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Parametric prediction of finite population total under Informative
sampling and nonignorable nonresponse

Abdulhakeem Eideh'

ABSTRACT

In this paper, we combine two methodologies used in the model-based survey sampling,
namely the prediction of the finite population total, named T, under informative sampling
and full response, see Sverchkov and Pfeffermann (2004), and the prediction of T with a
noninformative sampling design and the nonignorable nonresponse mechanism, see Eideh
(2012). The former approach involves the dependence of the first order inclusion
probabilities on the study variable, while the latter involves the dependence of the probability
of nonresponse on unobserved or missing observations. The main aim of the paper is to
consider how to account for the joint effects of informative sampling designs and not-
missing-at-random response mechanism in statistical models for complex survey data. For
this purpose, theoretically, we use the response distribution and relationships between the
moments of the superpopoulation, the sample, sample-complement, response, and
nonresponse distributions for the prediction of finite population totals, see Eideh (2016).
The derived parametric predictors of T use the observation for the response set of the study
variable or variable of interest, values of auxiliary variables and their population totals,
sampling weights, and propensity scores. An interesting outcome of the T study is that most
predictors known from model-based survey sampling can be derived as a special case from
this general theory, see Chambers and Clark (2012).

Key words: response distribution, nonignorable nonresponse, informative sampling design.

1. Introduction

Data collected by sample surveys are used extensively to make inferences on
assumed population models. Often, survey design features (clustering, stratification,
unequal probability selection, etc.) are ignored and the sample data are then analysed
using classical methods based on simple random sampling. This approach can,
however, lead to erroneous inference because of sample selection bias implied by
informative sampling - the sample selection probabilities depend on the values of the
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model outcome variable (or the model outcome variable is correlated with design

variables not included in the model). See Pfeffermann et al. (1998) and Eideh and

Nathan (2006). In addition to the effect of complex sample design, one of the major

problems in the analysis of survey data is that of missing values or nonresponse. Little

and Rubin (2002) consider three types of the nonresponse mechanism or the missing
data mechanism:

(a) Missing completely at random (MCAR): if the response probability does not depend
on the study variable, or the auxiliary population variable, the missing data are
MCAR.

(b) Missing at random (MAR) given auxiliary population variable: if the response
probability depends on the auxiliary population variable but not on the study
variable, the missing data are MAR.

(c) Not missing at random (NMAR): if the response probability depends on the value
ofa missing study variable, the missing data are NMAR.

So, the cross-classification of the sampling design and the response mechanism is
summarized in the following table:

Table 1.
) . . Response Mechanism
Sampling Design
MCAR MAR NMAR
Informative - I IMCAR IMAR INMAR
Noninformative - N NMCAR NMAR NNMAR

For inference problem, Little (1982) classifies the nonresponse mechanism as
ignorable (MAR and MCAR) and nonignorable (NMAR). In this sense, the cross
classification of the sampling design and the nonresponse mechanism is:

Table 2.
. . Nonresponse Mechanism
Sampling Design - -
Ignorable - i Nonignorable - n
Informative - i i in
Noninformative - n ni nn

For more information about prediction modelling approach for potentially
nonignorable nonresponse in complex surveys, see Little (1983, 2003).

Pfeffermann and Sikov (2011), and Eideh (2012) consider estimation of
superpopulation parameters and prediction of finite population parameters (census
parameters) under nonignorable nonresponse via response and nonresponse
distributions when the sampling design in noninformative.
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Eideh (2016) treated the estimation of finite population mean and superpopulation
parameters when the sampling design is informative and the nonresponse mechanism
is nonignorable. ~ Sverchkov and Pfeffermann (2004) use of the sample and
complement-sample distributions for the semiparametric prediction of finite
population totals under single-stage sampling. None of the above studies consider
simultaneously the problem of informative sampling and the problem of nonignorable
nonresponse in the prediction of finite population total. In this paper, we study, within
a modelling framework, the parametric prediction of finite population total, by
specifying the probability distribution of the observed measurements under
informative sampling and nonignorable nonresponse. This is the most general situation
in surveys and other combinations of sampling informativeness and response
mechanisms can be considered as special cases.

It should be pointed here that, according to Sarndal (2011), “Nonresponse causes
both bias and increased variance. Its square is typically the dominant portion of the
Mean Squared Error (MSE). We address primarily surveys on individuals and
households with quite large sample sizes, as is typical for Journal of Official Statistics
for government surveys; consequently, the variance contribution to MSE is low by
comparison. Increased variance due to nonresponse is nevertheless an issue; striking a
balance between variance increase and bias reduction is considered, for example, in
Little and Vartivarian (2005).” Furthermore, Brick (2013) mentioned that “Model
assumptions and adjustments are made in an attempt to compensate for missing data.
Because the mechanisms that cause unit nonresponse are almost never adequately
reflected in the model assumptions, survey estimates may be biased even after the
model based adjustments. Nonresponse also causes a loss in the precision of survey
estimates, primarily due to reduced sample size and secondarily as the result of
increased variation of the survey weights. However, bias is the dominant component of
the nonresponse-related error in the estimates, and nonresponse bias generally does
not decrease as the sample size increases. Thus, bias is often the largest component of
mean square error of the estimates even for subdomains when the sample size is large”.
Here, we focus on the bias, variance and MSE.

The paper is structured as follows. In Section 2 we review the definition of sample,
sample-complement, response, and nonresponse distributions, and derive new
relationships between their moments. In Section 3, we derive a parametric predictions
and their biases of finite population total under informative sampling and not missing
at random the nonresponse mechanism. Also, we apply the results for three models,
namely: common mean population model, simple ratio population model, and simple
regression population model. Finally, Section 4 provides the conclusions.



16 Abdulhakeem Eideh: Parametric prediction ...

2. Response, nonresponse distributions and relationships between their
moments

Let U = {1,..., N } denote a finite population consisting of N units. Let Y be the
study variable of interest and let Y; be the value of Y for the ith population
unit. A probability sample S is drawn from U according to a specified sampling

design. The sample size is denoted by N . Letx, = x, = (Xill"" Xip ),, i €U bethevalues

of a vector of auxiliary variables, X,,...,X,, and Z=12= {Zl,---, Zy } be the values of

known design variables, used for the sample selection process not included in the model
under consideration. In what follows, we consider a sampling design with selection

probabilities 7, = Pr(ie s) >0, and sampling weight W, =1/7, ; i=1.. N.
In practice, the7;’s may depend on the population values (x,y, Z). We express this
dependence by writing: 7; =Pr(i€s|X,y,z) for all unitsi €U . Denote by

| = (| B ), the N by 1 sample indicator (vector) variable, such that |, =1 if unit

i €U is selected to the sample and Ii =0 otherwise, so that S = {i lieU,I. = 1}

and its complement isS =C = {i lieU, I = 0}. We consider the population values

Yir+s YN as random variables, which are independent realizations from a distribution
with probability density functions (pdf) fp(yi | X;; 9), indexed by a vector of
parametersf.

In addition to the effect of complex sample design, one of the major problems in
the analysis of survey data is that of missing values. In recent articles by Eideh (2009),
Pfeffermann and Sikov (2011), and Eideh (2012), the authors defined and studied the
problem of nonignorable nonresponse using the response and nonresponse
distributions where the sampling design is noninformative. Denote by
R= (Rl,..., Ry ) the N by I response indicator (vector) variable such that R; =1 if
unit 1 €S is observed and R, =0 if otherwise. We assume that these random variables
are independent of one another and of the sample selection mechanism (Oh and
Scheuren 1983). The response set is defined accordingly as I' = {i es|R = 1} and the
nonresponse set byl = {i €s|R = 0}. We assume probability sampling, so that
7w, =Pr(ies)>0 for all units i€U. Let the response probability

w; =Pr(ier|x,y,z)>0 forall units | €S and @ =1/y; be the response weight
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for ies. Let O={x,l,)ieU}{z, R, iesjU{y,,x)ier}and

N, n,and m be the available information from the sample and response sets.

According to Eideh (2007, 2009), the (marginal) response pdf of Y; is given by:

Es(‘//i |Xi’yi'7/)fs(yi |Xi'0’77)

fr(yilxiﬂ,ﬂﬂ): 1
Es(Wi |Xi'0’7717/)
where the sample pdf of Yi, see Pfeffermann et al. (1998), is:
£y, 1%,.6.7)= (ES|X"y"7)f (¥, 1%,,0)
plies,07) o
_E, (7 IX.,y.,y) o (Yi 1%;,6)
p(’fi |Xi1617/)
According to Pfeffermann and Sverchkov (1999), we have
E. (W I;)
E . )= S 171 1 b
p(yl|XI) Es(Wilxi) 20)

Combining (1) and (2) we get:

Es i Xi! it E ﬂ-ilxiiyiiy
(‘// IX;,y 7) p( )fp(yi |Xi'9)
Es(‘/’i |Xi10’77!7) Ep(”i |Xi’9'7)

fr(yi |Xi18’77!7):

Furthermore, Sverchkov and Pfeffermann (2004) define the sample-complement
pdf of yi as:
Ep(l_”i | X, Y, '7)fp(yi | Xiﬁ)
Ep(l_”i | Xi’917/)

f(y 1%,.0,7) = (32)

and
Efw ~1)y; 1%}
E,{(w, -1)Ix, |

E,(y; %)= (3b)
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According to Eideh (2007, 2009), the (marginal) nonresponse pdf of Y; is given by:

Es(l_'//i |Xi1yi!7)fs(yi |Xi19!77)

f* i X'191 ' =
r(yll I 77}/) Es(l_l//i|xi'9’7717/)
Es(l_l//i |Xi!yi17/) Ep(ﬂi IXi’yi’y)
= 1:p(yi IXi’g)
E.(1-w,1%.0.1.7) E (7 [%,,0.7)
4)

Furthermore, for vector of random variables (yi,xi), using Eideh (2007,2009,
2016), we have:

_E(gwyi %)
E, (v, Ixi)—m ©)
Er(¢i ilxi)
E,(y, |Xi)=#|xi) ©
<o Er{¢i(Wi -1)y, |Xi} 7
E<(yi %)= E 16w 1) x 7)
E(yi %)= Sk ALY ®

E, {(¢| _1)| Xi}

Remark 1. The important feature of the formulas (5-8) is that, given {x;,y;, @;, w;; i €
r}h we can identify E (%), E.(yi1%), Es(yil%), E.(yi|%) and
E (i %)

Remark 2. Note that

_ Es(l//i|xi7yi'7) Ep(ﬂ-ilxi’yiJ/)
Er(Yi |Xi)_ Ep{ES(l//I |Xi"9a77!7) Ep(ﬂ'i |Xi’0’}/) Yi

Xi}¢ Ep(yi |Xi)

Thus, estimating Ep(yi |Xi) is often the main target of inference, which shows

that ignoring an informative sampling scheme or NMAR nonresponse and thus

estimating implicitly Er(yi |Xi) can bias the inference.
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Using the equations (1-8), we can prove the following:

fr(yi | Xi): EF(r;I(\éI\IImI )l(i),(i)?i) fp(yi | Xi) ©)
EAlg -DIx. v

(G0 ) "

fr(Yi |Xi)=

%) = Er{(¢i(wi _1))| Xi'yi} X 11
f§(yi | i) - Er{(¢I(WI —l))l XI} fr(yi | I) ( )

Furthermore, using (1) and (6), we have

fs(yi |Xi): Er(¢i |;i'(;/_i|)j(r_()yi |Xi) (1*)

Remark 2. Once we identify f, (yi | X; ) , we can completely determine the nonresponse
distribution fF(yi | Xi) and the nonsampled distribution fg(yi | Xi). So, instead of
specifying fp(yi | X; ), we can specify f, (yi | Xi) based on the study variable and the

auxiliary variables for the response set.

Estimation of response probabilities i/; for all i€s:

If the nonresponse mechanism is not missing at random, then the classical methods
for estimating the response probabilities using auxiliary variables, available for
respondents and nonrespondents, is logistic or profit models. If we use the logistic
model, then

exp(yo + 71Xi)
1+exp(;/0 +71Xi)

v, =Pr(R, =1lies,x) =

We can fit this model using maximum likelihood approach. Thus, the estimate of

Y, is:

v = eXp(ﬁo +:élxi)
1+ exp(ﬁ0 + lei)
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If the nonresponse mechanism is NMAR, then values of Y; for 1 €I are available,

but for | € I' are not available, so we cannot fit the following model:

eXp(7/o + 71X +72yi)
1+9XpeXp(7o + 71X +72Yi)

y; =Pr(R, =1lies,x,y;) = (12)

directly using maximum likelihood method. A recent approach of estimation ¥/; under

nonignorable nonresponse is discussed by Sverchkov (2008) and Reddles et al. (2016).

3. Parametric prediction of finite population parameter under informative
sampling and NMAR nonresponse mechanism

Eideh (2012) uses response and nonresponse distribution to derive new predictors
of the finite population total, under common mean or homogeneous population model,
simple ratio population model, and simple regression population model. These new
predictors take into account the nonignorable nonresponse. In this section we extend
the prediction problem when, in addition, the sampling design is informative.

3.1 General theory

Assume single-stage population model. Let

T:iNZlyi:Zyi+zyizzyi+zyi+zyi (15)

ies ies ier ier ies

be the finite population total that we want to predict using the data from the response
set and possibly values of auxiliary variables. Notice that T can be decomposed into
three components: the first component represents the total for observed units in the
sample - response set, Zier y,» the second component represents the total for

unobserved units in sample — nonresponse set, Z _y; » and the third component
ler

represents the total for non-sample units, Z _Y; - nonsample set.
1es

Let T = 'f(O) define the predictor of T based on the available information, from
the sample and response set O = {(li),i eU }, {7Z'i R, 1€ S}U {(yi ),i S r}and



STATISTICS IN TRANSITION new series, March 2020 21

N, n,and m. The mean square error (MSE) of T given O with respect to the
population pdfis defined by:

Mk, (F)=E, {F -7 10/={f -E, (T |0)f +Var,(T |0) (16)

It is obvious that (16) is minimized when | = E(T |O) Hence, the minimum

mean squared error best linear unbiased predictor (BLUP) of T = Z:il Y; is given by:

ler ler 1es

=3 Y+ Er(yi |O)+ > Eg(yi |O)

ier ief ies

T'=E,(T|0)= {(Zy,+2y,+2y,]‘ }

(17)

We know the values {yi 's,le r}, so the sum Zier Y; is known, thus we need to
predict the total for unobserved units in the sample — nonresponse set, Zier Y, , and

the total for non-sample units, Zie§ Y; . That is, to predict T we need to predict values
for {yi 's,ie F} and {yi 's,i € §} . Thus, our aim is to identify an optimal predictor of
Zie§ Y; and Zief Y, based on the given observed data O .

The predictor given in (17) represents the prediction of T for single-stage sampling
when the sampling mechanism in informative and missing value mechanism is NMAR.
The analysis that follows assumes known model parameters. In practice, the unknown
model parameters are replaced under the frequentist approach by sample estimates,
yielding the corresponding “empirical predictors.” In the present case, maximum
likelihood estimation of the model parameters must be based on the response
distribution of the observed units in the sample - response set, see Eideh (2016).

Using (7) and (8), equation (17) can be written as:

=Ty p il s St oo

ier ier ies
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Hence, T* can be estimated based only on the data in the response set,
{yi P, W, ie I’}. Using method of moments estimates technique, that is, replace the

moment under the response distribution by the average over the response set, for

example E, (ai ) = mflz 4; , where m is size of the response setr.
ier
N

From now on, we use the following notations for the predictor of T = Z Yi:
i=1

T.. - Best linear unbiased predictor of T when the sampling design is informative
and the nonresponse mechanism is NMAR (nonignorable).

T. - Best linear unbiased predictor of T when the sampling design is informative
and the nonresponse mechanism is ignorable.

Tn*n - Best linear unbiased predictor of T when the sampling design is

noninformative and the nonresponse mechanism is nonignorable.

Tn*i - Best linear unbiased predictor of T when the sampling design is

noninformative and the nonresponse mechanism is ignorable.

According to (18) and using the method of moments estimator, we can show that
the best linear unbiased predictor for T is:

Sy s nemy e B 2 A
=gt )zier(¢i 1 " Z.J’( (19)

ier

= z Wiin Yi

ier

where

wfn:1+(n_m)ﬂ+m IS T ) RS

ZIEI’¢ W 1

Note that

(a) Zler (¢ 1)y, is the Horvitz-Thompson estimator of Z 2y

(b) Zier¢i (Wi —1)yi is the Horvitz-Thompson estimator of Zie§ Yi.
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n—-m

Zier (¢' _1)

response weights.

(c)

is the “Hajek type correction” for controlling the variability of the

(N-n)
d) —— 7~
VS AW

product of the response weights and the sampling weights.

is the “Hajek type correction” for controlling the variability of the

It is easy to verify tha

a) Under noninformative sampling design and nonignorable nonresponse:

#-9 o) ?
Zier(¢i_1) (N )Zier¢i

(b) Under noninformative sampling design and ignorable nonresponse:

W™ =1+ (n—m)

W =1+(n—m)+(N—n):E
m m m

(c) Under informative sampling design and ignorable nonresponse:

W_ii:1+M+(N_n) w;, -1

' m > (w—-1)

According to (1-8), we can write (17) as:

=3y + Y E(1[0)+ D, (v, O)‘{Z Cov.[(v.v,)o] | 5 O, 7., , 10]}

ier ier ies i 1- Es('//i‘o) ics 1_Ep(7z-i‘o)
(21)

ier ier
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Using (1-8), we can show that the prediction nonresponse bias of Tin is:

B<Ti:)=Ep(Ti:—T)=—{zEp[yi CE ) S —Es<yi>]}

- _{; [E,(y,)- IIEr (y,)|+ Z,[Ep (v, )—iel;s(yi )]}
-2l ) ) 2] 5 Contn )

(22)

Therefore, the predictor T in (22) is unbiased T if:

(a) Cov, (l//i , yi)— , (orCov, (¢, , yi)= 0 ), that is, there is no correlation between
the study variable and the response probabilities ¥/;, consequently, the
nonresponse mechanism is ignorable, and

(b) COVp(ﬂ'i , yi): 0, (or Er(¢i )Er(¢iWi Yi ): Er(¢i Yi )Er(¢iwi))’ that is, there is
no correlation between the study variable and the first order inclusion

probabilities 7;, so the sampling design is noninformative.

If (a) is satisfied then (b) becomes COV, (#W,,Y,)=0. In other words, if the

sampling design is noninformative and the response mechanism is ignorable, so that

Ep(yi ): Es(yi): E§(Yi): Er(Yi ): Er(yi)’ then T, in unbiased of T.

Note that the stronger the relationship between the study variable and the response
probability, and the study variable and the first order inclusion probabilities, the larger
the bias.

According to (10) and (11), we can show that (22) has the following form:

Z{ Cov (¢.W ) r(¢iWi Yi )Er(¢i )_ Er(¢i Yi )Er(¢iWi )}
B(T-*): _Jer (¢|Wu )Er{( )} Er(¢iWi )Er{(¢i _1)}

i Z ( ) (¢|W| ) ( $Yi )Er(¢iWi)

= Elgw)E (pw)-E(4)]

(23)
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Hence, the bias B(Ti:) can be estimated based only on the data in the response set,
{yi , ¢i YW ie I’}, using method of moments estimates technique, that is, replace the
moment under the response distribution by the average over the response set, for
example Iér (ai ) = m‘lz a, .

ier
To test the informativeness of the sampling design, see Pfeffermann and Sverchkov
(1999) and Eideh and Nathan (2006). Moreover, for testing the ignorability of the
nonresponse mechanism, see Eideh (2012).

Particular cases:

Case 1: The sampling design is noninformative and the nonresponse process is
nonignorable, so that:

E.(y,J0)=E,(y;|0) and Cov, [(x,,y, Jo]=0
Therefore,

T =Yy + S E ([0)+ TE, (yj0)- 3 el Ol gy

ier ier ies i 1- Ep(l//i‘o)

TEGwE (4 -1 E,

ier

B(Tn*n): _Z{ Covr(¢iwi ) yi) Er(¢iwi Yi )I(Er(¢|) Er(¢' Yi )Er( LW, )}

Case 2: The sampling design is noninformative and the nonresponse process is
ignorable, so that:

E, (yi |O): Es(yi |O): Ep (yi |O) COVp [(”u Y XO] = 0and Cov, [(‘//i i )O]: 0

Therefore,

T :Zyi +ZEp(yi|o)+zEp(yi|o) (26)

ier ier ies

ier ies

B(Tn*i ): _{Z [Ep (yi )_ Ef(yi )]"‘ Z[Ep (Yi )_ E, (Yi )]} =0 (27)
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Case 3: The sampling design is informative and the nonresponse process is ignorable,
so that:

Er (Yi |O): Es(yi |O) andCOVS [(‘//i i XO]: 0

Therefore,
Cov [(”i ' Yi )O]

=Xy + 2R+ XE (v[0)- X 1_"Ep(ﬂi|'o) (28)

ier ier ies

s E E,(4)E, (#wy,)-E. (4 )E (dw,)

Ak E. (4 )E, (4w,)

" > E E. (¢ )E. (#wiy,)—E (8y, E, (4w
S E(sw)E (4w )-E,(4)]

(29)

3.2. Common mean or homogeneous population model

Chambers and Clark (2012) studied the homogeneous population model under
noninformative sampling design. In this section, we will treat in details the
homogeneous population model under informative sampling design and nonignorable
nonresponse or informative nonresponse mechanism.

Assume that Y, ~p— N(y,o-z) , 1=1...,N are independent normal random

variables, with mean Ep(yi )= 4 and variance Vp(yi ) =o’. According to equation

(17), the best linear unbiased predictor Tin of T requires the computation of

Er(yi |O) and Eg(yi |O), and this based on the specification of Ep(ﬂ'i|yi) and

E, (l//i | Yi ) Different models can be considered for E b (7[ i | Yi ) and E; (Wi | Y ), see Eideh
(2003, 2012). In this paper, for illustration, we consider the following models:

(a) Exponential inclusion probability model:

E,(m]y:)=exp(rpy,) (30)

(b) Exponential response probability model:

E,(wily,)=exp(,) (31)
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According to equations (1) and (2), we can show that the sample distribution of Yi
is Y, : N (/1 + 770'2 , o? ), i=1..., n, and the response distribution of yi is:

\ ~N(,u+(77+}/)0'2,0'2), i=1,...,m. For estimation of ,LI,O'Z,nand Vs see
r
Eideh (2016).

Computation of Eg(yi ) . After some algebra we can show that

2 __2

=, 5) = &, 7))~ &, ol )} = M )= i+ 5| 0

Ep(yi”i): Ep(Ep(”iyi|yi )): Ep(yiEp(”i|yi ))
=€, by, o0, = M, ) o9

2 __2

= (ﬂ+’702)eXp(#77+ 7 ; j =E,(y,)M, ()

where M (77) is the moment generation function of ¥j,

2_2
M p(n): exp(,un + 1 20- J So that,
Cov, (7, y,)=M p(ﬂ){Es (vi)- Ep(yi )}: (770'2 )M p(77) (34)
COVp(”i’Yi):( 2) M, () (35)
E,(1-7) 1-M, (7)
Hence, according to (3b), we have:
M, ()
E.(y,)=pu- 2)__pY/ (36)
(vi)=n-(no )1_ V()
Computation of E- (yi ) Similarly, according to (8), we can show that:
M
Ef(yi)=ﬂ+770'2—(70'2) 5(7) (37)

1_Ms(7)
2 2

where, Ms(7)=e><p[7(ﬂ+7702)+7; J
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Thus, using (17), (36) and (37), the BLUP for T under informative sampling and
nonignorable nonresponse is:

Toe =Toc + {(n - m)(ﬂd2 ~(o? )11\4 M(y(Z/)j +(N- n)(_ e’ )%J}

(38)
o Tic Zy n—m)u+(N-n)u Zy (39)
And the nonresponse bias of Ty ¢ is:
N LA URIO 1S YA R |
ol o o 25
(40)

Particular cases:

Case 1: The sampling design is noninformative, that is (77 =0) and the

nonresponse process is nonignorable:

Tone =2 Y +(n—mu+(N —n)ﬂ+(n—m){—(762)Mp—(y)} (41)

1-M,(»)

B(Tn*nvc):_{(n_m)(yaz )M} )

-M,(7)

Case 2: The sampling design is noninformative, that is (77 =0) and the

nonresponse process is ignorable that is ( y=0):

n|C Zy| n- m/,l-l- Zy| (43)

ier ier

B(T,; )= 0 (44)
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Case 3: The sampling design is informative and the nonresponse process is ignorable,
thatis (» =0):

Tie =2y +(n- m/“r('\'—n)ﬂ+{(n—m)ryaz+(N_n){_(,752)Mp(”)]}

1-M, ()
(45)
B(Tn*,c )= —{(n - m)[— no’ ]+ (N- n){(naz )%} (46)

3.3. Simple ratio population model

The simple ratio population model ® stating that: yi|xi ~N(ﬁxi,o-2xi) 5
p

i=1,...,N areindependent normal random variables, with mean Ep(yi |Xi ): X
and variance Varp (yi |Xi ) =0’ X; .
Under the exponential inclusion probability model:

Ep(”i|Yi’Xi)26Xp(770Xi +771Yi) (47)

And the exponential response probability model:

E, (Wi|yi 1 X ): eXp(?/oXi +7/1Yi) (48)
Similarly to the previous section, we can show the following:
e 2 2 1 —_—
yi|XisN((7710 +,B)xi,a xi), i=1...,n and
Vi |% ~ N((nlc;2 +y,0° +ﬂ)xi,02xi), i=1...,m.

2, ) eXp(UoXi)Mp(m)

: (49)
'1- eXIO(ﬂo X; )M P (771)

M, )=o)+ 5

£, 0)= (5 ni0* b~ o™ ERUBILD)
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where

2 2
M, (y.)= eXD(h (B+mo?)x, + “Tnlj

Hence, the BLUP for T under informative sampling and nonignorable
nonresponse is:

Ti:,R = Zyi +(in _zxi)ﬂ+2{7710'2Xi _(7102Xi\ exp(}/OXi )MS(yl) )}+

ier ieU ier ier /1_ exp(y0X| )M s (7/1

{_( 2 ) OP0X M, (7:) }

)

ies

o X
' "1- eXp(oni )M P (771)
(51)

*
And the nonresponse bias of Tin,R is:

Z{_ o7+ by exp(y,X M, () )} +

/1_EXp(70Xi )M 5(7/1

Z{( by P70 M, (1) }

o?x,
' /1—exp(770xi )M p(771)

B(Ti:,R )= - - (52)

ies

Particular cases:

Case 1: The sampling design is noninformative, that is (77 = 0) and the nonresponse

process is nonignorable:

Tn*n,R :Zyi +(2Xi _in)ﬂ'FZ{_ (7/102X ) exp(;/oxi )M p(7/1) }

ier ieU ier ief i /1_ eXp(70X| )M p (71)
(53)

B(Tn*n,R): _Z[(7/ o2x \ eXp(VOXi )M p(71) } (54)

' i/l_eXp(VoXi)Mp(?/l)

ier
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Case 2: The sampling design is noninformative, that is (77 = 0) and the nonresponse
process is ignorable, thatis (» =0):

Tnﬂ;,R = ZYi + (Z X _in)ﬁ (55)

ier ieU ier
B(Tni,R): 0 (56)

Case 3: The sampling design is informative and the nonresponse process is ignorable,

thatis (y =0):
Ty =T 0 T ) SR

ier ieU ier ies
(57)

D e

“) 1-exp(77,%; )M

3.4. Simple regression population model

The  simple  regression  population model (L)  stating  that:
Yi |Xi ~N (ﬂo + B ,02) ,i=1,...,N areindependent normal random variables,

with mean Ep(yi |Xi ): By + B.X; and variance Varp (yl |Xi ): o’. Assuming the

models given in (48) and (49), we can show the following:

Y |xi:N(ﬂ0+nlaz+ﬂlxi,c72), i=1...,n (59)
Y, |Xi-;N(,BO+77102+7lo'2+ﬂlxi,0'2), i=1...,m (60)
eXp(UoXi)M (771)
Eily:)=2 +ﬂxi_770-2\ - (61)
( ) ° ! (l jl—exp(ﬂoxi)'\/'p(m)
where
77262
M, )= e9{ (5, + ix )+
exP(?’o |) (71)
E,(y,)= B+ B% +mo” ~(r,07) (62)
)= fu+ B+~ "1-exp(rox M, (1)
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where

2 __2

Ms(?’l):exF{h(ﬁo + B X +7710'2)+ 77126 ]

Therefore, the BLUP for T under informative sampling and nonignorable
nonresponse is:

ier

TinL :Zyi +(N-m)g, +ﬂl(zxi _inj"‘

ieU ier

Ziq{,,pz_(mz\ exp@oxi)Ms(n))}ﬁs { (o) SO (m)}

/1_eXp(7oXi )Ms(71 1- eXp(no ) (771)
(63)

And the nonresponse bias of Ty, | is:

—no?+(ro?) eXp(7o |)M (71) "
s ) Z mo’ (o) exp (7o M, (7 )} .
! z_( 1 2) eXp(UoXi) p(fh) }

o
ies | ll—eXp(UoXi )M p(771)

Particular cases:

Case 1: The sampling design is noninformative, that is (77, = 0 ) and the nonresponse
process is nonignorable:

ier

Tl =2,V +(N = m)ﬂ0+ﬂ1(2x ZXJ z{ (1,07) exp(yox M, (71)}

ieU ier ier /1 eXp(}/o ) (71)
(65)
* 2 eXp(]/OXi )M p (71)
ol =3 ) i ) “‘”
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Case 2: The sampling design is noninformative, that is (77, = 0) and the nonresponse
process is ignorable, thatis (y, =0 ):

TiL= Zyi +(N-m)z, +ﬂ1(zxi _inj (67)

ier ieU ier

BT, )=0

Case 3: The sampling design is informative and the nonresponse process is ignorable,
thatis (, =0):

Tiie :zyi +(N-m)z, +ﬁl(zxi —inj+77102(n—m)+

ier ieU ier

(68)
Z{—(ﬂ 02\ EXp(UoXi)Mp(nl) }
ics . /1_eXp(770Xi )Mp(nl)
exp(17,% M, (7,)
B(TiL)=— _77162 + 7710-2\ p (69)
( ) ; z,( "1—exp(r,%, M, (17,)

Remark: Empirical BLUP of T . In practice the parameters are unknown, so in order
to obtain the empirical best unbiased predictors, we replace the unknown parameters
by their estimates, see Eideh (2016).

4. Conclusions

In this paper we combine two methodologies used in the model-based survey
sampling: the prediction of finite population total T, under informative sampling, and
full response, and the prediction of T when the sampling design is noninformative and
the nonresponse mechanism is nonignorable. One incorporates the dependence of the
first order inclusion probabilities on the study variable, while the other incorporates the
dependence of the probability of nonresponse on unobserved or missing observations.
For this aim, we use the response distribution and relationships between moments of
the superpopulation, sample, sample-complement, response, and non-response
distributions, for the prediction of finite population totals. Common best linear
unbiased predictors derived under model-based survey sampling are shown to be
special cases of the present theory. The general theory was applied for a homogeneous
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population model, simple ratio population model, simple linear regression population
model, and multiple regression population model. The paper is purely mathematical
and focuses on the role of informativeness of the sampling design and informativeness
of nonresponse in adjusting various predictors for bias reduction. Further
experimentation (simulation and real data problem) with this kind of predictors is
therefore highly recommended. We hope that the new mathematical results obtained
will encourage further theoretical, empirical and practical research in these directions.
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