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FROM THE EDITOR   

With this issue of our quarterly – which is the last for the previous year 2018 – 
we successfully conclude the systematically intensified activities towards 
upgrading the Statistics in Transition new series' position in terms of its overall 
quality assessment, visibility and recognition. Indeed, the SiTns has significantly 
progressed recently, both as regards the number of new international bases and 
systems of indexation – amounted to 22 currently – and of the points which count 
for the impact factors of some of the most prestigious systems/bases, such as 
Scopus or Index Copernicus, RePec, and others. Such achievements are actually 
reported on the current basis in the column "Indexing and Abstracting" in the 
e-SiT-bulletin (on the journal's website: http://stat.gov.pl/en/sit-en).  

Since authors of the articles published in the SiTns, as well as reviewers of all 
the submitted papers, constitute the core of contributors to the journal's 
achievements, we would like to honour them for their generous input through 
publishing in this issue their names, respectively, in the "Index of authors" (of all 
articles published over the past year) and in the "Acknowledgements to 
reviewers". On behalf of the whole Editorial Office and myself, I would like to 
express my gratitude and appreciation to all collaborators and supporters, 
including members of the Editorial Board and the panel of Associate Editors, who 
provide us with assistance and guidance both in strategic and practical matters on 
the continuous basis. 

* 

This issue starts with sampling and estimation section containing three 
papers. The first one, by G. N. Singh, Amod Kumar and Gajendra K. 
Vishwakarma entitled Development of chain-type exponential estimators for 
population variance in two-phase sampling design in presence of random 
non-response presents the results of an investigation aimed at dealing with a 
unified approach of estimation procedures of population variance in two-phase 
sampling design under missing at random non-response mechanism 
circumstances. Using two auxiliary variables, the authors have developed 
different chain-type exponential estimators of finite population variance for two 
different set-ups and studied their properties under the different assumption of 
random non-response. The comparisons of the proposed estimators have been 
made with some contemporary estimators of population variance under the 
similar realistic conditions. Numerical illustrations are presented to support the 
theoretical results. The proposed estimation procedures may be recommended to 
the survey statisticians for their practical application whenever they intend to deal 
with the sensitive or stigmatizing attributes such as drinking alcohol, gambling 
habit, drug addiction, tax evasion, history of induced abortions, etc. 

M. R. Irshad's and R. Maya's paper On a less cumbersome method of 
estimation of parameters of Lindley distribution by order statistics presents 
U-statistics derived as suitable from a sample of any size exceeding a specified 
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integer to estimate the location and scale parameters of Lindley distribution. No 
evaluation of made of means, variances or co-variances of order statistics of an 
equivalent sample size arising from the corresponding standard form of 
distribution. The exact variances of the estimators have been also obtained. For 
practising statisticians the results derived in the paper seem to be helpful, when 
they look for estimators of parameters of Lindley distribution using ordered 
random variables. 

In the next article, Extended exponentiated power Lindley distribution by 
Vahid Ranjbar, Morad Alizadeh, Gholamhossein Hamedani a new model, the 
Extended Exponentiated Power Lindley distribution is introduced, which extends 
the Lindley distribution and has increasing, bathtub and upside down shapes for 
the hazard rate function. It also includes the power Lindley distribution as a 
special case. Several statistical properties of the distribution are explored, such 
as the density, hazard rate, survival, quantile functions, and moments. Estimation 
using the maximum likelihood method and inference on a random sample from 
this distribution are investigated. A simulation study is performed to compare the 
performance of the different parameter estimates in terms of bias and mean 
square error. A real data set is applied to illustrate the applicability of the new 
model as well. Empirical findings show that the proposed model provides better 
fits than other well-known extensions of Lindley distributions. 

The next section, research articles, also contains three articles. Hikaru 
Hasegawa's and Pink Gao's paper Bayesian spatial analysis of chronic 
diseases in elderly Chinese people using a STAR model addresses the 
problem of analysing chronic diseases affecting the health of elderly Chinese 
people, concentrating on the spatial aspect of these diseases and the respective 
risk factors. A structured additive regression model is applied using the 
R2BayesX package and data from the Chinese Urban and Rural Elderly 
Population Surveys for years 2000, 2006, and 2010. The major findings are as 
follows: (i) the covariates of considerable importance for chronic diseases are 
gender, smoking, drinking, province, time, age, cultural activities, years of 
education, and sports activities; (ii) the effect of marital status is negligible; (iii) 
province is a critical factor, with the highest spatial effect appearing in two types 
of provinces: economically developed provinces, and economically backward 
provinces; time also has considerable effects. Authors recommend the need for 
policies towards further strengthening investment in rural areas and economically 
backward provinces, and better education of the population on the harmful effects 
of smoking and drinking alcohol on health. 

In the next paper, Lindley Pareto distribution, Nouara Lazri, Halim 
Zeghdoudi, Djabrane Yahia introduce a new Lindley Pareto distribution which 
offers a more flexible framework for modelling lifetime data. Some of its 
mathematical properties like density function, cumulative distribution, mode, 
mean, variance, and Shannon entropy are established. Following a simulation 
study carried out to examine the bias and mean square error of the maximum 
likelihood estimators of the unknown parameters, three real data sets are also 
used. They illustrate the importance and the flexibility of the proposed distribution. 
According to the authors, the Lindley Pareto distribution can be used quite 
effectively in analysing real lifetime data and actuarial science. 
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Marek Walesiak's paper The choice of normalization method and 
rankings of the set of objects based on composite indicator values starts 
with observation that normalization methods lead to different rankings of the set of 
objects based on composite indicator values. Author considers 18 normalization 
methods and 5 aggregation measures (composite indicators) showing which of 
the methods lead to  identical rankings of the set of objects, and reducing their 
number to 10 normalization procedures. A way of separation of groups of 
normalization methods leading to similar rankings is proposed (using Kendall’s 
tau coefficient and cluster analysis). The simulation results for five composite 
indicators are complemented by an empirical example.  

In the other articles section, the paper by Dominika Marta Urbańczyk and 
Joanna Małgorzata Landmesser entitled The comparison of income 
distributions for women and men in Poland using semiparametric 
reweighting approach presents the results of a comparison of the income 
distributions for women and men in Poland. The gender wage gap can only be 
partially explained by differences in men’s and women’s characteristics. The 
unexplained part of the gap is usually attributed to the wage discrimination. The 
authors employed the Oaxaca-Blinder decomposition procedure for the pay gap 
along the whole income distribution and a semiparametric reweighting approach 
to describe differences between the two income distributions. The reweighting 
factor was computed for each observation by estimating a logit model for 
probabilities of belonging to men’s or women’s group. In effect, the inequalities 
are decomposed into the explained and unexplained components using data from 
the EU-SILC for Poland, 2014. 

The last section, research communicates and letters, contains the paper by 
Urszula Ala-Karvia, Marta Hozer-Koćmiel, Sandra Misiak-Kwit, and Barbara 
Staszko entitled Is Poland becoming Nordic? Changing trends in household 
structures in Poland and Finland with the emphasis on people living alone. 
A comparative analysis of the household structure and its dynamics between 
post-economic-transformation Poland and Scandinavian-welfare-state Finland is 
presented with focus on one-person households (OPH). Two interrelated 
hypotheses concerning similarity-dissimilarity between the household structure in 
Finland and Poland with suggestion that the differences will be diminishing. At a 
glance, the analyses based on data for 2005–2015 seemed to confirm that while 
one- or two-person households are the dominating household structure in 
Finland, in Poland this structure was more balanced. For instance, the share of 
OPH among all households in 2015 was noticeably larger in Finland (42%) than in 
Poland (24%) and the difference between the countries was not diminishing.  
A simple extrapolation leads to prediction that under the currently observed trend 
the shares of OPH in the two countries will go further apart (e.g., in 2030, 46 
percent of Finnish households and 22 percent of Polish households will be one-
person households). In general, the position of people living alone is still different 
between Poland and Finland, and Poland has not gone Nordic in this respect. 

 
Włodzimierz Okrasa 

Editor  
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SUBMISSION INFORMATION FOR AUTHORS 

Statistics in Transition new series (SiT) is an international journal published 
jointly by the Polish Statistical Association (PTS) and the Central Statistical Office 
of Poland, on a quarterly basis (during 1993–2006 it was issued twice and since 
2006 three times a year). Also, it has extended its scope of interest beyond its 
originally primary focus on statistical issues pertinent to transition from centrally 
planned to a market-oriented economy through embracing questions related to 
systemic transformations of and within the national statistical systems, world-
wide.  

The SiT-ns seeks contributors that address the full range of problems involved 
in data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy 
makers and the general public – with a platform for exchange of ideas and for 
sharing best practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement 
– as either a scientific domain (new research and data analysis methods) or as a 
domain of informational infrastructure of the economy, society and the state – are 
appropriate for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by 
internationally recognized experts, who are guided in their decisions about the 
publication by criteria of originality and overall quality, including its content and 
form, and of potential interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
P.Barszcz@stat.gov.pl.,  
GUS / Central Statistical Office  
Al. Niepodległości 208, R. 287, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published 
previously and that it is not under review elsewhere. It should include an abstract 
(of not more than 1600 characters, including spaces). Inquiries concerning the 
submitted manuscript, its current status etc., should be directed to the Editor by 
email, address above, or w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines 
on its Web site: http://stat.gov.pl/en/sit-en/guidelines-for-authors/ 
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EDITORIAL  POLICY 

The broad objective of Statistics in Transition new series is to advance the 
statistical and associated methods used primarily by statistical agencies and other 
research institutions. To meet that objective, the journal encompasses a wide 
range of topics in statistical design and analysis, including survey methodology 
and survey sampling, census methodology, statistical uses of administrative data 
sources, estimation methods, economic and demographic studies, and novel 
methods of analysis of socio-economic and population data. With its focus on 
innovative methods that address practical problems, the journal favours papers 
that report new methods accompanied by real-life applications. Authoritative 
review papers on important problems faced by statisticians in agencies and 
academia also fall within the journal’s scope. 

*** 
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DEVELOPMENT OF CHAIN-TYPE EXPONENTIAL 
ESTIMATORS FOR POPULATION VARIANCE IN TWO-

PHASE SAMPLING DESIGN IN PRESENCE OF RANDOM 
NON-RESPONSE 

G. N. Singh1, Amod Kumar1, Gajendra K. Vishwakarma1 

ABSTRACT 

In this paper, an investigation has been carried out to deal with a unified approach 
of estimation procedures of population variance in two-phase sampling design 
under missing at random non-response mechanism circumstances. Using two 
auxiliary variables, we have developed different chain-type exponential estimators 
of finite population variance for two different set-ups and studied their properties 
under the different assumption of random non-response considered by Tracy and 
Osahan (1994). The comparisons of the proposed estimators have been made 
with some contemporary estimators of population variance under the similar 
realistic conditions. Numerical illustrations are presented to support the theoretical 
results. Results are analysed and suitable recommendations are put forward to the 
survey statisticians. 

Key words: two-phase sampling, random non-response, variance estimation, 

study variable, auxiliary information, bias, mean square error 

Mathematics Subject Classification: 62D05 

1.  Introduction 

It is well known that in sample surveys the finite population parameter can be 
estimated more accurately by making use of information on an auxiliary variable x 
that is correlated with the study variable y. Sometimes, information on auxiliary 
variable x is not known in advance for all the units of population, for such a 
situation two-phase sampling is a well-established technique for generating the 
valid estimates of unknown population parameters of auxiliary variable x in the 
first phase sample. Ratio, product and regression methods of estimation are good 
illustrations in this context. Some pioneer works in this direction have been done 
by several authors, see Chand (1975), Kiregyera (1980), Mukherjee et al. (1987), 
Singh and Upadhyaya (1995), Pradhan (2005), Singh and Vishwakarma (2007) 
and Singh and Majhi (2014) among others, in two-phase sampling set-up. 

It may be noted that most of the related work of estimation of population 
variance in sample surveys is based on the assumption of complete response 

                                                           
1 Department of applied Mathematics, Indian Institute of Technology (ISM) Dhanbad, Jharkhand-826004, 

India. E-mail: gnsingh_ism@yahoo.com, amod.ism01@gmail.com, vishwagk@rediffmail.com.  
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from the sample data such as Das and Tripathi (1978), Srivastava and Jhaji 
(1980), Isaki (1983), Singh (1983), Upadhyay and Singh (1983), Tripathi et al. 
(1988), Biradar and Singh (1994) and Ahmed et al. (2003) among others. 
However, in some practical situations, it is a common experience in sample 
surveys that the information cannot always be obtained from all the units selected 
in the sample. For instance, in the first attempt we are not able to collect 
information from the selected families while some of them may decline to 
cooperate with the interviewer even if contacted. This results in incomplete data, 
and this incompleteness is known as non-response and sometimes a huge 
amount of non-response can completely deviate from desired estimation. Rubin 
(1976) recommend three particular causes of non-response: missing at random 
(MAR), observed at random (OAR), and parameter distribution (PD). The missing 
at random (MAR) response mechanism is helpful in the estimation of population 
parameters (means, variance, etc.) in economical way even in the presence of 
non-response in the survey data. Rubin (1976), Tracy and Osahan (1994), 
Heitzan and Basu (1996), Singh and Joarder (1998), Singh et al. (2000) and 
Singh and Tracy (2001) have suggested the estimators for estimating the finite 
population parameters (mean, variance, etc.) under the different type random 
non-response situation. Singh et al. (2003), Singh et al. (2012) and 
Bandyopadhyay and Singh (2015) have developed a class of estimators of 
population variance in two-phase sampling under the situation of random non-
response (MAR). Singh et al. (2007) studied the properties of a family of 
estimators for population mean, ratio and product under the above situation of 
random non-response. Further improvement in the estimation procedure for 
population variance in the presence of non-response using multi-auxiliary 
characters in two-phase sampling was suggested by Ahmad et al. (2013) under 
the strategy given by Hansen and Hurwitz (1946). 

In the follow-up to the above work and utilizing two auxiliary variables, we 
have developed some chain-type exponential estimators for estimation of 
population variance in the presence of random non-response based on missing at 
random (MAR) response mechanism under two different set-ups of two-phase 
sampling and studied their properties. The behaviours of the proposed estimators 
are studied and results are supported with suitable empirical studies, which are 
followed by suitable recommendation to the survey practitioners. 

2.  Two-Phase Sampling Structures 

Let 
1 2 NU = (U ,U ,...., U )  be the finite population of N units, the character 

under study is denoted by variable y and the two auxiliary characters are 

represented by variables x and z respectively with population means Y, X  and

Z . Let 
i iy , x  and 

iz  be the values of y, x and z for the i-th  i = 1, 2,...., N  unit 

in the population. To estimate the population variance 

 
 

N
22

y i

i=1

1
S = y  - Y

N - 1
 of study variable y in the presence of auxiliary 
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characters x and z, where the population variance 
 

 
N

22

x i

i=1

1
S = x  - X

N - 1
  of 

x is unknown but the information on z is available for all the units of population, 
we use the following two-phase sampling scheme. To furnish estimate of 

population variance 
2

xS  of auxiliary variable x, a first phase sample S  of size n is 

drawn by simple random sampling without replacement (SRSWOR) scheme from 
the entire population U and observed for the auxiliary characters x and z to 

estimate 
2

xS . Further, a second phase sample S of size m (m <n) is drawn from 

the first phase sample by the method of simple random sampling without 
replacement and information on the study variable y and x is gathered. 
Case-I: Second phase sample S is drawn as a subsample of the first phase 

sample  i.e.S S .  

Case-II: Second phase sample S is drawn independently of the first phase 

sampleS  i.e.S S .  

3.  Non-Response Probability Model 

If random non-response situations occur at the second phase sample S of 

size m and r r = 0,1,...., (m - 2)  denotes the numbers of sampling units on 

which information could not be obtained due to random non-response, then the 
observations of the respective variables on which the random non-response occur 
can be taken from the remaining responding (m - r) units of the second phase 
sample. Since we are considering the problem of unbiased estimation of finite 

population variance 
2

yS , therefore it is assumed that r is less than  m -1 , i.e. 

 0 r m - 2   and p stands for the probability of non-response among the 

 m - 2  possible values of non-response, hence r is following discrete 

distribution; see Singh and Joarder (1998). 

  
  m-2 r m-2-r

r

m - r
P r = C p q

mq+2p
 , r = 0,1,...., (m - 2)

     
(1) 

where  q = 1 - p . 

Here 
m-2

rC  denotes the total number of ways of obtaining r non-response out of 

total possible  m - 2  non-response. 

Hence, from now onwards, we use the following notations: 

Y : The population mean of study variable y. 

X,Z : The population means of auxiliary variables x and z respectively.
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my ,
mx ,

nx , 
mz , 

nz : The sample means of the respective variables based on 

the sample sizes shown in the suffices. 

 

m-r
*

m i

i=1

1
y = y

m - r
 , 

 

m-r
*

m i

i=1

1
x = x

m - r
  and

 

m-r
*

m i

i=1

1
z = z

m - r
 : The sample 

means of the respective variables based on the responding part of the second 
phase sample S. 

 
 

N
22

z i

i=1

1
S = z  - Z

N - 1
 : Population variance of the auxiliary variable z. 

 
 

m

m
22

y i m

i=1

1
s = y  - y

m - 1
 : Sample variance of the study variable y based on 

sample of size m. 

m n

2 2

x xs ,s , 
m

2

zs and 
n

2

zs : Sample variance of the auxiliary characters x and z 

respectively based on the respective sample sizes shown in their subscripts. 

 
 

m

m-r
*2 *

y i m

i=1

1
S = y  - y

m - r - 1
 : Sample variance of the study variable y based 

on the responding part of the second phase sample S. 

m

*2

xS and 
m

*2

zS : Sample variance of the auxiliary characters x and z respectively 

based on the responding part and sample sizes shown in their subscripts. 

4.  Proposed Strategies 

Following the work of Isaki (1983) and utilizing information on an auxiliary 

variable x with unknown
2

xS , one may propose the ratio type estimator of 

population variance 
2

yS   in two-phase sampling as 

 n

m

m

2

x2

R y 2

x

s
t = s

s
          (2) 

Singh and Joarder (1998) have proposed ratio type estimators at the second 
phase Sample S under random non-response different situation as presented 
below. 

(i) If random non-response occurs only on study variable y at the second phase 

and the population variance 
2

xS of auxiliary variable x is unknown, then the 

estimator may be defined as 

 n

m

m

2

x*2

1 y 2

x

s
t = s

s
          

(3) 
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(ii) If random non-response occurs on both variables y and x and the population 

variance 
2

xS  of auxiliary variable x is unknown, then the estimator may be defined 

as 

 n

m

m

2

x*2

2 y *2

x

s
t = s

s
          

(4) 

(iii) In this situation, we consider that random non-response occurs on study 
variable y as well as auxiliary variables x and z at the second phase sample S 

and the population variance 
2

zS  of auxiliary variable z is unknown, then the 

estimator may be defined as 

 n n

m

m m

2 2

x z*2

3 y *2 *2

x z

s s
t = s

s s
          

(5) 

(iv) In this situation, we assume that random non-response occurs on study 
variable y as well as auxiliary variable z at the second phase sample S and the 

population variance 
2

zS  of auxiliary variable z is unknown, then the estimator may 

be defined as 

 n n

m

m m

2 2

x z*2

4 y 2 *2

x z

s s
t = s

s s
          

(6) 

Following the above suggestions, it is assumed that a complete response 

situation occurs at the first phase sample S  while non-response situation occurs 

over all variables y, x and z or in different way in the second phase sample S. We 
have developed different chain-type exponential estimators of population variance 

2

yS
 
in two-phase sampling design when the population variance 

2

xS
 
of auxiliary 

variable x is unknown, which may be useful for real life situations such as (i). In 
the household survey, we considered household size as the auxiliary variable for 
the estimation of family expenditures. Information may be obtained completely on 
family size, while there may be random non-response on household expenditure 
(ii). In the agricultural survey, expenditures of fertilizer or pesticides on crop may 
be used as the auxiliary variable for estimating the production of crop. There may 
be random non-response on both the variables. We have presented the following 
strategies I-IV for handling the above real life situations: 

Strategies I: In this situation, we assume that the information on variable y could 
not be obtained for r units while the complete information on variable x is 

available at the second phase sample S and the population variance 
2

zS
 
of 

auxiliary variable z is known. Then, the estimators of finite population variance 
2

yS
 

may be obtained as:  

 m n

n

m n

*2 2 2

y z z2

1 x2 2 2

x z z

s S  - s
T = s exp

s S +s

  
 
           

(7) 



580                                                 G. N. Singh, et. al.: Development of chain-type… 

 

 

 n m

m

n m n

2 2 2
x x*2 z

2 y 2 2 2

x x z

s  - s S
T = s exp

s +s s

   
   

            

(8) 

 

Strategies II: When random non-response occurs on the study variable y as well 
as auxiliary variable x at the second phase sample S and the population variance 

2

zS
 
of auxiliary variable z is known. Then, the estimators of finite population 

variance 
2

yS  may be defined as:  

 m n

n

m n

*2 2 2

y z z2

3 x*2 2 2

x z z

s S  - s
T = s exp

s S +s

  
 
           

(9) 

 n m

m

n m n

2 *2 2
x x*2 z

4 y 2 *2 2

x x z

s  - s S
T = s exp

s +s s

   
   

           

(10) 

 

Strategies III: In this situation, it is considered that the random non-response 
occurs on the study variable y as well as on the auxiliary variables x and z in the 

second phase sample S and the population variance 
2

zS  of the auxiliary variable z 

is unknown. Then, the estimators of finite population variance 
2

yS  may be defined 

as: 

 m n m

n

m n m

*2 2 *2

y z z2

5 x*2 2 *2

x z z

s s  - s
T = s exp

s s +s

  
 
          

(11) 

 n m n

m

n m m

2 *2 2

x x z*2

6 y 2 *2 *2

x x z

s  - s s
T = s exp

s +s s

   
   

           

(12) 

 

Strategies IV: In this situation, we assume that the random non-response occurs 
on the study variable y and the auxiliary variable z with unknown population 

variance 
2

zS  while the complete information on the auxiliary variable x is available.  

Then, the estimators of finite population variance 
2

yS  may be obtained as: 

 m n m

n

m n m

*2 2 *2

y z z2

7 x2 2 *2

x z z

s s  - s
T = s exp

s s +s

  
 
          

(13) 
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 n m n

m

n m m

2 2 2

x x z*2

8 y 2 2 *2

x x z

s  - s s
T = s exp

s +s s

   
   

           

(14) 

5.  Properties of Proposed estimators 
i

T
 
(i = 1, 2,...., 8) 

In this section, we derived the bias and mean square errors of the proposed 

estimators
iT , (i = 1, 2,...., 8) up to the first order of approximation under large 

sample assumption by using the following transformations: 

  
m

*2 2

y y 0s = S 1+e ,  
m

*2 2

x x 1s = S 1+e ,  
m

*2 2

z z 2s = S 1+e ,  
m

2 2

x x 3s = S 1+e , 

  
n

2 2

x x 4s = S 1+e , 

  
n

2 2

z z 5s = S 1+e  

Such that ie <1  (i = 1, 2,...., 5) 

We have derived the bias and mean square errors of the proposed estimators

iT , (i = 1, 2,...., 8) separately for the cases I and II of the two-phase sampling 

structure defined in section 2 and present them below. 

5.1. Bias and Mean Square Error of proposed estimators under case I 

In this section, we have considered that the second phase sample S of size m 

is drawn as a subsample from the first phase sample S  of size n and we have 

the following results. 

  2 * 2

0 0E e = f C ,  2 * 2

1 1E e = f C ,  2 * 2

2 2E e = f C ,  2 2

3 1 1E e = f C , 

 2 2

4 2 1E e = f C ,  2 2

5 2 2E e = f C ,   *

0 1 01 0 1E e e = f ρ C C , 

  *

0 2 02 0 2E e e = f ρ C C ,  0 3 1 01 0 1E e e = f ρ C C ,  0 4 2 01 0 1E e e = f ρ C C , 

 0 5 2 02 0 2E e e = f ρ C C ,   *

1 2 12 1 2E e e = f ρ C C ,   2

1 3 1 1E e e = f C , 

  2

1 4 2 1E e e = f C ,  1 5 2 12 1 2E e e = f ρ C C ,  2 3 1 12 1 2E e e = f ρ C C , 

 2 4 2 12 1 2E e e = f ρ C C ,   2

2 5 2 2E e e = f C ,   2

3 4 2 1E e e = f C , 

 3 5 2 12 1 2E e e = f ρ C C ,  4 5 2 12 1 2E e e = f ρ C C  
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where 
* 1 1

f =  - 
mq+2p N

 
 
 

, 
1

1 1
f =  - 

m N

 
 
 

, 
2

1 1
f =  - 

n N

 
 
 

, 

3

1 1
f =  - 

m n

 
 
 

, 
1 1

f =  - 
mq+2p n

 
  

 
, 

     
r s t

rst i i iμ = E y  - Y x  - X z  - Z 
 

;  r,s, t 0  are integers, 

 r 2 s 2 t 2

rst rst 200 020 002λ = μ μ μ μ ,  0 400C = λ  - 1 ,  1 040C = λ  - 1 , 

 2 004C = λ  - 1 ,     01 220 400 040ρ = λ  - 1 λ  - 1 λ  - 1 , 

    02 202 400 004ρ = λ  - 1 λ  - 1 λ  - 1 , 

    12 022 040 004ρ = λ  - 1 λ  - 1 λ  - 1 . 

From the above expectations, it is to be noted that: 

(a) If p = 0 (there is absence of non-response), the above expected values 
coincide with the usual results. 

(b) 
01ρ  is the correlation coefficient between  

2

y -Y
 
and  

2

x -X . Similarly, 

12ρ  is the correlation coefficient between  
2

x -X  and  
2

z - Z  and 
02ρ  is the 

correlation coefficient between  
2

y -Y and  
2

z - Z ; for instance see Upadhyaya 

and Singh (2006). 

Under the above transformations the estimators
iT , (i = 1, 2,...., 8) take the 

following forms: 

    
-1

-12 5
1 y 0 3 4 5

e1
T = S 1+e 1+e 1+e exp  - e 1+

2 2

   
  

         

(15) 

    
 

-1

-1 4 32

2 y 0 5 4 3

e +e1
T = S 1+e 1+e exp e  - e 1+

2 2

   
  

        

(16) 

        
-1

-12 5
3 y 0 1 4 5

e1
T = S 1+e 1+e 1+e exp  - e 1+

2 2

   
  

          

(17) 
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     
 

-1

-1 4 12

4 y 0 5 4 1

e +e1
T = S 1+e 1+e exp e  - e 1+

2 2

   
  

         

(18) 

       
 

-1

-1 5 22

5 y 0 1 4 5 2

e +e1
T = S 1+e 1+e 1+e exp e  -e 1+

2 2

   
  

      

(19) 

       
 

-1

-1 4 12

6 y 0 2 5 4 1

e +e1
T = S 1+e 1+e 1+e exp e  - e 1+

2 2

   
  

      

(20) 

       
 

-1

-1 5 22

7 y 0 3 4 5 2

e +e1
T = S 1+e 1+e 1+e exp e  -e 1+

2 2

   
  

      

(21) 

       
 

-1

-1 4 32

8 y 0 2 5 4 3

e +e1
T = S 1+e 1+e 1+e exp e  - e 1+

2 2

   
  

      

(22) 

Now, we expand the right-hand side of equation (15) binomially, up to the first 
order of approximations, and we have the following expression of the estimator 

1T  as: 

 2 2 2

1 y 0 3 4 5 3 5 0 3 0 4 3 4 0 5 3 5 4 5

1 3 1
T =S 1+e  -e +e  - e +e + e  -e e +e e  -e e  - e e  -e e +e e

2 8 2

 
 
 

   (23) 

Similarly, we can express the right-hand side of equations (16)-(22) up to the 

first order of approximations, and we have the expression of the estimators
iT , (i = 

2, 3,...., 8). 
Taking expectations on both sides of the equation (23) and similarly 

processing for equations (16)-(22) and then using the expected values of
ie  (i = 0, 

1,...., 5) , we obtain the bias B(.) and mean square errors M(.) of estimators
iT  (i = 

1, 2,...., 8) up to the first order of approximations as: 

  2 2 2

1 y 3 1 2 2 3 01 0 1 2 02 0 2

3 1
B T = S f C + f C  -f ρ C C  - f ρ C C

8 2

 
 
        

(24) 

  2 2 2

2 y 2 2 3 1 2 02 0 2 3 01 0 1

3 1
B T = S f C + f C  -f ρ C C  - f ρ C C

8 2

 
 
        

(25) 

  2 2 2

3 y 1 2 2 01 0 1 2 02 0 2

3 1
B T = S f C + f C  -f ρ C C  - f ρ C C

8 2

 
 

 
         

(26) 
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  2 2 2

4 y 2 2 2 2 02 0 2 01 0 1

3 1
B T = S f C + f C  -f ρ C C  - f ρ C C

8 2

 
 

 
        

(27) 

   2 2 2

5 y 1 2 01 0 1 2 02 0 12 1

3 1
B T = S f C + f C  - f ρ C C  - f C ρ C  -ρ C

8 2

 
   

 
     

(28) 

   2 2 2

6 y 2 1 02 0 2 1 01 0 12 2

3 1
B T = S f C + f C  -f ρ C C  - f C ρ C  -ρ C

8 2

 
   

 
     

(29) 

  2 2 2

7 y 3 1 2 3 01 0 1 02 0 2 3 12 1 2

3 1 1
B T = S f C + f C  -f ρ C C  - f ρ C C + f ρ C C

8 2 2

 
 

 
 

 

 

(30) 

   2 2 2

8 y 2 3 1 02 0 2 3 1 01 0 12 2

3 1
B T = S f C + f C  -f ρ C C  - f C ρ C  -ρ C

8 2

 
 

 
     

(31) 

  4 * 2 2 2

1 y 0 3 1 2 2 3 01 0 1 2 02 0 2

1
M T = S f C +f C + f C  -2f ρ C C  -f ρ C C

4

 
 
      

(32) 

  4 * 2 2 2

2 y 0 2 2 3 1 3 01 0 1 2 02 0 2

1
M T = S f C +f C + f C  -f ρ C C  -2f ρ C C

4

 
 
      

(33) 

  4 * 2 2 2

3 y 0 1 2 2 01 0 1 2 02 0 2

1
M T = S f C +f C + f C  -2f ρ C C  -f ρ C C

4

 
 

 
      

(34) 

  4 * 2 2 2

4 y 0 2 2 1 01 0 1 2 02 0 2

1
M T = S f C +f C + f C  -f ρ C C  -2f ρ C C

4

 
 

 
      

(35) 

  4 * 2 2 2

5 y 0 1 2 02 0 2 12 1 2 01 0 1

1
M T = S f C +f C + f C  -f ρ C C +f ρ C C  -2f ρ C C

4

 
    

 
   

(36) 

  4 * 2 2 2

6 y 0 2 1 01 0 1 12 1 2 02 0 2

1
M T = S f C +f C + f C  -f ρ C C +f ρ C C  -2f ρ C C

4

 
    

 
   

(37) 

  4 * 2 2 2

7 y 0 3 1 2 02 0 2 3 12 1 2 3 01 0 1

1
M T = S f C +f C + f C  -f ρ C C +f ρ C C  -2f ρ C C

4

 
 

 
   

(38) 

and 

  4 * 2 2 2

8 y 0 2 3 1 3 01 0 1 3 12 1 2 02 0 2

1
M T = S f C +f C + f C  -f ρ C C +f ρ C C  -2f ρ C C

4

 
 

 
   

(39) 
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5.2. Bias and Mean Square Error of proposed estimators under case II 

If the second phase sample S is drawn independently of the first phase 

sample S , then we have the following results. 

 2 * 2

0 0E e = f C ,  2 * 2

1 1E e = f C ,  2 * 2

2 2E e = f C ,  2 2

3 1 1E e = f C ,  2 2

4 2 1E e = f C

,  2 2

5 2 2E e = f C ,   *

0 1 01 0 1E e e = f ρ C C ,   *

0 2 02 0 2E e e = f ρ C C , 

 0 3 1 01 0 1E e e = f ρ C C ,   *

1 2 12 1 2E e e = f ρ C C ,   2

1 3 1 1E e e = f C , 

 2 3 1 12 1 2E e e = f ρ C C ,  4 5 2 12 1 2E e e = f ρ C C  

               0 4 0 5 1 4 1 5 2 4 2 5 3 4 3 5E e e =E e e =E e e = E e e = E e e = E e e = E e e = E e e = 0

 

Proceeding as section 5.1 and using the expected value as section 5.2, we 
have derived the expressions for bias B(.) and mean square errors M(.) of the 

proposed estimators
iT  (i = 1, 2,...., 8) to the first order of approximations as: 

  2 2 2

1 y 1 1 2 2 1 01 0 1 2 02 0 2

3 1
B T = S f C + f C  -f ρ C C  - f ρ C C

8 2

 
 
         

(40) 

     2 2 2

2 y 2 2 1 1 2 1 01 0 1 2 12 1 2

1 1
B T = S f C + C 3f  - f  - f ρ C C +f ρ C C

8 2

 
 
     

(41) 

  2 * 2 2 *

3 y 1 2 2 01 0 1 2 12 1 2

3 1
B T = S f C + f C  -f ρ C C  - f ρ C C

8 2

 
 
        

(42) 

     2 2 2 * *

4 y 2 2 1 2 1 01 0 2 12 2

1 1
B T = S f C + C 3f  - f  - C f ρ C +f ρ C

8 2

 
 
     

(43) 

      2 * 2 2 * * * *

5 y 1 2 2 01 0 1 2 12 1 2 02 0 2

1 1
B T = S f C + C 3f  - f  - f ρ C C + f +f ρ C C  -f ρ C C

8 2

 
 
 

 

(44) 

      2 * 2 2 * * * *

6 y 2 1 2 02 0 2 2 12 1 2 01 0 1

1 1
B T = S f C + C 3f  - f  - f ρ C C + f +f ρ C C  -f ρ C C

8 2

 
 
 

 

(45) 

      2 2 2 * *

7 y 1 1 2 2 1 01 0 1 1 2 12 1 2 02 0 2

1 1
B T = S f C + C 3f  - f  - f ρ C C + f +f ρ C C  - f ρ C C

8 2

 
 
 

 

(46) 
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      2 * 2 2 *

8 y 2 1 1 2 02 0 2 1 2 12 1 2 1 01 0 1

1 1
B T = S f C + C 3f  - f  - f ρ C C + f +f ρ C C  - f ρ C C

8 2

 
 
 

 

(47) 

   4 * 2 2 2

1 y 0 1 2 1 2 2 1 01 0 1 2 12 1 2

1
M T = S f C + f +f C + f C  -2f ρ C C  -f ρ C C

4

 
 
    

(48) 

   4 * 2 2 2

2 y 0 2 2 1 2 1 1 01 0 1 2 12 1 2

1
M T = S f C +f C + f +f C  -f ρ C C  -f ρ C C

4

 
 
     

(49) 

   4 * 2 * 2 2 *

3 y 0 2 1 2 2 01 0 1 2 12 1 2

1
M T = S f C + f +f C + f C  -2f ρ C C  -f ρ C C

4

 
 
    

(50) 

   4 * 2 2 * 2 *

4 y 0 2 2 2 1 01 0 1 2 12 1 2

1
M T = S f C +f C + f +f C  -f ρ C C  -f ρ C C

4

 
 
    

 

(51) 

     4 * 2 * 2 2 *

5 y 0 2 1 2 12 1 2 02 0 2 01 0 1

1
M T = S f C + f +f C + C +ρ C C  -f ρ C C + 2ρ C C

4

  
  
  

 

(52) 

 

     4 * 2 * 2 2 *

6 y 0 2 2 1 12 1 2 01 0 1 02 0 2

1
M T = S f C + f +f C + C +ρ C C  -f ρ C C + 2ρ C C

4

  
  
  

 

(53) 

      4 * 2 2 * 2 *

7 y 0 1 2 1 12 1 2 2 2 02 0 2 1 01 0 1

1
M T = S f C + f +f C +ρ C C + f +f C  -f ρ C C  -2f ρ C C

4

 
 
 

 

(54) 

and 

     4 * 2 * 2 2 *

8 y 0 2 2 1 2 1 12 1 2 1 01 0 1 02 0 2

1
M T = S f C + f +f C + f +f C +ρ C C  -f ρ C C  -2f ρ C C

4

  
  
  

 

(55) 

6.  Efficiency Comparisons of the Proposed Estimators  

i
T (i = 1, 2,...., 8) 

In this section, we validate the performance of the proposed estimators 
iT  (i = 

1, 2,..., 8) with to respect to the estimators such as population variance 
m

*2

ys  
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(sample variance estimator in presence of random non-response) and 
it  (i = 1, 2, 

..., 4). The variance/mean square errors of the estimators 
m

*2

ys  and
it  (i = 1, 2, ..., 

4) up to the first order of approximation under case I and case II are respectively 
given by: 

Case I:  

 
m

*2 * 2 4

y 0 yV s = f C S                   

 (56) 

4 * 2 2

1 y 0 3 1 3 01 0 1M(t ) = S f C +f C  -2f ρ C C               
(57) 

 4 * 2 2

2 y 0 1 01 0 1M(t ) = S f C +f C  -2ρ C C 
             

(58) 

   4 * 2 2 2

3 y 0 1 2 01 0 1 02 0 2 12 1 2M(t ) = S f C +f C +C  -2f ρ C C +ρ C C  -ρ C C  
   

  

 
(59) 

and 

   4 * 2 2 2

4 y 0 3 1 01 0 1 12 1 2 2 02 0 2M(t ) = S f C +f C  -2ρ C C +2ρ C C +f C  -2ρ C C 
 

 
 

 
(60) 

Case II: 

 
m

*2 * 2 4

y 0 yV s = f C S
                  

(60) 

 4 * 2 2

1 y 0 1 2 1 1 01 0 1M(t ) = S f C + f +f C  -2f ρ C C           
(61) 

 4 * 2 * 2 *

2 y 0 2 1 01 0 1M(t ) = S f C + f +f C  -2f ρ C C 
          

(62) 

 

    4 * 2 * 2 2 *

3 y 0 2 1 2 12 1 2 01 0 1 02 0 2M(t ) = S f C + f +f C +C +2ρ C C  -2f ρ C C +ρ C C 
 

 
(63) 

and  

    4 * 2 2 * 2 *

4 y 0 1 2 1 12 1 2 2 2 1 01 0 1 02 0 2M(t ) = S f C + f +f C +2ρ C C + f +f C  -2f ρ C C  -2f ρ C C 
 

 
(64) 

The performances of our proposed estimators 
iT  (i = 1, 2,...., 8) are 

compared with the other estimators considered in this paper and their dominance 
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is examined below through empirical studies carried over three different 
populations. 

7. Numerical Illustration 

We have computed the percent relative efficiencies of the proposed 

estimators 
iT  (i = 1, 2,...., 8) with respect to 

m

*2

ys  and 
it  (i = 1, 2, ..., 4) based on 

three natural populations. The source of the populations, the nature of the 
variables y, x, z and the values of the various parameters are given as follows. 
 

Population I- Source: Sukhatme and Sukhatme [1970] (page-185)  

 y: Area under wheat in 1937. 

 x: Area under wheat in 1936. 

 z: Total cultivated area in 1931. 

 N = 34, 
0C =1.5959 , 

1C =1.5105 , 
2C =1.3200 ,  

01ρ = 0.6251 , 
02ρ = 0.8007 , 

12ρ = 0.5342  

 

Population II- Source: Murthy[1967] (page-399)  

 y: Area under wheat in 1964. 

 x: Area under wheat in 1963. 

 z: Total cultivated area in 1961. 

 N 33= 34, 
0C =1.6510 , 

1C =1.3828 , 
2C =1.3447 , 

01ρ = 0.9218 , 
02ρ = 0.8914 , 

12ρ = 0.9346  

 

Population III- Source: Satici and Kadilar (2011) 

This data set is about 923 district of Turkey. 

 y: Number of successful students. 

 x: Numbers of teachers. 

 z: Private teaching institutions. 

 N = 261, 
0C =1.86537 , 

1C =1.75941 , 
2C = 2.02126 ,  

01ρ = 0.970 , 
02ρ = 0.935 , 

12ρ = 0.928  
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Table 1. Percent relative efficiency of the estimators 
1T  and 

2T  with respect to 

other estimators when non-response situation occur only on study 
variable y at the second phase sample. 

Population I 

 

Estimators 

Case I Case II 

1T  
2T  

1T  
2T  

m

*2

ys  1t  
m

*2

ys  1t  
m

*2

ys  1t  
m

*2

ys  1t  

P=0.02 143.93 108.55 164.43 124.02 125.32 103.74 142.77 118.19 

P=0.04 142.41 108.26 161.91 123.08 124.55 103.63 141.30 117.57 

P=0.06 140.95 107.97 159.49 122.18 123.81 103.52 139.89 116.97 

P=0.08 139.54 107.70 157.19 121.32 123.09 103.41 138.53 116.39 

P=0.10 138.18 107.43 154.98 120.49 122.38 103.31 137.21 115.83 

Population II 

 

Estimators 

Case I Case II 

1T  
2T  

1T  
2T  

m

*2

ys  1t  
m

*2

ys  1t  
m

*2

ys  
1t  

m

*2

ys  
1t  

P=0.02 472.17 132.00 253.54 * 486.82 127.79 226.25 * 

P=0.04 433.14 128.65 244.45 * 445.12 124.79 219.54 * 

P=0.06 400.53 125.84 236.12 * 410.51 122.30 213.30 * 

P=0.08 372.89 123.47 228.45 * 381.30 120.20 207.50 * 

P=0.10 349.15 121.42 221.36 * 356.33 118.41 202.09 * 

Population III 

Estimators 

Case I Case II 

1T  2T  1T  2T  

m

*2

ys  
1t  

m

*2

ys  
1t  

m

*2

ys  
1t  

m

*2

ys  
1t  

P=0.02 752.54 230.81 352.72 108.18 733.68 216.06 232.38 * 

P=0.04 660.37 212.33 334.63 107.59 646.11 200.02 225.98 * 

P=0.06 588.63 197.95 318.38 107.07 577.51 187.46 219.96 * 

P=0.08 531.19 186.44 303.71 106.59 522.32 177.35 214.27 * 

P=0.10 484.18 177.01 290.38 106.16 476.96 169.04 208.89 * 

* Indicate, proposed estimator is not preferable over existing estimator. 



590                                                 G. N. Singh, et. al.: Development of chain-type… 

 

 

Table 2. Percent relative efficiency of the estimators 3T  and 4T  with respect to 

other estimators when non-response situation occur on study variable y 
and auxiliary variable x at the second phase sample. 

Population I 

 

Estimators 

Case I Case II 

3T  4T  3T  4T  

m

*2

ys  
2t  

m

*2

ys  
2t  

m

*2

ys  
2t  

m

*2

ys  
2t  

P=0.02 145.37 108.64 166.86 124.69 126.41 103.78 144.59 118.70 

P=0.04 145.24 108.42 166.63 124.39 126.72 103.69 144.89 118.57 

P=0.06 145.12 108.21 166.41 124.09 127.02 103.61 145.19 118.43 

P=0.08 145.00 108.00 166.20 123.79 127.31 103.53 145.48 118.30 

P=0.10 144.88 107.79 165.99 123.50 127.61 103.45 145.77 118.17 

Population II 

 

Estimators 

Case I Case II 

3T  4T  3T  4T  

m

*2

ys  
2t  

m

*2

ys  
2t  

m

*2

ys  
2t  

m

*2

ys  
2t  

P=0.02 522.02 135.38 263.10 * 539.98 130.82 233.82 * 

P=0.04 524.28 134.68 262.71 * 541.95 130.18 234.15 * 

P=0.06 526.53 133.97 262.32 * 543.91 129.55 234.46 * 

P=0.08 528.77 133.28 261.95 * 545.84 128.93 234.78 * 

P=0.10 530.99 132.58 261.58 * 547.77 128.30 235.09 * 

Population III 

Estimators 

Case I Case II 

3T  
4T  

3T  
4T  

m

*2

ys  2t  
m

*2

ys  2t  
m

*2

ys  2t  
m

*2

ys  2t  

P=0.02 884.16 253.69 371.83 106.69 858.24 235.77 240.53 * 

P=0.04 893.16 251.93 370.69 104.56 867.27 234.26 241.87 * 

P=0.06 902.30 250.15 369.57 102.45 876.44 232.73 243.23 * 

P=0.08 911.59 248.34 368.45 100.37 885.76 231.17 244.59 * 

P=0.10 921.02 246.50 367.35 98.31 895.24 229.59 245.97 * 
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Table 3.  Percent relative efficiency of the estimators 
5T  and 

6T  with respect to 

other estimators when non-response situation occur on study variable y 
as well as auxiliary variable x and z at the second phase sample 

Population I 

 

Estimators 

Case I Case II 

5T  
6T  

5T  
6T  

m

*2

ys  3t  
m

*2

ys  3t  
m

*2

ys  3t  
m

*2

ys  3t  

P=0.02 146.38 134.61 207.69 190.99 122.06 146.59 175.25 210.47 

P=0.04 146.61 134.78 208.44 191.62 122.71 146.51 176.45 210.66 

P=0.06 146.83 134.95 209.18 192.25 123.36 146.42 177.65 210.86 

P=0.08 147.05 135.11 209.91 192.87 124.01 146.33 178.85 211.05 

P=0.10 147.27 135.27 210.64 193.49 124.65 146.25 180.05 211.24 

Population II 

 

Estimators 

Case I Case II 

5T  
6T  

5T  
6T  

m

*2

ys  3t  
m

*2

ys  3t  
m

*2

ys  3t  
m

*2

ys  3t  

P=0.02 305.47 209.83 291.80 200.44 239.88 231.07 232.09 223.57 

P=0.04 307.57 210.96 293.68 201.43 242.44 231.67 234.45 224.03 

P=0.06 309.68 212.08 295.55 202.41 245.02 232.27 236.81 224.48 

P=0.08 311.78 213.20 297.42 203.39 247.62 232.87 239.19 224.94 

P=0.10 313.87 214.32 299.28 204.36 250.23 233.47 241.58 225.40 

Population III 

Estimators 

Case I Case II 

5T  
6T  

5T  
6T  

m

*2

ys  3t  
m

*2

ys  3t  
m

*2

ys  3t  
m

*2

ys  3t  

P=0.02 217.16 234.38 182.54 197.01 124.44 256.51 103.06 212.44 

P=0.04 218.91 236.38 183.57 198.23 126.17 257.50 104.37 212.99 

P=0.06 220.67 238.41 184.61 199.45 127.94 258.50 105.70 213.56 

P=0.08 222.46 240.46 185.66 200.68 129.75 259.53 107.05 214.13 

P=0.10 224.27 242.53 186.71 201.91 131.61 260.58 108.44 214.72 
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Table 4.  Percent relative efficiency of the estimators 
7T  and 

8T  with respect to 

other estimators when non-response situation occur on study variable y 
and auxiliary variable z at the second phase sample 

Population I 

 

Estimators 

Case I Case II 

7T  
8T  

7T  
8T  

m

*2

ys  4t  
m

*2

ys  4t  
m

*2

ys  4t  
m

*2

ys  4t  

P=0.02 147.06 133.29 208.21 188.73 122.53 145.54 175.62 208.60 

P=0.04 147.96 132.15 209.49 187.11 123.66 144.40 177.20 206.93 

P=0.06 148.86 131.01 210.76 185.50 124.79 143.26 178.79 205.25 

P=0.08 149.75 129.88 212.02 183.89 125.92 142.11 180.38 203.56 

P=0.10 150.65 128.75 213.29 182.28 127.06 140.96 181.97 201.87 

Population II 

 

Estimators 

Case I Case II 

7T  
8T  

7T  
8T  

m

*2

ys  4t  
m

*2

ys  4t  
m

*2

ys  4t  
m

*2

ys  4t  

P=0.02 300.94 203.60 292.64 197.98 237.08 225.91 232.62 221.67 

P=0.04 298.60 198.65 295.37 196.50 236.83 221.43 235.52 220.20 

P=0.06 296.33 193.85 298.11 195.01 236.59 217.02 238.45 218.72 

P=0.08 294.13 189.20 300.85 193.52 236.35 212.69 241.40 217.23 

P=0.10 292.00 184.69 303.61 192.03 236.12 208.43 244.38 215.72 

Population III 

Estimators 

Case I Case II 

7T  
8T  

7T  
8T  

m

*2

ys  4t  
m

*2

ys  4t  
m

*2

ys  4t  
m

*2

ys  4t  

P=0.02 217.24 230.09 184.35 195.26 124.47 254.06 103.64 211.54 

P=0.04 219.07 227.76 187.27 194.69 126.23 252.54 105.55 211.17 

P=0.06 220.93 225.40 190.26 194.11 128.03 250.98 107.52 210.79 

P=0.08 222.80 223.02 193.33 193.52 129.87 249.38 109.56 210.39 

P=0.10 224.70 220.60 196.49 192.91 131.75 247.75 111.67 209.98 
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The empirical studies are carried out for different choices of non-response 

rate p, the performances of the proposed estimators 
iT  (i = 1, 2,...., 8) have been 

shown in terms of the percent relative efficiencies with respect to other 
estimators. 

 

 i

M δ
PRE = ×100

M T
, (i = 1, 2 ,..., 8) 

8. Interpretations of Empirical Results 

The following interpretations can be read out from the present study. 
From Tables 1-4, it is visible that almost all the values of percent relative 

efficiencies are exceeding 100 for all the parametric combinations, which indicate 
that the proposed estimators are uniformly dominating over the existing 
estimators as considered in this work. 

(a) From Tables 1 and 3, it may be seen that the values of percent relative 
efficiencies decrease and increase respectively for both the cases as the values 
of non-response rate p increase. 

(b) Further, when the random non-response rate p increases we observe the zig-
zag trend in Tables 2 and 4.  

9. Conclusions 

In this paper, we have studied different chain-type exponential estimators for 
improving estimation of the population variance under the situation of random 
non-response. Following the analyses of effective estimation procedures, it has 
been found that the results are highly desirable, which indicate the proposition of 
proposed estimators and subsequent estimation procedures. Hence, looking on 
the nice behaviour, the proposed estimation procedures may be recommended to 
the survey statisticians for their practical application whenever they intend to deal 
with the sensitive or stigmatizing attributes such as drinking alcohol, gambling 
habit, drug addiction, tax evasion, history of induced abortions, etc. 
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ON A LESS CUMBERSOME METHOD OF
ESTIMATION OF PARAMETERS OF LINDLEY

DISTRIBUTION BY ORDER STATISTICS

M. R. Irshad1, R. Maya2

ABSTRACT

In this article, we have derived suitable U-statistics from a sample of any size ex-
ceeding a specified integer to estimate the location and scale parameters of Lindley
distribution without the evaluation of means, variances and co-variances of order
statistics of an equivalent sample size arising from the corresponding standard form
of distribution. The exact variances of the estimators have been also obtained.

Key words: Order statistics, Lindley distribution, Best linear unbiased estimator,
U-statistics.

1. Introduction

Lindley (1958) suggested a distribution to illustrate the difference between fiducial
distribution and posterior distribution, the following probability density function (pdf),

f (x) =
θ 2

1+θ
(1+ x)e−θx; x > 0, θ > 0. (1)

Ghitany et al. (2008) developed different properties of, Lindley distribution and
showed that the Lindley distribution fits better than the exponential distribution based
on the waiting times before service of the bank customers. Sankaran (1970) used,
Lindley distribution as the mixing distribution of a Poisson parameter and the result-
ing distribution is known as the Poisson-Lindley distribution. Zakerzadeh and Dolati
(2009) obtained a generalized Lindley distribution and discussed its various prop-
erties and applications. Ghitany et al. (2013) and Nadarajah et al. (2011) recently
proposed extensions of the Lindley distribution named the generalized Lindley and
power Lindley distributions respectively. A discrete form of Lindley distribution was
introduced by Gómez and Ojeda (2011) by discretizing the continuous Lindley dis-
tribution. Ali et al. (2013) considered Bayesian analysis of the Lindley model via
informative and non-informative priors under different loss functions. Elbatal and
Elgarhy (2013) have investigated most of the statistical properties of the trans-
muted quasi-Lindley distribution. Kadilar and Cakmakyapan (2016) introduced in

1Department of Statistics, Cochin University of Science and Technology, Kochi-682 022, India.
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the literature, the Lindley family of distributions. Nedjar and Zehdoudi (2016) intro-
duced gamma Lindley distribution and studied some important properties of their
proposed generalization. Shibu and Irshad (2016) introduced extended version of
generalized Lindley distribution, it includes all the existing Lindley models. Again,
Irshad and Maya (2017) developed another form of generalization and elucidated
various reliability properties of their proposed model.
Based on reparametrisation of (1.1), Sultan and Thubyani (2016) developed loca-
tion scale extension of Lindley distribution and derived Best Linear Unbiased Esti-
mators (BLUEs) of location and scale parameters based on order statistics, its pdf
is given by

f (x) =
θ 2

σ(1+θ)

(
1+

x−µ

σ

)
e−θ( x−µ

σ ), x > µ and θ ,µ,σ > 0. (2)

Even though best linear unbiased estimation of location and scale parameters us-
ing order statistics (see, Lloyd (1952)) is a widely accepted method of estimation,
one serious difficulty involved in the application of this method is that in order to ob-
tain these estimators one requires the values of means, variances and covariances
of the entire order statistics of a random sample of size n arising from the corre-
sponding standard distribution. Thus, the results of Sultan and Thubyani (2016)
cannot help one to obtain the BLUEs of µ and σ for larger values of n. However,
if one obtains the BLUEs of µ and σ by order statistics based on small or moder-
ate sample of size m and use this as kernel of degree m to construct appropriate
U-statistics to estimate µ and σ , then these U-statistics are highly useful as they
estimate the parameters explicitly. Moreover, these estimators are highly preferred
as they utilize the optimality conditions of BLUE as well as U-statistics. Thomas and
Sreekumar (2004) developed the concept of U-statistics by taking BLUE based on
the order statistics of a random sample of size two as kernel of degree two to es-
timate the scale parameter of generalized exponential distribution. Again, Thomas
and Sreekumar (2007) generalized the results of Thomas and Sreekumar (2004)
to generate estimators based on U-statistics for the location and scale parameters
of any distribution, by taking best linear functions of order statistics of a sample of
size m < n as kernels.
In the work of Sultan and Thubyani (2016), they did not mentioned the means, vari-
ances and the covariances of the order statistics arising from the standard form of
(1.2). In the case of location scale family of distributions, a study based on order
statistics, it is necessary to evaluate the moments of order statistics arising from
the corresponding standard form of the distributions.
Hence, the main objective of this work is to evaluate the moments of order statistics
arising from the standard form of (1.2) for some known values of the shape parame-
ter θ . Using these values, we determine the best linear unbiased estimators based
on small sample sizes of the location and scale parameters of (1.2) and use them
to generate appropriate U-statistics for estimating those parameters for any sample
sizes.
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2. BLUEs of location and scale parameters of Lindley distribu-
tion using order statistics

Let X = (X1:m,X2:m, · · · ,Xm:m)
′ be the vector of order statistics of a random sample of

size m drawn from (1.2). Define Yr:m= Xr:m−µ

σ
,r = 1,2, · · · ,m. Then, Yr:m,r = 1,2, · · · ,m

are distributed as the order statistics of a random sample of size m drawn from the
standard form of (1.2) with pdf f0(y). Let α = (α1:m,α2:m, · · · ,αm:m)

′ and V = ((vr,s:m))

be the vector of means and dispersion matrix of the vector of order statistics of a
random sample of size m drawn from f0(y). Then, the BLUEs of µ and σ based on
order statistics given by (see, Sultan and Thubyani (2016))

µ̂ =− α ′V−1(1 α ′−α 1′)V−1

(α ′V−1α)(1′V−11)− (α ′V−11)2 X, (3)

σ̂ =
1′V−1(1 α ′−α 1′)V−1

(α ′V−1α)(1′V−11)− (α ′V−11)2 X, (4)

with variances given by

Var(µ̂) =
(α ′V−1α)σ2

(α ′V−1α)(1′V−11)− (α ′V−11)2 , (5)

Var(σ̂) =
(1′V−11)σ2

(α ′V−1α)(1′V−11)− (α ′V−11)2 , (6)

where 1 is a column vector of 1′s of the same dimension as X.

2.2 U-Statistics

Let X1,X2, · · · ,Xn be independent observations coming from a population with distri-
bution function F(x;θ). Then, the U-statistic for the parameter θ with the symmetric
kernel h(·) of degree m is defined as

U(X1,X2, · · · ,Xn) =
1(n
m

) ∑
β∈B

h(Xβ1 ,Xβ2 , · · · ,Xβm), (7)

where B= {β/β = (β1,β2, · · · ,βm),β1 < β2 < · · ·< βm} is one of the
(n

m

)
combinations

of m integers chosen without replacement from the set (1,2, · · · ,n). Suppose that

E[h(X1,X2, · · · ,Xm)] = θ and E[h2(X1,X2, · · · ,Xm)]< ∞. (8)

Let h(X1,X2, · · · ,Xω ,Xω+1, · · · ,Xm) and h(X1,X2, · · · ,Xω ,Xm+1, · · · ,X2m−ω) be two ran-
dom variables having exactly ω samples in common, ω = 1,2, · · · ,m. Let ξ

(m)
ω be
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the covariance between these two random variables. Then, the variance of the
U-statistic given in (2.5) as (see, Hoeffding (1948))

Var[U(X1,X2, · · · ,Xn)] =
1(n
m

) m

∑
ω=1

(
m
ω

)(
n−m
m−ω

)
ξ
(m)
ω . (9)

3. Estimation of parameters of Lindley distribution using
U-Statistics

Let the BLUE of µ as given in (2.1) be represented as

h1(X1,X2, · · · ,Xm) = a1X1:m +a2X2:m + · · ·+amXm:m (10)

and that of σ given in (2.2) be represented as

h2(X1,X2, · · · ,Xm) = d1X1:m +d2X2:m + · · ·+dmXm:m, (11)

where a1,a2, · · · ,am and d1,d2, · · · ,dm are constants. Now, we can easily write

U (m)
1:n =

1(n
m

) n

∑
r=1

[
m−1

∑
i=0

(
n− r

m−1− i

)(
r−1

i

)
ai+1

]
Xr:n (12)

as the U-statistic for estimating µ based on kernel given in (3.1) and

U (m)
2:n =

1(n
m

) n

∑
r=1

[
m−1

∑
i=0

(
n− r

m−1− i

)(
r−1

i

)
di+1

]
Xr:n (13)

as the U-statistic for estimating µ based on kernel given in (3.2), where we define(r−1
i

)
= 0 for i≥ r and

( n−r
m−1−i

)
= 0 for n− r < m−1− i.

If we write
ξ
(m)
ω =Cov[h1(X1,X2, · · · ,Xω ,Xω+1, · · · ,Xm),h1(X1,X2, · · · ,Xω ,Xm+1, · · · ,X2m−ω)], as the

covariance between two h1(.) functions with exactly ω common observations and
ψ

(m)
ω = Cov[h2(X1,X2, · · · ,Xω ,Xω+1, · · · ,Xm),h2(X1,X2, · · · ,Xω ,Xm+1, · · · ,X2m−ω)], as the

covariance between two h2(.) functions with exactly ω common observations for
ω = 1,2, · · · ,m, then the variances of U (m)

1:n and U (m)
2:n are given by

Var[U (m)
1:n ] =

1(n
m

) m

∑
ω=1

(
m
ω

)(
n−m
m−ω

)
ξ
(m)
ω (14)

and

Var[U (m)
2:n ] =

1(n
m

) m

∑
ω=1

(
m
ω

)(
n−m
m−ω

)
ψ

(m)
ω . (15)
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Clearly ξ
(m)
m = V [h1(X1,X2, · · · ,Xm)] and ψ

(m)
m = V [h2(X1,X2, · · · ,Xm)] and are given

in (2.3) and (2.4) respectively. Now, we evaluate the values of ξ
(m)
ω and ψ

(m)
ω for

ω = 1,2, · · · ,m− 1, using the methodology developed by Thomas and Sreekumar
(2008), as explained in the following steps.
Define the vectors bm+k for k = 1,2, · · · ,m−1 as

b′m+k =


m−1

∑
i=0

(
m+ k−1
m−1− i

)(
o
i

)
ai+1(m+k

m

) ,

m−1

∑
i=0

(
m+ k−2
m−1− i

)(
1
i

)
ai+1(m+k

m

) , · · · ,

m−1

∑
i=0

(
0

m−1− i

)(
m+ k−1

i

)
ai+1(m+k

m

)


(16)

and define wk =
(m+k

m

)
(b′m+kVm+kbm+k)σ

2− ξ
(m)
m ,k = 1,2, · · · ,m−1 where Vm+k is the

variance covariance matrix of the vector of order statistics of random sample of size
m+ k drawn from the distribution with pdf f0(y) and ξ

(m)
m defined as above. Define

the matrix

H =



0 0 . . . 0
( m

m−1

)(1
1

)
0 0 . . .

( m
m−2

)(2
2

) ( m
m−1

)(2
1

)
...

... . . .
...

...(m
1

)(m−1
m−1

) (m
2

)(m−1
m−2

)
. . .

( m
m−2

)(m−1
2

) ( m
m−1

)(m−1
1

)


×



ξ
(m)
1

ξ
(m)
2

...
ξ
(m)
m−1


(17)

and the vector w = (w1,w2, · · · ,wm−1)
′. Then, the components ξ

(m)
ω ,ω = 1,2, · · · ,m−

1, involved in (3.5) are solved from the following equations(
ξ
(m)
1 ,ξ

(m)
2 , · · · ,ξ (m)

m−1

)′
= H−1W. (18)

Similarly, the values of ψ
(m)
ω , ω = 1,2, · · · ,m−1 can be obtained as(

ψ
(m)
1 ,ψ

(m)
2 , · · · ,ψ(m)

m−1

)′
= H−1Z, (19)

where Z′ = (z1,z2, · · · ,zm−1)
′ with zk =

(m+k
m

)
(g′m+kVm+kgm+k)σ

2−ψ
(m)
m and gm+k is ob-

tained from (3.7) just by replacing each ai by di, i = 1,2, · · · ,m.

Once we obtain the values of ξ
(m)
ω ,ψ

(m)
ω ,ω = 1,2, · · · ,m− 1, from (3.9) and (3.10)

respectively, then the exact variances of the U-statistics for estimating µ and σ
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based on any sample of size n can be obtained by using (3.5) and (3.6) without any
further direct evaluation of moments of order statistics.

Table 1: Means of order statistics arising from the standard form of (1.2)
for n = 2(1)10 and for θ = 0.50(0.50)2.

n r θ = 0.50 θ = 1 θ = 1.5 θ = 2
2 1 1.88889 0.81250 0.49333 0.34722

2 4.77778 2.18750 1.37333 0.98611
3 1 1.35254 0.56481 0.33798 0.23594

2 2.96159 1.30787 0.80405 0.56979
3 5.68587 2.62731 1.65798 1.19427

4 1 1.06481 0.43506 0.25773 0.17896
2 2.21571 0.95408 0.57870 0.40687
3 3.70748 1.66166 1.02940 0.73271
4 6.34534 2.94920 1.86750 1.34813

5 1 0.88297 0.35464 0.20854 0.14425
2 1.79219 0.75673 0.45452 0.31781
3 2.85098 1.25011 0.76498 0.54045
4 4.27847 1.93602 1.20568 0.86088
5 6.86205 3.20250 2.03296 1.46994

6 1 0.75669 0.29971 0.17522 0.12086
2 1.51439 0.62928 0.37511 0.26121
3 2.34780 1.01164 0.61334 0.43101
4 3.35416 1.48858 0.91661 0.64990
5 4.74063 2.15975 1.35021 0.96637
6 7.28634 3.41105 2.16951 1.57065

7 1 0.66343 0.25973 0.15114 0.10402
2 1.31625 0.53963 0.31971 0.22192
3 2.00972 0.85341 0.51361 0.35943
4 2.79857 1.22262 0.74633 0.52644
5 3.77085 1.68804 1.04432 0.74250
6 5.12854 2.34843 1.47257 1.05592
7 7.64597 3.58815 2.28566 1.65644

8 1 0.59150 0.22927 0.13291 0.09131
2 1.16693 0.47290 0.27876 0.19300
3 1.76422 0.73981 0.44254 0.30868
4 2.41889 1.04273 0.63204 0.44402
5 3.17826 1.40251 0.86061 0.60885
6 4.12640 1.85937 1.15454 0.82268
7 5.46259 2.51145 1.57858 1.13367
8 7.95788 3.74196 2.38667 1.73112

9 1 0.53420 0.20528 0.11862 0.08137
2 1.04989 0.42118 0.24722 0.17080
3 1.57658 0.65390 0.38915 0.27070
4 2.13951 0.91164 0.54933 0.38464
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Table 1: Continued

n r θ = 0.50 θ = 1 θ = 1.5 θ = 2
9 5 2.76810 1.20660 0.73544 0.51825

6 3.50639 1.55924 0.96075 0.68134
7 4.43640 2.00943 1.25144 0.89335
8 5.75579 2.65488 1.67205 1.20233
9 8.23314 3.87785 2.47600 1.79722

10 1 0.48740 0.18589 0.10712 0.07339
2 0.95540 0.37987 0.22215 0.15321
3 1.42781 0.58645 0.34748 0.24117
4 1.92371 0.81128 0.48639 0.33963
5 2.46322 1.06217 0.64373 0.45215
6 3.07298 1.35102 0.82715 0.58435
7 3.79534 1.69805 1.04982 0.74600
8 4.71115 2.14288 1.33784 0.95650
9 6.01695 2.78288 1.75561 1.26379

10 8.47938 3.99951 2.55604 1.85650

Table 2: Variances and covariances vr,s:n of order statistics arising from
the standard form of (1.2) for 1≤ r≤ s≤ n, n = 2(1)10 and θ = 0.50(0.50)2.

n r s θ = 0.50 θ = 1 θ = 1.5 θ = 2
2 1 1 2.43210 0.52734 0.20996 0.10860

1 2 2.08642 0.47266 0.19360 0.10204
2 2 8.50617 2.02734 0.86062 0.46508

3 1 1 1.26895 0.26123 0.10077 0.05110
1 2 1.10362 0.23853 0.09463 0.04881
1 3 0.97997 0.21783 0.08823 0.04618
2 2 3.03236 0.69148 0.28350 0.14931
2 3 2.71450 0.63480 0.26528 0.14165
3 3 8.76918 2.11496 0.90612 0.49298

4 1 1 0.80135 0.15814 0.05957 0.02978
1 2 0.70230 0.14593 0.05649 0.02869
1 3 0.63270 0.13553 0.05354 0.02756
1 4 0.57352 0.12535 0.05032 0.02622
2 2 1.67832 0.36848 0.14711 0.07609
2 3 1.51875 0.34312 0.13966 0.07316
2 4 1.38116 0.31802 0.13147 0.06969
3 3 3.27371 0.76416 0.31833 0.16944
3 4 2.99528 0.71127 0.30057 0.16174
4 4 8.86142 2.15079 0.92644 0.50614

5 1 1 0.56080 0.10681 0.03949 0.01954
1 2 0.49439 0.09931 0.03770 0.01892
1 3 0.44832 0.09303 0.03603 0.01831
1 4 0.41216 0.08737 0.03437 0.01765
1 5 0.37866 0.08152 0.03250 0.01687
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Table 2: Continued

n r s θ = 0.50 θ = 1 θ = 1.5 θ = 2
5 2 2 1.10224 0.23411 0.09149 0.04668

2 3 1.00239 0.21965 0.08751 0.04519
2 4 0.92339 0.20655 0.08356 0.04361
2 5 0.84967 0.19293 0.07907 0.04169
3 3 1.86983 0.42397 0.17271 0.09046
3 4 1.72821 0.39952 0.16512 0.08738
3 5 1.59442 0.37388 0.15646 0.08361
4 4 3.39454 0.80276 0.33772 0.18102
4 5 3.14698 0.75391 0.32084 0.17354
5 5 8.89317 2.16701 0.93675 0.51323

6 1 1 0.41851 0.07732 0.02816 0.01381
1 2 0.37082 0.07232 0.02701 0.01343
1 3 0.33770 0.06814 0.02595 0.01306
1 4 0.31233 0.06447 0.02494 0.01267
1 5 0.29088 0.06102 0.02391 0.01226
1 6 0.26976 0.05731 0.02271 0.01175
2 2 0.79383 0.16373 0.06287 0.03173
2 3 0.72437 0.15443 0.06044 0.03085
2 4 0.67089 0.14623 0.05810 0.02996
2 5 0.62547 0.13850 0.05572 0.02900
2 6 0.58056 0.13016 0.05295 0.02780
3 3 1.25600 0.27740 0.11901 0.05736
3 4 1.16581 0.26301 0.10670 0.05573
3 5 1.08866 0.24937 0.10241 0.05396
3 6 1.01185 0.23457 0.09738 0.05176
4 4 1.97728 0.45681 0.18852 0.09961
4 5 1.85124 0.43388 0.18114 0.09652
4 6 1.72441 0.40879 0.17245 0.09267
5 5 3.46241 0.82558 0.34965 0.18834
5 6 3.23830 0.78023 0.33365 0.18114
6 6 8.89922 2.17434 0.94229 0.51735

7 1 1 0.32640 0.05873 0.02112 0.01029
1 2 0.29052 0.05520 0.02034 0.01004
1 3 0.26544 0.05224 0.01962 0.00979
1 4 0.24638 0.04966 0.01894 0.00954
1 5 0.23077 0.04732 0.01827 0.00928
1 6 0.21685 0.04504 0.01758 0.00900
1 7 0.20251 0.04251 0.01676 0.00865
2 2 0.60587 0.12173 0.04604 0.02304
2 3 0.55438 0.11528 0.04443 0.02247
2 4 0.51511 0.10966 0.04291 0.02191
2 5 0.48283 0.10453 0.04141 0.02132
2 6 0.45398 0.09954 0.03985 0.02068
2 7 0.42417 0.09399 0.03800 0.01988
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Table 2: Continued

n r s θ = 0.50 θ = 1 θ = 1.5 θ = 2
7 3 3 0.92024 0.19842 0.07807 0.03996

3 4 0.85639 0.18890 0.07543 0.03897
3 5 0.80366 0.18020 0.07283 0.03794
3 6 0.75633 0.17170 0.07012 0.03682
3 7 0.70722 0.16222 0.06688 0.03540
4 4 1.34807 0.30481 0.12374 0.06462
4 5 1.26723 0.29107 0.11956 0.06295
4 6 1.19420 0.27760 0.11518 0.06111
4 7 1.11796 0.26249 0.10994 0.05878
5 5 2.04404 0.47796 0.19905 0.10584
5 6 1.93035 0.45653 0.19196 0.10282
5 7 1.81053 0.43230 0.18342 0.09897
6 6 3.50309 0.84002 0.35749 0.19328
6 7 3.29717 0.79760 0.34229 0.18635
7 7 8.89323 2.17717 0.94531 0.51984

8 1 1 0.26288 0.04621 0.01644 0.00797
1 2 0.23494 0.04361 0.01588 0.00779
1 3 0.21526 0.04142 0.01537 0.00761
1 4 0.20032 0.03951 0.01489 0.00744
1 5 0.18824 0.03781 0.01442 0.00727
1 6 0.17786 0.03621 0.01396 0.00709
1 7 0.16822 0.03462 0.01347 0.00689
1 8 0.15794 0.03280 0.01287 0.00663
2 2 0.48128 0.09443 0.03526 0.01751
2 3 0.44144 0.08973 0.03413 0.01713
2 4 0.41113 0.08565 0.03307 0.01674
2 5 0.38656 0.08197 0.03204 0.01636
2 6 0.36540 0.07853 0.03102 0.01595
2 7 0.34574 0.07510 0.02993 0.01550
2 8 0.32471 0.07118 0.02862 0.01493
3 3 0.71207 0.15018 0.05827 0.02957
3 4 0.66396 0.14343 0.05647 0.02892
3 5 0.62483 0.13734 0.05474 0.02825
3 6 0.59102 0.13163 0.05300 0.02756
3 7 0.55952 0.12593 0.05116 0.02679
3 8 0.52575 0.11940 0.04893 0.02580
4 4 0.99933 0.22147 0.08862 0.04584
4 5 0.94159 0.21223 0.08594 0.04480
4 6 0.89149 0.20353 0.08325 0.04371
4 7 0.84464 0.19481 0.08039 0.04250
4 8 0.79421 0.18481 0.07691 0.04095
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Table 2: Continued

n r s θ = 0.50 θ = 1 θ = 1.5 θ = 2
8 5 5 1.40849 0.32343 0.13274 0.06983

5 6 1.33539 0.31044 0.12866 0.06816
5 7 1.26666 0.29739 0.12431 0.06630
5 8 1.19225 0.28234 0.11900 0.06391
6 6 2.08826 0.49242 0.20644 0.11030
6 7 1.98435 0.47232 0.19966 0.10736
6 8 1.87089 0.44900 0.19131 0.10357
7 7 3.52834 0.84958 0.36289 0.19676
7 8 3.33691 0.80962 0.34839 0.19009
8 8 8.88133 2.17755 0.94689 0.52138

9 1 1 0.21698 0.03735 0.01317 0.00635
1 2 0.19465 0.03538 0.01276 0.00622
1 3 0.17878 0.03370 0.01237 0.00609
1 4 0.16672 0.03225 0.01202 0.00597
1 5 0.15702 0.03095 0.01168 0.00585
1 6 0.14881 0.02975 0.01134 0.00572
1 7 0.14150 0.02860 0.01101 0.00559
1 8 0.13451 0.02744 0.01064 0.00544
1 9 0.12683 0.02609 0.01020 0.00525
2 2 0.39367 0.07560 0.02791 0.01378
2 3 0.36188 0.07204 0.02709 0.01350
2 4 0.33766 0.06895 0.02631 0.01323
2 5 0.31816 0.06619 0.02556 0.01295
2 6 0.30164 0.06364 0.02484 0.01267
2 7 0.28690 0.06121 0.02410 0.01238
2 8 0.27278 0.05873 0.02331 0.01205
2 9 0.25726 0.05584 0.02234 0.01163
3 3 0.57214 0.11823 0.04531 0.02283
3 4 0.53434 0.11321 0.04402 0.02237
3 5 0.50382 0.10871 0.04279 0.02191
3 6 0.47792 0.10456 0.04158 0.02144
3 7 0.45475 0.10059 0.04036 0.02095
3 8 0.43253 0.09654 0.03904 0.02039
3 9 0.40804 0.09181 0.03742 0.01967
4 4 0.78068 0.16980 0.06708 0.03441
4 5 0.73678 0.16314 0.06522 0.03371
4 6 0.69940 0.15698 0.06340 0.03299
4 7 0.66588 0.15107 0.06155 0.03224
4 8 0.63365 0.14504 0.05956 0.03139
4 9 0.59805 0.13798 0.05710 0.03029
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Table 2: Continued

n r s θ = 0.50 θ = 1 θ = 1.5 θ = 2
9 5 5 1.05313 0.23773 0.09631 0.05020

5 6 1.00070 0.22890 0.09365 0.04915
5 7 0.95351 0.22040 0.09095 0.04804
5 8 0.90796 0.21170 0.08804 0.04679
5 9 0.85748 0.20149 0.08443 0.04516
6 6 1.45052 0.33672 0.13932 0.07370
6 7 1.38371 0.32446 0.13537 0.07206
6 8 1.31893 0.31188 0.13111 0.07021
6 9 1.24675 0.29706 0.12581 0.06780
7 7 2.11883 0.50271 0.21184 0.11361
7 8 2.02279 0.48377 0.20534 0.11076
7 9 1.91493 0.46133 0.19722 0.10703
8 8 3.54422 0.85611 0.36673 0.19930
8 9 3.36461 0.81822 0.35285 0.19286
9 9 8.86655 2.17654 0.94760 0.52231

10 1 1 0.18260 0.03085 0.01079 0.00518
1 2 0.16438 0.02931 0.01047 0.00508
1 3 0.15131 0.02799 0.01018 0.00499
1 4 0.14135 0.02685 0.00991 0.00490
1 5 0.13335 0.02583 0.00965 0.00481
1 6 0.12664 0.02490 0.00940 0.00471
1 7 0.12078 0.02402 0.00915 0.00462
1 8 0.11540 0.02317 0.00890 0.00452
1 9 0.11013 0.02229 0.00862 0.00440
1 10 0.10420 0.02125 0.00828 0.00425
2 2 0.32931 0.06200 0.02267 0.01113
2 3 0.30334 0.05924 0.02204 0.01092
2 4 0.28349 0.05683 0.02146 0.01072
2 5 0.26755 0.05468 0.02090 0.01052
2 6 0.25417 0.05272 0.02035 0.01032
2 7 0.24245 0.05087 0.01982 0.01011
2 8 0.23169 0.04908 0.01927 0.00989
2 9 0.22115 0.04722 0.01868 0.00964
2 10 0.20928 0.04501 0.01793 0.00931
3 3 0.47258 0.09582 0.03633 0.01818
3 4 0.44199 0.09195 0.03536 0.01785
3 5 0.41736 0.08850 0.03445 0.01751
3 6 0.39665 0.08534 0.03356 0.01718
3 7 0.37849 0.08237 0.03268 0.01683
3 8 0.36180 0.07948 0.03178 0.01647
3 9 0.34541 0.07648 0.03080 0.01605
3 10 0.32694 0.07292 0.02958 0.01551



608 M. R. Irshad, R. Maya: On a less cumbersome method of estimation...

Table 2: Continued

n r s θ = 0.50 θ = 1 θ = 1.5 θ = 2
10 4 4 0.63230 0.13513 0.05278 0.02687

4 5 0.59751 0.13010 0.05142 0.02638
4 6 0.56818 0.12550 0.05010 0.02588
4 7 0.54242 0.12117 0.04880 0.02536
4 8 0.51870 0.11694 0.04747 0.02481
4 9 0.49536 0.11256 0.04601 0.02419
4 10 0.46901 0.10734 0.04419 0.02337
5 5 0.82859 0.18404 0.07369 0.03811
5 6 0.78852 0.17761 0.07182 0.03739
5 7 0.75322 0.17155 0.06997 0.03665
5 8 0.72064 0.16562 0.06807 0.03586
5 9 0.68851 0.15946 0.06600 0.03497
5 10 0.65216 0.15212 0.06341 0.03380
6 6 1.09177 0.24970 0.10210 0.05356
6 7 1.04376 0.24130 0.09950 0.05251
6 8 0.99930 0.23307 0.09683 0.05139
6 9 0.95532 0.22450 0.09392 0.05012
6 10 0.90539 0.21426 0.09026 0.04846
7 7 1.48097 0.34656 0.14430 0.07668
7 8 1.41930 0.33497 0.14049 0.07507
7 9 1.35803 0.32286 0.13633 0.07324
7 10 1.28812 0.30833 0.13108 0.07084
8 8 2.14058 0.51027 0.21590 0.11614
8 9 2.05101 0.49234 0.20966 0.11338
8 10 1.94806 0.47070 0.20176 0.10973
9 9 3.55411 0.86065 0.36954 0.20121
9 10 3.38433 0.82453 0.35619 0.19498

10 10 8.85046 2.17473 0.94776 0.52286



STATISTICS IN TRANSITION new series, December 2018 609

Ta
bl

e
3:

C
oe

ffi
ci

en
ts

of
X i

:n
in

th
e

B
LU

E
µ̂

an
d

V 1
=

V
ar
(µ̂

)

σ
2

.

n
θ

C
oe

ffi
ci

en
ts

a 1
a 2

a 3
a 4

a 5
a 6

a 7
a 8

a 9
a 1

0
V 1

2
1.

65
38

5
-0

.6
53

85
5.

77
64

7
3

1.
41

19
1

-0
.1

58
73

-0
.2

53
19

2.
19

10
7

4
1.

28
90

8
-0

.0
46

30
-0

.1
02

53
-0

.1
40

24
1.

20
39

7
5

1.
21

48
8

-0
.0

06
31

-0
.0

46
01

-0
.0

71
71

-0
.0

90
85

0.
77

75
9

6
0.

50
1.

16
54

8
0.

01
06

8
-0

.0
19

37
-0

.0
39

31
-0

.0
53

13
-0

.0
64

35
0.

55
03

7
7

1.
13

04
7

0.
01

84
1

-0
.0

05
28

-0
.0

21
45

-0
.0

32
76

-0
.0

41
07

-0
.0

48
31

0.
41

33
0

8
1.

10
44

9
0.

02
19

7
0.

00
26

6
-0

.0
10

81
-0

.0
20

35
-0

.0
27

38
-0

.0
32

79
-0

.0
37

79
0.

32
35

0
9

1.
08

46
2

0.
02

33
6

0.
00

73
6

-0
.0

04
12

-0
.0

12
37

-0
.0

18
42

-0
.0

23
10

-0
.0

26
85

-0
.0

30
47

0.
26

11
2

10
1.

06
90

0
0.

02
36

4
0.

01
01

7
0.

00
02

1
-0

.0
06

96
-0

.0
12

31
-0

.0
16

46
-0

.0
19

71
-0

.0
22

43
-0

.0
25

15
0.

21
58

2
2

1.
59

09
1

-0
.5

90
91

1.
15

39
1

3
1.

37
35

1
-0

.1
55

79
-0

.2
17

72
0.

42
05

6
4

1.
26

73
6

-0
.0

60
25

-0
.0

90
82

-0
.1

16
3

0.
22

35
4

5
1.

20
50

1
-0

.0
26

38
-0

.0
45

37
-0

.0
60

09
-0

.0
73

17
0.

14
03

3
6

1
1.

16
43

4
-0

.0
11

62
-0

.0
24

55
-0

.0
34

70
-0

.0
42

89
-0

.0
50

58
0.

09
69

0
7

1.
13

59
2

-0
.0

04
37

-0
.0

13
76

-0
.0

21
14

-0
.0

27
25

-0
.0

32
22

-0
.0

37
18

0.
07

12
1

8
1.

11
50

3
-0

.0
00

53
-0

.0
07

72
-0

.0
13

17
-0

.0
18

08
-0

.0
21

83
-0

.0
25

16
-0

.0
28

55
0.

05
46

7
9

1.
09

93
0

0.
00

12
8

-0
.0

03
75

-0
.0

08
61

-0
.0

12
24

-0
.0

15
28

-0
.0

17
85

-0
.0

20
20

-0
.0

22
65

0.
04

33
6

10
1.

08
67

6
0.

00
25

0
-0

.0
01

45
-0

.0
05

48
-0

.0
08

39
-0

.0
11

01
-0

.0
13

00
-0

.0
14

92
-0

.0
16

59
-0

.0
18

42
0.

03
52

7



610 M. R. Irshad, R. Maya: On a less cumbersome method of estimation...

Ta
bl

e
3:

C
on

tin
ue

d

n
θ

C
oe

ffi
ci

en
ts

a 1
a 2

a 3
a 4

a 5
a 6

a 7
a 8

a 9
a 1

0
V 1

2
1.

56
06

0
-0

.5
60

60
0.

44
30

7
3

1.
35

72
2

-0
.1

56
39

-0
.2

00
83

0.
15

75
0

4
1.

25
90

5
-0

.0
67

32
-0

.0
86

54
-0

.1
05

20
0.

08
21

2
5

1.
20

17
4

-0
.0

35
02

-0
.0

46
02

-0
.0

55
47

-0
.0

65
23

0.
05

07
7

6
1.

5
1.

16
41

7
-0

.0
20

17
-0

.0
27

18
-0

.0
33

43
-0

.0
38

81
-0

.0
44

57
0.

03
46

2
7

1.
13

81
3

-0
.0

12
63

-0
.0

17
39

-0
.0

21
67

-0
.0

25
26

-0
.0

28
73

-0
.0

32
46

0.
02

51
7

8
1.

11
86

7
-0

.0
07

87
-0

.0
11

77
-0

.0
14

95
-0

.0
17

30
-0

.0
19

92
-0

.0
22

15
-0

.0
24

71
0.

01
91

5
9

1.
10

42
8

-0
.0

06
23

-0
.0

07
31

-0
.0

10
74

-0
.0

12
69

-0
.0

14
10

-0
.0

16
16

-0
.0

17
55

-0
.0

19
49

0.
01

50
7

10
1.

09
19

9
-0

.0
03

23
-0

.0
05

77
-0

.0
07

83
-0

.0
09

18
-0

.0
10

75
-0

.0
11

88
-0

.0
13

26
-0

.0
14

32
-0

.0
15

76
0.

01
21

8
2

1.
54

34
7

-0
.5

43
47

0.
22

49
0

3
1.

34
88

5
-0

.1
57

53
-0

.1
91

32
0.

07
86

8
4

1.
25

51
8

-0
.0

71
50

-0
.0

84
63

-0
.0

99
04

0.
04

05
5

5
1.

20
01

0
-0

.0
39

18
-0

.0
46

81
-0

.0
53

15
-0

.0
60

96
0.

02
48

6
6

2
1.

16
45

1
-0

.0
24

38
-0

.0
29

31
-0

.0
32

66
-0

.0
36

80
-0

.0
41

35
0.

01
68

2
7

1.
13

96
1

-0
.0

16
92

-0
.0

19
33

-0
.0

22
02

-0
.0

24
41

-0
.0

26
96

-0
.0

29
98

0.
01

21
7

8
1.

12
04

9
-0

.0
12

04
-0

.0
13

06
-0

.0
15

53
-0

.0
17

44
-0

.0
19

01
-0

.0
20

69
-0

.0
22

73
0.

00
92

2
9

1.
10

62
8

-0
.0

09
07

-0
.0

09
30

-0
.0

11
60

-0
.0

13
16

-0
.0

13
74

-0
.0

15
23

-0
.0

16
31

-0
.0

17
85

0.
00

72
2

10
1.

09
45

2
-0

.0
05

46
-0

.0
08

11
-0

.0
08

87
-0

.0
10

41
-0

.0
09

92
-0

.0
11

72
-0

.0
12

46
-0

.0
13

18
-0

.0
14

38
0.

00
58

1



STATISTICS IN TRANSITION new series, December 2018 611

Ta
bl

e
4:

C
oe

ffi
ci

en
ts

of
X i

:n
in

th
e

B
LU

E
σ̂

an
d

V 2
=

V
ar
(σ̂

)

σ
2

.

n
θ

C
oe

ffi
ci

en
ts

a 1
a 2

a 3
a 4

a 5
a 6

a 7
a 8

a 9
a 1

0
V 2

2
-0

.3
46

15
0.

34
61

5
0.

81
06

5
3

-0
.3

19
56

0.
14

12
3

0.
17

83
3

0.
39

43
6

4
-0

.3
03

76
0.

07
96

0
0.

10
43

6
0.

11
98

0
0.

25
80

6
5

-0
.2

92
98

0.
05

10
4

0.
07

02
4

0.
08

17
7

0.
08

99
3

0.
19

08
9

6
0.

50
-0

.2
85

08
0.

03
50

8
0.

05
08

1
0.

06
04

9
0.

06
68

6
0.

07
18

4
0.

15
10

7
7

-0
.2

79
00

0.
02

51
4

0.
03

84
6

0.
04

68
6

0.
05

24
3

0.
05

63
8

0.
05

97
3

0.
12

47
9

8
-0

.2
74

16
0.

01
84

7
0.

03
00

2
0.

03
74

7
0.

04
24

7
0.

04
60

1
0.

04
86

7
0.

05
10

7
0.

10
61

9
9

-0
.2

70
22

0.
01

38
0

0.
02

39
4

0.
03

06
4

0.
03

52
1

0.
03

84
4

0.
04

08
6

0.
04

27
6

0.
04

45
7

0.
09

23
3

10
-0

.2
66

92
0.

01
03

7
0.

01
94

1
0.

02
55

0
0.

02
96

9
0.

03
27

0
0.

03
49

5
0.

03
66

8
0.

03
81

1
0.

03
95

1
0.

08
16

3
2

-0
.7

27
27

0.
72

72
7

0.
85

12
34

3
-0

.6
80

78
0.

30
62

7
0.

37
45

1
0.

41
76

5
4

-0
.6

54
30

0.
18

06
9

0.
22

09
7

0.
25

26
4

0.
27

50
4

5
-0

.6
36

73
0.

12
24

9
0.

15
12

4
0.

17
24

8
0.

19
05

1
0.

20
44

8
6

1
-0

.6
24

10
0.

08
98

3
0.

11
18

7
0.

12
83

8
0.

14
12

1
0.

15
28

2
0.

16
25

0
7

-0
.6

14
53

0.
06

93
1

0.
08

69
6

0.
10

04
1

0.
11

09
3

0.
11

94
1

0.
12

75
2

0.
13

47
1

8
-0

.6
07

00
0.

05
54

2
0.

07
00

4
0.

08
11

8
0.

09
02

6
0.

09
73

5
0.

10
33

7
0.

10
93

8
0.

11
49

8
9

-0
.6

00
97

0.
04

56
6

0.
05

76
5

0.
06

75
8

0.
07

52
2

0.
08

14
5

0.
08

65
9

0.
09

10
8

0.
09

57
4

0.
10

02
5

10
-0

.5
95

84
0.

03
81

8
0.

04
86

2
0.

05
71

8
0.

06
39

2
0.

06
95

2
0.

07
40

0
0.

07
79

4
0.

08
13

8
0.

08
51

1
0.

08
88

5



612 M. R. Irshad, R. Maya: On a less cumbersome method of estimation...

Ta
bl

e
4:

C
on

tin
ue

d

n
θ

C
oe

ffi
ci

en
ts

a 1
a 2

a 3
a 4

a 5
a 6

a 7
a 8

a 9
a 1

0
V 2

2
-1

.1
36

36
1.

13
63

6
0.

88
24

6
3

-1
.0

76
30

0.
49

26
8

0.
58

36
2

0.
43

55
4

4
-1

.0
43

18
0.

30
02

5
0.

34
87

9
0.

39
41

4
0.

28
80

2
5

-1
.0

21
77

0.
21

04
4

0.
24

30
5

0.
27

05
2

0.
29

77
7

0.
21

47
9

6
1.

5
-1

.0
06

39
0.

15
93

7
0.

18
30

9
0.

20
35

4
0.

22
10

6
0.

23
93

2
0.

17
11

2
7

-0
.9

95
10

0.
12

70
6

0.
14

53
2

0.
16

11
0

0.
17

46
4

0.
18

69
1

0.
20

00
7

0.
14

21
5

8
-0

.9
86

01
0.

10
43

8
0.

11
96

3
0.

13
22

6
0.

14
30

4
0.

15
29

4
0.

16
18

8
0.

17
18

7
0.

12
15

3
9

-0
.9

79
30

0.
08

94
2

0.
09

99
9

0.
11

15
2

0.
12

06
1

0.
12

83
9

0.
13

60
0

0.
14

27
0

0.
15

06
6

0.
10

61
2

10
-0

.9
72

58
0.

07
57

6
0.

08
67

5
0.

09
57

6
0.

10
33

0
0.

11
05

2
0.

11
64

6
0.

12
22

7
0.

12
76

5
0.

13
41

0
0.

09
41

6
2

-1
.5

65
21

1.
56

52
1

0.
90

54
8

3
-1

.4
96

33
0.

69
49

4
0.

80
13

9
0.

44
86

3
4

-1
.4

59
66

0.
43

33
6

0.
48

53
3

0.
54

09
6

0.
29

74
0

5
-1

.4
35

83
0.

30
93

8
0.

34
33

8
0.

37
41

1
0.

40
89

6
0.

22
22

3
6

2
-1

.4
19

66
0.

23
86

0
0.

26
32

4
0.

28
39

8
0.

30
49

8
0.

32
88

5
0.

17
72

9
7

-1
.4

07
84

0.
19

39
1

0.
21

12
1

0.
22

75
1

0.
24

26
4

0.
25

74
4

0.
27

51
3

0.
14

74
4

8
-1

.3
97

73
0.

16
22

3
0.

17
50

7
0.

18
85

8
0.

20
06

4
0.

21
17

7
0.

22
29

5
0.

23
65

0
0.

12
61

8
9

-1
.3

90
56

0.
13

97
0

0.
14

87
9

0.
16

07
8

0.
17

05
9

0.
17

89
6

0.
18

78
2

0.
19

64
9

0.
20

74
3

0.
11

02
4

10
-1

.3
83

71
0.

11
95

7
0.

13
16

4
0.

13
90

4
0.

14
85

4
0.

15
35

2
0.

16
22

2
0.

16
88

1
0.

17
56

6
0.

18
47

1
0.

09
78

9



STATISTICS IN TRANSITION new series, December 2018 613

Table 5: Values of ξ
(m)
ω , for ω = 1,2, · · · ,m and m = 2(1)5.

θ = 0.50 θ = 1 θ = 1.50 θ = 2

m ω σ−2ξ
(m)
ω σ−2ξ

(m)
ω σ−2ξ

(m)
ω σ−2ξ

(m)
ω

2 1 1.05101 0.20177 0.07556 0.03792
2 5.77647 0.15391 0.44307 0.22490

3 1 0.33650 0.06094 0.02213 0.01089
2 0.99730 0.18551 0.06822 0.03370
3 2.19107 0.42056 0.15750 0.07868

4 1 0.15227 0.02644 0.00933 0.00460
2 0.37925 0.06701 0.02399 0.01165
3 0.71139 0.12854 0.04652 0.02278
4 1.20397 0.22354 0.08212 0.04055

5 1 0.08272 0.01377 0.00493 0.00217
2 0.19121 0.03245 0.01138 0.00548
3 0.33382 0.05766 0.02039 0.00987
4 0.52247 0.09206 0.03290 0.01598
5 0.77759 0.14033 0.05077 0.02486

Table 6: Values of ψ
(m)
ω , for ω = 1,2, · · · ,m and m = 2(1)5.

θ = 0.50 θ = 1 θ = 1.50 θ = 2

m ω σ−2ψ
(m)
ω σ−2ψ

(m)
ω σ−2ψ

(m)
ω σ−2ψ

(m)
ω

2 1 0.23996 0.25864 0.27367 0.28503
2 0.81065 0.85123 0.88246 0.90548

3 1 0.09638 0.10456 0.11086 0.11557
2 0.22212 0.23765 0.24960 0.25826
3 0.39436 0.41765 0.43554 0.44863

4 1 0.05147 0.05610 0.05967 0.06229
2 0.10969 0.11862 0.12538 0.13021
3 0.17709 0.19000 0.19981 0.20689
4 0.25806 0.27504 0.28802 0.29740

5 1 0.03187 0.02768 0.03730 0.03842
2 0.06611 0.07197 0.07634 0.07946
3 0.10328 0.11181 0.11821 0.12278
4 0.14436 0.15541 0.16376 0.16971
5 0.19089 0.20448 0.21479 0.22223
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Table 7: V3 =Var(U (m)
1:n ) and V4 =Var(U (m)

2:n )

θ = 0.50 θ = 1
m n V3 V4 V3 V4

2 5 1.20825 0.22504 0.23615 0.24031
10 0.50206 0.10333 0.09721 0.11088
15 0.31526 0.06714 0.06083 0.07215
20 0.22954 0.04973 0.04421 0.05349
30 0.14858 0.03275 0.02856 0.03525
40 0.10981 0.02442 0.02109 0.02629
60 0.07214 0.01618 0.01384 0.01743
80 0.05371 0.01210 0.01030 0.01304
100 0.04278 0.00967 0.00820 0.01041

3 5 0.91844 0.20162 0.17160 0.21572
10 0.36945 0.09276 0.06796 0.09996
15 0.23016 0.06038 0.04212 0.06522
20 0.16697 0.04478 0.03048 0.04842
30 0.10771 0.02953 0.01961 0.03196
40 0.07948 0.02203 0.01445 0.02386
60 0.05213 0.01461 0.00950 0.01580
80 0.03878 0.01093 0.00704 0.01184
100 0.03088 0.00873 0.00560 0.00946

4 5 0.80991 0.19328 0.14754 0.20701
10 0.30758 0.08809 0.05455 0.09523
15 0.18913 0.05730 0.03329 0.06213
20 0.13640 0.04249 0.02393 0.04613
30 0.08751 0.02802 0.01530 0.03046
40 0.06441 0.02090 0.01124 0.02274
60 0.04214 0.01386 0.00734 0.01509
80 0.03131 0.01037 0.00545 0.01129
100 0.02491 0.00828 0.00433 0.00902

5 5 0.77759 0.19089 0.14033 0.20448
10 0.27147 0.08546 0.04681 0.09190
15 0.16431 0.05550 0.02800 0.05785
20 0.11771 0.04114 0.01994 0.04164
30 0.07507 0.02712 0.01264 0.02639
40 0.05509 0.02023 0.00925 0.01922
60 0.03595 0.01341 0.00602 0.01241
80 0.02668 0.01004 0.00446 0.00915
100 0.02121 0.00802 0.00354 0.00724



STATISTICS IN TRANSITION new series, December 2018 615

Table 7: Continued

θ = 1.50 θ = 2
m n V3 V4 V3 V4

2 5 0.08964 0.25245 0.04524 0.26157
10 0.03671 0.11692 0.01848 0.12147
15 0.02293 0.07617 0.01153 0.07920
20 0.01665 0.05650 0.00837 0.05877
30 0.01075 0.03726 0.00540 0.03878
40 0.00793 0.02780 0.00398 0.02893
60 0.00520 0.01843 0.00261 0.01919
80 0.00387 0.01379 0.00194 0.01436
100 0.00308 0.01101 0.00155 0.01147

3 5 0.06332 0.22657 0.03135 0.23449
10 0.02487 0.10551 0.01227 0.10961
15 0.01537 0.06895 0.00758 0.07171
20 0.01111 0.05122 0.00547 0.05331
30 0.00714 0.03384 0.00352 0.03524
40 0.00526 0.02527 0.00259 0.02632
60 0.00344 0.01677 0.00169 0.01750
80 0.00256 0.01255 0.00126 0.01308
100 0.00204 0.01003 0.00100 0.01045

4 5 0.05364 0.21745 0.02633 0.22499
10 0.01954 0.10067 0.00954 0.10459
15 0.01187 0.06581 0.00580 0.06848
20 0.00851 0.04892 0.00417 0.05094
30 0.00543 0.03233 0.00266 0.03370
40 0.00398 0.02415 0.00196 0.02518
60 0.00260 0.01604 0.00128 0.01673
80 0.00193 0.01200 0.00095 0.01252
100 0.00153 0.00959 0.00075 0.01001

5 5 0.05077 0.21479 0.02486 0.22223
10 0.01656 0.09800 0.00799 0.10178
15 0.00989 0.06406 0.00470 0.06648
20 0.00705 0.04764 0.00331 0.04938
30 0.00448 0.03151 0.00207 0.03261
40 0.00329 0.02355 0.00150 0.02435
60 0.00214 0.01564 0.00097 0.01616
80 0.00159 0.01171 0.00071 0.01209
100 0.00126 0.00936 0.00057 0.00966
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4. Conclusions

The peculiarity of this estimation method is that, if we have the best linear unbiased
estimator based on observation of size m as the kernel, then the evaluation of mo-
ments of order statistics of sample sizes up to 2m− 1 coming from standard form
of (1.2) alone necessary to obtain the variances of the U-statistics defined in (3.5)
and (3.6).
For example, in the case of m = 5, by using the best linear unbiased estimators of µ

and σ given in (2.1) and (2.2) respectively , one only needs the moments of order
statistics arising from the standard of (1.2) for sample sizes up to 9 to obtain the
U-statistic estimators for µ and σ and its variances for any sample of size n and
for any given value of θ . Using the values of variances and co-variances of order
statistics (given in Table 2) and the coefficients of, BLUEs of µ and σ (given in Table
3 and Table 4), we have obtained the values of ξ

(m)
ω and ψ

(m)
ω for ω = 1,2, · · · ,m− 1,

m = 2(1)5 and θ = (0.50)(0.50)2 (given in Table 5 and Table 6). Also, we have evalu-
ated the variances of the U-statistic estimators for µ and σ which are given in Table
7. For practicing statisticians the results derived in the paper will be helpful, when
they look for estimators of parameters of Lindley distribution using ordered random
variables.
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APPENDIX

Here, we use MATHCAD software for all numerical computations. Tables 1 and 2
summarize the values of means, variances and covariances of the order statistics
arising from the standard form of (1.2) for n = 2(1)10 and for different values of θ .
For calculating the U-statistic estimators and its variances, we want the coefficients
of X in the best linear unbiased estimators of µ and σ and the corresponding vari-
ances. Using the moments of order statistics given in Tables 1 and 2 and using the
formulas defined in (2.1) and (2.3), we have evaluated the coefficients of X in the
BLUE of µ and its variances for different values of θ and it is given in Table 3. The
moments of order statistics given in Tables 1 and 2 and using the formulas defined
in (2.2) and (2.4), we have evaluated the coefficients of X in the BLUE of σ and its
variances for different values of θ which are given in Table 4.
For computing the numerical values of variances of the U-statistic estimators de-
fined in (3.5) and (3.6), first we want the numerical values of ξ

(m)
ω and ψ

(m)
ω for dif-

ferent values of m and ω. For example if we want to calculate the numerical values
of ξ

(m)
ω we use the formula wk =

(m+k
m

)
(b′m+kVm+kbm+k)σ

2−ξ
(m)
m ,k = 1,2, · · · ,m−1. In

particular, if for the case of m = 2, ω = 2 and θ = 0.50, we want to calculate only
two values ξ

(2)
1 and ξ

(2)
2 , where ξ

(2)
2 is nothing but the value of the variance. From

Table 2, it is obtained as 5.77647. Using the formula wk, the value of ξ
(2)
1 reduces

to ξ
(2)
1 = 3

2U − 1
2 ξ

(2)
2 , where U = bV b′, b =

(
2a1
3 , a1

3 + a2
3 ,

2a2
3

)
, a1 and a2 are coeffi-

cients of X in BLUE of µ of order statistics of sample of size 2 and V is the variance
covariance matrix of order 3. From Table 2, the matrix V is obtained as

V =

1.26895 1.10362 0.97997
1.10362 3.03236 2.71450
0.97997 2.71450 8.76918

 .
Also from Table 3, the value of a1 is 1.65385 and that of a2 is -0.65385. Using these
values, we can easily obtain the value of ξ

(2)
1 . In the same way, we can easily obtain

the values of ξ
(ω)
3 , ξ

(ω)
4 and ξ

(ω)
5 for various values of ω and we have evaluated all

these values which are given in Table 5. The Table 6 comprises the values of ψ
(m)
ω

for different combinations of m and ω. The values of ψ
(m)
ω are obtained when we

follow the same steps for obtaining the values of ξ
(m)
ω , the only change is that in-

stead of using the coefficients of X in the best linear unbiased estimator of µ and its
variance, here we use the coefficients of X in the best linear unbiased estimator of
σ and its variance. The numerical values of the variances of U-statistic estimators
defined in, (3.5) and (3.6) are given in Table 7 for various values of parameters. If
we put m = 2 the formula (3.5) reduces the following way for various values of n.
That is
Var[U (2)

1:5 ] =
6ξ

(2)
1 +ξ

(2)
2

10 , Var[U (2)
1:10] =

16ξ
(2)
1 +ξ

(2)
2

45 , Var[U (2)
1:15] =

26ξ
(2)
1 +ξ

(2)
2

105 ,

Var[U (2)
1:20] =

36ξ
(2)
1 +ξ

(2)
2

190 , Var[U (2)
1:30] =

56ξ
(2)
1 +ξ

(2)
2

435 , Var[U (2)
1:40] =

76ξ
(2)
1 +ξ

(2)
2

780 ,
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Var[U (2)
1:60] =

116ξ
(2)
1 +ξ

(2)
2

1770 , Var[U (2)
1:80] =

156ξ
(2)
1 +ξ

(2)
2

3160 and Var[U (2)
1:100] =

196ξ
(2)
1 +ξ

(2)
2

4950 .

Similarly we can find the values of Var[U (3)
1:n ], Var[U (4)

1:n ] and Var[U (5)
1:n ] for various val-

ues of n. Proceeding in the similar manner we can easily find the values of Var[U (m)
2:n ]

for different values of m and n.
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EXTENDED EXPONENTIATED POWER LINDLEY DISTRIBUTION

V. Ranjbar1, M. Alizadeh2, G. G. Hamedani3

ABSTRACT

In this study, we introduce a new model called the Extended Exponentiated Power
Lindley distribution which extends the Lindley distribution and has increasing, bath-
tub and upside down shapes for the hazard rate function. It also includes the power
Lindley distribution as a special case. Several statistical properties of the distribu-
tion are explored, such as the density, hazard rate, survival, quantile functions, and
moments. Estimation using the maximum likelihood method and inference on a ran-
dom sample from this distribution are investigated. A simulation study is performed
to compare the performance of the different parameter estimates in terms of bias
and mean square error. We apply a real data set to illustrate the applicability of the
new model. Empirical findings show that proposed model provides better fits than
other well-known extensions of Lindley distributions.
Key words:Power Lindley distribution, Structural properties, Failure-time, Maximum
likelihood estimation.

1. Introduction

The statistical analysis and modeling of lifetime data are essential in almost all ap-
plied sciences such as, biomedical science, engineering, nance, and insurance,
amongst others. A number of one-parameter continuous distributions for modelling
lifetime data has been introduced in statistical literature including exponential, Lind-
ley, gamma, lognormal, and Weibull. The exponential, Lindley and Weibull dis-
tributions are more popular than the gamma and lognormal distributions because
the survival functions of the gamma and the lognormal distributions cannot be ex-
pressed in closed forms and both require numerical integration. The Lindley distri-
bution is a very well-known distribution that has been extensively used over the past
decades for modeling data in reliability, biology, insurance, and lifetime analysis. It
was introduced by Lindley (1985) to analyze failure time data, especially in appli-
cations of modeling stress-strength reliability. The motivation for introducing the
Lindley distribution arises from its ability to model failure time data with increasing,
decreasing, unimodal and bathtub shaped hazard rates. It may also be mentioned
that the Lindley distribution belongs to an exponential family and it can be written
as a mixture of an exponential and a gamma distributions. This distribution repre-
sents a good alternative to the exponential failure time distributions that suffer from
not exhibiting unimodal and bathtub shaped failure rates (Bakouch et al. (2012)).
The properties and inferential procedure for the Lindley distribution were studied by

1Golestan University, Gorgan, Iran. E-mail: vahidranjbar@gmail.com
2Persian Gulf University, Bushehr, Iran. E-mail: moradalizadeh78@gmail.com
3Marquette University, Milwaukee, USA. E-mail: g.hamedani@mu.edu
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Ghitany et al. (2008, 2013). They show via a numerical example that the Lindley
distribution gives better modeling than the one based on the exponential distribu-
tion when hazard rate is unimodal or bathtub shaped. Furthermore, Mazucheli and
Achcar (2011) showed that many of the mathematical properties are more exible
than those of the exponential distribution and proposed the Lindley distribution as a
possible alternative to exponential or Weibull distributions. The need for extended
forms of the Lindley distribution arises in many applied areas. The emergence of
such distributions in the statistics literature is quite recent. For some extended forms
of the Lindley distribution and their applications, the interested reader is referred to
Kumaraswamy Lindley (Cakmakyapan and Ozel, (2014)), beta odd log-logistic Lind-
ley (Cordeiro et al., (2015)), generalized Lindley (Nadarajah et al., (2011)), quasi
Lindley distributions (Shanker and Mishra, (2013) ).

The probability density function (pdf) and cumulative distribution function (cdf )
of the power Lindley distribution are given respectively by

f (x) =
λ 2

1+λ
βxβ−1e−λxβ

,

F(x) = 1− (1+
λ xβ

1+λ
)e−λ xβ

. (1)

It can be seen that this distribution is a mixture of Exponential and gamma dis-
tributions. Having only one parameter, the Lindley distribution does not provide
enough exibility for analyzing different types of lifetime data. To increase the exi-
bility for modeling purposes it will be useful to consider further alternatives to this
distribution. Our purpose here is to provide a generalization that may be useful for
more complex situations. Once the proposed distribution is quite exible in terms of
pdf and hazard rate function (hrf), it may provide an interesting alternative for de-
scribing income distributions and can also be applied in actuarial science, nance,
bioscience, telecommunications and modeling lifetime data. Therefore, goal is to
introduce a new distribution using the Lindley distribution. Alizadeh et.al (2017),
introduced a new class of exponentiated distributions which called Extended Expo-
nentiated distribution (EE-G). The cdf and pdf of this family are given by

F(x;α,γ,ξ ) =
∫ G(x;ξ )α

1−G(x;ξ )γ

0

dt
(1+ t)2 dt =

G(x;ξ )α

G(x;ξ )α +1−G(x;ξ )γ
(2)

f (x;α,γ,ξ ) =
g(x;ξ )G(x;ξ )α−1 [α +(γ−α)G(x;ξ )γ ]

[G(x;ξ )α +1−G(x;ξ )γ ]2
, (3)

where α,γ > 0 are two shape parameters and ξ is the vector of parameters for
baseline cdf G. For α = γ, it contains exp-G family of distributions. Taking G(x;ξ )

as power Lindley distribution with parameters λ ,β , we introduce a new extension of
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Exponentiated power Lindley distribution.
The article is outlined as follows: In Section 2, we introduce the EE-PL distribu-

tion and provide plots of the density and hazard rate functions. Shapes, quantile
function, moments, and moment generating function are also obtained. Moreover,
mean deviation, Lorenz and Bonferroni curves, order statistics and finally a simula-
tion study are presented in this section. In section 3, the asymptotic properties and
extreme values are obtained. Estimation by the method of maximum likelihood and
an explicit expression for the observed information matrix are presented in Section
4. The characterizations of EE-PL distribution are presented in Section 5. The Ap-
plications to real data sets are considered in Section 6. Finally, Section 7 offers
some concluding remarks.

2. Main properties

2.1. Probability Density and Cumulative Distribution Functions

Inserting (1) in (2), the cdf of the EE-PL with four parameters (α,β ,γ,λ > 0) is
defined by

F(x;α,β ,γ,λ ) =

[
1− (1+ λ xβ

1+λ
)e−λ xβ

]α

[
1− (1+ λ xβ

1+λ
)e−λ xβ

]α

+1−
[
1− (1+ λ xβ

1+λ
)e−λ xβ

]γ , x≥ 0 (4)

The corresponding pdf for x > 0 is given by

f (x;α,β ,γ,λ ) = λ
2

β xβ−1(1+ xβ )e−λ xβ

[
1− (1+

λ xβ

1+λ
)e−λ xβ

]α−1

×

{
α +(γ−α)

[
1− (1+ λ xβ

1+λ
)e−λ xβ

]γ}
(1+λ )

{[
1− (1+ λ xβ

1+λ
)e−λ xβ

]α

+1−
[
1− (1+ λ xβ

1+λ
)e−λ xβ

]γ}2 , (5)

where λ is a scale parameter α,β and γ are the shape parameters. Here, α and β govern the
skewness of (5). A random variable X with the pdf (5) is denoted by X ∼ EE−PL(α,β ,γ,λ ).
It is easy to see that:

• For β = 1, we obtain Extended Generalized Lindley by Ranjbar et al. (2018).

• For α = γ, we obtain Exponentiated power Lindley.

• For α = γ and β = 1, we obtain Generalized Lindley.

• For α = γ = 1, we obtain Power Lindley.

• For α = γ = β = 1, we obtain Lindley.

Some of the possible shapes of the density function (5) for the selected parameter val-
ues are illustrated in Figure 1. As seen in Figure 1, the density function can take various
forms depending on the parameter values. It is evident that the EE-LP distribution is much
more flexible than the power Lindley distribution, i.e. the additional shape parameter allows
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Figure 1: Plots of Pdf of the EE-PL model for selected λ ,α,γ and β .

for a high degree of flexibility of the EE-PL distribution. Both unimodal and monotonically
decreasing and increasing shapes appear to be possible.

2.2. Survival and Hazard Rate Functions

Central role is played in the reliability theory by the quotient of the pdf and survival function.
We obtain the survival function corresponding to (4) as

S(x;λ ,α,γ,β ) =
1−
[
1− (1+ λ xβ

1+λ
)e−λ xβ

]γ

[
1− (1+ λ xβ

1+λ
)e−λ xβ

]α

+1−
[
1− (1+ λ xβ

1+λ
)e−λ xβ

]γ . (6)

In reliability studies, the hrf is an important characteristic and fundamental to the design
of safe systems in a wide variety of applications. Therefore, we discuss these properties of
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Figure 2: Hazard rate functions of the EE-PL model for selected λ ,α,γ and β .

the EE-LP distribution. The hrf of X takes the form

h(x;λ ,α,γ,β ) = λ
2

β xβ−1(1+ xβ )e−λ xβ

[
1− (1+

λ xβ

1+λ
)e−λ xβ

]α−1

×

{
α +(γ−α)

[
1− (1+

λ xβ

1+λ
)e−λ xβ

]γ}
/[{(

1− (1+
λ xβ

1+λ
)e−λ xβ

)α

+1−

(
1− (1+

λ xβ

1+λ
)e−λ xβ

)γ}

×

{
1−

[
1− (1+

λ xβ

1+λ
)e−λ xβ

]γ}]
, x > 0. (7)

Plots of the hrf of the EE-PL distribution for several parameter values are displayed
in Figure 2. Figure 2 shows that the hrf of the EE-PL distribution can have very flexible
shapes, such as increasing, decreasing, bathtub followed by upside down bathtub, and bath-
tub shapes for the selected values of the model parameters. This attractive flexibility makes
the hrf of the EE-PL distribution useful and suitable for non-monotone empirical hazard be-
haviors which are more likely to be encountered or observed in real life situations.

2.3. Mixture representations for the pdf and cdf

In this subsection, we provide alternative mixture representations for the pdf and cdf of X .
Some useful expansions for (4) can be derived by using the concept of power series. We
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have

[1− (1+
λ

1+λ
xβ )e−λxβ

]α =
∞

∑
i=1

(−1)i
(

α

i

)
[1+

λ

1+λ
xβ )e−λxβ

]i

=
∞

∑
i=1

i

∑
k=0

(−1)i+k
(

α

i

)(
i
k

)
[1− (1+

λ

1+λ
xβ )e−λxβ

]k

=
∞

∑
k=0

∞

∑
i=k

(−1)i+k
(

α

i

)(
i
k

)
[1− (1+

λ

1+λ
xβ )e−λxβ

]k

=
∞

∑
k=0

ak[1− (1+
λ

1+λ
xβ )e−λxβ

]k,

where ak = ak(α) = ∑
∞
i=k(−1)i+k(α

i
)( i

k
)
. Also

[1− (1+
λ

1+λ
xβ )e−λxβ

]α +1− [1− (1+
λ

1+λ
xβ )e−λxβ

]γ =
∞

∑
k=0

bk[1− (1+
λ

1+λ
xβ )e−λxβ

]k,

where b0 = a0(α)+ 1− a0(γ) and bk = ak(α)− ak(γ) for k ≥ 1. Then using the ratio of two
power series, we can write

F(x) =
∑

∞
k=0 ak[1− (1+ λ

1+λ
xβ )e−λxβ

]k

∑
∞
k=0 bk[1− (1+ λ

1+λ
xβ )e−λxβ

]k

=
∞

∑
k=0

ck[1− (1+
λ

1+λ
xβ )e−λxβ

]k, (8)

where c0 =
a0
b0

and for k ≥ 1,

ck =
1
b0

[ak−
1
b0

k

∑
r=1

brck−r]. (9)

Equation (8) shows that we can write the cdf of EE-PL as a Linear combination of generalized
lindly distribution. Then we can write

f (x) =
∞

∑
k=0

ck+1
(k+1)λ 2β xβ−1(1+ xβ )

1+λ
e−λxβ

[1− (1+
λ

1+λ
xβ )e−λxβ

]k.

2.4. Moments and Moment Generating Function

Some of the most important features and characteristics of a distribution can be studied
through moments (e.g. tendency, dispersion, skewness and kurtosis). Now we obtain or-
dinary moments and the moment generating function (mgf) of the EE-PL distribution. We
define and compute

A(a1,a2,a3,a4;λ ,β ) =
∫

∞

0
xa1 (1+ xβ )a2 e−a3 xβ

[
1− (1+

λ

1+λ
xβ )e−λxβ

]a4

dx. (10)
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Using generalized binomial expansion, one can obtain

A(a1,a2,a3,a4;λ ,β ) =
∞

∑
l,r=0

l

∑
k=0

(−1)l
(

a4

l

)(
l
k

)(
a2

r

)
(

λ

1+λ
)l ×

Γ( a1+1
β

+ k+ r)

β (λ l +a3)
a1+1

β
+k+r

.

(11)

Next, the nth moment of the EE-PL distribution is given by

E [Xn] =
λ 2 β

1+λ

∞

∑
k=0

k ck A(n+β −1,1,λ ,k;λ ,β ). (12)

For integer values of k, let µ ′k = E(Xk) and µ = µ ′1 = E(X), then one can also find the kth
central moment of the EE-PL distribution through the following well-known equation

µk = E(X−µ)k =
k

∑
r=0

(
k
r

)
µ
′
r(−µ)k−r. (13)

The moment generating function of a random variable provides the basis of an alternative
route to analytical results compared with working directly with its pdf and cdf. Using (12) and
(13), we obtain

MX (t) = E
[
etX
]
=

λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 A(k+1,λ ,0,λ − t).

Using (13), the variance, skewness and kurtosis measures can be obtained. Skewness
measures the degree of the long tail and kurtosis is a measure of the degree of tail heaviness.
For the EE-PL distribution, The skewness can be computed as

S =
µ3

µ
3/2
2

=
µ ′3−3µ ′2µ ′1 +2µ ′31

(µ ′2−µ ′21 )3/2

and the kurtosis is based on octiles as

K =
µ4

µ2
2
=

µ ′4−4µ ′1µ ′3 +6µ ′21 µ ′2−3µ ′41
µ ′2−µ ′21

.

When the distribution is symmetric S = 0, and when the distribution is right (or left) skewed
S > 0(or S < 0). As K increases, the tail of the distribution becomes heavier. These measures
are less sensitive to outliers and they exist even for distributions without moments.
We present first four ordinary moments, skewness and kurtosis of the EE-PL distribution for
various values of the parameters in Table 1. Plots for skewness and kurtosis, when λ = 2,
are presented in Figure 3.

Next, we define and compute

B(a1,a2,a3,a4;y,λ ,β ) =
∫ y

0
xa1 (1+ xβ )a2 e−a3 xβ

[
1− (1+

λ

1+λ
xβ )e−λxβ

]a4

dx. (14)
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Table 1: Moments, skewness, and kurtosis of the EE-PL dist. for the some parameter
values.

λ α β γ µ ′1 µ ′2 µ ′3 µ ′4 Skewness Kurtosis
2.0 0.5 0.5 0.5 0.457 1.788 16.97 289.197 7.4082 164.75
2.0 0.5 0.5 1.0 0.413 0.457 0.783 1.7888 2.3382 3.052
2.0 0.5 0.5 3.0 0.608 0.468 0.413 0.4004 0.2704 0.243
2.0 0.5 1.0 0.5 0.752 3.384 33.41 575.819 5.6285 172.40
2.0 0.5 1.0 1.0 0.571 0.752 1.413 3.3844 1.7824 3.070
2.0 0.5 1.0 3.0 0.688 0.592 0.571 0.5947 0.0234 0.261
2.0 0.5 2.0 0.5 1.176 6.223 65.03 1142.245 4.3521 182.28
2.0 0.5 2.0 1.0 0.750 1.176 2.445 6.2232 1.3397 3.107
2.0 0.5 2.0 3.0 0.757 0.716 0.750 0.8367 -0.1566 0.288
2.0 2.0 0.5 0.5 0.655 2.028 17.57 291.944 7.0008 156.70
2.0 2.0 0.5 1.0 0.646 0.655 0.981 2.0282 2.1655 2.572
2.0 2.0 0.5 3.0 0.818 0.708 0.646 0.619 0.4272 0.134
2.0 2.0 1.0 0.5 0.985 3.744 34.46 580.961 5.4788 167.33
2.0 2.0 1.0 1.0 0.806 0.985 1.678 3.7447 1.7687 2.701
2.0 2.0 1.0 3.0 0.882 0.822 0.806 0.8272 0.2475 0.140
2.0 2.0 2.0 0.5 1.437 6.729 66.76 1151.513 4.3391 179.76
2.0 2.0 2.0 1.0 0.986 1.437 2.781 6.7291 1.4076 2.814
2.0 2.0 2.0 3.0 0.943 0.941 0.986 1.0779 0.0508 0.150

From the generalized binomial expansion, we have

B(a1,a2,a3,a4;a,λ ,β )

=
∞

∑
l,r=0

l

∑
k=0

(−1)l
(

a4

l

)(
l
k

)(
a2

r

)
(

λ

1+λ
)l ×

γ( a1+1
β

+ k+ r, y
1
β

λ l+a3
)

β (λ l +a3)
a1+1

β
+k+r

,

(15)

where γ(λ ,z) =
∫ z

0 tλ−1 e−t dt denotes the incomplete gamma function. Now, the nth incom-
plete moment of the EE-PL distribution is found to be

mn(y) = E [Xn |X < y] =
λ 2 β

1+λ

∞

∑
k=0

(k+1)ck+1 B(n+β −1,1,λ ,k,y;λ ,β ). (16)

2.5. Mean Deviations, Lorenz and Bonferroni Curves

Mean deviation about the mean and mean deviation about the median as well as Lorenz and
Bonferroni curves for the EE-PL distribution are presented in this section. Bonferroni and
Lorenz curves are widely used tool for analyzing and visualizing income inequality. Lorenz
curve, L(p) can be regarded as the proportion of total income volume accumulated by those
units with income lower than or equal to the volume y, and Bonferroni curve, B(p) is the
scaled conditional mean curve, that is, ratio of group mean income of the population.



STATISTICS IN TRANSITION new series, December 2018 629

alpha

be
ta

skew
ness

alpha

ga
m

m
a

skew
ness

beta

ga
m

m
a

skew
ness

alpha

be
ta

kurtosis

alpha

ga
m

m
a

kurtosis

beta

ga
m

m
a

kurtosis

Figure 3: Values of skewness and kurtosis of EE-PL for some values of α,β and γ.

2.5.1 Mean deviations

The amount of scatter in a population may be measured to some extent by deviations from
the mean and median. These are known as the mean deviation about the mean and the
mean deviation about the median, defined by

δ1 (X) =
∫

∞

0
|x−µ| f (x)dx,

and

δ2 (X) =
∫

∞

0
|x−M| f (x)dx.

respectively, where µ = E(X) and M = Median(X) = Q(0.5) denotes the median and Q(p) is
the quantile function. The measures δ1 (X) and δ2 (X) can be calculated using the relation-
ships

δ1 (X) = 2µ F(µ)−2
∫

µ

0
x f (x)dx

and

δ2 (X) = µ−2
∫ M

0
x f (x)dx

Finally have

δ1 (X) = 2µ F(µ)− β λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 A(β ,1,λ ,k;λ ,β ),

and

δ2 (X) = µ− 2β λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 B(β ,1,λ ,k;M,λ ,β ).
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2.5.2 Bonferroni and Lorenz curves

The Bonferroni and Lorenz curves have applications in economics as well as other fields like
reliability, medicine and insurance. Let X ∼ EE−PL(λ ,β ,α,γ) and F(x) be the cdf of X , then
the Bonferroni curve of the EE-PL distribution is given by

B(F(x)) =
1

µ F(x)

∫ x

0
t f (t)dt,

where µ = E(X). Therefore, from (15), we have

B(F(x)) =
1

µ F(x)
× β λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 B(β ,1,λ ,k;x,λ ,β ).

The Lorenz curve of the EE-PL distribution can be obtained using the relation

L(F(x)) = F(x)B(F(x)) =
1
µ
× β λ 2

1+λ

∞

∑
k=0

(k+1)ck+1 B(β ,1,λ ,k;x,λ ,β ).

2.6. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Sup-
pose X1, . . . ,Xn is a random sample from any EE-PL distribution. Let Xi:n denote the ith order
statistic. The pdf of Xi:n can be expressed as

fi:n(x) = K f (x)F i−1(x) {1−F(x)}n−i = K
n−i

∑
j=0

(−1) j
(

n− i
j

)
f (x)F(x) j+i−1,

where K = 1/B(i,n− i+ 1). We use the result of Gradshteyn and Ryzhik for a power series
raised to a positive integer n (for n≥ 1)(

∞

∑
i=0

ai ui

)n

=
∞

∑
i=0

dn,i ui, (17)

where the coefficients dn,i (for i = 1,2, . . .) are determined from the recurrence equation (with
dn,0 = an

0)

dn,i = (ia0)
−1

i

∑
m=1

[m(n+1)− i]am dn,i−m. (18)

We can show that the density function of the ith order statistic of any EGL distribution can be
expressed as

fi:n(x) =
∞

∑
r,k=0

mr,k fEPL(x;λ ,β ,r+ k+1), (19)

where fEPL(x;λ ,β ,r + k + 1) denotes the density function of exponentiated power Lindley
distribution with parameters λ ,β and r+ k+1,

mr,k =
n!(r+1)(i−1)!cr+1

(r+ k+1)

n−i

∑
j=0

(−1) j f j+i−1,k

(n− i− j)! j!
.



STATISTICS IN TRANSITION new series, December 2018 631

Here, cr is given by (9) and the quantities f j+i−1,k can be determined given that f j+i−1,0 =

c j+i−1
0 and recursively we have:

f j+i−1,k = (k c0)
−1

k

∑
m=1

[m( j+ i)− k]cm f j+i−1,k−m,k ≥ 1.

Equation (19) is the main result of this section. It reveals that the pdf of the ith order
statistic is a triple linear combination of exponentiated power Lindley distributions. There-
fore, several mathematical quantities of these order statistics like ordinary and incomplete
moments, factorial moments, mgf, mean deviations and others can be derived using this
result.

2.7. Simulation study

In this section, we propose Inverse cdf method for generating random data from the EE-PL
distribution. If U ∼U(0,1), the solution of non-linear equation

u =

[
1− (1+ λ xβ

1+λ
)e−λ xβ

]α

[
1− (1+ λ xβ

1+λ
)e−λ xβ

]α

+1−
[
1− (1+ λ ,xβ

1+λ
)e−λ xβ

]γ (20)

has cdf (4).

3. Asymptotic Properties and Extreme Value

One of the main usage of the idea of an asymptotic distribution is in providing approximations
to the cumulative distribution functions of the statistical estimators. Moreover, the extreme
value theory is a branch of statistics dealing with the extreme deviations from the median
of probability distributions. It seeks to assess, from a given ordered sample of a given ran-
dom variable, the probability of events that are more extreme than any previously observed.
Extreme value analysis is widely used in many disciplines,

3.1. Asymptotic properties

The asymptotic of cdf, pdf and hrf of the EE-PL distribution as x→ 0 are, respectively, given
by

F(x)∼ (λxβ )α as x→ 0,

f (x)∼ αβλ
α xαβ−1 as x→ 0,

h(x)∼ αβλ
α xαβ−1 as x→ 0.
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The asymptotic of cdf, pdf and hrf of the EE-PL distribution as x→ ∞ are, respectively, given
by

1−F(x)∼ γλ

1+λ
xβ e−λxβ

as x→ ∞,

f (x)∼ βγλ 2

1+λ
x2β−1e−λxβ

as x→ ∞,

h(x)∼ βλxβ−1 as x→ ∞.

These equations show the effect of parameters on the tails of the EE-PL distribution.

3.2. Extreme Value

Let X1, ...,Xn be a random sample from (5) and X̄ = (X1 + ...+ Xn)/n denote the sample
mean, then by the usual central limit theorem, the distribution of

√
n(X̄ −E(X))/

√
Var(X)

approaches the standard normal distribution as n→ ∞. Sometimes one would be interested
in the asymptotic of the extreme values Mn = max(X1, ...,Xn) and mn = min(X1, ...,Xn). For 4,
it can be seen that

lim
t→0

F(t x)
F(t)

= xαβ ,

and

lim
t→∞

1−F(t x)
1−F(t)

= e−αλ xβ

.

Thus, it follows from Theorem 1.6.2 in Leadbetter et al. (1983) that there must be norming
constants an > 0,bn,cn > 0 and dn such that

Pr [an(Mn−bn)≤ x]→ e−e−λα xβ

,

and
Pr [an(mn−bn)≤ x]→ 1− e−xαβ

,

as n→ ∞. Using Corollary 1.6.3 of Leadbetter et al. (1983), we can obtain the form of
normalizing constants an, bn, cn and dn.

4. Estimation

Several approaches for parameter estimation have been proposed in the literature but the
maximum likelihood method is the most commonly employed. Here, we consider estimation
of the unknown parameters of the EE-PL distribution by the method of maximum likelihood.
Let x1,x2, ...,xn be observed values from the EE-PL distribution with parameters α,β ,γ and
λ . The log-likelihood function for (α;β ;γ;λ ) is given by

`n = 2n log(λβ )+(β −1)
n

∑
i=1

log(xi)+β

n

∑
i=1

log(1+ xi)−λ

n

∑
i=1

xi

+(α +1)
n

∑
i=1

logki +
n

∑
i=1

log(α +(γ−α)kα
i )−2

n

∑
i=1

log(kα
i +1− kγ

i )
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where

ki = 1− (1+
λ

1+λ
xβ

i )e
−λxβ

i .

The derivatives of the log-likelihood function with respect to the parameters α,β ,γ and λ are
given respectively, by

∂`n

∂α
=

n

∑
i=1

logki +
n

∑
i=1

1− kα−1
i (α + ki)

α +(γ−α)kα
i
−2

n

∑
i=1

αkα−1
i

kα
i +1− kα

i

∂`n

∂β
=

2n
β

+
n

∑
i=1

log(xi(xi +1))+(α−1)
n

∑
i=1

k(β )i
ki

+
n

∑
i=1

α(γ−α)kα−1
i k(β )i

α +(γ +α)kα
i

−2
n

∑
i=1

αk(β )i kα−1
i − γk(β )i kγ−1

i

kα
i +1− kγ

i

∂`n

∂γ
=

n

∑
i=1

kα
i

α +(γ−α)kα
i
+2

n

∑
i=1

kγ

i log(ki)

kα
i +1− kγ

i

∂`n

∂λ
=

2n
λ
−

n

∑
i=1

xi +(α−1)
n

∑
i=1

k(λ )i
ki

+
n

∑
i=1

α(γ−α)kα−1
i k(λ )i

α +(γ +α)kα
i

−2
n

∑
i=1

αk(λ )i kα−1
i − γk(λ )i kγ−1

i

kα
i +1− kγ

i
,

where

k(β )i =
∂ki

∂β
=

[
1+

λ

λ +1
(xβ

i −1)
]

xβ

i e−λxβ

i logxi

k(λ )i =
∂ki

∂λ
= xβ

i e−λxβ

i

[
1+

λ

λ +1
xβ

i +
1

(1+λ )2

]
.

The maximum likelihood estimates (MLEs) of (α;β ;γ;λ ) , say (α̂; β̂ ; γ̂; λ̂ ), are the simultane-
ous solution of the equations ∂`n

∂α
= 0; ∂`n

∂β
= 0; ∂`n

∂γ
= 0; ∂`n

∂λ
= 0.

For estimating the model parameters, numerical iterative techniques should be used to
solve these equations.We can investigate the global maxima of the log-likelihood by set-
ting different starting values for the parameters. The information matrix will be required for
interval estimation. Let θ = (α;β ,γ,λ )T , then the asymptotic distribution of

√
n(θ − θ̂) is

N4(0,K(θ)−1), under standard regularity conditions (see Lehmann and Casella, [?] 1998, pp.
461-463), where K(θ) is the expected information matrix. The asymptotic behavior remains
valid if K(θ)) is superseded by the observed information matrix multiplied by 1/n, say I(θ)/n,
approximated by θ̂ , i.e. I(θ̂)/n. We have

I(θ) =−


Iαα Iαβ Iαγ Iαλ

Iβα Iββ Iβγ Iβλ

Iγα Iγβ Iγγ Iγλ

Iλα Iλβ Iλγ Iλλ


where

Iαα =
∂ 2`n

∂α2 ; Iαβ = Iαβ =
∂ 2`n

∂α∂β
; Iαγ = Iαγ =

∂ 2`n

∂α∂γ
; Iαλ = Iαγ =

∂ 2`n

∂α∂λ
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Iβγ = Iγβ =
∂ 2`n

∂β∂γ
; Iβλ = Iλβ =

∂ 2`n

∂β∂λ
; Iγλ = Iλγ =

∂ 2`n

∂γ∂λ
.

5. Characterizations

This section deals with various characterizations of EE-PL distribution. These characteriza-
tions are presented in four directions: (i) based on the ratio of two truncated moments; (ii)
in terms of the hazard function; (iii) in terms of the reverse hazard function and (iv) based
on the conditional expectation of certain function of the random variable. It should be noted
that characterization (i) can be employed also when the cd f does not have a closed form.
We present our characterizations (i)− (iv) in four subsections.

5.1. Characterizations based on truncated moments

Our first characterization employs a theorem due to Glänzel (1986) , see Theorem 1 of
Appendix A. The result, however, holds also when the interval H is not closed since the
condition of Theorem 1 is on the interior of H. We like to mention that this kind of charac-
terization based on a truncated moment is stable in the sense of weak convergence (see,
Glänzel (1990)).

Let X : Ω→ (0,∞) be a continuous random variable and let

q1 (x) =

{
1+
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]α

−
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]γ}2

{
α +(γ−α)

[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]γ}
and

q2 (x) = q1 (x)

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α

for x > 0. The random variable X belongs to the family (5) if and only if the function η defined
in Theorem1 has the form

η (x) =
1
2

{
1+

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α}
, x > 0.

Proof. Let X be a random variable with pd f (2.2), then

(1−F (x))E [q1 (X) | X ≥ x] =
1

α (1+λ )

{
1−

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α}
and

(1−F (x))E [q2 (X) | X ≥ x] =
1

2α (1+λ )

1−

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]2α
 .

Further,
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η (x)q1 (x)−q2 (x) =
q1 (x)

2

{
1−

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α}
> 0 f or x > 0

Conversely, if η is given as above, then

s′ (x) =
η ′ (x)q1 (x)

η (x)q1 (x)−q2 (x)
=

αβλ 2xβ−1
(

1+ xβ

)
e−λxβ

[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]α−1

1−
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]α , x > 0,

and hence

s(x) =−λ log

{
1−

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α}
, x > 0.

Now, according to Theorem 1, X has density (2.2) .

Let X : Ω→ (0,∞) be a continuous random variable and let q1 be as in Proposition (5.1).
Then, X has pd f (2.2) if and only if there exist functions q2 and η defined in Theorem 1
satisfying the differential equation

η ′ (x)q1 (x)
η (x)q1 (x)−q(x)

=
αβλ 2xβ−1

(
1+ xβ

)
e−λxβ

[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]α−1

1−
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]α , x > 0.

The general solution of the differential equation in Corollary (5.1) is

η (x) =

{
1−

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α}−1

×−∫ αβλ
2xβ−1

(
1+ xβ

)
e−λxβ

[
1−

(
1+

λxβ

1+λ

)
e−λxβ

]α−1

(q1 (x))
−1 q2 (x)dx+D

 ,

where D is a constant. Note that a set of functions satisfying the above differential equation
is given in Proposition (5.1) with D = 1

2 .

For α = γ = 1, q1 (x)≡ 1 and q2 (x) = e−λxβ

, we have η (x) = 1
2 e−λxβ

, x> 0 , s′ (x) = λβxβ−1,

x > 0 and

η (x) = eλxβ

[
−
∫

λβxβ−1
(

1+ xβ
)

e−λxβ

q2 (x)dx+D
]
.
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5.2. Characterization in terms of the hazard function

It is known that the hazard function, hF , of a twice differentiable distribution function, F ,
satisfies the first order differential equation

f ′(x)
f (x)

=
h′F (x)
hF (x)

−hF (x).

For many univariate continuous distributions, this is the only characterization available in
terms of the hazard function. The following characterization establishes a non-trivial charac-
terization of EE-PL,for α = γ = 1, in terms of the hazard function which is not of the above
trivial form.

Let X : Ω→ (0,∞) be a continuous random variable. Then, X has pdf (5), for α = γ = 1,
if and only if its hazard function hF (x) satisfies the differential equation

h′F (x)− (β −1)x−1hF (x) = λ
2
β

2x2(β−1)
(

1+λ +λxβ
)−2

, x > 0,

with the initial condition hF (0) = 0 for β > 1.

Proof. If X has pd f (2.2), for α = γ = 1, then clearly the above differential equation holds.
Now, if the differential equation holds, then

d
dx

{
x−(β−1)hF (x)

}
= λ

2
β

2

{
1+ xβ

1+λ +λxβ

}
or

hF (x) =
λ 2βxβ−1

(
1+ xβ

)
1+λ +λxβ

x > 0,

which is the hazard function of (2.2).

5.3. Characterization in terms of the reverse hazard function

The reverse hazard function, rF , of a twice differentiable distribution function, F , is defined
as

rF (x) =
f (x)
F (x)

, x ∈ support o f F.

In this subsection we present characterization of EE-PL distribution in terms of the re-
verse hazard function.

Let X : Ω→ (0,∞) be a continuous random variable. Then, X has pd f (2.2) if and only
if its reverse hazard function rF (x) satisfies the differential equation

LitkowiecR
Pływające pole tekstowe
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r′F (x)+λβxβ−1rF (x) =

λ 2βe−λxβ

1+λ

d
dx


xβ−1

(
1+ xβ

){
α +(γ−α)

[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]γ}
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]{
1+
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]α

−
[
1−
(

1+ λxβ

1+λ

)
e−λxβ

]γ}
 ,

x > 0.

5.4. Characterization based on the conditional expectation of certain function of the
random variable

In this subsection we employ a single function ψ of X and characterize the distribution of
X ,for α = γ = 1, in terms of the conditional expectation of ψ. The following proposition has
already appeared in Hamedani’s previous work (2013), so we will just state it here which can
be used to characterize EE-PL distribution.

Let X : Ω→ (a,b) be a continuous random variable with cd f F . Let ψ (x) be a
differentiable function on (a,b) with limx→a+ ψ (x) = 1. Then for δ 6= 1 ,

E [ψ (X) | X > x] = δψ (x) , x ∈ (a,b) ,

if and only if

ψ (x) = (1−F (x))
1
δ
−1 , x ∈ (a,b) .

For α = γ = 1, (a,b) = (0,∞) , ψ (x) =
(

1+ λxβ

1+λ

)
e−λxβ

and δ = λ

1+λ
, Proposition 5.4 pro-

vides a characterization of the EE-PL distribution.

6. Application

In this section, we illustrate the fitting performance of the EE-PL distribution using a real
data set. For the purpose of comparison, we fitted the following models to show the fitting
performance of EE-PL distribution by means of real data set:
i) Lindley Distribution, L(λ ).
ii) Power Lindley distribution, PL(β ,λ ).
iii) Generalized Lindley, GL(α,λ ), (Nadarajah et al. (2011)), with distribution function given
by

F(x) =
(

1− (1+
λ x

1+λ
)e−λ x

)α

.

iv) Beta Lindley, BL(α,β ,λ ), with distribution function given by

F(x) =
∫ L(x,λ )

0
tα−1(1− t)β−1dt.
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v) Exponentiated power Lindley distribution, EPL(α,β ,λ ), with distribution function given by

F(x) =

(
1− (1+

λ xβ

1+λ
)e−λ xβ

)α

.

vi) Odd log-logistic power Lindley distribution OLL−PL(α,β ,λ ), (Alizadeh et al. (2017)), with
distribution function given by

F(x) =
PL(x,β ,λ )α

PL(x,β ,λ )α +(1−PL(x,β ,λ ))α
.

vii) Kumaraswamy Power Lindley, KPL(α,β ,γ,λ ) (Broderick et al. (2012))

F(x) = 1− [1−PL(x,β ,λ )α ]γ .

viii) Odd Burr-Power Lindley, OBu−PL(α,β ,γ,λ ) (Altun et al.(2017a))

F(x) = 1−
(

1− PL(x,β ,λ )α

PL(x,β ,λ )α +(1−PL(x,β ,λ ))α

)
.

ix) Extended Exponential Lindley, EE−L(α,γ,λ ), Ranjbar, et al. (accepted (2018)),

F(x) =
L(x,λ )α

L(x,λ )α +1− (1−L(x,λ ))γ
.

Estimates of the parameters of EE-PL distribution, Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC), Cramer Von Mises and Anderson-Darling statistics
(W ∗ and A∗) are presented for each dataset. We have also considered the Kolmogorov-
Smirnov (K-S) statistic and its corresponding p-value and the minimum value of the minus
log-likelihood function (-Log(L)) for the sake of comparison. Generally speaking, the smaller
values of AIC,BIC,W ∗ and A∗, the better fit to a data set. All the computations were carried
out using the software R.
Note that initial values of model parameters are quite important to obtain the correct MLEs
of parameters. To avoid local minima problem, we first obtain the parameter estimate of the
Lindley distribution. Then, the estimated parameter of the Lindley distribution is used as the
initial value of the parameter of the PL and GL distributions. Then, the estimated parame-
ters of PL distribution, λ and β , is used as the initial values of the EE-PL distribution. This
approach is quite useful to obtain correct parameter estimates of extended models.

The data are the exceedances of flood peaks (in m3/s) of the Wheaton River near Car-
cross in Yukon Territory, Canada. The data consist of 72 exceedances for the years 1958-
1984 rounded to one decimal place. These data were analyzed by Akinsete et al. (2008).

The ML estimates of the parameters and the goodness-of-fit test statistics for the real
data set is presented in Table 3 and 4 respectively. As we can see, the smallest values of
AIC,BIC,A∗,W ∗ and −l statistics and the largest p-values belong to the EE-PL distribution.
Therefore the EE-PL distribution outperforms the other competitive considered distribution in
the sense of this criteria. The OLL-L distribution provides the second best fit and this data
set.
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Table 2: The data set.

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0 12.0 9.3 1.4 18.7 8.5 25.5
11.6 14.1 22.1 1.1 2.5 14.4 1.7 37.6 0.6 2.2 39.0 0.3 15.0 11.0 7.3
22.9 1.7 0.1 1.1 0.6 9.0 1.7 7.0 20.1 0.4 2.8 14.1 9.9 10.4 10.7 30.0
3.6 5.6 30.8 13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0 1.5 2.5
27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5 2.5 27.0

Table 3: Parameter ML estimates and their standard errors (in parentheses) for the data
set.

Model α β γ λ

Lindley(λ ) – – – 0.153 (0.013)
GL(α,λ ) 0.508(0.076) – – 0.104 (0.0149)
PL(β ,λ ) – 0.700 (0.057) – 0.338 (0.055)
BL(α,β ,λ ) 0.555(0.098) 0.274 (0.239) – 0.333 (0.272)
EPL(α,β ,λ ) 0.730(0.235) 0.915 (0.595) – 0.300 (0.279)
OLLPL(α,β ,λ ) 0.557(0.178) 1.073 (0.244) – 0.154 (0.091)
KPL(α,β ,γ,λ ) 1.675(2.433) 0.453 (0.432) 7.563 (11.736) 0.279 (0.522)
OBu(α,β ,γ,λ ) 24.91(25.654) 0.024 (0.032) 41.25 (22.520) 0.984 (0.149)
EEL(α,γ,λ ) 0.618(0.101) – 2.770 (1.704) 0.169 (0.028)
EEPL(α,β ,γ,λ ) 4.521(3.067) 0.472 (0.094) 55.07 (58.193) 1.551 (0.643)

Table 4: Goodness-of-fit test statistics for the data set.

Model AIC BIC p− value W ∗ A∗ −l
Lindley(λ ) 530.423 532.700 0.001 0.139 0.852 264.211
GL(α,λ ) 509.349 513.902 0.276 0.132 0.822 252.674
PL(β ,λ ) 508.443 512.996 0.405 0.123 0.766 252.103
BL(α,β ,λ ) 510.206 517.036 0.297 0.150 0.866 252.221
EPL(α,β ,λ ) 510.425 517.255 0.395 0.147 0.854 252.212
OLLPL(α,β ,λ ) 507.937 514.767 0.471 0.093 0.592 250.968
KPL(α,β ,γ,λ ) 512.221 521.328 0.371 0.152 0.866 252.110
OBu(α,β ,γ,λ ) 511.212 520.319 0.401 0.140 0.799 251.606
EEL(α,γ,λ ) 508.931 515.761 0.174 0.101 0.662 251.465
EEPL(α,β ,γ,λ ) 500.594 509.701 0.994 0.026 0.180 246.297

In addition, the profile log-likelihood functions of the EE-PL distribution are plotted in
Figure 4. These plots reveal that the likelihood equations of the EE-PL distribution have
solutions that are maximizers.

Here, we also applied likelihood ratio (LR) tests. The LR tests can be used for comparing
the EE-PL distribution with its sub-models. For example, the test of H0 : β = 1 against H1 :
β = 1 is equivalent to comparing the EE-PL and EE-L distributions with each other. For this
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Figure 4: The profile log-likelihood functions of the EE-PL distribution.

test, the LR statistic can be calculated by the following relation

LR =
[
l(α̂, β̂ , γ̂, λ̂ )− l(α̂∗,1, γ̂∗, λ̂ ∗)

]
,

where α̂∗, γ̂∗ and λ̂ ∗ are the ML estimators of α,γ and λ , respectively, obtained under H0. Un-
der the regularity conditions and if H0 is assumed to be true, the LR test statistic converges in
distribution to a chi square with r degrees of freedom, where r equals the difference between
the number of parameters estimated under H0 and the number of parameters estimated in
general, (for H0 : β = 1, we have r = 1). Table 5 gives the LR statistics and the corresponding
p-values.

Table 5: The LR test results.

Hypotheses LR p-value
EE-PL versus Lindley H0 : α = β = γ = 1 35.828 < 0.0001
EE-PL versus PL H0 : α = γ = 1 11.612 0.0030
EE-PL versus GL H0 : α = γ, β = 1 12.754 0.0017
EE-PL versus EPL H0 : α = γ 11.830 0.0005
EE-PL versus EE-L H0 : β = 1 10.336 0.0013

From Table 5, we observe that the computed p-values are too small so we reject all the
null hypotheses and conclude that the EE-PL fits the first data better than the considered
sub-models according to the LR criterion.

We also plotted the fitted pdfs and cdfs of the considered models for the sake of visual
comparison, in Figure 4. Figure 4 suggests that the EE-PL fits the skewed data very well.

7. Conclusion

In this paper, a new distribution called Extended Exponentiated Power Lindley (EE-PL) distri-
bution is introduced. The statistical properties of the EE-PL distribution including the hazard
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Figure 5: Fitted densities and distribution functions for the data set.

and reverse hazard functions, quantile function, moments, incomplete moments, generat-
ing functions, mean deviations, Bonferroni and Lorenz curves, order statistics and maximum
likelihood estimation for the model parameters are given. Simulation studies was conducted
to examine the performance of the new EE-PL distribution. We also present applications of
this new model to a real life data set in order to illustrate the usefulness of the distribution.
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BAYESIAN SPATIAL ANALYSIS OF CHRONIC
DISEASES IN ELDERLY CHINESE PEOPLE USING

A STAR MODEL
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ABSTRACT

Chronic diseases have become important factors affecting the health of elderly
Chinese people. Because the prevalence of chronic diseases varies among the
provinces, it is necessary to understand the spatial effects on these diseases, as
well as their relationships with potential risk factors. This study applies a structured
additive regression model and the R2BayesX package to conduct a Bayesian analy-
sis. The data are taken from the 2000, 2006, and 2010 Chinese Urban and Rural
Elderly Population Surveys. The findings are as follows: (1) the following covariates
have considerable effects on chronic diseases in general, and on specific chronic
diseases (hypertension and heart disease) (in descending order): census register
(rural or urban), gender, smoking, drinking, province, time, age, cultural activities,
years of education, and sports activities; (2) the effect of marital status is negligi-
ble; (3) province is a critical factor, with the highest spatial effect appearing in two
types of provinces: economically developed provinces, and economically backward
provinces; and (4) time also has considerable effects. Based on these findings, the
government should further strengthen its investment in rural areas and economi-
cally backward provinces as a cost-effective intervention, and should educate the
population on the harmful effects of smoking and drinking alcohol on health.

Key words: Bayesian analysis, Markov chain Monte Carlo (MCMC),
R2BayesX, Spatial effect, Structured additive regression (STAR) models.

1. Introduction

The medical definition of a chronic disease is a disease that persists for a long
time. For example, the U.S. National Center for Health Statistics defines a chronic
disease as one that lasts for three months or more. In China, more than 70%
of elderly people struggle with a chronic disease. In addition, the majority of the
elderly suffer from multiple chronic diseases (Thorpe and Howard, 2006; Vogeli
et al., 2007; Wolff et al., 2002). The prevalence of chronic diseases is related
to many potential risk factors, such as age, lifestyle habits (smoking, drinking), a
lack of exercise, and so on. In addition to these influencing factors, the spacial
dimension is increasingly being considered as an independent factor, which can be
examined using geostatistical methods.

1Graduate School of Economics and Business, Hokkaido University. Japan. E-mail: gaop-
ing4069111@gmail.com

2Department of Economics, Hokkaido University. Japan. E-mail: hasegawa@econ.hokudai.ac.jp
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Kriging is a common geostatistical method that produces a map of a quantity
of interest over a geographical region. In addition, as an extension to kriging,
universal kriging takes into account the linearity of the covariate (Cressie, 2015,
pp.151–172). However, when the effect of the covariate is nonlinear, the universal
kriging method is not appropriate. In this case, a geoadditive model may be a better
choice. The geoadditive model was introduced by Kammann and Wand (2003), and
accounts for non-linear covariate effects under the assumption of additivity. Today,
many researchers apply this model in their studies (Basile et al., 2013; Geniaux and
Napoléone, 2008; Sauleau et al., 2007; Wand et al., 2011).

Another powerful model used in spatial analyses is the generalized additive
model (GAM). The GAM is suitable for modelling nonlinear effects of continuous
covariates in regression models with non-Gaussian responses. Furthermore, struc-
tured additive regression (STAR) models extend GAM models by including spatial
effects, the nonlinear effects of continuous factors, and linear or fixed effects in one
model (Kneib, 2006). STAR models include generalized linear models and gener-
alized additive models as special cases, but also allow for a wider class of effects,
such as geographical or spatio-temporal effects (Fahrmeir et al., 2004, 2013; Um-
lauf et al., 2015).

With the rising prevalence of chronic diseases (Freedman and Martin, 2000;
Thorpe and Howard, 2006) and the large elderly population (the population aged
60 and over in China was 2,308,600 in 2016), the number of elderly Chinese people
suffering from chronic diseases is very high. Because chronic diseases are essen-
tially permanent, they introduce a heavy economic burden to families and society. In
China, the most common cause of death is chronic diseases, rather than infectious
diseases (Gu et al., 2009; He et al., 2005). For example, chronic disease-induced
deaths accounted for 71.88% of all deaths among residents in Kunming (Yunnan
provincial capital) in the period 2007–2010 (Li et al., 2012). The high number of el-
derly people with severe chronic conditions places a significant burden on medical
care. Thus, the Chinese government faces enormous challenges in terms of med-
ical investment. Numerous studies have examined chronic diseases, with many
focusing on the factors influencing such diseases.

Fillingim et al. (2009) studied samples from different countries (China, France,
Sweden, United States, etc.), and found that the prevalence of the most common
forms of pain caused by chronic diseases is higher in women than in men. Fur-
thermore, Zhen (2010) used data on Gansu province (in China), finding that the
resistance of females to chronic disease pain is poor and that females’ thresholds
for discomfort are lower than those of men. As a result, women are more likely to
visit a doctor and, thus, are more likely to be diagnosed with a chronic disease.
Thus, we hypothesise that gender has a great influence on the reported prevalence
of chronic diseases and of specific chronic diseases (e.g., hypertension and heart
disease) in elderly Chinese people, and that elderly females are more likely to have
chronic diseases and specific chronic diseases than are elderly males.

In this study, we use reported prevalence rather than prevalence, because the
prevalence is not the true prevalence. Chronic diseases are usually non-fatal dis-
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eases and persist for a long time. Many elderly people may have chronic diseases,
but may not be aware of this, in which case, they will report not having a disease,
even though they do. Thus, the study can only obtain the reported prevalence.

Woolf et al. (2015) noted that people with a high economic status are more con-
scious of self-care, and that such individuals are more likely to be diagnosed with
chronic diseases. Zhen (2010) found the reported prevalence of chronic diseases
is significantly affected by access to health care. Income and medical security are
greater among the urban elderly than among the rural elderly. Therefore, we hy-
pothesise that the census register is a critical factor related to chronic diseases
and to specific chronic diseases (e.g., hypertension and heart disease), and that
the reported prevalence of chronic diseases and specific chronic diseases is higher
among the urban elderly than among the rural elderly.

Chen (2005), Ye (2013), and Zhao et al. (2015) found that marital status also
has an affect on chronic diseases in China. Furthermore, Ye (2013) analysed data
on Jilin province, and found that those who are single have the lowest prevalence
of chronic diseases, while the prevalence among divorced/widowed persons is the
highest. Thus, we hypothesise that the reported prevalence is higher among di-
vorced and widowed elderly people than among other types of elderly people. The
WHO (2005) reported that chronic diseases among the elderly are predominantly
attributable to unhealthy habits during youth, such as excessive smoking and drink-
ing. In addition, using data on China, Chen (2005), Jiao et al. (2002), and Zhao et al.
(2015) found similar results, namely, that cigarette smoking and alcohol usage are
risk factors for chronic diseases. Therefore, we hypothesise that (cigarette) smok-
ing and drinking (alcohol) have a considerable influence on the reported prevalence
of chronic diseases and specific chronic diseases in China.

Numerous studies have confirmed that age has a considerable effect on chronic
diseases in China (Chen, 2005; Jiao et al., 2002; Lin et al., 2002; Yin, 2011), with
the prevalence increasing with age. Furthermore, Jiao et al. (2002), Ye (2013), and
Yin (2011) pointed out that education and exercise have nonnegligible effects on
chronic diseases, with the prevalence increasing for lower levels of education and
less exercise. In this study, we divide exercise into two categories: sports activities
and cultural activities. Based on the above studies, we hypothesise that the preva-
lence increases in older people who get less exercise. However, we hypothesise
that people with higher levels of education are more likely to report having chronic
diseases because they learn more about the dangers of such diseases and pay
more attention to their health.

The above studies are limited to a single province or city. Furthermore, with the
exception of some statistical descriptive reports, few studies consider the spatial
dimension as an independent factor in chronic disease research in China. There are
tremendous differences in economic development levels, medical conditions, and
living conditions among the provinces in China, all of which can affect the diagnosis
and treatment of a chronic disease. As a result, the prevalence of chronic diseases
is quite different among the provinces. Thus, we hypothesise that the province is a
critical factor affecting chronic diseases and specific chronic diseases. In addition,
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we hypothesise that the reported prevalence is similar to the case of the census
register, in that it is higher in economically developed provinces.

In summary, based on past studies and on China’s tremendous geographic dif-
ferences, we hypothesise that the following factors are important factors affecting
the prevalence of chronic diseases and specific chronic diseases in elderly Chinese
people: gender, census register (urban or rural), marital status, smoking, drinking,
age, education years, sports activities and cultural activities, and province. In ad-
dition, because most of the samples between surveys in 2006 and 2010 are the
same, we further take the effects of time into account.

Prior studies usually only consider the linear effects of the continuous covari-
ates (such as education years) on a chronic disease, even though they may have
nonlinear effects. Because STAR models can include spatial effects, the nonlinear
effects of continuous factors, and linear or fixed effects in a single model, we apply
a STAR model in our empirical study in order to determine which covariates have
considerable effects on chronic diseases in China.

In applying this model, we use a fully Bayesian estimation based on Markov
chain Monte Carlo (MCMC) simulations, as well as BayesX, a standalone software
package used to fit general STAR models. Moreover, Umlauf et al. (2015) devel-
oped an interactive R interface for BayesX, called R2BayesX, which can be used to
specify STAR models using R’s formula language. Furthermore, this package adds
extensive graphics capabilities for visualizing fitted STAR models.

The rest of this paper is structured as follows. Section 2 introduces the STAR
models, and their estimations. Section 3 explains the data. Section 4 presents the
STAR model applied in this study, and describes the R2BayesX settings. Section
5 discusses the empirical results for chronic diseases, as well as for two specific
chronic diseases (hypertension and heart disease) using the R2BayesX package.
Section 6 presents our conclusions.

2. Estimation Methods

2.1. STAR models

STAR models were first introduced by Fahrmeir et al. (2004), and not only contain
generalized linear effects, but also allow for nonlinear effects of continuous covari-
ates and spatial effects.

For generalized linear models, the mean µ of the response variable y is linked
to a linear predictor η by

µ = h−1(η), η = x′γ, (1)

where h is a known link function and γ denotes unknown regression coefficients.
Following Fahrmeir et al. (2004, p.734), in STAR models, the linear predictor is

replaced by the following structured additive predictor:

η = f1(x1)+ · · ·+ fp(xp)+w′γ, (2)
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where x1, . . . ,xp are nonlinear covariates, and f j are smooth functions, which can
represent potentially non-linear effects of continuous covariates or spatially struc-
tured and unstructured effects.

Furthermore, when the response variable is binary, the link function becomes a
logit function, and we can consider the following logistic STAR model:

logit(p) = log
(

p
1− p

)
= η = f1(x1)+ · · ·+ fp(xp)+w′γ, (3)

where p denotes the probability of a specific event occurring (such as the probability
of a person having a chronic disease).

2.2. Estimation of STAR models

In this study, the STAR model is estimated using a Bayesian inference. For the
Bayesian inference, all components of the STAR models must be supplemented
with appropriate prior assumptions.

In the STAR model (2), w′γ denotes the fixed effects. In general, a diffuse prior
p(γ) ∝ const is assumed for the fixed effects parameter γ. At the same time, specific
priors are given to the functions f j(·), and depend on the type of the covariate.

For the nonlinear effects of continuous covariates f j(·), Bayesian P-splines are
utilized. P-splines are an improvement over B-splines, and introduce a penalty
variable to prevent overfitting.

The basic idea behind P-splines is dividing the data interval into a relatively
large number of sub-intervals, and an unknown smooth function f of a covariate x
can be approximated by a linear combination of some basis functions. P-splines
can be approximated by a polynomial spline of degree l, defined on a set of equally
spaced knots xmin = ζ1 < ζ2 < · · · < ζm = xmax within the domain of x. Following
Fahrmeir et al. (2013, pp.426–431), a spline can be expressed by an adequate
linear combination of d = m+ l−1 B-spline basis functions:

f (x) =
d

∑
j=1

β jB j(x), (4)

where B j(x) of degree l is defined as follows: for j = 1, . . . ,d−1,
B0

j(x) = I(ζ j ≤ x < ζ j+1) l = 0

B1
j(x) =

x−ζ j−1

ζ j−ζ j−1
I(ζ j−1 ≤ x < ζ j)+

ζ j+1− x
ζ j+1−ζ j

I(ζ j ≤ x < ζ j+1) l = 1

Bl
j(x) =

x−ζ j−l

ζ j−ζ j−l
Bl−1

j−1(x)+
ζ j+1− x

ζ j+1−ζ j+1−l
Bl−1

j (x) l ≥ 2,

(5)

where I(·) is an indicator function.
The crucial choice for P-splines is the number of knots: too few knots may not

be flexible enough, while choosing too many knots may overfit the data. To prevent
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overfitting, a penalty term is included. The penalty terms are expressed as in Eilers
and Marx (1996):

P(λ ) =
1
2

λ

d

∑
j=r+1

(∆r
β j)

2, (6)

where λ is the smoothing parameter and ∆r denotes the rth-order differences.
In most applications, second-order differences are chosen, which are defined as
∆2β j = ∆1∆1β j = ∆1β j−∆1β j−1 = β j−2β j−1 +β j−2. Furthermore, when λ → ∞, the
function estimate for f (x) is close to linear in the case of second-order differences.

In applications, a common choice for P-splines is B-splines of degree l = 3, with
m = 20 equidistant knots. These setting ensure that the estimated function is twice
continuously differentiable, which allows sufficient flexibility to capture the typical
nonlinear mode.

The general form of the prior of β j for a P-spline is given by the multivariate
normal distribution:

p(β j|τ2
j ) ∝ exp

(
− 1

2τ2
j

β
′
jK jβ j

)
, (7)

where K j is a penalty matrix, and τ2
j is a prior variance, which determines the

impact of the prior distribution on the function estimates. For the full Bayesian infer-
ence, weakly informative inverse Gamma hyperpriors τ2

j ∼ IG(a j,b j) are assigned
to τ2

j , with a j = b j = 0.001 as a general setting. More detailed information about the
Bayesian P-splines can be found in Lang and Brezger (2004).

As we mentioned above, f j denotes smooth functions that can be used to rep-
resent the potentially non-linear effects of continuous covariates or to represent a
spatial effect. If f j represents a spatial effect, it is expressed as fspat(·).

The spatial effect in a STAR model is the effect of a spatial covariate. Usually,
this is a proxy for unobserved influential factors, some of which may have a strong
spatial correlation (structured), while others may be present only locally (unstruc-
tured). Thus, in order to distinguish between these two kinds of spatial effects,
fspat(·) is split into a spatially correlated (structured) part fstr(·) and spatially uncor-
related (unstructured) part funstr(·), i.e. fspat(·) = fstr(·)+ funstr(·). The structured
spatial effects simply indicate that the spatial effects are correlated. There is no
specific structure imposed on the spatial effects.

The spatially structured effect fstr(·) can be specified using stationary Gaussian
random field (GRF) priors. When the place of residence is known exactly, given by
geographical x-y coordinates, the spatial analysis can be conducted using a station-
ary GRF. The estimation of a GRF is based on the centroids of particular regions
for geosplines and geokriging terms. More detailed information about stationary
GRF priors can be found in Fahrmeir et al. (2013, pp.500–530). The spatially un-
structured effect funstr(·) can be specified using simple Gaussian i.i.d. priors, and
denotes the random effect of a covariate.
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3. Data

We define a chronic disease using the medical definition: a disease that lasts for a
long time (more than three months) and cannot be cured.

The data for this study are taken from the 2000, 2006, and 2010 Chinese Urban
and Rural Elderly Population Surveys, conducted by the China Research Center on
Aging of the National Committee on Aging. The survey in 2000 only investigated
whether people were suffering from chronic diseases, while those in 2006 and 2010
were expanded to include questions on specific chronic diseases. And most of the
samples between surveys in 2006 and 2010 are the same. Thus, we also analyse
two specific chronic diseases (hypertension and heart disease, both of which are
common in China, with a prevalence of more than 10%) in 2006 and 2010.

Moreover, the surveys focused on the following 20 representative prov-
inces, municipalities, and autonomous regions: the eastern region - Beijing, Shang-
hai, Hebei, Liaoning, Jiangsu, Zhejiang, Fujian, Shandong, and Guangdong; the
central region - Heilongjiang, Anhui, Henan, Shanxi, Hubei, and Hunan; and the
western region - Sichuan, Yunnan, Shaanxi, Xinjiang, and Guangxi. The selected
provinces, municipalities, and autonomous regions are shown in Figure 1. In China,
the degree of economic development is closely related to geographical location.
In general, provinces in the eastern region are almost economically developed
provinces, provinces in the central region are moderately developed provinces, and
provinces in the western region tend to be economically backward provinces.

The data sampling method used is the same as that of the Fifth Population
Census; based on the distribution of the population aged 60 and older, a quota
from each of the regions is determined. Then, stratified sampling is used to confirm
that the survey results represent the total elderly population in China (Gao and Li,
2016).

After the survey samples were determined, the interviewers conducted house-
hold surveys. Here, interviews were conducted by interviewers, who then com-
pleted the questionnaires on behalf of the interviewees, based on their responses.
No questionnaires were completed by the interviewees. Then, the interviewers
checked and verified the responses after the investigation. As a result, the data ac-
curacy is high. The three surveys generated 20,256 responses, 19,947 responses,
and 19,986 responses, respectively.

4. Model

4.1. Model specification

Because the samples include data on whether people suffer from chronic diseases
in 2000, 2006, and 2010, the first step is a Bayesian analysis of the geographic
distribution of chronic diseases and their relationships with potential risk factors.
Moreover, for 2006 and 2010, data are included on common chronic diseases (hy-
pertension and heart disease). Thus, the second step is a Bayesian analysis of the
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geographic distribution of these two common chronic diseases and their relation-
ships with potential risk factors. The second step is a refinement of the first step.
Therefore, this paper describes how to implement the first step only.

Given a set of observations yi, 1 ≤ i ≤ n, yi is a binary response for a chronic
disease, such that

yi =

{
1 if one has a chronic disease
0 otherwise.

Because the responses are binary, we consider a logistic STAR model to estimate
the probability of an elderly person having a chronic disease (yi = 1) versus the
probability of an elderly person not having a chronic disease (yi = 0):

logit(pi) = log
(

pi

1− pi

)
= ηi = f1(xi1)+ · · ·+ fp(xip)+w′iγ, 1≤ i≤ n, (8)

where pi = Pr(yi = 1), xi1, . . . ,xip are p continuous covariates, f j are smooth func-
tions, wi =(wi1, . . . ,wir)

′ is a vector of r categorical covariates, and γ is an r-dimensional
vector of unknown regression coefficients for the categorical covariates wi. The re-
sponse is distributed as a Bernoulli random variable, such that
f (yi|ηi) = pi

yi(1− pi)
(1−yi) = exp[yiηi− log(1+ exp(ηi))] for yi = 0,1,

where ηi = logit(pi) = log
(

pi
1−pi

)
.

Based on the previous studies mentioned in the Introduction, we analyse the lin-
ear effects of the following categorical covariates: gender of the elderly person (fe-
male or male), census register (urban or rural), marital status (live with spouse, live
differently with spouse, widowed, divorce, and unmarried), smoking (smoked previ-
ously, currently smoke, and never smoke), and drinking (drank previously, currently
drink, and never drink). In addition, we investigate the potential nonlinear effects of
the following continuous covariates: the elderly’s age (Age), education years (EY),
number of sports activities (SA), and cultural activities (CA). Furthermore, because
the observations on chronic diseases are associated with where a person lives, it is
important to account for geographical/spatial differences in the analysis. Therefore,
by taking spatial and nonlinear effects into account, the predictor shown in (8) is
replaced by the following predictor:

ηi = f1(Agei)+ f2(EYi)+ f3(SAi)+ f4(CAi)+ fspat(Provincei)+w′iγ, (9)

where f1(Agei), f2(EYi), f3(SAi), and f4(CAi) are nonlinear smooth effects of the con-
tinuous covariates, and fspat(Province) is the effect of the spatial covariate Provincei.
Here, Provincei ∈ {1, . . . ,S} is an integer, where S is the number of surveyed regions.
Every integer indicates the province, municipality, or autonomous region in which
the respondent is living. For example, Provincei = 1 means the respondent lives in
Heilongjiang province, and Provincei = 8 denotes a respondent living in Beijing city.
In this study, the number of surveyed provinces, municipalities, and autonomous
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regions is 20; thus S = 20 (i.e., Provincei ∈ {1, . . . ,20}).
In China, the provinces are connected in that they usually have some similar-

ity and correlation, and so they are spatially correlated. Therefore, we consider
the structured spatial effect fstr(province) rather than the unstructured spatial effect
funstr(province).

Finally, we estimate the following STAR model:

ηi = β0 + f1(Agei)+ f2(EYi)+ f3(SAi)+ f4(CAi)+ fstr(provincei)+w′iγ, (10)

where fstr(provincei) is a structured spatial effect, and w′iγ are the linear effects of
the following categorical covariates: gender of the elderly, census register, marital
status, smoking, and drinking.

In this study, the estimation of the above STAR model is obtained using a
Bayesian inference. In the STAR model (10), for the fixed effects w′iγ, a diffuse
prior p(γ) ∝ const is assumed for the parameter γ. For the nonlinear effects of the
continuous covariates f1(Age), f2(EY ), f3(SA), and f4(CA), Bayesian P-splines are
utilized. In addition, we estimate the structured spatial effect fstr(province) using the
stationary Gaussian random field (GRF) approach, because the geographical x-y
coordinates of every surveyed province in this study are known exactly.

4.2. Model implementation

For each data set (2000, 2006 and 2010), the STAR model (10) is fitted to a chronic
disease.

We change all categorical covariates into dummy variates. For example, marital
status has five categories: live with spouse; live differently with spouse; widowed;
divorce; and unmarried. We use four dummy variates to represent this categorical
covariate: marital statusA: live with spouse; marital statusB: live differently with
spouse; marital statusC: widowed; marital statusD: divorce.

The model (10) can be implemented in R2BayesX, an open R package for STAR
models. For this model, 25,000 Markov chain Monte Carlo (MCMC) iterations were
carried out after a burn in sample of 2,000. In general, these random numbers are
correlated. Thus, we store every 10th sampled parameter of the Markov chain. The
posterior mean, posterior standard deviation, posterior median, and 90% and 95%
credible intervals for all parameters, estimated from the posterior distributions, are
used to assess the model fit.

When fitting fstr(Province) in R2BayesX, a “map" argument is needed. It can be
an object of class “SpatialPolygonsDataFrame" or an object of class “bnd." Spatial
polygon data in China can be downloaded as shapefiles. Furthermore, using the
function shp2bnd() of the R package – shapefiles package, the shapefiles can be
changed to “bnd" objects, – Chinabnd. The class “bnd" is a list() of polygon
matrices, with x- and y-coordinates of the boundary points in the first and second
columns, respectively, which can be used to calculate the centroids of polygons to
estimate the smooth bivariate effects of the resulting coordinates.
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5. Empirical Results

We use a logistic STAR model to estimate the probability of an elderly person having
a chronic disease (yi = 1) versus the probability of an elderly person not having a
chronic disease (yi = 0). It is well known that the coefficients in a logistic regression
model do not represent marginal effects, but rather log odds. It is difficult to interpret
the coefficients, and this problem becomes even more complex when considering
non-linear effects. Therefore, we focus on which group has a greater impact, not the
extent of the effect. For example, we examine whether the prevalence of a chronic
disease in elderly females is higher than that of elderly males, not the marginal
effects of the prevalence of a chronic disease in elderly females and males.

From (8), the structured additive predictor ηi and probability pi = Pr(yi = 1) are
positively related. If the coefficient is positive, ηi of the experimental group is larger
than ηi of the control group. Then, pi = Pr(yi = 1) of the experimental group is
larger, which means the experimental group is more likely to have chronic diseases.
Otherwise, if the coefficient is negative, the control group is more likely to have
chronic diseases. Furthermore, when all other coefficients remain unchanged, a
certain coefficient becomes larger than ηi becomes larger, and the probability pi =

Pr(yi = 1) becomes larger, that is, a larger coefficient denotes a greater effect on a
chronic disease.

Table 1 displays the variables used in the models and gives their meanings and
values. Table 2 compares the hypotheses and the empirical results on the reported
prevalence of a chronic disease, hypertension, and heart disease.

5.1. Empirical results for chronic diseases

In Table 2, for the covariates of gender and census register, zero is not included in
the 95% credible intervals in 2000, 2006, and 2010. Therefore, we find that these
covariates do affect chronic diseases. In addition, the posterior means of gender
and census register are positive. This indicates that in comparing elderly females
and elderly males (female is 1, male is 0), and urban elderly people and rural elderly
people (urban is 1, rural is 0), the reported prevalence of the former groups is higher
than that of the latter groups. These results are also consistent with the hypotheses.

In general, marital status may affect the health of elderly people (Kiecolt-Glaser
and Newton, 2001). However, being married does not guarantee health benefits.
A decline in the quality of marriage has a negative effect on mental and physical
health (Wickrama et al., 1997). We find that, marital status has a negligible effect
on a chronic disease, because the 95% and 90% credible intervals of marital status
include zero in all three years. Thus, we reject the hypothesis of marital status.

For the covariates smoking and drinking, zero was not included in the 95%
credible intervals of smokingA (smoked previously), drinkingA (drank previously),
and drinkingB (currently drink) in all three years. Therefore, we hold the hypothe-
ses that smoking and drinking do affect chronic diseases. However, smoking and
drinking have two different kinds of effects on a chronic disease. The results of
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smokingA (smoked previously)/drinkingA (drank previously) are consistent with the
following hypotheses: the reported prevalence in elderly people who smoked/drank
previously, but no longer do so, is higher than that in elderly people who never
smoke/drink. However, the results of smokingB (currently smoke) and drinkingB
(currently drink) seem to be counter-intuitive: the reported prevalence in elderly
people who currently smoke/drink is lower than that in those who never smoke/drink.
One possible reason for this apparent contradiction in the case of drinking may be
the following: moderate drinking has little effect on health, and some reports even
show that moderate drinking is beneficial to our health (Fillmore et al., 2006).

In addition, as explained above, a larger coefficient denotes a greater effect on
chronic diseases. From Table 2, for the fixed effects of the categorical covariates on
chronic diseases, the census register has the greatest effect on chronic diseases,
followed by gender, smoking, and drinking.

The nonlinear effects of the continuous covariates (age, years of education,
sports activities, and cultural activities) are considerable, but they are all very small
(mean values are less than 0.012) in the three years. Furthermore, the posterior
means are all positive, which indicates a greater reported prevalence for older peo-
ple with a higher level of education, and who do more sports activities and cultural
activities. Age and education are consistent with the hypotheses, but sports ac-
tivities and cultural activities are contrary to the hypotheses. One possible reason
may be as follows: people who do more sports activities and cultural activities pay
more attention to their health, and so are more likely to go to the hospital for an
examination, and more likely to report having a chronic disease. Figure 2 gives the
detailed nonlinear effects of these continuous covariates on a chronic disease, with
95% credible bands in all three years. The tails of all continuous covariates are wide
because the numbers of observations in these parts are all very small.

Since a larger coefficient denotes a greater effect on chronic diseases, and the
coefficient of province on chronic diseases is relatively large, thus, the spatial effect
of province is critical.

In 2000, Xinjiang province’s structured spatial effect is the highest, followed
by Anhui, Shaanxi, Sichuan, Guangxi, Beijing, and Shanxi provinces. Shandong
province’s structured spatial effect is the lowest (see Figure 3(a)). In 2006, Xinjiang
province’s structured spatial effect is still the highest, followed by Anhui, Hubei,
and Hunan provinces. Guangdong province’s structured spatial effect is the lowest,
and Shandong, Guangxi and Fujian provinces’ structured spatial effects are very
low (see Figure 3(b)). In 2010, Zhejiang province’s structured spatial effect is the
highest, Hunan province’s structured spatial effect is the lowest. In addition, Anhui,
Fujian, and Xinjiang provinces’ structured spatial effects are relatively high, and
Shandong and Liaoning provinces’ structured spatial effects are relatively low (see
Figure 3(c)).

In conclusion, we find that the province is a critical factor affecting chronic dis-
eases, but that the high reported prevalence of chronic diseases is not only in eco-
nomically developed provinces (such as Zhejiang, Beijing, Fujian), but also in the
economically backward provinces with complex terrain (such as Xinjiang, Guangxi),
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as shown in Figure 3. In addition, we should pay special attention to Xinjiang and
Anhui provinces, because their structured spatial effects are quite high in all three
years.

The high reported prevalence does not necessarily indicate that the health con-
ditions in these provinces are bad. On the contrary, the high reported prevalence
may indicate that elderly people pay more attention to their health. However, a
high reported prevalence in economically backward provinces with complex terrain
may indicate that the health conditions in these provinces are poor, for example, in
Xinjiang province.

5.2. Empirical results for hypertension

As shown in Table 2, for the covariates of gender, census register, smokingB (cur-
rently smoke), drinkingA (drank previously), drinkingB (currently drink), age, edu-
cation years, sports activities, cultural activities, and province, zero is not included
in the 95% credible intervals in 2006 and 2010. Therefore, we find that they have
considerable effects on hypertension, but we reject the hypothesis for marital status.

The empirical results for the fixed effects of the categorical covariates and for the
nonlinear effects of the continuous covariates on hypertension are very similar to
the results for chronic diseases. Thus, we do not repeat them here. The differences
between general chronic diseases and hypertension are mainly reflected in the
spatial effects.

Since a larger coefficient denotes a greater effect, and the coefficient of province
on hypertension is relatively large, thus, the spatial effect of province on hyperten-
sion is critical.

In 2006, Hebei, Beijing, and Zhejiang provinces’ structured spatial effects on
hypertension are the highest, followed by Jiangsu, Shanghai and Heilongjiang.
Guangxi, Yunnan, and Sichuan provinces’ structured spatial effects are the lowest,
although Guangdong and Liaoning provinces’ structured spatial effects are also rel-
atively low (see Figure 4(a)). In 2010, Yunnan province’s structured spatial effect
is the highest (see Figure 4(b)), showing a marked increase over the low level in
2006.

In conclusion, we find that the province is a critical factor affecting hypertension,
but that the highest reported prevalence occurs mainly in economically developed
provinces (e.g., Zhejiang, Beijing, and Guangdong), and not in economically back-
ward provinces, as shown in Figure 4. In addition, note that Zhejiang province’s
structured spatial effects are quite high in both years.

The high reported prevalence in these economically developed provinces simply
indicates that the elderly pay more attention to their health. However, the high
reported prevalence in Yunnan province in 2010 indicates that the health conditions
in this province are poor. Reports in 2013 revealed that for every 10 Kunming
(Yunnan provincial capital) residents, two suffer from hypertension, but that about
70% of patients are not aware of this.
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5.3. Empirical results for heart disease

As shown in Table 2, for the covariates of gender, census register, smokingA (smoked
previously), drinkingB (currently drink), age, education years, sports activities, cul-
tural activities, and province, zero is not included in the 95% and 90% credible in-
tervals in 2006 and 2010. Therefore, we find that they have considerable effects on
heart disease, but we reject the hypothesis for marital status.

The empirical results for the fixed effects of the categorical covariates and the
nonlinear effects of the continuous covariates on heart disease are very similar to
the results for chronic diseases. Thus, we do not repeat them here. The differences
between general chronic diseases and heart disease are still mainly reflected in the
spatial effects.

As explained above, a larger coefficient denotes a greater effect, and the co-
efficient of province on heart disease is relatively large, thus, the spatial effect of
province on heart disease is critical.

In 2006, Heilongjiang province’s structured spatial effect was the highest, fol-
lowed by Liaoning, Beijing, Hebei, and Xinjiang. Guangdong, Guangxi, Yunnan,
and Sichuan provinces’ structured spatial effects were the lowest (see Figure 4(c)).
In 2010, Shaanxi province’s structured spatial effect was the highest, followed by
Shanxi and Anhui. Shandong province’s structured spatial effect was the lowest,
although Xinjiang, Hunan, and Guangxi were relatively low (see Figure 4(d)).

In conclusion, we find that the province is a critical factor affecting heart disease.
As shown in Figure 4, in 2006, the highest reported prevalence appeared not only
in economically backward provinces (e.g., Xinjiang), but also in the economically
developed provinces (e.g., Hebei, Beijing) and the moderately developed provinces
(e.g., Heilongjiang, Liaoning). In contrast, in 2010, high spatial effects appeared in
moderately developed provinces only (e.g., Shaanxi, Shanxi, Anhui).

5.4. Empirical results of adding time factor

Because most of the samples between surveys in 2006 and 2010 are the same, we
further take the effects of time into account. And the estimation results are shown
in Table 3.

Table 3 gives the posterior means, posterior standard deviations, and posterior
medians for all covariates (including time) of a chronic disease, hypertension, and
heart disease. In Table 3, for the covariate of time, zero is not included in the
95% credible intervals. Therefore, time do affect chronic diseases. In addition, the
posterior means of time are positive. This indicates that in comparing 2006 and
2010 (2010 is 1, 2006 is 0), the reported prevalence in 2010 is higher than that in
2006.

The higher reported prevalence in 2010 does not necessarily indicate that the
health conditions of the elderly people are worse. On the contrary, the high reported
prevalence may indicate that elderly people pay more attention to their health with
the time going.
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6. Conclusions

This study applied a STAR model to determine which covariates have considerable
effects on chronic diseases and specific chronic diseases (hypertension and heart
disease). STAR models combine spatial effects, nonlinear effects of continuous
factors, and the linear or fixed effects into a single model.

The findings are as follows: (1) the following covariates have considerable ef-
fects on chronic diseases and specific chronic diseases (hypertension and heart
disease) (in descending order): census register (rural or urban), gender, smoking,
drinking, province, age, cultural activities, years of education, sports activities; (2)
because the 95% and 90% credible intervals of marital status include zero in all
three years, thus, we reject the hypothesis for marital status; that is, the effect of
marriage is negligible; (3) elderly females, urban elderly people and the elderly who
smoke and drink are more likely to report having chronic diseases. In addition, the
reported prevalence increases with age, education level, and participation in sports
activities and cultural activities; (4) a high reported prevalence may indicate that the
health conditions are bad, but may also indicate that the elderly pay more attention
to their health; (5) a larger coefficient denotes a greater effect on chronic diseases,
thus, province is a critical factor, but the high reported prevalence is not restricted
to economically developed provinces. For chronic diseases, a high reported preva-
lence occurs in economically developed provinces and in economically backward
provinces with complex terrain; and (6) because most of the samples between sur-
veys in 2006 and 2010 are the same, we further take the effects of time into account,
and find that time also has considerable effects.

Based on the above findings, the government should further strengthen its in-
vestment in rural areas and in economically underdeveloped provinces, such as
Xinjiang province and Anhui province, as a cost-effective intervention. In addition,
the government should educate the population on the harmful effects of smoking
and drinking on health. Furthermore, economically developed provinces’ highest
structured spatial effects on hypertension do not mean that the elderly in these
provinces are more likely to have hypertension. However, the government should
strengthen its investment in the promotion and diagnosis of hypertension in eco-
nomically backward areas (e.g., Yunnan province). In the case of heart disease,
the government should strengthen its investment in provinces such as Heilongjiang
province and Liaoning province.

The nonlinear effects in this study are considerable, but very small. Thus, we
should build a better method to reconsider the nonlinear effects. Furthermore, we
have data for three years, and conduct separate estimates for the model in each
year. In future research, we will include time as a feasible covariate in the regression
model to consider the impact of time on chronic diseases.
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APPENDIX

Table 1: Variables in the models

Variable Description Value

Chronic Disease Whether one has a chronic
disease or not.

Having chronic disease is 1, else is
0.

Hypertension Whether one has hyperten-
sion or not.

Having hypertension is 1, else is 0.

Heart Disease Whether one has heart dis-
ease or not.

Having heart disease is 1, else is 0.

Time Time of investigation. 2010 is 1; 2006 is 0.

Gender Gender of the elderly person
with categories ‘male’ and ‘fe-
male’.

Female is 1; Male is 0.

Census Register Census register with cate-
gories ‘urban’ and ‘rural’.

Urban is 1; Rural is 0.

Marital Status Marital status with categories
‘live with spouse’, ‘live differ-
ently with spouse’, ‘widowed’,
‘divorce’ and ‘unmarried’

Using four dummy variables: Mari-
tal StatusA: live with spouse; Mar-
ital StatusB: live differently with
spouse; Marital StatusC: widowed;
Marital StatusD: divorce. Yes is 1,
no is 0.

Smoking Smoking condition with cat-
egories ‘smoked previously’,
‘currently smoke’ and ‘never
smoke’.

Using two dummy variables:
SmokingA: smoked previously;
SmokingB: currently smoke; Yes is
1, no is 0.

Drinking Drinking condition with cate-
gories ‘drank previously’, ‘cur-
rently drink’ and ‘never drink’.

Using two dummy variables:
DrinkingA: drank previously; Drink-
ingB: currently drink; Yes is 1, no is
0.

Age Age of the elderly people in
years.

Continuous covariate, minimum
value is 60.

Education Years One’s education years. Continuous covariate, minimum
value is 0.

Sports Activities Number of sports activities
one takes part in.

Continuous covariate, value
changes from 0 to 5.

Cultural Activities Number of cultural activities
one takes part in.

Continuous covariate, value
changes from 0 to 10.

Province Province where one lives in. Spatial covariate, integer, value
changes from 1 to 20.



STATISTICS IN TRANSITION new series, December 2018 663

Ta
bl

e
2:

C
om

pa
ris

on
of

H
yp

ot
he

se
s

an
d

E
m

pi
ric

al
R

es
ul

ts
on

th
e

R
ep

or
te

d
P

re
va

le
nc

e

Va
ria

bl
e

H
yp

ot
he

se
s

E
m

pi
ric

al
R

es
ul

ts
(P

os
te

rio
rM

ea
n)

C
hr

on
ic

D
is

ea
se

H
yp

er
te

ns
io

n
H

ea
rt

D
is

ea
se

20
00

20
06

20
10

20
06

20
10

20
06

20
10

G
en

de
r

co
ns

id
er

ab
le

in
flu

en
ce

0.
34

0*
*

0.
34

4*
*

0.
24

7*
*

0.
15

8*
*

0.
09

3*
*

0.
48

9*
*

0.
37

2*
*

fe
m

al
es

>
m

al
es

C
en

su
s

R
eg

is
te

r
cr

iti
ca

li
nfl

ue
nc

e
0.

64
2*

*
0.

63
1*

*
0.

54
4*

*
0.

59
9*

*
0.

46
2*

*
0.

87
2*

*
0.

36
8*

*
ur

ba
n
>

ru
ra

l
M

ar
ita

lS
ta

tu
sA

co
ns

id
er

ab
le

in
flu

en
ce

-0
.0

37
0.

11
5

-0
.1

00
-0

.0
36

-0
.0

33
0.

34
2

0.
11

1
M

ar
ita

lS
ta

tu
sB

di
vo

rc
ed

/w
id

ow
ed

>
-0

.1
01

0.
25

8
-0

.3
78

-0
.0

45
-0

.3
92

0.
26

8
-0

.0
24

M
ar

ita
lS

ta
tu

sC
ot

he
rt

yp
es

-0
.0

34
0.

09
8

-0
.2

13
-0

.0
28

-0
.0

18
0.

25
8

0.
05

6
M

ar
ita

lS
ta

tu
sD

-0
.0

31
0.

18
1

-0
.0

85
-0

.0
24

-0
.3

25
0.

19
3

-0
.0

58
S

m
ok

in
gA

co
ns

id
er

ab
le

in
flu

en
ce

0.
43

0*
*

0.
26

1*
*

0.
26

7*
*

-0
.0

51
-0

.0
09

0.
11

6*
0.

11
7*

S
m

ok
in

gB
sm

ok
e
>

ne
ve

rs
m

ok
e

0.
03

7
-0

.1
22

**
-0

.0
22

-0
.2

37
**

-0
.1

78
**

-0
.0

03
-0

.1
80

**
D

rin
ki

ng
A

co
ns

id
er

ab
le

in
flu

en
ce

0.
23

3*
*

0.
27

4*
*

0.
18

1*
*

0.
17

3*
*

0.
22

1*
*

0.
01

8
0.

05
7

D
rin

ki
ng

B
dr

in
k
>

ne
ve

rd
rin

k
-0

.2
94

**
-0

.1
75

**
-0

.2
39

**
-0

.1
56

**
-0

.0
87

**
-0

.3
06

**
-0

.2
53

**
A

ge
no

n-
ne

gl
ig

ib
le

in
flu

en
ce

0.
00

5*
*

0.
00

5*
*

0.
01

1*
*

0.
00

6*
*

0.
00

3*
*

0.
01

0*
*

0.
01

4*
*

ol
de

r>
yo

un
ge

r
E

du
ca

tio
n

Ye
ar

s
no

n-
ne

gl
ig

ib
le

in
flu

en
ce

0.
00

3*
*

0.
00

5*
*

0.
00

2*
*

0.
00

4*
*

0.
00

2*
*

0.
00

3*
*

0.
00

2*
*

lo
ng

er
>

sh
or

te
r

S
po

rt
s

A
ct

iv
iti

es
no

n-
ne

gl
ig

ib
le

in
flu

en
ce

0.
00

3*
*

0.
00

3*
*

0.
00

3*
*

0.
00

3*
*

0.
00

3*
*

0.
00

3*
*

0.
00

4*
*

m
or

e
>

le
ss

C
ul

tu
ra

lA
ct

iv
iti

es
no

n-
ne

gl
ig

ib
le

in
flu

en
ce

0.
00

4*
*

0.
00

3*
*

0.
00

4*
*

0.
00

5*
*

0.
00

5*
*

0.
00

3*
*

0.
00

3*
*

m
or

e
>

le
ss

P
ro

vi
nc

e
cr

iti
ca

li
nfl

ue
nc

e
0.

41
6*

*
0.

37
5*

*
0.

05
4*

*
0.

14
4*

*
0.

20
1*

*
0.

30
7*

*
1.

97
5*

*
de

ve
lo

pe
d
>

ba
ck

w
ar

d

1
“∗
∗”

an
d

“∗
”d

en
ot

e
th

at
ze

ro
is

no
ti

nc
lu

de
d

in
th

e
95

%
an

d
90

%
cr

ed
ib

le
in

te
rv

al
s,

re
sp

ec
tiv

el
y.



664 Gao P., Hasegawa H.: Bayesian spatial analysis of chronic diseases...

Ta
bl

e
3:

Po
st

er
io

rE
st

im
at

es
of

th
e

P
ar

am
et

er
s

fo
rC

hr
on

ic
D

is
ea

se
(A

dd
Ti

m
e)

C
hr

on
ic

D
is

ea
se

H
yp

er
te

ns
io

n
H

ea
rt

D
is

ea
se

Va
ria

bl
e

M
ea

n
S

d
M

ed
ia

n
M

ea
n

S
d

M
ed

ia
n

M
ea

n
S

d
M

ed
ia

n

Fi
xe

d
ef

fe
ct

s:
(In

te
rc

ep
t)

0.
78

9
0.

17
3

0.
78

4
-0

.9
11

0.
19

1
-0

.9
06

-2
.2

09
0.

27
1

-2
.1

91
Ti

m
e

0.
12

9
0.

02
7

0.
12

9*
*

0.
32

9
0.

02
7

0.
33

0*
*

0.
08

8
0.

03
0

0.
08

8*
*

G
en

de
r

0.
29

2
0.

03
3

0.
29

2*
*

0.
12

9
0.

03
4

0.
12

9*
*

0.
43

1
0.

03
6

0.
43

1*
*

C
R

0.
59

0
0.

03
3

0.
59

0*
*

0.
54

9
0.

03
1

0.
54

9*
*

0.
72

1
0.

03
5

0.
72

1*
*

M
S

A
0.

01
5

0.
10

5
0.

01
7

-0
.0

54
0.

12
3

-0
.0

56
0.

19
3

0.
16

2
0.

19
2

M
S

B
0.

00
6

0.
15

0
0.

00
3

-0
.2

80
0.

16
6

-0
.2

81
*

-0
.0

31
0.

21
1

-0
.0

29
M

S
C

-0
.0

48
0.

10
7

-0
.0

47
-0

.0
51

0.
12

5
-0

.0
50

0.
12

0
0.

16
3

0.
11

9
M

S
D

0.
06

7
0.

16
6

0.
06

5
-0

.2
04

0.
17

4
-0

.2
01

0.
05

3
0.

21
9

0.
05

2
S

m
ok

in
gA

0.
26

0
0.

04
5

0.
26

1*
*

-0
.0

20
0.

04
3

-0
.0

21
0.

11
3

0.
04

7
0.

11
4*

*
S

m
ok

in
gB

-0
.0

76
0.

03
5

-0
.0

77
**

-0
.2

07
0.

03
7

-0
.2

06
**

-0
.0

90
0.

04
2

-0
.0

89
**

D
rin

ki
ng

A
0.

22
6

0.
04

5
0.

22
5*

*
0.

18
1

0.
04

2
0.

18
1*

*
0.

02
2

0.
04

6
0.

02
2

D
rin

ki
ng

B
-0

.2
01

0.
03

4
-0

.2
01

**
-0

.1
25

0.
03

6
-0

.1
24

**
-0

.2
80

0.
04

1
-0

.2
80

**
N

on
lin

ea
re

ffe
ct

s:
sx

(A
ge

)
0.

00
3

0.
00

4
0.

00
2*

*
0.

00
4

0.
00

5
0.

00
2*

*
0.

01
1

0.
01

2
0.

00
7*

*
sx

(E
Y

)
0.

00
3

0.
00

6
0.

00
2*

*
0.

00
2

0.
00

3
0.

00
1*

*
0.

00
2

0.
00

2
0.

00
1*

*
sx

(C
A

)
0.

00
3

0.
00

6
0.

00
2*

*
0.

00
2

0.
00

3
0.

00
2*

*
0.

00
2

0.
00

3
0.

00
2*

*
sx

(S
A

)
0.

00
2

0.
00

3
0.

00
1*

*
0.

00
3

0.
00

7
0.

00
1*

*
0.

00
2

0.
00

4
0.

00
1*

*
sx

(P
ro

vi
nc

e)
0.

11
8

0.
05

7
0.

10
5*

*
0.

10
6

0.
05

2
0.

09
4*

*
0.

35
6

0.
18

1
0.

31
2*

*

1
sx

(·)
co

rr
es

po
nd

s
to

th
e

sm
oo

th
fu

nc
tio

ns
in

S
TA

R
m

od
el

s.
2

C
R

,M
S

A
,M

S
B

,M
S

C
,M

S
D

,C
A

,E
Y

an
d

S
A

ar
e

th
e

ab
br

ev
ia

tio
n

of
C

en
su

s
R

eg
is

te
r,

M
ar

ita
lS

ta
tu

sA
,M

ar
ita

l
S

ta
tu

sB
,M

ar
ita

lS
ta

tu
sC

,M
ar

ita
lS

ta
tu

sD
,C

ul
tu

ra
lA

ct
iv

iti
es

,E
du

ca
tio

n
Ye

ar
s

an
d

S
po

rt
s

A
ct

iv
iti

es
,r

es
pe

ct
iv

el
y.

3
“∗
∗”

an
d

“∗
”

de
no

te
th

at
ze

ro
is

no
ti

nc
lu

de
d

in
th

e
95

%
an

d
90

%
cr

ed
ib

le
in

te
rv

al
s,

re
sp

ec
tiv

el
y.

M
ea

n,
S

d
an

d
M

ed
ia

n
ar

e
po

st
er

io
rm

ea
n,

po
st

er
io

rs
ta

nd
ar

d
de

vi
at

io
n

an
d

po
st

er
io

rm
ed

ia
n,

re
sp

ec
tiv

el
y.



STATISTICS IN TRANSITION new series, December 2018 

 

665 

 

 

Figure 1.  20 selected provinces, municipalities and autonomous regions of China 
mainland 

 

 
 

 
 

(a) 2000 
 

Figure. 2.  Effects of smooth terms on a chronic disease with 90% and 95% 

  credible bands in 2000, 2006 and 2010  
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(b) 2006 
 

 
 

 
 

(c) 2010 
 

Figure. 2.  Effects of smooth terms on a chronic disease with 90% and 95% 

  credible bands in 2000, 2006 and 2010  (cont.) 
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(a) 2000 

 
(b) 2006 

 
(c) 2010 

 

Figure 3.  Structured spatial effect on a chronic disease in 2000, 2006 and  2010 
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(a) Hypertension-2006 

 
 
 
 

 
(b) Hypertension-2010 

 

Figure 4.  Structured spatial effect on hypertension and heart disease in 2006 and 
2010 
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(c) Heart disease-2006 

 
 
 
 

 
(d) Heart disease-2010 

 

Figure 4.  Structured spatial effect on hypertension and heart disease in 2006 and 
2010  (cont.) 
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LINDLEY PARETO DISTRIBUTION

Halim Zeghdoudi1, Lazri Nouara2, Djabrane Yahia3

ABSTRACT

In this paper, we introduce a new Lindley Pareto distribution, which offers
a more flexible model for modelling lifetime data. Some of its mathematical
properties like density function, cumulative distribution, mode, mean, vari-
ance, and Shannon entropy are established. A simulation study is carried
out to examine the bias and mean square error of the maximum likelihood
estimators of the unknown parameters. Three real data sets are fitted to
illustrate the importance and the flexibility of the proposed distribution.
Key words: T-X family, Lindley distribution, Pareto distribution.

1 Introduction

Statistical distributions (Lifetime distributions) are commonly applied to de-
scribe real world phenomena and are most frequently used in many applied
sciences such as reliability, engineering, actuarial sciences, demography,
economics, hydrology, biological studies, insurance, medicine and finance.
Recently this issue has received much attention from researchers and prac-
titioners. The quality and effectiveness of the procedures used in a statistical
analysis are determined by the assumed probability distribution. Recently,
one parameter Lindley distribution has attracted the researchers for its use
in stress-strength reliability modelling, and it has been observed in several
papers that this distribution has performed excellently. The Lindley distribu-
tion was introduced by Lindley (1958) as a new distribution useful to ana-
lyze lifetime data. Sankaran (1970) introduced the discrete Poisson-Lindley
distribution by combining the Poisson and Lindley distributions. Many gen-
eralizations of the Lindley distribution have been proposed in recent years.
Asgharzadeh et al. (2013), Ghitany et al. (2008a,2008b) rediscovered and
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E-mail: lazrinouara.actuariat@yahoo.fr

3Laboratory of Applied Mathematics, Mohamed Khider University, Box 145,
Biskra, 07000, Algeria. E-mail: yahia.dj@yahoo.fr



672 H. Zeghdoudi et al.: Lindley Pareto Distribution

studied the new generalizations of Lindley distribution, what they derived is
known as Zero-truncated Poisson- Lindley and Pareto Poisson-Lindley dis-
tributions. There still remain many important problems where the real data
does not follow any of the existing probability distributions. Considerable
effort has been expended in the development of large classes of new prob-
ability distributions along with relevant statistical methodologies.

Furthermore, Pareto distribution was pioneered by V. Pareto (1896) to
explore the unequal distribution of wealth. It is widely used in actuarial sci-
ence. (e.g. reinsurance) because of its heavy tail properties. To add flexibil-
ity to the Pareto distribution, various generalizations of the distribution have
been derived, including the generalized Pareto distribution (Pickands, 1975),
the beta-Pareto distribution (Akinsete et al., 2008), and the beta generalized
Pareto distribution (Mahmoudi, 2011).

The mixing method is one of the most important ideas for obtaining a
new distribution. For example, Sharma and Shanker (2013) used a mix-
ture of exponential (θ) and gamma (2,θ) to create a two-parameter Lindley
distribution. Another example includes Zakerzadeh and Dolati (2010), who
used gamma (α,θ) and gamma (α + 1,θ) to create a generalized Lindley
distribution. Recently, Zeghdoudi and Nedjar (2016a,2016b) introduced a
new distribution, named gamma Lindley distribution, based on mixtures of
gamma (2,θ) and one-parameter Lindley distributions.

Gomes-Silva et al. (2017) introduce a new generator of continuous dis-
tributions with one extra positive parameter called the odd Lindley-G fam-
ily. Some special cases are given (Odd Lindley Weibull, Odd Lindley Ku-
maraswamy, Odd Lindley half-logistic and Odd Lindley Burr XII), where the
hazard rate function of the Odd Lindley Burr XII distribution can be constant,
increasing, decreasing, unimodal or bathtub shape. For more details on this
last distribution function we refer the reader to Abouelmagd et al. (2018).

In addition, the cumulative distribution function (cdf) of the T-X family of
distributions defined by Alzaatreh et al. (2013) is given by

G(x) =
∫ W (F(x))

0
r (t)dt, (1)

where W (F(x)) satisfies the following conditions:
- W (F(x)) ∈ [a,b],
-W (F(x)) is differentiable and monotonically non-decreasing,
- W (F(x))→ a as x→−∞ and W (F(x))→ b as x→ ∞.
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In this paper, we propose a new wider class of continuous distribu-
tions called the Lindley Pareto (LP for short) by taking W (F(x)) = F(x)

1−F(x) and

r (t) = θ 2

1+θ
(1+ t)exp(−θ t), x > 0, θ > 0, where F (x) corresponding to Pareto

distribution: F (x) = 1−
(

α

x

)k
, x > α. Its cdf is given by

G(x) = 1−
(
αk + xkθ

)
(θ +1)αk exp

(
−θ

(
xk

αk −1
))

, (2)

with corresponding density

g(x) =
kθ 2eθ x2k−1

(θ +1)α2k exp
(
−θ

( x
α

)k
)
,x > α. (3)

We can see the plots of the density function and the distribution function of
LP distribution for some parameter values in Appendix 1. We refer to the cdf
in equation (1) as Lindley Pareto (LP) distribution with parameters θ , α, k,
which we denote by LP(θ ,α,k). The objective of this work is to study some
mathematical properties of the Lindley Pareto model with the hope that it
will attract wider applications in reliability, engineering and other areas of
research.

The LP distribution is motivated by the following: the LP distribution use
may be restricted to the tail of a distribution, but it is easy to apply. The
formulas of the mean, variance, mean deviation, entropy and the quantile
function are simple in form and may be used as quick approximations in
many cases. Also, the LP distribution can be viewed as a special case of
odd Lindley-G family introduced by Gomes-Silva et al.(2017). Also, this new
distribution has advantages including a number of parameters (three) which
we can modelled physical phenomena inspired in Cooray (2006). Further-
more, LP distribution can be used quite effectively in analyzing many real
lifetime data sets: application to waiting times in a queue, Wheaton River
Data and application to bladder cancer patients. Moreover, the actuarial
literature has discussed hundreds of univariate continuous distributions, of
which log-normal, Weibull, multi-parameter Pareto, gamma distributions as
well as others.

The remainder of the article is unfolded as follows: in Section 2, vari-
ous properties of LP distribution are examined, including survival and haz-
ard functions, reliability, mean deviation, entropy and quantile function. The
model parameters are estimated via the maximum likelihood estimates (MLEs)
and some simulations are proposed in Section 3. In Section 4, the impor-
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tance and potentiality of LP distribution are shown using three real lifetime
data sets. Finally, some concluding notes are provided in Section 5.

2 Main properties

2.1 Survival and hazard functions

The survival and hazard functions corresponding to the cdf defined in (1)
are given by

S(x) = 1−G(x) =

(
αk + xkθ

)
(θ +1)αk exp

(
−θ

(
xk

αk −1
))

and

h(x) =
kθ 2x2k−1

αk(θxk +αk)
.

2.2 Reliability

The measure of reliability has many applications, especially in the area of
engineering. The component fails at the instant that the random stress X2

applied to it exceeds the random strength X1, and the component will func-
tion satisfactorily whenever X1 > X2. Hence, R = P [X2 < X1] is a measure of
component reliability. We derive the reliability R when X1 and X2 have inde-
pendent LP(θ1,α,k) and LP(θ2,α,k) distributions. The reliability is defined
by

R =
∫

∞

0
g1 (x)G2 (x)dx = ∑

i, j,k,l=0

pi, j (θ1)qk,l (θ2)

i+ j+ k+ l +2
,

where

pi, j (θ1) =
(−1) j

θ
2+ j
1 Γ(i+ j+3)

i! j!(θ1 +1)Γ( j+3)

and

qk,l (θ2) =
(−1)l

θ
2+l
2 Γ(k+ l +3)

k!l!(θ2 +1)(k+ l +1)Γ(l +3)
.

2.3 Mean deviations

The deviation from the mean and the median are used to measure the dis-
persion and spread in a population from the centre. If the median is denoted
by M, then the mean deviation from the mean, D(µ), and the mean deviation
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from the median, D(M), can be written as

D(µ) =
∫

∞

α

|x−µ|g(x)dx = 2µG(µ)−2
∫

µ

α

xg(x)dx,

D(M) =
∫

∞

α

|x−M|g(x)dx = µ−2
∫ M

α

xg(x)dx.

Consider the integral

∫ b

α

xg(x)dx=
∫ b

α

kθ 2eθ

(θ +1)α2k x2k exp
(
−θ

( x
α

)k
)

dx =

(
− eθ

(θ +1)
αΓ(2k+1

k ,θ xk

αk )

θ
1
k

∣∣∣∣∣
b

a

we obtain,

D(µ) = 2µG(µ)−
∫

µ

α

xg(x)dx

= 2µG(µ)− αeθ

(θ +1)θ
1
k

(
Γ(

1
k
+2,θ)−Γ(

1
k
+2,θ

(
µ

α

)k
)

)
,

D(M) = µ−2
∫ M

α

xg(x)dx

= µ−2
αeθ

(θ +1)θ
1
k

(
Γ(

1
k
+2,θ)−Γ(

1
k
+2,θ

(
M
α

)k

)

)
.

2.4 Entropy

The entropy of a random variable X is a measure of variation of uncertainty
(see, Rényi, 1961), that of the LP distribution is given by

IR (s) =
1

1− s
ln

(
ksθ 2sesθ

θ
1−s

k s
2ks−s+1

k (θ +1)s
αs−1

Γ
(2ks−s+1

k ,θs
)

k

)
s > 0,s 6= 1.

Shannon entropy (Shannon, 1948) for a random variable X with density g(x)
is defined as E {− ln(g(x))}.

E {− ln(g(X))}= lnk+2lnθ +θ − ln(θ +1)−2k lnα +2kE (lnx)− θ

αk E
(

xk
)
,
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E {− ln(g(X))}= θ +lnk+2lnθ−ln(θ +1)+
2
(
1+Ei(θ)e−θ

)
−
(
θ 2 +2θ +2

)
(θ +1)

.

where, Ei is the exponential integral function.

2.5 Quantile function

The quantile function of the LP distribution X is

xγ = α

(
− 1

θ
− 1

θ
LAMBERTW(X)

(
−1,(γ−1)(θ +1)e−θ−1

)) 1
k

, 0 < γ < 1,

(4)
where θ ,α,k > 0 and LAMBERTW(X) denotes the negative branch of the
LAMBERTW(X) function (W (z)exp(W (z)) = z, where z is a complex number).
For more details we refer the reader to Lazri and Zeghdoudi (2016) .

3 Estimation and Simulation

3.1 Maximum Likelihood Estimates (ML)

Let Xi ∼ LP(θ ,α,k), i = 1, ...,n be n random variables. The ln-likelihood func-
tion, ln l(xi;θ ,α,k) is:

L(Θ) = ln l(x;θ ,α,k) = n lnk+2n lnθ +nθ −2kn lnα−n ln(θ +1)+(2k−1)
n

∑
i=1

lnxi−θ

n

∑
i=1

(
xk

αk

)
.

To simplify, we assume that α is known, the derivatives of L(Θ) with respect
to θ and k are:

dL(Θ)

dθ
=

2n
θ

+n− n
(θ +1)

− 1
αk

n

∑
i=1

xk
i , (5)

dL(Θ)

dk
=

n
k
−2n lnα +2

n

∑
i=1

lnxi−
θ

αk

n

∑
i=1

xk
i lnxi +

θ lnα

αk

n

∑
i=1

xk
i . (6)

The two equations (5) and (6) cannot be solved directly, we must used the
Fisher scoring method. We have[

∂ 2L(Θ)
∂θ 2

∂ 2L(Θ)
∂θ∂k

∂ 2L(Θ)
∂k∂θ

∂ 2L(Θ)
∂k2

]
θ̂=θ0
k̂=k0

[
θ̂ −θ0

k̂− k0

]
=

[
dL(Θ)

dθ
dL(Θ)

dk

]
θ̂=θ0
k̂=k0

, (7)
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where,
∂ 2L(Θ)

∂θ 2 =−2n
θ 2 +

n

(θ +1)2 ,

∂ 2L(Θ)

∂k2 =
−n
k2 −θ

n

∑
i=1

(
xk

i
αk

)
ln2 xi

α
,

and
∂ 2L(Θ)

∂θ∂k
=

∂ 2L(Θ)

∂k∂θ
=−

n

∑
i=1

(
ln

xi

α

)( xk
i

αk

)
.

The equation (7) can be solved iteratively where θ0,k0 are the initial values
of θ ,k.

Existence and uniqueness of the MLE’s

Lemma 1. For any given η > 0, there exists a compact subset K ≡ K (η)

⊂ (0,∞)× (0,∞) such that

{(θ ,k) : L(Θ)≥−η} ⊂ K. (*)

Theorem 2. Suppose that Xi ∼ LP(θ ,α,k), i = 1, ...,n , then the MLEs of
parameters θ and k of Pareto Lindley distribution uniquely exist.

Proof. We need only to show that the MLEs of parameters θ and k
uniquely exist. According to the results of Mäkeläinen et al. (1981), in order
to show the existence and uniqueness of the MLEs of θ and k , it is sufficient
to verify the following two conditions:
i) For any given η > 0, (∗) holds.
ii) The Hessian matrix of L(Θ) is negative definite at every point (θ ,k) ∈
(0,∞)× (0,∞). Condition i is certainly satisfied by Lemma 1. Therefore, to
prove the theorem, we need only to show ii. Then,

xtHx =−2x1x2

n

∑
i=1

(
ln

xi

α

)( xk
i

αk

)
+

(
−2n

θ 2 +
n

(θ +1)2

)
x2

1

+

(
−n
k2 −θ

n

∑
i=1

(
xk

i
αk

)
ln2 xi

α

)
x2

2,

where xt = (x1 x2) and H =

[
∂ 2L(Θ)

∂θ 2
∂ 2L(Θ)
∂θ∂k

∂ 2L(Θ)
∂k∂θ

∂ 2L(Θ)
∂k2

]
, we can check that xtHx ≤ 0,

(H is negative definite).
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3.2 Simulation

In this section, we investigate the behaviour of the ML estimators for a finite
sample size (n). A simulation study consisting of the following steps is being
carried out for each quadruplets ( θ ,α,k,n ), where θ = 0.5,1,2, α = 0.3,0.5,1,
k = 0.75,1,2 and n = 30,50,100.

- Choose the initial values of θ0,α0,k0 for the corresponding elements of
the parameter vector Θ = (θ ,α,k) to specify LP(θ ,α,k ) distribution;

- choose sample size n;
- generate N independent samples of size n from LP( θ ,α,k );
- compute the ML estimate Θ̂n of Θ0 for each of the N samples;
- compute the mean of the obtained estimators over all N samples,

average bias(θ) =
1
N

N

∑
i=1

(
Θ̂i−Θ0

)
,

and the average square error

MSE (θ) =
1
N

N

∑
i=1

(
Θ̂i−Θ0

)2
, see Tables 1and 2.
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Table 1. Average bias of the simulated estimates
θ = 0.75 α = 0.3 k = 1.5 θ = 1.25 α = 0.3 k = 2

bias(θ) bias(α) bias(k) bias(θ) bias(α) bias(k)

n=30 0.2034 0.0192 −0.0768 0.3261 0.0071 0.0210

n=50 0.0788 0.0087 0.02108 0.1460 0.0040 0.0589

n=100 0.0653 0.0058 −0.0066 0.0894 0.0022 −0.0117

θ = 1 α = 1.25 k = 1.5 θ = 1 α = 2 k = 5

bias(θ) bias(α) bias(k) bias(θ) bias(α) bias(k)

n=30 0.5084 0.0494 −0.1130 0.2532 0.0238 −0.0237

n=50 0.1784 0.0269 −0.0220 0.1130 0.0165 0.0132

n=100 0.1048 0.0167 −0.0326 0.0993 0.0066 −0.0567

θ = 1.5 α = 1 k = 1.25 θ = 2 α = 3 k = 1.25

bias(θ) bias(α) bias(k) bias(θ) bias(α) bias(k)

n=30 0.5046 0.0239 0.1046 0.2366 2.05867 10−3 1.6487 10−2

n=50 0.3976 0.0117 0.0826 0.0323 1.5698 10−3 6.2404 10−3

n=100 0.2004 0.0073 0.0095 0.0789 3.7259 10−5 1.9747 10−3

θ = 4 α = 3 k = 3 θ = 1.5 α = 5 k = 7

bias(θ) bias(α) bias(k) bias(θ) bias(α) bias(k)

n=30 1.4481 0.0094 0.5102 0.4280 0.0251 −0.3361

n=50 0.7441 0.0071 0.5010 0.2127 0.0136 −0.0616

n=100 0.6058 0.0033 0.1447 0.0499 0.0069 0.2307

θ = 0.5 α = 0.3 k = 0.9 θ = 1 α = 0.8 k = 0.5

bias(θ) bias(α) bias(k) bias(θ) bias(α) bias(k)

n=30 0.3240 0.0668 −0.0991 0.1971 0.0896 0.0151

n=50 0.1088 0.0394 0.00431 0.1445 0.0680 0.0057

n=100 0.0520 0.0186 −0.0046 0.0521 0.0376 0.0091

θ = 0.75 α = 0.5 k = 1.25 θ = 3 α = 1.5 k = 2

bias(θ) bias(α) bias(k) bias(θ) bias(α) bias(k)

n=30 0.155 0.0355 −0.0150 1.5423 0.0097 0.1401

n=50 0.1595 0.0258 −0.0374 0.9111 0.0066 0.0729

n=100 0.0827 0.0128 −0.0172 0.5035 0.0032 0.0244
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Table 2. Average MSE of the simulated estimates
θ = 0.75 α = 0.3 k = 1.5 θ = 1.25 α = 0.3 k = 2

MSE(θ) MSE(α) MSE(k) MSE(θ) MSE(α) MSE(k)

n=30 0.0414 3.6786 10−4 5.9026 10−3 0.1063 5.0350 10−5 4.4275 10−4

n=50 6.2155 10−3 7.4996 10−5 4.4426 10−4 2.1316 10−2 1.5794 10−5 3.3969 10−3

n=100 4.2580 10−3 3.3405 10−5 4.3903 10−5 7.9979 10−5 5.0401 10−6 1.3671 10−4

θ = 1 α = 1.25 k = 1.5 θ = 1 α = 2 k = 5

MSE(θ) MSE(α) MSE(k) MSE(θ) MSE(α) MSE(k)

n=30 0.2584 2.4364 10−3 1.2763 10−2 6.4092 10−2 5.6487 10−4 5.6327 10−4

n=50 0.0318 7.2359 10−4 4.8501 10−4 1.2762 10−2 2.7312 10−4 1.7385 10−4

n=100 0.0110 2.7785 10−4 1.065110−3 9.8506 10−3 4.3718 10−5 3.2146 10−3

θ = 1.5 α = 1 k = 1.25 θ = 2 α = 3 k = 1.25

MSE(θ) MSE(α) MSE(k) MSE(θ) MSE(α) MSE(k)

n=30 0.2546 5.7258 10−4 1.093510−2 0.2366 2.05867 10−3 1.6487 10−2

n=50 0.1581 1.3610 10−4 6.8303 10−3 0.0323 1.5698 10−3 6.2404 10−3

n=100 0.0401 5.3779 10−5 9.0554 10−5 0.0789 3.7259 10−5 1.9747 10−3

θ = 4 α = 3 k = 3 θ = 1.5 α = 5 k = 7

MSE(θ) MSE(α) MSE(k) MSE(θ) MSE(α) MSE(k)

n=30 2.0969 8.8911 10−5 0.2603 0.1832 6.3244 10−4 0.1130

n=50 0.5537 5.0155 10−5 0.2510 4.5248 10−2 1.8568 10−4 3.7919 10−3

n=100 0.3670 1.1140 10−5 2.0932 10−2 2.4916 10−3 4.7630 10−5 5.3214 10−2

θ = 0.5 α = 0.3 k = 0.9 θ = 1 α = 0.8 k = 0.5

MSE(θ) MSE(α) MSE(k) MSE(θ) MSE(α) MSE(k)

n=30 0.1050 4.4654 10−3 9.8114 10−5 0.0388 8.0237 10−3 2.2877 10−4

n=50 0.0118 1.5552 10−3 1.8561 10−5 0.0209 4.6262 10−3 3.3000 10−5

n=100 0.0027 3.4546 10−4 2.1128 10−5 0.0027 1.4167 10−3 8.3529 10−5

θ = 0.75 α = 0.5 k = 1.25 θ = 3 α = 1.5 k = 2

MSE(θ) MSE(α) MSE(k) MSE(θ) MSE(α) MSE(k)

n=30 0.0240 1.2623 10−3 2.2451 10−4 2.3788 9.3359 10−5 0.01964

n=50 0.0254 6.6638 10−4 1.4017 10−3 0.8301 4.3801 10−5 5.3191 10−3

n=100 0.0069 1.6307 10−4 2.9504 10−4 0.2535 1.0024 10−5 5.9578 10−4

Table 1 shows how the four biases vary with respect to n. Table 2 shows
how the mean squared errors vary with respect to n. The mean squared
errors for each parameter decrease to zero as n→ ∞. These numerical
results coincide with the established theoretical results.
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4 Application to real data sets

In this section, we give the applicability of LP distribution by considering
three different data sets used by different researchers: Application to wait-
ing times in a queue, Wheaton River Data, Application to bladder cancer
patients, and compare them with different distribution, of which Lindley ex-
ponential, Lindley Weibull, Lindley, Power Lindley (see, Cooray, 2006), ex-
ponential Pareto, Pareto and gamma Lindley distributions. In each case, the
parameters are estimated by maximum likelihood, as described in Section
6, using the R software.

In order to compare the above distributions with Lindley Pareto distribu-
tion, we consider criteria like −2l , AIC (Akaike information criterion), AICC
(corrected Akaike information criterion), BIC (Bayesian information criterion)
and HQIC (Hannan-Quinn information criterion) for the data set. The model
selection is carried out using the following statistics:

AIC =−2LL+2p,CAIC =−2LL+
2pn

n− p−1

BIC =−2LL+ p log(n) and HQIC =−2LL+2p log(log(n))

For instance, it is well known that the AIC statistics favours models with
large number of parameters in contrast to the Bayesian Information Crite-
rion (BIC), which tends to present a better balance between the (negative)
likelihood function and the number of parameters or model complexity.

Remark 3. Kolmogorov Smirnov test cannot be used in this case because
the parameters are being estimated.

4.1 Illustration 1: Application to waiting times in a queue

We consider 100 observations on waiting time as a real example that hap-
pens before the customer received service in a bank. The data set repre-
sents the waiting time (mins) of one hundred (100) bank customers before
service is being rendered. This data has previously been used by Ghitany et
al. (2008a). Table 3 provides the estimated values of the model parameters.
The information criterion values are given in Table 4.
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Table 3. Parameter estimates for 100 bank customers

Distribution Parameters
LP θ̂ = 0.1586 α̂ = 0.801 k̂ = 1.0048
LE θ̂ = 2.6501 λ̂ = 0.152
EP k̂ = 1.5137 α̂ = 0.801 λ̂ = 0.0183
GaL θ̂ = 0.2024 β̂ = 217.72
L θ̂ = 0.187
P α̂ = 0.801 k̂ = 0.4367
LW θ̂ = 0.0003 a = 1.0096 b = 0.0014
PL θ̂ = 0.153 α̂ = 1.0832

Table 4. The -LL, AIC, CAIC, BIC, HQIC for 100 bank customers
Distribution -LL AIC CAIC BIC HQIC
LP 308.9731 621.9462 622.0874 627.6346 623.9423
LE 317.005 638.01 638.1337 643.2203 640.1187
EP 312.1154 628.2308 628.372 633.9192 630.2269
GaL 317.3066 638.6132 638.7369 643.8235 640.7219
L 319.00 640.00 640.0408 642.6052 641.0544
P 381.7586 765.5172 765.5637 767.9945 766.5153
LW 317.3267 640.6534 640.9034 648.4689 643.8165
PL 318.3186 640.6372 641.9156 645.8475 642.7459

4.2 Illustration 2: Wheaton River Data

In this subsection we illustrate the flexibility of the new distribution to model
both heavy tailed and approximately symmetric data, which correspond to
the exceedance of food peaks (in m3/s) of the Wheaton river near Carcross
in Yukon Territory (Canada) of 72 exceedance measures for the years 1958-
1984. These data were analyzed by many authors (see for instance, Akin-
sete et al., 2008). We have chosen the same data in order to compare our
results with other models proposed by these authors. Table 5 provides the
estimated values. The -LL, AIC, CAIC, BIC and HQIC statistics for each
model is provided in Table 6. It can be seen that our proposed distribution
leads to a better fit than any of alternative approaches.
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Figure 1: Estimated densities of the models for data set 1

Table 5. Parameter estimates for Wheaton river flood data
Distribution Parameters
LP θ̂ = 0.1320 α̂ = 0.1001 k̂ = 0.5921
LE θ̂ = 1.1210 β̂ = 0.0622
EP k̂ = 0.9320 λ̂ = 0.0115 α̂ = 0.1001
GaL θ̂ = 0.0821 β̂ = 0.0760
L θ̂ = 0.1531
P α̂ = 0.1002 k̂ = 0.2405
WL θ̂ = 0.0035 a = 0.5922 b = 0.0002
PL θ̂ = 0.3386 α̂ = 0.7001

Table 6. The statistics -LL, AIC, CAIC, BIC, HQIC for Wheaton river flood
data

Distribution -LL AIC CAIC BIC HQIC
LP 249.3267 502.6534 502.7502 508.3418 504.9645
LE 251.5364 507.0728 507.1688 512.7769 509.3904
EP 249.3288 502.6576 502.7544 508.346 504.9687
GaL 252.128 508.256 508.352 513.9601 510.5736
L 264.2118 530.4236 530.4553 533.2756 531.5824
P 303.9486 609.8972 609.9292 612.7414 611.0528
LW 252.3039 510.6078 510.8013 519.1639 514.0842
PL 252.2218 508.4436 508.5396 514.1477 510.7612
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Figure 2: Estimated densities of the models for data set 2

4.3 Illustration 3: Application to bladder cancer patients

We consider a non-controlled data set corresponding to the remission times
(in months) of a random sample of (128) bladder cancer patients. This can-
cer is a disease in which aberrant cells increase without control in the blad-
der and its application in survival analysis has been identified. The data set
was given by Lee and Wang (2003). The results for these data are presented
in Tables 7 and 8.
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Table 7. Parameter estimates for bladder cancer data
Distribution Parameters
LP θ̂ = 0.1229 α̂ = 0.0801 k̂ = 0.6243
LE θ̂ = 1.2292 λ̂ = 0.0962
EP k̂ = 0.9379 λ̂ = 0.0128 α̂ = 0.08
GaL θ̂ = 0.1167 β̂ = 0.1045
L θ̂ = 0.1961
P α̂ = 0.0801 k̂ = 0.2458
WL θ̂ = 0.0027 a = 0.6316 b = 0.0002
PL θ̂ = 0.3855 α̂ = 0.7443

Table 8. The statistics -LL, AIC, CAIC, BIC, HQIC for bladder cancer data
Distribution -LL AIC CAIC BIC HQIC
LP 398.0184 800.0368 800.1336 805.7252 802.3479
LE 401.78 807.564 807.656 813.2641 809.8776
EP 400.3128 804.6256 804.7224 810.314 806.9367
GaL 402.9596 809.9192 810.0152 815.6233 812.2368
L 419.52 841.040 841.0717 843.892 842.1988
P 501.1292 1004.258 1004.29 1007.103 1005.414
WL 401.196 808.392 808.5855 816.9481 811.8684
PL 402.2373 808.4746 808.5706 814.1787 810.7922

According to Tables 4, 6, 8 and Figures 1, 2, 3, we can observe that
LP distribution provide smallest -LL, AIC, CAIC, BIC and HQIC values as
compared to Lindley exponential, Lindley Weibull, Lindley, Power Lindley,
exponential Pareto, Pareto and gamma Lindley distributions, and hence best
fits the data among all the models considered.

5 Conclusion

This work proposes more properties and simulations of the Lindley Pareto
distribution generated by Lindley distribution. We investigate several of its
structural properties such as an expansion for the density function and ex-
plicit expressions for the quantile function, maximum likelihood estimators of
the parameters, mean deviation, and entropy. A simulation study is carried
out to examine the bias and mean square error of the maximum likelihood
estimators of the parameters. Several applications of the model to a real
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Figure 3: Estimated densities of the models for data set 3

data set are presented finally and compared with the fit attained by some
other well-known one, two, three and four parameters. The adequacy of
fits was assessed in terms AIC values, BIC values and density plots. We
can show that the Lindley Pareto distribution can be used quite effectively in
analyzing real lifetime data and actuarial science.
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APPENDIX

(1) Power Lindley distribution

f1(x)= αθ2
(θ+1) (1+xα )xα−1 exp(−θxα )

(2)Lindley Weibull Distribution

f5(x)= αθ2
b(θ+1)(

x
b)

α−1
(

1+( x
b)

α
)

exp
(
−θ( x

b)
α
)

(3) Lindley Distribution

f3(x)= θ2
1+θ

(1+x)exp(−θx)

(4) Lindley Exponential distribution

f4(x)=
λθ2 exp(−λx)

(θ+1) (1−exp(−λx))θ−1(1−ln(1−exp(−λx)))

(5) Pareto Distribution

f6(x)=k αk

xk+1

(6) Exponential Pareto Distribution

f6(x)= λα

k (
x
k )

α−1
e
−λ( x

k )
α

(7) Gamma Lindley distribution

f2(x)=
θ 2((β+βθ−θ)x+1)e−θx

β (1+θ)
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Figure 4: PDF plot for various values of parameters

Figure 5: PDF plot for various values of parameters
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Figure 6: CDF plot for various values of parameters
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THE CHOICE OF NORMALIZATION METHOD 
AND RANKINGS OF THE SET OF OBJECTS 

BASED ON COMPOSITE INDICATOR VALUES 

Marek Walesiak1 

ABSTRACT 

The choice of the normalization method is one of the steps for constructing 
a composite indicator for metric data (see, e.g. Nardo et al., 2008, pp. 19-21). 
Normalization methods lead to different rankings of the set of objects based on 
composite indicator values. In the article 18 normalization methods and 5 
aggregation measures (composite indicators) were taken into account. In the first 
step the groups of normalization methods, leading to identical rankings of the set 
of objects, were identified. The considerations included in Table 3 reduce this 
number to 10 normalization methods. Next, the article discusses the procedure 
which allows separating groups of normalization methods leading to similar 
rankings of the set of objects separately for each composite indicator formula. The 
proposal, based on Kendall’s tau correlation coefficient (Kendall, 1955) and cluster 
analysis, can reduce the problem of choosing the normalization method. Based on 
the suggested research procedure the simulation results for five composite 
indicators and ten normalization methods were presented. Moreover, the 
proposed approach was illustrated by an empirical example. Based on the 
analysis of the dendrograms three groups of normalization methods were 
separated. The biggest differences in the results of linear ordering refer to 
methods n2, n9a against the other normalization methods. 

Key words: variables normalization, rankings, composite indicators, Kendall’s tau 

correlation coefficient, cluster analysis. 

1. Introduction 

Simulation studies, allowing the alignment of linear ordering (ranking) of the 

set of objects, via composite indicators values, procedures (the procedure takes 

into account weights of variables, selected normalization methods and selected 

constructions of aggregation measures), from the perspective of determining the 

correctness (quality) of aggregated variables, were conducted by (Grabiński, 

1984) and (Bąk, 1999). T. Grabiński (see Grabiński, 1984, pp. 58–62; Grabiński, 
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Wydymus and Zeliaś, 1989, pp. 122–123) suggested five groups of correctness 

(quality) measures for determining the value of aggregated variables: 

1. Measures of compatibility of distance matrices calculated for objects in m-
dimensional space of the variables and 1-dimensional space of the 
aggregated variable (3 measures). 

2. Measures based on Pearson product-moment correlation coefficient 
between m variables and the aggregated variable (2 measures). 

3. Measures based on Spearman’s rank correlation coefficient between m 
variables and the aggregated variable (3 measures). 

4. Measures determining an average taxonomic distance of the aggregated 
variable from the m variables (2 measures). 

5. Measures characterizing the variability level and concentration for the 
aggregated variable (2 measures). 

The better a given linear ordering procedure (taking into account weights of 
variables, selected normalization methods and selected constructions of 
aggregation measures), the lower are the values of these measures (Grabiński, 
Wydymus and Zeliaś, 1989, p. 125). The author does not justify substantively the 
introduced measures. The doubts related to their application are presented based 
on two groups of measures. 

The first group of measures covers the selected compatibility functions 
applied in multidimensional scaling (e.g. STRESS-1 function – see Borg and 
Groenen, 2005, p. 42). Based on the distance matrix between objects in m-
dimensional space, such mapping of the set of objects into a set of points in r-

dimensional space is sought (𝑟 < 𝑚, in linear ordering 𝑟 = 1 – of the aggregated 
variable values), which allows achieving the best possible compatibility. The 
objects distant from each other in m-dimensional space shall also remain distant 
in r-dimensional space (1-dimensional). The situation is, however, different in the 
case of linear ordering. A distant object, from the perspective of the initial set of m 
variables, can be found at the same distance from the pattern object. Therefore, 
the distance between them, in terms of the aggregated variable, may equal zero.  

In the second group, e.g. the measure of linear correlation of the aggregated 
variable with diagnostic variables was suggested, which takes the following form 
(the so-called uncertainty coefficient): 

 𝑀4 = 1 −
1

𝑚
∑ 𝑟⋅𝑗

𝑚
𝑗=1 , (1) 

where:𝑟∙𝑗 – linear correlation coefficient for j-th variable with the aggregated 

variable, 
𝑗 = 1, … , 𝑚 – variable number. 

The most preferred value of this measure is 0, when all correlation coefficients 
of diagnostic variables with the aggregated variable equal 1. Such approach is 
missing substantive justification in the case of linear ordering. 

Due to an ambiguous interpretation of correctness (quality) measures for 
determining values of aggregated variables a different approach was used in the 
article.  

There is a growing demand for various rankings of the set of objects (e.g. 
countries, regions) due to, for example, their competitiveness, tourist 
attractiveness, social cohesion, socio-economic development, and environmental 
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pollution. Analyses using aggregate measures require normalization of variable 
values. Normalization methods lead to different rankings of the set of objects 
based on aggregation measures (composite indicators) values. The proposed 
approach allows to objectivize the results of analyses in this area. 

In the article 18 normalization methods and 5 aggregation measures 
(composite indicators) were taken into account. Two elements of the article 
should be considered innovative:  
– identification of groups of normalization methods resulting in identical values 

and identical orderings for the aggregation measures (see Table 3), 
– the proposal of the procedure allowing the separation of the groups of 

normalization methods leading to similar rankings of the set of objects (see 
section 3). 

The proposal, based on Kendall’s tau correlation coefficient and cluster 
analysis, can reduce the problem of choosing the normalization method. Based 
on the suggested research procedure the simulation results were presented. 
Moreover, the proposed approach was illustrated by an empirical example. 

2. Steps for Constructing a Composite Indicator 

The general procedure in linear ordering (ranking) of the set of objects via 
composite indicators values, carried out based on metric data (measured on an 
interval scale and ratio scale)2, takes the following form (see Grabiński, Wydymus 
and Zeliaś, 1989, p. 92; Pawełek, 2008, pp. 110–111; Nardo et al., 2008,  
pp. 19–21): 
a) for methods based on pattern object (there are two types of pattern objects: 

upper pattern – ideal object, upper pole, lower pattern – anti-ideal object, lower 
pole): 

 𝑃 → 𝐴 → 𝑋 → [𝑥𝑖𝑗] → 𝑆𝐷𝑁 → 𝑇𝑤 → 𝑁 → 𝑆𝑀𝑤 → 𝑅, (2) 

where: 

𝑃 – choice of a complex phenomenon (the overriding multidimensional 
phenomenon for ordering A set elements, which is not subject to direct 
measurement), 

𝐴 – choice of objects, 

𝑋 – selection of variables, 

[𝑥𝑖𝑗] – collecting data and the construction of data matrix (𝑥𝑖𝑗 – value for j-th 

variable for i-th object), 

𝑆𝐷𝑁 – identifying preferential variables (stimulant, destimulant, nominant). 𝑀𝑗 

variable is a stimulant (see Hellwig, 1981, p. 48), when for every two of its 

observations 𝑥𝑖𝑗
𝑆 , 𝑥𝑘𝑗

𝑆  referring to objects 𝐴𝑖 , 𝐴𝑘, it takes 𝑥𝑖𝑗
𝑆 >  𝑥𝑘𝑗

𝑆 ⟹ 𝐴𝑖 ≻  𝐴𝑘 (≻ 

means 𝐴𝑖 object domination over  𝐴𝑘 object). 𝑀𝑗 variable is a destimulant (see 

Hellwig, 1981, p. 48), when for every two of its observations 𝑥𝑖𝑗
𝐷 , 𝑥𝑘𝑗

𝐷  referring to 

objects 𝐴𝑖, 𝐴𝑘 take 𝑥𝑖𝑗
𝐷 >  𝑥𝑘𝑗

𝐷 ⟹ 𝐴𝑖 ≺  𝐴𝑘 (≺ means 𝐴𝑘 object domination over 

                                                           
2 The characteristics of measurement scales is presented, e.g. in the studies by (Stevens, 1946; 

Walesiak, 1995; Walesiak, 2011, pp. 13–16). 
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𝐴𝑖 object). Therefore, 𝑀𝑗 variable represents a unimodal nominant (see Borys, 

1984, p. 118), when for every two of its observations 𝑥𝑖𝑗
𝑁 , 𝑥𝑘𝑗

𝑁  referring to 

objects 𝐴𝑖, 𝐴𝑘 (𝑛𝑜𝑚𝑗 means the nominal level of j-th variable) if 𝑥𝑖𝑗
𝑁 , 𝑥𝑘𝑗

𝑁 ≤ 𝑛𝑜𝑚𝑗, 

then 𝑥𝑖𝑗
𝑁 >  𝑥𝑘𝑗

𝑁 ⟹ 𝐴𝑖 ≻ 𝐴𝑘; if 𝑥𝑖𝑗
𝑁 , 𝑥𝑘𝑗

𝑁 > 𝑛𝑜𝑚𝑗, then 𝑥𝑖𝑗
𝑁 >  𝑥𝑘𝑗

𝑁 ⟹ 𝐴𝑖 ≺ 𝐴𝑘, 

𝑇𝑤 – transformation of nominants into stimulants (required for an anti-ideal 
object only). Transformation formulas can be found, e.g. in the study by 
(Walesiak, 2011, p. 18), 

𝑁 – normalization of variable values, 

𝑆𝑀𝑤 – composite indicator calculation by aggregating normalized variables – 
the application of distance measures from pattern object using weights. The 
coordinates of upper pattern object covers the most preferred variable values 
(maximum for a stimulant, minimum for a destimulant). The coordinates of 
lower pattern object cover the least preferred variable values (minimum for a 
stimulant, maximum for a destimulant), 

𝑅 – ordering of objects (ranking) in accordance with the composite indicator 
values. 

b) for methods not based on pattern object: 

 𝑃 → 𝐴 → 𝑋 → [𝑥𝑖𝑗] → 𝑆𝐷𝑁 → 𝑇𝑏 → 𝑁 → 𝑆𝑀𝑏 → 𝑅, (3) 

where: 

𝑇𝑏 – transformation of destimulants and nominants into stimulants. Transformation 
formulas are presented, e.g. in the study by (Walesiak, 2011, p. 18), 

𝑆𝑀𝑏 – composite indicator calculation by aggregating normalized variables – 
averaging normalized variable values using weights.  

In linear ordering, carried out based on metrical data, the choice of the 
normalization method for variable values remains one of the stages. The purpose 
of normalization is to adjust the size (magnitude) and the relative weighting of the 
input variables (see, e.g. Milligan and Cooper, 1988, p. 182). An overview of 
normalization methods for variable values is presented in the study by (Walesiak, 
2014b). Table 1 presents normalization methods of linear transformation (see e.g. 
Jajuga and Walesiak, 2000, pp. 106–107; Zeliaś, 2002, p. 792): 

 𝑧𝑖𝑗 = 𝑏𝑗𝑥𝑖𝑗 + 𝑎𝑗 =
𝑥𝑖𝑗−𝐴𝑗

𝐵𝑗
=

1

𝐵𝑗
𝑥𝑖𝑗 −

𝐴𝑗

𝐵𝑗
 (𝑏𝑗 > 0), (4) 

Table 1. Normalization methods 

Type Method 

Parameter 
Measurement scale 

of variables 

𝐵𝑗 𝐴𝑗 
before 

normalization 
after 

normalization 

n1 Standardization 𝑠𝑗 𝑥̅𝑗 ratio or interval Interval 

n2 
Positional 
standardization 

𝑚𝑎𝑑𝑗 𝑚𝑒𝑑𝑗 ratio or interval Interval 

n3 Unitization 𝑟𝑗 𝑥̅𝑗 ratio or interval Interval 

n3a 
Positional 
unitization 

𝑟𝑗 𝑚𝑒𝑑𝑗 ratio or interval Interval 
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Table 1. Normalization methods (cont.) 

n4 
Unitization with zero 
minimum 

𝑟𝑗 min
𝑖

{𝑥𝑖𝑗} ratio or interval Interval 

n5 
Normalization in 
range [–1; 1] 

max
𝑖

|𝑥𝑖𝑗 − 𝑥̅𝑗| 𝑥̅𝑗 ratio or interval Interval 

n5a 
Positional 
normalization in 
range [–1; 1] 

max
𝑖

|𝑥𝑖𝑗 − 𝑚𝑒𝑑𝑗| 𝑚𝑒𝑑𝑗 ratio or interval Interval 

n6 

Quotient 
transformations 

𝑠𝑗 0 ratio Ratio 

n6a 𝑚𝑎𝑑𝑗 0 ratio Ratio 

n7 𝑟𝑗 0 ratio Ratio 

n8 max
𝑖

{𝑥𝑖𝑗} 0 ratio Ratio 

n9 𝑥̅𝑗 0 ratio Ratio 

n9a 𝑚𝑒𝑑𝑗 0 ratio Ratio 

n10 ∑ 𝑥𝑖𝑗

𝑛

𝑖=1
 0 ratio Ratio 

n11 √∑ 𝑥𝑖𝑗
2

𝑛

𝑖=1
 0 ratio Ratio 

n12 Normalization √∑ (𝑥𝑖𝑗 − 𝑥̅𝑗)
2𝑛

𝑖=1
 𝑥̅𝑗 ratio or interval Interval 

n12a 
Positional 
normalization √∑ (𝑥𝑖𝑗 − 𝑚𝑒𝑑𝑗)

2𝑛

𝑖=1
 𝑚𝑒𝑑𝑗 ratio or interval Interval 

n13 
Normalization with 
zero being the 
central point 

𝑟𝑗

2
 𝑚𝑗 ratio or interval Interval 

𝑥̅𝑗 – mean for j-th variable, 𝑠𝑗 – standard deviation for j-th variable, 𝑟𝑗 – range for j-th 

variable, 𝑚𝑗 =
max

𝑖
{𝑥𝑖𝑗}+min

𝑖
{𝑥𝑖𝑗}

2
 – mid-range for j-th variable, 𝑚𝑒𝑑𝑗 = med

𝑖
(𝑥𝑖𝑗) – median for 

j-th variable, 𝑚𝑎𝑑𝑗 = mad
𝑖

(𝑥𝑖𝑗) – median absolute deviation for j-th variable. 

Source: (Walesiak, 2014b, pp. 364–365). 

where: 

𝑥𝑖𝑗 – value for j-th variable for i-th object, 

𝑧𝑖𝑗 – normalized value for j-th variable for i-th object, 

𝐴𝑗 – shift parameter to arbitrary zero for j-th variable, 

𝐵𝑗 – scale parameter for j-th variable, 

𝑎𝑗 = −𝐴𝑗 𝐵𝑗⁄ , 𝑏𝑗 = 1 𝐵𝑗⁄  – parameters for j-th variable presented in Table 1. 
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Column 1 in Table 1 presents the type of normalization formula adopted as 
the function data.Normalization of clusterSim package (see Walesiak and Dudek, 
2018) of R program (R Core Team, 2018). 

An aggregation measure 𝑆𝑀𝑖 represents the tool for linear ordering methods 
as a sub-function aggregating partial information contained in particular variables 
and determined for each object from the set of objects. Generally, the 
constructions of aggregation measures (composite indicators) can be divided as 
follows (cf. e.g. Grabiński 1984, p. 38): 

– based on pattern object (e.g. Hellwig’s measure of development; GDM1 
distance; TOPSIS measure), 

– not based on pattern object (arithmetic mean, harmonic mean, geometric 
mean; median). 

Table 2 presents five constructions of aggregation measures (composite 
indicators) (four based on pattern object ones to be followed by one not based on 
pattern object) applied for metric data to be used later in the article.  

Table 2.  Constructions of aggregation measures (composite indicators) used for 
linear ordering (ranking) of objects 

No. Name 𝑆𝑀𝑖 

1 

GDM1 distance 
(Walesiak, 2002; 
Jajuga, Walesiak and 
Bąk, 2003) 

1 − 𝐺𝐷𝑀1𝑖
+ =

1

2
+ 

∑ 𝛼𝑗(𝑧𝑖𝑗 − 𝑧𝑤𝑗)(𝑧𝑤𝑗 − 𝑧𝑖𝑗) + ∑ ∑ 𝛼𝑗(𝑧𝑖𝑗 − 𝑧𝑙𝑗)(𝑧𝑤𝑗 − 𝑧𝑙𝑗)𝑛
𝑙=1

𝑙≠𝑖,𝑤

𝑚
𝑗=1

𝑚
𝑗=1

2 [∑ ∑ 𝛼𝑗(𝑧𝑖𝑗 − 𝑧𝑙𝑗)
2

∙ ∑ ∑ 𝛼𝑗(𝑧𝑤𝑗 − 𝑧𝑙𝑗)
2𝑛

𝑙=1
𝑚
𝑗=1

𝑛
𝑙=1

𝑚
𝑗=1 ]

0,5  

2 
Measure of 
development (Hellwig, 
1968; 1972) 

1 −
𝑑𝑖𝑤

+

𝑑̅.𝑤
+ + 2𝑠𝑑

 

3 
TOPSIS measure 
(Hwang and Yoon, 
1981) 

𝑑𝑖𝑤
−

𝑑𝑖𝑤
− + 𝑑𝑖𝑤

+  

4 

GDM1_TOPSIS – 
TOPSIS measure with 
GDM1 distance 
(Walesiak, 2014a) 

𝐺𝐷𝑀1𝑖
−

𝐺𝐷𝑀1𝑖
− + 𝐺𝐷𝑀1𝑖

+ 

5 Arithmetic mean ∑ 𝛼𝑗𝑧𝑖𝑗

𝑚

𝑗=1
 

𝑆𝑀𝑖 – aggregation measure (composite indicator) value for i-th object (the resulting 
aggregate variable has stimulant interpretation), 𝑖, 𝑙 = 1, … , 𝑛 – object number, 𝑤 – 

pattern object number, 𝑗 = 1, … , 𝑚 – variable number, 𝑧𝑤𝑗 – j-th coordinate of a pattern 

object, 𝛼𝑗 – weight for j-th variable (𝛼𝑗 ∈ [0; 1] and ∑ 𝛼𝑗
𝑚
𝑗=1 = 1), 𝑑𝑖𝑤 =

√∑ 𝛼𝑗
2(𝑧𝑖𝑗 − 𝑧𝑤𝑗)

2𝑚
𝑗=1  – weighted Euclidean distance for i-th object from a pattern object, 

𝐺𝐷𝑀1𝑖
− and 𝐺𝐷𝑀1𝑖

+ – GDM1 distance for i-th object from the lower pole (anti-ideal 

object) and the upper pole (ideal object), 𝑑𝑖𝑤
−  and 𝑑𝑖𝑤

+  – weighted Euclidean distance for i-

th object from the lower and upper pole, 𝑑̅.𝑤 =
1

𝑛
∑ 𝑑𝑖𝑤

+𝑛
𝑖=1 , 𝑠𝑑 = √

1

𝑛
∑ (𝑑𝑖𝑤

+ − 𝑑̅.𝑤)
2𝑛

𝑖=1 . 

Source: Author’s compilation. 
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3.  Research Procedure Allowing Separation of the Groups of 
Normalization Methods Resulting in a Similar Linear Ordering of 
a Set of Objects 

The research procedure allowing separation of the groups of normalization 
methods for variable values resulting in a similar linear ordering (ranking) of a set 
of objects covers the following steps: 
1. Linear ordering of the set of objects is performed in accordance with the 

general procedure used in linear ordering methods illustrated in section 2 
(scheme (2) or (3)). Any acceptable methods presented in Table 1 are used in 
the normalization of variable values (for ratio variables 18 normalization 
methods are possible and for interval variables – 10 normalization methods). 

2. Object ordering obtained for the acceptable normalization methods is 
compared with the application of Kendall’s tau correlation coefficient Γ𝑟𝑠 (see 
Kendall and Buckland, 1986, p. 266; Kendall, 1955, p. 19; Walesiak, 2011, 
pp. 36-38). Kendall’s tau correlation coefficient takes values in interval [−1; 1]. 
The value of 1 means complete compatibility of orderings, whereas the value  
−1 implies their complete opposition. For the purposes of cluster analysis, 
Kendall’s tau correlation coefficients are transformed into distances using the 
following formula: 

 𝑑𝑟𝑠 =
1

2
(1 − Γ𝑟𝑠), (5) 

where: 

 𝑑𝑟𝑠 ∈ [0; 1], 𝑑𝑟𝑠 = 0, when Γ𝑟𝑠 = 1 and  𝑑𝑟𝑠 = 1, when Γ𝑟𝑠 = −1, 

𝑟, 𝑠 – numbers of normalization methods. 

3. Cluster analysis is carried out based on the distance matrix [𝑑𝑟𝑠], which allows 
separating groups of normalization methods for variable values resulting in 
similar linear ordering of a set of objects. In this case it is possible to use one 
of many classification methods (see, e.g. Everitt et al., 2011). The 
agglomerative hierarchical method of the farthest neighbour clustering was 
applied in the article. 
Certain observations can be put forward regarding normalization methods 

presented in Table 3 for aggregation measures (𝑆𝑀𝑖) obtained using the following 
distance measures: GDM1, Hellwig’s measure of development, TOPSIS, 
GDM1_TOPSIS and 𝑆𝑀𝑖 taking the form of an arithmetic mean. 

Table 3.  Groups of normalization methods resulting in identical values and 

identical orderings for the aggregation measures (𝑆𝑀𝑖) from Table 2 

Groups 
of 

methods 

Identical 𝑆𝑀𝑖 values 
Identical orderings 

(rankings) 

Distances: GDM1 and 
GDM1_TOPSIS 

Hellwig’s measure of 
development, TOPSIS 

all 𝑆𝑀𝑖 constructions 

from Table 2 

A n3, n3a, n4, n7, n13 n3, n3a, n4, n7 n3, n3a, n4, n7, n13 

B n1, n6, n12 n1, n6 n1, n6, n12 

C n2, n6a n2, n6a n2, n6a 

D n9, n10 – n9, n10 

Source: Author’s compilation. 
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Identical 𝑆𝑀𝑖 values (and thus identical orderings) for A, B, C and D groups of 
formulas in the case of GDM1 and GDM1_TOPSIS distance measures result from 
the fact that GDM1 distance does not depend on the shift parameter used in 
normalization methods (4). Furthermore, multiplying normalized values by a 
constant does not change GDM1 distance: 

– for n13 formula the constant equals 2:  

 𝑧𝑖𝑗 =
𝑥𝑖𝑗

𝑟𝑗 2⁄
−

𝑚𝑗

𝑟𝑗 2⁄
= 2 (

𝑥𝑖𝑗

𝑟𝑗
−

𝑚𝑗

𝑟𝑗
), (6) 

– for n12 formula the constant equals √
1

𝑛−1
:  

 𝑧𝑖𝑗 =
𝑥𝑖𝑗

√∑ (𝑥𝑖𝑗−𝑥̅𝑗)
2𝑛

𝑖=1

−
𝑥̅𝑗

√∑ (𝑥𝑖𝑗−𝑥̅𝑗)
2𝑛

𝑖=1

= √
1

𝑛−1
(

𝑥𝑖𝑗

𝑠𝑗
−

𝑥̅𝑗

𝑠𝑗
), (7) 

– for n10 formula the constant equals 1 𝑛⁄ :  

 𝑧𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑛
𝑖=1

=
1

𝑛

𝑥𝑖𝑗

𝑥̅𝑗
. (8) 

Identical 𝑆𝑀𝑖 values (and thus identical orderings), in the case of Hellwig’s 
measure of development and TOPSIS, result from the fact that Euclidean 
distance applied in these measures does not depend on the shift parameter used 
in normalization methods, but only on the scale parameter which is identical for A, 
B and C groups of methods (see Pawełek, 2008, p. 94).  

Additionally, n13 is present in A group of normalization methods, while in 
group B – n12 formula. Two normalization methods n9 and n10 result in identical 
object ordering. For n13, n12 and n10 formulas normalized values are multiplied 
by a constant. This causes a change in Euclidean distance, however, does not 
change the ordering of objects. 

In the case of a aggregation measure, taking the form of an arithmetic mean, 
identical orderings result from the fact that the shift parameter, used in 
normalization methods, does not change the order of objects (in fact a constant is 
subtracted from 𝑆𝑀𝑖 value of each object). Multiplying 𝑆𝑀𝑖 value by a constant 
does not alter the order of objects either. For example, for n1, n6 and n12 
formulas from group B the following is obtained: 

 for n1: 𝑆𝑀𝑖 = ∑ (
𝑥𝑖𝑗

𝑠𝑗
−

𝑥̅𝑗

𝑠𝑗
)𝑚

𝑗=1 = ∑
𝑥𝑖𝑗

𝑠𝑗

𝑚
𝑗=1 − ∑

𝑥̅𝑗

𝑠𝑗

𝑚
𝑗=1 ,       (9) 

   for n6: 𝑆𝑀𝑖 = ∑
𝑥𝑖𝑗

𝑠𝑗

𝑚
𝑗=1 ,               (10) 

for n12: 𝑆𝑀𝑖 = ∑ (
𝑥𝑖𝑗

√∑ (𝑥𝑖𝑗−𝑥̅𝑗)
2𝑛

𝑖=1

−
𝑥̅𝑗

√∑ (𝑥𝑖𝑗−𝑥̅𝑗)
2𝑛

𝑖=1

) = √
1

𝑛−1
(∑

𝑥𝑖𝑗

𝑠𝑗

𝑚
𝑗=1 − ∑

𝑥̅𝑗

𝑠𝑗

𝑚
𝑗=1 )𝑚

𝑗=1 . (11) 

The order of objects, determined in line with n6 normalization method, does 
not change n1 formula (subtracting a constant from each 𝑆𝑀𝑖 value obtained for 
n6 formula) and for n12 formula (here subtracting a constant takes place and next 
multiplying by a different constant). 
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4. The Results of Simulation Analyses 

The research procedure discussed in section 3 was used in simulation 
analyses, which allows separating groups of normalization methods for variable 
values resulting in similar linear orderings of a set of objects using a specific 
aggregation measure (𝑆𝑀𝑖): 
1. Multivariate normal distribution was used to generate data (function rmnorm 

from the mnormt package – see Genz and Azzalini, 2016) based on models 
presented in Table 4. A simplifying assumption was adopted that the set of 
analysed variables includes stimulants only. Correlation with aggregate 
variable (vector of 𝑆𝑀𝑖 values) is positive for stimulants (see Grabiński, 1992, 
p. 138). Due to the transitivity of variables correlation3 (Hellwig, 1976) it was 
adopted that the correlation between stimulants will also be positive. 
Therefore, models in Table 4 take values of correlation coefficients from 0.2 to 
0.95 between variables in data matrix. The generated data differ in terms of 
variables’ order of magnitude (see mean values for variables) and the 
variability measured by the coefficient of variation (0.20, 0.16, 0.24, 0.10). 

Table 4. The characteristics of models in simulation analysis  

No. 
Mean values 
for variables 

Covariance matrix Σ Correlation matrix [𝑟𝑗𝑙] 

1 (10, 125, 250, 1000) [

4 14 42 70
14 400 420 700
42 420 3600 2100
70 700 2100 10000

] 
𝑟𝑗𝑗 = 1, 𝑟𝑗𝑙 = 0.35 

1 ≤ 𝑗, 𝑙 ≤ 4 

2 (10, 125, 250, 1000) [

4 26 78 130
26 400 780 1300
78 780 3600 3900

130 1300 3900 10000

] 
𝑟𝑗𝑗 = 1, 𝑟𝑗𝑙 = 0.65 

1 ≤ 𝑗, 𝑙 ≤ 4 

3 (10, 125, 250, 1000) [

4 38 114 190
38 400 1140 1900

114 1140 3600 5700
190 1900 5700 10000

] 
𝑟𝑗𝑗 = 1, 𝑟𝑗𝑙 = 0.95 

1 ≤ 𝑗, 𝑙 ≤ 4 

4 (10, 125, 250, 1000) [

4 36 90 120
36 400 1080 1000
90 1080 3600 3600

120 1000 3600 10000

] [

1 0.9 0.75 0.6
0.9 1 0.9 0.5

0.75 0.9 1 0.6
0.6 0.5 0.6 1

] 

5 (10, 125, 250, 1000) [

4 8 60 140
8 400 480 1200

60 480 3600 1800
140 1200 1800 10000

] [

1 0.2 0.5 0.7
0.2 1 0.4 0.6
0.5 0.4 1 0.3
0.7 0.6 0.3 1

] 

Source: Author’s compilation. 

2. Normalization of variables was carried out using the methods from Table 1. 
Due to the fact that the groups of A, B, C and D normalization methods result 

                                                           
3 Let Y  represent the aggregated variable, whereas 𝑋1 and 𝑋2 two variables from the data matrix. For 

𝑟𝑋1𝑌 = 0.9 and 𝑟𝑋2𝑌 = 0.95 correlation coefficient 𝑟𝑋1𝑋2
 can only take values in the interval 0.719 ≤

𝑟𝑋1𝑋2
≤ 0.991. On the other hand, for 𝑟𝑋1𝑌 = 0.6 and 𝑟𝑋2𝑌 = 0.8, correlation coefficient 𝑟𝑋1𝑋2

 can only 

take values in the interval 0 ≤ 𝑟𝑋1𝑋2
≤ 0.96. 
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in identical ordering, further analysis covered first methods from the indicated 
groups (n1, n2, n3, n9) and the other methods (n5, n5a, n8, n9a, n11, n12a). 

3. Linear ordering was conducted using five aggregation measures (𝑆𝑀𝑖) listed in 
Table 2 (equal weights were used for variables).  

4. For each individual aggregation measure (𝑆𝑀𝑖) the ordering of objects was 
compared by applying 10 normalization methods. Kendall’s tau correlation 
coefficient Γ𝑟𝑠 was used to compare the ordering of objects, which gave 10 x 
10 matrix. 

5. Cluster analysis of normalization methods for variable values was carried out 
for 10 x 10 matrix. For the purposes of the analysis Kendall’s tau correlation 
coefficient was transformed into distances using formula (5). The 
agglomerative hierarchical method of the farthest neighbour clustering was 
applied to separate groups of normalization methods for variable values 
resulting in similar linear orderings of the set of objects using a specific 𝑆𝑀𝑖. 

20 sets of data were generated for each model from Table 4, the procedure 
was conducted in accordance with points 2-5 divided into 2, 3 and 4 classes and 
next the obtained classification results of five aggregation measures (𝑆𝑀𝑖) from 
Table 2 were compared using the adjusted Rand index (see Hubert and Arabie, 
1985). Table 5 presents the outcome of compatibility comparison for cluster 
analysis results of normalization methods for five aggregation measures (𝑆𝑀𝑖) 
taking the mean value of the adjusted Rand index. 

Table 5. Compatibility comparison of cluster analysis results of normalization 

methods for five aggregation measures (𝑆𝑀𝑖) taking the mean value of 
the adjusted Rand index 

Model 1 Model 2 

    1        2          3         4         5 
1  1.000  0.914  0.886  0.891  0.870 
2  0.914  1.000  0.916  0.922  0.865 
3  0.886  0.916  1.000  0.890  0.908 
4  0.891  0.922  0.890  1.000  0.859 

5  0.870  0.865  0.908  0.859  1.000 

    1         2         3         4         5 
1  1.000  0.922  0.841  0.826  0.813 
2  0.922  1.000  0.833  0.839  0.834 
3  0.841  0.833  1.000  0.899  0.824 
4  0.826  0.839  0.899  1.000  0.867 

5  0.813  0.834  0.824  0.867  1.000 

Model 3 Model 4 

    1        2          3         4         5 
1  1.000  0.865  0.800  0.824  0.823 
2  0.865  1.000  0.801  0.774  0.808 
3  0.800  0.801  1.000  0.853  0.806 
4  0.824  0.774  0.853 1.000  0.806 

5  0.823 0.808  0.806  0.806  1.000 

    1         2         3         4         5 
1  1.000  0.884  0.885  0.893  0.862 

2  0.884  1.000  0.861  0.817  0.844 
3  0.885  0.861  1.000  0.892  0.873 
4  0.893  0.817  0.892  1.000  0.896 
5  0.862  0.844  0.873  0.896  1.000 

Model 5 Mean (models 1-5) 

    1        2          3         4         5 
1  1.000  0.955  0.879  0.898  0.869 
2  0.955  1.000  0.870  0.930  0.877 

3  0.879  0.870  1.000  0.908  0.857 
4  0.898  0.930  0.908  1.000  0.878 

5  0.869  0.877  0.857  0.878  1.000 

    1         2         3         4         5 
1  1.000  0.908  0.858  0.866  0.847 
2  0.908  1.000  0.856  0.856  0.845 
3  0.858  0.856  1.000  0.888  0.853 
4  0.866  0.856  0.888  1.000  0.861 

5  0.847  0.845  0.853  0.861  1.000 

1 – GDM1 distance, 2 – Hellwig’s measure of development, 3 – TOPSIS measure, 
4 – TOPSIS measure with GDM1 distance, 5 – arithmetic mean. Minimum values are 
underlined, maximum values are in bold (excluding the main diagonal).  

Source: Author’s compilation using R program. 



STATISTICS IN TRANSITION new series, December 2018 

 

703 

Having analysed the obtained results of compatibility comparison for cluster 
analysis of normalization methods for five aggregation measures (𝑆𝑀𝑖), taking the 
mean value of the adjusted Rand index, the following conclusions can be drawn: 
1. Values of the adjusted Rand index for models 1-5 vary in the interval 

[0.774, 0.955]. Mean values of the adjusted Rand index taken from five models 

are in the interval [0.845, 0.908]. Therefore, the results of cluster analysis of 
normalization methods for the analysed aggregation measures (𝑆𝑀𝑖) are 
similar to each other. 

2. Dendrite of cluster analysis results’ similarity of normalization methods for five 
aggregation measures is presented in Figure 1 (developed based on the 
matrix for models 1-5 from Table 5).  

 

0.908

2

1 40.866

3

0.888

50.861

 

Figure 1. Dendrite of cluster analysis results’ similarity of normalization methods 
for five aggregation measures 

1 – GDM1 distance, 2 – Hellwig’s measure of development, 3 – TOPSIS measure, 
4 – TOPSIS measure with GDM1 distance, 5 – arithmetic mean. 

Source: Author’s compilation. 

5. Empirical Research Results 

The evaluation of tourism competitiveness level of the Sudety communes in 
Poland, covering 52 out of 169 communes in Lower Silesia region, was carried 
out in the article (Gryszel and Walesiak, 2018). The Sudety communes are 
located in the geographical area of the Sudety in the southern part of Lower 
Silesia region. They are characterized by the most valuable tourism advantages, 
where the tourism function either dominates or is of great importance among 
other economic functions in a commune. The following variables were used in the 
study: 

x1 – beds in hotels per 1 km2 of a commune area, 

x2 – beds in other accommodation facilities per 1 km2 of a commune area, 

x3 – number of nights of resident tourists (Poles) falling per day per 1000 
inhabitants of a commune, 

x4 – number of nights of foreign tourists falling per day per 1000 inhabitants 
of a commune, 

x5 – communal expenditure for tourism per 1000 inhabitants in PLN, 

x6 – funds obtained from the European Union and from the state budget to 
finance the EU programs and projects per 1 inhabitant in PLN, 
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x7 – number of tourist economy entities per 1000 inhabitants of a commune 
(natural persons conducting economic activity), 

x8 – number of tourist economy entities per 1000 inhabitants of a commune 
(legal persons and organizational entities without legal personality). 

All variables represent stimulants. Statistical data were collected in 2012 and 
retrieved from the Local Data Bank (LDB). The research procedure discussed in 
section 3 was used in the article, which allows separating the groups of methods 
for the normalization of variable values, resulting in similar linear ordering of the 
set of communes in terms of their tourism competitiveness level. The analysed 
variables are measured using ratio scale, therefore all normalization methods 
listed in Table 1 are acceptable.  

The results of linear ordering compatibility for 52 Sudety communes, in terms 
of their tourism competitiveness level, using 18 normalization methods and 5 𝑆𝑀𝑖 
from Table 2 are presented in Figure 1. Due to the fact that the groups of A, B, C 
and D normalization methods result in identical orderings, further analysis 
covered first formulas from the indicated groups (n1, n2, n3, n9) and other 
formulas (n5, n5a, n8, n9a, n11, n12a). 

Regardless of the adopted 𝑆𝑀𝑖 construction, the results of linear ordering 
compatibility for 52 Sudety communes, in terms of their tourism competitiveness 
level, using 10 normalization methods are analogical in this case. Table 6 
contains compatibility comparison of cluster analysis results of normalization 
methods (after splitting the dendrograms from Figure 2 into 2, 3 and 4 clusters) 
for five aggregation measures (𝑆𝑀𝑖) taking the mean value of the adjusted Rand 
index. 

Table 6. Compatibility comparison of cluster analysis results of normalization 
methods (after splitting the dendrograms into 2, 3 and 4 clusters) for 
five aggregation measures (𝑆𝑀𝑖) taking the mean value of the adjusted 
Rand index. 

Aggregation measure 1 2 3 4 5 

1 1.0000 1.0000 0.7674 0.7674 0.7674 

2 1.0000 1.0000 0.7674 0.7674 0.7674 

3 0.7674 0.7674 1.0000 1.0000 1.0000 

4 0.7674 0.7674 1.0000 1.0000 1.0000 

5 0.7674 0.7674 1.0000 1.0000 1.0000 

1 – GDM1 distance, 2 – Hellwig’s measure of development, 3 – TOPSIS measure, 4 – 
TOPSIS measure with GDM1 distance, 5 – arithmetic mean. 

Source: Author’s compilation. 
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Taking into account results from Table 6 the following conclusions can be 
drawn: 
1. The results of cluster analysis of normalization methods (after splitting the 

dendrograms into 2, 3 and 4 clusters) for TOPSIS measure, TOPSIS measure 
with GDM1 distance, and arithmetic mean are the same. 

2. The results of cluster analysis of normalization methods (after splitting the 
dendrograms into 2, 3 and 4 clusters) for GDM1 distance and Hellwig’s 
measure of development are the same. 

3. The differences between groups of aggregation methods listed in points 1 and 
2 relate to the division of dendrograms into two clusters. 

Based on the analysis of the dendrograms in Figure 2 three groups of 
normalization methods were separated: 

group 1 (6 methods): n1, n3, n5, n5a, n8, n12a, 

group 2 (2 methods): n2, n9a, 

group 3 (2 methods): n9, n11. 

The results presented in Figure 2 regarding the adopted 𝑆𝑀𝑖 construction 
differ, for the separated groups of normalization methods, in the level of class 
links in a dendrogram. 

The biggest differences in the results of linear ordering refer to methods n2, 
n9a against the other normalization methods. 

The presented proposal allows reducing the problem of a normalization 
method selection. Significant differences between the results of linear ordering 
appear in the analysed case for the normalization methods from different groups. 

In the current practice, not considering the proposed procedure, selecting 18 
methods for normalizing variable values for metric data, we had 18 proposals to 
choose from (see Table 1). The considerations included in Table 3 reduce this 
number to 10 normalization methods. The choice still becomes arbitrary and 
difficult to justify. The proposed approach does not completely solve the problem, 
but it allows distinguishing groups of normalization methods leading to similar 
results of linear ordering (rankings) of objects. In the analysed example, we 
already have three types of normalization methods to choose from (normalization 
methods in the same groups give similar results of linear ordering of objects). 
Therefore, the presented proposal allows limiting the problem of selecting the 
normalization method of variable values. 
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Figure 2. The results of linear ordering compatibility for 52 Sudety communes in 
terms of their tourism competitiveness level using 10 normalization 
methods and 5 aggregation measures (dendrograms of normalization 
methods similarity) 

Source: Author’s compilation using R program. 
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6. Conclusions 

Normalization methods lead to different rankings of the set of objects based 
on aggregation measure (composite indicator) values. The study includes 18 
normalization methods and 5 aggregation measures (composite indicators).  

The groups of normalization methods were indicated, which results in identical 
𝑆𝑀𝑖 values and identical orderings for 𝑆𝑀𝑖 obtained using the following distance 
measures: GDM1, Hellwig’s measure of development, TOPSIS, GDM1_TOPSIS 
and aggregation measure (𝑆𝑀𝑖) taking the form of arithmetic mean. Due to the 
fact that the groups of A, B, C and D normalization methods result in identical 
ordering (see Table 3), further analysis covered 10 methods of normalization: n1, 
n2, n3, n5, n5a, n8, n9, n9a, n11, n12a. 

The article discusses the proposal of research procedure (section 3), based 
on Kendall’s tau correlation coefficient and cluster analysis, which allows reducing 
the problem of normalization method selection for variable values.  

The effects of simulation studies for 5 aggregation measures and 10 
normalization methods were presented (section 4). Mean values of the adjusted 
Rand index taken from five models are in the interval [0.845, 0.908]. Therefore, 
the results of cluster analysis of normalization methods for the analysed 
aggregation measures are similar to each other (dendrite of cluster analysis 
results’ similarity of normalization methods for five aggregation measures is 
presented in Figure 1). 

The results of conducted research were illustrated by an empirical example 
presenting the application of five aggregation measures and ten normalization 
methods in linear ordering of Lower Silesian districts in terms of their tourism 
attractiveness level. Based on the analysis of the dendrograms three groups of 
normalization methods were separated. The biggest differences in the results of 
linear ordering refer to methods n2, n9a against the other normalization methods.  

The author’s own scripts, prepared in R environment, were applied in the 
calculations. 
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WOMEN AND MEN IN POLAND USING SEMIPARAMETRIC 

REWEIGHTING APPROACH 
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ABSTRACT 

In this paper, we compare the income distributions for women and men in Poland. 
The gender wage gap can only be partially explained by different men’s and 
women’s characteristics. The unexplained part of the gap is usually attributed to 
the wage discrimination. The objective of the study is to extend the Oaxaca-
Blinder decomposition procedure for the pay gap along the whole income 
distribution. To describe differences between two distributions of incomes we use 
a semiparametric reweighting approach (DiNardo, Fortin, Lemieux, 1996). The 
reweighting factor is computed for each observation by estimating a logit model for 
probabilities of belonging to men’s or women’s group. Then, we estimate 
probability density functions, including the counterfactual density function, using 
kernel density methods. This allows us to decompose the inequalities into the 
explained and unexplained components. The analysis is based on the EU-SILC 
data for Poland in 2014. 

Key words: gender wage gap, differences in distributions, decomposition 

methods. 

1. Introduction 

There is now a growing number of papers analysing the differences in income 
distributions for women and men. The past studies in Poland were mostly focused 
on a simple comparison of average values for incomes by using the Oaxaca-
Blinder method. The findings of these studies show that males earn substantially 
higher wages than females (e.g. Słoczyński, 2012; Śliwicki, Ryczkowski, 2014). 
Differences in income distributions have been studied by Newell, Socha (2005), 
Rokicka, Ruzik (2010), Landmesser, Karpio, Łukasiewicz (2015), Landmesser 
(2016). They utilized such a decomposition method as a quantile regression 
method (Machado, Mata, 2005). The obtained results showed that differences 
between wages of men and women are the biggest in the right part of the 
distribution. Also, the other methodological approaches have been suggested in 
the economic decomposition literature: the residual imputation approach (Juhn, 
Murphy, Pierce, 1993), hazard model approach (Donald, Green, Paarsch, 2000), 
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RIF-regression (recentered influence function) method (Firpo, Fortin, Lemieux, 
2009). 

The objective of this study is to extend the income gap analysis to the 
whole distribution and to decompose the income inequalities between 
women and men in Poland into the explained and unexplained 
components. In our paper, we suggest to describe differences between 
two distributions using a semiparametric reweighting approach proposed 
by DiNardo, Fortin, Lemieux (1996). In this method the counterfactual 
density function is estimated employing the reweighting factor. The 
analysis will be based on the EU-SILC data for Poland in 2014. 

2. Analysis method 

This section outlines the applied methodology. First, the Oaxaca-Blinder 
decomposition of mean wages differences is presented. Then, we explain the 
idea of the reweighting approach to the decomposition that allows analysing the 
differences along the whole distribution. 

2.1. Oaxaca-Blinder Decomposition of Mean Wages Differences 

The Oaxaca-Blinder decomposition method may be applied whenever there is 
a need to explain the differences between the expected values of dependent 
variable in two comparison groups (Oaxaca, 1973; Blinder, 1973). 

Let two groups A and B, an outcome variable y and a set of predictors X be 
given. In this case the variable y may present log wages and predictors X may 
concern such individual characteristics of people as age, education level or work 
experience. The expected value of y conditionally on X is a linear function of X: 

BAgvXy gggg ,,  
,              (1) 

where Xg are the characteristics of people in group g and g are the coefficients 

related to these characteristics. The estimated expected value of income ŷ  in 
each group is: 

BAgXy ggg ,,ˆˆ  
                                              (2) 

The idea of the Oaxaca-Blinder decomposition of the difference between 

expected values of incomes in each of groups Aŷ
 and Bŷ

is as follows: 


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 
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ˆ
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ˆ

ˆ)(ˆˆˆ







 BABABABBAA XXXXX

          (3) 

The above equation is based on one group’s characteristics and the 
estimated coefficients of another group’s equation. The first term on the right-
hand side of the equation gives the effect of characteristics and expresses the 
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difference of the potentials of both groups (the so-called explained, endowments or 
composition effect). The second term represents the effect of differences in the 
estimated parameters (unexplained by characteristics of groups). This is typically 
interpreted as discrimination. 

One important disadvantage of the Oaxaca-Blinder decomposition method is 
that it focuses only on average effects, and this may lead to a misleading 
assessment if the effects of covariates vary along the entire distribution (Salardi, 
2012). 

2.2. Decomposition Along the Entire Distribution 

The idea to avoid the drawback of the Oaxaca-Blinder decomposition method 
may be to extend the mean decomposition to the case of differences between 
distributions or density functions of income. This approach is the basis of most 
decomposition methods. It requires the counterfactual distribution to be 
considered. In general, the counterfactual distribution is interpreted as a 
distribution for people from group B if they were described by characteristics of 
people from group A (in our case this is the distribution of income for women with 
characteristics of men). 

In terms of density functions the difference can be expressed as follows: 

    
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where fM(y) is the density function of income for men, fW(y) and fC(y) are the 
density functions for women and counterfactual distribution respectively. 

In turn, the application of the cumulative distribution function of incomes 
allows writing the difference between the men and women density function of 

income )(ˆ)(ˆ yFyF WM   with the counterfactual distribution )(ˆ yFC  in the 

following form: 
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             (5) 

2.3. Semiparametric Reweighting Approach 

The semiparametric reweighting approach to the decomposition of distribution 
differences was introduced by DiNardo, Fortin and Lemieux in 1996 (DiNardo, 
Fortin, Lemieux, 1996). The method allows performing the decomposition of 
differences along the entire distributions in terms of density function (according to 
expression (4)).  

The method requires the estimation of probability density functions for groups 
and for the counterfactual distribution. For this purpose, the kernel density 
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estimation methods are applied. The kernel estimator of the density function for 
each group (in the case g = W for women and g = M for men) is as follows: 
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where K is the kernel function, N is the number of people in the group and h is a 
smoothing parameter called bandwidth. The value of h is chosen to minimize the 
mean squared error. In this method the counterfactual density function is also 
estimated employing the kernel density estimation but, additionally, the 

reweighting factor )(ˆ X is required. Then, the kernel density estimator for the 

counterfactual density is: 
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The counterfactual distribution interpretation in the reweighting approach is 
different than in most decomposition methods. In this case, the counterfactual 
distribution is the distribution for women that consists of the influence of the whole 
sample characteristics. 

The impact of the characteristics of the whole sample is ensured by the 

construction of the reweighting factor )(ˆ X , which is defined as (Fortin, Lemieux, 

Firpo, 2010): 
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where DM = 1means that the person is a man and DM = 0 is a woman.  

By applying Bayes’ rule the reweighting factor can be written as: 
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                                     (9) 

The reweighting factor value )(ˆ X  can be computed for each observation by 

estimating a logit or probit model for conditional probabilities of belonging to 

groups M and W ( )1(ˆ XDP M   and )1(ˆ1)0(ˆ XDPXDP MM  ) and from the 

classical definition of probability using the sample proportions in both groups  

( )1(ˆ MDP  and )0(ˆ MDP ). 

The advantages of the reweighting approach are the opportunity to compare 
the differences along the whole distribution as well as simplicity and efficiency. On 
the other hand, a limitation of this method is that it is impossible to extend this 
approach to the case of the detailed decomposition due to the estimation of the 
logit (or probit) model. 
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3. Results of Empirical Analysis 

This section is devoted to introduce the results of the empirical analysis. First, 
the data used for analysis are presented. Then, we provide estimated density 
functions for women and men as well as the construction of the counterfactual 
distribution. Finally, the results of the decomposition of the difference in incomes 
in both groups are discussed. 

3.1. Database 

We employ data from the European Union Statistics on Income and Living 
Conditions (EU-SILC) for Poland in 20143. It is the source of microdata on 
income, poverty, social exclusion and living conditions. The EU-SILC belongs to 
the European Statistical System (ESS). 

Our data consist of a sample of 4727 women and 5177 men containing 
information on annual income, natural logarithm annual income as well as on 
persons’ attributes such as  age, gender, marital status, education level, 
information if it is full-time or part-time job and other describing the type of 
contract. The applied variables with description and possible values are 
presented in the table below. 

Table 1.  Description of the variables 

Variable Description and possible values 

age age in years 

men sex, 1 – man, 0 – woman 

married marital status, 1 – married, 0 – unmarried  

educlevel educational level, 1 – primary, …, 5 - tertiary 

parttime 1  person working part-time, 0  person working full-time  

big 
number of persons working at the local unit, 

1  more than 10 persons, 0  less than 11 persons  

permanent 
type of contract, 1  permanent job/work contract of unlimited duration, 

0  temporary contract of limited duration  

manager managerial position, 1  supervisory, 0  non-supervisory  

yearswork number of years spent in paid work  

income gross annual income in € (including benefits) 

ln_income natural logarithm gross annual income in € 

3.2. Density functions of income for men and women 

We apply the kernel estimation method to obtain the density function of 
income for women and men. In our analysis the logarithm of the annual income is 
the outcome variable. Two kernel functions – Epanechnikov and Gaussian – are 

                                                           
3 This database was obtained under Eurostat project number 234/2016-EU-SILC. 
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applied. We prefer Epanechnikov kernel for the reason it is optimal in a mean 
square error sense (Epanechnikov, 1969). The kernel function is as follows: 
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The estimated density functions of income for men and women are compared 
in Figure 1a. The income distribution for men is shifted to the higher values of the 
logarithm of income related to the distribution for women. This fact may be 
interpreted as meaning that men earn more than women. 

 

  

Figure 1.  The estimated density functions of the logarithm of income for women 
and men (a) and the difference between the density function of men 
and women (b) 

 

The difference between the density function for men and women 

)(ˆ)(ˆˆ yfyf WM

f 
is presented in Figure 1b. We can see a greater 

participation of women in the case of lower wages. On the other hand, there are 
more men for higher values of income. This is also the evidence that men earn 
more. 

3.3. Reweighting Factor Computation 

For the aim of the estimation of the counterfactual density function, the 

reweighting factor )(ˆ X  is required. It may be written as in formula (9): 
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The probabilities )1(ˆ MDP  and )1(ˆ1)0(ˆ  MM DPDP are computed 

from the classical definition of probability using the groups and sample size as 

follows: 5227,0
9904

5177
)1(ˆ MDP and 4773,0

9904

5177
1)0(ˆ MDP . 

To determine the conditional probability )1(ˆ XDP M  , the logit model is 

estimated. The logarithm of the maximum likelihood function is −6359.066, AIC = 
12736. In the Likelihood ratio test the hypothesis that model coefficients are equal 

to 0 was rejected (p-value < 16102.2  ).  The estimated parameters for each of 

variables are presented in Table 2. 

Table 2.  Results of logit model estimation 

Variable Parameter p-value 

age -0.089004 < 2e-16*** 

educlevel -0.422461 < 2e-16*** 

married 0.095614 0.05466 . 

yearswork 0.085015 < 2e-16*** 

permanent -0.143589 0.00505 ** 

parttime -0.861151 < 2e-16*** 

manager 0.488480 < 2e-16*** 

big 0.162550 0.00378 ** 

constance 3.593760 < 2e-16*** 

where significance levels codes are as follows: *** 0,001; ** 0,01; * 0,05; . 0,1. 

 

Based on the above results, it can be easily seen that all the variables in the 
model are statistically significant. The positive values of parameters indicate that 
an increase in the value of the corresponding variable increases the probability 
that the person is a man with the fixed values of the other variables. The 
interpretation of negative parameter values is analogical. 

In this way the conditional probability )1(ˆ XDP M   is estimated by the logit 

model. Using probability values, obtained as described above, the reweighting 
factor is computed separately for each person from the sample. 

3.4. Counterfactual Distribution and Decomposition for Density Functions 

In the next step, using the reweighting factor obtained earlier for each person 
in the sample, we estimate the counterfactual distribution. It is worth emphasizing 
that the interpretation of the counterfactual distribution is different in comparison 
with typical decomposition methods. In most approaches the counterfactual 
distribution mixes the distribution of outcome variable Y for women and 
explanatory variables X for men. In this case the counterfactual distribution may 
be understood as the distribution for women reweighted by the effect of 
characteristics of both groups, which is contained in the reweighting factor. 



718                  D. M. Urbańczyk , J. M. Landmesser: The comparison of income… 

 

 

We also apply the kernel estimation method with Epanechnikov kernel  to 
obtain the density function for the counterfactual distribution. The estimated 
density functions of logarithm of income for women, men and counterfactual 
distribution are presented in Figure 2. 

 

 

Figure 2. The estimated density function of the counterfactual distribution in 
comparison with the density functions of the logarithm of income for 
women and men 

 

Subsequently, we decompose the inequalities of income in men’s and 
women’s group into the explained and unexplained components. This procedure 
is performed in terms of probability density functions, which allows for the analysis 
along the entire distribution. The results illustrating the formula (4) are presented 
in Figure 3. 

 

 

Figure 3.  The results of the decomposition of income inequalities for men and 
women. The explained and unexplained components are indicated 
respectively by green and red line 
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Analyzing the results of the decomposition, it is easy to notice that the 
dominance of women in the group with lower incomes is explained. This may be 
related to the fact that women are much more likely to work part-time than men. 
On the other hand, the dominance of men in the group of the higher income is 
mainly due to the discrimination. It is worth taking into account that the significant 
dominance of men is explained only for the values of the logarithm of wages from 
8 to 9, which corresponds to the income of 3000 to 8000 €. Moreover, the 
occurrence of the unexplained part leads to the shift of the distribution for men 
into higher incomes. However, it should be noticed that the fact of including 
benefits in the gross annual income increases the gender pay gap in the upper 
quantiles of the distributions. In general, the better-paid men receive higher 
bonuses. 

3.5. Distribution Function and Decomposition for Quantiles 

It is worth considering that the comparison of distributions in terms of 
probability density functions gives only a partial insight into the analysis of the 
wage gap. The decomposition of differences in distributions using quantiles 
allows considering the income inequalities completely.  

Using the estimated density functions, the cumulative distribution functions 
(CDFs) may be determined by the trapezoidal numerical integration method. 
Figure 4 presents the  cumulative distribution functions. The cumulative 
distribution function curve for women’s income is above this for the men’s one. 
From this fact, and on the basis of CDF definition, we can conclude that women 
earn less.  

 

 

Figure 4.  The distribution functions for women’s and men’s income as well as the 
counterfactual distribution 

 

In the next step, the quantiles for distributions of men’s, women’s income and 
counterfactual distribution are determined. The precise values of quantiles 

)(ˆˆ 1

, 


gYg FQ are computed by linear interpolation. This allows decomposing the 

wage gap for quantiles. The results are presented in Table 3. 
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Table 3.  Decomposition of difference in income distributions in terms of quantiles 

τ 
WQ̂

 MQ̂
 CQ̂

 WM QQ ˆˆ 
 CM QQ ˆˆ 

 WC QQ ˆˆ 
 

0.1 7.7009 7.9848 7.9629 0.2839 0.0219 0.2620 

0.2 8.1009 8.2205 8.1775 0.1196 0.0430 0.0766 

0.3 8.2415 8.3843 8.3154 0.1428 0.0689 0.0739 

0.4 8.3745 8.5297 8.4458 0.1552 0.0840 0.0713 

0.5 8.5127 8.6704 8.5756 0.1577 0.0948 0.0629 

0.6 8.6574 8.8102 8.7119 0.1528 0.0984 0.0544 

0.7 8.8140 8.9642 8.8588 0.1502 0.1054 0.0448 

0.8 8.9952 9.1635 9.0403 0.1683 0.1232 0.0451 

0.9 9.2563 9.4603 9.3180 0.2040 0.1423 0.0616 

1 10.7675 11.1478 10.7270 0.3803 0.4208 -0.0405 

 

This approach also allows determining the explained and unexplained 
components of the difference in terms of quantiles (see Table 4). For an easier 
analysis, the logarithmic values are converted to income in euro. 

We can see that for a quantile of the order of 0.1 the difference is high. This is 
also accompanied by a large share of the explained part in the wage gap. This 
may be due to the much greater share of women working part-time than men. 
Starting with the quantile of the order of 0.2 the wage gap grows with the order of 
the quantile as well as with the amount of income. 

Table 4.  Wage gap for women's and men's group and share of explained and 
unexplained part of difference 

τ WQ̂
 [€] MQ̂ [€] WM QQ ˆˆ 

 [€] 
unexplained 

part [%] 
explained 
part [%] 

0.1 2210.32 2935.94 725.62 7.72% 92.28% 

0.2 3297.41 3716.50 419.09 35.94% 64.06% 

0.3 3795.28 4377.97 582.69 48.24% 51.76% 

0.4 4335.02 5063.03 728.02 54.08% 45.92% 

0.5 4977.52 5827.94 850.42 60.13% 39.87% 

0.6 5752.78 6702.53 949.75 64.37% 35.63% 

0.7 6727.68 7817.99 1090.31 70.15% 29.85% 

0.8 8064.33 9542.33 1478.00 73.21% 26.79% 

0.9 10470.53 12839.69 2369.16 69.78% 30.22% 

1 47453.68 69411.97 21958.30 110.65% -10.65% 

 

It is also worth noticing that the unexplained component of the wage gap 
increases with the amount of income. This demonstrates that the discrimination is 
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more evident for higher values of wages. The interesting result is the negative 
value of the explained component of the income difference in the group of the 
best earning people. It may be associated with the fact that women in this group 
should earn more than men. However, it is worth mentioning that there is far 
fewer people in this group in comparison with the others (for the reason there are 
more people having incomes about mean level than in the tail of income 
distribution), which causes that the result may be misleading. 

4. Conclusions 

The aim of this study was to perform a decomposition of income inequalities 
between women and men. It was achieved by using the semiparametric 
reweighting DFL method (DiNardo, Fortin, Lemieux, 1996). It allows extending the 
income gap analysis to the whole distribution rather than just the average level of 
wages as in the case of the Oaxaca-Blinder decomposition method. Furthermore, 
the chosen approach leads to more accurate results than the Oaxaca-Blinder 
decomposition method for the average value because the DFL decomposition 
method is not based on the linear regression. 

The major drawback of the applied method is that it is not suitable for the 
detailed (taking into account the individual explanatory variables) decomposition 
of inequalities between distributions. This is because all of these variables are 
included during the estimation of the logit model. 

In this work the decomposition of the wage gap between women and men 
was performed in terms of the density function. Moreover, the explained and 
unexplained (associated with discrimination) components of the difference were 
determined. Furthermore, for the aim of the more accurate analysis of the 
inequalities in women’s and men’s incomes, the cumulative distribution functions 
and quantiles were calculated. This allowed decomposing the wage gap in terms 
of quantiles and the “horizontal analysis” of differences between distributions. 

In the light of the results obtained, we found that the share of the unexplained 
part of inequalities is higher than the explained one and it tends to increase with 
the rising values of income. This is the evidence that the discrimination in wages 
is significant. However, it should be noticed that this study was based only on 
factors from EU-SILC database. The inclusion in the model of the additional 
explanatory variables, describing in more detail the job position or the 
employment environment, could influence the results and lead to reduction of the 
unexplained component. In addition, we should be aware of the effect of the 
increase in the wage gap in the upper part of earnings distribution by including 
higher bonuses in annual income. 

 The obtained results are consistent with those for Poland reported in the 
literature. Other researchers also notice the higher level of incomes for men 
(Kompa, Witkowska, 2013; Matuszewska-Janica, 2014; Witkowska, 2014).  
A significant unexplained part of the wage gap and the larger inequality at the top 
of distribution are observed (Śliwicki, Ryczkowski, 2014; Rokicka, Ruzik, 2010). 

It is worth considering performing an analogous analysis of the difference in 
income distributions for women and men according to the individual levels of 
education. The expected result is to obtain information about the relation between 
the level of employees’ education level and the occurrence of discrimination. 
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IS POLAND BECOMING NORDIC?  
CHANGING TRENDS IN HOUSEHOLD STRUCTURES  

IN POLAND AND FINLAND WITH THE EMPHASIS  
ON PEOPLE LIVING ALONE 
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Sandra Misiak-Kwit3, Barbara Staszko4 

ABSTRACT 

This paper presents a comparative analysis of the household structure and its 
dynamics between post-economic-transformation Poland and Scandinavian-
welfare-state Finland, with a focus on one-person households (OPH). Based on 
the literature, two research hypotheses were formulated: (H1) strong differences in 
the household structure in Finland and Poland still occur, and (H2) the share of 
one-person households is at very different levels in the two countries. However, 
due to the globally growing popularity of solo living, the difference is diminishing. 
Finally, an estimate was made for the time when the shares of one-person 
households will be equal in both countries if the changing trends from 2005–2015 
stay the same.  
The first research hypothesis was proven to be correct. Small, one- or two-person 
households dominate the household structure in Finland, while in Poland the 
household structure by size was considerably more balanced. The second 
hypothesis was confirmed only partially. The share of OPH among all the 
households in 2015 was significantly larger in Finland (42%) than in Poland (24%). 
However, the difference between the countries was not diminishing. The share in 
Finland is increasing, while it is decreasing in Poland. This allowed the assumption 
that if the changing trends from the studied period are maintained, the shares of 
OPH in the two countries will not equalize, but will instead grow further apart. An 
estimate was made that in 2030 46% of Finnish households and 22% of Polish 
households will be one-person households.   

Key words: household structure, people living alone, one-person households, 

comparative analyses and forecast. 
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1. Introduction 

Many social, economic and demographic processes are becoming similar 
among different European countries. The countries that underwent economic 
transformation from a centrally planned to a market-oriented economy in the 
1980s and 1990s have experienced particularly strong structural changes. In 
many respects, these countries have become similar to countries in Western and 
Northern Europe (Batóg & Batóg, 2006; Hozer-Koćmiel & Lis, 2016; Zimoch, 
2013). 

This paper reviews household structures in two relatively different countries, 
Poland and Finland. Poland represents post-economic transformation countries, 
while Finland is a prosperous Nordic welfare state country. The paper compares 
household structures and their dynamics in Poland and Finland, with a particular 
focus on one-person households (OPH), whose relative percentages among all 
households have been growing across Europe.  

Additionally, an attempt has been made to estimate when the shares of OPH 
will be the same in Poland and Finland if the changing trends during the analysed 
period 2005–2015 are maintained.  

One-person households and persons living alone correspond to the same 
target group. The terms being used may depend on the source of the data, e.g. 
households or population statistics, market or demography studies. Additionally, 
using basic descriptive analysis both terms can be used alternatively. However, 
while calculating shares, it is important to distinguish the share of OPH, which is 
the number of OPH divided by the total number of households and the share of 
population living alone, standing for the number of people living alone out of a 
total population (aged 15+). In this paper the terms OPH and persons living alone 
are used to provide the reader with a maximum understanding of the changing 
trends in household structures. 

2. Literature review 

Households are a basic economic market element and they play a key role in 
consumption. The main purpose of a household is to fulfil all the needs of its 
members. ‘A household is understood as a single or multi-person economic 
entity, usually based on family ties, operating in the sphere of consumption, 
whose purpose is to meet the needs of all members, thanks to the common 
disposition of income earned by all or only some of them’ (Zalega, 2007, pp. 8: 
translated by S.M.-K.).  

Similarly, according to the United Nations Economic Commission for Europe 
(UN, 2011), a private household is either a one-person household (i.e. a person 
living alone in a separate housing unit, or occupying, as a lodger, one or more 
separate rooms in a housing unit, but not joining with other occupants to form a 
multi-person household), or a multi-person household (i.e. a group of two or more 
persons occupying a housing unit, or a part of it, jointly providing themselves with 
food and other essentials). Both of the above household categories represent 
housekeeping concepts in which joint providing for common goods plays an 
essential part. UN also distinguished that countries with register-based data often 
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use a household-dwelling concept, instead, then the number of households and 
dwellings is equal.  

Samuelson and Nordhaus (2005) mention that the terms family and 
household are often used alternatively. However, according to these authors, 
there are big differences between these concepts due to their different functions: 
the role of a family is to maintain biological and cultural continuity, while a 
household has economic functions, depending on the scope of its members’ 
needs. In economics, it is assumed that these functions result from the main goal 
of the household, i.e. utility maximization or maximizing the fulfilment of needs 
(Kopycińska, 2011).  

Thus, households consist of members who not only live together, but also 
decide and act together based on their own preferences and existing restrictions. 
As a statistical unit, however, a household has socio-economic rather than 
biological features (Latuch, 1980). Referring to Statistics Poland’s definition of a 
household, one of the criteria distinguishing a household is its common economic 
management, with the condition of joint residence or family ties, thus it follows the 
housekeeping concept. The same source determines a one-person household as 
a person who is self-dependent and lives alone. In Finland, up until the 1980 
census Statistics Finland (OSF) used the housekeeping concept of the 
household, which was then substituted by the concept of a household-dwelling 
unit. The household-dwelling unit consists of the permanent occupants of a 
dwelling. Persons classified in the Population Information System of the 
Population Register Centre as institutionalized, homeless or living abroad are 
excluded. Additionally, living in a residential home that does not meet the criteria 
of a dwelling (intended for year-round habitation, at least 7 m2, furnished with at 
least a cooking area and its own entrance) is also not categorized as a 
household-dwelling unit. Statistics Finland recognizes two categories of a 
household dwelling: 1) family household-dwelling units that comprise one or more 
families, with or without other persons, or one family and other persons, and 2) 
other household-dwelling units, including people living alone, and two or more 
people of the same or different sex.  

Changing trends in partnership and childbearing patterns from the last 
decades have influenced the household structure across Europe (Oláh, 2015). 
According to Eurostat (2015), a rising share of people living alone, declining 
fertility rates, higher divorce rates, and a shift in household structures away from 
multigenerational living have visibly shrunk the average size of households in the 
European Union in recent decades. One-person households have become a 
dominant household type in many regions of Europe. The dominance of OPH has 
been somewhat overlooked by public policy and social research, which in the last 
decades was focused on bigger households and on families. 

Living alone is a growing trend worldwide, noticed decades ago in North 
America and Europe (Hall et al., 1997; Jacobsen et al., 2012). Bennet and Dixon 
(2006) called the rising number of people living alone one of the most important 
demographic shifts in recent decades. According to the following brief literature 
review, the increase in separate living can be seen both as a cause and as a 
result of changing household and family composition. There are relatively many 
literature sources from the 80s analysing the changes in family and household 
structures, which in some countries started already after the Second World War.  
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Next to reporting the facts that the number of people living alone has been 
increasing, or that the average size of a household has decreased, researchers 
have tried to analyse the factors that influence the choice of living alone along 
with other structural changes in the family. Pampel (1983) linked separate living 
with increased income and changes in norms and tastes as well as changes in 
the relationship between parents and children. While some of these linkages were 
more obvious than others, throughout  his modelling analysis, time seemed to 
have the strongest additive result on propensity to live alone. The rising 
importance of one-person households was grouped by Keilman (1988) according 
to demographic factors: delayed marriage at a young age, divorce without a new 
relationship in middle age, lower male mortality at elder ages, and cultural factors 
following the above-mentioned shift in propensity to live alone. He also stated that 
higher living standards have made it easier for an individual person to set up an 
independent, solitary household.  Similarly, Keyfitz and Caswell (2005) stated 
three supporting aspects for separate living: the desire for privacy and 
independence highly correlated with income; an absence of kin correlated with 
low fertility rates; and finally, personal changed preferences. In their probabilistic, 
dynamic household forecast, Christiansen and Keilman (2013) observed several 
features concerning the status of living alone: young people living alone are likely 
to enter into cohabitation; at all ages, the status from cohabiting is more likely to 
change toward living alone than to living with a spouse; a high increase of living 
alone of previously single parents in their fifties due to the adulthood of their 
children; living alone starting at an advanced age (e.g. after the death of the 
spouse) is a common state. 

In its series of Statistics Explained, Eurostat (2016) published a summary of 
European household composition focusing on the size and types of households 
across 28 countries in the EU. With a timeline between 2005 and 2015, single 
households, i.e. people living alone, recorded the greatest increase between 
those years and was the most common household type (EU-28 average of 33.4% 
in 2015). The same publication clearly showed how living alone varies across 
different countries, including our countries of interest, namely Poland and Finland.  

Iacovou and Skew (2011) present several indicators of the household 
structure in the enlarged EU. They marked Finland in the Nordic cluster of 
countries of the EU15 with attributes such as, on average, a small household, 
early residential independence of young people and extended residential 
independence of the elderly. Poland, on the other hand, is classified among the 
new member states along the Hajnal line, a line that runs from St. Petersburg 
(Russia) to Trieste (Italy), which historically was characterized by an early 
marriage and multigenerational households. They also conclude that Poland 
belongs to the four Eastern European countries that stand out from the rest of 
Europe by having the largest households, an absence of separate living among 
young people, extended multigenerational co-residence and relative scarcity of 
lone-parent families.  

Also, a current paper by Habartova (2018) presents a cross-country analysis 
of recent household trends. Based on the 2011 census, Habartova presents the 
average size of households (Poland having the second highest and Finland the 
lowest value in Europe) and analyses particular types of households in more 
detail. According to cluster analysis, the household structure in Poland is similar 
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to the traditional structure (i.e. fewer lone parents, large family size, etc.) 
observed in Southern Europe (e.g. Portugal, Spain, Italy), while Finland among 
other Nordic countries (plus France and the Netherlands) presents, inter alia, a 
high intensity of new forms of living arrangements and a great number of people 
living alone.  

Changing trends in living arrangements of men and women from the late 80s 
in Europe were analysed by Fokkema & Liefbroer (2008). They refer to the 
Second Demographic Transition developed by Lesthaeghe and Van de Kaa in the 
80s, as an explanation for the weakening of the institution of the family through 
the strengthening economic independence of people and the rise of self-
development ideologies. They summarize their findings on people living alone as 
very age-specific trends concentrated on the elderly, taking diverse forms in 
different parts of Europe. They also point out that age patterns are different 
between men and women, with women being, in general, less likely to live alone 
at a younger age and more likely at an older age.  

Nowak-Sapota (2007) analysed regional differences in household structures 
and shares of living alone in Poland up to 2002. As a reason for separate living, 
next to economic factors and marital status, she pointed out that living alone does 
not specifically stand for being unmarried or widowed, however it is highly 
correlated. It is important to note that the majority of single households (over 
75%) were located in urban areas. Nowak-Sopota (2008) also forecasted that in 
2030, corresponding to the year 2002, the number of people living alone in 
Poland will increase by 55% (meaning every third household in Poland being 
OPH) and the majority (61.6%) of people living alone will be aged 60 and over.  

Forecasting the number of households and their composition according to 
Alho and Keilman (2010) is an essential action from the policy perspective, for 
example when planning social support expenditures or evaluating the demand for 
new dwellings or electricity consumption. They forecasted that among all 
household types the share of people living alone will steadily grow, while Keilman 
(2016) estimated that the growth of people living alone would even be as high as 
40% for the period 2011–2041 for selected European countries.   

Based on the review of the literature, two hypotheses were formulated: 

H1: Strong differences in household structure can still be observed in Finland and 
Poland, 

H2: The share of OPH among all households is far larger in Finland, yet the 
difference was diminishing.  

3. Research methods and data 

Descriptive analysis was carried out based on (1) shares of OPH among all 
household types and structural differences among all OPH, and (2) shares of 
people living alone in the total population.   

To measure the similarities among household structures in Poland and 
Finland, the Renkonen similarity index was used (Renkonen, 1938; Bąk et al., 
2015) in its basic form:  

𝜔𝑝 =  ∑𝑖=1
𝑘 𝑚𝑖𝑛(ω1𝑖, ω2𝑖), 0 ≤ 𝜔𝑝 ≤ 1, 
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where ω1𝑖 =
𝑛𝑖

∑𝑛𝑖
⁄  is a relative (proportional) representation of characteristic 𝑛𝑖 

in the total population ∑𝑛𝑖. 

Age pyramids were used to capture the structure of the total population (see 
Fig.4). This simple tool presents graphically the population structure by age and 
sex (Holzer, 2003; Okólski, 2005).  

Changing trends within the OPH structures by socio-economic characteristics 
were presented graphically as the difference of shares between the two study 
periods. The single-base increments showing changes in the shares were 
determined: 

𝛥𝑦𝑡∕0 = 𝑦𝑡 − 𝑦0, 

where 𝑦𝑡 is the variable value in the later observation period, and 𝑦0 the variable 
value in the initial period.  

Linear trend models describing changes in the shares over time were also 
built: 

𝑦̂𝑡 = 𝑎1𝑡 + 𝑎0, 𝑡 = 1,2, … , 𝑛. 

In the above equation, 𝑦̂𝑡  is the dependent variable, t is the time variable, and 
𝑎1 and 𝑎0 are coefficients. Based on the trend models for both Poland and 
Finland, the shares of OPH until 2030 were estimated (Bąk et al., 2015; Hozer, 
1997; Weinbach & Grinnell, 2007).  

Data on the composition of household structures in 2005 and 2015 in Poland 
and Finland were obtained from Eurostat data on private households. The vital 
and population statistics were obtained from Eurostat, Statistics Poland and 
Statistics Finland. Despite having two different concepts of households, Eurostat 
database is a reputable source of comparable data. However, this has influenced 
the choice of study period for the openly available and comparable data across 
different themes. Additionally, in 2005, both countries were already part of the 
European Union, thus the descriptive comparison occurs in a similar political 
setting.  

4. Presentation of the obtained results 

The first analytical step was to answer the questions: What is the current 
household structure in Finland and Poland? How did it change in the last few 
years? And are Polish and Finnish structures similar or different? Based on 
official statistics, households were divided into six groups, depending on their 
size, from one-person households to six and more persons in a household. While 
comparing the structures, it is also worth considering the difference in the number 
of households in Finland and Poland: in 2015 there were 2.6 million households in 
Finland and 13.5 million households in Poland (also see Fig. 3). 
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Figure 1.  Cumulative household structures in Poland and Finland from 2005 to 
2015 by number of persons in each household   

Source:  Calculations based on Eurostat data: Distribution of private households by 
household size [ilc_lvph03].  

 

Figure 1 shows clear differences in the household structure by the household 
size between the studied countries, and also presents the changing trends over 
time. In Poland, the household structure by size has been more even, with no 
dominant groups. In Finland, one- and two-person households together 
accounted for nearly 75% of all households in 2015, while Polish households of 
the same size accounted for less than 50%. One-person households (almost 
25%) were the most numerous household type in Poland until 2011, and then 
two-person households became most numerous. In Poland, through the research 
period, three-person households accounted for about 20% of all households, 
which can be called a constant due to an increase of as little as 1%. A visible 
difference between Finland and Poland was also seen in households with four 
members, for in Poland this type of living was significantly more popular. 
However, their shares dropped within the ten-year period from 18% to 15.6%. In 
both countries, the least numerous household types were those of five and six or 
more persons.   

Comparing two countries and their household structures required an 
assessment of the similarity between these two populations. The Renkonen 
similarity index presented in Table 1 indicates not only that Polish and Finnish 
household structures are not similar (with an index lower than 1), but also 
indicates that the differences increased with time (lower index value for 2015 than 
2005).   
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Table 1.  The Renkonen similarity index of the household structure in Poland and 
Finland according to size 

Proportional shares by 
household size 

1 
pers. 

2 
pers. 

3 
pers. 

4 
pers. 

5 
pers. 

6+ 
pers. 

Renkonen similarity 
index 

ωPL2005 0.25 0.23 0.20 0.18 0.08 0.06 

0.76 ωFI2005 0.40 0.33 0.12 0.10 0.04 0.02 

min 0.25 0.23 0.12 0.10 0.04 0.02 

ωPL2015 0.24 0.26 0.20 0.16 0.08 0.06 

0.74 ωFI2015 0.42 0.33 0.11 0.09 0.03 0.01 

min 0.24 0.26 0.11 0.09 0.03 0.01 

Source:  Calculation based on Eurostat data: Distribution of private households by 
household size [ilc_lvph03]. 

4.1.  Dynamics of OPH shares among all households  

After analysing the household structures in both countries, the focus was 
placed on OPH, in order to answer the question of the shares of OPH and its 
changing trends (Table 2) in the studied period in Poland and Finland. Between 
2005 and 2015, the share of OPH in Poland dropped steadily, while in Finland the 
share kept growing. The changes, although not strong (1% for Poland, and 2.5% 
for Finland), went in the opposite direction.   

Table 2. Shares of one-person households out of all household types, percent 

TIME 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

OPHPL 24.80     24.70     24.70     24.70     24.70     24.60     24.60     23.90     23.70     23.90     23.90     

OPHFI 39.71     40.09     40.37     40.61     40.74     41.01     41.20     41.47     41.66     41.94     42.22     

Source:  Calculation based on Eurostat data: Distribution of private households by 
household size [ilc_lvph03]. 

4.2.  Structure of one-person households by selected socio- economic 
 variables   

Further analysis divides one-person households by age, sex, employment and 
education (Figure 2). In both countries, women were the majority among people 
living alone, with greater gender differences in Poland. In both Poland and 
Finland, the share of men among OPH slightly increased from 2005 to 2015. 
Overall, in 2015, women in Poland constituted 66% and in Finland 56% of all 
OPH.   
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Figure 2. Comparison of structures of one-person households by selected socio-
economic attributes 

Source:  Analysis based on Eurostat data on private household characteristics by type of 
household [hbs_car_t313]. 
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Dividing OPH into two age groups, corresponding roughly to the working age 
(15–64) and the retirement age (65+), shown that the majority of people living 
alone in both countries belong to the younger age group. In Finland, the share of 
people aged 15–64 among those living alone was visibly higher than in Poland; 
however, it slightly dropped from 2005 to 2015, while in Poland that share grew.  

In both Poland and Finland the majority of OPH were not employed. However, 
Polish employed OPH grew between 2005 and 2015, while the structure in 
Finland stayed the same. This finding was confirmed by the fact that many people 
living alone are of retirement age; thus, they are outside the labour force (see 
Figure 3).   

The analysis of the distribution of OPH by the level of education presented in 
both countries shows that most people living alone had an upper secondary and 
post-secondary (non-tertiary) education. Also, for both studied countries, between 
2005 and 2015 a decrease in shares of OPH with lower education levels was 
noticeable, as was an increase in tertiary education. The general education level 
of OPH hence increased.   

4.3.  Population pyramids  

Figure 3 presents the shares of people living alone among the total 
population, i.e. the second research approach. Having the total population of each 
country categorized by sex and age groups, the number of people living alone 
with the same attributes was collected. Therefore, it first shows the age 
distribution of the population; second, it emphasizes the difference in size of the 
Polish and Finnish populations. Finally, it presents the number of each age group 
that lives alone.   

 

 

Figure 3. Population pyramids of total and living alone population in 2015 

Source:  Analysis based on population statistics from Statistics Poland and Statistics 
Finland. 
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Due to the vast difference in size of the populations, the share of people living 
alone per sex and age is additionally presented in Figure 4. Shares of living alone 
in Finland across every age group above 15 are higher in Finland than in Poland. 
Similarly, in both countries, living alone is more common among women and the 
elderly population, while an interesting difference is the almost non-existent OPH 
of ages 15–24 in Poland compared to every fifth Finnish woman of that age, and 
almost as many young Finnish men lived alone in 2015. Another difference is the 
age group 25–54; in Poland, women have higher shares of separate living, while 
in Finland men have higher shares.  

 
 

 

Figure 4. Share of the population living alone among total population by age and 
sex  

Source:  Analysis based on population statistics from Statistics Poland and Statistics 
Finland. 

 

4.4.  Selected demographic indicators 

The literature mostly links living arrangements, especially OPH, with the 
economic variables. However, living alone as a process is affected by several 
marital and vital life-events. Different shares of people living alone at different age 
indicate that several demographic indicators could also have an explanatory role. 
For example, the difference in mortality, the longer life expectancy of women over 
men could, at least partially, describe the high differences in shares of OPH in the 
oldest age group.  
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Table 3. Selected descriptive demographic indicators for Poland and Finland 

 Male life 
expectancy at 

age 0 

Female life 
expectancy at 

age 0 

Difference in life 
expectancy of male 

and females 

Crude birth 
rate 

Crude 
death rate 

 year 2005 2015 2005 2015 2005 2015 2005 2015 2005 2015 

PL 70.8 73.5 79.3 81.6 8.5 8.1 9.5 9.7 9.6 10.4 

FI 75.6 78.7 82.5 84.4 6.9 5.7 11.0 10.1 9.1 9.6 

 

Total fertility 
rate 

Mean age of 
women at birth 

of first child 

Mean age at first 
marriage 

woman/man 

Crude 
marriage 

rate 

Crude 
divorce rate 

PL 1.24 1.32 25.7 27.0 25.3/27.7 26.9/29.3 5.4 5 1.8 1.8 

FI 1.80 1.65 27.9 28.8 29.4/31.5 31.0/33.4 5.6 4.5 2.6 2.5 

Source:  Eurostat data on demographic indicators: [demo_gind], [demo_find], [demo_nind], 
[demo_mlexpec].  

 

Furthermore, the lower mean age at the events of first child birth and first 
marriage in Poland also shows that young Poles start family life sooner, thus they 
are less likely to live alone. At the same time, in the studied period there was an 
increase in both the crude birth and crude death rates for Poland (i.e. occurring 
event per 1,000 of population), while the crude birth rate for Finland decreased.  

The causality between demographic indicators and shares of people living 
alone is not targeted by the paper, one of the reasons being a short time series 
and lack of individual base data. The subject, however, is considered being of 
future interest to the authors.     

4.5. When will the shares of OPH be equal in both countries?  

Inspired by the literature, the last point of the analysis was to estimate when 
the shares of OPH will have the same values in Poland and Finland if the 
changing trends from 2005 – 2015 stayed the same. For that purpose, the 
changing trends of the shares of OPH in both countries were presented and 
described with a linear trend model (Fig. 5). In Finland, from 2005 to 2015, the 
annual share of OPH among all household types increased by 0.002 percent, 
while in Poland the share decreased by 0.001 percent.  
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Figure 5. Linear trend estimation for shares of OPH in Finland and Poland.  

Source:  Analysis based on Eurostat data: Distribution of households by household size 
[ilc_lvph03].  

 

Table 4. Quality assessment of the model fit 

 

Regression 
Coefficient a1 

(Error) 

t-value 
for a1 

Regression 
Coefficient a0 

(Error) 

t-value 
 for a0 

R-square 
Standard 

Error 

PL -0.001 (0.000) -5.356 0.251 (0.001) 175.542 0.761 0.002 

FI 0.002 (0.000) 41.633 0.396 (0.000) 1028.010 0.995 0.001 

 

Table 4 presents an assessment of fitting the linear trend model to the 
changing shares of OPH in household structures. Both regression coefficients 
proved to be statistically significant. R-square and standard error both indicate a 
good model fit. As the values of the slope (a1) are close to 0, yearly changes are 
minor. However, having different signs means that the values for Finland are 
increasing and the values for Poland are decreasing.  

The estimate of the shares of OPH up to 2030 was conducted with the linear 
trend model. Assuming the trend changes remained the same over the 2005 – 
2015 period, the share of OPH in Poland and Finland will never be equal. This 
means that, regardless of the ongoing development and despite aspiring to the 
level of its Western neighbouring countries, Poland has not become Nordic with 
respect to living solo. According to the forecast, in Finland in 2030, one-person 
households will account for 46% of all households, and in Poland they will 
account for 22%.  



738                              U. Ala-Karvia, et al: Is Poland becoming Nordic? Changing… 

 

 

5. Discussion 

The household structure is an important indicator of well-being in a society. As 
presented in Eurostat (2013), national household structures are strongly linked to 
the level of income, with a clear connection between joint living arrangements and 
lower incomes (Kuijsten, 1995, 1999). Labour market indicators, such as the rate 
of economically active people, or the employment rate, put Finland in a better 
position than Poland (Ramb, 2008; Misiak et al., 2014). In addition, the proportion 
of people at risk of poverty or social exclusion indicates that Finland is a country 
with higher living standards compared to Poland (Misiak-Kwit et al., 2016). 
However, as the employment rate of Finnish women in 2015 was 71.8 and its full-
time equivalent was 66.8, for Finnish men the values were 73.9 and 71.5, and the 
employment of Polish women accounted for 60.9 with full-time employed 59.2, 
and Polish men were working at the rate of 74.7 and 75.0 (EC, 2016). These 
differences support the theory of the growing difference of only female OPH 
shares.  

According to Czapiński and Panek (2009), 72% of households in Poland were 
finding it a little hard, hard or very hard to make ends meet. A visible share of 
Polish households (28%) claimed that their income was not sufficient to cover 
their basic needs; however, the share was decreasing over the last few years. To 
be able to cover the costs of necessities, 55% of households in Poland lived 
economically or very economically. When incomes were low, people’s ability to 
meet their own needs was compromised: 86% of households had to choose what 
needs to satisfy and what not, while another 39% asked other family members for 
support and 36% took loans.  

According to Eurostat, GDP per capita in 2015 in Finland was 9% above the 
EU-28 average (securing 9th position in the EU), while the Polish equivalent was 
32% below the average. This, however, does not explain why Finland has an 
exceptionally high share of OPH among the EU countries. Therefore, next to 
income level, other factors influence household structures.  

Another factor that could explain the high share of OPH is low fertility rates 
(TFR). However, both Poland and Finland currently struggle with low TFR, while 
the differences in OPH shares increase. In theory, changes in civil status, such as 
getting married, lowers the OPH shares, while getting a divorce increases 
separate living. The presented data on selected demographic indicators indeed 
supports the national differences. However, with the divorce rate being almost 
constant in Finland over the recent years, and growing in Poland, the shares of 
people living alone in Poland should be increasing and not decreasing, as it is 
shown here. Linking child birth with the change of OPH status can also partially 
explain the different trend direction for Poland and Finland, as the crude birth rate 
was increasing in Poland and decreasing in Finland.   

The Finnish welfare state system provides a housing subsidy for students, 
among other things. Together, the financial independence and high social 
acceptance of separate living is considered by the authors to be the main reason 
for the great difference in shares of living alone among the population aged 15–24 
in Poland and Finland.  

Similarly, the elderly care system in Finland could be seen as more complex 
than in Poland. Not only can Finnish pensioners afford separate living, e.g. after 
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the death of a spouse, but in the case of higher care needs (with no need for 
hospitalization), a person can move into independent dwellings (and therefore still 
live separately) in a direct neighbourhood or into a hospital where daily care can 
be easily provided.   

Finland is a bilingual country with both Finnish and Swedish as the national 
languages. There is, however, a lack of available data on language-based 
household structure. The population of Swedish-speaking Finns in 2015 
constituted 5.3%, thus rather a minor share, however, together with a foreign 
language population of 6% in 2015, the language-based household composition 
is a potentially interesting subject, once the data is available.  

The decreasing share of people living alone in Poland is in contradiction to the 
statement in the literature that living solo is a growing phenomenon across 
Europe. For example, Nowak-Sapota (2008) forecasted that in 2030 OPH will 
constitute one out of three households in the country. However, according to this 
paper, the shares of OPH are undergoing a decreasing trend and in 2030 they will 
account for only 22%. On the basis of this result it can be stated that the forecast 
made by Nowak-Sapota cannot be confirmed, but the important research 
question instead became: What are the reasons for this situation? The authors of 
this article recommend further in-depth research on the subject. Other research 
question also arise: Do people in Poland live in bigger households by choice or 
out of necessity? Are Poles and Finns satisfied with their accommodation? It 
should be noted that overall life satisfaction and average satisfaction with living 
accommodation tended to be highest in the Nordic countries. Moreover, those 
living in rural areas were clearly more satisfied with their accommodation than 
those living in cities (Misiak-Kwit et al., 2016). 

While writing this paper, both Statistics Poland and Statistics Finland have 
published data on private household composition for 2017. Keeping in mind the 
conceptual difference, the data showed the share of OPH in Poland in 2017 was 
23.5% (i.e. still decreasing) and in Finland 43.4% (i.e. still increasing). These 
values support the findings of this paper.   

6. Summary and Conclusions 

 The paper compared the household structure and its dynamics in Finland and 
Poland, with the focus on one-person households, in the form of a descriptive 
analysis. The first research hypothesis was confirmed, namely that there are 
strong differences in household structures in Finland and Poland. Small, one- or 
two-person households dominate the household structure in Finland to as high as 
75%. In Poland, the household structure by size has been more even and 
households up to three persons together account for about 70%. The differences 
are considered to have both a cultural and an economic background. Living solo 
has reached a much higher social acceptance in Finland, while high economic 
development and the Nordic welfare state model is also supportive.  

The second hypothesis was confirmed only partially. The share of OPH 
among all households has been significantly larger in Finland (42%) than in 
Poland (24%). However, the distance between these countries has not been 
diminishing. The OPH share in Finland is increasing, while in Poland it is 
decreasing. This has allowed for the calculation that, if the changing trends from 
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the studied period are maintained, the shares of OPH in these two countries will 
not equalize, but will instead grow further apart. An estimate was made that in 
2030, 46% of Finnish households and 22% of Polish households will be one-
person households.   

Summing up, regardless of the progressive convergence that is diminishing 
difference gaps between different European regions and countries, the position of 
people living alone is still different between Poland and Finland. Poland has not 
gone Nordic in this aspect.  

In the next paper, the authors plan to expand the comparative analysis to all 
European countries, empirically and spatially analysing changing trends in the 
shares of one-person households across Europe. Statistical analysis of casualty 
between demographic indicators as well as economic indicators is also planned in 
order to better understand why transnational differences occur.  
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REPORT 

The XXXVII International Conference on Multivariate Statistical 
Analysis 5–7 November 2018, Łódź, Poland 

The 37th edition of the International Conference on Multivariate Statistical 
Analysis (MSA) was held in Łódź, Poland on November 5–7, 2018. The MSA 
conference was organized by the Department of Statistical Methods of the 
University of Łódź, the Institute of Statistics and Demography of the University 
of Łódź, the Polish Statistical Association and the Committee on Statistics 
and Econometrics of Polish Academy of Sciences. Its organization was 
financially supported by the National Bank of Poland, the Polish Academy of 
Sciences and Satsoft Polska Sp. z o.o. The Organizing Committee was headed 
by Professor Czesław Domański and the scientific secretary was Katarzyna 
Bolonek-Lasoń, Assistant Professor from the Department of Statistical Methods 
of the University of Łódź. 

The Multivariate Statistical Analysis conference constituted a forum for 
discussion and exchanging opinions about development of statistics. Participants 
presented the latest theoretical achievements in the field of the multivariate 
statistical analysis, its practical aspects and applications. The scientific 
programme covered a wide range topics of statistical mathematics and 
multivariate statistical methods including multivariate distributions, statistical tests, 
nonparametric inference, factor analysis, cluster analysis, discrimination analysis, 
Bayesian methods, stochastic analysis and application of statistical methods in 
finance, economy, capital market and risk management. 

The conference was attended by 80 participants from many academic centres 
in Poland  (Białystok, Gdańsk, Katowice, Kraków, Lublin, Łódź, Poznań, Toruń, 
Szczecin, Warszawa, Wrocław) and from abroad (Italy, Lithuania). 
Representatives of Statistics Poland and the Statistical Office in Lodz and Poznań 
were also participants of the 2018 MSA conference. In 18 sessions (plenary and 
parallel) 57 papers were presented including 3 invited lectures. 

The conference was opened by the Head of the Organizing Committee, 
Professor Czesław Domański. The subsequent speakers at the conference 
opening included Professor Antoni Różalski, Rector of the University of Łódź, 
and Professor Michał Mackiewicz, the Deputy Dean of the Faculty of 
Economics and Sociology of the University of Łódź.  

The first plenary session was devoted to eminent representatives of statistical 
thought. Professor Krzysztof Jajuga (Wrocław University of Economics) was the 
chairman of the historical session. Professor Mirosław Krzyśko (Adam 
Mickiewicz University) presented paper titled “Mieczysław Warmus – a memory 
on the centenary of birth”. Professor Józef Pociecha (Cracov University of 
Economics) talked about professor Juliusz Leo. Professor Czesław Domański 
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(University of Łódź) presented two papers. The first paper concerned the role of 
Scientific Societies in the organization of independent Polish  structures, the 
second one was dedicated to Tadeusz Korzon. 

One of the session tilted „New century of official statistics” was organized 
together with Statistical Office in Łódź. Professor Józef Pociecha was a 
chairman of this session. The first speaker, Dominik Rozkrut, the President of 
Statistics Poland, presented a paper „Academic education in the field of data 
science in Poland”. The next speakers included Professor Czesław Domański 
and Professor Alina Jędrzejczak (University of Łódź), who addressed the 
problem of „Ethical dilemmas of statisticians in the face of new data sources”. 
Consecutive speakers (representatives of Statistical Office in Łódź) included 
Tomasz Piasecki, who talked about the application of mathematical methods in 
the official statistics, Katarzyna Szkopiecka, who presented a paper 
“Educational activities of the Statistical Office in Łódź”, and Anna Jaeschke, who 
drew a picture of “Population census yesterday and today”. 

Invited lectures were presented by Professor Krzysztof Jajuga (Wrocław 
University of Economics), Professor Włodzimierz Okrasa (Cardinal Stefan 
Wyszyński University in Warsaw) and Professor Mirosław Szreder (University of 
Gdańsk). 

Other sessions were chaired respectively by: 

Session III  Professor Bronisław Ceranka (Poznań University of Life Sciences) 

Session IVa  Professor Grażyna Dehnel (Poznań University of Economics and 
Business)  

Session IVb  Professor Alina Jędrzejczak (University of Łódź) 

Session Va  Professor Grzegorz Kończak (University of Economics in Katowice) 

Session Vb  Professor Andrzej Dudek (Wrocław University of Economics) 

Session Vc  Professor Wojciech Gamrot (University of Economics in Katowice) 

Session VI  Professor Czesław Domański (University of Łódź) 

Session VII  Professor Mirosław Krzyśko (Adam Mickiewicz University 
in Poznań) 

Session VIIIa  Professor Grażyna Trzpiot (University of Economics in Katowice) 

Session VIIIb  Professor Agata Szczukocka (University of Łódź) 

Session IXa  Professor Iwona Markowicz (University of Szczecin) 

Session IXb  Professor Jerzy Korzeniewski (University of Łódź) 

Session X  Professor Marek Walesiak (Wrocław University of Economics) 

Session XIa  Professor Tomasz Żądło (University of Economics in Katowice) 

Session XIb  Professor Iwona Bąk (West Pomeranian University of Technology) 

Session XII  Professor Józef Dziechciarz (Wrocław University of Economics) 
 
During the conference, a meeting of the members of the Main Board of the 

Polish Statistical Association was also held. Professor Czesław Domański 
(President of Polish Statistical Association) chaired this meeting. 

The 2018 MSA conference was closed by the Chairman of the Organizing 

Committee, Professor Czesław Domański, who summarized the conference 
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and thanked the guests for arriving and taking active participation in the 
conference. 

The next edition of Multivariate Statistical Analysis Conference MSA 2019 
is planned on November 4–6, 2019 and will be held in Łódź, Poland.  

 

Prepared by 

Katarzyna Bolonek-Lasoń 
Department of Statistical Methods, University of Łódź 
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