,1, 𝑒𝑖2,1, … , 𝑒𝑖𝑇,1, … , 𝑒𝑖1,𝑟, 𝑒𝑖2,𝑟 … , 𝑒𝑖𝑇,𝑟)𝑇 

are mutually independent.  

The sampling model corresponding to the formula (4)  can be written as 

𝑦𝑖𝑡,𝑗 = 𝜃𝑖𝑡,𝑗 + 𝑒𝑖𝑡,𝑗 = 𝐱𝑖𝑡,𝑗
𝑇 𝜷𝑗 + 𝑣𝑖,𝑗 + 𝑢it,j + 𝑒𝑖𝑡,𝑗                       (5) 

with the covariance matrix of random effects, linking the matrices σ2
 and  σ, equal  

 

𝐆 = 𝐌 ⊗ [((𝝈𝝈𝑻)𝐮𝑐) ⊗ 𝚪𝑢 + ((𝝈𝒗𝝈𝒗
𝑻)𝐮𝑐) ⊗ 𝚪𝑣], 

where: 𝚪𝑢 is covariance matrix of 𝐮𝑖 = (𝑢𝑖1, … , 𝑢𝑖𝑇)𝑇 with the elements equal to 

𝜌|𝑡−𝑠|/(1 − 𝜌2) for an entry (t,s) that represent the AR(1) model for 𝑢𝑖𝑡 =
𝜌𝑢𝑖,𝑡−1 + 𝜖𝑖𝑡, with constraint |ρ|<1. Vectors vi represent the random effects, 

reflecting time-independent differences between areas. The vectors 𝛔𝑣 and 𝛔 

represent the model errors connected with the random effects u and v, 

respectively, and have r elements each. The matrix uc is 𝑟 × 𝑟 matrix of 𝜌𝑢,𝑗𝑘 

values with the diagonal elements equal to 1 and for the remaining elements  

(𝑗 ≠ 𝑘), related to the correlation of the random effects u with respect to the 

multidimensional structure specified within the model. M is 𝑚 × 𝑚 diagonal 

matrix with elements equal  to 1.  

Using the multivariate Rao-Yu model given by (5) we can formulate the best 

linear unbiased predictor (BLUP) estimator of a small area parameter 𝜃𝑖𝑡 as a 

linear combination of fixed and random effects: 

𝜃̃𝑖𝑇 = 𝐱𝑖𝑇
𝑇 𝛃̃ + 𝐦𝑖

𝑇𝐆𝐢𝐕𝑖
−1(𝐲𝐢 − 𝐗𝐢𝛃̃)                               (6) 

where 𝛃̃ = (𝐗𝐓𝐕−𝟏𝐗)−1𝐗𝐓𝐕−𝟏𝐲 is the generalized least squares estimator of β 

and mi is a vector with values equal to 1 for the area i for j-th variable and T-th 

period of time and zeroes for the other elements and 𝐕𝐢 = 𝐑𝐢 + 𝐙𝐢𝐆𝐢𝐙𝐢
𝐓.  Note that 

in the multidimensional case, the i subscript is connected with r-dimensional 

vectors, where r is the number of dependent variables in the multidimensional 

model.  

The procedure of obtaining EBLUP (Empirical BLUP) estimates is involved 

in the replacement of several variance components by their consistent estimators 

using Maximum Likelihood (ML) or Restricted Maximum Likelihood (REML) 

procedures (see e.g.: Rao and Molina (2015), pp.102–105).  
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Assuming that the vector of the estimators of the model variance parameters is  
𝜹̃ = (σ̃𝟐, 𝜎̃𝒗

𝟐, 𝜌̃), the second-order approximation of mean square error (MSE) of 

the EBLUP estimator can be obtained using the following general formula (see 

e.g.: Rao, 2003, eq.(6.3.15)): 

𝑀𝑆𝐸̂ (𝜃̃𝑖𝑡(𝜹̃)) = 𝑔1𝑖𝑇(𝜹̃) + 𝑔2𝑖𝑇(𝜹̃) + 2𝑔3𝑖𝑇(𝜹̃) 

where  

𝑔1𝑖𝑡(𝜹̃) = 𝐦𝐢
𝐓(𝐆𝐢 − 𝐆𝐢𝐕𝐢

−𝟏𝐆𝐢)𝐦𝐢 

𝑔2𝑖𝑇(𝛿) = 𝐝𝐢
𝐓 (∑ 𝐗𝐢

𝐓

𝑚

𝑖=1

𝐕𝐢
−𝟏𝐗𝐢)

−1

𝐝𝐢 

𝑔3𝑖𝑇(𝛿) = 𝑡𝑟 [(
𝜕𝐛𝑖𝑇

𝑇

𝜕𝛅
) 𝐕𝑖 (

𝜕𝐛𝑖𝑇
𝑇

𝜕𝛅
)

𝑇

𝑉̅(𝛅̂)] 

where  

𝐝𝐢
𝐓 = 𝐱𝐢𝐓

𝐓 − 𝐛𝐢
𝐓𝐗𝐢

𝐓 

𝐛𝐢
𝐓 = 𝐦𝐢

𝐓𝐆𝐢𝐕𝐢
−𝟏 

The detailed expressions of the derivatives bi can be found in Diallo (2014) 

and in Fay and Diallo (2012). For the multidimensional case one can also check 

the sae2 source code (Fay and Diallo (2015)) available at http://cran.r-project.org . 

3. Results and discussion 

In the application we were interested in the simultaneous estimation of per 

capita income (Y1) and expenditure (Y2) in Poland by region NUTS2, based on the 

sample data coming from the Polish Household Budget Survey. Multivariate 

models can fit to this kind of situations as they account for the correlation 

between several dependent variables. To improve the estimation quality we 

decided to formulate a bivariate small area model where the explanatory variables 

(X1, X2) were GDP per capita for regions coming from administrative registers. To 

obtain better estimates for the year 2011, we decided to utilize historical data 

coming from the years 2003-2011, which enabled “borrowing strength” not only 

across areas but also over time. This was possible by using the multivariate Rao-

Yu model (5) based on cross-sectional and time-series data and obviously making 

use of the correlation between the predicted variables. The results obtained on the 

basis of these model were compared to the ones obtained from the respective 

univariate models for each response variable and to the classical Fay-Herriot 

model. The basis for the calculations was the micro data coming from the Polish 

Household Budget Survey and regional data from the GUS Local Data Bank. 

At the first stage, direct estimates of both parameters of interest for 16 regions 

were calculated from the HBS sample together with their standard errors obtained 

by means of  the Balanced Repeated Replication (BRR) technique. At the second 

http://cran.r-project.org/
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stage the models were formulated and estimated from the data and finally EBLUP 

estimates were obtained as well as their MSE estimates. In order to evaluate the 

possible advantages of the estimators obtained  by means of the bivariate Rao-Yu 

model (5) for j=1,2, we also estimated the parameters of simpler small area 

models and their corresponding EBLUPs. In particular, we additionally estimated 

the parameters of:  

- the traditional Fay-Herriot model, “borrowing strength” only from other areas,  

- univariate Rao-Yu model (eq. 3), “borrowing strength” from areas and over 

time.    

In the computations conducted in R-project environment the packages sae and 

sae2 have been applied. The sae2 package includes the implementation of the 

estimation procedure for the Rao-Yu model, which provides an extension of the 

basic type A model to handle time series and cross-sectional data (Rao (2003)). A 

special R macro has been developed that simplifies the reading of the input data 

from Excel spreadsheets, performing calculations for ordinary EBLUP models 

and Rao-Yu models for both uni- and two-dimensional cases. This macro has 

been helpful in obtaining the following: the diagnostics for EBLUP models, 

diagnostic charts for relative estimation errors (REE), relative estimation error 

reduction (REE reduction) and REE reduction due to time relationships. The 

macro presented in the appendix describes simple calculations for 3-dimensional 

Rao-Yu model using sae2 package and eblupRY function. 

In Table 1 we show estimation results obtained for the two-dimensional 

model (5). For each dependent variable the estimates of fixed effects and the 

parameters of variance-covariance structure of the model, σ2, σv
2  and ρ, are 

presented.   

Table 1. Diagnostics of Rao-Yu two-dimensional model of available  income and 

expenditure based on sample and administrative data 

Variable 
Coefficient 

estimates 
Standard error t-Statistics P value 

Submodel 1: 

Y1- Avail. Income 2003-2011 

 

𝝈𝟏
𝟐= 1309.49  𝝈𝟏𝒗

𝟐 =0.002    ρ=0.959   LogL=-1415.140 

Intercept 76.455 49.170 1.555 0.120 

X1 GDP per capita 0.030 0.001 21.293 0.000 

Submodel 2: 

Y2- Expenditure 2003-2011 

 

𝝈𝟐
𝟐= 620.050  𝝈𝟐𝒗

𝟐 =0.001   ρ=0.959  LogL=-1415.140 

Intercept 226.620 34.046 6.656 0.000 

X2 GDP per capita 0.021 0.001 21.131 0.000 
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Figure 1.  Distributions of random effects obtained for available 

income/expenditure  2-dimensional Rao-Yu model (top- time effects, 

bottom-area effects) 

Source: Own calculations. 

The model diagnostics indicate that the parameter σv
2 has only a small 

contribution to the variability of the model, which is mostly determined by time-

related component. Figure 1 additionally shows the decomposition of random 

effects of the model (5) into two components: area effects (vi) and time-area 

effects (uit). In the figure it is possible to observe the impact and distribution of 

these effects over time. The random effects are consumed by time-related 

component while the influence of time-independent ones remains negligible.  

Tables 2 and 3 show estimation results obtained for 16 NUTS2 regions in 

Poland. To assess the average relative efficiency and efficiency gains for each 

pair of estimators we utilized the following formulas (see: Rao (2003)): 

)(

)(

2

1
2/1

ESTREE

ESTREE
EFF estest  ,     where:   


m

i iREEESTREE
1

)(  

Table 2 comprises the estimates of both variables of interest: per-capita 

available income and expenditure for regions, obtained using direct estimator, 

Rao-Yu EBLUP and Rao-Yu two-dimensional EBLUP. Each estimate is 

accompanied by its estimated precision: relative estimation error (REE) defined as 

the relative root MSE. The results obtained for income are in general better than 

the corresponding ones obtained for expenditure, which can be explained by 
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higher dispersion of income. The improvement is also more evident for regions 

with poor direct estimates.   

Table 2.  Estimation results for available income and expenditure by region in 

the year 2011  (direct estimates and  Rao-Yu EBLUPs – uni- and two-

dimensional in PLN) 

Region 

Direct  Rao-Yu model 
2d Rao-Yu 

model 

Efficiency gains 

due to time 

effects  [%] 

Para-

meter 

estimate 

REE 

[%] 

Para-

meter 

estimate 

REE 

[%] 

Para-

meter 

estimate 

REE 

[%] 

1D 

model 

2D 

model 

 Available income 

Dolnośląskie 1282.93 2.68 1321.88 1.99 1305.90 1.87 125.7 133.7 

Kujawsko-Pomor. 1108.94 2.17 1111.89 1.95 1114.76 1.63 107.3 128.1 

Lubelskie 1025.80 2.07 1027.82 1.81 1017.38 1.65 111.6 121.9 

Lubuskie 1189.89 1.55 1192.57 1.38 1182.99 1.31 110.1 116.0 

Łódzkie 1203.19 2.62 1224.93 2.00 1219.33 1.77 123.1 138.8 

Małopolskie 1156.79 2.53 1167.22 2.02 1165.11 1.85 118.7 129.3 

Mazowieckie 1622.96 2.02 1669.56 1.59 1649.08 1.42 126.0 141.3 

Opolskie 1181.90 1.88 1178.66 1.64 1182.39 1.55 111.6 117.7 

Podkarpackie 937.85 2.52 945.67 2.11 946.37 1.77 114.5 136.2 

Podlaskie 1224.92 1.45 1208.41 1.34 1202.31 1.33 107.1 108.1 

Pomorskie 1286.94 3.09 1298.67 2.20 1298.66 1.84 129.0 154.0 

Śląskie 1215.44 0.95 1220.96 0.91 1222.23 0.84 104.3 112.1 

Świętokrzyskie 1062.78 2.37 1057.54 2.05 1045.38 1.79 111.0 126.8 

Warmińsko-Maz. 1096.87 2.63 1111.93 2.17 1099.61 2.01 115.4 124.8 

Wielkopolskie 1135.02 2.73 1170.17 2.09 1148.01 1.84 121.0 137.3 

Zachodniopomor. 1231.10 3.16 1226.36 2.27 1210.95 2.08 128.1 140.2 

Average  1185,21 2,28 1195,89 1,85 1188,15 1,66 117.4 130.6 

 Expenditure 

Dolnośląskie 1057.49 2.91 1086.02 2.06 1077.05 1.71 127.3 153.2 

Kujawsko-Pomor. 922.75 1.16 924.81 1.10 924.16 1.03 104.1 111.7 

Lubelskie 856.17 2.03 860.19 1.79 868.50 1.49 110.1 132.1 

Lubuskie 975.64 2.13 983.78 1.77 996.11 1.39 115.7 146.9 

Łódzkie 1042.70 1.96 1055.32 1.62 1049.65 1.41 116.4 133.3 

Małopolskie 982.59 2.62 989.86 1.99 986.73 1.63 123.0 150.3 

Mazowieckie 1308.35 1.62 1339.86 1.35 1331.49 1.19 119.4 135.6 

Opolskie 1048.57 2.63 1048.66 1.99 1043.37 1.55 124.2 159.7 

Podkarpackie 843.00 1.44 845.14 1.33 842.73 1.20 107.0 118.1 

Podlaskie 903.42 4.58 889.59 2.70 947.43 1.71 142.4 124.6 

Pomorskie 1061.25 1.85 1058.78 1.58 1058.49 1.42 113.2 125.9 

Śląskie 1039.73 0.95 1043.57 0.89 1037.58 0.79 104.9 118.2 

Świętokrzyskie 848.58 1.84 851.34 1.63 859.73 1.41 109.8 126.3 

Warmińsko-Mazur. 870.30 3.06 880.69 2.42 888.67 1.92 116.8 146.7 

Wielkopolskie 913.66 2.03 930.58 1.70 928.85 1.49 113.4 129.1 

Zachodniopomor. 972.04 2.78 979.81 2.08 992.95 1.77 123.6 145.4 

Average 977,89 2,22 985,50 1,75 989,59 1,44 118.9  144.7 

Source: Own calculations. 
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The last two columns of Table 2 demonstrate “efficiency gains due to time 

effects” obtained as REE reduction for the Rao-Yu models with respect the 

ordinary EBLUP estimators based on Fay-Herriot model. It can be noticed that 

the proposed method overwhelms the classical approach by 30.6% for available 

income and by 44.7% for expenditure. This improvement was possible due to 

time relationships incorporated into Rao-Yu models which are not included into 

the classical Fay-Herriot ones.  

As it can be noticed in Table 2, the average efficiency gains coming from 

time-correlation between random effects are on average doubled when the 

bivariate Rao-Yu model is taken into account - for available income they exceed 

30 %, for expenditure are almost 45% (the corresponding values for the univariate 

Rao-Yu model were 14.4% and 18.9%). This improvement comes from the 

bivariate approach making use of the correlation between several dependent 

variables. 

Table 3 presents in detail the efficiency gains coming from the application of 

2d Rao-Yu model for both variables of interest. The EBLUPs based on this model 

were compared to the direct approach and to the EBLUPs obtained on the basis of 

simpler model-based approaches. Even with respect to the univariate Rao-Yu 

model one can observe substantial increase in precision (for income by 11.2% and 

for expenditure by 21.2%). Figures 2 and 4 present the empirical distributions of 

REEs for different small area estimators applied in the study while the 

distributions of REE reduction by means of the proposed model are presented in 

Figures 3 and 5. As it can be seen in the illustrations the bivariate approach can 

significantly improve the precision of the estimates. 

Table 3. Relative efficiency [in%] for available income and expenditure in 2011  

Region 

EFFdirect/Rao-Yu2d EFFEBLUP/Rao-Yu2d EFFRaoYu/Rao-Yu2d 

Available 

income 

Expen-

diture 

Available 

income 

Expen-

diture 

Available 

income 

Expen-

diture 

Dolnośląskie 143.7 169.9 133.7 153.2  106.3 120.3 

Kujawsko-Pomorskie 133.2 113.1 128.1 111.7 119.4 107.3 

Lubelskie 125.4 136.5 121.9 132.1 109.2 119.9 

Lubuskie 118.2 153.3 116.0 146.9 105.4 126.9 

Łódzkie 147.7 138.7 138.8 133.3 112.8 114.5 

Małopolskie 136.6 161.1 129.3 150.3 108.9 122.2 

Mazowieckie 142.0 136.0 141.3 135.6 112.2 113.5 

Opolskie 120.9 169.5 117.7 159.7 105.5 128.5 

Podkarpackie 142.4 120.1 136.2 118.1 118.9 110.4 

Podlaskie 109.4 268.2 108.1 124.6 101.0 157.7 

Pomorskie 167.8 130.5 154.0 125.9 119.4 111.2 

Śląskie 113.1 119.4 112.1 118.2 107.5 112.6 

Świętokrzyskie 132.2 130.3 126.8 126.3 114.2 115.1 

Warmińsko-Mazurskie 130.9 159.2 124.8 146.7 108.2 125.6 

Wielkopolskie 148.2 136.0 137.3 129.1 113.5 113.9 

Zachodniopomorskie 152.0 157.0 140.2 45.4 109.5 117.6 

Average efficiency gain 135,2 149,9 130.6 144.7 111.2 121.2 

Source: Own calculations. 
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Figure 2.  Distribution of  REE for available income estimates in % in the years 

2003-2011 (direct estimator and EBLUPs: ordinary and using Rao-Yu 

model – both 1 and 2-dimensional) 

Source: Own calculations. 

 

Figure 3.  Distribution of  REE reduction for available income estimates in the 

years 2003-2011 (direct estimator and EBLUPs: ordinary and using 

Rao-Yu model – both 1 and 2-dimensional) 

Source: Own calculations. 
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Figure 4.  Distribution of  REE for expenditure estimates in % in the years 2003-

2011 (direct estimator and EBLUPs: ordinary and using Rao-Yu model 

– both 1 and 2-dimensional) 

Source: Own calculations. 

 

Figure 5.  Distribution of REE reduction for expenditure estimates in the years 

2003-2011 (direct estimator and EBLUPs: ordinary and using Rao-Yu 

model – both 1 and 2-dimensional) 

Source: Own calculations. 
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Figure 6. Distribution of REE reduction for available income using Rao-Yu 

EBLUP estimators due to time-related effects (referenced to the 

ordinary EBLUPs for one and two-dimensional models) 

Source: Own calculations. 

 

Figure 7.  Distribution of REE reduction for expenditure using Rao-Yu EBLUP 

estimators due to time-related effects (referenced to the ordinary 

EBLUPs for one and two-dimensional models). 

Source: Own calculations. 
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Table 4. Selected diagnostics for 2d Rao-Yu estimators referenced to the ordinary 

EBLUPs for different categories of income by region in the years 2003-

2011 

First 

dependent 

variable Y1 

Second 

dependent 

variable Y2 

uc,(1,2) 𝜌(𝑌1,𝑌2) 
REE𝐸𝐵𝐿𝑈𝑃

REER−Y2d
    for Y1 

REE𝐸𝐵𝐿𝑈𝑃

REER−Y2d
    for Y2 

Available Expenditures 0.9464 0.9751 1.080 1.207 

Available Hired work 0.9800 0.9769 1.172 1.238 

Available Self-empl. 0.9321 0.8643 1.033 1.126 

Available Social benef. 0.6379 0.8067 1.001 1.098 

Available Retirm. pays 0.6261 0.8462 1.002 1.077 

Available Disabil. pens. 0.1912 -0.5435 0.999 1.048 

Available Family pens. -0.0561 0.2464 0.996 1.057 

Available Other social 0.2896 -0.3227 0.997 1.032 

Available Unem.benef. 0.7253 -0.2659           1.010 1.092 

Source: Own calculations. 

Table 4 summarizes efficiency gains due to the application of two-

dimensional models with respect to the classical Fay-Herriot one, which are 

especially visible for the cases of remarkable correlation between dependent 

variables Y1 and Y2. For the pairs presenting the Pearson correlation exceeding 0.9: 

available income and expenditure or available income and income from hired 

work, the relative estimation errors are significantly reduced. For example, the 

average REEs of EBLUPs of income from hired work are by 20% higher than the 

corresponding values obtained by means of the two-dimensional Rao-Yu model. 

It is worth noting that similar dependencies were observed for the univariate case 

of the Rao-Yu model (see e.g.: Jędrzejczak, Kubacki (2016)). 

4. Conclusions 

Multivariate small area models which make use of auxiliary information 

coming from repeated surveys can lead to significant quality improvements as 

they borrow information from time and space and additionally exploit the 

correlation between the considered parameters.  In the paper, the advantages and 

limitations of bivariate small-area models for income distribution characteristics 

have been discussed. To assess the possible quality improvements, the 

multivariate Rao-Yu and Fay-Herriot models have been implemented and utilized 

to the estimation of income characteristics for the Polish households by region. 

Significant estimation error reductions have been observed for the variables that 

were evidently time-dependent and strictly correlated with each other and for the 

domains with relatively poor direct estimators. In the preliminary analysis of the 

models incorporating larger number of dependent variables also three- and four-
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dimensional Rao-Yu models have been specified but the gains from introducing 

additional dependent variables turned out to be rather ambiguous.  

It would be advisable to check this method also for counties (poviats) and 

determine whether similar time-related relationships, which are observed for 

regions, could be observed for counties. The analysis presented here may also 

indicate that further comparisons between the Rao-Yu method and dynamic 

models, panel econometric models and nonlinear models should be conducted.  
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             APPENDIX 

The macro presented below describes simple calculations for 3-dimensional 

Rao-Yu model using sae2 package and eblupRY function. 

library(sae2) 

library(RODBC) 

channel1 <- odbcConnectExcel("Input.xls") 

command <- paste("select * from [Sheet1$]", sep="") 

base <- sqlQuery(channel1, command) 

data <- c(base$DOCHG_SD, base$D901_SD, base$D905_SD) 

D <- 16 

T <- 9 

n_var <- 3 

var_ptr <- vector(mode = "integer", length = D*T*n_var) 

for(i in 1:D) { 

  for(j in 1:n_var) { 

    for(k in 1:T) { 

       var_ptr[(i-1)*(T*n_var)+(j-1)*T+k] <- (j-1)*(D*T)+(i-1)*T+k 

    } 

  } 

}  

errmat <- diag((data[var_ptr])^2) 

resultT.RY <- eblupRY(list(DOCHG_AVG ~ PKBPC_ABS, D901_AVG ~ 

PKBPC_ABS, D905_AVG ~ PKB_PC), D=D, T=T, vardir = errmat,data=base, 

ids=base$WOJ, MAXITER = 500) 
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 On behalf of the President of the Statistics Poland (GUS),  

Dominik Rozkrut, and the President of the Polish Statistical Association,  

Czeslaw Domanski, we are pleased to announce the 2nd Congress of the Polish 

Statistics to be held on the occasion of the  

100th Anniversary of the Central Statistical Office (GUS) 

on July 10–12, 2018, in Warsaw. 

One of the Congress’ section will be devoted to the 25th Anniversary of the 

Statistics in Transition new series and international activities on building 

statistical capacities.  

 

 

Włodzimierz Okrasa 

Editor  
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