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MODELLING SENSITIVE ISSUES ON SUCCESSIVE WAVES
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ABSTRACT

This paper addresses the problem of estimation of population mean of sensitive char-
acter using non-sensitive auxiliary variable at current wave in two wave successive
sampling. A general class of estimator is proposed and studied under randomized
and scrambled response model. Many existing estimators have been modified to
work for sensitive population mean estimation. The modified estimators became the
members of proposed general class of estimators. The detail properties of all the
estimators have been discussed. Their behaviour under randomized and scrambled
response techniques have been elaborated. Numerical illustrations including simula-
tion have been accompanied to judge the performance of different estimators. Finally
suitable recommendations are forwarded.

Key words: Sensitive variable, Successive waves, Scrambled Response model,
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fraction.

1. Introduction

The occurrence of unpleasant phenomenon are plenty and abundance in the hu-
man society. We as a part of it, are sometimes obliged to take serious notice of and
spread their occurrences among the conscientious public. This phenomenon ne-
cessitates assemblage of truthful and reliably adequate and accurate date. But the
usual survey practices were not enough to elicit human responses through queries
about sensitive and stigmatized issues.

Some of the features like gambling habits, alcoholism, illegal drug use, tax evasion,
rash driving of motorized vehicles, conjugal malpractices and domestic violence
etc., people like to hide from the human communities.

Hence, to deal with sensitive issues, an alternative technique has been introduces
by Warner (1965), which is to obtain responses through a randomized response
(RR) survey where every sampled unit is asked to give a response through an RR
device as per instruction from the investigator. One can refer to Greenberg et al.
(1971), Barlev et al. (2004), Diana and Perri (2011) and Arcos et al. (2015), etc.
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for a comprehensive review of such RR procedure. However, there is another ap-
proach to deal with sensitive issue called scrambled response technique introduced
by Pollock and Bek (1976). Many researchers such as Eichhorn and Hayre (1983),
Saha (2007) and Diana and Perri (2010), etc. considered the scrambled response
models to deal with sensitive issues.

There are many situations were one need to study the variable over time as they
may opt of change by time. Jessen (1942) inaugurated the journey of research
program related to variables which changes by time. Later Patterson (1950), Sen
(1973), Feng and Zou (1997), Singh and Priyanka (2008), Priyanka and Mittal
(2014, 2015a, 2015b), and Priyanka et al. (2015), etc. added sub-sensitive lit-
erature in this area.

However, if the variable which opt to change by time is also sensitive in nature,
then their arises a need to apply randomized/scrambled response techniques on
successive waves. Arnab and Singh (2013), Yu et al. (2015), Naeem and Shabbir
(2016) and Singh et al. (2017) have put their efforts to deal with sensitive issues
on successive waves.

In the present work a general class of estimators have been proposed for esti-
mating sensitive population mean at current wave in two wave successive sampling
using a non-sensitive auxiliary variable. The proposed estimators have been stud-
ied under both the randomized and scrambled response technique. Many existing
estimators in successive sampling literature such as estimators by Jessen (1942),
Singh and Priyanka (2008), Singh and Karna (2009) and Singh and Prasad (2010)
when modified to work for sensitive population mean estimation, becomes the mem-
bers of proposed general class of estimators. The modified estimators have also
been checked for their applicability under considered randomized and scrambled
response models. The proposed general class of estimators have been compared
with the members of its class in terms of percent relative efficiency. Simulation study
has also been carried out to show the practicability of proposed methods. Finally,
suitable concluding remarks have been forwarded.

2. Survey Strategies and Analysis

2.1. Background

Let P be finite population of N units which has been considered for two successive
waves. The sensitive study variable be named as x at the first wave and y at second
wave. Whereas z is assumed to be non-sensitive auxiliary variable which is available
at the both the successive waves. A simple random sample without replacement of
size n is drawn at the first wave and at the second wave two independent samples
are drawn by considering the partial overlapping case, one is matched sample of
size m = nλ drawn as sub sample from the sample of size n from first wave and
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another is unmatched simple random sample of size u = (n−m) = nµ drawn afresh
at the second (current) wave so that the sample size at both the wave is n. On
first(second) wave the sensitive variables x(y) are switched to x′(y′) with the aid
of scrambling variables W1, W2 and W3. The scrambling variable are considered
such that they may follow any distribution. The following notations to be considered
further are presented below:

X̄ , Ȳ , Z̄, X̄
′
i , Ȳ

′
i , W̄1, W̄2, W̄3 : Population means of the variables x, y,

z, x
′
i, y

′
i, W1, W2 and W3 respectively

where i = 1 and 2 corresponds to randomized
and scrambled response models respectively.

x̄
′
ui, ȳ

′
mi, x̄

′
mi, ȳ

′
ni : Sample mean of the variate based on

sample sizes shown in suffices under ith

model.

z̄u, z̄m, z̄n : Sample mean of the non-sensitive auxiliary
variate based on sample sizes shown in suffice.

ρyx, ρxz, ρyz, (ρx′ y′ )i, (ρy′ z)i, (ρx′ z)i: Correlation coefficient between the variables
shown in suffices and ′i′ denote the
scrambled and randomized response model.

Cx, Cy, Cz : Coefficient of variation of variables shown in
suffices.

S2
x , S2

y , S2
z , S2

W1
, S2

W2
, S2

W3
: Population mean squared error of variables x, y,

z, W1, W2 and W3 respectively.

2.2. Randomized Response Techniques on successive waves

A unified approach for randomized response technique has been proposed by Ar-
cos et al.(2015). Their technique say MAR is modified to be applied on successive
wave for estimation of population mean of sensitive variable. Each respondent on
first(second) wave is asked to rotate a spinner bearing the following statements
- Report the real value of variable xi[yi]

- Report the scrambled response (xiW1 +W2) [(yiW1 +W2 )]

- Report a value of variable W3

with corresponding probabilities p1 , p2 and (1− p1 − p2) respectively on first [sec-
ond] waves. Using above randomization devise, response given by jth respondent
on first and second wave respectively are described as

X
′
1 j =


x j with probability p1

x jW1+W2 with probability p2

W3 otherwise
, Y
′
1 j =


y j with probability p1

y jW1+W2 with probability p2

W3 otherwise
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Therefore applying MAR on two successive waves, the sensitive variable x(y) are
perturbed to x

′
(y
′
) and are given by

X
′
1 = X p1 +(XW1 +W2)p2 +W3(1− p1 − p2)

and
Y
′
1 = Y p1 +(YW1 +W2)p2 +W3(1− p1 − p2)

such that

(Ȳ )1 =
Ȳ
′
1− p2W̄2− (1− p1 − p2)W̄3

p1 + p2W̄1
(1)

(
ρy′ x′

)
1
=

p2
1

ρyxSySx+2p1 p2 ρyxSySxW̄1+p2
2
(ρyxSySxS2

W1
+ρyxSySxW̄ 2

1 +X̄Ȳ S2
W1

)+(1−p1−p2 )
2S2

W3√
I1
√

I2
,(

ρy′ z
)

1
=

(p1+p2W̄1)ρyzSy√
I2

,
(

ρx′ z

)
1
=

(p1+p2W̄1)ρxzSx√
I1

where,
I1 = p2

1
S2

x + p2
2
(S2

xS2
W1

+S2
xW̄ 2

1 +S2
W1

X̄2 +S2
W2
)+(1− p1 − p2)

2S2
W3

+2p1 p2W̄1S2
x

and
I2 = p2

1
S2

y + p2
2
(S2

yS2
W1

+S2
yW̄ 2

1 +S2
W1

Ȳ 2 +S2
W2
)+(1− p1 − p2)

2S2
W3

+2p1 p1W̄1S2
y

Many other randomised response models such as Greenberg et al. (1971) (MG),
Barlev et al. (2004) (MB), Diana and Perri (2010) (MDP1) and scrambled response
models by Pollock and Bek (1976) (MPB), Eichhorn and Hayre (1983) (MEH), Saha
(2007) (MSH) and Diana and Perri (2010) (MDP2) can be viewed as particular cases
of above described techniques and are presented in Table 1 .

Table 1.Particular cases
Name of the p1 p2 W1 W2 W3
Model

MG p 1− p 0 W2 0
MPB 0 1 1 W2 0
MEH 0 1 W1 0 0
MB p 1− p W1 0 0
MSH 0 1 W1 W1W2 0
MDP1 p 1− p W1 W1W2 0
MDP2 0 1 (1−χ∗)W1 χ∗W1W2 0

Note:χ∗ ε [0,1] and 0 ≤ p≤ 1

2.3. Scrambled Response Techniques on successive waves

Considering a convex combination of the multiplicative and additive scrambled re-
sponse model, Diana and Perri (2010) proposed scrambled response model. Their
underlying idea was to combine the two models giving them a different weight ac-
cording to the problem at hand. Therefore, their model say MDP is modified to be
applied on two successive waves, the sensitive variable x(y) is perturbed to x

′
(y
′
)

in the light of this model as:

X
′
2 = ϕ

∗
x (X +W2)+(1−ϕ

∗
x )W1X ; where ϕ

∗
x ε [0,1]
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and
Y
′
2 = ϕ

∗
y (Y +W2)+(1−ϕ

∗
y )W1Y ; where ϕ

∗
y ε [0,1]

such that

(Ȳ )2 =
Ȳ
′
1−ϕ∗y W̄1

ϕ∗y +(1−ϕ∗y )W̄2
, (2)

(
ρy′ x′

)
2
=

ϕ∗x ϕ∗y [I3]+[I4](ϕ∗x +ϕ∗y )+I5√
I6
√

I7
,
(
ρy′z
)

2 =
ρyzSy[ϕ∗y (1−W̄1)+W̄1]√

I6
,

(ρx′z)2 = ρxzSx[ϕ
∗
x (1−W̄1)+W̄1]√

I7
,
(

C2
x′

)
2
= I7

X̄ ′ 2
and

(
C2

y′

)
2
= I6

Ȳ ′ 2

where,
I3 = ρyxSySx +S2

W2
−2ρyxW̄1SySx +S2

W1
[ρyxSySx + X̄Ȳ ]+ρyxW̄ 2

1 SySx,

I4 = W̄1ρyxSySx−S2
W1

[ρyxSySx + X̄Ȳ ]−W̄ 2
1 ρyxSySx,

I5 = S2
W1

[ρyxSySx + X̄Ȳ ]+W̄ 2
1 ρyxSySx,

I6 =
(
ϕ∗y
)2
[
S2

y +S2
W2

]
+
(
1−ϕ∗y

)[
S2

W1
(1+ Ȳ 2)+S2

y(1+W̄ 2
1 )
]
+ 2ϕ∗y

(
1−ϕ∗y

)
W̄1S2

y ,

I7 = (ϕ∗x )
2
[
S2

x +S2
W2

]
+(1−ϕ∗x )

[
S2

W1
(1+ X̄2)+S2

x(1+W̄ 2
1 )
]
+ 2ϕ∗x (1−ϕ∗x )W̄1S2

x .

Remark 1. If ϕ∗x (ϕ
∗
y ) = 0, then the model MDP reduces to multiplicative model and

if ϕ∗x (ϕ
∗
y ) = 1, it reduces to additive scramble response model.

Remark 2. The scrambling variables W1, W2 and W3 are such that E(W1) = W̄1,

E(W2) = W̄2, E(W3) = W̄3, V (W1) = S2
W1

, V (W2) = S2
W2

, V (W3) = S2
W3

, S2
y′i
=

(
C2

y
′
i

Ȳ ′i
2

)
, S2

x′i
=(

C2
x
′
i

X̄ ′i
2

)
.

Remark 3. (Ȳ )i, i = 1 and 2 denote population mean of sensitive variable y at
current wave under ith model in two wave successive sampling.

Remark 4. Suitable estimator of population mean of coded response variable Ȳ
′
i

need to be investigated and replaced in equation 1 and 2 respectively in order to
obtain appropriate estimator of sensitive population mean at current wave under
five different models in two wave successive sampling.

2.4. General Class of estimators on Successive waves

For estimating the population mean of coded response variable at current wave in
two wave successive sampling under randomized as well as scrambled response
models described in section 2.2 and 2.3 respectively, two classes of estimators have
been proposed based on sample of size u and m respectively. The final estimators



46 K. Priyanka, P. Trisandhya: Modelling Sensitive Issues on...

is the general class of estimator formulated by considering convex linear combina-
tion of two classes of estimators based on sample size u and m respectively under
two consider models.

2.4.1 Class of Estimators based on unmatched sample on the second wave

The literature on successive sampling reveals that in general difference, regres-
sion, ratio, product, exponential ratio or product type estimator can be modified for
the estimation of population mean of coded response variable. Some of them can
be seen as:
Lu1i = ȳ

′
ui, if no additional non-sensitive auxiliary information is used at any wave.

Lu2i = ȳ
′
ui + k(z̄u− Z̄),

L3i = ȳ
′
ui +βqiz(z̄u− Z̄),

Lu4i = ȳ
′
ui

Z̄
z̄u

,
Lu5i = ȳ

′
ui

z̄u
Z̄ ,

Lu6i = ȳ
′
ui (

z̄u
Z̄ )

θ1 ,

Lu7i = ȳ
′
ui[2− ( z̄u

Z̄ )
θ2 ],

Lu8i = ȳ
′
ui exp ( Z̄ − z̄u

Z̄ + z̄u
),

Lu9i = ȳ
′
ui exp ( z̄u − Z̄

z̄u + Z̄ ),

Lu10i = ȳ
′
ui +βy′iz(Z̄− z̄u),

Lu11i = ȳ
′
ui +by′iz(u)(Z̄− z̄u),

etc.,
where, k, θ1 and θ2 are constants chosen suitably, so that the mean squared errors
of Lu2i, Lu6i and Lu7i may be optimized respectively.
Therefore, following Srivastava (1980) and Tracy et al.(1996) a class of estima-
tor have been proposed which may contain the above discussed estimators as
its members, under the considered randomized and scrambled response models
based on unmatched sample as:

Lui =Ui (ȳ
′
ui, z̄u) (3)

where i = 1 and 2 denote the randomized and scrambled response model respec-
tively given in section 2.2 and 2.3 and Ui (ȳ

′
ui, z̄u) is a function of ȳ

′
ui and z̄u such

that
(i) The point (ȳ

′
ui, z̄u) assumes the value in a closed convex subset R2 of two dimen-

sional real space containing the point (Ȳ
′
i , Z̄).

(ii) The function Ui (ȳ
′
ui, z̄u) is continuous and bounded in R2.

(iii) Ui(Ȳ
′
i , Z̄) = Ȳ

′
i and U1i(Ȳ

′
i , Z̄) = ∂Ui(ȳ

′
ui,z̄u)

∂ ȳ′ui
= 1, i.e., First order partial derivative of

Ui with respect to ȳ
′
ui at Ui (Ȳ

′
i , Z̄) = Ȳ

′
i ⇒U1i (Ki) =

∂Ui(.)

∂ ȳ′ui
|Ki = 1, where Ki = (Ȳ

′
i , Z̄).

(iv) The first and second order partial derivatives of Ui (ȳ
′
ui, z̄u) exist and are contin-

uous and bounded in R2.
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2.4.2 Estimators Based on the matched sample at current wave

For the matched sample of size m retained from previous wave, it is clear that there
are two kind of auxiliary information available, one is non-sensitive additional auxil-
iary information (z) and other is information from previous wave based on sample
of size n. Hence, motivated by Senapati and Sahoo(2006) let f1i = gi (x̄

′
mi, z̄m, z̄n)

and f2i = hi (x̄
′
ni, z̄n) are two different classes of estimators of X̄

′
i through samples of

sizes m and n respectively such that gi (X̄
′
i , Z̄, Z̄) = hi(X̄

′
i , Z̄) = X̄

′
i . Let (ȳ

′
mi, f1i, f2i)

assumes values in a closed convex subspace R3 of 3-dimensional real space con-
taining the point (Ȳ

′
i , X̄

′
i , X̄

′
i ). Also suppose Ti (ȳ

′
mi, f1i, f2i) is a known function

of ȳ
′
mi, f1i, f2i such that Ti (Ȳ

′
i , X̄

′
i , X̄

′
i ) = Ȳ

′
i and the three functions gi, hi, and

Ti satisfies the regularity conditions stated by Srivastava (1980). Hence, a general
class of estimators based on sample size m at current wave for estimating sensitive
population mean under two models may be defined as

Lmi = Ti (ȳ
′
mi, f1i, f2i) (4)

where i = 1 and 2 denote the randomized and scrambled response models respec-
tively quoted in section 2.2 and 2.3. Many well known estimators when modified for
estimation of sensitive population mean can become a member of proposed class
of estimators. Some of them are listed in Table 2.

Table 2.Estimators based on sample size m
Member Estimator Functional Form

Lm1i [ȳ
′
1mi + k(x̄

′
ni − x̄

′
mi)] when no additional

non-sensitive auxiliary
information is used then

f1i = x̄
′
mi& f2i = x̄

′
ni

Lm2i [ȳ
′∗
1mi +β

y
′
i x
′
i
(x̄
′∗
1ni − x̄

′∗
1mi)],

where, ȳ
′∗
1mi +β

y
′
i x
′
i
( f2i − f1i)]

ȳ
′∗
1mi = [ȳ

′
mi +β

y
′
i z
(Z̄− z̄m)], x̄

′∗
1ni = [x̄

′
ni +β

x
′
i z
(Z̄− z̄n)] &

x̄
′∗
1mi = [x̄

′
mi +β

x
′
i z
(Z̄− z̄m)

Lm3i

 ȳ
′∗
2mi

x̄
′∗
2mi

 x̄
′∗
2ni ,

where,
ȳ
′∗
2mi
f1i

f2i

ȳ
′∗
2mi = ȳ

′
mi +b

y
′
i z
(m)(Z̄− z̄m), x̄

′∗
2ni = x̄

′
ni +b

x
′
i z
(n)(Z̄− z̄n) &

x̄
′∗
2mi = x̄

′
mi +b

x
′
i z
(m)(Z̄− z̄m)

Lm4i ȳ
′∗
2mi +b

y
′
i x
′
i
(m)(x̄

′∗
3ni − x̄

′∗
3mi),

where, ȳ
′∗
2mi +b

y
′
i x
′
i
(m)( f2i − f1i)

x̄
′∗
3ni =

x̄
′
ni

z̄n Z̄, x̄
′∗
3mi =

x̄
′
mi

z̄m Z̄

Lm5i ȳ
′∗
4mi +b

y
′
i x
′
i
(m)(x̄

′∗
3ni − x̄

′∗
3mi),

where, ȳ
′∗
4mi +b

y
′
i x
′
i
(m)( f2i − f1i)

ȳ
′∗
4mi =

ȳ
′
mi

z̄m Z̄

Lm6i
ȳ
′∗
2mi

x̄
′∗
2mi

x̄
′∗
3ni

ȳ
′∗
2mi
f1i

f2i
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2.4.3 Combined General Class of Estimators

Considering the convex linear combinations of the two classes of estimators Lui and
Lmi based on sample of size u and m respectively, the final estimator for population
mean of coded response variable is given as

Li = Ψ
∗
i Lui +(1−Ψ

∗
i )Lmi ; i = 1 and 2 (5)

where the class of estimators Lui and Lmi are defined in equations 3 and 4 respec-
tively and Ψ∗i ε [0,1] is a scalar quantity to be chosen suitably.
Many existing estimators for population mean at current wave by eminent researches
in successive sampling can be the members of the proposed class when modified
to work for estimation of sensitive population mean of coded response variable at
current wave. Some of them are modified and given as:

L1i = Ψ∗1iLu1i +(1−Ψ∗1i)Lm1i, (Modified Jessen (1942) estimator)
L2i = Ψ∗1iLu10i +(1−Ψ∗1i)Lm2i, (Modified Singh and Priyanka (2008))
L3i = Ψ∗2iLu11i +(1−Ψ∗2i)Lm3i, (Modified Singh and Karna (2009) estimator)
L4i = Ψ

∗
4iLu4i +(1−Ψ

∗
4i)Lm4i,

L5i = Ψ
∗
5iLu4i +(1−Ψ

∗
5i)Lm5i,

L6i = Ψ
∗
6iLu4i +(1−Ψ

∗
6i)Lm6i.

(Modified Singh and Prasad (2010) estimator)

etc.,

3. Features of proposed General Class of Estimators

3.1. Bias and Mean Squared Error

The bias and mean squared error of class of estimators Lui and Lmi are derived up to
first order approximations under large sample assumptions and using the following
transformations.
ȳ
′
ui = Ȳ

′
i (1+ e1i), ȳ

′
mi = Ȳ

′
i (1+ e2i), x̄

′
mi = X̄

′
i (1+ e3i), x̄

′
ni = X̄

′
i (1+ e4i), z̄m =

Z̄ (1+ e5), z̄u = Z̄ (1+ e6), z̄n = Z̄ (1+ e7), x̄
′
ui = X̄

′
i (1+ e8i), s2

x′i
(m) = S2

x′i
(1+

e9i), sy′i z
(u) = Sy′i z

(1+e10i), sy′i z
(m) = Sy′i z

(1+e∗10i), s2
z (u) = S2

z (1+e11), s2
z (m) =

S2
z (1+ e∗11), s2

z (n) = S2
z (1+ e∗∗11), sx′i z

(n) = Sx′i z
(1+ e12i), sx′i z

(m) = Sx′i z
(1+ e∗12i),

such that, E(esi) = 0; |esi| < 1; E(ek) = 0; |ek| < 1 where, i = 1 and 2; s =
1, 2, 3, 4, 8, 9, 10 and 12 and k = 5, 6, 7 and 11.

3.1.1 The Bias and Mean Squared Error of Lui

The expressions of bias and mean squared error of the class of estimators Lui are
derived as

Lui = Ui(ȳ
′
ui, z̄u)
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Expanding Ui (ȳ
′
ui, z̄u) about the point Ki = (Ȳ

′
i , Z̄) in a first order Taylor series, we

have

Lui = [ Ui(Ki)+ (ȳ′ui− Ȳ ′i) di1 +(z̄u− Z̄) di2+

1
2
{
(ȳ′ui− Ȳ ′i)2 di11 +(z̄u− Z̄)2 di22 +2 (ȳ′ui− Ȳ ′i)(z̄u− Z̄) di12

}
+ . . .] (6)

where,
di1 =

∂Ui
∂ ȳ′ui
|Ki , di2 =

∂Ui
∂ z̄u
|Ki , di11 =

∂ 2Ui
∂ ȳ′2ui
|Ki , di22 =

∂ 2Ui
∂ z̄2

u
|Ki ,

di12 =
∂ 2Ui

∂ ȳ′ui∂ z̄u
|Ki ; Ki = (Ȳ

′
i , Z̄) and i = 1 and 2

Applying large sample approximations in equation 6, and retaining terms up to first
order approximations we have,(

Lui − Ȳ
′
i

)
=

[
Ȳ
′
i e1i + Z̄e6di2 +

1
2

{
Ȳ
′
i

2e2
1idi11 + Z̄2e2

6di22 +2Ȳ
′
i Z̄e1ie6di12

}]
(7)

Taking expectations on both sides in the above equation 7 and assuming the pop-
ulation size is sufficiently large, we get bias of Lui up to first order approximation
as

B(Lui) =
1
u

[
1
2
(di11Ȳ

′2
i C2

y′i
+ Z̄2C2

z di22)+(ρy′i z
Cy′i

CzȲ
′
i Z̄di12)

]
(8)

Now, squaring both sides of above equation 7 and retaining terms up to first order
of approximations, we have(

Lui − Ȳ
′
i

)2
=
[
Ȳ
′
i

2e2
1i + Z̄2e2

6d2
i2 +2Ȳ

′
i Z̄e1ie6di2

]
Taking expectations on both sides in the above equation and assuming the popula-
tion is very large i.e.,N→ ∞, the mean squared error of Lui is obtained as

M(Lui) =
1
u

[
Ȳ
′2
i Cy′2i

+ Z̄2C2
z d2

i2 +2ρy′i z
Cy′i

CzȲ
′
i Z̄di2

]
which is optimized for di2 =−ρy′i z

, Further, substituting optimized value of di2 in the
above equation we obtain the required optimum mean squared error of Lui as

M(Lui)opt. =
1
u

[
Ȳ
′2
i Cy′2i

+ Z̄2C2
z ρ

2
y′i z
−2ρy′i z

Cy′i
CzȲ

′
i Z̄ρy′i z

]
Remark 5. Since x

′
and y

′
are the same variables over two waves and z is

the stable auxiliary variable so as pointed out by Murthy (1967), Cochran(1977),
Reddy(1978), Feng and Zou (1996) and Singh and Ruiz-Espejo (2003) the coeffi-
cient of variation is stable in nature, so we assume that the coefficients of variation
x
′
, y
′
and z are almost equal (i.e., Cy′

∼=Cx′
∼=Cz).

From the above remark 5 we state the following theorem.
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Theorem 3.1. To the first degree of approximations, the bias and mean squared
error of Lui under assumption given in remark 5 is

B(Lui) =
1
2u

[
di11 +di22 +2di12ρy′i z

]
S2

y′i
(9)

and

M(Lui)opt. =
1
u

(
1−ρ

2
y′i z

)
S2

y′i
(10)

which is similar to the variance of linear regression estimator for population mean.

3.1.2 The Bias and Mean Squared Error of Lmi

For deriving the bias and mean squared error of class of estimators Lmi, f1i =

gi (x̄
′
mi, z̄m, z̄n) and f2i = hi (x̄

′
ni, z̄n) have been expanded around the points (X̄

′
i , Z̄, Z̄)

and (X̄
′
i , Z̄) respectively by first order Taylor’s series and neglecting the remainder

terms we get,
f1i = X̄

′
i +G1(x̄

′
mi− X̄

′
i )+G2[(z̄m− Z̄)− (z̄n− Z̄)] and

f2i = X̄
′
i +H1(x̄

′
ni− X̄

′
i )+H2(z̄n− Z̄).

Following Senapati and Sahoo(2006), we assume H1 = 1 because hi(X̄
′
i , Z̄) = X̄

′
i

and G1 = 1, G2 = −G3 because gi (x̄
′
mi, z̄m, z̄n) and gi (x̄

′
mi, z̄n, z̄m) assume the

same value i.e., X̄
′
i at (X̄

′
i , Z̄, Z̄). Hence we have

f1i = X̄
′
i +(x̄

′
mi− X̄

′
i )+G2[(z̄m− Z̄)− (z̄n− Z̄)] (11)

and

f2i = X̄
′
i +(x̄

′
ni− X̄

′
i )+H2(z̄n− Z̄) (12)

Similarly, observing F1 = 1, F2 = −F3 and expanding Ti (ȳ
′
mi, f1i, f2i) around the

point (Ȳ
′
i , X̄

′
i , X̄

′
i ) by first order Taylor’s series, we have,

Lmi = Ȳ
′
i +F1(ȳ

′
mi− Ȳ

′
i )+F2[( f1i− X̄

′
i )− ( f2i− X̄

′
i )], i.e.,

Lmi = Ȳ
′
i +(ȳ

′
mi− Ȳ

′
i )+F2[( f1i− X̄

′
i )− ( f2i− X̄

′
i )]+

1
2
[(ȳ
′
mi− Ȳ

′
i )

2F11 +( f1i− X̄
′
i )

2F22 +( f2i− X̄
′
i )

2F33+

2(ȳ
′
mi− Ȳ

′
i )( f1i− X̄

′
i )F12 +2(ȳ

′
mi− Ȳ

′
i )( f2i− X̄

′
i )F13+

2( f1i− X̄
′
i )( f2i− X̄

′
i )F23]. (13)

where,
F1 =

∂ f̄i
∂ ȳ′mi
|S∗1i = 1, F2 =

∂ f̄i
∂ x̄′mi
|S∗1i, F3 =

∂ f̄i
∂ x̄′ni
|S∗1i, F11 = 0, F22 =

∂ 2 f̄i
∂ x̄′mi

2 |S
∗
1i,

F33 =
∂ 2 f̄i
∂ x̄′ni

2 |S
∗
1i, F12 =

∂ 2 f̄i
∂ ȳ′mi∂ x̄′mi

|S∗1i, F13 =
∂ 2 f̄i

∂ ȳ′mi∂ x̄′ni
|S∗1i, F23 =

∂ 2 f̄i
∂ x̄′mi∂ x̄′ni

|S∗1i,
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G1 =
∂ ḡi

∂ ȳ′mi
|S∗2i = 1, G2 =

∂ ḡi
∂ x̄′mi
|S∗2i, G3 =

∂ ḡi
∂ x̄′ni
|S∗2i, G11 = 0,

G22 =
∂ 2ḡi

∂ x̄′mi
2 |S
∗
2i, G33 =

∂ 2ḡi
∂ x̄′ni

2 |S
∗
2i, G12 =

∂ 2ḡi
∂ ȳ′mi∂ x̄′mi

|S∗2i, G13 =
∂ 2ḡi

∂ ȳ′mi∂ x̄′ni
|S∗2i,

G23 =
∂ 2ḡi

∂ x̄′mi∂ x̄′ni
|S∗2i, H1 =

∂ h̄i
∂ ȳ′mi
|S∗3i = 1, H2 =

∂ h̄i
∂ x̄′mi
|S∗3i, H3 =

∂ h̄i
∂ x̄′ni
|S∗3i,

H11 = 0, H22 =
∂ 2h̄i

∂ x̄′mi
2 |S
∗
3i, H33 =

∂ 2h̄i
∂ x̄′ni

2 |S
∗
3i, H12 =

∂ 2h̄i
∂ ȳ′mi∂ x̄′mi

|S∗3i,

H13 =
∂ 2h̄i

∂ ȳ′mi∂ x̄′ni
|S∗3i, H23 =

∂ 2h̄i
∂ x̄′mi∂ x̄′ni

|S∗3i

where S∗1i = (Ȳ
′
i , X̄

′
i , X̄

′
i ), S∗2i = (X̄

′
i , Z̄, Z̄) and S∗3i = (X̄

′
i , Z̄) ; i = 1 and 2 correspond

to randomized and scrambled response models considered.

After applying large sample approximations in equation 13 taking relevant ex-
pectations, simplifying and retaining terms up to first order of approximation we get
the bias and mean squared error of Lmi for large N as:

B(Lmi) =
1
2
[

1
m
((X̄

′2
i Cx′i

G11 + Z̄2Cz2G22 + X̄
′
i Z̄ρx′i z

Cx′i
CzG12)F2 +F11Ȳ

′2
i Cy′2i

+

(X̄
′2
i C2

x′i
+ Z̄2C2

z G2
2 +2X̄

′
i Z̄ρx′i z

Cx′i
CzG2)F22 +2(X̄

′
i Ȳ
′
i ρy′i x

′
i
Cx′i

Cy′i
+

Ȳ
′
i Z̄ρy′i z

Cy′i
CzG2)F12)+

1
n
([(Z̄2C2

z G33 + X̄
′
i Z̄ρx′i z

Cx′i
CzG13 + Z̄2C2

z G23)F2−

(X̄
′
i Cx′2i

H2
1 + Z̄2C2

z H2
2 + X̄

′
i Z̄ρx′i z

Cx′i
CzH12)]F2− (Z̄2G2

2C2
z +2X̄

′
i Z̄G2ρx′i z

Cx′i
Cz)F22+

(X̄
′
i Cx′2i

+ Z̄2C2
z H2

2 +2ρx′i z
Cx′i

CzX̄
′
i Z̄H2)F33−2ρy′i z

Cy′i
CzȲ

′
i Z̄G2F12+

2(ρy′i x
′
i
Cy′i

Cx′i
X̄
′
i Ȳ
′
i + Ȳ

′
i Z̄H2ρy′i z

Cy′i
Cz)F13 +2(X̄

′2
i C2

x′i
+ρx′i z

X̄
′
i Z̄Cx′i

CzH2)F23)]

(14)

M(Lmi) = Ȳ
′
i

1
m

Cy′2i
+ X̄

′
i F2

2 (
1
m

Cx′2i
− 1

n
Cx′2i

)+F2
2 G2

2Z̄2(
1
m

Cz2 −
1
n

Cz2)+

F2
2 H2

2 Z̄2 1
n

C2
z −2Ȳ

′
i X̄
′
i F2(

1
m

ρx′i y
′
i
Cy′i

Cx′i
− 1

n
ρx′i y

′
i
Cy′i

Cx′i
)+

2Ȳ
′
i Z̄F2G2(

1
m

ρy′i z
Cy′i

Cz−
1
n

ρy′i z
Cy′i

Cz)+2Ȳ
′
i F2H2Z̄

1
n

ρy′i z
Cy′i

Cz−

2X̄
′
i Z̄F2

2 G2(
1
m

ρx′i z
Cx′i

Cz−
1
n

ρx′i z
Cx′i

Cz) (15)

which is further optimized for

(F2)opt. =
ρ

y
′
i x
′
i
−ρ

x
′
i z

ρ
y
′
i z

ρ2
x
′
i z
−1

(say F∗2 ), (G2)opt. =
ρ

y
′
i x
′
i
ρ

x
′
i z
−ρ

y
′
i z

ρ
x
′
i z

ρ
y
′
i z
−ρ

y
′
i x
′
i

(say G∗2)

and (H2)opt. =
ρ

y
′
i z
(ρ2

x
′
i z
−1)

ρ
y
′
i x
′
i
−ρ

x
′
i z

ρ
y
′
i z
(say H∗2 ).

Further, substituting minimum value of F2, G2 and H2 in the above equation we
obtain the optimum mean squared error of Lmi as
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M(Lmi)opt. = Ȳ
′
i

1
m

C2
y′i
+ X̄

′
i F∗22 (

1
m

C2
x′i
− 1

n
C2

x′i
)+F2

2 G∗22 Z̄2(
1
m

C2
z −

1
n

C2
z )+

F2∗
2 H∗22 Z̄2 1

n
C2

z −2Ȳ
′
i X̄
′
i F∗2(

1
m

ρx′i y
′
i
Cy′i

Cx′i
− 1

n
ρx′i y

′
i
Cy′i

Cx′i
)+

2Ȳ
′
i Z̄F∗2 G∗2(

1
m

ρy′i z
Cy′i

Cz−
1
n

ρy′i z
Cy′i

Cz)+2Ȳ
′
i F∗2 H∗2 Z̄

1
n

ρy′i z
Cy′i

Cz−

2X̄
′
i Z̄F∗22 G∗2(

1
m

ρx′i z
Cx′i

Cz−
1
n

ρx′i z
Cx′i

Cz)

From the remark 5 we state the following theorem.

Theorem 3.2. To the first degree of approximations, the bias and mean squared
error of Lmi under assumption given in remark 5, is given by

B(Lmi) =

[
1
m
(a∗)+

1
n
(b∗)

] S2
y′i
2

(16)

Where,

a∗ =
(

G11 +G22 +G12ρx′i z

)
F2 +F11 +

(
1+G2

2 +2ρx′i z
G2

)
F22+

2
(

ρy′i x
′
i
+ρy′i z

G2

)
F12,

b∗ =
[(

G33 +ρx′i z
G13 +G23

)
−
(

H2
1 +H2

2 +ρx′i z
H12

)]
F2−

(
G2

2 +2ρx′i z
G2

)
F22

+
(

1+H2
2 +2ρx′i z

H2

)
F33 +2ρy′i z

F12 +2
(

ρy′i x
′
i
+ρy′i z

H2

)
F13+

2
(

1+H2ρx′i z

)
F23.

and

M(Lmi)opt. = [(
1
m
− 1

n
)(F∗22 +F∗22 G∗22 +2ρy′i x

′
i
F∗2 +2ρy′i z

G∗2F∗2 +2ρx′i z
G∗2F∗22 )+

1
n
(F∗22 +H∗22 −2ρy′i z

F∗2 H∗2 )+
1
m
]S2

y′i
(17)

Theorem 3.3. Bias of the general class of estimators Li to the first order of approx-
imations are obtained as

B(Li) = Ψ
∗
i B(Lui)+(1−Ψ

∗
i )B(Lmi) (18)

Substituting the values of B(Lui) and B(Lmi) from the equations 9 and 16 in
the above equation, we have the expression for the bias of the general class of
estimators Li in equation 18.
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Theorem 3.4. Mean squared error of the general class of estimators Li to first order
of approximations are obtained as

M(Li) = Ψ
∗
i

2M(Lui)opt.+(1−Ψ
∗
i )

2M(Lmi)opt. (19)

The optimized values of M(Lui) and M(Lmi) are computed in equation 10 and
equation 17 respectively and as the two classes of estimators Lui and Lmi are
based on two non-overlaping samples of sizes u and m respectively.
So, cov(Lui, Lmi) = 0. Hence, using these values in above equation 19 we get the
mean squared error of Li.

3.2. Optimum Mean Squared Error of the Proposed class of Estimator

The mean squared error of class of estimators Li is a function of unknown constant
Ψ∗i therefore, it is minimized with respect to Ψ∗i and hence the optimum value of Ψ∗i
is obtained as

Ψ
∗
iopt. =

M[Lmi]opt.

M[Lui]opt.+M[Lmi]opt.
(20)

Substituting the value of Ψ∗iopt. from equation 20 in equation 19, we get the optimum
mean squared error of the class of estimator Li as

M[Li]opt. =
M[Lui]opt.×M[Lmi]opt.

M[Lui]opt.+M[Lmi]opt.
(21)

Further, substituting the values M[Lui]opt. and M[Lmi]opt. from equations 10 and
equation 17 in equation 21, the simplified values of M[Li]opt. is derived as

M[Li]opt. =
B∗1iµi +B∗2i

µ2
i A∗3i−µiB∗3i +A∗1i

S2
y′i
n

 (22)

where,
A∗1i = 1−ρ2

y′i z
, A∗2i = d∗+1, A∗3i = d∗−H∗22 F∗22 +2ρy′i z

H∗2 F∗2 ,

d∗ = F∗22 +G∗22 F∗22 +2ρy′i x
′
i
F∗2 +2ρy′i z

F∗2 G∗2 +2ρx′i z
F∗22 G∗2,

B∗1i = A∗1iA
∗
3i, B∗2i = A∗1iA

∗
2i−A∗1iA

∗
3i, B∗3i = A∗1i−A∗2i +A∗3i.

3.3. Optimum Rotation Rate

Rotation rate is an important aspect in successive sampling as it is directly related
to total cost of survey. More the sample rotated/ matched from previous wave, lesser
number of units will be required to be drawn at current wave. Hence, mean squared
error of the estimator Li (i = 1 and 2) derived in equation 22 which is a function of
µi, have been optimized with respect to µi (i = 1 and 2). The optimum value of
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µi say µ̂∗f i have been obtained which satisfies the condition given as:

0 < min

{
−C∗2i +

√
C∗2i

2 +C∗1iC
∗
3i

C∗1i
,
−C∗2i−

√
C∗2i

2 +C∗1iC
∗
3i

C∗1i

}
< 1 (23)

where, C∗1i = B∗1iA
∗
3i, C∗2i = A∗3iB

∗
2i and C∗3i = A∗1iB

∗
1i +B∗3iB

∗
2i.

Substituting the applicable value of µ̂∗f i in equation 23, we have the optimum value
of the mean squared error of the general class of estimators Li as,

M (Li)opt.∗ =
B∗1iµ

∗
f i +B∗2i

µ2∗
f i A∗3i−µ∗f iB

∗
3i +A∗1i

S2
y′i
n

 ; i = 1 and 2. (24)

4. Performance of Proposed Composite class of estimator

The proposed general class of estimator have been compared with the member
of its class listed in section 2.4.3. Therefore their optimum fraction of sample to
be drawn afresh at current wave and the optimum mean squared error have been
computed and are presented below in Table 3 and Table 4 respectively.

Table 3.Optimum rotation rate for proposed estimators
Estimator Optimum Rotation Rate

L1i µ̂Ji satisfies

0 < min


1+
√

1−ρ2
y
′
i x
′
i

ρ2
y
′
i x
′
i

,

1−
√

1−ρ2
y
′
i x
′
i

ρ2
y
′
i x
′
i

< 1

L2i µ̂spi satisfies

0 < min

 −A∗1i+
√

A∗1i(A
∗
1i+D∗1i)

D∗1i
,
−A∗1i−

√
A∗1i(A

∗
1i+D∗1i)

D∗1i

 < 1

L3i µ̂ski satisfies

0 < min

 I2i+
√

I2
2i−I1i I3i
I1i

,
I2i−

√
I2
2i−I1i I3i
I1i

< 1

L4i µ̂sp1i satisfies

0 < min

 I12i+
√

I2
12i−I11i I13i
I11i

,
I12i−

√
I2
12i−I11i I13i
I11i

< 1

L5i µ̂sp2i satisfies

0 < min

 I22i+
√

I2
22i−I21i I23i
I21i

,
I22i−

√
I2
22i−I21i I23i
I21i

< 1

L6i µ̂sp3i satisfies

0 < min

 I32i+
√

I2
32i−I31i I33i
I31i

,
I32i−

√
I2
32i−I31i I33i
I31i

< 1
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Table 4.Mean Squared Error
Estimator Optimum Mean Squared Error

L1i


1−µ̂Jiρ2

y
′
i x
′
i

1−µ̂2
Jiρ2

y
′
i x
′
i


S2
y
′
i

n

L2i

 [A∗1i(A
∗
1i+µ̂spiD∗1i)]

A∗1i+µ̂2
spiD∗1i




S2
y
′
i

n


where D∗1i = 2ρ2

y
′
i z

ρ
y
′
i x
′
i
−ρ2

y
′
i x
′
i
(1+ρ2

y
′
i z
)

L3i

(
µ̂skig1i−g2i

µ̂2
skiK3i−µ̂skig3i−K1i

)
S2
y
′
i

n


where k1i = 1−ρ2

y
′
i z

, k2i = 2−ρ2
y
′
i z
−2ρ

y
′
i x
′
i
−ρ2

x
′
i z

+2ρ
y
′
i z

ρ
y
′
i z
,

k3i = 2ρ
y
′
i x
′
i
+ρ2

x
′
i z
−2ρ

x
′
i z

ρ
y
′
i z
−1 , g1i = k1ik3i ,g2i = k1ik2i + k1ik3i ,

g3i = k2i − k1i + k3i , I1i = k3ig1i , I2i = k3ig2i and I3i = k1ig1i +g2ig3i

L4i

 µ̂sp1ig11i−g12i
µ̂2

sp1iK13i−µ̂sp1iB13i−K11i




S2
y
′
i

n


where k11i = 2−2ρ

y
′
i z
, k12i = 1−ρ2

y
′
i z
−2ρ2

y
′
i x
′
i

ρ
x
′
i z

+2ρ
y
′
i z

ρ
y
′
i x
′
i

ρ
x
′
i z
,

k13i = 2ρ2
y
′
i x
′
i

ρ
x
′
i z
−2ρ

y
′
i z

ρ
y
′
i x
′
i

ρ
x
′
i z
, g11i = k11ik13i ,g12i = k11ik12i + k11ik13i ,

g13i = k12i − k11i + k13i , I11i = k13ig11i , I12i = k13ig12i and I13i = k11ig11i +g12ig13i

L5i

 µ̂sp2ig21i−g22i
µ̂2

sp2iK23i−µ̂sp2ig23i−K11i




S2
y
′
i

n


where k22i = 2−2ρ2

y
′
i x
′
i

ρ
x
′
i z
−2ρ

y
′
i z
−2ρ

y
′
i x
′
i
+2ρ

y
′
i x
′
i

ρ
x
′
i z

+2ρ
y
′
i x
′
i

ρ
y
′
i z

,

k23i = 2ρ2
y
′
i x
′
i

ρ
x
′
i z

+2ρ
y
′
i x
′
i
−2ρ

y
′
i x
′
i

ρ
x
′
i z
−2ρ

y
′
i x
′
i

ρ
y
′
i z
, g21i = k11ik23i ,

g22i = k11ik22i + k11ik23i , g23i = k22i − k11i + k23i , I21i = k23ig21i ,
I22i = k23ig22i and I23i = k11ig21i +g22ig23i

L6i

 µ̂sp3iB31i−g32i
µ̂2

sp3iK33i−µ̂sp3iB33i−K11i




S2
y
′
i

n


where k32i = 2−ρ2

x
′
i z
−ρ2

y
′
i z
−2ρ

y
′
i x
′
i
+2ρ

y
′
i z

ρ
x
′
i z
,

k33i = 2ρ2
x
′
i z
−2ρ

x
′
i z

+2ρ
y
′
i x
′
i
−ρ

y
′
i z

ρ
x
′
i z
, g31i = k11ik33i ,g32i = k11ik32i + k11ik33i ,

g33i = k32i − k11i + k33i , I31i = k33ig31i , I32i = k33ig32i and I33i = k1ig31i +g32ig33i

5. Estimators for sensitive population mean at current wave

Replacing the population mean of coded response Ȳ
′
i (i = 1, 2) in equation 1 and

equation 2 by its estimators Li and Li j (i= 1, 2 ; j = 1, 2, 3, 4, 5, 6) , the correspond-
ing estimators for sensitive population mean at current wave ˆ̄Yi and ˆ̄Yi j respectively
is obtained and are given in Table 5.
Since, the estimators ˆ̄Yi and ˆ̄Yi j are biased, the mean squared errors of sensitive
population mean estimators Ȳji ; j = 1, 2, 3, 4, 5, 6 has also been computed under
two considered models and are presented in Table 5.
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Table 5.Sensitive population mean estimators ˆ̄Yi, ˆ̄Yi j and Mean squared error of
the estimators ˆ̄Yi, ˆ̄Yi j under the models MAR and MDP

i Model Sensitive population Mean squared error of
mean estimator sensitive population mean

1 MAR
ˆ̄Y1 =

L1−p2 W̄2−(1−p1−p2 )W̄3
p1 +p2 W̄1

M[ ˆ̄Y1 ] =
M[L1 ]opt.∗
[p1 +p2 W̄1 ]

2

ˆ̄Y1 j =
L1 j−p2 W̄2−(1−p1−p2 )W̄3

p1 +p2 W̄1
M[ ˆ̄Y1 j ] =

M[L1 j ]opt.∗
[p1 +p2 W̄1 ]

2

2 MDP
ˆ̄Y2 =

L2−ϕ∗y W̄1
ϕ∗y +(1−ϕ∗y )W̄2

M[ ˆ̄Y2 ] =
M[L2 ]opt.∗

[ϕ∗y +(1−ϕ∗y )W̄2 ]
2

ˆ̄Y2 j =
L2 j−ϕ∗y W̄1

ϕ∗y +(1−ϕ∗y )W̄2
M[ ˆ̄Y2 j ] =

M[L2 j ]opt.∗
[ϕ∗y +(1−ϕ∗y )W̄2 ]

2

6. Comparison

The percent relative efficiency of proposed general class of estimator for sensitive
population mean ˆ̄Yi with respect to the estimator ˆ̄Yi j have been computed as

E ji =
M(Yi j)

M(Yi)
×100 ; ∀ i = 1 and 2 and j = 1, 2, 3, 4, 5 and 6. (25)

Remark 6. In the present paper we have considered additive, multiplicative and
upshot of additive and multiplicative type scrambled response models on two wave
successive sampling. The three scrambling variable W1, W2 and W3 used to per-
turb the true response through randomized or scrambled response models may
follow any distribution. Hence, following Pollock and Bek (1976), Eichhorn and
Hayre(1983) and Arcos et al.(2015), we consider scrambling variable W1 to follow
normal distribution with mean 1 and variance 1. However, the scrambling variable
W2 has been assumed to follow normal distribution with mean 0 and variance 1 and
W3 has been assumed to follow normal distribution with mean 1 and variance 2.

7. Numerical Presentation

Population Source:[Priyanka and Mittal (2016)]
The population comprise of N = 315 units. Let x and y denote the average monthly
expenditure on drug usage by undergraduate students in 2015 and 2016 respec-
tively. However z denote the average monthly pocket money of undergraduate stu-
dents from all sources. The parameters of considered population are computed as:
N = 315, S2

x = 1.2463×106, S2
y = 2.1926×106, S2

z = 1.4670×107,

X̄ = 370.5238, Ȳ = 504.8095, Z̄ = 4.0233×103, ρyx = 0.8937,
ρxz = 0.6491, ρyz = 0.7012.
The artificial data for W1, W2 and W3 have also been generated as per assumption in
remark 6. It is observed that W̄1 = 1.0871, S2

W1
= 0.5832, W̄2 =−0.0248, S2

W2
= 1.1695.

and W̄3 = 0.9731, S2
W3

= 4.4527
The optimum values of µ̂ ′i s for Li and L ji and percent relative efficiencies E ji have
been computed for the above data under two considered models and are presented
in Figure 1 to Figure 13 and Table 6.
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Figure 1: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y1

Figure 2: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y11

Figure 3: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y12

Figure 4: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y13

Table 6.Optimum fraction of sample drawn afresh and percent relative efficiencies
under scrambled response model. where α = ϕ∗y = ϕ∗x

i MDP µ̂ f 2 µ̂J2 µ̂sp2 µ̂sk2 µ̂sp12 µ̂sp22 µ̂sp32 E12 E22 E32 E42 E52 E62

α

2 0.1 0.6562 0.6935 0.6501 0.6430 0.3782 0.6798 0.6880 142.97 100.93 102.05 105.51 122.06 138.91

0.3 0.6489 0.6926 0.6414 0.6339 0.3996 0.6694 0.6793 151.88 101.18 102.37 104.13 119.76 137.04

0.5 0.6413 0.6916 0.6320 0.6242 0.4149 0.6584 0.6706 162.02 101.47 102.74 103.25 117.78 135.40

0.7 0.6345 0.6908 0.6234 0.6153 0.4240 0.6485 0.6630 171.89 101.78 103.11 102.83 116.30 134.17

0.9 0.6302 0.6904 0.6179 0.6096 0.4278 0.6423 0.6584 178.46 101.99 103.37 102.70 115.51 133.51

8. Simulation Study

The simulation study have been carried out by considering 10,000 different samples
using Monte Carlo simulation for the data mentioned in section 7. The simulated
percent relative efficiency Es ji of ˆ̄Yi with respect to ˆ̄Yi j ; j = 1, 2, . . . , 6 and i = 1
and 2 respectively have been computed for many combinations of constants and
the results are presented in Table 7.
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Figure 5: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y14

Figure 6: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y15

Figure 7: Optimum value of fraction of
sample drawn afresh for estimator ˆ̄Y16

Figure 8: Percent Relative Efficiency
E11

Figure 9: Percent Relative Efficiency
E21

Figure 10: Percent Relative Efficiency
E31
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Figure 11: Percent Relative Efficiency
E41

Figure 12: Percent Relative Efficiency
E51

Figure 13: Percent Relative Efficiency
E61
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Table 7.Simulation results for Es ji ; j = 1, 2, . . . , 6 ; i = 1 and 2, α = ϕ∗y = ϕ∗x
i Es1i Es2i Es3i Es4i Es5i Es6i

Model

1 MAR
(p2 ) (p1 )

0.1 169.69 100.65 224.69 120.45 131.53 137.86
0.1 0.5 186.63 100.91 196.39 119.78 128.99 135.80

0.9 188.52 100.93 199.80 120.15 129.17 136.02
0.1 155.46 100.47 274.59 121.17 134.37 140.23

0.3 0.5 176.95 100.76 210.07 120.13 130.34 136.88
0.9 183.39 100.85 205.21 120.23 129.75 136.46
0.1 151.21 100.42 298.82 121.37 135.35 141.05

0.5 0.5 169.71 100.65 227.63 120.60 131.67 137.99
0.9 177.92 100.78 206.66 119.97 130.08 136.66
0.1 149.21 100.39 313.36 121.47 135.84 141.47

0.7 0.5 164.75 100.59 230.77 120.36 132.12 138.31
0.9 173.36 100.71 214.69 120.16 130.79 137.24
0.1 148.02 100.38 303.94 121.13 135.77 141.37

0.9 0.5 161.38 100.54 258.97 121.24 133.46 139.50
0.9 169.70 100.65 225.38 120.48 131.56 137.89

2 MDP ϕ∗y
0.1 148.01 100.38 295.23 120.92 135.58 141.19
0.5 169.68 100.66 221.400 120.27 131.36 137.70
0.9 188.53 100.93 2010.6 120.25 129.27 136.11

9. Scrambling implementation Versus pseudonymous/incognito
Questionnaires

As it is familiar that randomized and scrambled response estimators are less effi-
cient than estimators obtained using direct questioning method. Here we discussed
that the data is collected by scrambled response which is to be compared with data
collected with pseudonymous/incognito questionnaire. For ascertaining the privacy
protection additional cost has to be incurred.
In order to evaluate the data scrambling benefits, the estimator under random-
ized and scrambled response model have been compared with direct questioning
method. If no scrambling mechanism have been used at any wave then the similar
estimator under direct method is proposed as

LD = χLuD + (1−χ)LmD ; χ ε [0, 1] (26)

where

LuD = V ∗ (ȳu, z̄u), (27)

LmD = T ∗ (ȳm, f ∗1 , f ∗2 ) (28)

where, V ∗ (ȳu, z̄u) is a function of (ȳu, z̄u) such that

V ∗ (Ȳ , Z̄) = Ȳ ⇒ V ∗1 (K
∗) = ∂V ∗(.)

∂ ȳu
|K∗ = 1 with K∗ = (Ȳ , Z̄) and V ∗(ȳu, z̄u) satisfies

the following conditions:
1. The function V ∗ (ȳu, z̄u) is continuous and bounded in R.
2. The first, second and third partial derivatives of V (ȳu, z̄u) exist and are continu-
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Figure 14: Percent Relative Efficiency
E1D

Figure 15: Percent Relative Efficiency
E2D

ous and bounded in R.
T ∗ (ȳm, f ∗1 , f ∗2 ) is a function of (ȳm, f ∗1 , f ∗2 ) such that f ∗1 = g∗ (x̄m, z̄m, z̄n), f ∗2 =

h∗ (x̄n, z̄n) and T ∗ (ȳm, f ∗1 , f ∗2 ) is a function of (ȳm, f ∗1 , f ∗2 ) such that T ∗ (Ȳ , X̄ , X̄) =

Ȳ , g∗ (X̄ , Z̄, Z̄) = h∗(X̄ , Z̄) = X̄ and three functions T ∗, g∗, h∗ satisfy the regularity
conditions as considered for Lui given in equation 10.
The minimum mean squared error of the class of estimator LD to the first order
approximations is given as

M[LD]opt.∗ =
B∗d1µ̂d +B∗d2

µ̂2
d A∗d3− µ̂dB∗d3 +A∗d1

(
S2

y

n

)
(29)

where,
A∗d1 = 1−ρ2

xz, A∗d2 = dd +1, A∗d3 = dd− (H∗d2)
2(F∗d2)

2 +2H∗d2F∗d2ρyz,

dd = (F∗d2)
2 +(G∗d2)

2(F∗d2)
2 +2F∗d2ρyx +2F∗d2G∗d2ρyz +2(F∗d2)

2G∗d2ρxz, B∗d1 = A∗d1A∗d3,

B∗d2 = A∗d1A∗d2−A∗d1A∗d3, B∗d3 = A∗d1−A∗d2 +A∗d3 and

µ̂d satisfies

0 < min

−C∗d2 +
√

C∗2d2 +C∗d1C∗d3

C∗d1
,
−C∗d2−

√
C∗2d2 +C∗d1C∗d3

C∗d1

< 1 (30)

where C∗d1 = B∗d1A∗d3, C∗d2 = A∗d3B∗d2 and C∗d3 = A∗d1B∗d1 +B∗d3B∗d2.

EiD =
M(LD)opt.∗

M( ˆ̄Yi)opt.∗
×100 (31)

The percent relative efficiencies have been computed for the data represented in
section 7 for different choices of

{
p1 , p2 , ϕ∗y

}
ε {0.1, 0.2, 0.3, 0.4, . . . , 0.9} and

are presented in graphical form in Figure 14 to Figure 15 for the two considered
models respectively.
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10. Demonstration of Results

1. From Figure.1 - Figure.13, following can be concluded.
(i) It can be seen that optimum value of fraction of sample to be drawn afresh exists
for all considered estimators under both the randomized and scrambled response
model.
(ii) The proposed general class of estimators performs appreciably good in terms of
percent relative efficiency under the considered models when compared with other
modified estimators Li j ; j = 1, 2, . . . , 6 which are also the members of proposed
class of estimators Li ; i = 1 and 2.
(iii) For MAR, it can be seen that for fixed value of p1 if p2 increases E1 j decreases.
However for fixed value of p2 if p1 increases E1 j also increases.
(iv) Both the models, MAR and MDP are performing almost similar in terms of per-
cent relative efficiency.
(v) The Scrambled response model MDP performs appreciably good in terms of op-
timum fraction of sample to be drawn afresh than the model MAR.
(vi) The Randomized response model MAR is more general as it provide wider scope
to the respondents and moderate optimum fraction of sample to be drawn afresh
as well as percent relative efficiency.
(vii) Out of scrambled and randomized response models, MDP is showing stable be-
haviour as per assumptions of successive sampling.

2. From the simulation result in Table 7 it can be focused that the proposed general
class of estimator is efficient than others considered under both randomized and
scrambled response model.

3. From Figure 14 and Figure 15 it is indicated that when the proposed estima-
tor is compared with direct method, for some combinations percent relative loss
has been observed which is in accordance with the theory as scrambling or ran-
domization procedures in general yields loss in efficiency.

11. Epilogue

The propounded general class of estimator for estimating sensitive population mean
at current wave under considered scrambled and randomized response models ac-
complishes good percent relative efficiency when proposed general class of esti-
mator Li is compared with modified estimators Li j ; j = 1, 2, . . . , 6 and i = 1
and 2. Out of the two considered techniques, the model under scrambled response
technique proves more stable in context of successive sampling with proposed es-
timator on two successive waves. However, depending on the sensitive nature of
the character under study the two available techniques can be explored with the
proposed general class of estimator. Therefore, depending on the given situation
the scrambled or randomized response models may be selected to be applied with
proposed general class of estimators on successive waves.
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