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FROM THE EDITOR   

I am pleased to announce that, with this issue, our journal’s Editorial Board is 
being extended by another distinguished scholar as Partha Lahiri has accepted our 
invitation to join the group of scientific advisors and supporters of the Statistics in 
Transition new series (SiTns). Known for his extraordinary scientific achievements 
and organizational activity worldwide, Partha has also agreed to take on a leading 
role, as a Guest Editor-in-Chief, in organizing a special issue of SiTns devoted to 
statistical data integration – see call for papers (page 187). 

The third issue of Statistics in Transition new series 2019 is composed of a set 
of seven research articles and of two papers based on presentations at the 
conferences held in Łodz (Multivariate Statistical Analysis, 2018) and in 
Ciechocinek (Classification and Data Analysis. Theory and Applications. 2018).   

The issue is opened by Vivek Verma’s and Dilip C. Nath’s paper 
Characterization of the sum of binomial random variables under ranked set 
sampling in which authors examine the characteristics of the sum of independent 
and nonidentical set of binomial ranked set samples, where each set has a different 
order depending success probability. The characterization is done by establishing 
the general recurrence relations for two different situations based on the number of 
cycle, which is initially pre-assumed as a constant integer and when it is a random 
variable. To extend the knowledge about the characteristics of the sum in terms of 
their behaviour and pattern, first four moments, i.e. mean, variance, skewness and 
kurtosis are derived and compared with the sum of binomial simple random 
samples with the same success probability. The proposed procedure is illustrated 
with a real-life data on survivorship of children aged under one in Empowered 
Action Groups (EAG) states of India. Results show that the sum based on ranked 
set samples provides more reliable and accurate estimates than that of alternative 
one, for all selected states taken into account. 

The next article, by Mohammed Abduljaleel, Habshah Midi and Mostafa 
Karimi, Outlier detection in the analysis of nested Gage R&R, random effect 
model, starts with an observation that measurement system analysis is a 
comprehensive valuation of a measurement process and characteristically includes 
a specially designed experiment that strives to isolate the components of variation 
in that measurement process. Gage repeatability and reproducibility is the 
adequate technique to evaluate variations within the measurement system. 
Repeatability refers to the measurement variation obtained when one person 
repeatedly measures the same item with the same Gage, while reproducibility 
refers to the variation due to different operators using the same Gage. The two 
factors factorial design, either crossed or nested factor, is usually used for a Gage 
R&R study. In this study, the focus is only on the nested factor, random effect 
model. Presently, the classical method (the method of analysing data without taking 
into consideration the existence of outliers) is used to analyse the nested Gage 
R&R data. However, this method is easily affected by outliers and, consequently, 
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the measurement system’s capability is also affected. Therefore, the aims of this 
study are to develop an identification method to detect outliers and to formulate a 
robust method of the measurement analysis of the nested Gage R&R, random 
effect model. The proposed methods of outlier detection are based on a robust  
𝑚𝑚  location and scale estimators of the residuals. The results of the simulation 
study and real numerical example show that the proposed outlier identification 
method and the robust estimation method are the most successful methods for the 
detection of outliers. However, the other two methods are not performing well and 
suffer from masking effect.  

Mansoor Rashid Malik and Devendra Kumar discuss Generalized Pareto 
distribution based on generalized order statistics and associated inference 
taking into account various structural properties of the distribution that are derived, 
including (quantile function, explicit expressions for moments, mean deviation, 
Bonferroni and Lorenz curves and Renyi entropy). Authors provided simple explicit 
expressions and recurrence relations for single and product moments of 
generalized order statistics from generalized Pareto distribution. The method of 
maximum likelihood is adopted for estimating the model parameters. Authors are 
considering the Bayes estimators of the unknown parameters under the 
assumption of gamma priors with respect to the shape and the scale parameters. 
The Bayes estimators are inaccessible in explicit forms, therefore authors analyse 
the above with reference to both symmetric and asymmetric loss functions. The 
Bayes interval of this distribution is also derived and - for different parameter 
settings and sample sizes - various simulation studies are performed and compared 
to the performance of the generalized Pareto distribution. 

In the paper estimation of product of two population means by multi-
auxiliary characters under double sampling the non-respondents Brij Behari 
Khare, Raghaw Raman Sinha consider the problem of estimating the product of 
two population means using the information on multi-auxiliary characters with 
double sampling the non-respondents. Classes of estimators are proposed for 
estimating P under two different situations in the literature using known population 
mean of multi auxiliary characters. Further, this problem is extended to the case 
when population means of the auxiliary characters are unknown and they are 
estimated on the basis of a larger first phase sample. In this situation, a class of 
two phase sampling estimators for estimating P is suggested using multi-auxiliary 
characters with unknown population means in the presence of non-response. The 
expressions of bias and mean square error of all the proposed estimators are 
derived and their properties are studied. An empirical study using real data sets is 
given to justify the theoretical considerations.  

Olga Komorowska, Arkadiusz Kozłowski and Teresa Słaby present the 
results of Comparative analysis of poverty in families with a disabled child and 
families with non-disabled children in Poland in the years 2014 and 2016. The 
presence of a child with disabilities in a family presents more challenging conditions 
than the presence of a non-disabled child. One of the difficulties is of financial 
nature. One of the parents often has to give up their job to care for the child, which 
shrinks the household income. At the same time, the family has higher expenses 
resulting from, e.g. costs of treatment. All this increases the risk of falling into 
poverty. The goal of this paper is to analyse the financial situation of households 
with a disabled child, mainly in the context of poverty, and compare it to the financial 
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situation of households with non-disabled children. The study is based on data from 
Polish Household Budget Survey, covering two years, 2014 and 2016. The study 
revealed that families with a disabled child are generally poorer than families with 
non-disabled children. The financial situation improved over the studied period in 
both types of families, but the improvement in the families with a disabled child was 
much greater. The main factor in reducing the risk of poverty in both types of 
families is the education attainment level of the reference person (the household 
head), which should be at least upper secondary. 

OlaOluwa Simon Yaya, Olalekan J. Akintande, Ahamuefula E. Ogbonna, 
Hammed Mumimi Adegoke in the paper CPI inflation in Africa: fractional 
persistence, mean reversion and nonlinearity discuss the price stability as the 
key mandates that apex monetary authorities strive to achieve globally. While most 
developed economies have achieved single digit inflation rates, most developing 
economies, especially African countries, still experience alarming double-digit 
inflation rates. Therefore, this paper examine the dynamics of inflation in sixteen 
African countries. Authors employed the fractional persistence framework with 
linear trend and non-linear specifications based on Chebyshev’s polynomial in time. 
The results indicated nonlinear time trend in inflation for most of the countries. With 
the exception of Burkina Faso, which exhibited plausibility of naturally reverting to 
its mean level, the majority of the selected African countries would require stronger 
interventions to revert their observed inflationary levels to their mean levels. 

Authors conclude that mean reversion is likely to occur in CPI inflation of 
Burkina Faso. In the choice of methodology for analysing inflation in Africa, this 
work recommends a careful selection of the estimation approach, particularly in 
countries where nonlinearities are detected. 

Wojciech Roszka’s paper spatial microsimulation of personal income in 
Poland at the level of subregions presents application of spatial microsimulation 
methods for generating synthetic population to estimate personal income in Poland 
in 2011 using census tables and EU-SILC 2011 microdata set. In the first section a 
research problem is presented along with a brief overview of modern estimation 
methods in application to small domains with particular emphasis on spatial 
microsimulation. The second section contains an overview of selected synthetic 
population generation methods. In the last section personal income estimation on 
NUTS 3 (sub-region) level is presented with special emphasis placed on the quality 
of estimates. Solving the problem of the sample size, correction of random and non-
random errors, the possibility of performing different simulations are undoubted 
advantages of the discussed (SMM) methods, which encourage deepening the 
work and analysis of the effectiveness and reliability of the estimates. 

The section Other articles containing post-conference papers starts with 
Katarzyna Budny’s article Power generalization of Chebyshev’s inequality – 
multivariate case. Some qualities of the multivariate power generalizations of 
Chebyshev’s inequality are discussed and some improvements with extension to a 
random vector with singular covariance matrix are suggested. For these 
generalizations, the cases of the multivariate normal and the multivariate t 
distributions are considered along with presenting some financial application.  

In the paper Decomposition of gender wage gap in poland using 
counterfactual distribution with sample selection, Joanna Małgorzata 



IV                                                                                            W. Okrasa: From the Editor  

 

Landmesser compares income distributions in Poland taking into account gender 
differences. The gender pay gap can only be partially explained by differences in 
men’s and women’s characteristics. The unexplained part of the gap is usually 
attributed to the wage discrimination. The objective of this study is to extend the 
Oaxaca-Blinder decomposition procedure to different quantile points along the 
income distribution. The RIF-regression method is used to describe differences 
between the incomes of men and women along the two distributions and to evaluate 
the strength of the influence of personal characteristics on the various parts of the 
income distributions using data from the EU-SILC for Poland in 2014. As the sample 
selection is a serious issue for the study, the applied decomposition is adjusted for 
sample selection problems. The results suggest existence of not only differences 
in income gap along the income distribution (in particular sticky floor and glass 
ceiling), but also differences in the contribution of selection effects to the pay gap 
at different quantiles.   

 

 
Włodzimierz Okrasa 

Editor  
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SUBMISSION INFORMATION FOR AUTHORS 

Statistics in Transition new series (SiT) is an international journal published 
jointly by the Polish Statistical Association (PTS) and Statistics Poland, on 
a quarterly basis (during 1993–2006 it was issued twice and since 2006 three 
times a year). Also, it has extended its scope of interest beyond its originally 
primary focus on statistical issues pertinent to transition from centrally planned to 
a market-oriented economy through embracing questions related to systemic 
transformations of and within the national statistical systems, world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved 
in data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy 
makers and the general public – with a platform for exchange of ideas and for 
sharing best practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement 
– as either a scientific domain (new research and data analysis methods) or as 
a domain of informational infrastructure of the economy, society and the state – 
are appropriate for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by 
internationally recognized experts, who are guided in their decisions about the 
publication by criteria of originality and overall quality, including its content and 
form, and of potential interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
sit@stat.gov.pl,  
GUS/Statistics Poland, 
Al. Niepodległości 208, R. 296, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published 
previously and that it is not under review elsewhere. It should include an abstract 
(of not more than 1600 characters, including spaces). Inquiries concerning the 
submitted manuscript, its current status etc., should be directed to the Editor by 
email, address above, or w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines 
on its Web site: http://stat.gov.pl/en/sit-en/guidelines-for-authors/ 
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The broad objective of Statistics in Transition new series is to advance the 
statistical and associated methods used primarily by statistical agencies and other 
research institutions. To meet that objective, the journal encompasses a wide 
range of topics in statistical design and analysis, including survey methodology 
and survey sampling, census methodology, statistical uses of administrative data 
sources, estimation methods, economic and demographic studies, and novel 
methods of analysis of socio-economic and population data. With its focus on 
innovative methods that address practical problems, the journal favours papers 
that report new methods accompanied by real-life applications. Authoritative 
review papers on important problems faced by statisticians in agencies and 
academia also fall within the journal’s scope. 
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CHARACTERIZATION OF THE SUM OF BINOMIAL
RANDOM VARIABLES UNDER RANKED SET

SAMPLING

Vivek Verma1, Dilip C. Nath2

ABSTRACT

In this paper, we examined the characteristics of the sum of independent
and non-identical set of binomial ranked set samples, where each set has
different order depending success probability. The characterization is done
by establishing the general recurrence relations for two different situations
based on the number of cycle, which is initially pre-assumed as a constant
integer and when it is a random variable. To extend the knowledge about
the characteristics of sum in terms of their behaviour and pattern, first four
moments i.e., mean, variance, skewness and kurtosis are derive and com-
pared with the sum of binomial simple random samples with same success
probability. The proposed procedure has been illustrated through a real-
life data on survivorship of children below one year in Empowered Action
Groups (EAG) states of India.

Key words: Factorial moment generating function, Skewness; Kurtosis,
Poisson distribution.

1. Introduction

The role of Ranked Set Sampling (RSS) as an alternative method of Sim-
ple Random Sampling (SRS) have been investigated since the time McIn-
tyre(1952), who first introduced this sampling procedure. Since, then many
authors have discussed about the efficacy of RSS either theoretically or an-
alytically. RSS is found to be very effective in contexts where exact mea-
surement of sampling units is expansive in time or toil; but the sample unit
can be readily ranked either through subjective or via the use of relevant
concomitant variables.

1Corresponding Author. Department of Statistics, Gauhati University, Guwahati, As-
sam, 781014, India, Current: Department of Neurology, All India Institute of Medical Sci-
ences, New Delhi, 110029, India. E-mail: viv verma456@yahoo.com

2Assam University, Silchar, 788011, Assam, India. E-mail: dilipc.nath@gmail.com
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Comparing with earlier studies where the variable of interest is continuous,
infrequent research discuss about the effectiveness of RSS where the vari-
able is binary. In cases, where the variable of interest is binary, there are
two possible outcomes, success (denoted as 1) and failure (denoted as 0)
and is supposed to follow Bernoulli with success probability p, say. Here,
the probability p can be viewed as a proportion of individuals with certain
characteristic in the population. The foregoing studies of RSS, where the
response is a binary variable, Terpstra (2004), Chen et al. (2005, 2006,
2007, 2008), Chen (2008), Verma et.al(2017), Das et.al (2017) Lacayo et
al. (2002), Terpstra and Miller (2006) and Chen et al. (2009), are mainly
concerned about estimation of population proportion and variance, and the
comparison with SRS is done using these estimates.

Obtaining the behaviour of a sum of Bernoulli random variables based on
simple random sample has found of greater importance in various applica-
tions like formalization random walk process (Takacs, 1991), the Stein-Chen
method for approximation of Poisson (Barbour and Holst, 1989), obtaining
bounds for entropy (Sason, 2013), characterization of flows in internet traffic
(Chabchoub et al. 2010), and approximation of rare events (Chen and Rollin,
2013). The problem of estimating the characteristics of sum of independent
binary variable in terms of their moments based on simple random sam-
ples has already been emphasized by many researchers like Malik (1969),
Ahuja (1970), Percus and Percus (1985), Ling (1988), Horvath (1989), Yu
and Zelterman (2002), and Kadane (2016). As an alternative procedure of
SRS, RSS has found to be more efficient and reliable, but the characteriza-
tion of a sum of independent and non-identical Bernoulli random variables
based on ranked set sample has not been considered in the literature. In
this connection the present article has mainly concerned to establish a re-
currence relations between the factorial moments of sum of independent
and non-identical sets of binary variables, which is never procured in case
of RSS. These relations also assists to reduce the number of independent
calculations required for evaluation of moments under RSS. And, helps in
characterizing the sum of binary variables under RSS by using recurrence
relations and compare with SRS.

In this paper, the recurrence relationship of sum of binary variables under
SRS and balanced RSS for fixed set size, s, and probabilities of success, p,
are obtained under two different situations. In the first case, the relationship
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is obtained when number of cycles, m is assumed to be known fixed values.
In the second case, an attempt is being made to extend the previously men-
tioned results of recurrence relations among the sum of independent binary
variable where the number of cycle is a random variable. To understand the
characteristics of sum of binary variables under SRS and RSS, the first four
moments are derived using factorial moments that by establishing the recur-
rence relationships. The technique of asymptotic approximations has been
found very helpful in various aspects like in Monte Carlo simulation (Hast-
ings, 1970) and bootstrap techniques (Freedman and Peters, 1984, Brown
and Newey, 2002), for obtaining numerical estimates and their asymptotic
variance and asymptotic confidence intervals. In characterization of any
distributions, asymptotical aspects adds additional information of the distri-
bution and it is an important feature to describe the how large the sample
size is required to achieve the asymptotic approximation. A simulation based
comparison among SRS and RSS has been discussed to numerically illus-
trate the requirement of sample size to achieve the asymptotic normality. A
practical illustration of the proposed procedure with a real-life data on child
survivorship for all eight selected Empowered Action Groups (EAG) Indian
states viz., Bihar, Uttaranchal, Chhatisgarh, Jharkhand, Orissa, Rajasthan,
Madhya Pradesh and Uttar Pradesh, has also been presented.

2. Sampling Design

Suppose the variable of interest is dichotomous variable, say X , and n(=ms),
denotes size of the sample drawn from the population by adopting the pro-
cedures of SRS and RSS, respectively, for prefixed set size,s and number
of cycles, m. Let {X[r]i;r = 1(1)s, i = 1(1)m} symbolizes a ranked set sample
of size ms, where X[r]i denotes the ith observation in the rth ranking class.
Because of RSS procedure, X[r]i’s are independently distributed and corre-
sponding to each rth set, (X[r]1,X[r]2, · · · ,X[r]m) are independently and identi-
cally (i.i.d.) distributed and X[r]1 is the rth order statistic from a simple random
sample of s observations on X . Let XSRS = (X1,X2, · · · ,Xn) is an i.i.d. simple

random sample from Bernoulli(p) and W (=
n
∑

i=1
Xi), denotes their sum and its

density is given by,

fW (w) =

(
n
w

)
pw (1− p)n−w ;w = 0(1)n;0≤ p≤ 1 (2.1)



4 Verma V., Nath D. C.: Characterization of the Sum of Binomial under RSS ...

Let X[r] = (X[r]1,X[r]2, · · · ,X[r]m) is an vector of i.i.d. ranked set samples of rth

set from Bernoulli (p[r]), for all r = 1(1)s and Yr =
m
∑
j=1

X[r] j, is the number of

times the event occurred in rth class, follows Binomial (m, p[r]) and is given
by,

P(Yr = yr) =

(
m
yr

)
pyr
[r] (1− p[r])

m−yr ;yr = 0,1, · · · ,m. (2.2)

Here, p[r] = Ip(s−r+1,r), denotes the standard incomplete beta integral and
is given by,

Ix(a,b) =
1

B(a,b)

x∫
0

ta−1(1− t)b−1dt, 0 < x < 1.

where B(a,b) = Γ (a)Γ (b)
Γ (a+b) . And, Y = (Y1,Y2, · · · ,Yr, · · · ,Ys) is vector of indepen-

dent Binomial variate with parameters m > 0 and p[r] for all r = 1(1)s and

Z =
s
∑

r=1
Yr, denotes their sums.

3. Characterization using the Recurrence Relations

Let G(t) =
n
∑

x=0
txP(X = x), denotes the probability generating function (pgf )

of a random variable X having distribution P(X = x), with support 0,1, · · · ,
n(= ms) ∈ Z+.

3.1. Case-I: The number of cycles, m, is a known fixed value

Theorem-1: For fixed m, the recursive relationship among factorial moment
of sum W and Z, under SRS and RSS, respectively, is given by

µ
′
[k](W ) = ms

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

p( j+1)
µ
′
[k−1− j](W ) (3.1)

and

µ
′
[k](Z) = m

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
s

∑
i=1

p j+1
[i]

)
µ
′
[k−1− j](Z). (3.2)

where µ ′[0] = 1.

Proof: Suppose that W , denotes the sum of n(= ms) i.e.,=
n
∑

i=1
Xi and Yr;
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∀r = 1(1)s, is the sum of m i.e.,=
m
∑
j=1

X[r] j, Bernoulli variables with parameters

p and p[r] respectively. The factorial moment generating function (fmgf ) of
W and Yr using equations (2.1)-(2.2) respectively, are given by

GW (t +1) =
n

∏
i=1

GXi(t +1) = (1+ pt)n (3.3)

GYr(t +1) = E((t +1)Yr) =
m

∏
j=1

E((t +1)X[r] j)

= (1+ p[r]t)
m. (3.4)

Since, {Yr}’s is a set of mutually independent Binomial variate, therefore, the

fmgf of Z(=
s
∑

r=1
Yr) using equation-(3.4) is given by

GZ(t +1) =
s

∏
r=1

GYr(t +1) =
s

∏
r=1

(1+ p[r]t)
m. (3.5)

If D denotes the differential operator i.e., d
dt , then the recursive relationship

between the factorial moments of W , based on simple random samples, can
be obtained by successive differentiation of equation-(3.3) and are as follows

D(GW (1+ t)) =
np

1+ t p
GW (1+ t),

D2(GW (1+ t)) =
np

1+ t p
D(GW (1+ t))− np2

(1+ t p)2 GW (1+ t),

D3(GW (1+ t)) =
np

1+ t p
D2(GW (1+ t))− 2np2

(1+ t p)2 D(GW (1+ t))+

2np3

(1+ t p)3 GW (1+ t),

... =
...,

Dk(GW (1+ t)) = n
k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
p

1+ t p

) j+1

Dk−1− j(GZ(1+ t)),

(3.6)
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and setting t = 0 in equation-(3.6) gives

µ
′
[k](W ) = ms

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

p( j+1)
µ
′
[k−1− j](W ),

where µ ′[0](W ) = 1.

The recursive relationship between fmgf of Z, which is based on ranked
set samples, using equation-(3.5), is given by

D(GZ(1+ t)) =
s

∑
i=1

(
mp[i]

1+ t p[i]

) s

∏
r=1

(1+ t p[r])
m =

s

∑
i=1

(
mp[i]

1+ t p[i]

)
GZ(1+ t),

D2(GZ(1+ t)) = D(GZ(1+ t))
s

∑
i=1

(
mp[i]

1+ t p[i]

)
−GZ(1+ t)

s

∑
i=1

m
(

p[i]
1+ t p[i]

)2

D3(GZ(1+ t)) = D2(GZ(1+ t))
s

∑
i=1

(
mp[i]

1+ t p[i]

)
−

D(GZ(1+ t))
s

∑
i=1

2m
(

p[i]
1+ t p[i]

)2

∗

GZ(1+ t)
s

∑
i=1

2m
(

p[i]
1+ t p[i]

)3

,

... =
...,

Dk(GZ(1+ t)) = m
k−1

∑
j=0

(−1) jh(k) j

(
s

∑
i=1

p j+1
[i]

)
Dk−1− j(GZ(1+ t)), (3.7)

where h(k) j =
(k−1)!

(k−1− j)! , setting t = 0 in equation-(3.7) provides

µ
′
[k](Z) = m

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
s

∑
i=1

p j+1
[i]

)
µ
′
[k−1− j](Z),

where µ ′[0](Z) = 1.

Corollary 1: The first four factorial moments i.e., for k = 1,2,3 and 4, using
equation-(3.1) of W and (3.1) of Z, based on simple random samples and
ranked set sample, are given in Appendix-(7.1).
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3.2. Case-II: The number of cycles, m, is a random variable

Suppose that the number of cycles, N, is a random variable, where m∈N+ =

{1,2, , · · ·}. The probability mass function of N = m is given by

fN(m) =
e−λ λ m−1

(m−1)!
;m = 1,2, · · · . (3.8)

i.e., N−1∼P(λ ) (Poisson with mean λ ), λ > 0.

Theorem-2: The recursive relationship between factorial moments of marginal
sums of W and Z respectively, where N is a random variable and follows the
Poisson distribution of equation-(3.8), is given by

µ
′
[k](W ) = s

k−1

∑
j=0

(k−1)!
(k−1− j)!

p( j+1)
(
(−1) j +

λ (s−1)!
(s−1− j)! j!

)
µ
′
[k−1− j](W ), (3.9)

µ
′
[k](Z) = λ

(
s

∑
i=1

p[i]

)
µ
′
[k−1](Z)+

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
s

∑
i=1

p j+1
[i]

)
µ
′
[k−1− j](Z)

(3.10)
Proof: Suppose W and Yr, are the mixtures of binomial distributions with a
fixed probability of success p and p[r], respectively, but a variable number
of cycles, m, modelled with Poisson distribution discussed in equation-(3.8).
The conditional distribution of W |N = m is given by,

fW (w|N = m) =

(
n
w

)
pw (1− p)n−w =

(
ms
w

)
pw (1− p)ms−w

where w = 0,1, · · · ,ms and 0 ≤ p ≤ 1. The fmgf of mixture of W using the
equations-(2.1) and (3.8) can be derived as,

GW (1+ t) = e−λ
∞

∑
m=1

λ m−1

(m−1)!

ms

∑
w=0

(
ms
w

)
((1+ t)p)w (1− p)ms−w,

= e−λ
∞

∑
m=1

λ m−1

(m−1)!
(1+ t p)ms,

= e−λ (1+ t p)seλ (1+t p)s
. (3.11)

If D denotes the differential operator i.e., d
dt , then the recursive relationship

between the factorial moments of the mixture of W can be obtained by suc-
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cessive differentiation of equation-(3.11) and are as follows,

D(GW (1+ t)) = e−λ{ps(1+ t p)s−1eλ (1+t p)s
+(1+ t p)seλ (1+t p)s

λ sp(1+ t p)s−1},

= GW (1+ t)
{

sp
1+ t p

+λ sp(1+ t p)s−1
}
,

= s GW (1+ t)
(

p
1+ t p

)
+ sλ p GW (1+ t)(1+ t p)s−1,

D2(GW (1+ t)) =
sp

1+ t p
D(GW (1+ t))− sp2

(1+ t p)2 GW (1+ t)+

λ sp(1+ t p)s−1D(GW (1+ t))+

λ s(s−1)p2(1+ t p)s−2GW (1+ t),

D3(GW (1+ t)) =
sp

1+ t p
D2(GW (1+ t))− 2sp2

(1+ t p)2 D(GW (1+ t))+

2sp3

(1+ t p)3 GW (1+ t)+λ sp(1+ t p)s−1D2(GW (1+ t))

2 λ s(s−1)p2(1+ t p)s−2GW (1+ t)

λ s(s−1)(s−2)p3(1+ t p)s−3GW (1+ t),
... =

...,

Dk(GW (1+ t)) =

s
k−1

∑
j=0

(k−1)!
(k−1− j)!

(
p

1+ t p

) j+1(
(−1) j +

λ (s−1)!
(s−1− j)! j!

(1+ t p)s
)

Dk−1− j,

(3.12)
setting t = 0 in equation-(3.12) gives the recursive relationship,

µ
′
[k](W ) = s

k−1

∑
j=0

(k−1)!
(k−1− j)!

p( j+1)
(
(−1) j +

λ (s−1)!
(s−1− j)! j!

)
µ
′
[k−1− j](W ) (3.13)

where µ ′[0](Z) = 1.

The fmgf of mixture of Yr of the rth set of Y by using the equations-(2.2)
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and (3.8) can be derived as,

GYr(t +1) = e−λ
∞

∑
m=1

λ m−1

(m−1)!

m

∑
yr=0

(1+ t)yr

(
m
yr

)
pyr
[r] (1− p[r])

m−yr

= e−λ
∞

∑
m=1

λ m−1

(m−1)!
(1+ t p[r])

m

= (1+ t p[r])e
−λ

∞

∑
m=1

((1+ t p[r])λ )(m−1)

(m−1)!

= (1+ t p[r]) e−λ (1−(1+t p[r])) = (1+ t p[r]) eλ t p[r] . (3.14)

The fmgf of Z using the equation-(3.14) is given by,

GZ(1+ t) =
s

∏
r=1

GYr(1+ t) = e
tλ

s
∑

r=1
p[r] s

∏
r=1

(1+ t p[r])

= eta
s

∏
r=1

(1+ t p[r]), (3.15)

where z = 0,1, · · · ,ms and 0 ≤ p[r] ≤ 1, a = λ sp and p =
s
∑

r=1
p[r]/s, for all

r = 1(1)s. The recursive relationship between the factorial moments of the
mixture of Z can be obtained by successive differentiation of equation-(3.15)
and are as follows,

D(GZ(1+ t)) = aeta
s

∏
r=1

(1+ t p[r])+ eta
s

∑
i=1

(
p[i]

1+ t p[i]

) s

∏
r=1

(1+ t p[r]),

= aGZ(1+ t)+GZ(1+ t)
s

∑
i=1

(
p[i]

1+ t p[i]

)
,

D2(GZ(1+ t)) = aD(GZ(1+ t))+D(GZ(1+ t))
s

∑
i=1

(
p[i]

1+ t p[i]

)
−

GZ(1+ t)
s

∑
i=1

(
p[i]

1+ t p[i]

)2

,
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D3(GZ(1+ t)) = aD2(GZ(1+ t))+D2(GZ(1+ t))
s

∑
i=1

(
p[i]

1+ t p[i]

)
−

D(GZ(1+ t))
s

∑
i=1

2
(

p[i]
1+ t p[i]

)2

+

GZ(1+ t)
s

∑
i=1

2
(

p[i]
1+ t p[i]

)3

,

... =
...,

Dk(GZ(1+ t)) =

aDk−1(GZ(1+ t))+
k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
s

∑
i=1

p j+1
[i]

)
Dk−1− j(GZ(1+ t)), (3.16)

setting t = 0 in equation-(3.16) gives recursive relationship as,

µ
′
[k](Z) = aµ

′
[k−1](Z)+

k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
s

∑
i=1

p j+1
[i]

)
µ
′
[k−1− j](Z)

where µ ′[0](Z) = 1.

Corollary 2: The first four factorial moments, i.e., k = 1,2,3 and 4, of the
mixture of W and Z using equation-(3.9) and equation-(3.10) based on sim-
ple random sample and ranked set sample, respectively, where the number
of cycles, m, is a random variable and follows the Poisson distribution, is
given in Appendix-(7.2).

4. Comparison of Moments

In this section, a comparison is being made among the factorial moments of
W and Z. Let D[k] = µ ′k(W )− µ ′k(Z), denotes the difference among factorial
moments of W and Z, of order k. For the situation, where m, is a known
constant, the difference, D[k], by using equations-(3.1) and (3.2), is given by

D1[k] = m
k−1

∑
j=0

(−1) j (k−1)!
(k−1− j)!

(
sp( j+1)

µ
′
[k−1− j](W )−µ

′
[k−1− j](Z)

s

∑
i=1

p j+1
[i]

)
.

(4.1)
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Under the assumption that m, is a random variable, D[k] can be obtained by
using the equations-(3.9) and (3.10) and is given by,

D2[k] =

k−1

∑
j=0

(
sp( j+1)

γ j µ
′
[k−1− j](W )− (−1) j

(
s

∑
i=1

p j+1
[i]

)
µ
′
[k−1− j](Z)

)

× (k−1)!
(k−1− j)!

−λ

(
s

∑
i=1

p[i]

)
µ
′
[k−1](Z), (4.2)

where γ j =
(
(−1) j + λ (s−1)!

(s−1− j)! j!

)
.

Note-1: Since, p[i] = Ip(s− i+ 1, i), ∀ i = 1,2, · · · ,s, therefore, a sum of p[i]’s
is given by,

s

∑
i=1

p[i] =
s

∑
i=1

Ip(s− i+1, i) =
s

∑
i=1

p∫
0

ts−i(1− t)i−1

B(s− i+1, i)
dt

=

p∫
0

s

∑
i=1

(
s−1
i−1

)
ts−i(1− t)i−1dt = s

p∫
0

dt = sp.

Note-2: Let γ(v) = 1
pv

s
∑

i=1
pv
[i], is a constant depends on the order v and for

v = 1, γ(1) = sp/p = s, i.e., the minimum value of γ(v) is s, that implies γ(v)≥
s ;∀v. Suppose that,

s

∑
i=1

pv
[i] =Cpv,

where C > 0, is a proportionality constant such that,

s

∑
i=1

pv
[i]−Cpv = 0 if C = γ(v) (4.3)

s

∑
i=1

pv
[i]−Cpv > 0 if C ∈ (0,γ(v)] (4.4)

s

∑
i=1

pv
[i]−Cpv < 0 if C > γ(v). (4.5)

Note-3: The difference equations of D1[k] and D2[k], of equations-(4.1)-(4.2),
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respectively, for k = 1,2 are such that

D1[1] = m

(
sp−

s

∑
i=1

p[i]

)
= 0 (4.6)

D1[2] = m

(
s

∑
i=1

p2
[i]− sp2

)
> 0; from-equations (4.6) and (4.4) (4.7)

D2[1] = sp(1+λ )−
s

∑
i=1

p[i]−λ

s

∑
i=1

p[i] = 0 (4.8)

D2[2] = sp(1+λ )µ ′[1](W )+ sp2(−1+λ (s−1))−µ
′
[1](Z)

[
λ sp+

s

∑
i=1

p[i]

]
+

s

∑
i=1

p2
[i]

=

[
s

∑
i=1

p2
[i]− sp2

]
+ sp2

λ (s−1)> 0; from-equations (4.8) and (4.4) (4.9)

Since,
s
∑

i=1
p[i] = sp and s ∈ (0,γ(v)];∀v, therefore, from equation-(4.4), we find

that the difference between,
(

s
∑

i=1
pv
[i]− spv

)
> 0.

5. Simulations

To assess the performance and changes in the moments of sums, when
set size, m, is known and unknown, a simulation study is done for differ-
ent combination of p ∈ {0.1,0.2,0.3,0.4,0.5}, s = 2,4 and 6, and m = λ =

10,50,100,200 and 500, under SRS and RSS, are presented in Table 1-2
of Appendix. To compare the accuracy of the estimator under RSS with
respect to SRS, the relative efficiency (RE)

RE =
µ2(SRS)
µ2(RSS)

is also obtained. In addition of that pattern of the skewness and kurtosis
of sums based on both SRS and RSS regarding their asymptotic behaviour
are also depicted in Figure 1-4 of Appendix.

Discussion: From Table 1, it has observed that the RE of the estimator un-
der RSS with respect to SRS, always greater than 1 for all combination of s,m
and p. For fixed number of cycles, m and proportion, p, the RE of the estima-
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tor under RSS with respect to SRS, is also increasing in most of the cases
with increase in set size, s, such as for m = 10 and p = 0.1, with increase the
value of s = 2,4,6, the RE is 1.21, 1.32 and 1.39, respectively. When the set
size, s, is fixed and number of cycles are significantly high values, the RE
of the estimator under RSS with respect to SRS has followed an increasing
trend with increase in proportion p, for e.g., when m = 500 and s = 6, the
RE has obtained as 1.38, 1.81, 2.02, 2.26 and 2.31 for p = 0.1,0.2, · · ·0.5,
respectively. Table 2 is based on the assumption that the number of cycles,
is a random quantity and follows zero truncated poisson(λ ). Under this trun-
cated poisson assumption, similar pattern of the RE of the estimator under
RSS with respect to SRS as previous has obtained. Results has shown that
with increase in s and p higher will be the values of RE. It has also found
that for fixed s and p, changing in poisson parameter λ does not affect the
efficiency of estimators under RSS as comparing to SRS, and remains al-
most same. It is found from the simulated results that even though the mean
under both SRS and RSS are same (Verma et.al (2017)) but the variances
of sums based on SRS are often higher than that of RSS, for all m and p,
which shows that the number of success obtained using RSS is more reli-
able and efficient as compare to SRS.

The interaction of sample size, n = ms, and skewness and kurtosis, respec-
tively, of sums under SRS and RSS has depicted in Figure 1-2, where the
number of cycles m is a fixed quantity. Figures 1 and 2 represents the pat-
tern of five skewness and kurtosis curves, respectively, obtained for fixed
set size, s, at different choices of p ∈ {0.1,0.2,0.3,0.4,0.5}. When m is a
random quantity and follows zero truncated poisson(λ ), the pattern of five
skewness and kurtosis curves for different choices of p have also presented
in Figure 3-4. Through these figures, one can compare and calculate the
required sample size, n, to meet that asymptotic normality (Small, 1980,
Bai and NG,2005, Sunklodas, 2014, and Butler and Stephens, 2017), i.e.,
skewness = 0 and kurtosis = 3, under RSS as compare to SRS, for given p.
For fixed set size, s, and proportion p, it has found that with a minimum
number of cycles, m or parameter λ , one can achieve asymptotic normality,
under RSS as compare to the required number of sample based on SRS.

6. Illustration with Real-life Data

To illustrate a practical significance of the discussed methodology, a real-
life data on children aged 0-1 years to mothers aged 15 to 39 years, who
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are residing in eight Indian states ((a) Bihar (b) Uttaranchal (c) Chhatis-
garh (d) Jharkhand (d) Orissa (e) Rajasthan (f) Madhya Pradesh and (g)
Uttar Pradesh,) has considered. These selected eight states are socio-
economically backward and reports highest infant mortality rates (< 50 per
1000), and are also known as Empowered Action Groups (EAG) states of
India. The data has been obtained from the National Family Health Survey-
3 (2005-06), preceding five years of the survey. Here, our objective is to
characterize the number of babies that remains alive in EAG states of India,
under both SRS and RSS.

The event of survivorship of a child is positively correlated with mother’s age
(Finlay et.al (2011) and Selemani et.al (2014)). One can say that chance of
survivorship of a child is low in mother of lower ages than that of those of
higher ages. So mother’s age (in months) is used as an auxiliary variable
for ranking purpose in ranked set sampling. The procedure adopted for
sampling through RSS has discussed below (Das et al. 2017):

1. A simple random sample of s2 units, say Xi; i = 1,2, · · · ,s, is drawn from
the target population and are randomly partitioned into s sets each
having s units, , say Xr j for all r = 1,2, · · · ,s; j = 1,2, · · · ,s.

2. In each of s sets the units are ranked according to the mother’s age, de-
noted as X[r] j. In situation of ties the observations are ordered system-
atically in the sequence, as discussed by Terpstra and Nelson (2005)

3. From the first set, the unit corresponding to the mother with lowest
age is selected (X[1]1). From the second set, the unit corresponding to
mother with second lowest age is selected (X[2]2) and so on. Finally,
from the sth set, the unit corresponding to the mother with highest age
(X[s]s) is selected. The remaining s(s−1) sampled units are discarded
from the data set.

4. The Steps 1 - 3, called a cycle, are repeated m times to obtain a ranked
set sample of size n = ms.

Using the sample we have computed various moments discussed in previ-
ous sections under both SRS and RSS. The results have reported in Tables
3 and 4. When the number of cycles m has assumed as a fixed quantity,
the obtained result have shown that characterization of the sums based on
ranked set sampling for all states are much reliable and its efficiency lies
to 10-34%. The kurtosis based on both simple random sample and ranked



STATISTICS IN TRANSITION new series, September 2019 15

set sample have found closer to 3, but significant deviation from 0 have ob-
served in the skewness (negatively skewed). Under the assumption that m is
a random quantity, the efficiency increases 3 to 4 times that of earlier case.
It has also observed that the variance under RSS is converging towards the
mean, which shows the asymptotic convergence to possion distribution. The
kurtosis based on both simple random sample and ranked set sample have
found far away from 3 and a significant deviation from 0 have observed in the
skewness (positively skewed). Statistical Analysis System (SAS) package,
University edition has used for sampling units and all other computation is
carried out by using R package (version-3.0.3).

7. Conclusion

The goal of present article is to characterize a sum of independent and non-
identical set of binomial ranked set samples and compare it with a sum of
independent and identical binomial simple random samples for two different
situations based on the number of cycles, which is first pre-assumed as a
constant integer and when it is a random variable. Our comparison depends
only on establishing the variability and their behaviour using some moments.
Results show that the sum based on ranked set samples, which is same as
that of simple random sample, are more precise and achieve asymptotic nor-
mality using comparatively with smaller sample than that of simple random
sample. In the context of real-life data study related to child’s survivorship
in selected eight EAG Indian states, it is found that RSS provides much re-
liable and accurate estimates than that of SRS for all selected states taken
into account.
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APPENDIX

INTER-RELATIONSHIP BETWEEN FACTORIAL, RAW AND CENTRAL
MOMENTS

µ
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7.1. Case-I: The number of cycles, m, is a known fixed value

Using equation-(3.1) the factorial moments based on simple random sample
are given by

µ
′
[1](W ) =
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Using equation-(3.2) the factorial moments based on ranked set sample are
given by
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µ
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)
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[k−1− j](W ). (7.1)

7.2. Case-II: The number of cycles, m, is a random variable

Using equation-(3.9) the first four factorial moments based on simple ran-
dom samples, where N ∼ Poisson (λ ) ;N = 1,2, · · · , are given by

µ
′
[1](W ) = sp(1+λ )
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(7.2)

Using equation-(3.10) the first four factorial moments based on ranked set
samples, where N ∼ Poisson (λ ) ;N = 1,2, · · · , are given by

µ
′
[1](Z) = a+

(
s

∑
i=1

p[i]

)

µ
′
[2](Z) = aµ

′
[1]+

(
s

∑
i=1

p[i]

)
µ
′
[1]−

(
s

∑
i=1

p2
[i]

)

µ
′
[3](Z) = aµ

′
[2]+

(
s

∑
i=1

p[i]

)
µ
′
[2]−2

(
s

∑
i=1

p2
[i]

)
µ
′
[1]+2

(
s

∑
i=1

p3
[i]

)

µ
′
[4](Z) = aµ

′
[3]+

(
s

∑
i=1

p[i]

)
µ
′
[3]−3

(
s

∑
i=1

p2
[i]

)
µ
′
[2]+6

(
s

∑
i=1

p3
[i]

)
µ
′
[1]−6

(
s

∑
i=1

p4
[i]

)

where a = λ sp and p = 1
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Table 1: Mean and relative precision of sum of Binomial variate under SRS
and RSS, for the given set size s, m and p.

p m s=2 s=4 s=6
Mean RE Mean RE Mean RE

SRS RSS SRS RSS SRS RSS
0.1 10 3 3 1.21 3 3 1.32 5 5 1.39

50 14 14 1.19 18 18 1.23 29 29 1.53
100 16 16 1.10 42 42 1.23 46 46 1.60
200 38 38 1.12 83 83 1.36 103 103 1.42
500 101 101 1.11 196 196 1.29 273 273 1.38

0.2 10 5 5 1.50 7 7 1.41 12 12 1.66
50 20 20 1.25 42 42 1.98 58 58 1.51

100 44 44 1.20 89 89 1.66 139 139 2.17
200 91 91 1.22 157 157 1.48 234 234 1.82
500 197 197 1.20 375 375 1.48 593 593 1.81

0.3 10 5 5 1.50 12 12 1.83 18 18 1.50
50 31 31 1.33 60 60 1.99 92 92 2.33

100 67 67 1.46 120 120 1.63 175 175 1.98
200 117 117 1.19 247 247 1.54 356 356 2.08
500 298 298 1.27 597 597 1.70 899 899 2.02

0.4 10 3 3 1.21 23 23 2.51 29 29 2.11
50 39 39 1.29 75 75 1.60 122 122 2.07

100 79 79 1.10 168 168 1.79 240 240 2.18
200 164 164 1.33 297 297 1.77 481 481 2.25
500 422 422 1.30 792 792 1.91 1205 1205 2.26

0.5 10 10 10 1.56 17 17 2.51 28 28 4.39
50 49 49 1.33 107 107 2.38 154 154 1.99

100 108 108 1.24 212 212 1.78 297 297 2.53
200 204 204 1.43 400 400 1.83 596 596 2.05
500 508 508 1.38 1000 1000 1.89 1509 1509 2.31
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Table 2: Marginal mean and relative precision of sum of Binomial variate
under SRS and RSS, for the given set size s, λ and p.

p λ s=2 s=4 s=6
Mean RE Mean RE Mean RE

SRS RSS SRS RSS SRS RSS
0.1 10 2.2 2.2 1.10 4.4 4.4 1.30 6.6 6.6 1.50

50 10.2 10.2 1.10 20.4 20.4 1.30 30.6 30.6 1.50
100 20.2 20.2 1.10 40.4 40.4 1.30 60.6 60.6 1.50
200 40.2 40.2 1.10 80.4 80.4 1.30 120.6 120.6 1.50
500 100.2 100.2 1.10 200.4 200.4 1.30 300.6 300.6 1.50

0.2 10 4.4 4.4 1.20 8.8 8.8 1.60 13.2 13.2 1.99
50 20.4 20.4 1.20 40.8 40.8 1.60 61.2 61.2 2.00
100 40.4 40.4 1.20 80.8 80.8 1.60 121.2 121.2 2.00
200 80.4 80.4 1.20 160.8 160.8 1.60 241.2 241.2 2.00
500 200.4 200.4 1.20 400.8 400.8 1.60 601.2 601.2 2.00

0.3 10 6.6 6.6 1.30 13.2 13.2 1.89 19.8 19.8 2.49
50 30.6 30.6 1.30 61.2 61.2 1.90 91.8 91.8 2.50
100 60.6 60.6 1.30 121.2 121.2 1.90 181.8 181.8 2.50
200 120.6 120.6 1.30 241.2 241.2 1.90 361.8 361.8 2.50
500 300.6 300.6 1.30 601.2 601.2 1.90 901.8 901.8 2.50

0.4 10 8.8 8.8 1.40 17.6 17.6 2.19 26.4 26.4 2.98
50 40.8 40.8 1.40 81.6 81.6 2.20 122.4 122.4 3.00
100 80.8 80.8 1.40 161.6 161.6 2.20 242.4 242.4 3.00
200 160.8 160.8 1.40 321.6 321.6 2.20 482.4 482.4 3.00
500 400.8 400.8 1.40 801.6 801.6 2.20 1202.4 1202.4 3.00

0.5 10 11.0 11.0 1.49 22.0 22.0 2.48 33.0 33.0 3.47
50 51.0 51.0 1.50 102.0 102.0 2.50 153.0 153.0 3.49
100 101.0 101.0 1.50 202.0 202.0 2.50 303.0 303.0 3.50
200 201.0 201.0 1.50 402.0 402.0 2.50 603.0 603.0 3.50
500 501.0 501.0 1.50 1002.0 1002.0 2.50 1503.0 1503.0 3.50
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Figure 1: Skewness pattern of sum of Binomial variable under SRS
and RSS for set size s = 2,4,6 and sample size n = ms, where m =
{10,50,100,200,500}, and for fixed p.
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Figure 2: Kurtosis pattern of sum of Binomial variable under SRS
and RSS for set size s = 2,4,6 and sample size n = ms, where m =
{10,50,100,200,500}, and for fixed p.
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Figure 3: Marginal skewness pattern of sum of Binomial variable under SRS
and RSS for set size s= 2,4,6 and sample size n=ms, where m∼Poisson(λ ),
λ = {10,50,100,200,500}, and for fixed p.



STATISTICS IN TRANSITION new series, September 2019 29

Figure 4: Marginal kurtosis pattern of sum of Binomial variable under SRS
and RSS for set size s= 2,4,6 and sample size n=ms, where m∼Poisson(λ ),
λ = {10,50,100,200,500}, and for fixed p.
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OUTLIER DETECTION IN THE ANALYSIS OF NESTED 
GAGE R&R, RANDOM EFFECT MODEL 

Mohammed Abduljaleel1, Habshah Midi2, Mostafa Karimi3 

ABSTRACT 

Measurement system analysis is a comprehensive valuation of a measurement 
process and characteristically includes a specially designed experiment that 
strives to isolate the components of variation in that measurement process. Gage 
repeatability and reproducibility is the adequate technique to evaluate variations 
within the measurement system. Repeatability refers to the measurement variation 
obtained when one person repeatedly measures the same item with the same 
Gage, while reproducibility refers to the variation due to different operators using 
the same Gage. The two factors factorial design, either crossed or nested factor, 
is usually used for a Gage R&R study. In this study, the focus is only on the 
nested factor, random effect model. Presently, the classical method (the method of 
analysing data without taking into consideration the existence of outliers) is used 
to analyse the nested Gage R&R data. However, this method is easily affected by 
outliers and, consequently, the measurement system’s capability is also affected. 
Therefore, the aims of this study are to develop an identification method to detect 
outliers and to formulate a robust method of measurement analysis of nested 
Gage R&R, random effect model. The proposed methods of outlier detection are 

based on a robust 𝑚𝑚 location and scale estimators of the residuals. The results 

of the simulation study and real numerical example show that the proposed outlier 
identification method and the robust estimation method are the most successful 
methods for the detection of outliers. 

Key words: measurement system analysis, 𝑚𝑚 location, nested Gage R&R, 

outlier, residuals. 

1. Introduction and background 

Control is a contentious word that on occasions can be identified with having 
power (Macintosh and Quattrone, 2010) or training oppression, but in a structural 
background it has been defined as the ability to create and monitor rules and 
regulations which should be followed (Ouchi and Maguire, 1975) or on the 
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opposing, has been seen as a routine, uninteresting task of observing, 
supervising, measuring and providing feedback (Reeves and Woodward, 1970). 
Whatever the definition, the concept is viewed by many as the central nervous 
system of the processes in every organization. 

Montgomery (2007) clarified that the quality control system always has been 
an integral part of virtually all products and services. However, wakefulness of its 
importance and the introduction of formal methods for quality control and 
improvement have been an evolutionary development. An important part of the 
statistical quality control is the six sigma system (Smith, 1993). Six Sigma is a 
severe, focused and highly effective application of proven quality principles and 
techniques. Companies operating at six sigma typically spend less than 5 per 
cent of their profits fixing problems. In contrast with non-six sigma companies, 
these costs are often extremely high. Companies operating at three or four 
sigmas typically spend between 25 and 40 per cent of their profits fixing problems 
(Pyzdek and Keller, 2014). Based on (Kwak and Anbari, 2006), the authors 
showed that understanding the key features, impediments, and confines of the six 
sigma method allow organizations to better support their strategic directions and 
increasing needs for monitoring and training. Although Six Sigma provides 
assistance over prior approaches to quality management, it also creates new 
challenges for researchers and experts (Schroeder et al., 2008). 

The important part of the six sigma quality is the measurement system 
analysis (MSA) used to isolate the variation among devices being measured from 
the error in the measurement system. The measurement system analysis has 
been the focus of substantial attention because of its ability to determine the level 
and range of variation in data. In a process that is important to a measurement 
system, some variation is likely to occur. The measurement system analysis is an 
important part of a study that is able to determine the amount of variation (Bourne 
et al., 2007). 

To ensure that the measurement system variability is not adversely large, it is 
necessary to conduct the measurement system analysis (MSA). Such a study can 
be conducted in virtually any type of manufacturing industry. According to (He et 
al., 2011), MSA helps to measure the ability of a Gage or measuring device to 
produce data that support the analyst’s decision-making requirements. Also, MSA 
is an important section of Six Sigma as well as of the ISO/TS 16949 standards. 
Burdick et al., (2003) showed that Gage repeatability and reproducibility (Gage 
R&R) is the most common study in MSA to assess the precision of measurement 
systems. 

Awad et al., (2009) and Peruchi et al., (2013) showed that the repeatability 
represents the variability from the Gage or measurement tool when it is used to 
measure the same part (with the same operator or setup or in the same time 
period), whereas reproducibility reveals the variability arising from different 
operators, setups, or time periods. As stated by (Grejda et al., 2005; Parker et al., 
2005; Piratelli-Filho et al., 2012), some works have used repeatability and/or 
reproducibility perceptions and ignored Gage R&R statistical analysis in matching 
measurement system variation to process variation. These studies comprise only 
Gage variability which are lacking to determine whether the measurement system 
is able to monitor a particular manufacturing process or not. In case the variation 
of the measurement system is small relative to the variation of the process, the 
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measurement system is reflected as acceptable measurements. Furthermore, 
Gage R&R studies must be performed any time a process is adopted. This is 
because as the process variation decreases, a once-capable measurement 
system may now be unqualified. As identified by (Burdick et al., 2003; Wang and 
Chien, 2010), there are two methods commonly used in the analysis of a Gage 
R&R study, namely the analysis of variance ANOVA, X bar and R chart. 
Furthermore, analysts prefer the ANOVA method because it measures the 
operator-to-part interaction Gage error.  

Larsen (2003) extended the univariate Gage R&R study to a common 
industrial test scenario where multiple features were tested on each device. 
Providing examples from an industrial application, the author showed that the 
total yield, false failures and missed false estimates could lead to improvements 
in the production test process and hence to lower production costs, and finally to 
customers receiving higher quality products. (Flynn et al., 2009) used regression 
analysis to analyse the qualified performance capability between two functionally 
equal but technically different automatic measurement systems. For such 
accurate measurements as repeatability and reproducibility, the authors found the 
“pass/fail” criteria for the unit being tested incorrect. Hence, they proposed a 
methodology based on principal components analysis (PCA) and MANOVA to 
examine whether there was a statistically significant difference among the 
measurement systems. He et al., (2011) proposed a PCA-based approach in 
MSA for the in-process monitoring of all instruments in multisite testing. The 
approach considers a defective instrument to be one whose statistical distribution 
of measurements differs significantly from the overall distribution across multiple 
test tools. Their approach can be implemented as an online monitoring procedure 
for test instruments so that, until a faulty instrument is identified, production goes 
continuously. Whereas, Parente et al., (2012) applied univariate and multivariate 
methods to evaluate the repeatability and reproducibility of the measurement of 
opposite phase chromatography (RP-HPLC) peptide profiles of excerpts from 
cheddar cheese. The ability to discriminate different samples was assessed 
according to the sources of variability in their measurement and analysis 
procedure. The authors showed that their study had an important impact on the 
design and analysis of experiments for summarizing of cheese proteolysis. 
Inferential statistical procedures helped them to analyse the relationships 
between design variables and proteolysis. In evaluating a measurement system’s 
variation, the most an adequate technique, once an instrument is calibrated, is 
Gage repeatability and reproducibility Gage R&R (Hoffa and Laux, 2007). The 
primary purpose of a Gage study is to determine how much variation in the data is 
due to the measurement system, and whether the measurement system is 
accomplished by assessing the process performance. The first type of Gage R&R 
is crossed Gage R&R, which is developed to analyse data from typical 
measurement system studies. It adopts the most common approach to the 
appropriate measurement of data with an ANOVA model and evaluates different 
sources of variation in the measurement system using the variance components 
in the model. The second type of Gage R&R is the nested Gage R&R, which is 
developed to measure the system analysis when all operators in the system 
measure different parts. 
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2. Mathematical model and measurement guality of nested Gage 
R&R, random effect model 

The nested design is the first option for destructive testing since each 
operator measures unique parts. If a part can be measured multiple times by 
different operators, then it is necessary to use the crossed design. In this study, 
we focus only on the nested design. For the nested experiment, as well as the 
part is nested within each operator, it is impossible to assess the operator and 
part interaction. The data of nested Gage R&R is represented as shown 
in Table 1. 
 

Table 1. The experimental format for nested Gage R&R data 

Operator 𝒊 Parts 𝒋(𝒊) Replication 𝒚̅ 𝑺𝟐 

 
 
1 
 
 

1 
. 
. 
. 
p 

                    𝑦111       𝑦112    . . . . .. .𝑦11𝑛 

. 

. 

. 
                  𝑦1𝑝1       𝑦1𝑝2    . . . . . .𝑦1𝑝𝑛 

𝑦̅11 

. 

. 

. 
𝑦̅1𝑝 

𝑠2
11 

. 

. 

. 

𝑆2
1𝑝 

 
 
2 
 
 
 

1 
2 
. 
. 
p 
 

                      𝑦211       𝑦212    .  .. . . .𝑦21𝑛 

. 

. 

.                  
                       𝑦

2𝑝1
       𝑦2𝑝2    . . . .. .𝑦2𝑝𝑛 

𝑦̅21 

. 

. 

. 
𝑦̅2𝑝 

𝑠2
21 

. 

. 

. 

𝑆2
2𝑝 

. 

. 

. 

. 

. 

  
 
 
  

  

 
 
o 
 
 

1 
2 
. 
. 
p 

                     𝑦𝑜11       𝑦𝑜12    . .. . . .𝑦𝑜1𝑛 

. 

. 

. 
                     𝑦𝑜𝑝1       𝑦𝑜𝑝2    . . . . .𝑦𝑜𝑝𝑛 

𝑦̅𝑜1 

. 

. 

. 
𝑦̅𝑜𝑝 

𝑠2
𝑜1 

. 

. 

. 

𝑆2
𝑜𝑝 

 

The analysis of variance, random effect model of nested Gage R&R, is 
represented in Equation 1. 
 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝜏𝑖 + 𝛽𝑗(𝑖) + 𝜀𝑖𝑗𝑘                   {
𝑖 = 1,2,3 … … … . 𝑜
𝑗 = 1,2,3, … … … . 𝑝
𝑘 = 1,2,3, … … … 𝑛

 (1) 

 

where 
𝜇 is the overall mean 

𝜏𝑖  is the effect for the 𝑖𝑡ℎoperator, 𝜏𝑖~
𝑖𝑖𝑑  𝑁(0, 𝜎2

𝜏)  
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𝛽𝑗(𝑖) is the effect of the 𝑗𝑡ℎ part nested within the 𝑖𝑡ℎoperator, 𝛽𝑗(𝑖)~𝑖𝑖𝑑  𝑁(0, 𝜎2
𝛽) 

𝜀𝑖𝑗𝑘  is random error where 𝜀𝑖𝑗𝑘~𝑖𝑖𝑑  𝑁(0, 𝜎2) 

The total variation and the total degree of freedom of the nested design 
random effect model can be partitioned into three components as follows: 

𝑠𝑠𝑇𝑜𝑡𝑎𝑙 = 𝑠𝑠𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 + 𝑠𝑠𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) + 𝑠𝑠𝑒𝑟𝑟𝑜𝑟  

 
 
 

∑ ∑ ∑(𝑦𝑖𝑗𝑘 − 𝑦̅…)
2

=  ∑ ∑ ∑(𝑦̅𝑖.. − 𝑦̅…)2 + ∑ ∑ ∑( 𝑦̅𝑖𝑗. − 𝑦̅𝑖..)
2

+ ∑ ∑ ∑(𝑦𝑖𝑗𝑘 −  𝑦̅𝑖𝑗.)² 

∑ ∑ ∑(𝑦𝑖𝑗𝑘 − 𝑦̅…)
2

= 𝑝𝑛 ∑(𝑦̅𝑖.. − 𝑦̅…)²

𝑖

+ 𝑛 ∑ ∑( 𝑦̅𝑖𝑗. −

𝑗

𝑦̅𝑖..)² + ∑ ∑ ∑(𝑦𝑖𝑗𝑘 −  𝑦̅𝑖𝑗.)²

𝐼

 

Partitioning of Degree of Freedom: 

𝑜𝑝𝑛 − 1 = (𝑜 − 1) + 𝑜(𝑝 − 1) + 𝑜𝑝(𝑛 − 1) 

𝑜𝑝𝑛 − 1 = 𝑜 − 1 + 𝑜𝑝 − 𝑝 + 𝑜𝑝𝑛 − 𝑜𝑝 

where: 

          𝑦𝑖.. = ∑ ∑ 𝑦𝑖𝑗𝑘𝑘𝑗 ;     𝑦̅𝑖.. =
𝑦𝑖..

𝑛𝑝
 

          𝑦𝑖𝑗. = ∑ 𝑦𝑖𝑗𝑘𝑘 ;          𝑦̅𝑖𝑗. =
𝑦𝑖𝑗.

𝑛
 

        𝑦… = ∑ ∑ ∑ 𝑦𝑖𝑗𝑘;       𝑦̅… =
𝑦…

𝑜𝑝𝑛
 

The Expected Mean Squares of the nested Gage R&R random effect model are 
presented in Table 2. 

Table 2.  Expected Mean Squares  

Mean Squares Degree Of Freedom Expected Mean Squares 

𝑀𝑆𝑜 𝑜 − 1 𝜎2 + 𝑛𝑝𝜎2
𝜏 + 𝑛𝜎2

𝛽(𝑖) 

  𝑀𝑆𝑃(𝑂) 𝑜(𝑝 − 1) 𝜎2 + 𝑛𝜎2
𝛽(𝑖) 

𝑀𝑆𝐸 𝑜𝑝(𝑛 − 1) 𝜎² 

 
The nested experiment calculations for a total sum of squares (𝑆𝑆𝑇𝑜𝑡𝑎𝑙), the 

sum of squares of the operator (𝑆𝑆𝑂), the sum of squares of the part nested within 

operator (𝑆𝑆𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟)) and the sum of a square of error (𝑆𝑆𝐸) are shown 

in Table 3.  
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Table 3.  Analysis of variance table for the random effect model for Gage R&R 
study nested design 

Source S.S D.F MS F 

𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑠𝑠𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 = 𝑝𝑛 ∑(𝑦̅𝑖.. − 𝑦̅…)²

𝑖

 𝑜 − 1 𝑀𝑆𝑜 =
𝑠𝑠𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

𝑜 − 1
 𝐹𝑂 =

𝑀𝑆𝑜

𝑀𝑆𝑃(𝑜)
 

𝑃𝑎𝑟𝑡𝑠(𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 𝑠𝑠𝑝𝑎𝑟𝑡(𝑜) = 𝑛 ∑ ∑ (𝑦̅𝑖𝑗.
𝑗𝑖

− 𝑦̅𝑖..)² 

𝑜(𝑝 − 1) 𝑀𝑆𝑝(𝑜)

=
𝑠𝑠𝑝𝑎𝑟𝑡

𝑜(𝑝 − 1)
 

𝐹𝑃(𝑂) =
𝑀𝑆𝑝(𝑜)

𝑀𝑆𝐸
 

𝐸𝑟𝑟𝑜𝑟 𝑆𝑆𝐸 = ƩƩƩ(𝑦𝑖𝑗𝑘 − 𝑦̅𝑖𝑗.)² 𝑜𝑝(𝑛 − 1) 𝑀𝑆𝐸 =
𝑠𝑠𝑒𝑟𝑟𝑜𝑟

𝑜𝑝(𝑛 − 1)
 

     𝑻𝒐𝒕𝒂𝒍                  𝑠𝑠𝑇𝑜𝑡𝑎𝑙 = ƩƩƩ(𝑦𝑖𝑗𝑘 − 𝑦̅…)²         𝑜𝑝𝑛 − 1 

 
As we mentioned previously, nested Gage R&R is a measurement system 

analysis whereby the variation in the system is due to repeatability and 
reproducibility. Repeatability is a variation from a measurement instrument and, 
on the other hand, reproducibility is a variation from the operators using the 
instrument (Erdmann et al., 2009). 

In this design, the interest is to test for the operator effect and the part 
(operator) effect. The test on the operator effect is expected to be non-significant 
that implies operators have no difficulty in making consistent measurements. 

The part (operator) is anticipated to be significant, which indicates the ability 
of the Gage/instrument to distinguish between units of measurement.  
 The following hypothesis and test statistics in Equation 2 are used to test the 
operator’s effect: 
 

𝐻0: 𝜎2
𝑂 = 0 (No significant difference between the operator’s effects) 

𝐻1: 𝜎2
𝑂 > 0 (Significant difference between the operator’s effects) 

 

Test statistic: 𝐹 =
𝑀𝑆𝑂

𝑀𝑆𝑃(𝑜)

 (2) 

                                                               

The estimated variance of the operator’s effect can be formulated as follows: 

          𝐸(𝑀𝑆𝑂) − 𝐸(𝑀𝑆𝑃(𝑜)) = (𝜎² + 𝑛𝑝𝜎²𝜏 + 𝑛𝜎²𝛽(𝑖))- (𝜎² + 𝑛𝜎²𝛽(𝑖)) 

       𝑀𝑆𝑂 − 𝑀𝑆𝑃(𝑂) = 𝜎̂2 + 𝑛𝑝𝜎̂2
𝜏 + 𝑛𝜎̂2

𝛽(𝑖) − 𝜎̂2 − 𝑛𝜎̂2
𝛽(𝑖) 

      Therefore:  

𝜎̂2
𝜏 =

𝑀𝑆𝑂 − 𝑀𝑆𝑃(𝑂)

𝑝𝑛
 (3) 

 
        𝜎̂2

𝜏 is the estimated variance for the operator denoted as 𝜎̂2
𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟.  

The following Equation (4) is used to test the part’s effect 

          𝐻0: 𝜎2
𝛽(𝑖) = 0  (No significant difference between the parts) 

          𝐻1: 𝜎2
𝛽(𝑖) > 0  (Significant difference between the parts)  
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Test statistic: 𝐹 =
𝑀𝑆𝑝(𝑂)

𝑀𝑆𝐸
 (4) 

                                   
With a similar approach as in Equation (3) and Equation (4), the estimated 
variance of the parts’ effect can be formulated as follows: 

𝐸(𝑀𝑆𝑃(𝑂)) − 𝐸(𝑀𝑆𝐸) = 𝜎2 + 𝑛𝜎2
𝛽(𝑖) − 𝜎2 

     𝑀𝑆𝑃(𝑂) − 𝑀𝑆𝐸 = 𝜎̂2 + 𝑛𝜎̂2
𝛽(𝑖) − 𝜎̂2 =  𝑛𝜎̂2

𝛽(𝑖) 

𝜎̂2
𝛽(𝑖) =

𝑀𝑆𝑃(𝑂) − 𝑀𝑆𝐸

𝑛
 (5) 

𝜎̂2
𝛽(𝑖) is the estimated variance for the part (operator) denoted as 

σ̂2
parts(operator). 

 

  𝜎̂𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) = √𝜎̂2
𝑝𝑎𝑟𝑡𝑠(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) (6) 

𝜎̂2
𝑒 = 𝑀𝑆𝐸 (7) 

                                                      

     𝜎̂2
𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑀𝑆𝐸 = 𝜎̂2;  𝜎̂ = √𝑀𝑆𝐸 

                                                  𝜎̂2
𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝜎̂2

𝑂 

 

If the value of the variance components is less than 0, treat them as equal to 
0 because variance cannot be negative.  

The estimated variance for Gage R&R is given by:      

(8)                      𝜎̂2
𝐺𝑎𝑔𝑒 𝑅&𝑅 = 𝜎̂2

𝑟𝑒𝑝𝑒𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝜎̂2
𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑏𝑖𝑙𝑖𝑡𝑦 

(9) 

                                      = 𝜎̂2 + 𝜎̂2
𝑜 

             The standard deviation of Gage R&R = √𝜎̂2
𝐺𝑎𝑔𝑒 𝑅&𝑅 

          Estimated variance of Total variation= 𝜎̂2
𝐺𝑎𝑔𝑒 𝑅&𝑅 + 𝜎̂2

𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 

 
(10) 

            The estimated standard deviation of Total variation = 

                                                                                                 √𝜎̂2
𝐺𝑎𝑔𝑒 𝑅&𝑅 + 𝜎̂2

𝑝𝑎𝑟𝑡𝑠(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 

 
 In the study of Gage R&R design, the Gage capability can be measured by 

using the precision-to-tolerance ratio (or 𝑃/𝑇 ratio), as follows: 
𝑃

𝑇
=

6𝜎̂𝐺𝑎𝑔𝑒 𝑅&𝑅

𝑈𝑆𝐿−𝐿𝑆𝐿
  where 𝜎̂𝐺𝑎𝑔𝑒𝑅&𝑅 is the standard deviation of Gage R&R as stated 

in Equation (9). 

USL and LSL are the upper and lower specification limits of the product under 
study (given in each nested Gage R&R data). If the 𝑃/𝑇 ratio is 0.1 or less, this 
indicates acceptable Gage capability (Headquarters, 2015). But there are clear 
dangers in relying too much on the 𝑃/𝑇 ratio, in some nested Gage R&R data. 
For example, the ratio may be made randomly small by increasing the width of 
the specification tolerance (Stevens, 2013). As such other measures are 
employed such as using the percentage contribution of the variance component 
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of the total variation of Gage R&R and also the percentage contribution of the 
variation component of part (operator). 

 

Percentage contribution of Total variation of Gage R&R = 

                                                                                            
variation of Gage R&R 

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 
 

 
(11) 

 

The percentage contribution of variation of Gage R&R measures the 
contribution of the nested Gage R&R in the total variation. The small value of per 
cent contribution of Gage R&R means adequate Gage. % contribution < 30% 
indicates the measurement system is capable. 

 

Another important measure is by using percentage contribution of variance 
component of part (operator) as follows: 

Percentage contribution of part (operator) =
the variance of part (operator)

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
 (12) 

 
A high percentage of contribution indicates good measurement, which implies 

that the measurement system can distinguish between parts. Most of the total 
variation in the measurement is due to differences between parts, which is 
desirable. 

 
An equivalent measure of Gage capability is by using the percentage 

contribution of standard deviation namely:  

%contribution of total sd of Gage R&R =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝑎𝑔𝑒 𝑅&𝑅

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙
 (13) 

%contribution of total 6 sd of Gage R&R =
6 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐺𝑎𝑔𝑒 𝑅&𝑅

6 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑎𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑇𝑜𝑡𝑎𝑙
 (14) 

%contribution of sd of part(operator) =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 

standard deviation of Total
 (15) 

 

3. Methodology 

This section presents the methodology of this study. The study proposes 
a method to identify outliers in nested Gage R&R, namely, a method based on 
a highly efficient estimator which has a high breakdown point. Moreover, to 
reduce the negative effect of the outliers, a robust estimation method has been 
presented to obtain a reliable measurement with low variation after detecting the 
outliers. Then, two numerical examples and the analysis of the data are 
presented. Moreover, the simulation study is illustrated. 
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3.1.  Data analysis: how outliers affect the analysis of Gage R&R 

In this section, a numerical nested example is presented to show the effect of 
outliers on the nested Gage R&R measurements.   

This data is taken from (Excel, 2013), which described an industrial 
application whereby heat treating of parts is inducted to perform a Gage R&R 
analysis on the hardness tester.  For the reason of measuring the hardness, 
a piece of the product is cut, prepared and tested. That piece was altered, so it 
cannot be retested. It is assured that the parts within operators are 
homogeneous. For this process, three operators are included in the Gage R&R 
study, that is operator A, B and C. Each operator is needed to test two parts. But 
there are not always enough measurements for each operator to test parts from 
each operator. Based on that, a nested design has been used. Three operators 
are used and five parts from each operator and two measurements from each 
part have been taken. The total number of measurements is 30. Table 4 shows 
the collected data of industrial section. 

To see the effect of outliers on the variability’s measurements, we purposely 
contaminate the data with a certain number of outliers. The outliers are created by 
replacing one observation of each operator 
by ( 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 + 10 𝑠𝑑 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟). The outlier is 
represented in bold, in Table 4. 

Table 4.  Nested Gage R&R numerical example of three different operators from 
the industrial section 

Operators Parts 

A 

1 2 3 4 5 

1 2 1 2 1 2 1 2 1 2 

33.4 33.2 32.4  31.7 34.4 34.5 33.9 34.5 34.5 
35.7 
(47.4) 

B 

6 7 8 9 10 

1 2 1 2 1 2 1 2 1 2 

32.5 32.1 32.1 32.3 
35.1 
(48.1) 

34.7 32.4 33.1 34.8  34.9 

C 

11 12 13 14 15 

1 2 1 2 1 2 1 2 1 2 

32.6 32.7 32.3 32.1 
34.9 
(47.3) 

34.7 33.0 33.2 31.6 30.9 

 
Nested ANOVA or nested Gage R&R table is represented to show the 

significance of the parts and the operators and the table of variance components 
to measure the Gage variation, part-to-part variation and the total variation as 
shown in Table 5-A. The components of variance and standard deviations 
contribution are shown in Table 5-B and Table 5-C, respectively. Five useful 
graphs for the interpretation of the experimental results are displayed in Figure 3 
and Figure 4. 
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Table 5.  Gage R&R (nested) for results without and with outliers 

A. Nested ANOVA 

Source df SS MS F p 

  Without 
outlier 

With 
outlier 

Without 
outlier 

With 
outlier 

Without 
outlier 

With 
outlier 

Without 
outlier 

With 
outlier 

Operator 2 5.256 4.741 2.628 2.371 0.793 0.083 0.475 0.921 
Part 
(operator) 

12 37.766 342.178 3.133 28.514 26.024 1.687 10𝑒−5 0.168 

Repeatability 15 1.911 253.455 0.127 16.897 
Total 29 46.932 600.374 

B. Components of variance analysis 

Gage R&R 
%Contribution (of Var Comp) 

Source Var Comp 

 Without 
outlier 

With outlier Without outlier With outlier 

Total variation of Gage R&R 0.127 16.897 7.41 74.42 
Repeatability 0.127 16.897 7.41 74.42 
Reproducibility 10𝑒−5 10𝑒−5 10𝑒−5 10𝑒−5 

𝑝𝑎𝑟𝑡 𝑡𝑜 𝑝𝑎𝑟𝑡 𝑜𝑟 𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 1.593 5.808 92.61 25.58 

Total variation 1.721 22.705 100.00 100.00 

C. Components of standard deviation and 

6 × standard deviation analysis 

Gage R&R Study Var 
(6 × SD) 

%Study Var (%SV) 
Source StdDev (SD) 

 Without 
outlier 

With 
outlier 

Without 
outlier 

With 
outlier 

Without 
outlier 

With 
outlier 

Total s.d of Gage R&R 0.356 4.111 2.141 24.663 27.21 86.27 
Repeatability 0.356 4.111 2.141 24.663 27.21 86.27 
Reproducibility 10𝑒−5 10𝑒−5 10𝑒−5 10𝑒−5 10𝑒−5 10𝑒−5 

𝑝𝑎𝑟𝑡 𝑡𝑜 𝑝𝑎𝑟𝑡 𝑜𝑟 𝑝𝑎𝑟𝑡(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟) 1.262 2.411 7.573 14.461 96.23 50.58 

Total variation 1.311 4.765 7.871 28.591 100.00 100.00 

*Specification tolerance (upper specification limit-lower specification limit=8). 
From the example and process standard deviation is 2.5. 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 1. Nested Gage R&R: components of variation, result by part (operator), R 
chart by the operator, X bar chart by the operator, result by part 
(operator), and result by the operator without outlier (left) and with 
outliers (right). 
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It can be observed from Table 5-A, when there are no outliers there is 
a significant difference between parts when nesting within operators (𝑝 − 𝑣𝑎𝑙𝑢𝑒 <
0.05). This results indicate that the Gage is capable of distinguishing between 
different units. The test on operator suggests that the operator has no difficulty of 
making consistent measurements (𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05). These two conditions are 
desired. Gage R&R studies quantify this by determining the % Gage R&R value. 
Based on these results, the hardness tester (Gage R&R) is responsible for about 
7% of the total variation.  This test method appears to be very reliable because 
the % contribution of Gage R&R variation is less than 30%. 

The percentage of contribution for the difference between parts, when nesting 
within operators (𝑝𝑎𝑟𝑡 − 𝑡𝑜 − 𝑝𝑎𝑟𝑡 = 96.23) as shown in Table 5-B, is high, which 
is close to 100%. The higher percentage contribution for the parts indicates good 
performance of system Gage R&R. These results can be seen from graphics. The 
components of the variation graph are placed in the upper left corner in Figure 3 
and that means reliable data. Also in Table 5-B, the reproducibility is 0 because 
all the variations are due to the Gage variation and part-to-part (the part when 
nesting within operator variation) not due to the interaction between operators and 
parts.  

Most of the variations are due to part-to-part (parts nested within operators) 
variation, with a low percentage of variation due to errors in the measurement 
system of Gage R&R at the 𝑥 ̅chart-located in the lower left corner in Figure 1. 

Most of the points in the 𝑥 ̅ chart are outside the control limits when the variation 
is mostly due to part-to-part variation, 27 points of 30 outside the control limits, i.e. 
about 90%, the Gage is capable (should be more than 75% is outside the control 
limits) (Headquarters, 2015). 

The percentage of contribution for total sd of Gage R&R =
(6 ×  SD)

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
 

 

= 2.141/7.871 =  27.2%. This means that the “spread” of the Gage R&R 
takes up to 27.2% of the total spread. This result implies that the Gage is 
acceptable (the Gage variation and spread should be less than 30%) 
(Headquarters, 2015). 

Now, let us focus on the results with outliers of Table 5-A (with outliers). It can 
be seen that the part (operator) effect is not significant (𝑝 − 𝑣𝑎𝑙𝑢𝑒 > 0.05). This 
indicates that the Gage cannot distinguish between different units, which is not 
desirable.  

From Table 5-B (with outlier’s columns), in particular, the percentage of 
contribution for the difference between parts (𝑝𝑎𝑟𝑡 − 𝑡𝑜 − 𝑝𝑎𝑟𝑡 = 25.58) is much 
smaller than the percentage of contribution to the variation of the measurement 
system 92.61 when there is no outlier. It is noticed that the % contribution of 
variation of hardness tester (Gage R&R) has increased to 74.42% of the total 
variation. This indicates that the Gage is not capable in the presence of outliers. 

Figure 1 shows that the components of the variation graph are placed in the 
upper left corner. Most of the variations are due to errors in the measurement 
variation Gage R&R, with a low percentage of variation due to the part-to-part 
(parts nested within operators) variation. 
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We have seen the effect of outliers on the measurement variation of the 
nested Gage R&R data in the numerical example just presented. 

 

3.2.  Outlier identification method 

We have seen in the previous section that an outlier has a negative effect on 
the nested Gage R&R analysis. In this situation, it is very crucial to detect an 
outlier in the nested Gage R&R model. To the best our knowledge no such work 
has been devoted to identifying an outlier in the nested Gage R&R, random effect 
model. 

Fearn (2001) and Walsh (2016) developed Cochran’s C test to decide if a 
single estimate of variance (or a standard deviation) is significantly larger than a 
group of variances. Rousseeuw and Mia Hubert (2011) developed a modified 
Rousseeuw and Mia Hubert method to identify outliers in univariate data. Tukey 
(2011) also discussed the method of identifying outliers in such type of data. 
Bagheri and Midi (2011) noted that the traditional approach of identifying outliers 

in univariate data is by using T statistics, 𝑇 =
𝑥−𝑥̅

𝑠
. 

 

3.2.1. Rousseeuw and Mia Hubert method 

Rousseeuw and Mia Hubert (2011) proposed a method to detect outliers 
in a univariate data as presented in the following steps: 

 Compute the median of all observations in a data set 

 Calculate 𝑀𝐴𝐷 = 1.483 𝑚𝑒𝑑𝑖𝑎𝑛 ⃒𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 − 𝑚𝑒𝑑𝑖𝑎𝑛 ⃒ 

 Calculate 𝑧𝑖 =
𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛−𝑚𝑒𝑑𝑖𝑎𝑛

𝑀𝐴𝐷
 

 Any value of |𝑧𝑖| > 2.5 is considered as an outlier 
 
This method is denoted as 𝑍𝑅𝑀 
 

3.2.2. Tukey method 

Hubert and Vandervieren (2008) defined the Tukey method in the following 
steps: 

 Compute Interquartile Range, IQR = 𝑄3 − 𝑄1 
where: 
          𝑄3 = 𝑋[3𝑛 4⁄ ]  

                  𝑄1 = 𝑋[𝑛 4⁄ ] 
                  𝑥 =  𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 

𝑛 =  𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒  
An observation is detected as an outlier if it lies outside the following interval 

[𝑄1 − 1.5 IQR,  𝑄3 + 1.5 IQR] 
This method is denoted as 𝐼𝑛𝑡𝑇 . 
 
 
 

https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Statistical_significance
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3.3.  Proposed method of outlier detection in nested Gage R&R data 

As already mentioned, no specific test is developed to identify outliers 
in nested Gage R&R. The Rousseeuw and Hubert method and the Tukey method 
is designed for univariate data. Hence, it can be adopted in the formulation of the 
detection of outliers in nested Gage R&R, with slight modification.  

Instead of using the observed value of x as noted in the Rousseeuw and 
Hubert method and the Tukey method, the residuals can be computed in this 
regard. It can be observed that MAD and IQR are used as the scale estimator in 
the Rousseeuw and Hubert and the Tukey method, respectively. 

Even though this estimator is resistant to outliers, its weakness is that it is not 
reliable under normality assumption (Lee et al., 2007). Another shortcoming of 
this method is that the use of the median is not very reliable because it has low 
efficiency under normal errors (Mazlina and Habshah, 2015). 

As such, we propose to formulate a new test measure, which is based on 
highly efficient 𝑚𝑚 estimator, which has a high breakdown point. 

 

The proposed method is summarized as follows: 

Step 1: Perform Analysis of the variance method to nested Gage R&R, random 
effect model. 

 

Step 2: Compute the fitted value as follows: 

   Referring to Equation 3.1; 𝐸(𝑦𝑖𝑗𝑘) = 𝜇 because: 

      𝜏𝑖~
𝑖𝑖𝑑  𝑁(0, 𝜎2

𝜏), 𝛽𝑗(𝑖)~𝑖𝑖𝑑  𝑁(0, 𝜎2
𝛽(𝜏)) and 𝜀𝑖𝑗𝑘~𝑖𝑖𝑑  𝑁(0, 𝜎²) 

   Hence, the fitted value is written as 𝑦̂𝑖𝑗𝑘 = 𝜇̂ = 𝑦̅…  where 𝑦̅… =
∑ ∑ ∑ 𝑦𝑖𝑗𝑘

𝑜𝑝𝑛
 

 

Step 3: Compute the residual (𝑒𝑖𝑗𝑘) of each observation as follows: 

𝑒𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘 − 𝑦̅… 

         Let 𝑒11, 𝑒21,……, 𝑒𝑜𝑝𝑛 be 𝑜𝑝𝑛 residuals represented by 𝑟1, 𝑟2, … . . , 𝑟𝑜𝑝𝑛 

         The location-scale model can be written as follows: 

𝑟𝑖 = 𝜇 + 𝜎𝜀𝑖 

         The 𝑚𝑚 location and scale of 𝑟𝑖 is computed in three steps: 

   Step i: Use robust S estimator to obtain the initial consistent estimator 𝜇0 

and scale 𝜎0. 

     Step ii: Compute m estimate of the scale of the residuals from the initial 
estimates of the location. 

     Step iii: Using m estimation method, compute the location and scale of the 
𝑚𝑚 estimates  

     denoted as 𝜇̂𝑚𝑚 and 𝑆̂𝑚𝑚.    
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Step 4: Compute the 𝑚𝑚 location and scale estimates of the residuals. The 𝑚𝑚 
location and 

       the scale estimates are chosen because according to [18] they has high  
        breakdown points and high efficiency under normal errors. 

 

Step 5: Compute 𝑇𝑚𝑚 =
𝑒𝑖𝑗𝑘−𝜇̂𝑚𝑚

𝑆̂𝑚𝑚
. 

 

Step 6: Any value of |𝑇𝑚𝑚| > 2.5 is declared as an outlier. 

 

3.3.1. Simulation study 

In order to assess the performance of our proposed method a simulation 
study is firstly carried out by considering three operators, five parts and two 
replicates. For each operator 𝑖 = 1,2,3; 𝑗 = 1,2,3,4,5; 𝑘 = 1,2. 

𝑦𝑖1𝑗  is generated from 𝑁(30,0.1) 

𝑦𝑖2𝑗  is generated from 𝑁(32,0.1) 

𝑦𝑖3𝑗  is generated from 𝑁(34,0.1) 

𝑦𝑖4𝑗  is generated from 𝑁(36,0.1) 

𝑦𝑖5𝑗  is generated from 𝑁(38,0.1) 

The above process is repeated for various number of operators, parts and 
samples; such as (3 operators, 5 parts and 2 samples), (3 operators, 10 parts and 
2 samples), (4 operators, 5 parts and 2 samples), (5 operators, 6 parts and 
2 samples), (5 operators, 8 parts and 2 samples), (6 operators, 10 parts and 
2 samples), (10 operators, 12 parts and 2 samples). For each design layout, the 
data is then contaminated by replacing good observation with a certain number of 
outliers. The outliers are created by taking the maximum value of each data set 
+3, 5 and10 standard deviation. The same process is repeated for samples equal 
to 4. Since in practice it is expensive to collect data, it is not recommended to 
have more than 5 sample sizes. The proposed method is evaluated based on the 
number of correct detection of outliers. The number of iterations for each design 
layout is equal to 1000. The results are presented in Tables (6, 7, 8, 9, 10 and 
11). 

 It can be observed from all tables that the 𝑇𝑚𝑚 is very successful in detecting 
outliers in the data set compared to the other two methods. The Rousseeuw and 
Tukey methods become very poor as the number of outliers increases. Both 
methods suffer from the masking effect. It is very interesting to see that our 
proposed method is capable of identifying the correct outliers with no masking 
effect. 

 
 
 



STATISTICS IN TRANSITION new series, September 2019 

 

 

45 

Table 6.  Percentage of correct detection of an outlier for 3 standard deviations, 

𝒏 = 𝟐, the Rousseeuw method and the Tukey method  

 

Operator (part) 
and two samples 

Number of 
outliers 

Proposed Method. 
Number of correct 

detection 

Rousseeuw method 
in percentage 

Tukey method in 
percentage 

3(5) 

0 
1 
2 
3 

100 
100 
100 
100 

55.6 
53.4 
44.6 
36.3 

73.8 
43.8 
41.6 
19.4 

3(10) 

0 
1 
2 
3 
4 
5 
6 

100 
100 
100 
100 
100 
100 
100 

37.7 
33.5 
32.1 
30.9 
29.8 
19.3 

0 

72.2 
52.8 
38.3 
24.3 
12.4 
7.8 
0 

4(5) 

0 
1 
2 
3 
4 

100 
100 
100 
100 
100 

53.5 
45.8 
51.2 
35.4 
23.1 

72.7 
47.4 
29.3 
19.7 
11.9 

5(6) 

0 
1 

100 
100 

39.3 
36.4 

74.9 
56.6 

2 
3 
4 
5 
6 

100 
100 
100 
100 
100 

32.2 
30.9 
30.1 
18.5 

0 

36.7 
23.3 
10.3 
7.2 
0 

5(8) 

0 
1 

100 
100 

48.8 
42.6 

71.4 
59.6 

2 100 41.1 45.3 
3 100 40.3 30.7 
4 
5 
6 
7 
8 

100 
100 
100 
100 
100 

39 
26.8 
1.7 
0 
0 

15.5 
8 

0.7 
0 
0 

6(10) 

0 
1 

100 
100 

35.4 
31.8 

65.3 
61.7 

2 100 29 50 
3 100 28.5 37.1 
4 100 21.9 19.2 
5 100 24.1 13 
6 100 9.5 2.4 

12 100 0 0 

10(12) 

0 
1 

100 
100 

43.7 
18.5 

64 
45.5 

2 100 10.2 42.9 
3 100 8.3 40.6 
4 100 7.9 38.5 
5 100 7.4 33.5 
6 100 6.6 14.8 
7 100 1.1 0.4 
8 100 0 0 
9 100 0 0 

10 100 0 0 
11 100 0 0 
12 100 0 0 
24 100 0 0 



46                                                M. Abduljaleel, et al.: Outlier detection in the analysis… 

 

 

 

Table 7.  Percentage of correct detection of an outlier for 3 standard deviations, 

𝒏 = 𝟒, the Rousseeuw method and the Tukey method 

 

Operator (part) 

and two samples 

Number of 

outliers 

Proposed method 

Number of correct 

detection 

Rousseeuw 

method in 

percentage 

Tukey method in 

percentage 

3(5) 

0 

1 

2 

3 

4 

5 

6 

100 

100 

100 

100 

100 

100 

100 

49.3 

36.3 

27.8 

13.6 

5.5 

3.7 

0 

74.9 

29.9 

16.6 

11.5 

6.7 

3.5 

0 

3(10) 

0 

1 

2 

3 

4 

5 

6 

12 

100 

100 

100 

100 

100 

100 

100 

100 

49 

34.7 

35.1 

24.3 

11.2 

5.1 

0.2 

0 

73.1 

37.2 

19.2 

9.8 

5.6 

3.3 

0.7 

0 

4(5) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

100 

100 

100 

100 

100 

100 

100 

100 

100 

48.8 

39.3 

31.4 

15.6 

7.3 

2.7 

0.3 

0 

0 

71.4 

29.4 

15.9 

9.9 

7.6 

4.9 

0.4 

0 

0 

5(8) 

0 

1 

2 

3 

4 

5 

6 

12 

100 

100 

100 

100 

100 

100 

100 

100 

47.7 

42.6 

40.2 

26.1 

12.6 

6.7 

3.2 

0 

70.7 

39.7 

21.6 

10.1 

5 

2.3 

1.9 

0 

6(10) 

0 

1 

2 

3 

4 

5 

6 

12 

100 

100 

100 

100 

100 

100 

100 

100 

43.7 

33.1 

29.1 

25.9 

21.1 

12.6 

11.8 

0 

64 

42.6 

28.8 

12.9 

6.5 

2.7 

1.9 

0 
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Table 8. Percentage of correct detection of an outlier for 5 standard deviations, 

𝒏 = 𝟐, the Rousseeuw method and the Tukey method  

Operator (part) 
and two samples 

Number of 
outliers 

Proposed method. 
Number of correct 

detection 

Rousseeuw method 
in percentage 

Tukey method 
in percentage 

3(5) 

0 
1 
2 
3 

100 
100 
100 
100 

58.6 
56.9 
55.8 
46.4 

73.8 
65.8 
53.3 
38.4 

3(10) 

0 
1 
2 
3 
4 
5 
6 

100 
100 
100 
100 
100 
100 
100 

58.4 
58.1 
57.9 
54.7 
50.8 
27.8 

0 

68.5 
66.5 
66.5 
64.2 
61.9 
14.9 

0 

4(5) 

0 
1 
2 
3 
4 

100 
100 
100 
100 
100 

53.5 
49.8 
52 

43.5 
34.3 

72.7 
69.3 
59.1 
41.4 
22.7 

5(6) 

0 
1 

100 
100 

39.3 
35.3 

74.9 
74.2 

2 
3 
4 
5 
6 

100 
100 
100 
100 
100 

30.6 
28.9 
27 

26.3 
0 

65.6 
50.6 
29.1 
12.4 

0 

5(8) 

0 
1 

100 
100 

48.8 
33.1 

71.4 
70.8 

2 100 31.9 69.6 
3 100 30.6 58.8 
4 
5 
6 
7 
8 

100 
100 
100 
100 
100 

29.7 
26.9 
23.1 
19.5 
16.3 

38.3 
32.8 
29.6 
21.7 
18.5 

6(10) 

0 
1 

100 
100 

35.4 
30.6 

65.3 
61.3 

2 100 20.1 59.6 
3 100 17.7 58.7 
4 100 15.2 40.2 

5 
6 
12 

100 
100 
100 

13.7 
9.8 
6.4 

33.2 
26.9 
15.6 

10(12) 

0 
1 

100 
100 

43.7 
28.6 

64 
55.4 

2 100 24.9 52.7 
3 100 22.1 51 
4 100 19.3 48.5 
5 
6 
7 
8 
9 
10 
11 
12 
24 

100 
100 
100 
100 
100 
100 
100 
100 
100 

18.1 
15.4 
13.9 
10.6 
6.3 
4.5 
2.8 
1.3 
0 

43.9 
40.3 
29.5 
21.4 
18.2 
13.9 
5.4 
4.6 
0 
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Table 9. Percentage of correct detection of an outlier for 5 standard deviations, 

𝒏 = 𝟒, the Rousseeuw method and the Tukey method 

 

Operator(part) 

and two samples 

Number of 

outliers 

Proposed method. 

Number of correct 

detection 

Rousseeuw method 

in percentage 

Tukey method 

in percentage 

3(5) 

0 

1 

2 

100 

100 

100 

64.1 

32.7 

18.7 

72.3 

33.5 

16.6 

3(10) 

0 

1 

2 

3 

4 

5 

6 

12 

100 

100 

100 

100 

100 

100 

100 

100 

63.5 

43.7 

30.6 

22.1 

19.8 

16.1 

10.5 

0 

72 

46.2 

29.3 

20.3 

15.4 

12.9 

8.7 

0 

4(5) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

100 

100 

100 

100 

100 

100 

100 

100 

100 

62.8 

44.3 

26.6 

22.9 

18.9 

16.2 

10.7 

0 

0 

72.3 

46.1 

25.8 

21.3 

20.8 

18.9 

13.2 

0 

0 

5(8) 

0 

1 

2 

3 

4 

5 

6 

12 

100 

100 

100 

100 

100 

100 

100 

100 

62.2 

40.4 

33.4 

22.7 

14.5 

11.8 

8.7 

0 

70.6 

47.9 

27.3 

19.8 

12.3 

9.6 

5.4 

0 

6(10) 

0 

1 

100 

100 

42.7 

35.8 

59.5 

45.5 

2 100 31.4 30.9 

3 100 24.7 21.7 

4 100 20.7 14.1 

5 100 16.2 9.8 

6 100 12.2 6.4 

7 100 6.3 4.4 

8 100 3.4 4.1 

9 100 1.7 2.9 

10 100 1.2 0.9 

11 100 0.4 0.7 

12 

24 

100 

100 

0.3 

0 

0.6 

0 
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Table 10. Percentage of correct detection of an outlier for 10 standard deviations, 

𝒏 = 𝟐, the Rousseeuw method and the Tukey method 

Operator (part) 
and two samples 

Number of 
outliers 

Proposed method 
Number of correct 

detection 

Rousseeuw 
method 

in percentage 

Tukey method 
in percentage 

3(5) 

0 
1 
2 
3 

100 
100 
100 
100 

58.6 
58 

57.4 
54.5 

73.8 
71.2 
62.1 
52.4 

3(10) 

0 
1 
2 
3 
4 
5 
6 

100 
100 
100 
100 
100 
100 
100 

55.4 
54.5 
54.3 
52.4 
44.9 
36.3 
28.5 

72.6 
71 

64.9 
60.6 
58.5 
51.2 
49.8 

4(5) 

0 
1 
2 
3 
4 

100 
100 
100 
100 
100 

53.5 
52.8 
51.9 
50.6 
42.5 

72.7 
71.8 
68.4 
55.4 
35.7 

5(6) 

0 
1 

100 
100 

39.3 
37.3 

74.9 
74.7 

2 
3 
4 
5 
6 

100 
100 
100 
100 
100 

34.3 
32.3 
30.4 
29.5 

0 

72.2 
61.9 
40.9 
33.1 

0 

5(8) 

0 
1 

100 
100 

48.8 
24.9 

71.4 
76.2 

2 100 22.5 74.4 
3 100 20.4 68.1 
4 
5 
6 
7 
8 

100 
100 
100 
100 
100 

19.3 
0 
0 
0 
0 

49.5 
0 
0 
0 
0 

6(10) 

0 
1 

100 
100 

35.4 
34.6 

65.3 
64.2 

2 100 32.8 61.9 
3 100 29.5 59.7 
4 100 24.6 56.7 
5 100 22.1 52.1 
6 100 19.8 44.9 
12 100 0 0 

10(12) 

0 
0 
1 

100 
100 
100 

43.7 
45.3 
42.9 

64 
66.9 
63.7 

2 100 37.3 59.8 
3 100 28.5 52.4 
4 100 21.8 49.6 
5 100 19.6 38.5 

 

6 
7 
8 
9 
10 
11 
12 
24 

100 
100 
100 
100 
100 
100 
100 
100 

16.5 
12.5 
9.8 
7.2 
5.4 
3.7 
2.1 
0 

32.4 
30.9 
28.4 
25.1 
22.9 
21.4 
17.6 

0 
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Table 11. Percentage of correct detection of an outlier for 10 standard deviations, 

𝒏 = 𝟒, the Rousseeuw method and the Tukey method 

 
  

Operator (part) 

and two samples 

Number of 

outliers 

Proposed method 

Number of correct 

detection 

Rousseeuw method 

in percentage 

Tukey method 

in percentage 

3(5) 

0 

1 

2 

3 

4 

5 

6 

100 

100 

100 

100 

100 

100 

100 

39.3 

38.9 

36.8 

33.7 

29.5 

14.6 

10.9 

74.9 

66.6 

54.5 

40.2 

38.4 

30.6 

25.4 

3(10) 

0 

1 

2 

3 

4 

5 

6 

12 

100 

100 

100 

100 

100 

100 

100 

100 

40.5 

56.1 

50.9 

44.5 

25.1 

23.9 

21.2 

0 

72.8 

54.5 

40.2 

38.6 

35.4 

32.4 

29.6 

0 

4(5) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

100 

100 

100 

100 

100 

100 

100 

100 

100 

48.8 

52.2 

47.4 

32.1 

20.6 

2.5 

1.3 

0 

0 

71.4 

50.5 

33.6 

33.9 

25.3 

6.8 

4.1 

0 

0 

5(8) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

100 

100 

100 

100 

100 

100 

100 

100 

100 

47.7 

46.1 

34.3 

40.2 

28.5 

21.9 

19.1 

12.9 

0 

70.7 

54.3 

36.9 

43.9 

33.7 

30.4 

28.5 

21.4 

0 

6(10) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

24 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

43.7 

41.6 

38.4 

36.8 

35.2 

32.1 

29.4 

27.5 

24.3 

21.6 

18.7 

13.6 

10.2 

0 

64 

54.6 

45.3 

42.1 

38.8 

36.9 

34.6 

31.2 

29.5 

25.9 

23.1 

21.8 

17.3 

0 
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3.3.2. Proposed method on numerical example 

To show the superiority of the proposed method in outlier detection in nested 
Gage R&R study, a numerical example is presented. This data has been taken 
from (Erdmann et al., 2009), described in the health section. This features of the 
quality improvement were to take measurements for a body temperature of 
patients. The measurement of the temperature has been taken using an ear 
thermometer. The normal body temperature for any individual range from 35 °C, 
which is a lower specification limit (LSL), to 40 °C, which is an upper specification 
limit (USL). The quality of the temperature measurement is assessed through 
a Gage R&R study. The nurses handling the ear thermometer may cause some 
variation. The other group of variation for the experiment involved different 
healthy persons. A single ear thermometer is used by all the nurses. Each patient 
is measured in the right and left ear. The experiment has been assumed to 
involve 3 nurses (operators) and each nurse measures 10 different healthy 
persons, four times. Table 12 shows the collected data of the health section. 

To see the effect of outliers on the variability’s measurements, we purposely 
contaminate the data with a certain number of outliers. The outliers are created by 
replacing one observation of each operator 
with ( 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 + 10 𝑠𝑑 𝑖𝑛 𝑒𝑎𝑐ℎ 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟). The outlier is 
represented in bold, in Table 12. 

Table 12.  Data of the nested Gage R&R experiment showing 3 different 
 operators, 10 parts, and 4 samples in each part 

Patients 

Operator 1 Jolan Operator 2 Mariska Operator 3 Paula 

1 2 1 2 1 2 

r 1 r 1 r 1 r 1 r 1 r 1 

1 37.3 37.5 37.3 37.5 37.5 37.7 37.3 37.6 37.5 37.6 37.4 37.5 

2 37 37.3 36.7 36.8 37.5 37.3 37.4 37.2 37.4 37.4 37.3 37.1 

3 36.4 37 37.3 37 37.5 37.3 37.4 37.1 37.6 37.4 37.2 37 

4 37.6 37.5 37.6 37.4 37.5 37.5 37.5 37.7 37.7 37.6 37.6 37.5 

5 36.7 37.6 
37.8 

(41.8) 
37.5 37.9 37.5 37.6 37.6 37.9 37.6 

37.9 

(41.2) 
37.8 

6 37.5 37.7 37.6 37.3 
38.4 

(41.6) 
38 37.8 37.8 37.6 37.9 37.8 37.8 

7 37 36.9 37.1 37.3 37.1 37.3 37.4 37.5 37.2 37.4 37.1 37.2 

8 37.7 37.4 37.6 37.4 37.6 37.5 37.5 37.1 37.5 37.4 37.2 36.9 

9 36.4 36.5 37.6 36.1 37.1 36.9 36.7 36.8 37 36.4 36.9 36.8 

10 37.2 37.4 37 37.3 37.1 37.2 37.2 37.2 37.1 37.2 37 37.3 

 
The residuals 𝑟𝑖, the 𝑧𝑖 of the Rousseeuw and Mia Hubert method, the interval of 

the Tukey method and our proposed 𝑇𝑚𝑚 method are presented in [Table 13 A 
and Table 13 B]. 
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Table 13. A. Residuals 𝒓𝒊, 𝒛𝒊, the interval of Tukey and 𝑻𝒎𝒎 

No Residuals 𝒓𝒊 𝒛𝒊 Tukey interval 𝑻𝒎𝒎 

1 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
2 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
3 -0.7634017 -3.3715 (-0.46317,4.3683) -1.37166387 
4 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
5 -0.5395861 -2.3601 (-0.46317,4.3683) -0.96954743 
6 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
7 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
8 0.20646592 1.01146 (-0.46317,4.3683) 0.370840721 
9 -0.7634017 -3.3715 (-0.46317,4.3683) -1.37166387 

10 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
11 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
12 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
13 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
14 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
15 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
16 0.20646592 1.01146 (-0.46317,4.3683) 0.370840721 
17 -0.3903757 -1.6858 (-0.46317,4.3683) -0.7014698 
18 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
19 -0.6887965 -3.0344 (-0.46317,4.3683) -1.23762506 
20 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
21 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
22 -0.5395861 -2.3601 (-0.46317,4.3683) -0.96954743 
23 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
24 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
25 3.26527912 14.8348 (-0.46317,4.3683) 5.866432121 
26 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
27 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
28 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
29 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
30 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
31 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
32 -0.4649809 -2.0229 (-0.46317,4.3683) -0.83550861 
33 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
34 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
35 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
36 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
37 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
38 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
39 -0.9872173 -4.383 (-0.46317,4.3683) -1.77378031 
40 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
41 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
42 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
43 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
44 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
45 0.35567632 1.68577 (-0.46317,4.3683) 0.63891835 
46 3.11606872 14.1605 (-0.46317,4.3683) 5.598354492 
47 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
48 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
49 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
50 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
51 0.20646592 1.01146 (-0.46317,4.3683) 0.370840721 
52 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
53 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
54 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
55 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
56 0.43028152 2.02293 (-0.46317,4.3683) 0.772957164 
57 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
58 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
59 -0.3903757 -1.6858 (-0.46317,4.3683) -0.7014698 
60 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 



STATISTICS IN TRANSITION new series, September 2019 

 

 

53 

Table 13. B. Residuals 𝒓𝒊, 𝒛𝒊, the interval of Tukey and 𝑻𝒎𝒎 

No Residuals 𝒓𝒊 𝒛𝒊 Tukey interval 𝑻𝒎𝒎 

61 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
62 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
63 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
64 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
65 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
66 0.28107112 1.34862 (-0.46317,4.3683) 0.504879535 
67 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
68 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
69 -0.5395861 -2.3601 (-0.46317,4.3683) -0.96954743 
70 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
71 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
72 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
73 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
74 0.20646592 1.01146 (-0.46317,4.3683) 0.370840721 
75 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
76 0.28107112 1.34862 (-0.46317,4.3683) 0.504879535 
77 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
78 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
79 -0.4649809 -2.0229 (-0.46317,4.3683) -0.83550861 
80 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
81 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
82 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
83 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
84 0.20646592 1.01146 (-0.46317,4.3683) 0.370840721 
85 0.35567632 1.68577 (-0.46317,4.3683) 0.63891835 
86 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
87 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
88 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
89 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
90 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
91 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
92 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
93 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
94 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
95 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
96 0.35567632 1.68577 (-0.46317,4.3683) 0.63891835 
97 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
98 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
99 -0.7634017 -3.3715 (-0.46317,4.3683) -1.37166387 
100 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
101 -0.0173497 3.4E-15 (-0.46317,4.3683) -0.03127572 
102 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
103 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
104 0.13186072 0.67431 (-0.46317,4.3683) 0.236801906 
105 2.81764792 12.8119 (-0.46317,4.3683) 5.062199233 
106 0.28107112 1.34862 (-0.46317,4.3683) 0.504879535 
107 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
108 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
109 -0.3903757 -1.6858 (-0.46317,4.3683) -0.7014698 
110 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
111 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
112 -0.2411653 -1.0115 (-0.46317,4.3683) -0.43339217 
113 -0.3157705 -1.3486 (-0.46317,4.3683) -0.56743098 
114 0.05725552 0.33715 (-0.46317,4.3683) 0.102763091 
115 0.28107112 1.34862 (-0.46317,4.3683) 0.504879535 
116 0.28107112 1.34862 (-0.46317,4.3683) 0.504879535 
117 -0.1665601 -0.6743 (-0.46317,4.3683) -0.29935335 
118 -0.3903757 -1.6858 (-0.46317,4.3683) -0.7014698 
119 -0.4649809 -2.0229 (-0.46317,4.3683) -0.83550861 
120 -0.0919549 -0.3372 (-0.46317,4.3683) -0.16531454 
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It can be observed from Tables [13 A and Table 13 B] that our proposed method 
can detect the 3 outliers that are purposely placed in the data set. However, the 
Rousseeuw method detects 8 outliers and the Tukey method detects 15 outliers. 

5 Conclusion 

Outliers have an adverse effect on the analysis of the nested Gage R&R 
measurements and give a misleading conclusion. Therefore, they should be 
detected at the outset before further analysis is carried out. Once the outlier is 
detected, the management should find out whether this outlier was caused by the 
parts or operators handling the equipment or it is a true error from random 
variation. Proper action should be taken if those outliers are due to operators or 
parts. As such, it is very crucial to have an efficient method of identifying outliers. 
We propose a new method, 𝑇𝑚𝑚  in this regard. The simulation study and the 
numerical example clearly show that our proposed method is able to successfully 
identify an outlier with no masking effect. Nonetheless, the other two methods are 
not performing well and suffer from masking effect.  
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ABSTRACT
In this paper, we have considered the generalized Pareto distribution. Various struc-
tural properties of the distribution are derived including (quantile function, explicit
expressions for moments, mean deviation, Bonferroni and Lorenz curves and Renyi
entropy). We have provided simple explicit expressions and recurrence relations
for single and product moments of generalized order statistics from the generalized
Pareto distribution. The method of maximum likelihood is adopted for estimating
the model parameters. For different parameter settings and sample sizes, the sim-
ulation studies are performed and compared to the performance of the generalized
Pareto distribution.
Key words: generalized order statistics, generalized Pareto distribution, single and
product moment, recurrence relations, characterization and maximum likelihood es-
timation.

1. Introduction

The Pareto distribution has been introduced as a model for the distribution of in-
comes. It is also used as a model for losses in property and casualty insurance.
The Pareto distribution has a heavy right tail behaviour, making it appropriate for
including large events in applications such as excess-of-loss pricing[see Arnold
(2008) and Verma and Betti (2006)]. The Pareto distribution has probability den-
sity function

f (x;α,β ) =
αβ α

(x+β )α+1 ; x > 0, α,β > 0,

and the corresponding cumulative distribution function is

F(x;α,β ) = 1−
(

β

x+β

)α

; x > 0, α,β > 0,

where β is a scale parameter and α is the shape parameter. Consider the transfor-
mation Y = X +β to get another form of the Pareto distribution

f (y;α,β ) =
αβ α

yα+1 ; β ≤ y < ∞, α,β > 0.

1Corresponding Author adress: Department of Statistics, Central University of Haryana, Mahender-
garh, India. E-mail: devendrastats@gmail.com. ORCID ID: https://orcid.org/0000-0001-5831-3315.
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This study uses the concept of generalized order statistics (GOS), introduced by
Kamps (1995), that enables a common approach to several models of ordered ran-
dom variables, such as ordinary order statistics, record values, progressively Type
II censoring order statistics, Pfeifer records and sequential order statistics. The use
of such a concept has been steadily growing over the years. Well-known proper-
ties of order statistics, progressively censored order statistics and record values
can be subsumed, generalized and integrated within the concept of GOS. This con-
cept can be effectively applied, e.g., in reliability theory. The statistical properties
and the estimation problems based on generalized order statistics for some lifetime
distributions has been studied by several researchers. For instance, Aboeleneen
(2010) discussed Bayesian and non-Bayesian estimation methods based on GOS
for Weibull distribution. Estimates of the unknown parameters and confidence inter-
vals from progressively type II censoring and record values are obtained. Burkschat
(2010) derived the best linear unbiased and best equivariant estimators in location
and scale families of GOS from generalized Pareto distribution. Safi and Ahmed
(2013) obtained the estimates of the unknown parameters of the Kumaraswamy
distribution based on GOS using maximum likelihood method. Recently, Wu et al.
(2014) obtained maximum likelihood estimator (MLE) of lifetime performance index
for the Burr XII distribution with progressively type II right censored sample and
Kim and Han (2014) obtained Bayesian estimators and highest posterior density
credible intervals for the scale parameter of Rayleigh distribution based GOS. Also,
they derived the Bayesian predictive estimator and the highest posterior density
predictive interval for independent future observations. Recently, Kumar and Goyal
(2019a, 2019b) obtained the relations for single and product moments of order
statistics from power Lindley distribution and generalized lindley distribution respec-
tively. Kumar (2015a, 2015b) and Kumar and Dey (2017a) Kumar and Jain (2018)
obtained the relations for moments and moment generating function of type-II ex-
ponentiated log-logistic, extended generalized half logistic, extended exponential
and power generalized Weibull distribution based on GOS respectively. Recently,
Kumar et al. (2017) and Kumar and Dey (2017b) established the relations for order
statistics from extended exponential and power generalized Weibull distribution and
the reference therein.

The motivation of the paper is twofold: first, to derive the mathematical and
statistical properties of this distribution as well as explicit expressions for single and
product moments based on GOS of generalized Pareto distribution, and second, to
estimate the parameters of the model using maximum likelihood method for different
sample sizes and different parameter values for the generalized Pareto distribution,
which we think would be of deep interest to applied statisticians.

The remaining of the article is organized as follows. In Section 2, we derive the
expressions for survival function, hazard rate function, complete moments, condi-
tional moments, mean deviation, Bonferroni and Lorenz curves, Renyi entropy and
quantile function. In Section 3 we derive relations for single and product moments
of GOS from generalized Pareto distribution. The obtained relations were used to
compute first for moments, variances, skewness and kurtosis of order statistics and
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record values. We have also derived the characterization of this distribution by us-
ing conditional moments of GOS in Section 4. In Section 5, we derive maximum
likelihood estimation of the generalized Pareto distribution. In Section 6, simulations
are performed for different sample sizes. Section 7 ends with concluding remarks.

2. Generalized Pareto distribution

The generalized Pareto (GP)distribution was proposed by Pickands (1975). Now
it is widely used in analysis of extreme events in the modelling of large insurance
claims, and to describe the annual maximum flood at river gauging station.
A random variable X has the GP Distribution with two parameters α and β if it has
probability density function (pd f ) given by

f (x;α,β ) =
α

(βx+α)2

(
α

βx+α

) 1
β
−1

, x > 0, α,β > 0 (1)

and the corresponding cumulative distribution function (cd f ) is

F(x;α,β ) = 1−
(

α

βx+α

) 1
β

, x > 0, α,β > 0 (2)

The hazard rate function

h(x;α,β ) = (βx+α)−1, x > 0, α,β > 0

and the survival function

S(x;α,β ) =

(
α

βx+α

) 1
β

, x > 0, α,β > 0.

Note that for GP Distribution defined in (1)

F̄(x) = (βx+α) f (x). (3)

For β > 0, the GP Distribution is known as Pareto type II or Lomax distribution. For
β =−1, GP Distribution reduces uniform distribution on (0,α). As β → 0, GP Distri-
bution tends to exponential distribution with scale parameter α. It is well known that
the GP Distribution for β > 0, provides reasonably good fit to distributions of income
and property values. For more details and some applications of this distribution one
may refer to Pickands (1975) and Arnold (1983). Plots of the pd f (Figure 1), hazard
function (Figure 2) and survival function (Figure 3), respectively for GP Distribution
when α = 1,2,3 and β = 1,2,3.
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Figure 1: Probability density function of GP Distribution

Figure 2: Hazard function of GP Distribution

Figure 3: Survival function of GP Distribution
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2.1. Quantile function

Let xp = Q(p) = F−1(p), for 0 < p < 1 denote the quantile function of the GP Distri-
bution. then

xp =
α[(1− p)−β −1]

β
. (4)

In particular, the first three quantiles, Q1, Q2 and Q3, can be obtained by setting
p = 0.25, p = 0.5 and = 0.75 in equation (4) respectively.

The effects of the parameters α and β on the skewness and kurtosis can be con-
sidered based on quantile measures. The Bowley skewness (Kenney and Keeping
1962) is one of the earliest skewness measures defined by

B =
Q(3/4)+Q(1/4)−2Q(1/2)

Q(3/4)−Q(1/4)
.

Since only the middle two quartiles are considered and the outer two quartiles are
ignored, this adds robustness to the measure. The Moors kurtosis (Moors 1988) is
defined as

M =
Q(3/8)−Q(1/8)+Q(7/8)−Q(5/8)

Q(6/8)−Q(2/8)
.

Clearly, M > 0 and there is good concordance with the classical kurtosis measures
for some distributions. These measures are less sensitive to outliers and they exist
even for distributions without moments. For the standard normal distribution, these
measures are 0 (Bowley) and 1.2331 (Moors).

2.2. Moments

Let X be a random variable having the GP Distribution. It is easy to obtain the nth
moment of X as the following form

E(Xk) =
∫

∞

0
xn f (x)dx =

∫
∞

0
xn α

(βx+α)2

(
α

βx+α

) 1
β
−1

dx

=

(
α

β

)k ∞

∑
p=0

(−1)pΓ(k+1)
p!Γ(k+1− p)[β (p− k)+1]

. (5)

The variance, skewness and kurtosis of X can be obtained using the relationship

Var(X) = E(X2)− [E(X)]2

Skewness(X) = E[X−E(X)]3/[Var(X)]3/2

and
Kurtosis(X) = E[X−E(x)]4/[Var(X)]2.



62 M. R. Malik, D. Kumar: Generalized Pareto distribution ...

The variations of E(X), Var(X), Skewness(X) and Kurtosis(X) versus α and β are
illustrated in table 1. It appears that E(X), Var(X), Skewness(X) and Kurtosis(X) are
increasing function of α for every fixed β . It appears also that the E(X) is greater
than its Var(X) for every fixed β .

2.3. Conditional moments

The conditional moments of the GP Distribution, is given by

E(Xk|X > x) = α

∫
∞

x

tk

(β t +α)2

(
α

β t +α

) 1
β
−1

dt

=

(
α

β

)k ∞

∑
p=0

(−1)pΓ(k+1)
p!Γ(k+1− p)[β (p− k)+1]

(
α

βx+α

)p−k+ 1
β

.

The mean residual lifetime function is E(X |X > x)− x.

Table 1: Mean, variance, skewness, kurtosis and coefficient of variation for β = 5
and some values of α

α Mean Variance Skewness Kurtosis CV
1 0.025221 0.002242 2.266105 3.254921 4.444709
2 0.050441 0.008969 2.272871 3.269397 8.890585
3 0.075662 0.020179 2.273945 3.272412 13.33496
4 0.100882 0.035875 2.274003 3.272299 17.78067
5 0.126103 0.056055 2.273847 3.272586 22.22588
6 0.151323 0.080719 2.273877 3.272552 26.67109
7 0.176544 0.109867 2.273915 3.272620 31.11604
8 0.201764 0.143500 2.273924 3.272615 35.56135
9 0.226985 0.181618 2.273875 3.272584 40.00661
10 0.252206 0.224219 2.273877 3.272596 44.45156

2.4. Mean deviations

The mean deviations about the mean and the median are used to measure the
dispersion and the spread in a population from the centre. The mean deviations
about the mean µ = E(X) and about the median M can be calculated as

D(µ) = E|x−µ|=
∫

∞

0
|x−µ| f (x)dx

and

D(m) = E|x−m|=
∫

∞

0
|x−m| f (x)dx,
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respectively. The measures, we obtain D(µ) and D(m), can be calculated using the
following relationships:

D(µ) =
∫

µ

0
(µ− x) f (x)dx+

∫
∞

µ

(x−µ) f (x)dx

= µF(µ)−
∫

µ

0
x f (x)dx−µ[1−F(µ)]+

∫
∞

µ

x f (x)dx

= 2µF(µ)−2µ +2
∫

∞

µ

x f (x)dx

and

D(m) =
∫ m

0
(m− x) f (x)dx+

∫
∞

m
(x−m) f (x)dx

= mF(m)−
∫ m

0
x f (x)dx−m[1−F(m)]+

∫
∞

m
x f (x)dx

= 2mF(m)−m−µ +2
∫

∞

m
x f (x)dx.

Consider

I =
∫

∞

µ

x f (x)dx. (6)

Using the substitution t = [F̄(x)]β in (6), we obtain

∫
∞

µ

x f (x)dx =
α

β (1−β )

(
α

β µ +α

)1/β [(
1+

β µ

α

)
+β −1

]
and ∫

∞

m
x f (x)dx =

α

β (1−β )

(
α

βm+α

)1/β [(
1+

βm
α

)
+β −1

]
,

so it follows that

D(µ) = 2µF(µ)−2µ +
2α

β (1−β )

(
α

β µ +α

)1/β [(
1+

β µ

α

)
+β −1

]
,

and

D(m) = 2mF(m)−m−µ +
2α

β (1−β )

(
α

βm+α

)1/β [(
1+

βm
α

)
+β −1

]
.

2.5. Bonferroni and Lorenz curve

Boneferroni and Lorenz curves are proposed by Boneferroni (1930). These curves
have applications not only in economics to study income and poverty, but also in
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other fields like reliability, demography, insurance and medicine. They are defined
as

B(p) =
1

pµ

∫ q

0
x f (x)dx (7)

L(p) =
1
µ

∫ q

0
x f (x)dx, (8)

and respectively, where µ = E(X) and q = F−1(p). By using (1), one can reduce (7)
and (8) to

B(p) =
α

pµ(1−β )

[
1−β

(
α

βq+α

)1/β {(
1+

βq
α

)
+β −1

}]
,

and

L(p) =
α

µ(1−β )

[
1−β

(
α

βq+α

)1/β {(
1+

βq
α

)
+β −1

}]
,

respectively.

2.6. Renyi entropy

The entropy of a random variable X with the density function f (x) is a measure of
variation of the uncertainty. Renyi entropy is defined as IR(ρ) = (1−ρ)−1log[I(ρ)],
where I(ρ) =

∫
ℜ

f ρ(x)dx, ρ > 0 and ρ 6= 1. If a random variable X has a GP distribu-
tion, then, we have

I(ρ) = α
ρ

∫
∞

0

1
(βx+α)2ρ

(
α

βx+α

)ρ

(
1
β
−1
)

dx

=
1

β (1+β )αρ
,

[see Gradshteyn and Ryzhik (2014), p-322]. Hence, the Renyi entropy reduces to

IR(ρ) =−
1

1−ρ
logβ (β +1)+

(
ρ

1−ρ

)
logα.

3. Generalized order statistics

The concept of generalized order statistics GOS was introduced by Kamps (1995).
Several models of ordered random variables such as order statistics, record val-
ues, sequential order statistics, progressive type II censored order statistics and
Pfeifer’s record values can be discussed as special cases of the GOS. Suppose
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X(1,n,m,k),. . . ,X(n,n,m,k) , (k ≥ 1,m is a real number), are n GOS from an abso-
lutely continuous cd f F(x) with pd f f (x), if their joint pd f is of the form

fX(1,n,m,k),...,X(n,n,m,k)(x1,x2, . . . ,xn)

= k

(
n−1

∏
j=1

γ j

)(
n−1

∏
i=1

[1−F(xi)]
m f (xi)

)
[1−F(xn)]

k−1 f (xn) (9)

on the cone F−1(0)≤ x1 ≤ x2 ≤ . . .≤ xn ≤ F−1(1),
where γ j = k+(n− j)(m+ 1) > 0 for all j, 1 ≤ j ≤ n, k is a positive integer and
m≥−1.
If m = 0 and k = 1, then this model reduces to the ordinary r−th order statistic and
(9) will be the joint pd f of n order statistics X1:n ≤ X2:n ≤ . . . ≤ Xn:n from cd f F(x).
If k = 1 and m = −1, then (9) will be the joint pd f of the first n record values of
the identically and independently distributed (i.i.d.) random variables with cd f F(x)
and corresponding pd f f (x). In view of (9), the marginal pd f of the r−th GOS,
X(r,n,m,k), 1≤ r ≤ n, is

fX(r,n,m,k)(x) =
Cr−1

(r−1)!
[F̄(x)]γr−1 f (x)gr−1

m (F(x)), (10)

and the joint pd f of X(r,n,m,k) and X(s,n,m,k), 1≤ r < s≤ n, x < y is

fX(r,n,m,k),X(s,n,m,k)(x,y) =
Cs−1

(r−1)!(s− r−1)!
[F̄(x)]m f (x)gr−1

m (F(x))

× [hm(F(y))−hm(F(x))]s−r−1[F̄(y)]γs−1 f (y), (11)

where

F̄(x) = 1−F(x), Cr−1 =
r

∏
i=1

γi ,

hm(x) =
{
− 1

m+1 (1−x)m+1, m 6=−1
−ln(1−x), m=−1

and
gm(x) = hm(x)−hm(1), x ∈ [0,1).

3.1. Relations for single moments of generalized order statistics

We shall first establish explicit expressions for jth single moments of the rth gener-
alized order statistics, E

(
X j(r,n,m,k)

)
. For the GP distribution, as given in (1), the

j−th moments of X(r,n,m,k) is given as,

E[X j(r,n,m,k)] =
∫

∞

0
x j fX(r,n,m,k)(x)dx

=
Cr−1

(r−1)!

∫
∞

0
x j[F̄(x)]γr−1 f (x)gr−1

m (F(x))dx. (12)
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Further, on using the binomial expansion, we can rewrite (12) as

E[X j(r,n,m,k)] =
Cr−1

(r−1)!(m+1)r−1

r−1

∑
u=0

(−1)u
(

r−1
u

)
×

∫
∞

0
x j[F̄(x)]γr−u−1 f (x)dx. (13)

Now, letting t = [F̄(x)]β in (13), we get

E[X j(r,n,m,k)] =
Cr−1

(r−1)!(m+1)r

(
α

β

) j j

∑
p=0

r−1

∑
u=0

(−1)u+p
(

r−1
u

)(
j
p

)
× B

(
k

m+1
+n− r+u+

β (p− j)
m+1

,1
)
, (14)

Since

b

∑
a=0

(−1)a
(

b
a

)
B(a+ k,c) = B(k,c+b), (15)

where B(a,b) denotes the complete beta function and defined by B(a,b) = Γ(a)Γ(b)
Γ(a+b)

Therefore,

E[X j(r,n,m,k)] =
Cr−1

(m+1)r

(
α

β

) j j

∑
p=0

(−1)p
(

j
p

)

×
Γ

(
k+(n−r)(m+1)+β (p− j)

m+1

)
Γ

(
k+n(m+1)+β (p− j)

m+1

) (16)

=

(
α

β

) j j

∑
p=0

(−1)p
(

j
p

)
1

∏
r
a=1

(
1+ β (p− j)

γa

) , (17)

where Γ(.) denotes the complete gamma function and defined by Γ(a)=
∫

∞

0 ta−1e−tdt.
Special Cases
i) Putting m = 0, k = 1, in (16), we get moments of order statistics from GP distribu-
tion as

E[X j
r:n] =

n!
(n− r)!

(
α

β

) j j

∑
p=0

(−1)p
(

j
p

)
Γ(n− r+1+β (p− j))

Γ(n+1+β (p− j))
. (18)

ii) Setting m =−1 in (17), to get moments of k−th record value from GP distribution
as;

E[X(r,n,−1,k)] =
(

α

β

) j j

∑
p=0

(−1)p
(

j
p

)
1(

1+ β (p− j)
k

)r
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for upper record values k = 1

E[X j
U(r)] =

(
α

β

) j j

∑
p=0

(−1)p
(

j
p

)
1

[β (p− j)]r
. (19)

A recurrence relation for single moment of GOS from cd f (2) can be obtained in
the following theorem.
Theorem 1. For the distribution given in (1) and for 2≤ r ≤ n, n≥ 2 k = 1,2, . . . ,(

1− jβ
γr

)
E[X j(r,n,m,k)] = E[X j(r−1,n,m,k)]+

jα
γr

E[X j−1(r,n,m,k)]. (20)

Proof. From (10), we have

E[X j(r,n,m,k)] =
Cr−1

(r−1)!

∫
∞

0
x j[F̄(x)]γr−1 f (x)gr−1

m (F(x))dx.

Integrating by parts and using (3) and simplifying the resultant expression we get
the result given in (20).

Remark 1: Under the assumption of Theorem 1 with m = 0, k = 1, we shall
deduced the recurrence relations for single moments of ordinary order statistics of
the GP distribution(

1− jβ
n− r+1

)
E(X j

r:n) = E(X j
r−1:n)+

jα
(n− r+1)

E(X j−1
r:n ).

Remark 2: Putting m = −1 in Theorem 1 we obtain the recurrence relations for
single moments of k record values of the GP distribution.(

1− jβ
k

)
E(X j

U(r)) = E(X j
U(r−1))+

jα
k

E(X j−1
U(r)).

All the tables and figures are made by using R software. The codes of the program
are available from the author on request. Table 2-3 lists some numerical values
for the first four moments, variances, skewness and kurtosis of order statistics and
upper record values from equation (18) and (19) and using numerical integration.
The parameter values are taken as α = 2 and β = 0.5. The results in this table show
a good agreement between the two methods.
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3.2. Relations for product moments of generalized order statistics

We shall first establish explicit expressions for the product moment of ith and jth
generalized order statistics, E

(
X (i, j)

r,s,n,m,k

)
= µ

(i, j)
r,s,n,m,k. For GP distribution, the product

moment of X(r,n,m,k) and X(s,n,m,k) is given as

E[X i(r,n,m,k),X j(s,n,m,k)] =
∫

∞

0

∫
∞

x
xix j fX(r,n,m,k)X(s,n,m,k)(x,y)dxdy.

On using (11) and binomial expansion, we have

E[X i(r,n,m,k),X j(s,n,m,k)] =
Cs−1(m+1)2−s

(r−1)!(s− r−1)!

r−1

∑
u=0

s−r−1

∑
v=0

(−1)u+v

×
(

r−1
u

)(
s− r−1

v

)∫
∞

0
xi[F̄(x)](s−r+u−v)(m+1)−1 f (x)G(x)dx, (21)

where

G(x) =
∫

∞

x
x j[F̄(y)]γs−v−1 f (y)dy. (22)

By setting t = [F̄(y)]β in (22), we obtain

G(x) =
(

α

β

) j j

∑
p=0

(−1)p
(

j
p

)
[F̄(x)]γs−v+β (p− j)

[γs−v +β (p− j)]
.

On substituting the above expression of G(x) in (22), and simplifying the resulting
equation, we get.

E[X i(r,n,m,k),X j(s,n,m,k)] =
Cs−1

(r−1)!(s− r−1)!(m+1)s

(
α

β

)i+ j j

∑
p=0

i

∑
q=0

(−1)p+q

×
(

j
p

)(
i
q

)
B
(

k
m+1

+n− r+
β (p+q− i− j)

m+1
,r
)

× B
(

k
m+1

+n− s+
β (p− j)

m+1
,s− r

)
, (23)

which after simplification yields

E[X i(r,n,m,k),X j(s,n,m,k)] =

(
α

β

)i+ j j

∑
p=0

i

∑
q=0

(−1)p+q
(

j
p

)(
i
q

)
× 1

∏
r
a=1

(
1+ β (p+q−i− j)

γa

)
∏

s
b=r+1

(
1+ β (p− j)

γb

) .(24)

Special cases
i) Putting m = 0, k = 1 in (23), we shall deduced the explicit formula for product
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moments of ordinary order statistics of GP distribution.
ii) Setting m =−1 in (24), we obtain the explicit expression for product moments of
k record values of GP distribution.

Making use of (3), we can derive recurrence relations for product moments of
GOS from (11).

Theorem 2. For the distribution given in (1) and for 1 ≤ r < s ≤ n, n ≥ 2 and
k = 1,2...(

1− jβ
γs

)
E[X i(r,n,m,k)X j(s,n,m,k)] = E[X i(r,n,m,k)X j(s−1,n,m,k)]

+
jα
γs

E[X i(r,n,m,k)X j−1(s,n,m,k)]. (25)

Proof: Using (11), we have

E[X i(r,n,m,k)X j(s,n,m,k)] =
Cs−1

(r−1)!(s− r−1)!

×
∫

∞

0
xi[F̄(x)]m f (x)gr−1

m (F(x))I(x),dx (26)

where

I(x) =
∫

∞

x
y j[hm(F(y))−hm(F(x))]s−r−1[F̄(y)]γs−1 f (y)dy.

Solving the integral in I(x) by parts and using (3) and substituting the resulting ex-
pression in (26), we get the result given in (25).
Remark 3 Under the assumption of Theorem 2 with m = 0, k = 1 we shall deduced
the recurrence relations for product moments of order statistics of the GP distribu-
tion.
Remark 4 Putting m = −1 in Theorem 2 we obtain the recurrence relations for
product moments of k−th record values from GP distribution.
Remark 5 At j = 0 in (25), we have

E[X i(r,n,m,k)] =
(

α

β

)i i

∑
q=0

(−1)q
(

i
q

)
1

∏
r
a=1

(
1+ β (q−i)

γa

) .
Remark 6 At i = 0, Theorem 2 reduces to Theorem 1.

4. Characterization

Let X(r,n,m,k), r = 1,2, . . . ,n be GOS, then from a continuous population with cd f
F(x) and pd f f (x), then the conditional pd f of X(s,n,m,k) given X(r,n,m,k) = x,
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1≤ r < s≤ n, in view of (10) and (11), is

fX(s,n,m,k)|X(r,n,m,k)(y|x) =
Cs−1

(s− r−1)!Cr−1

× [hm(F(y))−hm(F(x))]s−r−1[F(y)]γs−1

[F̄(x)]γr+1
f (y). x < y (27)

Theorem 3: Let X be a non-negative random variable having an absolutely contin-
uous distribution function F(x) with F(0) = 0 and 0 < F(x)< 1 for all x > 0, then

E[X(s,n,m,k)|X(l,n,m,k) = x] =
(βx+α)

β

{
s−l

∏
j=1

(
γl+ j

γl+ j−β

)
−α

}
, l = r, r+1 (28)

if and only if

F(x;α,β ) = 1−
(

α

βx+α

) 1
β

x > 0, α,β > 0.

Proof. From (27), we have

E[X(s,n,m,k)|X(r,n,m,k) = x] =
Cs−1

(s− r−1)!Cr−1(m+1)s−r−1

∫
∞

x
y
(

F̄(y)
F̄(x)

)γs−1

×

[
1−
(

F̄(y)
F̄(x)

)m+1
]s−r−1

f (y)
F̄(x)

dy. (29)

By setting u = F̄(y)
F̄(x) from (2) in (29), we obtain

E[X(s,n,m,k)|X(r,n,m,k) = x] =
Cs−1

β (s− r−1)!Cr−1(m+1)s−r−1 [(βx+α)A1−αA2], (30)

where

A1 =
∫ 1

0
uγs−β−1(1−um+1)s−r−1du (31)

and

A2 =
∫ 1

0
uγs−1(1−um+1)s−r−1du. (32)

Again by setting t = um+1 in (31) and (32) and substituting the values of A1 and A2

in (30) and simplifying the resultant expression we get the result given in (28).
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To prove sufficient part, we have from (27) and (28)

Cs−1

(s− r−1)!Cr−1(m+1)s−r−1

∫
∞

x
y[(F̄(x))m+1− (F̄(y))m+1]s−r−1

×[F̄(y)]γs−1 f (y)dy = [F̄(x)]γr+1Hr(x), (33)

where

Hr(x) =
(βx+α)

β

{
s−r

∏
j=1

(
γr+ j

γr+ j−β

)
−α

}
.

Differentiating (33) both sides with respect to x and rearranging the terms, we get

− Cs−1[F̄(x)]m f (x)
(s− r−2)!Cr−1(m+1)s−r−2

∫
∞

x
y[(F̄(x))m+1− (F̄(y))m+1]s−r−2

×[F̄(y)]γs−1 f (y)dy = H ′r(x)[F̄(x)]γr+1 − γr+1Hr(x)[F̄(x)]γr+1−1 f (x)

Therefore,

f (x)
F̄(x)

=− H ′r(x)
γr+1[Hr+1(x)−Hr(x)]

=
1

(βx+α)
,

which proves that

F(x;α,β ) = 1−
(

α

βx+α

) 1
β

x > 0, α,β > 0.

5. Estimation of model parameters

In this section we discuss the process of obtaining the maximum likelihood estima-
tors of the parameters α and β . Let X1,X2, . . . ,Xn be random sample with observed
values x1,x2, . . . ,xn from GP distribution. Let Θ = (α,β ) be the parameter vector.
The likelihood function based on the random sample of size n is obtained from

L(α,β |x) = α
n/β

n

∏
i=1

(βxi +α), (34)

The maximum likelihood estimates are the values of α and β that maximize this
likelihood function.
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5.1. Maximum likelihood estimation

The log likelihood function l(α,β |x) = logL(α,β |x), dropping terms that do not in-
volve α and β , is

l(α,β |x) = n
β

logα−
(

1+
1
β

) n

∑
i=1

log(βxi +α). (35)

We assume that the parameters α and β are unknown. To obtain the normal equa-
tions for the unknown parameters, we differentiate (35) partially with respect to α

and β and equate to zero. The resulting equations are

0 =
∂ l(α,β |x)

∂α
=

n
αβ
−
(

1+
1
β

) n

∑
i=1

1
(βxi +α)

, (36)

and

0 =
∂ l(α,β |x)

∂β
=− n

β 2 logα +
1

β 2

n

∑
i=1

log(βxi +α)−
(

1+
1
β

) n

∑
i=1

xi

(βxi +α)
. (37)

The solutions of the above equations are the maximum likelihood estimators of the
GP distribution parameters α and β , denoted as α̂MLE and β̂MLE , respectively. As
the equations expressed in (36) and (37) cannot be solved analytically, one must
use a numerical procedure to solve them.

5.2. Approximate confidence intervals

In this section, we present the asymptotic confidence intervals for the parameters
of the GP distribution. Since the MLEs of the unknown parameters α and β can-
not be derived in closed form, it is not easy to derive the exact distributions of the
MLEs. Hence, we cannot obtain exact confidence intervals for the parameters. We
must use the large sample approximation. It is known that the asymptotic distribu-
tion of the MLEs is [

√
n(α̂MLE −α),

√
n(β̂MLE −β )]→ N2(0, I−1(Θ)), we can refer to

Lawless (1982), where I−1(Θ), the inverse of the observed information matrix of the
unknown parameters Θ = (α,β ), is

I−1(Θ) =

− ∂ 2l(α,β )
∂ 2α

− ∂ 2l(α,β )
∂α∂β

− ∂ 2l(α,β )
∂α∂β

− ∂ 2l(α,β )
∂ 2β


−1

(α,β )=(α̂,β̂ )

=

(
Var(α̂) Cov(α̂, β̂ )

Cov(α̂, β̂ ) Var(α̂)

)
.
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The derivatives in I(Θ) are given in

∂ 2l(α,β |x)
∂α2 =− n

α2β
+

(
1+

1
β

) n

∑
i=1

1
(βxi +α)2

∂ 2l(α,β |x)
∂α ∂β

=− n
αβ 2 +

1
β 2

n

∑
i=1

1
(βxi +α)

−
(

1+
1
β

) n

∑
i=1

xi

(βxi +α)2 =
∂ 2l(α,β |x)

∂β ∂α

∂ 2l(α,β |x)
∂β 2 =

2n
β 3 lnα− 2

β 3

n

∑
i=1

ln(βxi +α)+
2

β 2

n

∑
i=1

xi

(βxi +α)

+ +

(
1+

1
β

) n

∑
i=1

(
xi

βxi +α

)2

.

The above approach is used to derive approximate 100(1− τ)% confidence in-
tervals of the parameters α and β of the forms

α̂± zτ/2
√

var(α̂)

and

β̂ ± zτ/2

√
var(β̂ ),

where zτ/2 is the upper (τ/2)th percentile of the standard normal distribution.

6. Numerical Experiments and Discussion

In this section, we examine the performance of maximum likelihood estimates for
the two parameter GP distribution by conducting simulation study for different sam-
ple sizes n = 20,30,50,100,150. We simulate 1000 samples with four different sets
of parameters. The results are presented in Table 4, which shows the averages
of MLEs[Av(α̂, β̂ )] together with the 95% confidence intervalsfor parameters of GP
distribution [C(α,β )] and their variances, [Var(α̂),Var(β̂ )]. These results suggest
that ML estimates performed adequately. The variances of MLEs decrease when
the sample size n increases.

The following observations can be drawn from the Tables 4

1. All the estimators show the property of consistency i.e., the MLEs decreases
as sample size increases.

2. The variances of MLEs decrease when n increases.
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Table 4: Mean of the MLEs, their variances and confidence interval

n (α,β ) Av(α̂, β̂ ) C(α,β ) Var(α̂) Var(β̂ )
20 (2.0, 1.5) (2.3172, 1.2835) (0.7983, 0.8972) 1.4585 0.8074

(0.5, 4.0) (0.5132, 7.0972) (0.9732, 0.9636) 0.0820 34.8920
(4.0, 0.5) (4.8230, 0.4973) (0.9201, 0.9930) 7.8013 0.0723
(2.0, 2.0) (2.3672, 2.0874) (0.8920, 0.9874) 1.3210 1.5672

30 (2.0, 1.5) (2.3124, 1.2213) (0.9230, 0.9972) 0.6707 0.4872
(0.5, 4.0) (0.5217, 6.0132) (0.9731, 0.9835) 0.0631 23.7234
(4.0, 0.5) (4.6133, 0.4017) (0.8937, 0.9083) 4.5983 0.0692
(2.0, 2.0) (1.9967, 2.0313) (0.9538, 0.9876) 0.9012 1.5078

50 (2.0, 1.5) (2.0891,1.1942) (0.9074, 0.9920) 0.3948 0.2672
(0.5, 4.0) (0.4838, 5.0120) (0.9235, 0.9574) 0.0572 13.0789
(4.0, 0.5) (4.6103, 0.3031) (0.9318, 0.9927) 1.9071 0.0563
(2.0, 2.0) (1.9956, 1.9897) (0.9536, 0.9897) 0.6752 0.9032

100 (2.0, 1.5) (1.9762, 1.0701) (0.9975, 0.9432) 0.3572 0.2014
(0.5, 4.0) (0.4702, 4.9673) (0.9432, 0.9784) 0.0132 7.3210
(4.0, 0.5) (4.0259, 0.2123) (0.9810, 0.9374) 1.8270 0.0513
(2.0, 2.0) (1.8130, 1.2704) (0.9714, 0.9905) 0.3412 0.2715

150 (2.0, 1.5) (1.8352, 1.0250) (0.9512, 0.9930) 0.1327 0.0978
(0.5, 4.0) (0.3976, 3.9989) (0.9618, 0.9568) 0.0115 0.2560
(4.0, 0.5) (3.9859, 0.2262) (0.9805, 0.9907) 0.5098 0.0099
(2.0, 2.0) (1.7894, 1.1359) (0.9758, 0.9853) 0.2081 0.2315
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7. Concluding Remarks

In this paper, the various structural properties of the distribution are derived in-
cluding explicit expressions for moments, mean deviation, Bonferroni and Lorenz
curves, Renyi entropy and quantile function. The explicit expressions and recur-
rence relations for single and product moments of GOS are obtained from the GP
distribution. The characterizing result of the GP distribution has been studied us-
ing conditional moments of generalized order statistics. The method of maximum
likelihood is adopted for estimating the model parameters. For different parameter
settings and sample sizes, the simulation studies are performed and compared to
the performance of the GP distribution.
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ESTIMATION OF PRODUCT OF TWO POPULATION 
MEANS BY MULTI-AUXILIARY CHARACTERS UNDER 

DOUBLE SAMPLING THE NON-RESPONDENTS 

B. B. Khare1, R. R. Sinha2 

ABSTRACT 

This paper considers the problem of estimating the product of two population 
means using the information on multi-auxiliary characters with double sampling 
the non-respondents. Classes of estimators are proposed for estimating P under 
two different situations [discussed by Rao (1986, 90)] using known population 
mean of multi-auxiliary characters. Further, this problem has been extended to the 
case when population means of the auxiliary characters are unknown and they are 
estimated on the basis of a larger first phase sample. In this situation, a class of 
two phase sampling estimators for estimating P is suggested using multi-auxiliary 
characters with unknown population means in the presence of non-response. The 
expressions of bias and mean square error of all the proposed estimators are 
derived and their properties are studied. An empirical study using real data sets is 
given to justify the theoretical considerations. 

Key words: product, bias, mean square error, auxiliary characters, non-response. 

1.  Introduction 

While conducting sample surveys in the field of agriculture, socio-economic 
and forest research, one may be interested in the estimation of the product of two 
population means. For example- if we want to estimate the total population of 
persons in a District using villages as the sampling units, then we will estimate the 
product of average number of occupied houses in a village and average number 
of persons in a house in that village and the population of the District can be 
obtained by multiplying the estimate of product to the number of villages. The 
auxiliary characters used in this circumstance may be the area, the number of 
cultivators, the number of agricultural labours, etc., of the village. Similarly one 
may use the amount of manure, water and seeds supplied to each plot as the 
auxiliary characters in the estimation of total yield of a crop within an agricultural 
field, which can be obtained by estimating the product of average area per plot 
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and the average yield per plot and then multiplying this estimate of product by the 
number of plots in the agricultural field. 

Many authors like Singh (1965, 67, 69), Shah & Shah (1978), Singh 
(1982a,b), Ray and Singh (1985), Khare (1987), Srivastativa et al. (1988), Khare 
(1990, 91) considered the problem of estimating the ratio and the product of two 
population means and suggested estimators/classes of estimators using the 
information of auxiliary character(s). 

When the population means of the auxiliary characters are not known then in 
this case Singh (1982c) proposed generalized double sampling estimators for the 
ratio and product of population parameters using double sampling scheme. 
Further, Khare (1992) proposed the class of estimators for the product of two 
population means using multi-auxiliary characters with known and unknown 
population means. 

In some cases, it happens that the information on the main characters and 
auxiliary characters may not be available in practice due to the occurrence of non-
response for the selected units in the sample viz. while conducting the yield of a 
crop in an agricultural field, it may be possible that the data on yield of a crop as 
well as the area of the plot may be made available for some selected plots for 
which the information on the auxiliary characters may or may not be known due to 
lack of reporting the owner of the field. To reduce the effect of non-response in 
the estimation of parameter for a variable, Hansen and Hurwitz (1946) suggested 
a method of sub-sampling on the non-responding units and proposed an 
unbiased estimator for population mean. Further, following Hansen and Hurwitz 
(1946) strategies of sub-sampling the non-responding units, Khare and Sinha 
(2002 a, b, 2004 a, b, 2007, 2012 a, b), Singh et al. (2007), Singh and Kumar 
(2008) proposed some classes of estimators for the ratio/product of two 
population means using auxiliary character(s) in the presence of non-response. 
The objective of this paper is to suggest classes of estimators for estimating the 
product of two population means using information available on multi-auxiliary 
characters in the presence of non-response under different situations and study 
their theoretical and empirical properties.  

2. Proposed classes of estimators 

Let 𝑦𝑖(𝑖 = 1, 2) and 𝑥𝑗(𝑗 = 1,2, … , 𝑝) be the main and auxiliary characters 

under study having non-negative 𝑘𝑡ℎ value 𝑌𝑖𝑘 , 𝑋𝑗𝑘; (𝑘 = 1,2, … , 𝑁) with population 

means 𝑌̅𝑖  (𝑖 = 1, 2) of study characters and 𝑋̅𝑗 (𝑗 = 1, 2, … … , 𝑝) of auxiliary 

characters respectively. The whole population is supposed to be divided into two 
non-overlapping unknown strata of 𝑁1 responding and 𝑁2 non-responding units 
such that 𝑁1 + 𝑁2 = 𝑁. Let 𝑛 be the size of the sample drawn from the population 

of size 𝑁 using simple random sampling without replacement (SRSWOR) scheme 

of sampling and it has been observed that 𝑛1 units respond and 𝑛2 units do not 
respond in the sample of size 𝑛. We have considered that the responding and 
non-responding units are same for both the study and auxiliary characters. The 
stratum weights of responding and non-responding groups are given by 

𝑊1 = 𝑁1 𝑁⁄  and 𝑊2 = 𝑁2 𝑁⁄  and their estimates are respectively given by 𝑊̂1 =
𝑤1 = 𝑛1 𝑛⁄  and 𝑊̂2 = 𝑤2 = 𝑛2 𝑛⁄ . Further, from the non-responding units 𝑛2, we 
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draw a subsample of size 𝑚(= 𝑛2 𝛿−1, 𝛿 > 1) using SRSWOR technique of 

sampling and collect the information by the direct interview for 𝑦𝑖 (𝑖 =  1, 2). Using 

the methodology of Hansen and Hurwitz (1946), the unbiased estimator for 𝑌̅𝑖  (𝑖 =
1, 2) based on the information of (𝑛1 + 𝑚) units is given by  

  𝑦̅𝑖(𝐻𝐻) =  𝑤1𝑦̅𝑖1 + 𝑤2𝑦̅𝑖2
∗ ,  𝑖 = 1, 2                       (1) 

where 𝑦̅𝑖1 and 𝑦̅𝑖2
∗  are the sample means of 𝑦𝑖 based on 𝑛1 and 𝑚 units 

respectively.  

The estimator 𝑦̅𝑖(𝐻𝐻) is unbiased and has variance given by  

  𝑉(𝑦̅𝑖(𝐻𝐻)) = 𝑉(𝑖) = 𝜆 𝑆𝑦𝑖
2 + 𝜆𝛿  𝑆𝑦𝑖(2)

2 ,                  (2) 

where 𝑆𝑦𝑖
2  and 𝑆𝑦𝑖(2)

2  are the population mean square of 𝑦𝑖 for the entire and non-

responding group of the population and 𝜆 =
𝑁−𝑛

𝑁𝑛
 , 𝜆𝛿 =  

𝑁2

𝑁 𝑛
(𝛿 − 1). 

Similarly, the estimator 𝑥̅𝑗(𝐻𝐻) (𝑗 = 1,2, … , 𝑝) for the population mean 𝑋̅𝑗  (𝑗 =

1,2, … , 𝑝) is given by 

  𝑥̅𝑗(𝐻𝐻) =  𝑤1𝑥̅𝑗1 + 𝑤2𝑥̅𝑗2
∗ ,  𝑗 = 1, 2, … . , 𝑝                      (3) 

where 𝑥̅𝑗1 and 𝑥̅𝑗2
∗ ; (𝑗 =  1,2. . . , 𝑝) are the sample means of the character 𝑥𝑗  (𝑗 =

 1,2, . . . , 𝑝) based on 𝑛1 and 𝑚 units respectively.  

Let 𝑃̂(= ∏ 𝑦̅𝑖(𝐻𝐻)
2
𝑖=1 ) denote conventional estimator for the product of two 

population means (𝑃 = 𝑌̅1. 𝑌̅2) in the presence of non-response on study 
characters. Utilizing the information of auxiliary characters with known population 
means, the two different proposed classes of estimators for 𝑃 under two different 
cases discussed by {Rao (1986), page 220} are as follows:  
 

 For the first case, it is assumed that the population mean 𝑋̅𝑗  (𝑗 = 1,2, … , 𝑝) is 

known, and incomplete information occurred on 𝑦𝑖  (𝑖 =  1, 2) and 𝑥𝑗  (𝑗 =

 1,2, . . . , 𝑝)  for the selected units in the sample of size 𝑛. In such situation, we 
propose a class of estimators 𝑡𝑝 for the product of two population means (𝑃) 

using multi-auxiliary characters 𝑥𝑗(𝑗 = 1,2, … , 𝑝) with known population means as: 

  𝑡𝑝 = 𝑔(∏ 𝑦̅𝑖(𝐻𝐻)
2
𝑖=1 ,   (𝑢1, 𝑢2, … , 𝑢𝑝)′) = 𝑔(𝜑, 𝒖′),                           (4) 

such that 

  𝑔(𝑃, 𝒆′) = 𝑃,    𝑔1(𝑃, 𝒆′) = (
𝜕

𝜕𝜑
𝑔(𝜑, 𝒖′))

(𝑃,   𝒆′)

= 1            (5) 

where 𝒖 and e denote the column vectors (𝑢1, 𝑢2, … , 𝑢𝑝)′ and (1,1, . . . ,1)′ 

respectively. We also denote 𝜑 = ∏ 𝑦̅𝑖(𝐻𝐻)
2
𝑖=1  and  𝑢𝑗 = 𝑥̅𝑗(𝐻𝐻) 𝑋̅𝑗⁄ ;  𝑗 = 1,2, … , 𝑝. 

 

 For the second case, it is assumed that the population mean 𝑋̅𝑗  (𝑗 = 1,2, … , 𝑝) 

is known, and incomplete information occurred on 𝑦𝑖  (𝑖 =  1, 2) only but complete 

information on 𝑥𝑗  (𝑗 =  1,2, . . . , 𝑝) for the selected units in the sample of size 𝑛. 

In this situation, we propose a class of estimators 𝑡𝑝
∗  for the product of two 

population means (𝑃) using multi-auxiliary characters 𝑥𝑗(𝑗 = 1,2, … , 𝑝) with known 

population means as: 
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  𝑡𝑝
∗ = ℎ(∏ 𝑦̅𝑖(𝐻𝐻)

2
𝑖=1 ,   (𝜔1, 𝜔2, … , 𝜔𝑝)′ ) = ℎ(𝜑, 𝝎′),              (6) 

such that 

  ℎ(𝑃, 𝒆′) = 𝑃,    ℎ1(𝑃, 𝑒′) = (
𝜕

𝜕𝜑
ℎ(𝜑, 𝝎′))

(𝑃,   𝒆′)

= 1       (7) 

where 𝝎 denotes the column vectors  (𝜔1, 𝜔2, … , 𝜔𝑝)′  and  𝜔𝑗 = 𝑥̅𝑗 𝑋̅𝑗⁄ ; 

 𝑗 = 1,2, … , 𝑝. 

For the expansion of the functions 𝑔(𝜑, 𝒖′) and ℎ(𝜑, 𝝎′), it is supposed that 
whatever be the sample chosen for any sampling design, (𝜑, 𝒖′) [or (𝜑, 𝝎′)] 

assumes a value in a bounded closed convex subset 𝐷𝑝 [or 𝐷𝑝
∗] of the (𝑝 +  1) 

dimensional real space containing the point (𝑃, 𝒆 ). In 𝐷𝑝 [or 𝐷𝑝
∗], the function 

𝑔(𝜑, 𝒖′) [or ℎ(𝜑, 𝝎′)] is continuous and bounded. The first and second partial 

derivatives of 𝑔(𝜑, 𝒖′) [or ℎ(𝜑, 𝝎′)]  exist and are continuous and bounded in 

𝐷𝑝 [or 𝐷𝑝
∗]. 

Here, 𝑔1(𝜑, 𝒖′) [or ℎ1(𝜑, 𝝎′)] and 𝑔2(𝜑, 𝒖′) [or ℎ2(𝜑, 𝝎′)] denote the first partial 

derivatives of 𝑔(𝜑, 𝒖′) [or ℎ(𝜑, 𝝎′)] with respect to 𝜑 and 𝒖′ [or 𝝎′] respectively. 
The second partial derivatives of 𝑔(𝜑, 𝒖′), ℎ(𝜑, 𝝎′) with respect to 𝒖′ and 𝝎′ are 

respectively denoted by 𝑔22(𝜑, 𝒖′), ℎ22(𝜑, 𝝎′)]  and first partial derivative of 

𝑔2(𝜑, 𝒖′) [or ℎ2(𝜑, 𝝎′)] with respect to 𝜑 is denoted by 𝑔12(𝜑, 𝒖′) [or ℎ12(𝜑, 𝝎′)]. 

Under the regularity conditions imposed on 𝑔(𝜑, 𝒖′) and ℎ(𝜑, 𝝎′), it may be 
seen that the bias and mean square error of the estimators 𝑡𝑝 and 𝑡𝑝

∗  will always 

exist. 
In order to derive the expressions for bias and mean square error of the 

estimators under large sample approximation, let us assume 

  ∈0𝑖=
𝑦̅𝑖

∗−𝑌̅𝑖

𝑌̅𝑖
 ,  ∈𝑗=

𝑥̅𝑗
∗−𝑋̅𝑖

𝑋̅𝑖
 , ∈𝑗

′=
 𝑥𝑗−𝑋𝑗

𝑋𝑗
,  with  𝐸(∈0𝑖) = 𝐸(∈𝑗) = 𝐸(∈𝑗

′) = 0 

and |∈0𝑖| < 1, |∈𝑗| < 1, | ∈𝑗
′| < 1  ∀ 𝑖 = 1, 2; 𝑗 = 1, 2, … … , 𝑝. 

Now, using SRSWOR method of sampling, we have 

𝐸(∈0𝑖
2 ) =

𝑉(𝑦̅𝑖(𝐻𝐻))

𝑌̅𝑖
2 =

1

𝑌̅𝑖
2 [𝜆 𝑆𝑦𝑖

2 + 𝜆𝛿 𝑆𝑦𝑖(2)
2 ], 𝐸(∈𝑗

2) =
𝑉(𝑥̅𝑗(𝐻𝐻))

𝑋̅𝑗
2 =

1

𝑋̅𝑗
2 [𝜆 𝑆𝑥𝑗

2 + 𝜆𝛿  𝑆𝑥𝑗(2)
2 ], 

𝐸(∈𝑗
′2) =

𝑉(𝑥̅𝑗)

𝑋̅𝑗
2 = 𝜆

𝑆𝑥𝑗
2

𝑋̅𝑗
2 ,  𝐸(∈01, ∈02) =

𝐶𝑜𝑣(𝑦̅1(𝐻𝐻),𝑦̅2(𝐻𝐻))

𝑌̅1.𝑌̅2
=

1

𝑌̅1.𝑌̅2
[𝜆 𝑆𝑦1𝑦2

+ 𝜆𝛿𝑆𝑦1𝑦2(2)], 

𝐸(∈0𝑖, ∈𝑗) =
𝐶𝑜𝑣(𝑦̅𝑖(𝐻𝐻),𝑥̅𝑗(𝐻𝐻))

𝑌̅𝑖.𝑋̅𝑗
=

1

𝑌̅𝑖.𝑋̅𝑗
[𝜆 𝑆𝑦𝑖𝑥𝑗

+ 𝜆𝛿𝑆𝑦𝑖𝑥𝑗(2)], 

𝐸(∈0𝑖, ∈𝑗
′) =

𝐶𝑜𝑣(𝑦̅𝑖(𝐻𝐻),𝑥̅𝑗)

𝑌̅𝑖.𝑋̅𝑗
= 𝜆

𝑆𝑦𝑖𝑥𝑗

𝑌̅𝑖.𝑋̅𝑗
 ,   𝐸 (∈𝑗

′ , ∈𝑗′
′ ) =

𝐶𝑜𝑣(𝑥̅𝑗,𝑥̅
𝑗′)

𝑋̅𝑗.𝑋̅𝑗′
= 𝜆

𝑆𝑥𝑗𝑥
𝑗′

𝑋̅𝑗.𝑋̅𝑗′
 , 

𝐸(∈𝑗, ∈𝑗′) =
𝐶𝑜𝑣(𝑥̅𝑗(𝐻𝐻),𝑥̅

𝑗′(𝐻𝐻)
)

𝑋̅𝑗.𝑋̅𝑗′
=

1

𝑋̅𝑗.𝑋̅𝑗′
[𝜆 𝑆𝑥𝑗𝑥

𝑗′ + 𝜆𝛿𝑆𝑥𝑗𝑥
𝑗′(2)].           

         (8) 

The contribution of the terms involving the powers in ∈0𝑖, ∈𝑗 and ∈𝑗
′ of order 

higher than two in the bias and mean square error is assumed to be negligible. 
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3. Bias and mean square error (𝑴𝑺𝑬) of 𝒕𝒑 and 𝒕𝒑
∗  

Expanding the functions 𝑔(𝜑, 𝒖′) about the point (𝑃, 𝒆′) using Taylor's series 
up to the second order partial derivative, we get 

𝑡𝑝 = 𝑔(𝑃, 𝒆′) + (𝜑 − 𝑃)𝑔1(𝑃, 𝒆′) + (𝒖 − 𝒆)′𝑔2(𝑃, 𝒆′)

+
1

2
[(𝜑 − 𝑃)2𝑔11(𝜑∗, 𝒖∗′) + 2(𝜑 − 𝑃)(𝒖 − 𝒆)′𝑔12(𝜑∗, 𝒖∗′)

+ (𝒖 − 𝒆)′𝑔22(𝜑∗, 𝒖∗′)(𝜑 − 𝑃)] 

Using condition given in equation (5), we get 
𝑡𝑝 = 𝑃 + (𝜑 − 𝑃) + (𝒖 − 𝒆)′𝑔2(𝑃, 𝒆′)  

+
1

2
[(𝜑 − 𝑃)2𝑔11(𝜑∗, 𝒖∗′) + 2(𝜑 − 𝑃)(𝒖 − 𝒆)′𝑔12(𝜑∗, 𝒖∗′)

+ (𝒖 − 𝒆)′𝑔22(𝜑∗, 𝒖∗′)(𝒖 − 𝒆)]. 

Similarly, expanding the ℎ(𝜑, 𝝎′) about the point (𝑃, 𝒆′) and using equation 
(7), we get 

𝑡𝑝
∗ = 𝑃 + (𝜑 − 𝑃) + (𝝎 − 𝒆)′ℎ2(𝑃, 𝒆′) 

+
1

2
[
(𝜑 − 𝑃)2ℎ11(𝜑, 𝝎′) + 2(𝜑 − 𝑃)(𝝎 − 𝒆)′ℎ12(𝜑∗, 𝝎∗′

)

+(𝝎 − 𝒆)′ℎ22(𝜑∗, 𝝎∗′)(𝝎 − 𝒆)
]                     (9) 

The expressions for bias and mean square error of 𝑡𝑝 and 𝑡𝑝
∗  for any sampling 

design up to the terms of order n1 are given by 

𝐵𝑖𝑎𝑠(𝑡𝑝) = 𝐵𝑖𝑎𝑠 (𝜑) + 𝐸(𝜑 − 𝑃)(𝒖 − 𝒆)′𝑔12(𝜑∗, 𝒖∗′
) +

1

2
𝐸(𝒖 − 𝒆)′𝑔22(𝜑∗, 𝒖∗′)(𝒖 − 𝒆),    

 (10) 

𝑀𝑆𝐸(𝑡𝑝) = 𝑀𝑆𝐸 (𝜑) + 2𝐸(𝜑 − 𝑃)(𝒖 − 𝒆)′𝑔2(𝑃, 𝒆′) + 𝐸(𝑔2(𝑃, 𝒆′))
′
(𝒖 − 𝒆)(𝒖 − 𝒆)′ 𝑔2(𝑃, 𝒆′)  

                      (11) 

𝐵𝑖𝑎𝑠(𝑡𝑝
∗) = 𝐵𝑖𝑎𝑠 (𝜑) + 𝐸(𝜑 − 𝑃)(𝝎 − 𝒆)′ℎ12(𝜑∗, 𝝎∗′

) +
1

2
𝐸(𝝎 − 𝒆)′ℎ22(𝜑∗, 𝝎∗′)(𝝎 − 𝒆),    

                          (12) 

𝑀𝑆𝐸(𝑡𝑝
∗) = 𝑀𝑆𝐸 (𝜑) + 2𝐸(𝜑 − 𝑃)(𝝎 − 𝒆)′ℎ2(𝑃, 𝒆′) + 𝐸(ℎ2(𝑃, 𝒆′))

′
(𝝎 − 𝒆)(𝝎 − 𝒆)′ ℎ2(𝑃, 𝒆′), 

(13) 

where 𝜑∗ = 𝑃 + 𝜃𝑃(𝜑 − 𝑃), 𝒖∗ = 𝒆 + ∅𝟏(𝒖 − 𝒆) and 𝝎∗ = 𝒆 + ∅𝟐(𝝎 − 𝒆), such that 

0 < 𝜃𝑃, ∅1𝑗 , ∅2𝑗 < 1 and ∅𝟏 and ∅𝟐 are (𝑝  𝑝) diagonal matrix with 𝑗th diagonal 

elements ∅1𝑗 and ∅2𝑗 respectively. 

Differentiating equations (11) and (13) partially with respect to 𝑔2(𝑃, 𝒆′) and 

ℎ2(𝑃, 𝒆′) respectively and equating them to zero, we get the conditions for the 
minimum value of the mean square error of 𝑡𝑝 and 𝑡𝑝

∗   

   𝑔2(𝑃, 𝒆′) = −[𝐸(𝜑 − 𝑃)(𝒖 − 𝒆)′ 𝐸(𝒖 − 𝒆)(𝒖 − 𝒆)′⁄ ]                (14) 

and   ℎ2(𝑃, 𝒆′) = −[𝐸(𝜑 − 𝑃)(𝝎 − 𝒆)′ 𝐸(𝝎 − 𝒆)(𝝎 − 𝒆)′⁄ ]             (15) 

respectively.  
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Now, putting the value of 𝑔2(𝑃, 𝒆′) from equation (14) to (11) and ℎ2(𝑃, 𝒆′) 

from equation (15) to (13), the minimum value of the mean square error 𝑡𝑝 and 𝑡𝑝
∗  

will be given by 

𝑀𝑆𝐸(𝑡𝑝)|
𝑚𝑖𝑛

= 𝑀𝑆𝐸 (𝜑) −  𝐸(𝜑 − 𝑃)(𝒖 − 𝒆)′ [𝐸(𝒖 − 𝒆)(𝒖 − 𝒆)′]−1𝐸(𝜑 − 𝑃)(𝒖 − 𝒆)  

      (16) 

𝑀𝑆𝐸(𝑡𝑝
∗)|

𝑚𝑖𝑛
= 𝑀𝑆𝐸 (𝜑) −  𝐸(𝜑 − 𝑃)(𝝎 − 𝒆)′ [𝐸(𝝎 − 𝒆)(𝝎 − 𝒆)′]−1𝐸(𝜑 − 𝑃)(𝝎 − 𝒆)  

(17) 

Considering SRSWOR method of sampling, let us define two 𝑝  𝑝 positive 

definite matrices 𝓐 = [𝔞𝑗𝑗′] and 𝓐𝟎 = [𝔞0𝑗𝑗′]such that 

   𝔞𝑗𝑗′ = 𝜆 𝔞0𝑗𝑗′ + 𝜆𝛿  𝔞0𝑗𝑗′(2)                   ∀ 𝑗 ≠ 𝑗′ = 1,2, … , 𝑝 

where  𝔞0𝑗𝑗′ = 𝜌𝑥𝑗𝑥
𝑗′ 𝐶𝑥𝑗

𝐶𝑥
𝑗′ , 𝔞0𝑗𝑗′(2) = 𝜌𝑥𝑗𝑥

𝑗′(2)𝐶𝑥𝑗(2)
𝐶𝑥

𝑗′(2)
, 𝐶𝑥𝑗

2 = 𝑆𝑥𝑗
2 𝑋̅𝑖

2⁄ , 

   𝐶𝑥𝑗(2)
= 𝑆𝑥𝑗(2)

2 𝑋̅𝑖
2⁄  

𝜌𝑥𝑗𝑥
𝑗′  - correlation coefficient between 𝑥𝑗 and 𝑥𝑗′ for entire population, 

𝜌𝑥𝑗𝑥
𝑗′(2)  - correlation coefficient between 𝑥𝑗 and 𝑥𝑗′ for non-responding group of 

population. 

Then the expressions for bias and mean square error of 𝑡𝑝 and 𝑡𝑝
∗  up to the 

terms of order (𝑛−1) in the case of SRSWOR method of sampling are given by 

𝐵𝑖𝑎𝑠(𝑡𝑝) = 𝐵𝑖𝑎𝑠 (𝜑) + 𝑃(𝜆 𝓫 + 𝜆𝛿  𝓫(2))
′
𝑔12(𝜑∗, 𝒖∗′) +

1

2
𝑡𝑟𝑎𝑐𝑒 𝓐 𝑔22(𝜑∗, 𝒖∗′),    

       (18) 

𝑀𝑆𝐸(𝑡𝑝) = 𝑀𝑆𝐸 (𝜑) + (𝑔2(𝑃, 𝒆′))
′
 𝓐 𝑔2(𝑃, 𝒆′) + 2 𝑃(𝜆 𝓫 + 𝜆𝛿 𝓫(2))

′
𝑔2(𝑃, 𝒆′),   

       (19) 

𝐵𝑖𝑎𝑠(𝑡𝑝
∗) = 𝐵𝑖𝑎𝑠 (𝜑) + 𝜆 {𝑃𝓫′ℎ12(𝜑∗, 𝝎∗′) +

1

2
𝑡𝑟𝑎𝑐𝑒 𝓐𝟎 ℎ22(𝜑∗, 𝝎∗′)},     

       (20) 

and  𝑀𝑆𝐸(𝑡𝑝
∗) = 𝑀𝑆𝐸 (𝜑) + 𝜆{(ℎ2(𝑃, 𝒆′))

′
𝓐𝟎 ℎ2(𝑃, 𝒆′) + 2 𝑃𝓫′ ℎ2(𝑃, 𝒆′)}    

       (21) 

where  𝓫 = (𝒷1 , 𝒷2, … , 𝒷𝑝)
′
 and 𝓫(𝟐) = (𝒷1(2), 𝒷2(2), … , 𝒷𝑝(2))

′
 are two column 

vectors such that 

 𝒷𝑗 =
𝑆𝑥𝑗

𝑋̅𝑗
{𝜌𝑦1𝑥𝑗

𝑆𝑦1

𝑌̅1
+ 𝜌𝑦2𝑥𝑗

𝑆𝑦2

𝑌̅2
} and 𝒷𝑗(2) =

𝑆𝑥𝑗(2)

𝑋̅𝑗
{𝜌𝑦1𝑥𝑗(2)

𝑆𝑦1(2)

𝑌̅1
+  𝜌𝑦2𝑥𝑗(2)

𝑆𝑦2(2)

𝑌̅2
}, 

   𝐵𝑖𝑎𝑠 (𝜑) = 𝑃 {𝜆 𝜌𝑦1𝑦2

𝑆𝑦1

𝑌̅1

𝑆𝑦2

𝑌̅2
+ 𝜆𝛿 𝜌𝑦1𝑦2(2)

𝑆𝑦1(2)

𝑌̅1

𝑆𝑦2(2)

𝑌̅2
},       

                      (22) 
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𝑀𝑆𝐸(𝜑) = 𝑃2 {𝜆 (
𝑆𝑦1

2

𝑌̅1
2 +

𝑆𝑦2
2

𝑌̅2
2 + 2𝜌𝑦1𝑦2

𝑆𝑦1

𝑌̅1

𝑆𝑦2

𝑌̅2
) + 𝜆𝛿 (

𝑆𝑦1(2)
2

𝑌̅1
2 +

𝑆𝑦2(2)
2

𝑌̅2
2 +

2𝜌𝑦1𝑦2(2)

𝑆𝑦1(2)

𝑌̅1

𝑆𝑦2(2)

𝑌̅2
)}, 

(23) 

𝜌𝑦1𝑦2
- correlation coefficient between 𝑦1 and 𝑦2 for the entire population, 

𝜌𝑦1𝑥𝑗
- correlation coefficient between 𝑦1 and 𝑥𝑗 for the entire population, 

𝜌𝑦2𝑥𝑗
- correlation coefficient between 𝑦2 and 𝑥𝑗 for the entire population, 

𝜌𝑦1𝑦2(2)
- correlation coefficient between 𝑦1 and 𝑦2 for the non-responding group 

of population, 
𝜌𝑦1𝑥𝑗(2)

- correlation coefficient between 𝑦1 and 𝑥𝑗 for the non-responding group 

of population, 
𝜌𝑦2𝑥𝑗(2)

- correlation coefficient between 𝑦2 and 𝑥𝑗 for the non-responding group 

of population. 

The conditions for which 𝑀𝑆𝐸(𝑡𝑝) and 𝑀𝑆𝐸(𝑡𝑝
∗) will attain the minimum values 

are given by 

   𝑔2(𝑃, 𝒆′) = −𝑃(𝜆 𝓫 + 𝜆𝛿 𝓫(2))𝓐−1                (24) 

and   ℎ2(𝑃, 𝒆′) = −𝑃𝓫𝓐−1                   (25) 

respectively. And, the values of the minimum mean square error for 𝑡𝑝 and 𝑡𝑝
∗  are 

given by  

    𝑀𝑆𝐸(𝑡𝑝)|
𝑚𝑖𝑛

= 𝑀𝑆𝐸 (𝜑) − 𝑃2{(𝜆 𝓫 + 𝜆𝛿  𝓫(2))
′
. 𝓐−1. (𝜆 𝓫 + 𝜆𝛿  𝓫(2))}        

(26) 

and 𝑀𝑆𝐸(𝑡𝑝
∗) = 𝑀𝑆𝐸 (𝜑) − 𝑃2𝜆 𝓫′𝓐𝟎

−1 𝓫 .               (27) 

4. Extension of the proposed class of estimator to the case when 
population means of the auxiliary characters are unknown 

In the case when the population means of the auxiliary characters 

𝑋̅𝑗  (𝑗 = 1,2, … , 𝑝) are unknown but sampling frame is available, we use two phase 

sampling technique to estimate the unknown population means of the auxiliary 
characters 𝑥1, 𝑥2, … , 𝑥𝑝. In two phase sampling scheme, we first select a larger 

sample of size 𝑛 from 𝑁 using SRSWOR method of sampling and collect 

information regarding the auxiliary characters and estimate 𝑋̅𝑗  (𝑗 = 1,2, … , 𝑝) 

based on 𝑛 units by 𝑥̅𝑗
′ (𝑗 = 1,2, … , 𝑝). Again, a second phase sample of size 

 𝑛 (<  𝑛) is drawn from 𝑛 units by SRSWOR method of sampling and observe 

the study characters 𝑦𝑖(𝑖 = 1, 2). For the study characters 𝑦𝑖(𝑖 = 1, 2), we observe 
that only 𝑛1 units are responding and 𝑛2 units are not responding in the sample of 

size 𝑛. Now, to reduce the effect of non-response, the information is collected by 

the direct interview on the sub-sampled units of size 𝑚 (= 𝑛2 𝛿
−1, 𝛿 >  1) for 

𝑦𝑖 (𝑖 =  1, 2) and following Hansen and Hurwitz (1946), the unbiased estimator 



88                                                          B. B. Khare, R. R. Sinha: Estimation of product… 

 

 

 

𝑦̅𝑖(𝐻𝐻) [given in section 2 equation (1)] is considered for 𝑌̅𝑖  (𝑖 = 1, 2) based on the 

information of (𝑛1 + 𝑚) units.  

When the population means 𝑋̅1, 𝑋̅2, … , 𝑋̅𝑝 are unknown but estimated by 

𝑥̅1
′ , 𝑥̅2

′ , … , 𝑥̅𝑝
′  ,which is based on larger first phase sample of size 𝑛 and we have 

incomplete information on 𝑦𝑖 (𝑖 =  1, 2) but complete information on 𝑥𝑗  (𝑗 =

1,2, … , 𝑝) for the sample of size 𝑛 (<  𝑛), then we propose a class of estimators 

𝑡𝑝
∗∗ for 𝑃 which is given by 

 𝑡𝑝
∗∗ = 𝑓(∏ 𝑦̅𝑖(𝐻𝐻)

2
𝑖=1 ,   (𝑧1, 𝑧2, … , 𝑧𝑝)′ ) = 𝑓(𝜑, 𝒛′ ),              (28) 

such that 

 𝑓(𝑃, 𝒆′) = 𝑃,    𝑓1(𝑃, 𝑒′) = (
𝜕

𝜕𝜑
𝑓(𝜑, 𝒛′))

(𝑃,   𝒆′)

= 1                 (29) 

where 𝒛 denotes the column vectors  (𝑧1, 𝑧2, … , 𝑧𝑝)′  and  𝑧𝑗 = 𝑥̅𝑗 𝑥̅𝑗
′⁄ ;  𝑗 = 1,2, … , 𝑝.  

The function 𝑓(𝜑, 𝒛′ ) satisfies all the necessary regularity conditions similar 

to those given for the functions 𝑔(𝜑, 𝒖′) and ℎ(𝜑, 𝝎′).  

Now, expanding the function 𝑓(𝜑, 𝒛′ ) about the point (𝑃, 𝒆′) by using Taylor's 
series up to the second order derivatives, the expressions for bias and mean 
square error of the estimator 𝑡𝑝

∗∗ for any sampling design up to the terms of order 

(𝑛−1) are given by  

𝐵𝑖𝑎𝑠(𝑡𝑝
∗∗) = 𝐵𝑖𝑎𝑠 (𝜑) + 𝐸(𝜑 − 𝑃)(𝒛 − 𝒆)′𝑓12(𝜑∗, 𝒛∗′

) +
1

2
𝐸(𝒛 − 𝒆)′ℎ𝑓22(𝜑∗, 𝝎∗′)(𝝎 − 𝒆),  

  (30) 

and 

𝑀𝑆𝐸(𝑡𝑝
∗∗) = 𝑀𝑆𝐸 (𝜑) + 2𝐸(𝜑 − 𝑃)(𝒛 − 𝒆)′𝑓2(𝑃, 𝒆′) + 𝐸(𝑓2(𝑃, 𝒆′))

′
(𝒛 − 𝒆)(𝒛 − 𝒆)′ 𝑓2(𝑃, 𝒆′),   

       (31) 

where 𝒛∗ = 𝒆 + ∅𝟑(𝒖 − 𝒆); 0 < ∅3𝑗 < 1 and ∅𝟑 is (𝑝  𝑝) diagonal matrix having 

diagonal elements ∅3𝑗 (𝑗 = 1,2, … , 𝑝).  

Here, 𝑓1(𝜑, 𝒛′) and 𝑓2(𝜑, 𝒛′) denote the first partial derivatives of 𝑓(𝜑, 𝒛′) with 

respect to 𝜑 and 𝒛′ respectively. The second partial derivative of 𝑓(𝜑, 𝒛′) with 
respect to 𝒛′ is denoted by 𝑓22(𝜑, 𝒛′) and the first partial derivative of 𝑓2(𝜑, 𝒛′) with 

respect to 𝜑 is denoted by 𝑓12(𝜑, 𝒛′). 

The estimator 𝑡𝑝
∗∗  will attain the minimum value of the mean square error for 

𝑓2(𝑃, 𝒆′) = −[𝐸(𝜑 − 𝑃)(𝒛 − 𝒆)′ 𝐸(𝒛 − 𝒆)(𝒛 − 𝒆)′⁄ ]                             (32) 

and, the minimum value of mean square error of 𝑡𝑝
∗∗ is given by  

    𝑀𝑆𝐸(𝑡𝑝
∗∗)|

𝑚𝑖𝑛
= 𝑀𝑆𝐸 (𝜑) −  𝐸(𝜑 − 𝑃)(𝒛 − 𝒆)′ [𝐸(𝒛 − 𝒆)(𝒛 − 𝒆)′]−1𝐸(𝜑 − 𝑃)(𝒛 − 𝒆).   

 (33) 
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To obtain the expressions of bias and the mean square error of 𝑡𝑝
∗∗ under 

SRSWOR method of sampling, we assume ∈𝑗
′′=

 𝑥̅𝑗
′−𝑋𝑗

𝑋𝑗
  , such that 𝐸(∈𝑗

′′) =

0, | ∈𝑗
′′| < 1  and, therefore, we have 

𝐸(∈′′
𝑗
2

) =
𝑉(𝑥̅𝑗

′)

𝑋̅𝑗
2 = 𝜆′

𝑆𝑥𝑗
2

𝑋̅𝑗
2 ,   𝐸 (∈𝑗

′′, ∈𝑗′
′′ ) =

𝐶𝑜𝑣(𝑥̅𝑗
′ ,𝑥̅

𝑗′
′ )

𝑋̅𝑗.𝑋̅𝑗
=

1

𝑋̅𝑗.𝑋̅𝑗′
[𝜆′ 𝑆𝑥𝑗 𝑥𝑗′ ] ;  𝑗 ≠ 𝑗′ = 1,2, … , 𝑝 

𝐸(∈0𝑖, ∈𝑗
′′) =

𝐶𝑜𝑣(𝑦̅𝑖(𝐻𝐻),𝑥̅𝑗
′)

𝑌̅𝑖.𝑋̅𝑗
= 𝜆′

𝑆𝑦𝑖𝑥𝑗

𝑌̅𝑖.𝑋̅𝑗
,  𝐸(∈𝑗

′, ∈𝑗
′′) =

𝐶𝑜𝑣(𝑥̅𝑗,𝑥̅𝑗
′)

𝑋̅𝑗
2 = 𝜆′

𝑆𝑥𝑗
2

𝑋̅𝑗
2 , 

where 𝜆′ =
𝑁−𝑛′

𝑁 𝑛′ . 

Now, the expressions for bias and the mean square error of 𝑡𝑝
∗∗ up to the order 

𝑛−1 under SRSWOR method of sampling are given by 

      𝐵𝑖𝑎𝑠(𝑡𝑝
∗∗) = 𝐵𝑖𝑎𝑠 (𝜑) + 𝜆′ {𝑃𝓫′𝑓12(𝜑∗, 𝒛∗′) +

1

2
𝑡𝑟𝑎𝑐𝑒 𝓐𝟎 𝑓22(𝜑∗, 𝒛∗′)}   

       (34) 

and   𝑀𝑆𝐸(𝑡𝑝
∗∗) = 𝑀𝑆𝐸 (𝜑) + 𝜆′{(𝑓2(𝑃, 𝒆′))

′
𝓐𝟎 𝑓2(𝑃, 𝒆′) + 2 𝑃𝓫′ 𝑓2(𝑃, 𝒆′)}     

       (35) 

The conditions for which 𝑀𝑆𝐸(𝑡𝑝
∗∗) will attain the minimum value are given by 

   𝑓2(𝑃, 𝒆′) = 𝑃𝓐𝟎
−1𝑃               (36) 

and the minimum mean square error of 𝑡𝑝
∗∗ is given by 

  𝑀𝑆𝐸(𝑡𝑝
∗∗) = 𝑀𝑆𝐸 (𝜑) − 𝑃2𝜆′ 𝓫′𝓐𝟎

−1 𝓫.              (37) 

5. Concluding remarks 

i) The proposed classes of estimators 𝑡𝑝, 𝑡𝑝
∗  and 𝑡𝑝

∗∗ have a wider class of 

estimators. Following the strategies of Raj (1965), Singh (1967), Abu-Dayyeh 
et al. (2003), Kadilar and Cingi (2005), Perri (2005) and many more, a large 
number of estimators may be formed, some of them for 𝑡𝑝, 𝑡𝑝

∗  and 𝑡𝑝
∗∗ are given 

in Table 1. 

Table 1. Members of classes of estimators 𝑡𝑝, 𝑡𝑝
∗  and 𝑡𝑝

∗∗ 

𝒕𝒑 𝒕𝒑
∗  𝒕𝒑

∗∗ 

 𝑇𝑃1 =  𝜑 ∏ 𝑢
𝑗

𝜃1𝑗𝑝
𝑗=1   𝑇𝑃1

∗ =  𝜑 ∏ 𝜔
𝑗

𝜃1𝑗
∗

𝑝
𝑗=1   𝑇𝑃1

∗∗ =  𝜑 ∏ 𝑧
𝑗

𝜃1𝑗
∗∗

𝑝
𝑗=1  

 𝑇𝑃2 =  𝜑 ∏ 𝑢
𝑗

𝜃2𝑗𝑝
𝑗=1  

             + ∑ 𝑐𝑗
𝑝
𝑗=1 (𝑋̅𝑗 − 𝑥̅𝑗(𝐻𝐻)) 

𝑇𝑃2
∗ =  𝜑 ∏ 𝜔

𝑗

𝜃2𝑗
∗

𝑝
𝑗=1   

            + ∑ 𝑐𝑗
∗𝑝

𝑗=1 (𝑋̅𝑗 − 𝑥̅𝑗(𝐻𝐻)) 

 𝑇𝑃2
∗∗ =  𝜑 ∏ 𝑧

𝑗

𝜃2𝑗
∗∗

𝑝
𝑗=1  

          + ∑ 𝑐𝑗
∗∗𝑝

𝑗=1 (𝑋̅𝑗 − 𝑥̅𝑗(𝐻𝐻)) 

 𝑇𝑃3 = 𝜑 ∑ 𝑤𝑗
𝑝
𝑗=1 𝑢

𝑗

𝜃3𝑗 𝑤𝑗⁄
, 

                          ∑ 𝑤𝑗
𝑝
𝑗=1 = 1 

 𝑇𝑃3
∗ = 𝜑 ∑ 𝑤𝑗

𝑝
𝑗=1 𝜔

𝑗

𝜃3𝑗
∗ 𝑤𝑗⁄

, 

                           ∑ 𝑤𝑗
𝑝
𝑗=1 = 1 

 𝑇𝑃3
∗∗ = 𝜑 ∑ 𝑤𝑗

𝑝
𝑗=1 𝑧

𝑗

𝜃3𝑗
∗∗ 𝑤𝑗⁄

, 

                          ∑ 𝑤𝑗
𝑝
𝑗=1 = 1 

Since the estimators (𝑇𝑃1, 𝑇𝑃2, 𝑇𝑃3), (𝑇𝑃1
∗ , 𝑇𝑃2

∗ , 𝑇𝑃3
∗ ) and (𝑇𝑃1

∗∗, 𝑇𝑃2
∗∗, 𝑇𝑃3

∗∗) are the 

members of 𝑡𝑝, 𝑡𝑝
∗  and 𝑡𝑝

∗∗ and they satisfy accordingly the conditions (5), (7) and 
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(29), the values of constants involved in (𝑇𝑃1,𝑇𝑃2,𝑇𝑃3), (𝑇𝑃1
∗ ,𝑇𝑃2

∗ ,𝑇𝑃3
∗ ) and 

(𝑇𝑃1
∗∗,𝑇𝑃2

∗∗,𝑇𝑃3
∗∗) can be calculated by the equations (14), (15) and (32) respectively. 

In the case when the values of parameters in the optimum value of the constants 
are not known one may estimate it on the basis of the sample values or may use 
past data. Srivastava and Jhajj (1983) shown that such values do not affect the 
mean square error of the estimator up to the terms of order 𝑛−1 while Reddy 
(1978) shown that such values are stable over time and region. So the proposed 
class of two phase sampling estimator is preferred in large scale sample survey. 
 
ii) On comparing the estimators 𝑡𝑝, 𝑡𝑝

∗  and 𝑡𝑝
∗∗ with 𝜑 in terms of precision, we find 

a) 𝑀𝑆𝐸(𝑡𝑝) < 𝑀𝑆𝐸 (𝜑) if  

  𝑀𝑆𝐸 (𝜑) < (𝑔2(𝑃, 𝑒′))
′
 𝒜 𝑔2(𝑃, 𝑒′) + 2 𝑃(𝜆 𝒷 + 𝜆𝛿  𝒷(2))

′
𝑔2(𝑃, 𝑒′) < 0 

b) 𝑀𝑆𝐸(𝑡𝑝
∗) < 𝑀𝑆𝐸 (𝜑) if  

  𝑀𝑆𝐸 (𝜑) <  𝜆{(ℎ2(𝑃, 𝑒′))
′
𝒜0 ℎ2(𝑃, 𝑒′) + 2 𝑃𝒷 ′ ℎ2(𝑃, 𝑒′)} < 0 

c) 𝑀𝑆𝐸(𝑡𝑝
∗∗) < 𝑀𝑆𝐸 (𝜑) if  

  𝑀𝑆𝐸 (𝜑) < 𝜆′{(𝑓2(𝑃, 𝒆′))
′
𝓐𝟎 𝑓2(𝑃, 𝒆′) + 2 𝑃𝓫′ 𝑓2(𝑃, 𝒆′)} < 0. 

 
iii) When there is complete information on the study characters 𝑦𝑖(𝑖 = 1, 2) and 

the auxiliary character and 𝑥𝑗(𝑗 = 1,2, … , 𝑝), i.e. 𝑊2 = 0, then we find that the 

estimators 𝑡𝑝 and 𝑡𝑝
∗  are equally efficient for the class of estimators proposed 

by Khare (1992) for 𝑃 using known population means of auxiliary characters. 

Similarly, the estimator 𝑡𝑝
∗∗  is also equally efficient to for  class of two phase 

sampling estimators proposed by Khare (1992) for unknown population means 
of auxiliary characters. 

 
iv) Due to the involvement of various parameters, in the mean square error of 𝑡𝑝 

and 𝑡𝑝
∗ , it is very difficult to find the condition for superiority of 𝑡𝑝 over 𝑡𝑝

∗ . 

However, in the case of one auxiliary character, it has been obtained that 
relative efficiency of 𝑡𝑝 with respect to 𝑡𝑝

∗  increases by increasing the values of 
𝜌𝑦1𝑥1(2)

𝜌𝑦1𝑥1

 and 
𝜌𝑦2𝑥1(2)

𝜌𝑦2𝑥1

 and decreasing the value of 
𝜌𝑦2𝑥1

𝜌𝑦1𝑥1

. Hence, one may use the 

estimators 𝑡𝑝 and 𝑡𝑝
∗  depending upon the values of 

𝜌𝑦1𝑥𝑗(2)

𝜌𝑦1𝑥𝑗

, 
𝜌𝑦2𝑥𝑗(2)

𝜌𝑦2𝑥𝑗

 and 
𝜌𝑦2𝑥𝑗

𝜌𝑦1𝑥𝑗

 for 

all 𝑗 =  1,2, … 𝑝. 

6. An empirical study 

Source: Police-station – Baria, Tahasil – Champua, District Census 
Handbook-1981, Orissa, Govt. of India. Total number of villages 109, 25% 
villages (i.e. 27 villages) from the bottom are considered as the non-responding 
group of the population. In this data set, study characters and auxiliary characters 
are as follows: 

𝑦1-Number of occupied residential houses in the village, 

𝑦2-Average number of persons in the house in the village, 
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𝑥1-Number of cultivators in the village, 

𝑥2-Area (in hectares) of the village, 
𝑥3-Number of main workers in the village. 

 

The values of the parameters of the population under study are as follows : 

𝑌̅1= 88.3670 𝑌̅2= 5.5832 𝑋̅1= 100.5505 𝑋̅2= 256.3331 𝑋̅3= 165.2661 

𝑆𝑦1
= 59.3208 𝑆𝑦2

= 0.6024 𝐶𝑥1
= 0.7314 𝐶𝑥2

= 0.6105 𝐶𝑥3
= 0.6828 

𝑆𝑦1(2)= 45.2704 𝑆𝑦2(2)= 0.5025 𝐶𝑥1(2)
= 0.5678 𝐶𝑥2(2)

= 0.4944 𝐶𝑥3(2)
= 0.5769 

𝜌𝑦1𝑥1
= 0.795 𝜌𝑦1𝑥2

= 0.854 𝜌𝑦1𝑥3
= 0.907 𝜌𝑦2𝑥1

= -0.084 𝜌𝑦2𝑥2
= -0.117 𝜌𝑦2𝑥3

= -0.136 

𝜌𝑦1𝑥1(2)
= 0.658 𝜌𝑦1𝑥2(2)

= 0.759 𝜌𝑦1𝑥3(2)
= 0.891 𝜌𝑦2𝑥1(2)

= 0.092 𝜌𝑦2𝑥2(2)
= 0.199 𝜌𝑦2𝑥3(2)

= 0.109 

𝜌𝑥1𝑥2
= 0.715 𝜌𝑥1𝑥3

= 0.841 𝜌𝑥2𝑥3
= 0.796 𝜌𝑥1𝑥2(2)

= 0.541 𝜌𝑥1𝑥3(2)
= 0.785 𝜌𝑥2𝑥3(2)

= 0.657 

  𝜌𝑦1𝑦2
= -0.194 𝜌𝑦1𝑦2(2)

= 0.023   

 
To compare the efficiency of the proposed classes of estimators 𝑡𝑝, 𝑡𝑝

∗  and 𝑡𝑝
∗∗ 

with respect to the conventional estimator 𝜑[= ∏ 𝑦̅𝑖(𝐻𝐻)
2
𝑖=1 ]  through an empirical 

study based on real data set, their respective members 𝑇𝑃1 = 𝜑 ∏ 𝑢
𝑗

𝜃1𝑗𝑝
𝑗=1 , 𝑇𝑃1

∗ =

𝜑 ∏ 𝜔
𝑗

𝜃1𝑗
∗

𝑝
𝑗=1  and 𝑇𝑃1

∗∗ =  𝜑 ∏ 𝑧
𝑗

𝜃1𝑗
∗∗

𝑝
𝑗=1  are considered.  

The mean square error (𝑀𝑆𝐸) of 𝑇𝑃1 and 𝑇𝑃1
∗  along with their optimum value 

of constants (𝑶𝑽𝑪) and their percentage relative efficiency (𝑃𝑅𝐸) with respect to 

𝜑 for different values of sub-sampling fraction (1/𝛿) are shown in Table 2, while 
the 𝑀𝑆𝐸(𝑇𝑃1

∗∗) and 𝑃𝑅𝐸(𝑇𝑃1
∗∗) with respect to 𝜑 in the case of fixed sample sizes, 

i.e. 𝑛′ = 70 and 𝑛 =  40 for different values of sub-sampling fraction (1/𝛿) are 
given in Table 3. 

7. Discussion and conclusion  

From Table 2, it has been observed that the estimators 𝑇𝑃1 and 𝑇𝑃1
∗  are more 

efficient than 𝜑 [i.e. 𝑃̂ ] for the different values of the sub-sampling fraction. We 
also observe that the mean square error of 𝑇𝑃1 and 𝑇𝑃1

∗ decreases while the 

relative efficiency of 𝑇𝑃1 and 𝑇𝑃1
∗ with respect to 𝜑 increases as the number of 

auxiliary characters and sub-sampling fraction increase. From the Table 2, it has 
also been observed that the estimator 𝑇𝑃1 is more efficient than 𝑇𝑃1

∗  and the 
efficiency is increasing with the increase in the number of auxiliary characters and 
sub-sampling fraction. 

From Table 3, we observe that the estimator 𝑇𝑃1
∗∗ is more efficient than 𝜑 for 

the different values of the sub-sampling fraction (1/𝛿). The relative efficiency of 
𝑇𝑃1

∗∗ with respect to 𝜑 increases while 𝑀𝑆𝐸(𝑇𝑃1
∗∗) decreases as the number of 

auxiliary characters and sub-sampling fractions increase. Hence, we conclude 
that the efficiency of the estimators 𝑇𝑃1, 𝑇𝑃1

∗  and 𝑇𝑃1
∗∗ with respect to 𝜑 can be 

increased by increasing the number of the auxiliary characters as well by 
increasing the values of the sub-sampling fractions. 
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Table 2. Percentage relative efficiency [𝑃𝑅𝐸 ()] with respect to 𝜑 at different 
values of 𝛿 

Estimators 
Auxiliary 

character(s) 

𝑁 =  109, 𝑛 =  40 

1/𝛿 

1/4 1/3 1/2 

𝜑  100.00 (2905.7121)* 100.00 (2494.6591) 100.00 (2083.6062) 

 𝑥1 220.05 (1320.4901) 229.52 (1086.8873) 244.43 (852.4396) 

 𝑂𝑉𝐶 𝜃11 = 0.6702 𝜃11 = 0.6802 𝜃11 = 0.6941 

𝑇𝑃1 𝑥1, 𝑥2 411.70 (705.7874) 428.12 (582.7021) 453.38 (459.5749) 

 𝑂𝑉𝐶 𝜃11 = 0.3343, 

𝜃12 = 0.6326 

𝜃11 = 0.3369, 

𝜃12 = 0.6311 

𝜃11 = 0.3408, 

𝜃12 = 0.6286 

 𝑥1, 𝑥2, 𝑥3 691.16 (420.4097) 701.38 (355.6792) 717.60 (290.3568) 

 𝑂𝑉𝐶 𝜃11 = 0.015, 𝜃12 = 

0.382, 𝜃13 = 0.575 

𝜃11 = 0.028, 𝜃12 = 

0.385, 𝜃13 = 0.565 

𝜃11 = 0.048, 𝜃12 = 

0.388, 𝜃13 = 0.549 

 𝑥1 157.09 (1849.7092) 173.40 (1438.6562) 202.76 (1027.6033) 

 𝑂𝑉𝐶 𝜃11
∗  = 0.714 𝜃11

∗  = 0.714 𝜃11
∗  = 0.714 

𝑇𝑃1
∗  𝑥1, 𝑥2 185.13 (1569.5338) 215.34 (1158.4808) 278.77 (747.4279) 

 𝑂𝑉𝐶 𝜃11
∗  = 0.348, 

𝜃12
∗  = 0.347 

𝜃11
∗  = 0.348, 

𝜃12
∗  = 0.347 

𝜃11
∗  = 0.348, 

𝜃12
∗  = 0.347 

 𝑥1, 𝑥2, 𝑥3 199.42 (1457.1192) 238.48 (1046.0662) 328.12 (635.0133) 

 𝑂𝑉𝐶 𝜃11
∗  = 0.079, 𝜃12

∗  = 

0.391, 𝜃13
∗  = 0.523 

𝜃11
∗  = 0.079, 𝜃12

∗  = 

0.391, 𝜃13
∗  = 0.523 

𝜃11
∗  = 0.079, 𝜃12

∗  = 

0.391, 𝜃13
∗  = 0.523 

  *Mean square error of the estimators () is shown in the parenthesis.  

 
 

Table 3. Percentage relative efficiency [𝑃𝑅𝐸 (𝑇𝑃1
∗∗)] with respect to 𝜑 at different 

values of 𝛿 for fixed 𝑛′ and 𝑛 

Estimators 
Auxiliary 

character(s) 

𝑛′ = 70,  𝑛 =  40 

1/𝛿 

1/4 1/3 1/2 

𝜑  100.00 (2905.7121)* 100.00 (2494.6591) 100.00 (2083.6062) 

 𝑥1 132.74 (2188.9752) 140.31 (1777.9222) 152.44 (1366.8693) 

 𝑂𝑉𝐶 𝜃11
∗∗ = 0.717 𝜃11

∗∗ = 0.717 𝜃11
∗∗ = 0.717 

𝑇𝑃1
∗∗ 𝑥1, 𝑥2 144.89 (2005.4099) 156.47 (1594.3569) 176.08 (1183.3040) 

 𝑂𝑉𝐶 𝜃11
∗∗  = 0.346, 

𝜃12
∗∗  = 0.622 

𝜃11
∗∗  = 0.346, 

𝜃12
∗∗  = 0.622 

𝜃11
∗∗  = 0.346, 

𝜃12
∗∗  = 0.622 

 𝑥1, 𝑥2, 𝑥3 150.58 (1929.7012) 164.27 (1518.6482) 188.12 (1107.5953) 

 𝑂𝑉𝐶 𝜃11
∗∗ = 0.067, 𝜃12

∗∗ = 

0.382, 𝜃13
∗∗ = 0.538 

𝜃11
∗∗ = 0.067, 𝜃12

∗∗ = 

0.382, 𝜃13
∗∗ = 0.538 

𝜃11
∗∗ = 0.067, 𝜃12

∗∗ = 

0.382, 𝜃13
∗∗ = 0.538 

  *Mean square error of the estimators is shown in the parenthesis.  
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COMPARATIVE ANALYSIS OF POVERTY IN FAMILIES 
WITH A DISABLED CHILD AND FAMILIES  

WITH NON-DISABLED CHILDREN IN POLAND  
IN THE YEARS 2014 AND 2016 

Olga Komorowska1, Arkadiusz Kozłowski2, Teresa Słaby3 

ABSTRACT 

The presence of a child with disabilities in a family presents more challenging 
conditions than the presence of a non-disabled child. One of the difficulties is of 
financial nature. One of the parents often has to give up their job to care for the 
child, which shrinks the household income. At the same time, the family has higher 
expenses resulting from, e.g. costs of treatment. All this increases the risk of 
falling into poverty. The goal of this paper is to analyse the financial situation of 
households with a disabled child, mainly in the context of poverty, and compare it 
to the financial situation of households with non-disabled children. The study is 
based on data from Polish Household Budget Survey, covering two years, 2014 
and 2016. The study revealed that families with a disabled child are generally 
poorer than families with non-disabled children. The financial situation improved 
over the studied period in both types of families, but the improvement in the 
families with a disabled child was much greater. The main factor in reducing the 
risk of poverty in both types of families is the education attainment level of the 
reference person (the household head), which should be at least upper secondary. 

Key words: households with a disabled child, factors related to poverty, 

Household Budget Survey, logistic regression. 

1.  Introduction 

The issue of poverty is frequently addressed in economic, social and political 
discourses. In “Europe 2020: A strategy for smart, sustainable and inclusive 
growth”, one of the five headline targets determined for the European Union is 
combating poverty (European Commission, 2010, p. 3). Poverty is a dangerous 
phenomenon – both for the entire society, and for people categorised as the poor. 
Low-income households limit their consumption, both current and related to 
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development and prevention. These limitations usually bring about changes in the 
behaviour and mentality, which may result in passivity, loss of self-esteem, 
alcohol abuse and other addictions, pathologies and aggression. All of this may, 
in turn, lead to reduced participation in various aspects of life, namely – to social 
exclusion. 

A highly dangerous phenomenon is the intergenerational transmission of 
poverty (Bird, 2013; Harper, Marcus and Moore, 2003; Kruszyński and 
Warzywoda-Kruszyńska, 2011). From the perspective of the entire society 
poverty is associated with wastage of human capital, financial outlays for support 
and the growth of poverty enclaves (Golinowska, et al., 2008, pp. 60-61). 

Poverty is related to failure to meet one’s needs at the expected level due to 
too low an income (Panek, 2014, p. 196). This situation develops for a number of 
reasons. Among the predictors of poverty, the following are mentioned: the 
source of income of household head from unearned sources other than 
retirement; number of children in household; education attainment level of 
household head; voivodship; unemployed persons in household; persons with 
disabilities in household – especially when they are children with disabilities 
(Szarfenberg and Szewczyk, 2010, pp. 29-30; GUS, 2015a, pp. 10-11). The 
impact of some factors on emergence and persistence of poverty is ambiguous: 
at times it is hard to say whether a given factor is the cause or the effect of 
poverty (for example alcohol addiction – sometimes it can be the result of living 
below the poverty line, and sometimes it can be a reason for finding oneself in a 
group of the impoverished). 

One of the factors increasing the risk of poverty is the presence of a disabled 
person in a household. In 2016, the incidence of extreme poverty (percentage of 
persons in households with expenditures below extreme poverty threshold set by 
the Institute of Labour and Social Studies) in households with at least one 
disabled person was 7.5%, whereas in a household without such members, the 
corresponding value was 4.2%. With regard to households where a child was the 
disabled person, the incidence of extreme poverty went further up, reaching 8.3% 
(GUS, 2017a, p. 4). Two years earlier, all three indicators were higher, amounting 
to 10.8%, 6.5%, and 14.6% respectively (GUS, 2015b, p. 4). A situation in which 
the incidence of extreme poverty is higher in households with at least one 
disabled child than in households with disabled adults had been the case in point 
for several years. But in 2017 the situation changed; the incidence of extreme 
poverty in households with at least one disabled person (regardless of age) was 
6.7%, while in households with at least one disabled child (under 16) it was 4.9% 
(GUS, 2018, p. 4). 

The analysis in this paper covers households where at least one person is 18 
or under. The work aims to describe poverty from various perspectives since this 
issue is complex, ambiguous and diverse, both in the territorial and social sense. 
The analysis concerns the research conducted in 2016 and 2014. It is important 
to know that in 2016 the support programme “Family 500+” was introduced, which 
is likely to have reduced poverty in households with members under 18 years of 
age (see: GUS, 2017b, p. 12). 

The statistical analysis was carried out using unit data from the Household 
Budget Survey (HBS) of 2014 and 2016. The sample covered in HBS in 2014 
included 12,809 households with non-disabled children and 622 households with 
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at least one disabled child (in the vast majority of households it was only one such 
child). The sample used in HBS 2016 covered 12,172 and 635 households 
respectively. The households were studied as an entirety or taking into account 
their size and composition with the use of an equivalence scale. In the latter case, 
the so-called modified OECD equivalence scale was employed, as proposed by 
Haagenars, de Vos and Zaidi (1994, p. 18), which is currently used by Eurostat. 
See also Anyaegbu, (2010), and Łukasiewicz, Koszela and Orłowski (2006, pp. 
207-217). The scale assigns the weight of 1 to the first person aged 14 or more, 
0.5 to every subsequent person of the same age group, and 0.3 to children under 
14. 

The main contribution of this paper is the exploration of data from HBS, 
showing the potential of this survey, which allows the analysis of household 
finances broken down by the characteristics of individual members of the 
household such as age or having a disability. HBSs are conducted in all 
European Union Member States, and, although they are not harmonised, similar 
analyses can be performed in other countries and compared with the following 
results. 

The second section of the article presents the general financial situation of the 
two groups of households under analysis. First of all, some objective metrics of 
the situation are considered, namely: source of income, levels of income and 
expenditure; then a subjective analysis of these households is performed, also in 
comparison with their actual financial situation. The following section includes 
typical elements of poverty analysis, namely the poverty thresholds, headcount 
rates, and depth of poverty, from the objective and subjective perspective. The 
final part addresses the differentiating factors for poor and non-poor households. 
In this analysis, classification trees and the logistic regression model were used. 

2.  General assessment of the income situation of households with 
children 

The first aspect used in the comparison of the two groups of households is the 
main source of household income. Figure 1 presents frequency distributions in 
the form of a scatter plot. Thanks to this, any potential differences in distributions 
are more pronounced. The sources close to the diagonal of the square represent 
a similar share in both household groups under analysis. The sources above the 
diagonal are more frequent in households with disabled children, whereas the 
sources below the diagonal apply more frequently to households with non-
disabled children. 
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Figure 1. Distributions of main sources of income in 2016 

Source: Own study based on unit data from HBS 2016. 

 

The greatest difference in the distribution of income sources can be seen 
under the position benefits, which comprise unemployment benefit and other 
social benefits. The share of this source of income is 15.8 percentage point higher 
in households with disabled children. An even greater disproportion occurs when 
the main and additional sources of income are taken into account: 67.4% of 
households with disabled children indicated benefits as the main or additional 
source of income, with 25.0% of the same households with non-disabled children. 
In 2014, these percentages were 61.3% and 9.8%, respectively. Next, a smaller 
share of households with disabled children – as compared to households with 
non-disabled children – is supported by performing hired job in non-manual labour 
position (difference: 11.6 percentage points) and self-employment (difference: 4.3 
percentage points). 

Figure 2 presents the empirical distribution functions of disposable income 
and total expenditure calculated per equivalent unit. Only in the case of low levels 
of income (up to about PLN 1,800) the difference in distribution functions is not 
big, within the range of 1-2 percentage points. For the remaining values of income 
and for virtually the entire scope of expenditure variability, the values of 
distribution functions for households with disabled children are higher. This 
suggests a worse financial status of such households when compared to 
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households with non-disabled children. However, it is a noteworthy fact that two 
years earlier, in 2014, the distribution functions were even more divergent. 
 

 

 

Figure 2.  Empirical distribution functions of income and expenditure per 
equivalent unit in households in 2016 

Source: Own study based on unit data from HBS 2016 

 

An interesting question in HBS related to a subjective perception of financial 
status is the question about the income level in a household that the respondents 
would consider very bad, unsatisfactory, barely satisfactory, good, very good. 
Figure 3 illustrates the distribution of answers to this question using boxplots. An 
important point is that on the Y-axis a logarithmic scale is used due to the strong 
right-skewed distributions. On average, households with a disabled child had 
lower income expectations in all categories than households with non-disabled 
children. All three quartiles are lower in every income category. As compared to 
2014, the values of income indicating a specific standard of living were higher in 
the case of both household groups. As an example, in 2016, the median of 
income indicated as very bad was PLN 750 in households with non-disabled 
children and PLN 667 in households with disabled children (as per equivalent 
unit). In 2014, however, the median was PLN 667 and PLN 588 respectively. The 
median of income indicated as good in 2016 in the first group of households was 
PLN 2174, and in the other group – PLN 2000. The 2014 results were PLN 1957 
and PLN 1786 respectively. 
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Figure 3.  Distributions of answers to the questions about the income level that 
would mean a specific standard of living for a household 

Source: Own study based on unit data from HBS 2016 

 

The comparison above could suggest that respondents in households with a 
disabled child have on average lower expectations regarding the level of income. 
It is, however, a superficial pattern, since – as indicated above – households with 
disabled children are, generally speaking, poorer, whereas their expectations 
regarding the income level that would mean a specific standard of living are 
positively correlated with the actual financial status of a given household. To 
demonstrate this dependency, scatterplots are presented in Figure 4 for income 
levels indicating various standards of living and actual household expenditure, 
along with regression lines against the logarithms of both variables, separately for 
both types of households. The scatterplots and the slopes of the regression line 
confirm the positive correlation between the variables. Moreover, the regression 
line for households with disabled children virtually overlaps with the regression 
line of households with non-disabled children. (The differences in estimated 
regression coefficients and intercepts are not statistically significant. To show that 
this is the case, for each j-th standard of living, separate regression models were 

estimated: ln 𝑦𝑖
(𝑗)

= 𝛽0 + 𝛽1 ln 𝑥𝑖 + 𝛽2𝑔𝑜𝑠𝑝𝑖 + 𝛽3 ln 𝑥𝑖 ∙ 𝑔𝑜𝑠𝑝𝑖 + 𝜀𝑖, where 𝑦𝑖
(𝑗)

 is the 

value of income denoting the j-th standard of living, 𝑥𝑖 is the actual household 

expenditure, 𝑔𝑜𝑠𝑝𝑖  is the household type (0 – with non-disabled children, 1 – with 
disabled children). These models were estimated for both groups of households 
together, but thanks to the variable 𝑔𝑜𝑠𝑝𝑖  and the interaction ln 𝑥𝑖 ∙ 𝑔𝑜𝑠𝑝𝑖, they can 
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be used to test the significance of differences in intercepts and regression 

coefficients between the models of the form: ln 𝑦𝑖
(𝑗)

= 𝛼0 + 𝛼1 ln 𝑥𝑖 + 𝜀𝑖, estimated 

separately for household groups, which are presented in Figure 4. The test for the 
significance of the difference in intercepts 𝛼0 is the same as the significance test 

for coefficient 𝛽2, while the test for the significance of difference in the regression 

coefficients 𝛼1 is the same as the significance test of the 𝛽3 coefficient. The p-
values for 𝛽2and 𝛽3 coefficients, for each j level, are as follows: “very bad” (0.363, 
0.365), “unsatisfactory” (0.197, 0.193), “barely satisfactory” (0.098, 0.091), “good” 
( 0.357; 0.338), “very good” (0.372, 0.338). All p-values are greater than 0.05, so 
the regression line pairs in Figure 4 do not differ significantly from each other). It 
can be stated that if households with disabled children had higher income levels, 
their expectations regarding financial resources would also be higher. 
 

 

 

Figure 4.  The relationships between income levels that would mean a specific 
standard of living for households and the actual financial situation of 
households measured with expenditure in 2016 

Source: Own study based on unit data from HBS 2016 

 

Another statement, validating the aforementioned conclusion, is the 
comparison of income levels indicating a certain standard of living for a household 
with an actual disposable income. Figure 5 shows the percentage of households 
the actual income of which was classified between the one considered by the 
respondents as indicating a certain standard of living in 2016 and 2014. For 
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example, in 2016 the percentage of households whose actual disposable income 
was between the level described as good and very good (by each household 
individually) was 28.5% for households with non-disabled children and 31.8% for 
households with disabled children. The highest percentage of households in the 
two groups and in the two periods had the disposable income which, according to 
their subjective criteria, was between the level of income described as barely 
sufficient and good. 

On the basis of this figure, improvement in the subjectively viewed financial 
situation can be observed in both examined groups of households in 2016 as 
compared to 2014. Proportions of households with actual income higher than the 
income subjectively viewed as good and very good increased, while portions of 
households with income lower than good decreased (an exception to this rule is 
the group of households with disabled children with the income lower than the 
income subjectively described as very bad, but the difference is small). It must be 
emphasised that such subjective improvement was greater among households 
with disabled children. 
 

  

 

Figure 5.  Distribution of disposable income classified by subjective income level 
for different standards of living in 2014 and 2016 

Source: Own study based on unit data from HBS 2014 and 2016. 

Figure 5 can also help determine the incidence of subjective poverty by 
showing a percentage of households with a disposable income below the 
individually set threshold. The threshold can be the very bad, insufficient or barely 
sufficient level. In the first case, it can be viewed as subjective extreme poverty. 
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For both household groups, this rate fluctuated between 2-3%. If the barely 
sufficient level is taken as the poverty threshold, then in 2014, 18.5% of 
households with non-disabled children and 19% of households with disabled 
children were subjectively impoverished, while in 2016 – it was 14.4% and 12.6% 
respectively (the incidence of poverty, i.e. headcount rates, is discussed in more 
detail in the next section). 

Another element of the subjective evaluation of a household’s income 
situation is requesting a respondent to provide an expression which best 
characterises the way of managing money in his/her household. Table 1 presents 
the distribution of answers to that question. In both groups, the income situation in 
2016 was better when compared to 2014 – the percentage of answers we have to 
live economically everyday (which may be understood as living in privation) and 
we have not enough even for basic needs (which may be understood as living in 
poverty) decreased. It must be emphasised that similarly to the distributions 
shown in Figure 5 in the group of households with disabled children, the 
improvement was greater. The percentage of responses indicating poverty 
dropped by 3.9 percentage points (in the group with non-disabled children by 
1.1 percentage points), while the percentage of responses indicating privation 
dropped by 15.7 percentage points (in the group with non-disabled children by 
7.3 percentage points). In both years the disproportions between the groups were 
noticeable. More households with disabled children are in a worse financial 
situation. In 2016, 26.9% of households with disabled children (8.7 percentage 
points more than in the case of households with non-disabled children) had to live 
economically every day. 
 

Table 1. Subjective evaluation of money management in households 

Statement 

Households with children 
 

non-disabled disabled 
 
 

2014 2016 2014 2016 

In % 

we can afford some luxury 1.5 2.0 0.6 1.4 

we have enough without special saving 11.7 15.2 5.0 9.1 

we have enough for everyday living, but 
we have to save for greater purchases 

59.1 63.7 45.2 59.9 

we have to live economically everyday 25.5 18.2 42.6 26.9 

we have not enough even for basic 
needs 

2.1 1.0 6.6 2.7 

Source: Own calculation based on unit data from HBS 2014 and 2016. 

 

When analysing the phenomenon of poverty, it is worth to have a closer look 
at income inequality. In the case of households with disabled child and 
households with non-disabled children the Gini coefficient (based on income per 
person) was on a similar level, i.e. in 2016 it was 0.28 and 0.30 respectively  
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(the Gini coefficient based on income per equivalent unit was 0.27 and 0.30 
respectively), which stands for a relatively low dispersion of income in the two 
types of households under study. It should be emphasised that in the case of the 
two types of households in question, income inequality decreased in 2016 
in comparison with 2014 (when it was 0.34 and 0.33 respectively). 

Another measure also related to poverty is the ratio of two extreme deciles 
(also quintiles). In 2016, the decile ratio for households with a disabled child was 
3.31 (in 2014, 4.24). In the case of households with non-disabled children, the 
decile ratio was higher, namely 3.63 in 2016, and 4.38 in 2014. It is clear that 
income dispersion measured with a ratio of extreme deciles is significantly lower 
between the measured periods in the case of the two household groups. 

3. Measures of poverty 

In the research on poverty, no general definition of poverty has been 
established. Consequently, determining who is poor in the examined population is 
not that easy (Cowell, 2011; Thon, 1979). Therefore, the analysis of poverty must 
by multifaceted. Generally, a household can be classified as poor when its 
income or expenditure level is lower than the established threshold (Lisicka, 2013; 
Panek, 2014, p. 204; Szarfenberg and Szewczyk, 2010, pp. 29-30). In this study 
five different types of threshold were used, which could by divided into two 
groups, objective and subjective. In the objective approach, legal and two relative 
lines were used, while in the subjective approach – the Leyden method and the 
subjective poverty line were used (Panek, 2011, pp. 35-38). 

   In general, household expenditure is a better measure of wealth than 
income (Klugman, 2002, p. 30), therefore expenditure was used in the case of 
objective thresholds. But in the case of the subjective approach income was used 
since the question concerning the subjective evaluations refers directly to income. 

The legal line is set in order to apply for a benefit from the social service 
system. It is determined separately for households with a different number of 
people (irrespective of their age). The relative line most often equals 60% of the 
median (used by Eurostat) or 50% of the mean (used by Central Statistical Office 
in Poland). It allows one to identify the poor who are far from the average level of 
expenditure realised in a given society. 

The Leyden method uses answers to the question about the level of 
household income which the respondents would consider very bad, 
unsatisfactory, barely satisfactory, good, very good (see the previous section). 
The obtained answers are used to estimate the so-called individual income wealth 
(utility) functions, which have a form of a distribution function (here log-normal 
distribution). The poverty line (individual for each household) is set to such level 
of income for which the utility function takes a certain low, arbitrary chosen value 
δ (value of the distribution function). In the conducted analysis three values were 
adopted: 0.3, 0.4 and 0.5. 

In order to determine the subjective poverty line, an answer to the question 
about the income essential to “make ends meet” is used. In the HBS there is no 
such question, but the same question as in Leyden method can be used, taking 
into account only the barely satisfactory variant, since it has the closest meaning 
to “making ends meet”. 
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Table 2. Poverty lines in 2016 (annual average values) 

Type of poverty line 

2-person household  
(1 adult + 1 child up to  

14 years of age) 

4-person household  
(2 adults + 2 children up to  

14 years of age) 

In PLN 

legal 1 028.00 2 056.00 

Based on expenditure 

60% of median 1 157.86 1 870.39 

50% of mean 1 131.82 1 828.33 

Based on income 

Leyden (δ = 0.3) 1 261.27 1 482.36 

Leyden (δ = 0.4) 1 640.96 1 928.61 

Leyden (δ = 0.5) 2 098.56 2 466.43 

Subjective poverty 
line 

1 755.76 2 082.19 

Source: GUS, 2017, p. 11; Own calculation based on unit data from HBS 2016. 

All the line values in Table 2, except for the legal line which remained the 
same throughout the year, are averaged for the whole year, while subjective limits 
are additionally averaged for all households. The lines were stated individually for 
households comprising one adult and one child (e.g. a single parent who raises 
the child on his or her own) and households comprising two adults and two 
children (e.g. a married couple with two children). The values were provided for 
information purposes only as they were not directly used, except for the legal 
limit, to calculate the headcount rates. The headcount rate (often referred to as “at 
risk of poverty rate”), i.e. the percentage of persons in households considered to 
be impoverished, for the relative values was calculated with respect to the lines 
calculated individually for each quarter (and in comparison with expenditure), 
while for subjective values – with respect to the lines set individually for each 
household (and in comparison with income). Naturally, objective lines are the 
same for households with the same composition, regardless of the presence of 
a child with a disability. 

As for the legal and relative lines, the headcount rate in households with 
disabled children is much higher than in households with non-disabled children 
(Table 3). Bigger differences can be observed in 2014: for instance, the difference 
in the case of relative lines was approx. 10 pp., while in 2016 – 4.6 pp. for the 
50%-mean line and 5.7 pp for the 60%-median line. As far as subjective lines are 
concerned, the situation is different. Here, the headcount index was nearly the 
same for the two groups of households under consideration. One exception is the 
values for 2016 calculated with the use of the Leyden line of δ = 0.5, and the 
subjective poverty line where the percentage of poor households among 
households with disabled children is lower than the same percentage in the 
households with non-disabled children. One should emphasise that over the span 
of the two years in question, the range of poverty decreased, regardless of the 
definition of impoverished households. 
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Table 3. Headcount rates in households with disabled children and non-disabled 
children in 2014 and 2016 (in %) 

Households 
with 

children 

Type of poverty line 

legal 
50% of 
mean 

60% of 
median 

Leyden 
(δ = 0.3) 

Leyden 
(δ = 0.4) 

Leyden 
(δ = 0.5) 

subj. 
poverty 

line 

 2014  

non-
disabled 

17.5 16.5 17.3 8.3 14.5 24.2 18.5 

disabled 30.0 26.5 27.3 8.1 14.8 23.5 19.0 

 2016  

non-
disabled 

17.4 12.8 14.0 6.4 10.9 18.3 14.4 

disabled 25.7 17.4 19.7 6.2 10.3 16.3 12.6 

Source: own calculation based on unit data from HBS 2014 and 2016. 

Another measure of poverty is its depth, i.e. the poverty gap index. The depth 
calculated with respect to the relative poverty line (50% of mean expenditure) was 
at the similar level in the case of the two household groups in 2014 and amounted 
to 20.6 for households with non-disabled children, and 20.2 for households with 
disabled children. This means that the average expenditure of impoverished 
households was by approximately 20% lower than the poverty level calculated as 
50% of mean expenditure for all households. In 2016, the depth of poverty in the 
case of households with a disabled child remained at the same level and 
amounted to 20.2, while in the case of households with non-disabled children it 
decreased to the level of 18.9. 

4. Factors related to poverty 

In the next step of the analysis, the aim was to check if and in what terms 
impoverished households differ from non-impoverished households and whether 
such differences are the same in households with non-disabled children and in 
households with disabled children. To this end, classification trees and the model 
of logistic regression were employed. The dependent variable in both cases was 
a dummy variable defined as follows: 

𝑌 = {
  1 for poor households
  0 for non − poor households

 

A household was deemed impoverished if its expenditure per equivalent unit 
was lower than the relative poverty line understood as 50% of mean expenditure. 

The following nine features of a household which were deemed most 
important in the context of the phenomenon under analysis and which could be 
obtained from HBS were selected as explanatory variables: 

 number of children (18 or under), 

 number of unemployed, 

 number of adults, 
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 age of youngest child, 

 education of household head (reference person), 

 main source of household income, 

 urbanisation degree (class of place of residence), 

 voivodship, 

 disabled parent (is one of the parents disabled?). 
 

First, the exploratory technique of data analysis was used, i.e. classification 
trees. Binary trees were used; information gain was used as the criterion for split 
(see Gatnar, 2001, pp. 33-34); the division was stopped either at the maximum 
depth of the tree (which was set to 4) or the minimum leaf size (which was set to 
1% of the number of units). The classification trees obtained in this way are 
presented in Figure 6 and Figure 7, separately for the set of households with non-
disabled and disabled children. In the figures, the branch widths are proportional 
to the number of units in sub-sets. The nodes contain information about the 
variable used in the division and its variants, or a split point; below one can find 
information about the portion of impoverished households in a node (in the 
rectangle the shadowing intensity of which depends on the level of the fraction), 
while at the bottom, information about the number of units in a node (as 
a percentage of the whole set). Units which satisfy the condition of a node division 
are sent to the left side, the remaining ones – to the right side. The division is 
arranged in a way that a group with a smaller fraction of poor households goes to 
the left. 

 

Figure 6.  Classification tree of belonging to impoverished households, for 
households with non-disabled children in 2016 

Source: Own study based on unit data from HBS 2016. 
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In the case of both trees, the first variable used for the division, i.e. the most 
discriminating variable, turned out to be the reference person’s education. For 
households with non-disabled children, upper secondary or tertiary education 
determined whether the household belonged to the group with the smallest 
portion of poor households. For households with disabled children, only tertiary 
education ensured such a division. What is important is that the households in 
which the reference person had tertiary (or upper secondary in the case of 
households with non-disabled children) education are not divided further on, so 
they are relatively homogenous groups, with a low headcount rate. 

Households in which the reference person’s education is lower, were further 
divided according to the variable number of unemployed in a household. 
In households with at least one unemployed person, the place of residence 
became important (voivodship), and subsequently – number of children (more 
than 2 children in this node significantly increased chances for poverty). In the 
case of households with disabled children, where the reference person had no 
tertiary education, what mattered first was the place of residence (voivodship), 
while secondly – the presence of unemployed (more than one). In the node on the 
lowest level, chances for finding oneself in a group of poor households increase 
significantly if the main source of income are types of pension other than old-age 
pension. 
 

 

 

Figure 7.  Classification tree of belonging to impoverished households, for 
households with disabled children in 2016 

Source: Own study based on unit data from HBS 2016. 
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In general, classification trees for households with non-disabled and disabled 
children are similar. In both cases, only four variables were used for the division, 
of which three variables were the same, although the way they split the data and 
the level at which they were used differed slightly. Nevertheless, the general rules 
are the same – a larger percentage of poor households is associated with a lower 
level of education, unemployment of at least one member of the household, and 
a place of residence in the south-eastern voivodships. 

A different method of verifying which factors affect the probability of finding 
oneself in a group of impoverished households is a logistic regression (Fahrmeir, 
et al., 2013). Just as in the case of classification trees, models were estimated 
separately for households with non-disabled and disabled children, with the same 
set of variables. Once the full model was estimated, a stepwise elimination of 
insignificant variables was applied according to AIC criterion. The basic results of 
the models are presented in Table 4. 

Table 4. Odds ratios for changes in the value of explanatory variables in the 
logistic regression models for the probability of belonging to the group 
of poor households in 2016 (values in bold indicate statistically 
significant variables at the level of 0.05) 

 
Odds ratio 

Variable: d= value of change 
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Variable: option under study – reference option 
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Number of children: d=1 1.17 x 

Number of unemployed: d=1 1.55 1.82 

Number of adults: d=1 1.29 1.27 

Age of youngest child: d=10 1.39 x 

Reference person’s education: lower secondary and lower – upper secondary 2.44 2.28 

Reference person’s education: basic vocational - upper secondary 1.80 1.05 

Reference person’s education: tertiary - upper secondary 0.38 0.21 

Main source of income: white-collar wage work - blue-collar wage work 0.72 x 

Main source of income: use of private farm in agricultural - blue-collar wage work 1.19 x 

Main source of income: self-employment – blue-collar wage work 0.64 x 

Main source of income: other - blue-collar wage work 2.33 x 

Main source of income: old age pension - blue-collar wage work 0.89 x 

Main source of income: other types of pension - blue-collar wage work 1.57 x 

Main source of income: benefits - blue-collar wage work 2.11 x 

Urbanisation degree: densely populated area – medium populated area 0.93 1.04 
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Urbanisation degree: sparsely populated area - medium populated area 1.30 1.77 

Voivodship: dolnośląskie - pomorskie 0.97 x 

Voivodship: kujawsko-pomorskie - pomorskie 1.12 x 

Voivodship: lubelskie - pomorskie 1.39 x 

Voivodship: lubuskie - pomorskie 0.76 x 

Voivodship: łódzkie – pomorskie 0.77 x 

Voivodship: małopolskie - pomorskie 1.66 x 

Voivodship: mazowieckie - pomorskie 1.02 x 

Voivodship: opolskie - pomorskie 0.68 x 

Voivodship: podkarpackie - pomorskie 1.52 x 

Voivodship: podlaskie - pomorskie 1.25 x 

Voivodship: śląskie – pomorskie 1.14 x 

Voivodship: świętokrzyskie - pomorskie 1.74 x 

Voivodship: warmińsko-mazurskie - pomorskie 1.86 x 

Voivodship: wielkopolskie - pomorskie 1.60 x 

Voivodship: zachodniopomorskie - pomorskie 0.95 x 

Disabled parent: yes – no x 1.88 

Source: Own calculation based on unit data from HBS 2016. 

In the case of the model for households with non-disabled children, all 
variables, except for disabled parent, were preserved, which to a large extent 
results from the large sample size. On the other hand, in the model for 
households with disabled children, only five variables were preserved, which 
partially results from the small sample size. Quality measures (Table 5) show that 
both models are moderately fitted to the data. It should be emphasised, however, 
that the objective of models under assessment, both logistic regression and 
classification trees, was not developing a predictive tool, but finding out if any 
relationships exist between the variables under analysis. 

Table 5.  Quality measures of logistic regression models 

 
Households with 

non-disabled children 
Households with  
disabled children 

Area under the ROC curve 0.77 0.73 

Sommers’ Dxy 0.54 0.47 

Nagelkerke R2  0.18 0.16 

Likelihood ratio test 
χ2

ν=31 = 1154.7 

p < 0.0001 

χ2
ν=8 = 59.1 

p < 0.0001 

Source: Own calculation based on unit data from HBS 2016. 
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The interpretation of outcomes in Table 4 is as follows: in the first column 
there is the name of a variable, followed by a colon, then, for numerical variables, 
the value of change denoted by the letter d, or, for categorical variables, the value 
for a given odds ratio followed by the reference value for this variable. And the 
odds ratio is the ratio of the odds of being poor when explanatory variable is 
greater by d (in the case of numerical variables) or equals specific value (in the 
case of categorical variable), and the odds of being poor when explanatory 
variable is not changed (in the case of numerical variables) or equals the 
reference value (in the case of categorical variable). For example: the odds ratio 
for number of unemployed for households with non-disabled children is 1.55 (for 
d=1), which means that increasing the number of unemployed persons by 1 
lengthens the odds of being poor by 55%. Another example: the odds ratio for 
reference person’s education for households with disabled children (for lower 
secondary and lower – upper secondary) is 2.28, which means that the odds of 
being poor when the education attainment level is lower secondary and lower is 
by 128% greater compared to upper secondary level.  

When one compares the odds ratios for statistically significant variables in 
both models, it can be seen that the direction of impact for specific variants is 
always the same, but its strength is somewhat different. In the case of the two 
household groups, tertiary education markedly reduces the odds of becoming 
poor; however, in households with disabled children, this effect is more 
pronounced. Lower secondary and lower education, as well as basic vocational 
education, markedly increase the chances of falling into poverty, but this effect is 
weaker in households with disabled children. The presence of an unemployed 
person in a household has a stronger negative impact in families with disabled 
children. 

As an additional element of the assessment of impact of specific explanatory 
variables on the response variable, the Wald statistics was calculated (Harrell, 
2015, p. 191, 194) to test the significance of variables (the statistics have 
asymptotic chi-squared distribution) and a ranking of predictor importance was 
created, which is presented in Figure 7. In both models, as in the case of 
classification trees, the variable having the strongest impact on the chance of 
belonging to the poor is the reference person’s education. In the case of 
households with non-disabled children, the main source of income and voivodship 
ranked second and third, whereas in the model for households with disabled 
children they did not occur at all, as they were removed at the stepwise 
elimination stage. The second most important variable in the group of households 
with disabled children turned out to be the number of unemployed. Variables that 
do not affect the chances of finding oneself in a group of impoverished or whose 
effect is relatively small in both groups of households, are: age of youngest child, 
urbanisation degree, number of children and disabled parent. 
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Figure 7. Ranking of predictors in logistic regression models – based on the Wald 
χ2 (filled point means a statistically significant variable at the 
significance level of 0.05, unfilled – significant at the level of 0.1) 

Source: Own study based on unit data from HBS 2016. 

 

The above analysis was also conducted for the data from 2014. As far as the 
classification trees are concerned, for households with non-disabled children the 
division was very similar to the one presented above for the 2016 data. In the 
case of households with disabled children, however, the division was very 
different. The strongest discriminating variable was the number of unemployed, 
followed by the reference person’s education for the subset of households without 
the unemployed. Apart from that, the tree was more extensive with 11 leaf nodes 
compared to five leaf nodes in 2016. Additionally, eight variables were used, and 
the final subsets were more homogenous. 

Both models of logistic regression from the period of two years earlier were 
similar in general. The differences that could be observed in both types of 
households included: a stronger negative effect (i.e. greater chance for poverty) 
of number of children, number of unemployed and living in a sparsely populated 
area. The decrease of the negative impact of those variables in 2016 can be a 
result of better economic prosperity (lower unemployment rate) and the 
introduction of the “Family 500+” programme in mid-2016 (thus, the smaller 
impact of a large number of children on poverty). In a sense, the consequence of 
these changes is the fact that both regression models in 2016 were fitted to the 
data worse than in 2014, so it is now more difficult to determine typical 
characteristics of the poor households on the basis of available data. 
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5. Conclusions 

Based on the analysis, it can be stated that households with a disabled child 
were in a worse financial situation when compared to households with non-
disabled children – both in 2014 and in 2016. Households with a disabled child 
tend to rely to a greater extent on all sorts of benefits, and so they are more 
vulnerable to changes in state policies in this area. The 2016 introduction of the 
“Family 500+” support programme is likely to have been one of the factors that 
contributed to poverty reduction in both groups under analysis; however a more 
pronounced improvement can be noticed in households with a disabled child, 
which led to the reduction of the disproportion in financial situations reported by 
the two household types. 

The factor that discriminates the most between poor and non-poor 
households, especially in households with a disabled child, was the education 
attainment level of the household head. In households where the person with the 
highest income was a university graduate, the percentage share of the poor was 
the lowest. Furthermore, worse financial condition are linked to unemployment of 
at least one family member and the fact of residing in the south-eastern 
voivodships of Poland. 

Households with non-disabled children located in less densely populated 
areas were exposed to a greater risk of poverty as compared to households from 
more populous areas. However, the impact of this variable is moderate. In the 
case of households with a disabled child, the impact of the size of their place of 
residence is even weaker. 

An interesting observation is the impact of the number of children on the risk 
of falling into poverty. It is quite common to associate multi-child families with 
financial hardship. Although in 2014 the number of children was a fairly important 
factor contributing to the risk of poverty, in 2016 the impact of this variable was far 
weaker. What might have brought about this change is the aforementioned 
“Family 500+” programme, but a different explanation could be the fairly strong 
impact of the variable number of adults. The analysis is based on the assumption 
that a child is a person aged 18 or under, while all the other household members 
are treated as adults. In the next stage of the analysis it would be of interest to 
check whether the “adult children”, persons over 18 still living in the household 
with their parents, are a factor increasing the risk of poverty. 
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CPI INFLATION IN AFRICA: FRACTIONAL PERSISTENCE, 
MEAN REVERSION AND NONLINEARITY 
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ABSTRACT 

Price stability has been one of the key mandates that apex monetary authorities 
strive to achieve globally. While most developed economies have achieved single 
digit inflation rates, most developing economies, especially African countries still 
experience alarming double-digit inflation rates. This paper therefore examined the 
dynamics of inflation in sixteen African countries. We employed the fractional 
persistence framework with linear trend and non-linear specifications based on 
Chebyshev’s polynomial in time. The results indicated nonlinear time trend in 
inflation for most of the countries. With the exception of Burkina Faso, which 
exhibited plausibility of naturally reverting to its mean level, the majority of the 
selected African countries would require stronger interventions to revert their 
observed inflationary levels to their mean levels. 

Key words: Africa, Fractional Integration, Inflation Rate, Mean Reversion, 

Nonlinear Trend, Structural Break. 

JEL: 22. 

1.  Introduction 

The persistent increase in the general price level of goods and services in an 
economy over a period of time is a feat that cannot be ruled out during the 
process of policy formation with regards to economic activities. This being the 
result of the attendant consequence of its possible impacts and effects, either 
positively or negatively, on the purchasing power of the economy’s medium of 
exchange and unit of account within the economy (Paul et al., 1973). On the 
negative impact, the general price increase could lead to commodity scarcity, 
increased opportunity cost of holding money, investment drought as a result of 
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uncertainty of future prices. Positively, it reduces the real burden of public and 
private debt, reduces unemployment due to nominal wage rigidity and provides 
monetary authorities with a tool to stabilize the economy, since interest rates are 
nominally kept above zero (Mankiw, 2001). The severity of this general price level 
could be low or moderate fluctuations in the real demand for goods and services, 
or changes in available supplies, especially, during scarcity. Consensually, a long 
sustained period of inflation is perceived to be the outcome of a faster growth rate 
of money supply in comparison with economic growth rate. Rather than a zero or 
negative inflation, a low inflation is preferred as it reduces the severity of 
economic recession by enabling the labour market to adjust more quickly in a 
downturn and, consequently, reducing the risk of liquidity trap, which may prevent 
monetary authorities from performing its stabilizing role for the economy 
(Svensson, 2003). 

The literature is replete with various country specific studies that tried to 
investigate the dynamics of inflation. These include studies on Nigeria (Adenekan 
and Nwanna, 2004; Odusanya and Atanda, 2010; Imimole and Enoma, 2011; 
Bawa et al., 2016); Ethiopia (Wolde-Rufael, 2008); Ghana (Adu and Marbuah, 
2011); South Africa (Nell, 2000, 2006; Hodge, 2002, 2006, 2009; Fedderke and 
Schaling, 2005; Burger and Du Plessis, 2006; Burger and Marinkov, 2005; 
Vermeulen, 2015); Egypt (Ali, 2011; Osama, 2014; Osama, 2014); Kenya 
(Kaushik, 2011; Kimani and Mutuku, 2013; Kirimi, 2014); Cameroun (Tabi and 
Ondoa, 2011). These studies basically focused on the impact of inflation on 
economic growth, local currency value, money supply and stock prices. In some 
other studies, inflation thresholds of 6% and 9%, respectively, were obtained for 
Nigeria (Fabayo and Ajilore, 2006; Ajide and Olukemi, 2010), while Phiri (2013) 
obtained inflation threshold of 22.5% for Zambia. Methodologically, Fielding et al., 
2004, and Mikkelsen and Peiris, 2005, employed VAR in their study of inflation. 
Barnichon and Peiris, 2008, employed the heterogeneous panel cointegration 
methodology and established the significant role of the output gap and the real 
money gap on the evaluation of inflation, with the money gap playing a larger role. 
Caporale, Carcel and Gil-Alana (2015) investigated inflation persistence and 
nonlinearity using fractional integration approach in five African countries such as 
Angola, Botswana, Lesotho, Namibia and South Africa and found nonlinear 
persistence in the case of Angola and Lesotho, while linear persistence was 
found in the remaining three countries. Boateng et al. (2017) investigated inflation 
persistence in Ghana and South Africa by using CPI inflation. The authors applied 
the fractional autoregressive moving average model with heteroscedasticity 
innovations. The results obtained showed evidence of mean reverting persistence 
with asymmetric effects of shocks on the conditional mean of CPI inflation of the 
two countries. In further enhancing inflation forecast precision, the incorporation 
of the mixed data sampling methodology was suggested (see Salisu and 
Ogbonna, 2017). Although this is yet to be applied in the African context, it has 
proven to significantly improve an economy’s inflation prediction, especially with 
regards to OECD member countries.  

Careful study on the dynamics of inflationary process in Africa will therefore 
help in the choice of policy models and estimation methods. There is still an 
ongoing debate on whether the inflation rate in Africa is a stationary I(0) or 
nonstationary I(1) process. As our contribution in this paper, we carried out 
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extensive time series analysis using fractional integration framework to 
investigate African inflationary persistence and nonlinearity.  

The methodological approach in this paper is hardly applied in investigating 
inflation dynamics and other economic time series. Following Granger and Hyung 
(2004) and Ohanissian et al. (2008), a process follows long range dependency if 
over a long time span, far apart observations are still strongly correlated with the 
current observations. The time processes in mean reverting series are not 
integrated of order 1 (non-stationary) but are integrated of fractional order less 
than 1 and the test of fractional order confirms that the I(1) hypothesis should be 
rejected. In economic theory, mean reversion means that the series can still 
revert itself to its mean level after the initial shock on the economy, as propelled 
by a high inflation rate. Nonstationarity in inflation rates means that shocks to 
inflation have a permanent effect and strong policies would be required by 
monetary/economic agencies to revert the inflation rate back to its mean level. 
Stationary or mean reverting inflation means that inflation incurs a lower cost for 
the monetary/economic agency in the pursuit of monetary policies (Cecchetti and 
Debelle, 2006). Stationarity/nonstationarity of the inflation rate is controversial, 
while many authors believe that the series follow I(0) stationary process based on 
the fact that the generating time series is log-price I(1). Other authors are of the 
opinion that the series is nonstationary I(1), and it should be included in the 
system of cointegrating variables (Gil-Alana, Shittu and Yaya, 2012). Using 
fractional persistence, inflation is neither I(0) nor I(1) but I(d), where d is a value 
between 0 and 1. Noting that long memory models overestimate the degree of 
persistence of the series in the presence of structural breaks (Ben Nasr et al., 
2014; Gil-Alana, Cunado and Gupta, 2015), and also, with the availability of long 
time series for many countries, these are very likely. Thus, we supplement our 
long memory model to accommodate for nonlinear deterministic trends as in 
Cuestas and Gil-Alana (2016)5. The approach employed Chebyshev polynomials 
in cosine function of time up to third orders in fractional persistence framework to 
determine nonlinearity in time series, in a smooth fashion, rather than an abrupt 
fashion as in Gil-Alana (2008).   

Gil-Alana, Shittu and Yaya (2012) analyzed Nigerian inflation rates using long 
range dependence in fractional integration incorporating structural breaks. In their 
results, they observed long memory behaviour in inflation rates with different 
periods of breaks. Gil-Alana, Yaya and Solademi (2016) examined unit roots, 
structural breaks and nonlinearity in inflation rates in G7 countries. Based on 
classical unit root decisions, the authors first observed inclusive results in the 
stationarity/nonstationarity of inflation rates in these countries. A test based on 
fractional unit root analysis showed nonstationarity I(1) process for inflation rates 
in the case of UK, Canada, France, Japan and the US, while in the case of Italy, 
evidence of I(d > 1) was observed and in the case of Germany, mean reversion 
was observed.  

Specifically, in this paper, we investigate long range dependency, mean 
reversion and nonlinearity in inflation dynamics of African countries using 
fractional persistence approach. This paper is the first, among many, investigating 

                                                           
5 It is a known fact that fractional persistence, nonlinearities and structural breaks are closely related 

properties in time series (see Diebold and Inoue, 2001; Kapetanios, Shin and Snell, 2003; Granger 
and Hyung, 2004; Gil-Alana, Cunado and Gupta, 2015). 
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unit root in African CPI inflation and inflation rates. The findings clearly expose 
readers to nonlinear dynamics of CPI, which has effect on the construct of 
cointegrating econometric models involving CPI inflation. Importance of time 
dynamics of inflation to monetary policy agents in Africa also gingered this write 
up. 

Following the introductory section, the rest of the paper is presented as 
follows: Section 2 presents fractional persistence framework for nonlinear 
deterministic trend. Section 3 presents the results and discussion while Section 4 
renders concluding remarks and policy implications. 

2.  Methodology 

A time series process  ,  0, 1, 2,...ty t     is integrated of order zero, (0)I , 

if it is a covariance stationary process with a spectral density function that is 

positive and finite at zero frequency. Thus, a process is integrated of order d  if it 

can be represented as, 

 1 ,     0, 1, 2,...
d

t tB y u t             (1) 

with 0ty   for 0t  , and 0d   where B  is the backward shift operator such 

that 
1t tBy y   and 

tu  is  0I  process. The parameter d  therefore determines 

the size of differences needed to render a series stationary  0I . Recall, in the 

case of classical unit integration, d  is restricted as integer, while in fractional 

persistence, a much richer degree of flexibility in the values of d is allowed.  

A very appealing case of fractional persistence is  0 0.5I d   time series 

process, known as long memory. In the sense that the spectral density function of 
the process is unbounded at the lowest frequency. By a way of time domain 

definition, let    ,t t hh y y   be the autocovariances at lag h  of the stationary 

process  ;  ty t , then the autocovariance of such long memory process is 

unbounded and infinite, that is, 

 
h

h




              (2) 

Thus, in terms of hyperbolic decay of autocovariances, 

   2 1

1

dh h h 
          (3) 
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As h  and  1 h  is a slowly varying function.6 

  

The values of fractional d  have many implications from both economic and 

statistical viewpoints. For example, if 0d   in equation (1), 
t ty u , the process 

ty  is then said to be  0I , stationary with autocovariances decaying 

exponentially. For 0 0.5d  , as in long memory process, the autocovariances 

as well as autocorrelations decay at much slower and hyperbolic rates compared 

to when 0d  . For 0.5 1d  , 
ty  becomes nonstationary as the variance of 

the partial sums increases in magnitude. In economic terms, 1d   implies that 

the series is “mean reverting”, in the sense that shocks to the series disappears in 

the long run, and the series reverts back to its mean level. For 1d  , this is a 

nonstationary stance, where the effect of any shocks to the series persists 
forever.  

Actually, the mean reversion case is relevant in the context of the inflation 
rate, since shocks imparts differently in the short and long run, depending on the 

value of the fractional differencing parameter d .  

Robinson (1994) incorporates equation (1) into the conventional regression 
model of the form, 

      ,     1 ,     0, 1, 2,...
d

t t t tx t y B y u t              (4) 

with equation (1), where 
tx  is now the observed time series,   and   are the 

coefficients corresponding to the intercept and a linear time trend. Since 
tu  is 

 0I , this allows the usage of a Whittle function in the frequency domain to 

compute the estimates of  ,   and the fractional differencing parameter d as 

well as the confidence intervals of the estimates. The approach tests the null 
hypothesis, 

      0:oH d d            (5) 

in equations (1) and (4) for a grid of real values 0d . Thus, the null model tested 

is, 

     ,     1 ,      1,  2,  ...od

t t t tx t y B y u t            (6) 

with  0I  disturbances.  

By considering the effects of structural breaks on the time series under 
investigation, we considered the smooth change rather than the abrupt change 

                                                           

6  A positive measurable function defined on some neighbourhood  ,a   of infinity is said to be slowly 

varying in Karamata’s sense if and only if for any 0c  ,    1 1cx x  converges to 1 as 

x tends to infinity (Palma, 2007). 
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implied by structural breaks.7 The Chebyshev polynomials in time were first used 
in the context of unit root in Bierens (1997) since the function is bounded and 
orthogonal, in cosine function of time. In the context of fractional persistence, 
Cuestas and Gil-Alana (2016) made the proposition. The testing regression 
framework is of the form, 

                
0

( ) ;     1, 2,...
m

t i iN t

i

x P t y t


           (7) 

where m is the order of the Chebyshev polynomials and ( )iNP t  is the Chebyshev 

polynomial, given as, 

 ( ) 2 cos 0.5 ,     1,2,..., ;    1,2,...iNP t i t N t N i             (8) 

with 
0 ( ) 1NP t   (see Gil-Alana, Cunado and Gupta, 2015; Yaya, Gil-Alana and 

Carcel, 2015; Gil-Alana, Yaya and Solademi, 2016 and Caporale, Carcel and Gil-
Alana, 2017 for some applications). Now, incorporating equation (8) in equation 
(7) with equation (1), we obtain simultaneously the fractional persistence estimate 

d along with nonlinear parameters 0 1 2, , , , m    . For 0m  , the entire model 

system contains only an intercept and a linear trend, while 1m   indicates 

a nonlinear model.  

By restricting ourselves to a case where 3m  , we have 
0 1 2, ,    and 

3 . 

Nonlinearity is observed when at least one of θ1, θ2, and θ3 is significant. The 
estimates of the regression here are tested using a Lagrange Multiplier (LM) test 
of the same form as in Robinson (1994). 

Results and discussion 

The data considered in this paper are the monthly consumer price index (CPI) 
of some selected African countries, obtained from the International Monetary 
Fund (IMF) website. The countries include: Burkina Faso (BKF), Cameroon 
(CAM), Cote D’Ivoire (COTE’D), Egypt (EGY), Ethiopia (ETH), Gambia (GMB), 
Ghana (GHN), Kenya (KNY), Madagascar (MADA), Mauritania (MAU), Morocco 
(MOR), Niger (NIGR), Nigeria (NGR), Senegal (SEN), South Africa (SA) and 
Swaziland (SWA). The series under consideration spans a 48-year period 
between January 1969 and December 2016, amounting to a sample size of 576.  

Plots of CPI inflation are given in Figure 1. Clearly, we observe an increasing 
trend in all the 16 plots with price stability between 1970 and 1975. There is a 
general upward movement of CPI in almost all the countries, with some 
noticeable upward shift around 1995 for some countries (see Burkina Faso (BKF), 
Cameroun (CAM), Cote D’Ivoire (COTE’D), Kenya (KNY), Niger (NIGR), Nigeria 
(NGR) and Senegal (SEN)). Between 1993 and 1994, CAM, COTE’D, NIGER, 
SEN and SA experienced a sharp increase in CPI, while late 2010 marked the 
                                                           
7 Ouliaris et al. (1989) proposed regular polynomials to approximate GDP data generating process. 
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index base year for all the countries, since this allows for easier comparison 
among the selected countries in Africa 
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Figure 1. Plots of African CPI inflation 

 

We consider the case of fractional persistence with linear trend, as proposed 

in Robinson (1994), using white noise,  1AR  and seasonal  1AR  

disturbances. The results are given in Table 1. In the three cases, the estimates 

of persistence d  are significant throughout, except in the cases of MADA, MAU 

and SA, where there were no convergence under  1AR  disturbances. In the 

case of the white noise disturbance assumption, only BKF indicated tendency of 

mean reversion (i.e. 1d  ), while explosive behaviours of 1d   were observed 

in the cases of CAM, COTE'D, EGY, ETH, GMB, GHN, KNY, MADA, MAU, NIGR, 
NGR, SEN and SA. Evidence of unit root was observed for MOR and SWA. By 

considering  1AR  disturbances, mean reversion is found in BKF, COTE'D, 

MOR and SEN, and evidence of 1d   is found in CAM, EGY, ETH, GMB, GHN, 

KNY, NIGR, NGR and SWA. With seasonal  1AR  disturbance, both BKF and 

MOR indicated mean reversion, while NIGR and SWA exhibited unit roots. The 

remaining countries experienced explosive behaviour of 1d  . Judging by the 

fractional persistence with linear trend result alone, one would conclude that 
inflation rates in the selected African countries might continue to drift farther from 
their mean level, without any possibility of naturally reverting to their mean level. 



126                                                                              O. S. Yaya, et al.: CPI inflation in Africa… 

 

 

Table 1. Fractional persistence with Linear Trend 

COUNTRIES WND AR(1) Seasonal AR(1) 

BKF 0.9214***a [0.0351] 0.8893***a [0.0651] 0.8993***a [0.0354] 

CAM 1.1146***b [0.0339] 1.1199***b [0.0585] 1.1098***b [0.0341] 

COTE’D 1.1135***b [0.0373] 0.9720***a [0.0703] 1.1031***b [0.0374] 

EGY 1.3911***b [0.0341] 1.3668***b [0.0508] 1.3753***b [0.0354] 

ETH 1.3926***b [0.0375] 1.2481***b [0.0574] 1.3783***b [0.0377] 

GMB 1.2570***b [0.0291] 1.3362***b [0.0457] 1.2361***b [0.0303] 

GHN 1.3372***b [0.0307] 1.3140***b [0.0419] 1.1935***b [0.0322] 

KNY 1.3180***b [0.0348] 1.2304***b [0.0351] 1.3050***b [0.0361] 

MADA 1.5990***b [0.0509] -NA- 1.5647***b [0.0507] 

MAU 1.1757***b [0.0360] -NA- 1.1581***b [0.0386] 

MOR 1.0310*** [0.0408] 0.8454***a [0.0447] 0.9969***a [0.0440] 

NIGR 1.1153***b [0.0413] 1.0911***b [0.0411] 1.0668*** [0.0409] 

NGR 1.3659***b [0.0310] 1.3609***b [0.0454] 1.3199***b [0.0317] 

SEN 1.1572***b [0.0414] 0.8200***a [0.0866] 1.1221***b [0.0404] 

SA 1.3280***b [0.0317] -NA- 1.3392***b [0.0365] 

SWA 1.0711*** [0.0250] 1.1538***b [0.0357] 1.0245*** [0.0092] 

Note: Each cell contains the estimated value for d with corresponding standard errors given in squared 
brackets. The ‘a’ indicates evidence of I(d) with d < 1, while ‘b’ indicates evidence of I(d) with d > 1. 
WND means White Noise Disturbance.  

*** denotes statistical significance at 1% level. NA means no convergence in the estimation. 

 

By considering nonlinear deterministic trend in the fractional persistence 
framework, thereby testing fractional persistence simultaneously with nonlinearity 
in CPI inflation, we found only BKF to experience mean reversion (see Tables 2 

and 3 for 3m   and 2m  , respectively), while unit roots were found in MOR 

and SWA, and the behaviours of the remaining 13 countries were found to be 
explosive. These results are summarized in Table 4. In terms of nonlinearity for 

3m  , we found significant evidence of nonlinearities in BKF, CAM, COTE'D, 

EGY, GMBIA, MAU, MOR, SEN, SA and SWA, while evidence of linearity was 

found in ETH, GHN, KNY, MADA, NIGR and NGR. Using 2m  , we observed 
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reduction in nonlinearity detection, as we observed BKF, CAM, COTE'D, MAU, 
MOR, SEN and SWA to be nonlinear. These results are summarized in Table 5. 

Table 2.  Nonlinear Fractional persistence based on Chebyshev Inequality for 

3m   

COUNTRY d̂  0̂  1̂  2̂  3̂  

BKF 0.9082***a [0.0358] -0.0118 [11.43] -29.8581*** [5.104] 0.8418 [2.826] -3.6135* [1.962] 

CAM 1.1124***b [0.0340] 0.0830 [15.36] -33.8404*** [8.870] 0.6447 [3.900] -1.9529 [2.484] 

COTE’D 1.1017***b [0.0382] -1.3753 [15.31] -34.0102*** [8.643] 2.2116 [3.838] -1.8622 [2.456] 

EGY 1.4128***b [0.0318] -123.333** [54.67] 61.1138* [36.93] -7.8413 [18.24] 5.8565 [9.877] 

ETH 1.3879***b [0.0382] 3.8651 [105.5] -30.2781 [68.86] 14.5224 [24.18] -16.8124 [13.70] 

GMB 1.2735***b [0.0293] -12.0803 [23.29] -25.1045* [14.91] 5.6864 [5.473] -2.7410 [3.268] 

GHN 1.3447***b [0.0309] -61.4146 [64.46] 12.9233 [41.87] 13.3147 [14.67] -6.3658 [8.490] 

KNY 1.3105***b [0.0364] -17.5846 [41.48] -21.4425 [26.76] 14.8487 [9.644] -6.8724 [9.644] 

MADA 1.6010***b [0.0507] -81.8681 [130.6] 28.5989 [87.63] 3.6018 [24.45] 0.6758 [12.49] 

MAU 1.1128***b [0.0415] 1.8902 [11.13] -35.7005*** [6.431] 8.9859 [2.821] -4.7569*** [1.796] 

MOR 0.9809***  [0.0455] -4.6256 [25.09] -31.9419*** [3.445] -2.9066* [1.758] -1.1612 [1.182] 

NIGR 1.1098***b [0.0417] -12.5872 [33.59] -26.5733 [19.23] 0.3892 [8.478] -5.5325 [5.405] 

NGR 1.3767***b [0.0311] -63.9076 [62.16] 12.6564 [12.59] 10.4945 [12.59] -2.7215 [7.235] 

SEN 1.1546***b [0.0418] -0.2727 [28.50] -31.0652* [17.29] -2.5864 [7.237] -2.4577 [4.532] 

SA 1.3398***b [0.0319] -16.3606 [21.52] -23.5638* [13.97] 7.4402 [4.892] -1.7994 [2.834] 

SWA 1.0396***  [0.0281] 3.1819 [18.04] -38.0410*** [6.456] 13.7196*** [3.077] -5.9384*** [3.077] 

Note: Each cell contains the estimated coefficient with corresponding standard errors given in squared 
brackets. ‘a’ indicates evidence of I(d) with d < 1, while ‘b’ indicates evidence of I(d) with d > 1.  

***, ** and * denote statistical significance at 1%, 5% and 10% levels, respectively. 



128                                                                              O. S. Yaya, et al.: CPI inflation in Africa… 

 

 

Table 3.  Nonlinear Fractional persistence based on Chebyshev Inequality for 

2m   

COUNTRY d̂  0̂  1̂  2̂  

BKF 0.9243***a [0.0344] -3.0395 [13.37] -30.1741*** [5.620] 0.8907 [3.058] 

CAM 1.1157***b [0.0337] -3.9965 [14.88] -33.0979*** [9.046] 0.6723 [3.965] 

COTE’D 1.1053***b [0.0378] -4.8150 [14.81] -33.5735*** [8.817] 2.2078 [3.907] 

EGY 1.4102***b [0.0320] -106.358** [48.53] 54.3631 [35.92] -7.2192 [17.33] 

ETH 1.3975***b [0.0377] -4.5106 [118.1] -37.0295 [79.04] 10.3473 [25.60] 

GMB 1.2786***b [0.0286] -18.8667 [22.63] -22.8764 [15.20] 5.4880 [5.604] 

GHN 1.3496***b [0.0301] -78.8250 [56.70] 19.4258 [38.79] 12.7245 [14.73] 

KNY 1.3216***b [0.0349] -35.5398 [43.63] -15.1124 [29.44] 14.2944 [10.18] 

MADA 1.6008***b [0.0506] -79.8863 [120.1] 27.8198 [83.53] 3.6559 [23.97] 

MAU 1.1528***b [0.0377] -7.5287 [12.80] -33.9124*** [8.134] 8.8778** [3.421] 

MOR 0.9897*** [0.0444] -8.5827 [52.72] -31.9241*** [3.632] -2.9077 [1.834] 

NIGR 1.1170***b [0.0408] -22.4837 [32.83] -25.1671 [19.98] 0.3935 [8.769] 

NGR 1.3788***b [0.0304] -71.5437 [54.34] 15.5853 [37.25] 10.2329 [12.66] 

SEN 1.1569***b [0.0415] -6.9309 [27.40] -29.1434* [17.45] -2.4043 [7.320] 

SA 1.3436***b [0.0313] -21.1572 [21.12] -21.8362 [14.35] 7.2951 [4.970] 

SWA 1.0683*** [0.0265] -8.7848 [14.91] -36.4636*** [7.714] 13.4972*** [3.545] 

Note: Each cell contains the estimated coefficient with corresponding standard errors given in squared 
brackets. ‘a’ indicates evidence of I(d) with d < 1, while ‘b’ indicates evidence of I(d) with d > 1. 

***, ** and * denote statistical significance at 1%, 5% and 10% levels, respectively. 

 

Table 4. Summary of the Results in terms of value of d 

 

Mean reversion 

 1d   

Unit roots 

 1d   

Explosive behaviour 

 1d   

White noise 
disturbances BKF MOR, SWA 

CAM, COTE’D, EGY, ETH, GMB, GHN, 
KNY, MADA, MAU, NIGER, NGR, SEN, 

SA 

AR (1) 

Disturbances 
BKF, COTE’D, 

MOR, SEN 
MADA, MAU, 

SA 
CAM, EGY, ETH, GMB, GHN, KNY, 

NIGR, NGR, SWA 

Seasonal AR (1) 

Disturbances BKF, MOR NIGR, SWA 
CAM, COTE’D, EGY, ETH, GMB, GHN, 

KNY, MADA, MAU, NGR, SEN, SA 

Nonlinear trend with 

3m   BKF MOR, SWA 

CAM, COTE’D, EGY, ETH, GMB, GHN, 
KNY, MADA, MAU, NIGR, NGR, SEN, 

SA 

Nonlinear trend with 

2m   BKF MOR, SWA 

CAM, COTE’D, EGY, ETH, GMB, GHN, 
KNY, MADA, MAU, NIGR, NGR, SEN, 

SA 
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Table 5. Summary of the Results in terms of Nonlinearities   

 Evidence of Nonlinearities No Evidence of Nonlinearities 

3m   
BKF, CAM, COTE’D, EGY, GMB, MAU, 

MOR, SEN, SA, SWA 
ETH, GHN, KNY, MADA, NIGR, NGR 

2m   
BKF, CAM, COTE’D, MAU, MOR, SEN, 

SWA 
EGY, ETH, GMB, GHN, KNY, MADA, 

NIGR, NGR, SA 

 

4.  Concluding Remarks and Policy 

In this paper, we have examined time behaviour of African inflation using CPI 
as an inflation proxy variable. We considered 16 African countries, with data in 
monthly frequency, spanning between January 1969 and December 2016. We 
considered memory property, fractional persistence and nonlinearity using a 
newly developed approach of Cuestas and Gil-Alana (2016). The main results 
indicated that African inflationary dynamics are mostly explosive and nonlinear, 
and strong policy intervention is required to bring inflation back to original trend 
levels in each of these countries. Thus, mean reversion is likely to occur in CPI 
inflation of Burkina Faso. In the choice of methodology for analyzing inflation in 
Africa, this work recommends careful selection of the estimation approach, 
particularly, in countries where nonlinearities are detected. 
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ABSTRACT

The paper presents an application of spatial microsimulation methods for
generating a synthetic population to estimate personal income in Poland in
2011 using census tables and EU-SILC 2011 microdata set. The first sec-
tion presents a research problem and a brief overview of modern estimation
methods in application to small domains with particular emphasis on spa-
tial microsimulation. The second section contains an overview of selected
synthetic population generation methods. In the last section personal in-
come estimation on NUTS 3 level is presented with special emphasis on
the quality of estimates.
Key words: data integration, spatial microsimulation, small area estima-
tion, synthetic data generation.

1. Introduction

Providing reliable, current and multidimensional information for local admin-
istrative units is one of the main tasks of official statistics. In particular, it is
important to support the state in the struggle against various undesirable so-
cial phenomena, such as monetary and non-monetary poverty. Information
about its size and spatial differentiation is very desirable. Providing detailed
spatial information on life quality indicators may contribute to a better redis-
tribution of income, as well as to indicate places where different types of
investments are needed.

To fulfill their obligations, statistical bodies carry out many sample sur-
veys on different socio-economic phenomena. One of the studies in which
the indicators of quality of life are measured is the European Union Statistics
on Income and Living Conditions (EU-SILC). The sample size in the EU-
SILC study, however, allows the aggregation of results at most at the level

1Poznań University of Economics and Business. E-mail: wojciech.roszka@ue.poznan.pl.
ORCID ID: http://orcid.org/0000-0003-4383-3259.
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of NUTS1, because direct2 estimates at lower levels of spatial aggregation
are characterized by an unacceptably large random error.

To increase the usability, in the context of obtaining estimates for small
domains, information from sample surveys, small area estimation methods
(indirect estimation, SAE) and administrative sources are often used. SAE
combines direct estimation with the so-called strength borrowing. Using ad-
ditional information from a different data source, small domain estimates
may characterize in smaller error. The results cannot be aggregated and
disaggregated freely though. They are just fixed numbers resulting from a
particular model. The estimators used in SAE usually improve the efficiency
of estimates for small domains (Rao 2003) and in Poland experimental work
has been done on the use of indirect estimation in poverty mapping, i.e. its
spatial differentiation (Wawrowski 2014, Szymkowiak et al. 2013). Adminis-
trative sources contain information on a large amount of individuals for ba-
sic socio-economics characteristics. Serving, however, other than statistical
purposes, a problem with coverage may appear (Penneck 2007; Walgren,
Walgren 2007). Also, their substantive content is less abundant compared
to sample surveys. And last but not least, there is a huge problem with data
confidentiality, which results in reluctance to disseminate them (Statistics
New Zealand 2006).

Combining advantages and reducing defects of methods discussed above,
spatial microsimulation modelling (SMM) is gaining more and more pop-
ularity. The aim of the SMM methods is to create a dataset containing
information on all units from a resulting population and a vector of many
socio-economic characteristics (Ballas et al. 2005, Tanton, Edwards 2013;
Rahman, Harding 2017; Rahman 2009; Tanton 2014; O’Donoghue 2014).
The creation involves integration of sample survey microdata and small do-
main census constraints. Using different reconstruction and reweighing al-
gorithms, synthetic units are being created in such a way that the true dis-
tribution of a real population small geographical units is reflected. Having a
multidimensional, full-coverage dataset not only small area estimation can
be performed but flexible aggregation and disaggregation is possible. In
the context of poverty, Eurostat has already undertaken the first works on
the use of EU-SILC for the construction of this type of pseudo-populations
(Alfons et al., 2011).

Microsimulation models are becoming more and more popular in the
SAE literature (Rahman, Harding 2017; Tanton, Edwards et al. 2013; Templ,

2e.g. Horvitz-Thompson (H-T) estimators.
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Filzmoser 2014; Tanton et al. 2011; Whitworth edt 2013; Rahman et al.
2010; Rahman 2009). Methods involving creation of pseudo-populations (or
synthetic populations) are ascribed to "geographic approach" towards small
area estimation (Rahman 2008; see Figure 1). The main idea of spatial
microsimulation is a creation of anonymised full-coverage synthetic dataset
with adequate variables and with marginal and joint distribution, which are
at least quasi-identical to reality (Templ et al. 2017).

Figure 1. Small area estimation methods in spatial microsimulation (after
Rahman 2008)
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The paper presents an application of methods for generating a synthetic
population. The aim of this study is to estimate personal income in Poland in
2011 using census tables and EU-SILC 2011 microdata set. In the first sec-
tion a research problem and a brief overview of modern estimation methods
in application to small domains with particular emphasis on spatial microsim-
ulation is presented . The second section contains an overview of selected
synthetic population generation methods. In the last section personal in-
come estimation on NUTS 3 level is presented with special emphasis on the
quality of estimates.

The resulting pseudo-population should satisfy the following conditions
(Münnich, Schürle 2003):

• the true distribution in terms of small geographical units should be re-
flected in the synthetic population,

• marginal and joint distribution between variables – the interdepen-
dence of true population – should be preserved,
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• heterogeneity in subpopulations should be reflected, especially in spa-
tial terms,

• simple units’ replication based on integer sample weights leads to a
reduction of variability. Hence, it should not be performed,

• data confidentiality must be ensured.

The complex dataset is synthesized by integration of two data types:

1. Survey sample microdata file - which contains comprehensive in-
formation about many socio-economic phenomena of persons and/or
households.

2. Census benchmarks (tables) - which deliver (implicitly) true frequen-
cies in small areas (domains).

The starting point of microsimulation is a construction of a microdata file
(Rahman 2009). Even if the data file is provided by a particular statistical
body, it is most likely burdened by non-random errors. The number of re-
fusals to respond increases every year. Also, item non-response problems
are often handled by imputation methods, which result in a model value
rather than a real one. To overcome these problems, new weights are cal-
culated based on census constraints and given sample weights. In another
step, the Monte-Carlo sampling is performed to create new close-to-reality
complex dataset.

Spatial microsimulation has a certain advantage over "traditional" statis-
tical models (where estimates are calculated only for a particular area). First
of all, having a complex microdata set allows a dynamic aggregation and dis-
saggregation of the data. The multidimensionality of resulting file gives the
opportunity of flexible estimation in terms of choice of a spatial scale. Data
integration approach in microsimulation uses the synergy effect, which links
the comprehensiveness of sample survey and the full-coverage of census.
And last but not least, with set of attributes stored as lists for each individual
it is possible to perform different simulations.

2. SMM methods overview

Spatial microsimulation methods can be divided into two subgroups (Rah-
man 2010): (1) synthetic reconstruction and (2) reweighting.
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2.1. Synthetic reconstruction

Synthetic reconstruction is a method where synthetic populations are re-
constructed in such a way that all small area census constraints are met.
Two techniques are introduced (Rahman 2008): data matching and iterative
proportional fitting.

Data matching is a mass imputation technique where on the basis o p-
dimensional vector of common variables units form a sample survey micro-
data file are matched with units in census microdata3 (vide Figure 1). When
personal identifiers are available in both files n sample units are determinis-
tically matched to its census counterparts (such an approach is called exact
matching). The rest of census units are matched with sample units using
non-parametric, parametric or mixed framework of probabilistic data match-
ing (for a detailed description of statistical matching methods see D’Orazio
et al. 2006 and Rässler 2002).

The iterative proportional fitting algorithm is an iterative procedure that
matches the n-dimensional table of sample frequencies to known population
benchmarks. Sample weights are calibrated to known sums from the entire
population.

A detailed description of IPF method can be found in (Norman 1999).
On the basis of original sample weights and expected frequencies the

inclusion probability is computed and units are randomly selected until the
expected numbers in census domains are reached. As in the case of data
matching, all q-dimensional vectors of attributes are automatically selected
(Templ et al. 2017).

2.2. Reweighting

The are two reweighting techniques in SMM - GREGWT (Generalized
Regression and Weighting) and combinatorial optimization (CO). Both are
widely used in spatial microsimulation models in small area estimation.

The GREGWT technique is one of the calibration methods. It is an itera-
tive process using the Newton-Raphson method of iteration. The algorithm
uses a constrained distance function known as the truncated chi-squared
distance function that is minimized subject to the calibration equations for
each small area (Rahman 2013). Generally speaking, the method produces
new weights according to known small domains counts in such a way that
the new weights are characterized by a minimum distance from the origi-

3Census microdata is usually obtained by disaggregation of published census tables.
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nal weights. The algorithm is described in detail in Tanton et al. (2011),
Rahman, Harding (2017) and Munoz et al. (2015).

The CO re-weighting method is motivated towards selecting an appro-
priate combination of units from survey data to attain the known constraints
at small area levels using an optimization tool (Voas, Williamson 2000;
Rahman et al. 2010; Williamson 2013; Rahman, Harding 2017). The CO
reweighing involves the following steps:

1. Collection of sample survey microdata and small area benchmark con-
straints.

2. Selection of a set of units randomly from the survey sample, which will
act an initial combination of units from a small area.

3. Tabulation of selected units and calculation of total absolute differ-
ences (TAD) from the known small area constraints:

TAD = ∑ |xi− x∗i |, (1)

where xi is a true value of x in i-th contingency cell and x∗i is a value
resulting from the created combination.

4. Choosing one of the selected units randomly and replacing it with a
new unit drawn at random from the survey sample, and then follow
step 3 for the new set of combination of units.

5. Repetition of step 4 until no further reduction in TAD is possible.

It is worth noting that with finite populations it is theoretically possible to
calculate all the combinations and find the one with the minimal possible
TAD. However, in practice, to fit a small area of 10 units out of 1000 in a
population one would have to calculate 2.63×1023 combinations. This is an
approximate number of grains of sand on Earth4 and the number of stars
in the observable universe according to European Space Agency5. In order
to overcome that obvious computational problem, the simulated annealing
(SA) probabilistic technique for approximating the global optimum of a given
function has been adapted to combinatorial optimization (Pham, Karaboga
2000). SA is a type of a heuristic algorithm that searches the space of alter-
native problem solutions to find the best solutions. The mode of operation

4Wolfram Alpha provides that this number varies from 1020 to 1024.
5https://www.esa.int/Our_Activities/Space_Science/Herschel/How_many_stars_

are_there_in_the_Universe (access from 15.08.2018)
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of the simulated annealing is similar to the annealing in the metallurgy (for
details see Rahman, Harding 2017).

2.3. Quality assessment

The quality of the obtained synthetic population is assessed mainly by com-
parison to the real, known values. No standardized variance estimation
method has been developed yet (Rahmnan, Harding 2017). In most cases
the quality assessment is carried out in two stages (Rahman, Harding 2017;
Templ et al. 2017; Templ, Filzmoser 2014; Alfons et al. 2011). Firstly, the
internal validation is performed. Marginal and joint distributions of census
variables are compared to those in the synthetic dataset. Also, the dis-
tribution of the target variable in the synthetic dataset is compared to the
distribution in the sample.

If internal validation is passed, the synthetic population estimates are
compared to real values known from other sources. To perform inference
about the lack of differences between the synthetic population estimates and
real values the use of standard significance tests was proposed (Williamson
2013; Templ et al.. 2017). Such an approach, although methodologically
correct, has some disadvantages. First of all, the use of population size in
test statistics may lead to rejecting null hypothesis even with very low differ-
ences due to the "artificial" increase of test statistics’ value. Subsequently,
having real values of the estimated variables puts into question the meaning
of conducting the microsimulation – the goal is to estimate unknown values.
And third, using parametric tests the assumptions about the normality of dis-
tributions are omitted (not to say ignored). Still, work on estimating standard
errors and the properties of SMM estimators is ongoing (Goedemé 2013;
Whitworth et al. 2016).

3. Empirical study

The main aim of the empirical study was to estimate personal net income
in terms of 72 NUTS 3 geographical units on the basis of EU-SILC study
in Poland. Such estimates are unavailable due to insufficient size of the
sample in these areas. The secondary goal is to verify the suitability of the
discussed methods in the estimates for small domains for socio-economic
issues in Poland. Due to the conduct of census, the year 2011 was selected
as the year of the study.

In 2011 in EU-SILC 12871 households were surveyed, in which 36720
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inhabitants lived. There were 30421 people for whom income was mea-
sured6 (also economic status and education level). Such a sample size
allowed publishing the results at the level of NUTS 1 only. Publications in-
cluding estimates at lower levels had an experimental character and are not
considered official estimates of official statistics (Szymkowiak et al. 2017).

The EU-SILC microdata included 19 variables selected for the study (see
Table 1). Variables SYMTER and KLM were added by the Polish NSI to fa-
cilitate spatial analysis. Variables PY010N – PY140N contained information
about the size of different sources of net income (in e per year7). For the
purpose of the study, after summing up all sources of income and creat-
ing a nIncome variable, the variables were dichotomized in such a way that
they took a value of 1 for non-zero values and 0 otherwise. Census tables
contained joint distributions estimated by National Census of Population and
Housing 2011 of NUTS 3 × gender × age.

Figure 2. Structure of the study

Source: Templ et al. (2017)

6At the age of 16 years and more.
7The previous year was the reference period.
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Table 1. Variables in the study

Variable Definition
SYMTER Symbol of territorial unit
RB090 Gender
RX010 Age at the time of interview
PL031 Self-defined economic status
PE040 Highest ISCED level attained
KLM Class of place of residence
PY010N Net employee cash or near cash income
PY020N Net Non-Cash employee income
PY021N Company car
PY035N Contributions to individual pension plans
PY050N Net cash benefits/losses from self-employment
PY080N Regular pension from private plans
PY090N Unemployment benefits
PY100N Old-age benefits
PY110N Survivor benefits
PY120N Sickness benefits
PY130N Disability benefits
PY140N Education-related allowances
nIncome Total net personal income (sum of "PY" vars)

The plan of the study (see Figure 2) starts with the calibration of original
EU-SILC sample weights given census constraints using IPF algorithm in
the first step. In the second step, on the basis of the calibrated weights, the
units are replicated through sampling. The probability of unit being selected
is an inverse of the calibrated weight. The units are drawn until census con-
straints are met. Next, the target variable is modelled. In order to overcome
a very likely situations where category appears in the population but not in
the sample data, categories are estimated by conditional probabilities using
multinomial logistic regression (Alfons et al. 2011). One categorical variable
is simulated as follows:

1. Simulated variable is selected from sample S. Independent variables
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must be present in both sample S and population U ,

S =


x1,1 x1,2 . . . x1, j x1,p+1

x2,1 x2,2 . . . x2, j x2,p+1
...

...
...

...
...

xn,1 xn,2 . . . xn, j xn,p+1


where i = 1, . . . ,n are sample units and k = 1, . . . , j is the number of
variables. X1 to X j is an independent variable vector and Xp+1 is the
target (dependent) variable.

2. The model is estimated in every small area using sample S units. As a
result β coefficients are obtained.

3. For every i = 1, . . . ,N unit of the selected variable, new outcome cate-
gory is predicted. The conditional probability of selecting r-th category
for each i-th x̂∗i, j+1 is:
p̂i1 =

1
1+∑

R
r=2 exp(β̂0r+β̂1r x̂i,1+···+β̂ jr x̂i,1)

,

p̂ir =
exp(β̂0r+β̂1r x̂i,1+···+β̂ jr x̂i,1)

1+∑
R
r=2 exp(β̂0r+β̂1r x̂i,1+···+β̂ jr x̂i,1)

,

where r = 2, . . . ,R and β̂0r, . . . , β̂ jr are the estimates of multinomial lo-
gistic regression model. The new x̂∗i, j+1 values are computed.

4. The population U is:

U =


x̂1,1 x̂1,2 . . . x̂1, j x̂∗1, j+1
x̂2,1 x̂2,2 . . . x̂2, j x̂∗2, j+1

...
...

...
...

...
x̂N,1 x̂N,2 . . . x̂N, j x̂∗N, j+1

 .

Such an approach minimizes the appearance of the so-called random ze-
roes (domains that exist in the population but did not occur in the sample).

For continuous variables one of the suggested approaches (Templ et al.
2017) involves the following:

1 Dependent x j+1 in discretized is y j+1 by creating R cut-off values c1 ≤
. . .≤ cR:

y =


1 if c1 ≤ xi j < c2,

2 if c2 ≤ xi j < c3,
...

...
R if cR−1 ≤ xi j ≤ cR.
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2 Multinomial logistic regression model (the same as for categorical vari-
ables) is estimated with the dependent variable y j+1 and the indepen-
dent variables vector x1,x2, . . . ,x j for each k-th domain (small area) sep-
arately.

3 Within each r-th class estimates x̂ are drawn from a uniform distribution
with boundaries of classes as parameters. The exception is the last
class, where due to outliers values are drawn using generalized Pareto
distribution:

x̂∗i, j+1 ≈
{

U(cr,cr+1) if ŷi = r and 1≤ r ≤ R−1,
GPD(µ,σ ,ξ ,x) if ŷi = R.

With replicated units and modelled values of the target variable(s), the popu-
lation is once again reweighed to known small domain constraints using CO
algorithm. The relocation of units in domains is necessary when a perfect
match is required.The replication of units using IPF weights does not meet
the constraints exactly due to the random process of replication. After re-
weighting, the final synthetic population is ready for quality assessment and
then for estimation.

As a result a synthetic dataset of 38,113,162 individuals in Poland was
created. Every unit was described by a vector of variables listed in Table 1.

The internal validation was largely descriptive and performed in two stages.
In the first stage, marginal and joint distributions of matching variables were
compared. The comparison was conducted using mosaic plots representing
differences in joint distribution of sample and synthetic estimates in the form
of a three-dimensional contingency table, which presents the relative differ-
ences between them. Due to the lack of official statistics for net personal
income, the estimates obtained were compared to the annual average gross
salary8 in terms of subregions for 20109.

The distributions of selected matching variables in the sample and syn-
thetic populations are largely consistent (see Figure 3 and 4). Figure 3
shows differences in the joint distribution of the variables: sex, self-defined
economic status and highest ISCED level attained10. Relatively small differ-
ences prevailed (colours derived from green, yellow and pink) – up to 2%.
The biggest differences prevailed in the smallest domains - which was to be

8Treated as a proxy variable.
9The reference year for income in EU-SILC 2011

10jsol – junior secondary or lower; sapn – secondary and post-secondary non-tertiary; t –
tertiary
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expected, as the less frequent domains are characterized by a greater error
of estimate. It should also be noted that the highest observed difference
(unemployed women with secondary and post-secondary non-tertiary edu-
cation level) did not exceed 4.6%, which can be considered a good result.

Figure 4 shows differences in the distribution in terms of sex, age and
self-defined economic status11. The differences in this case were greater
due to the much smaller domains determined by the analyzed variables.
However, it should be noted that the vast majority of them were character-
ized by a difference up to 4.6%, which should be regarded as a good result
with these relatively small domains. The biggest error (unemployed women
aged 16-19) was 16%, but it was characterized by one of the smallest do-
mains.

11w – working; u – unemployed; i – inactive
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Figure 3. Differences in joint distribution of gender, self-defined economic
status and highest ISCED level

Figure 4. Differences in joint distribution of gender, age groups and
self-defined economic status

The distribution of net personal income in terms of the self-defined eco-
nomic status is largely consistent in the sample (blue line) and synthetic
population (pink line; see Figure 5). A similar situation is observed in other
domains.
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Figure 5. Distribution of net personal income in terms of self-defined
economic status

The spatial distribution of mean personal income is consistent with gen-
eral knowledge (see Figure 7 and Figure 8). One can distinguish 5 areas of
relatively high income. The first is Warsaw (with estimated average yearly
personal net income equal to 7529.7 e; see Figure 9), which is the centre of
services and financiers in Poland, and its surroundings (subregion Warsaw
West - 4926.8 e and Warsaw East - 4600.9 e), which are often referred to
as the bedroom of the capital and their inhabitants largely work in Warsaw.
Secondly, one can mention Poznań (6216.5 e), Tri-City (5841.5 e), Cracow
(5756.7 e), Wroclaw (5685.5 e) and Legnica with Głogów in one subregion
(5484.8 e; this subregion "crept" between large urban centres due to the
location of a huge mining conglomerate). Upper Silesia, where many mines
and industrial plants are located, is one of the richest areas in Poland. Al-
though none of its subregions found themselves in the top six, 7 of them are
in the top twenty. In the top 25 there were almost all large urban centres
and their neighbourhoods. One can also notice the disproportion of income
in spatial terms. The east is poorer than the west. Ten subregions with the
lowest average income12 are in the east with the values between 2803.8 e
and 3535.6 e.

Figure 7. Means personal income in terms of NUTS 3 geographical units

12nowosądecki, puławski, ostrołęcki, przemyski, chełmsko-zamojski, bialski, krośnieński,
tarnowski, nowotarski, sandomiersko-jędrzejowski.
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Figure 8. Estimated personal net income in terms of subregions

The comparison of the results with actual values is not possible. No data
on personal income in terms of NUTS 3 (or any) spatial units is published.
For the needs of the study the estimated mean personal net income was
compared to the average yearly gross salary (excluding economic entities
employing up to 9 persons), for which official statistics on the level of NUTS
3 are published (data are collected from monthly corporate reporting). The
average salary was used as a proxy variable, which is correlated with the
target variable thus it can serve as a reference point when trying to assess
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the quality of the estimates. Salary is also one of the main components of
personal income (for working people), so the definitions are similar.

As expected, the variables are strongly correlated with r=0.813 (see Fig-
ure 913). This means that the estimates of the average net personal income
in terms of subregions are convergent with reality.

Figure 9. Correlation diagram of estimated mean personal net income and
average yearly gross salary in 2010 in subregions cross-section

The set of data created by spatial microsimulation techniques satisfac-
torily reflects the spatial distribution of the average annual net personal in-
come in Poland. It also indicates the need to develop further techniques for
assessing the quality of estimates.

4. Conclusions

Spatial microsimulation modeling satisfactorily reflected the spatial distribu-
tion of net personal income in Poland. The resulting synthetic population
was characterized by consistent distributions, both spatial and joint. The
main problem with the described methodology is inability to estimate the
variance of estimators. This causes not only doubts about the legitimacy
of using this method, but also prevents the comparison of results with other
SAE estimators. The use of multiple data sources may cause overlapping

13The big difference in the size of personal income and remuneration is due to the fact that
income is also calculated for the unemployed and inactive people, for whom the income is
low, and zero in many cases.
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with errors that accompany them. Random and non-random errors of the
sample survey, possible coverage and administrative measurement errors
of administrative data sources, discrepancy between census measurement
and sample frame used in samples, spatial microsimulation model misspec-
ification - all this (and more) affects the results and many are very difficult to
recognize and verify. Reliable description of the properties of estimators is
the most important task at the moment.

Nevertheless, the results of this and many other studies show that SMM
is a good development direction of SAE methodology for socio-economic
phenomena. Getting a full data matrix creates opportunities that have not
been offered by any popular methods so far. This is particularly important
when studying socio-economic phenomena of vital importance, like poverty,
income, housing stress (and Laeken indicators), which are not the subject
of any other research. Solving the problem of sample size, correction of
random and non-random errors, the possibility of performing different simu-
lations - these are undoubted advantages of the SMM methods that encour-
age to deepen the work and analysis of the effectiveness and reliability of
the estimates.
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POWER GENERALIZATION OF CHEBYSHEV’S 
INEQUALITY – MULTIVARIATE CASE 

Katarzyna Budny 1 

ABSTRACT 

In the paper some multivariate power generalizations of Chebyshev’s inequality 
and their improvements will be presented with extension to a random vector with 
singular covariance matrix. Moreover, for these generalizations, the cases of the 
multivariate normal and the multivariate t distributions will be considered. 
Additionally, some financial application will be presented. 

Key words: multivariate Chebyshev’s inequality, Mahalanobis distance, 
multivariate normal distribution, multivariate t distribution. 

1.  Introduction 

Chebyshev’s inequality yields a bound on the probability of a univariate 
random variable taking values close to the mean expressed by its variance. 
Pearson (1919) proposed its univariate power generalization presenting bounds 
by the central moments of a random variable of even orders. 
 

Theorem 1.1. (Pearson, 1919). If we take a random variable R:  with 

finite central moments of 2s order  s2 , then for all 0  

  
ss

sEP
22

2




  .                                     (1.1) 

There also exist multivariate generalizations of Chebyshev’s inequality (see, 
e.g. Olkin and Pratt, 1958, Marshall and Olkin, 1960, Osiewalski and Tatar, 1999). 

In the paper we present one of those providing upper bounds on the 
probability that the Mahalanobis distance of a random vector from its mean is 
greater or equal than the fixed value. These bounds will be given by the power 
transformations and will constitute the multivariate extension of (1.1).  

There are many applications of the Mahalanobis distance in statistical 
analysis. In particular, this is used in classification methods and in cluster 
analysis. The multivariate power generalization of Chebyshev’s inequality 
presented below can be exploited to detect outliers. 
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2. Multivariate power generalization of Chebyshev’s inequality  

We begin by recalling the inequality which is given by the measure of 
multivariate kurtosis. 
 

Theorem 2.1. (Mardia, 1970) Let 
nR:X  be a random vector with 

nonsingular covariance matrix   and finite fourth–order moments. Then, for any 

0 the following inequality holds 

        
2

,21






X
XXXX

nT
EEP   ,                     (2.1) 

where         




   21

,2 XXXXX EEE
T

n   is Mardia’s kurtosis of a 

random vector (Mardia, 1970). 

Chen (2007, 2011) proposed a tight upper bound (see Navarro, 2014) in the 
case of a random vector for which only mean and covariance matrix are known. 
 

Theorem 2.2. (Chen, 2007, Chen, 2011) Assume that 
nR:X  is a random 

vector with positive covariance matrix  . Then, for all 0  we get 

      



n

EEP
T

 
XXXX

1 .                          (2.2) 

Budny (2014) obtained the multivariate power generalization of Chebyshev’s 
inequality. 
 

Theorem 2.3. (Budny, 2014) Suppose that 
nR:X  is a random vector with 

nonsingular covariance matrix  . Let us consider any 0s  such that 

        




   sT

ns EEEI XXXXX
1

,   

exists. Then, for all 0  

        
s

nsT I
EEP




X
XXXX

,1   .                       (2.3) 

 
Remark 2.1. (Budny, 2014) Observe that theorems 2.1 and 2.2 can be 

considered as the special cases of theorem 2.3. Taking 1s  we get (2.2) and for 

2s  we obtain (2.1). 

Budny (2016), following Navarro (2016), extended (2.3) to the case of 
a random vector with singular covariance matrix by using the spectral 
decomposition. 
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Assume that nR:X  is a random vector with covariance matrix  , 

mrank ,  nm ,...,1 . Let 
TPP  be a spectral decomposition of 

a covariance matrix, i.e. P  is an orthogonal matrix such that n
TT IPPPP   

and  0,...,0,,...,diag 1 m  is the diagonal matrix with the ordered eigenvalues 

0...... 11   nmm  . 

Hence, the Moore-Penrose generalized inverse matrix of   is of the form 
TPCP , where  0,...,0,,...,diag 11

1
 mC  . 

Let us consider any 0s  such that 

        




   sT

ms EEEI XXXXX ,  

exists.  
 

Theorem 2.4. (Budny, 2016) Under the above assumptions, for any 0 , we 

have 

        
s

msT I
EEP




X
XXXX

,
  .                    (2.4) 

We will denote by S  the set of all 0s  such that  XmsI ,  exists. Let us 

define, for fixed 0 , the function  RSBd : : 

 

 
 
s

msI
sBd



X,
 ,      Ss . 

It is easily seen that for Sss 21,  if 21 ss  , then the following conditions are 

equivalent: 

   21 sBdsBd              
 

 

12

1

2

1

,

,
ss

ms

ms

I

I 
















X

X
  

and 

   21 sBdsBd            
 

 

12

1

2

1

,

,
0

ss

ms

ms

I

I 
















X

X
 . 

 
Summarizing, we get following remark.  
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Remark 2.2. For Sss 21,  if 21 ss  , then the upper bound  2sBd  of  

       
XXXX EEP

T
  is better than  1sBd  for all 

 

 

12

1

2

1

,

,
ss

ms

ms

I

I 
















X

X
 . On the contrary, the upper bound  1sBd  is better than 

 2sBd  for all 
 

 































 12

1

2

1

,

,
,0

ss

ms

ms

I

I

X

X
 .  

In particular, if we consider 11 s , 22 s  and nrank , then the upper 

bound  2sBd  is better than  1sBd  for all 
 

n

n X,2
  . Conversely, the upper 

bound  1sBd  is better than  2sBd  for all 
 













n

n X,2
,0


 . 

3. The case of the multivariate normal distribution 

Budny (2016) proposed the form of the multivariate power generalization of 

Chebyshev’s inequality for a normally distributed random vector for all  0\Ns . 

In the next theorem we extend this result to the case of any real 0s . 

 

Theorem 3.1. Let 
nR:X  be a normally distributed random vector with 

mean   and covariance matrix  ,  ,nN~X . Suppose that mrank , 

 nm ,...,1 . Then, for all 0  and 0s  we obtain 

        XX 
T

P






























2

22

m

s
m

s


.                   (3.1) 

Proof: The proof is similar to that presented for theorem 3.1 in Budny (2016). 
A slight change is that we consider sth uncorrected moment (sth moment about 

zero) of a chi-square distribution with m degrees of freedom for any real 0s  

(not only for  0\Ns ). Hence, for 0s : 

 






















2

2
2

,
m

s
m

I

s

ms X  

(Johnson, Kotz and Balakrishnan, 1994, p. 420) and it completes the proof. 
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Remark 3.1. For  0\Ns  the inequality (3.1) takes the following form 

         
s

T smmm
P




12...2 
 

XX      (Budny, 2016). 

 
 

Remark 3.2. On account of remark 2.2, if 21 ss  , then the upper bound  2sBd  

is better than  1sBd  for all 
12

1

12
22

2
ss

s
m

s
m 


























 . Conversely, 

the upper bound  1sBd  is better than  2sBd  for all 












































 12

1

12
22

2,0
ss

s
m

s
m

 . 

 

Particularly if we take 11 s  and 22 s , then the upper bound  2sBd  is 

better than  1sBd  for all 2 m . Conversely, the upper bound  1sBd  is 

better than  2sBd  for all  2,0  m . 

 
 

Example 3.1. Let us consider normally distributed random vector 
nR:X  

with mean   and covariance matrix  ,  ,nN~X . Assume that 

3rank  m .  

A random variable      
XX 

T
 has a chi-square distribution with m 

degrees of freedom (Kotz, Balakrishnan and Johnson, 2000, p. 110, Budny, 

2016), hence we know the exact value of P .  

From remark 3.2 for 11 s  and 22 s  we get that the upper bound  2sBd  is 

better than  1sBd  for all 52  m  and the upper bound  1sBd  is better 

than  2sBd  for all  5,0  (see Figure 3.1). 



160                                                          K. Budny: Power generalization of Chebyshev’s… 

 

 

 

 

Figure 3.1. The upper bounds ( 1s , 2s ) and exact value of P  for 

 ,~ nNX , rank 3 . 

In turn Figure 3.2 shows the upper bounds of       
XX

1
T

P  for 

various values of s . 
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Figure 3.2.  The upper bounds ( 5.0s , 1s , 2s , 4s ) and exact value of P  for 

     ,~ nNX , rank 3 . 

4. The case of the multivariate t distribution  

A n variate random vector 
nR:X  is said to have multivariate t 

distribution with degrees of freedom  , mean   and nonsingular covariance 

matrix R
2


, 2 , denoted by  nt ,,R , if its joint probability density 

function (pdf) is given by 
 

 
 

   
  2/

1

2/12/

1
1

2
πν

2
n

T

n

xRx

R

n

xf
































 











     nRx . 

If  nt ,,~ RX  , then the random variable 
   

n

T








XRX
1

 has 

a central F-distribution with n ,  degrees of freedom,   ,~ nF  (Lin, 1972).  
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It follows that for any 
2


s  we get 

 















































22

22








n

ss
n

n
E

s

s                                  (4.1) 

(Johnson, Kotz and Balakrishnan, 1995, p. 349). 

The power generalization of Chebyshev’s inequality for multivariate t 
distribution is established by our next theorem. 
 

Theorem 4.1. Assume that  nt ,,~ RX  , rank nR . Then, for any 0  the 

inequality  3.2  takes the following form 

    











































 
 

22

2221















n

ss
n

P

s
T

XX         (4.2) 

for any 0s  such that 
2


s . 

Proof: We first observe that 
11 2  

 R



 . From this it is obvious that 

   ss

s

ns EnI 











 


2
, X .                      (4.3) 

Substituting (4.1) into  (4.3) yields 

   







































22

22
2,






n

ss
n

I
s

ns X .                 (4.4) 

This establishes the inequality  (4.2). 
 

Remark 4.1. For  0\Ns , 
2


s  from  4.4  we get  

 
      

     svvv

snnnv
I

s

ns
2...42

12...22
,




X .                 (4.5) 

Hence, the inequality (4.2) is of the form 

         
     svvv

snnn
P

s

T

2...42

12...22
XX 1











 
 




  . 
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Remark 4.2. According to remark 2.2, if 
2

21


 ss , then the upper bound 

 2sBd  is better than  1sBd  for all  

12

1

11

22

22

22
2

ss

ss
n

ss
n 






























































 .  

 

On the contrary, the upper bound  1sBd  is better than  2sBd  for all 

 

 

















































































 12

1

11

22

22

22
2,0

ss

ss
n

ss
n





 . 

 

In particular, if we consider 11 s , 22 s  and 4v , then from (4.5) the 

upper bound  2sBd  is better than  1sBd  for all 
   

 4

22






v

nv
 . Conversely, 

the upper bound  1sBd  is better than  2sBd  for all 
   

  













4

22
,0

v

nv
 . 

 
 

Example 4.1. We will consider a random vector 
3: RX  that has multivariate 

t distribution with degrees of freedom 9 ,  3,,~ 9 RX t , rank 3R . Let us 

observe that 

        
  























nv

v

n
PP

T
T

2

1
1 


XRX

XX  , 

thus we know the exact value of P . For 11 s  and 22 s  we get 

   
 

7
4

22
0 






v

nv
 . From this it follows that the upper bound  2sBd  is better 

than  1sBd  for all 7  and the upper bound  1sBd  is better than  2sBd  for 

all  7,0  (see Figure 4.1). 
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Figure 4.1.  The upper bounds ( 1s , 2s ) and exact value of P  for    

     3,,~ 9 RX t . 

 

The next figure presents the upper bounds of       
XX

1
T

P  for 

various values of 5.4
2



s . 
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Figure 4.2.  The upper bounds ( 5.0s , 1s , 2s , 4s ) and exact value of P  for 

     3,,~ 9 RX t . 

5.  Improvement of some multivariate power generalization of 
Chebyshev’s inequality – extension to a random vector with 
a  singular covariance matrix 

In this section we will consider some improvement of multivariate power 
generalization of Chebyshev’s inequality. We should mention that this 
improvement will be given by restricting the range of  , it means for   sufficiently 

large. 

Loperfido (2014) proposed improvement of the inequality (2.4) for 2s  in the 

case of a random vector with nonsingular covariance matrix. 
 

Theorem 5.1. (Loperfido, 2014) Let  Xn,2  be Mardia’s kurtosis of a random 

vector 
nR:X  with nonsingular covariance matrix   and finite fourth–order 

moments. Then for any n  the following inequalities hold 
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
  .       (5.1)  

In the next theorem we will extend (5.1) to the case of a random vector with 
singular covariance matrix. 
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Theorem 5.2. Assume that 
nR:X  is a random vector with covariance 

matrix  , mrank ,  nm ,...,1 . Let Y  denote the random variable 

     XXXX EEY
T

  . Let us consider Y  such that    2
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Proof: At the beginning we should mention that the proof will be similar to that 

presented in Loperfido (Loperfido 2014, proof of Theorem 1) for 2s .  

We first consider the random variable      22
,2 mImmYZ m  X . 

Let us observe that  
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This gives that expected value of a nonnegative random variable 
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exists for all m  and takes the form  
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inequality implies that 

 
 

 X

X

m

m

Im

mI
WP

,2
2

2
,2

2
1







. 

The assumption m , in turn, leads to equality    1 WPYP  . 

Indeed, the set   YD  takes the form  mmYD   . It follows that for 

m : 

        XX mm ImmImmYD ,2
22

,2 2   . 

Thus, from Jensen’s inequality we have: 
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To prove the second inequality    
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which holds for all m , since   2
,2 mI m X . 

 

Remark 5.1. If nm rank , then 
1    and    XX nmI ,2,2  . Hence, 

we obtain the inequalities  1.5 . 

 

Remark 5.2. Let 
nR:X  be normally distributed random vector with mean 

  and covariance matrix  ,  ,nN~X . Assume that mrank , 

 nm ,...,1 . Then, for any m  we get: 
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We will illustrate the improvement  (5.3) for 3m with Figure 5.1. 

 

 
 

Figure 5.1.  The upper bound 2s , its improvement and exact value of P  for  

     ,~ nNX , 3rank  . 
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Remark 5.3. Let us consider  nt ,,~ RX  , rank nR , 4v . Then, from (4.5) 

for any n  the inequalities (5.1) take the following form 
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As the example, we will consider a 3 -variate random vector  3,,~ 9 RX t , 

rank 3R  (see example 4.1). The inequalities (5.4) are presented in Figure 5.2. 

 
 

 

 

Figure 5.2.  The upper bound 2s , its improvement and exact value of P  for  

     3,,~ 9 RX t . 
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6. Applications in finance 

Let us take a random vector tr  of n assets returns on a specific day t  with 

mean   (sample mean vector of historical returns) and covariance matrix   

(sample covariance matrix of historical returns). Kritzman and Li (2010) propose 
to use the Mahalanobis distance as a measure of financial turbulence, which is 
understood as occurrence of unusual multivariate financial data. They defined 
(the so-called “the turbulence index”) turbulence for a particular time t  as: 

     
t

T

tt rrd 1 . 

In the examples presented in section 3 and 4, for any 0 , we know the 

exact value of       
t

T

tt rrdP 1 . In the general case, this 

probability may not be easy to compute and if we are able to calculate the upper 

bounds  2.5 , then we can estimate the exact value of P.  

Other financial applications of the Mahalanobis distance were presented by 
Stöckl and Hanke (2014). 
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DECOMPOSITION OF GENDER WAGE GAP IN POLAND 
USING COUNTERFACTUAL DISTRIBUTION WITH SAMPLE 

SELECTION 

Joanna Małgorzata Landmesser1 

ABSTRACT 

In the paper, we compare income distributions in Poland taking into account 
gender differences. The gender pay gap can only be partially explained by 
differences in men’s and women’s characteristics. The unexplained part of the gap 
is usually attributed to the wage discrimination. The objective of this study is to 
extend the Oaxaca-Blinder decomposition procedure to different quantile points 
along the income distribution. We use the RIF-regression method to describe 
differences between the incomes of men and women along the two distributions 
and to evaluate the strength of the influence of personal characteristics on the 
various parts of the income distributions. As the sample selection is a serious 
issue for the study, therefore our decomposition approach will be adjusted for 
sample selection problems. The results suggest not only differences in the income 
gap along the income distribution (in particular sticky floor and glass ceiling), but 
also differences in the contribution of selection effects to the pay gap at different 
quantiles. The analysis is based on data from the EU-SILC data for Poland in 
2014. 

Key words: gender wage gap, sample selection, decomposition of income 

inequalities. 

1.  Introduction 

Gender differences in pay are a well-known phenomenon of labour markets. 
Also, researchers investigating the wage gap in Poland have found significant 
gender differences. Goraus, Tyrowicz and van der Velde (2017) report that the 
raw wage gap is around 10% and the adjusted pay gap estimates oscillate 
between 14% and 24% depending on the method of calculation. All studies 
indicate that women are paid only a part of what men with similar demographic 
characteristic, family situations, working hours, educational levels and work 
experience are paid. Goraus and Tyrowicz (2014) studied the gender wage gap in 
Poland using the Labour Force Survey data covering the time span of 1995–
2012. The raw gap was highest in the first and last five years of the analyzed 
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period and amounted to around 15% of average females’ wages. In the year 1999 
the gap started decreasing and reached the level of around 2% in the years 2003 
and 2004. Then the gap was increasing until it reached its previous level. 
The lowest levels of wage gap were observed after economic downturn in Poland. 
The adjusted gender wage gap was twice as high as the raw gender wage gap. 
The authors suggested that the adjusted gender wage gap has cyclical properties 
and it conforms to the bahaviour of unit labour costs - the more lax the labour 
market conditions, the higher the chances for women to be less unequally 
compensated. 

According to the annual Global Gender Gap Report from the World Economic 
Forum (2018) women around the world earn about 20-30 percent less on average 
than their male counterparts. The inequalities between the sexes had closed by 
only a small amount in the past years. The largest gaps exist in politics, 
healthcare and education. A meta-analysis by Weichselbaumer and Winter-
Ebmer (2005) of more than 260 published pay gap studies for over 60 countries 
found that, from the 1960s to the 1990s, raw wage differentials worldwide fell 
substantially from around 65% to 30%. The bulk of this decline was due to better 
labour market endowments of women (i.e. better education, training, and work 
attachment). In the period from 2010 to 2015, the gap decreased in only 10 of the 
30 European countries (World Bank calculations using EU-SILC surveys for 30 
countries in Europe). The most notable decreases were in Estonia, the Slovak 
Republic, and Switzerland. For others, the gap increased, particularly in Poland, 
Bulgaria, Lithuania, and France. 

Numerous foreign publications show that such a factor as self-selection into 
the labour force is also crucial for the gender pay gap (e.g. Albrecht, van Vuuren 
and Vroman, 2009; Töpfer, 2017). If all women participated in the labour force, 
the observed gap would have a different size. Previous researchers in Poland 
focused on decomposing the gender pay gap at the means of the wage 
distribution using a procedure developed by Oaxaca (1973) and Blinder (1973). 
Using this method the gender wage gap could only be partially explained by 
differences in men’s and women’s characteristics (e.g. Słoczyński (2012), Śliwicki 
and Ryczkowski (2014)). Later, attention shifted to investigating the degree to 
which gender pay gaps might vary across the wage distribution (Rokicka and 
Ruzik (2010), Landmesser, Karpio and Łukasiewicz (2015), Magda, Tyrowicz and 
van der Velde(2015), Landmesser (2016)). Various techniques for the 
decomposition of differences in income distributions were considered but they 
lack women self-selection. 

The objective of this study is to extend the Oaxaca-Blinder decomposition 
procedure to different quantile points along the income distribution. The 
employment rates in Poland differ by gender and the sample selection is 
a serious issue for the study. Therefore, our decomposition approach will be 
adjusted for sample selection problems. 

We focus our attention on people's decisions regarding full-time or part-time 
employment, which seem to be non-random. According the Polish Central 
Statistical Office (2016), the share of part-time employees among the total 
working population for men is equal to 4.7 and for women to 10.7. Part-time 
employment in Poland is therefore more concentrated among women. The main 
reasons given by people for part-time work are: a person prefers this kind of work 
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(the answer given by 46.2% of men and 42.3% of women who worked part-time), 
a person is unable to find full-time work (25.1% of men and 27.3% of women), 
care for children and other people, other personal or family reasons (only 3.3% of 
men and 13.1% of women), education, illness or disability (Central Statistical 
Office, 2016). However, our empirical investigation is based on data from the 
European Union Statistics on Income and Living Conditions project for Poland, 
which made it impossible to take into account all the factors mentioned above. 

To decompose the differences between two distributions one uses the so-
called counterfactual distribution, which is a mixture of a conditional distribution of 
the dependent variable and a distribution of the explanatory variables. Such a 
counterfactual distribution can be constructed in various ways (DiNardo, Fortin 
and Lemieux (1996), Donald, Green and Paarsch (2000), Machado and Mata 
(2005), Fortin, Lemieux and Firpo (2010)). We will examine the differences in the 
entire range of income values by the use of the RIF-regression method 
(recentered influence function) (Firpo, Fortin and Lemieux (2009)) corrected in 
a way that allows us to include non-random selection into the sample. It will also 
be found how the men’s and women’s characteristics (the explanatory variables 
in estimated models) influence various ranges of income distributions. 

2. Methods of the analysis 

Let Yg denote the outcome variable in group g (e.g. the personal income in 
men’s group, g=M, or in women’s group, g=W) and Xg the vector of individual 
characteristics of the person in group g (e.g. age, education level, number of 
years spent in paid work). The expected value of y conditionally on X is a linear 

function WMgvXy gggg ,,   , where g  are the returns to the 

characteristics. The Oaxaca-Blinder decomposition for the average income 
inequality between two groups at the aggregate level can be expressed as 

    


 

dunexplaineexplained
ˆ

)ˆˆ(

ˆ

ˆ)(ˆˆˆ







 WMWMWMWWMMWM XXXXXYY . (1) 

The first component, on the right side of the equation, gives the effect of 
characteristics and expresses the difference of the potentials of people in two 
groups (the so-called explained effect). The second term called the unexplained 
effect, is the result of differences in the returns to observables. This is the result of 
differences in the estimated parameters, and so in the “prices” of individual 
characteristics of group representatives. It can be interpreted as the labour 
market discrimination. Also, the detailed decomposition may be calculated. 
A drawback of the approach is that it focuses only on average effects, which may 
lead to a misleading assessment if the effects of covariates vary across the wage 
distribution. 

In our study people participate in the labour market full-time or part-time. 
Those who work full-time have higher incomes and those who work part-time 
have lower incomes. The decision on working time is subjective and non-random. 
Therefore, our decomposition approach will be adjusted for sample selection. 
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Most of the literature on gender wage gaps, using decomposition methods such 
as the Blinder-Oaxaca decomposition, typically ignores selection bias. But some 
of the studies on this topic have tried to control for self-selection of individuals 
in the labour market, e.g. by using two-step Heckman procedure (Heckman, 
1976; 1979). In this case the correction for sample-selection bias will be included 
in the wage equation whose initial form is as follows: 

iii Xy 111   .          (2) 

The dependent variable 1y , in our case a wage of a full-time worker, is not 

always observed. The dependent variable is rather observed if a person works 

full-time ( 12 iy ). 

Therefore, in the first stage of the procedure, we formulate a model for the 
probability of working full-time (the selection equation). The specification for this 
relationship is a probit regression of the form 

iii Xy 22
*
2   ,        (3) 

where 02 iy  for 0*
2 iy  and 12 iy  for 0*

2 iy . The estimation of the model (3) 

yields results that can be used to predict the full-time employment probability for 

each individual )()1( 222 iii XXYP  . 

In the second stage, we correct for self-selection by incorporating 
a transformation of these predicted individual probabilities as an additional 
explanatory variable in wage equation (2). The conditional expectation of wages 
given the person works full-time under the assumption that the error terms in (2) 
and (3) are jointly normal is then: 

)()1( 212121  iiii XXyyE  ,     (4) 

where (.) is the inverse Mills ratio. In the Heckman two-step procedure, an 
exclusion restriction is required to generate proper estimates: there must be at 
least one variable which appears in the selection equation but does not appear in 
the equation of interest. If no such variable is available, it may be difficult to 
correct for sampling selectivity. 

In our study we consider that the selection into the full-time employment 
occurs for both groups (for men and for women). Thus, we correct for overall 
selection (of both groups) and then apply Oaxaca-Blinder decomposition method 
to the overall estimation. 

Let us return to the main goal of our work. The objective of this study is to 
extend the Oaxaca-Blinder decomposition procedure to different quantile points 
along the income distribution taking into account the problem of sample selection. 

Let )(yF
gY

 be the distribution function for the variable Y in group g, which can be 

expressed using the conditional distribution )(
,

xXyF
gg DXY

  of Y and the joint 

distribution )(XF
gDX

 of all elements of X ( 1gD  if g=M; 0gD  if g=W): 

WMgdxXFxXyFyF
ggggg DXDXYDY

,,)()()(
,

  .   (5) 

https://en.wikipedia.org/wiki/Probit
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We can extend the mean decomposition analysis to the case of differences 
between the two distributions using the counterfactual distribution 

  )()()( XdFXyFyF
MWW

C
W

XXYY
 (distribution of incomes that would prevail for 

people in group W if they had the distribution of characteristics of group M): 
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The counterfactual distribution can be constructed using the RIF-regression 
method by Firpo, Fortin and Lemieux (2009). This method is similar to a linear 
regression, except that the variable Y is replaced by the recentered influence 
function of the statistic of interest. The recentered influence function is defined as: 
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where ),( QyIF  is the influence function corresponding to an income y for the 

quantile Q  of the distribution FY, and }{ Qy   is the indicator variable for 

whether the income y is smaller or equal to the quantile Q . Firpo, Fortin and 

Lemieux (2009) model the conditional expectation of ),( QyRIF  as a linear 

function of the explanatory variables  XXQyRIFE )],([ , where the 

parameters   can be estimated by 
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regressions of RIF on the vector X. The aggregated and detailed decomposition 
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    (8) 

Now, following Buchinsky (1998) we propose the RIF-model corrected for 

selectivity bias at the th quantile: 

   2
22211 )()(),( XXXQyRIF ,   (9) 

where (.) is the standard inverse Mills ratio (compare with other approaches 
in Albrecht, van Vuuren and Vroman (2009), Töpfer (2017)). By that means, we 
will examine the differences in the entire range of income values by the use of the 
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RIF-regression method corrected in a way that allows us to include non-random 
selection into the sample. It would be also possible to compare the income 
distributions of men and women by building a model for people working only full-
time, although it seems that this would be an oversimplification of the problem. 

3. Data basis 

The empirical data used were collected within the European Union Statistics 
on Income and Living Conditions project for Poland in 2014 (research proposal 
234/2016-EU-SILC). The sample consists of 5,181 men and 4,734 women. Each 
person is described by the following characteristics: age (in years), educlevel 

(education level, 1  primary, . . ., 5  tertiary), married (marital status, 

1  married, 0  unmarried), yearswork (number of years spent in paid work), 

permanent (type of contract, 1  permanent job/work contract of unlimited 

duration, 0  temporary contract of limited duration), parttime (1  person working 

part-time, 0  person working full-time), manager (managerial position, 

1  supervisory, 0  non-supervisory). The sample features are presented 
in Table 1 and Table 2. 

Table 1.  The selected sample features 

Characteristic Men Women  Characteristic Men Women 

No. of obs. 5,181 4,734 Average age 42.07 42.36 

Average income 7,165.94 5,900.21 Average yearswork 20.09 18.46 

educlevel 

= 1 4.91% 3.89%     

= 2 1.45% 0.55% married = 1 71.53% 69.60% 

= 3 68.57% 47.32% permanent = 1 70.60% 71.63% 

= 4 2.55% 7.91% parttime = 1 4.31% 10.09% 

= 5 22.52% 40.32% manager = 1 18.68% 15.74% 

Source: Own calculations. 

Table 2.  The number of observations and the average annual net employee 
incomes of men and women 

 

Men Women 

full-time part-time full-time part-time 

Number of observations 4957 224 4257 477 

The average annual net 
employee incomes in thousands 
of Euros 

7,326.65 3,562.56 6,206.51 3,147.30 

The average logarithm of the 
annual income 

8.707 7.817 8.564 7.765 

Source: Own calculations. 

 
Since there was no information in the EU-SILC database on the hourly 

income, in our analysis the annual net employee (cash or near cash) incomes of 
men were compared with those obtained by women. Employee income is defined 
as the total remuneration payable by an employer to an employee in return for 
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work done by the latter during one year. The net employee income corresponds 
to the gross employee income (mainly wages and salaries paid for the time 
worked or work done in the main and any secondary job(s), remuneration for the 
time not worked, enhanced rates of pay for overtime, payments for fostering 
children, supplementary payments (e.g. thirteenth month payment)) but the tax at 
source, the social insurance contributions are deducted. In our empirical 
decomposition analysis the logarithm of the annual income (log_income) 
constitutes the outcome variable. Figure 1 contains the kernel density estimates 
of income and log_income for men and women. 

 

  

Figure 1.  Kernel density estimates of income and log_income for men and 
women (the annual income level obtained at the minimum wage is 
marked with a dotted line) 

Source: Own elaboration. 

4. Empirical analysis 

4.1.  Results of Oaxaca-Blinder decomposition for differences in mean log 
 incomes 

Table 3 presents the results of the estimation of models for the probability of 
working full-time for men and women, separately (the selection equations (3) in the 
form of probit regression). 

Table 3. The results of probit models estimation 

 
Men Women 

age -0.027 *** -0.009 *** 

married  0.451 *** 0.195 *** 

educlevel              -0.002 0.080 *** 

permanent 0.878 *** 0.708 *** 

cons 2.103 *** 0.815 *** 
 

No. of observations 5181 4734 

lnL  -803.91942 -1431.5893 

Source: Own calculations. 

https://en.wikipedia.org/wiki/Probit
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Then, after estimating the wage equations, we compare the results of 
aggregate and detailed Oaxaca-Blinder decomposition of inequalities between 
men’s and women’s log incomes without and with selection adjustment (Table 4). 
For this purpose, we have used the following code prepared in Stata: 

probit fulltime age married educlevel permanent if men==0 

predict Xbw if men==0, xb 

gen millsw = . if men==0 

replace millsw =  normalden(Xbw) / normal(Xbw)  if men==0 & fulltime==1 

replace millsw = -normalden(Xbw) / normal(-Xbw) if men==0 & fulltime==0 

probit fulltime age married educlevel permanent if men==1 

predict Xbm if men==1, xb 

gen millsm = . if men==1 

replace millsm =  normalden(Xbm) / normal(Xbm)  if men==1 & fulltime==1 

replace millsm = -normalden(Xbm) / normal(-Xbm) if men==1 & fulltime==0 

gen mills = .  

replace mills = millsw if men==0 

replace mills = millsm if men==1 

oaxaca2 logincome educlevel yearswork manager, by(men) weight(1)  

oaxaca2 logincome educlevel yearswork manager mills, by(men) weight(1) 

The variables which appear in the selection equation but do not appear in the 
income equation are age, married, permanent. Hence, the identification 
requirement for the model has been satisfied. Only the variable kids would be 
a better instrument, but it does not appear in the database used. 

Table 4.  The Oaxaca-Blinder decomposition of the average log income 
differences without and with selection adjustment 

Mean log income men 8.670 

Mean log income women 8.484 

Raw differential 0.186 

 without selection   with selection 

 Aggregate decomposition 

Explained component  -0.071       -0.072 

Unexplained component   0.257        0.258 

    % explained    38.13%          38.71% 

    % unexplained -138.13%       -138.71% 

 Detailed decomposition 

 explained unexplained       explained unexplained 

educlevel -0.108 ***  -0.166 ***  -0,109 ***  -0,166 ***  

yearswork 0.029 ***  -0.143 ***  0,028 ***  -0,136 ***  

manager  0.009 ***  0.018 ***  0,008 ***  0,020 ***  

mills  
  

    0,000     0,000  

cons  
 

0.548 ***  
 

0,540 ***  

Total -0.071 ***  0.257 ***  -0,072 ***  0,258 ***  

Source: Own elaboration using the Stata command ‘oaxaca2’. 
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The mean predicted log income for men equals 8.670 (annual net 
income = 5,825.50 Euro), and for women equals 8.484 (annual net 
income = 4,831.92 Euro) (see Table 4). There is a positive difference between the 
mean values of log incomes for men or women (the mean log income differential 
is 0.186). The difference between the mean log income values was decomposed 
into two components: the first one explaining the contribution of the attributes 
differences (the explained part) and the second one explaining the contribution of 
the different values of models coefficients (the unexplained part). The explained is 
very low and negative, but the unexplained effect is huge and positive, which 
means that the inequalities examined should be assigned, in the majority, to the 
coefficients of estimated models (rather than to the differentiation of individual 
characteristics). Unfortunately, the selection effect is statistically insignificant. 

The detailed decomposition, which was also carried out, made it possible to 
isolate the factors explaining the inequality observed to a different extent. The 
strong effect of different education levels of men and women can be noticed. The 
negative value of the adequate component means that the difference of the 
average log incomes between men and women is mostly reduced by the women’s 
higher education levels. On the other hand, the values of manager attribute 
possessed by men and women increase the inequality in the average log 
incomes. A different “evaluation” of personal characteristics (the unexplained 
component) allow the conclusion that women are discriminated against men (but 
not because of the education levels and years of work). 

4.2.  Results of the aggregate decomposition along the income distribution 
 using the residual imputation approach 

Since the Oaxaca-Blinder technique focuses only on average effects, next we 
present the decomposition of inequalities along the distribution of log incomes for 
men and women using the RIF-approach without and with selection adjustment. 
The results of this decomposition are shown in Table 5, where the inequalities are 
expressed in terms of percentiles. The symbols p10, …, p90 stand for 10th, …, 
90th percentile (e.g. the 10th percentile is the log income value below which 10% 
of the observations may be found). For each of the nine percentiles the total 
differences between the values of log incomes for men and women were 
computed. Then these differences are expressed as the sum of the explained and 
unexplained components. 

Table 5.  The results of the decomposition using the RIF-regression approach 

Percentile total difference 
without selection  with selection 

explained unexplained explained unexplained 

p10 0.287  -0.036 0.322 0.004 0.283 

p20 0.094  -0.030 0.124 0.014 0.081 

p30 0.152  -0.045 0.198 -0.001 0.153 

p40 0.147  -0.054 0.201 -0.002 0.149 

p50 0.140  -0.060 0.200 -0.010 0.151 

p60 0.141  -0.062 0.203 -0.019 0.160 

p70 0.135  -0.064 0.199 -0.025 0.160 

p80 0.163  -0.078 0.242 -0.043 0.207 

p90 0.216  -0.086 0.302 -0.065 0.282 

Source: Own elaboration using the Stata command ‘rifreg’. 
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There are positive differences between the values of log incomes for men and 
women along the whole log income distribution without and with selection 
adjustment. Going across the rows to compare quantile effects shows that the 
income differences increase at the bottom and at the top of the log income 
distribution. Most of the quantile-specific pay gaps are accounted for by how men 
and women are rewarded, i.e. by the unexplained component. This finding is in 
conformity with results obtained in other studies on gender differences in pay, for 
example Blau and Kahn (2016). The unexplained effect (effect of coefficients) is 
bigger in absolute value and the explained (effect of characteristics) is lower, 
which indicates the importance of the “labour market value” of men’s and 
women’s attributes. The share of the unexplained part is high and the effect of 
coefficients is positive in the whole range of the income distribution. This is the 
result of differences in the “market prices” of individual characteristics of men and 
women (interpreted as the labour market discrimination). 

Additionally, Figure 2 contains the differences between the log income 
distributions for men and women vs. quantile rank. The total effect is U-shaped. 
The positive values indicate higher log income values for men than for women. 

The explained differential is falling as we move toward the top of the income 
distribution and is higher for the model with selection adjustment. We can see that 
the effect of characteristics is negative without sample adjustment. For the 
sample adjustment we note the positive at the bottom and the negative at the top 
of the distribution effects of characteristics. The positive (negative) values 
observed mean that the different values of characteristics of men and women 
increase (decrease) the income inequalities in these income ranges. 

 
 

 
Figure 2.  The differences between the log income distributions for men and 

women calculated using the RIF-approach without and with selection 

adjustment 

Source: Own elaboration. 
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The lower values of the unexplained effect after taking into account the 
selection imply that without selection correction we overestimate the part 
attributed to gender-wage discrimination. All in all, the selection component is one 
of the most important components explaining gender differences in pay along the 
income distribution. 

4.3. Results of the detailed decomposition using the RIF-regression 
approach 

The RIF-regression method enables us also to extend our analysis to the 
case of the detailed decomposition. Table 6 shows one of many results obtained 
of the detailed decomposition of inequalities along log income distributions. 

Table 6.  The example results of the RIF-regression approach – for 70th 
percentile only 

Total gap 0.135 *** 0.135 *** 

 
without selection  with selection 

 
explained unexplained explained unexplained 

educlevel -0.091 *** -0.304 *** -0.089 *** -0.276 *** 

yearswork 0.013 *** -0.141 *** 0.014 *** -0.122 *** 

manager 0.014 *** 0.021 *** 0.013 *** 0.021 *** 

mills  
  

     0.000       0.000 

mills^2  
  

0.038 ***      -0.015 

cons  
 

0.624 *** 
 

0.552 *** 

Total -0.064 *** 0.199 ***      -0.025 ** 0.160 *** 

Source: Own elaboration using the Stata command ‘rifreg’. 

 

These are only the results for 70th percentile of log income distributions. In all, 
nine detailed decompositions for each decile were carried out (the results for the 
remaining eight deciles and the bootstrap errors are not presented here due to 
lack of space). 

For better understanding of the results obtained and in order to formulate 
general conclusions, in Figure 3 we draw the values of explained component for 
each variable and for each decile group (vs. quantile rank), for the log income 
inequalities observed between men and women. The ordinate axes present the 

values  ,
ˆ)( jMjWjM XX   (detailed explained effects). 

The educlevel has the greatest reduced influence on the differences between 
the log income distributions for men and women. It means that on average higher 
level of education among women decreases the income inequalities, especially as 
we move toward the top of the income distribution. For the variable yearswork we 
observe the influence which enlarges log income differences but increasingly less 
as we move toward the top of the income distribution. The variable manager also 
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enlarges log income differences but more and more as we move toward the top of 
the distribution. 

With the increase in incomes the importance of the explained selection effect 
(which is unfavourable for women because of its positive share in the gap) 
decreases. According to Figure 2, after taking the selection into account, the 
explained effect is initially positive, which means that the characteristics of the 
poorest people enlarge the gap. Then, the explained effect is negative, meaning 
that the characteristics of the richest reduce the gap. Thus, with the increase in 
incomes, the importance of the people’s characteristics increases in the sense 
that they reduce the gap effect for women. 

 

 

 

Figure 3.  The results of the RIF-regression approach for the detailed income 
inequalities decomposition without and with selection adjustment – the 
explained effects 

Source: Own elaboration. 

5. Conclusions 

In recent times, particular attention of European politicians has focused on the 
gender pay gap. There is no clear idea of whether to use the raw or the adjusted 
gender pay gap for the analysis. Some experts claim that the explained part of the 
gap may reflect discriminatory social norms or discrimination related to education 
and occupational choice. Therefore, the use of the unadjusted gap but in tandem 
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with the employment rates among women should be preferred to analyze the 
problem. 

According to European Union politicians, active policies to close wage gaps 
are required. The European Commission recommendations point to several 
possible directions, from pay transparency to improving legal frameworks. The 
progress on gender pay equality depends on developing specific gender equality 
policies. However, postulated policies for flexible working can lead to the widening 
of the gender pay gap if they result, e.g. in an increase in part-time work. A good 
example is Sweden, which has been at the forefront of gender equity efforts for 
decades. The universal child care, the protection of mothers’ right to work or 
tough employment laws on pay equity were practiced there. However, the last 
OECD report reveals the persistence of significant gender earnings gaps in 
Sweden. The way to close this gap would be if women worked longer hours or if 
men worked fewer hours. But the majority of Swedish women prefer to work part-
time and less than men for a variety of reasons and the gender pay gap is largely 
a result of the freely-made women’s choices. Therefore, maybe we should not 
consider gaps that arise in these ways to be problems in need of fixing. 

Like other researchers, we expected that such a factor as self-selection into 
the labour force may affect the size of the gender pay gap. Therefore, the goal of 
this paper was to present the decomposition of inequalities between log incomes 
for men and women in Poland, taking into account sample selection issues. We 
started with the decomposition of the average values for log incomes by using the 
Oaxaca-Blinder method. We found that there is a positive difference between the 
mean income values for men and women. The unexplained effect was big, but the 
explained was low. The decomposition showed the influence of the men’s and 
women’s attributes on the average log income differences. The selection effect 
was statistically insignificant. 

Then, we decomposed the inequalities between log incomes along the whole 
distribution using the RIF-regression method. The total effect was U-shaped. The 
explained effect was low again. We claim that Polish women experience both a 
'glass ceiling effect' and also a 'sticky floor effect' because gender differences 
primarily affect women at the top and the bottom of the distribution. 

In our research the method of RIF-regression provided a way of showing the 
detailed decomposition of income inequalities and helped to exhibit the influence 
of the attributes on the whole log income distribution. The variable educlevel 
exerted the greatest reduced influence on the differences between the income 
distributions for men and women. Higher average levels of education among 
women decreased the income inequalities. The importance of educlevel 
characteristic increased with income. For the variable yearswork (years spent in 
paid work) we noted the influence which increases income differences but the 
effect was weaker as the income grew. A woman with the same number of years 
of work as a man will be more discriminated in the group of low-income people. 
We also observed strong impact of managerial position in higher quantiles of 
income distribution, which indicates a shift of big incomes towards men. Being a 
manager puts men in a more privileged position, especially when it concerns 
highly paid executive positions. 

Also, self-selection into the labour force is crucial for gender gaps: if all 
women participated full-time in the labour force, the observed gap would be 
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different at all quantiles. The results showed that selection effects explain 
a substantial part of the gender pay gap that would otherwise remain unobserved 
or be attributed to discrimination. Moreover, the contribution of the selection 
component to the gender pay gap varied across the wage distribution. With the 
increase in incomes the importance of the selection effect, which is unfavourable 
for women because of its positive share in the gap, decreased. The total effect of 
characteristics was negative without sample adjustment. For the sample 
adjustment we noted the positive at the bottom and the negative at the top of the 
distribution effects of characteristics. 

The article focused on how non-randomness of the sample leads to biased 
estimates of the wage equation as well as of the components of the wage gap. 
The method applied was the parametrically extension of the RIF-regression 
method to account for the sample selection problem. In the future, the author 
intends to estimate the selection correction terms using semiparametric models 
(as in Töpfer (2017)). In models for sample selection the distributional 
assumptions may play an important role, therefore semiparametric methods for 
binary choice (such as the Ichimura or Klein-Spady estimators), although 
computationally costly, may be more informative. 
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