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From the Editor   

According to the traditional convention, the articles contained in this issue are 
divided into three parts: research articles, other articles and research communicates and 
letters, and in such a sequence they are briefly characterized here.  

However, it is worthwhile mentioning first that in parallel to this − a regular 
(‘summer’) issue − a special issue of the Statistics in Transition new series is under 
preparation (the announcement of which was in the Vol. 20, No. 3, September 2019) 
on Statistical Data Integration (SDI), featuring papers that address theoretical, 
methodological and practical issues. It is edited by a group of leading experts invited by 
Professor Partha Lahiri, the Guest Editor of this issue envisioned as the state-of-the-art 
in this timely topic and one of the important transitions taking place in statistics. It will 
appear in August 2020.  

 
Research articles 

 
The major section containing research articles is opened by Hadi Safari-Katesari’s 

and Samira Zaroudi’d (USA) paper entitled Count copula regression model using 
generalized beta distribution of the second kind. Starting with observation that 
modelling claims severity for obtaining insurance premium is one of the major 
concerns of the insurance industry − as it is evidenced by considerable amount of 
literature devoted to the actuarial application of the copula model to calculate the pure 
premium − authors model claims severity for computing the pure premium in the 
collision market. They apply a regression model using a generalized Beta distribution 
of the second kind (GB2) to compute the premium for an average claim and the 
conditional computation for all coverage levels, under assumption that that the number 
of accidents is independent from the size of claims. Application is demonstrated using 
a portfolio of a major automobile insurer in Iran in 2007−2008, with a subsample of 
59,547 policies available in their portfolio, showing that there is strong positive 
dependency between the real premium and the estimated one. 

Ahmed Hurairah and Abdelhakim Alabid (YEMEN) present Beta transmuted 
Lomax distribution with applications. In particular, they propose and test a composite 
generalizer of the Lomax distribution. Specifically, they use the beta distribution and 
transmuted map to develop the so-called beta transmuted Lomax (BTL) distribution. 
They discuss the properties of the distribution and provide explicit expressions derived 
for the moments, mean deviations, quantiles, distribution of order statistics and 
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reliability. The maximum likelihood method is used for estimating the model 
parameters, and the finite sample performance of the estimators is assessed by 
simulation. The authors also demonstrate the usefulness of the new distribution 
in analysing real data. 

In the paper On the choice of the number of Monte Carlo iterations and bootstrap 
replicates in empirical best prediction, Adam Chwila and Tomasz Żądło (POLAND) 
discuss the properties of the EBPs (Empirical Best Predictors) in the context of small 
area estimation. In the case of longitudinal surveys, this class of predictors can be used 
to predict any given population’s or subpopulation’s characteristics, for any time 
period, including future periods. Generally, the value of an EBP is computed by means 
of Monte Carlo algorithms, whereas its MSE is usually estimated using the parametric 
bootstrap method. Model-based simulation studies of the properties of the predictors 
require numerous repetitions of the random generation of population data. This leads 
to a question about the dependence between the number of iterations in all the 
procedures and the stability of the results. Authors aim to show this dependence along 
with proposing methods of choosing the appropriate number of iterations using a set 
of real economic longitudinal data, which are available on the US Census Bureau 
website. 

Sanghamitra Pal’s, Arijit Chaudhuri’s and Dipika Patra’s (INDIA) article How 
privacy may be protected in optional randomized response surveys addresses the 
sensitive issue of protection privacy on such stigmatizing features like alcoholism, 
history of tax-evasion habits, testing positive for AIDS-related testing, etc., in survey 
research through a proper application of randomized response (RR) techniques (RRT). 
Authors discuss how the approach needs amendments while applying optional RRT’s 
covering qualitative characteristics, permitting a sampled respondent either to directly 
reveal the sensitive characteristic or go for a randomized response respectively with 
complementary probabilities. They conclude that all of the competing ORR methods 
show satisfactory results in terms of ACP and ACV values 

Ramajeyam Tharshan and Pushpakanthie Wijekoon (SRI LANKA) present 
A comparison study on a new five-parameter generalized Lindley distribution with its 
sub-models using a new generalization of the Lindley distribution based on a mixture 
of exponential and gamma distributions with different mixing proportions, and 
compare its performance with its sub-models. The new distribution accommodates the 
classical Lindley, Quasi Lindley, Two-parameter Lindley, Shanker, Lindley distribution 
with location parameter, and Three-parameter Lindley distributions as special cases. 
Various structural properties of the new distribution are discussed and the size-biased 
and the length-biased are derived. A simulation study is conducted to examine the 
mean square error for the parameters by means of the method of maximum likelihood. 
Finally, simulation studies and some real-world data sets are used to illustrate its 
flexibility in terms of its location, scale and shape parameters. 
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In the paper Statistical properties and different estimation methods for weighted 
inverted Rayleigh distribution, Abhimanyu Singh Yadav., S. K. Singh and Umesh 
Singh (INDIA) introduce a new weighted probability distribution to model the non-
monotone failure rate pattern for survival data. The proposed distribution is 
generalized by considering inverted Rayleigh distribution as a baseline distribution 
called an extended weighted inverted Rayleigh distribution. Different statistical 
properties such as moment, quantile function, moment generating function, entropy 
measurement, Bonferroni and Lorenz curve, stochastic ordering and order statistics 
have been derived. Authors discuss procedures to estimate the unknown parameters of 
the proposed probability distribution and conduct the Monte Carlo simulation study 
to compare the performances of the proposed estimators obtained through various 
methods of estimation. Using two real data sets they also show the applicability of the 
proposed model in a real-life situation. 

 
Other articles 

 
The next paper Asymmetry of foreign trade turnover in Ukraine and Poland by 

Ruslan Motoryn, Kateryna Prykhodko and Bogusław Ślusarczyk (POLAND and 
UKRAINE) is devoted to searching for determinants of the asymmetry of foreign trade 
turnover between Ukraine and Poland, based on an analysis of competitiveness 
indicators of the studied countries in the period 2003−2017. The emphasis is on 
calculation of the comparative advantages of particular commodity headings in Polish 
exports in the domestic market of Ukraine. Potential directions of the intensification of 
bilateral trade were evaluated.   

Aleksandra Łuczak and Małgorzata Just (POLAND) in the paper entitled 
Positional MEF-TOPSIS method in the assessment of the development level of 
complex economic phenomena for territorial units propose a new methodological 
approach to the construction of a synthetic measure for the case where the objects are 
described by variables with strong asymmetry, and extreme values (outliers) are 
present.  Authors observe that extreme value (very large or very small) of a variable may 
significantly affect the attribution of an excessively high or low rank in the final ranking 
of objects.  This dependence is particularly apparent when using the classical TOPSIS 
(Technique for Order of Preference by Similarity to Ideal Solution) method. The aim 
of the study is to present the application potential of the positional MEF-TOPSIS 
method for the assessment of the level of development of complex economic 
phenomena for territorial units. The proposed approach is used to assess the financial 
self-sufficiency of Polish municipalities in 2016. The study finally compares the results 
of applications of positional MEF-TOPSIS and the classic and positional TOPSIS 
methods.  
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Multivariate Statistical Analysis 2018, Łódź. Conference Papers 
 
Piotr Szczepocki in the paper on Application of iterated filtering to stochastic 

volatility models based on non-Gaussian Ornstein-Uhlenbeck process (POLAND) 
discusses a class of Barndorff-Nielsen’s and Shephard’s (2001) stochastic volatility 
models in which the volatility follows the Ornstein–Uhlenbeck process driven by 
a positive Levy process without the Gaussian component. Of particular interest is the 
problem of parameter estimation of these models in the case when the likelihood 
function is not available in a closed-form expression. The main goal of the paper is to 
present an application of iterated filtering for parameter estimation of such models. 
Iterated filtering is a method for maximum likelihood inference based on a series of 
filtering operations, which provide a sequence of parameter estimates that converges to 
the maximum likelihood estimate. An application to S&P500 index data shows the 
model performs well and diagnostic plots for iterated filtering ensure convergence 
iterated filtering to maximum likelihood estimates. Empirical application is 
accompanied by a simulation study that confirms the validity of the approach utilizing 
Barndorff-Nielsen’s and Shephard’s stochastic volatility models. 

 
Research Communicates and Letters 

 
In the paper New linear model for optimal cluster size in cluster sampling by 

Shukla Alok Kumar, and Yadav Subhash Kumar, (INDIA) a nonlinear model has 
been proposed for an improved relationship between the size of the cluster and the 
variance within the cluster. This model describes the most appropriate functional 
relation between the within-cluster variance and the cluster size. Using this model, 
authors obtain the optimum size of the cluster and the estimate of the variance between 
the clusters. The proposed model leads to further improvement in the estimation of the 
optimum size of the cluster and the formula for determination of the optimum cluster 
size also leads to explicit solution of models.  

  
Conference reports 

 
The XXXVII International Conference on Multivariate Statistical Analysis  

5–7 November, 2019), Łódź, Poland (Baszczyńska Aleksandra, Bolonek-Lasoń Katarzyna). 
 

 
Włodzimierz Okrasa 
Editor  
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Count copula regression model using generalized beta distribution
of the second kind

Hadi Safari-Katesari1, Samira Zaroudi2

ABSTRACT

Modelling claims severity for obtaining insurance premium is one of the major concerns of

the insurance industry. There is a considerable amount of literature on the actuarial appli-

cation of the copula model to calculate the pure premium. In this paper, we model claims

severity for computing the pure premium in the collision market by means of the count cop-

ula model. Moreover, we apply a regression model using a generalized beta distribution of

the second kind (GB2) to compute the premium for an average claim and the conditional

computation for all coverage levels. Like many other researchers, we assume that the num-

ber of accidents is independent from the size of claims. For real data application, we use a

portfolio of a major automobile insurer in Iran in 2007-2008, with a subsample of 59,547

policies available in their portfolio. We then proceed to compare the estimated premiums

with the real premiums. The results demonstrate that there is strong positive dependency

between the real premium and the estimated one.

Key words: count copula, GB2 regression, pure premium, collision insurance.

1. Introduction

Premium is the payment that a policyholder pays for buying full or partial insurance

coverage versus a specified risk. Premium ratemaking is a vital subject to balancing insur-

ance payments (Zhang et al., 2015). In confronting with financial outcomes of the random

phenomenon, insurance plays the role of supporting policyholders. It includes the accumu-

lation of a big bunch of policyholder risks such that, within a given time cycle, a number

of insurance claims and an accumulated loss to the insurer can be determined. Nowadays,

estimating premium plays a pivotal role for insurance companies in the competitive mar-

kets. The biased computation may lead to losing the market share and confronting ruin.

There is a range of works in this field such as Weisberg (1982), David (2015), Marton et al.

(2015), Zhang et al. (2015), Schirmacher (2016), Yang et al. (2017), Shi and Yang (2018),

Lesmana et al. (2018), Wolny-Dominiak et al. (2018) and Avanzi et al. (2019). However,

using the copula model in ratemaking and actuarial application is to some extent new. Frees

et al. (2013) used a multivariate two-part regression model such that the correlation ratio

and copula regression for the claims and severity modelling were considered, respectively.

1Corresponding Author: Department of Mathematics, Southern Illinois University, Carbondale, IL 62901-

4408, USA. E-mail: hadi.safari@siu.edu. . ORCID: https://orcid.org/0000-0003-2630-3133
2Department of Mathematics, Southern Illinois University, Carbondale, IL 62901-4408, USA. ORCID:

https://orcid.org/0000-0001-8290-6137
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For more information, one can refer to Shi (2016). We cannot distinguish risky policy-

holders beforehand but the severity and the number of claims in a portfolio of an insurance

company are predictable. In this paper, our aim is to calculate pure premium by using the

insured coverage selection preferences and the number of accidents during the policy pe-

riod. For this goal, the authors use a generalized beta distribution of the second kind (GB2)

regression model to model the average claims for each level of coverage preferences. In

the actuarial literature, the assumption between the number of accidents and the size of the

claim is common, which is used here as well. The wide variety application of the probabilis-

tic model for claim severities can be justified by the “long-tail” nature of insurance losses,

which appear as a result of the delay in reporting and long settlement periods of claims. So,

this matter makes it difficult to evaluate the exact price of some liability insurance products

and actuary job is to compute the average loss, or pure premium, for different classes of

insurance products for fairly rating insurance policies. They use the observed past claim

data from a portfolio of an insurance company for predicting the future pure premium for

a determined period. Shi and Valdez (2011) and Katesari and Vajargah (2015) used count

Copula model for examining asymmetric information in the insurance industry. The former

computed pure premium using the information of selected coverage level and loss number

for a specific year, and here with following the latter we try to compute the premium. Frees

and Valdez (2008) computed premiums under alternative reinsurance coverage. However,

Katesari and Zarodi (2016) predicted accident probability after observing the accidents for

a specific year by using the copula model in the latter.

In this paper, we use the count copula model for computing the pure premium of the

severity data from a major insurance company in Iran. Specifically, we consider the gener-

alized beta distribution of the second kind (GB2) regression model for the severity claims.

For this, we need the joint distribution of coverage selection and the risk of policyholders.

An ordered multinomial model is used to measure the coverage levels and a negative bi-

nomial regression model is used to measure the risk of policyholders for the specific year.

Moreover, a copula regression model is used to measure the linear and nonlinear dependence

between these two margins and the estimated results are presented. The estimation results

of the fitted model using Frank copula is available in Katesari and Vajargah (2015). Instead,

we use another tow famous members of the Archimedean copula family that is Clayton and

Gumbel to measure this dependence. The benefit of our bivariate copula regression model

is that it provides the joint distribution of coverage levels and the risk of policyholders. We

exploit this joint distribution in conditional expectation for computing the pure premium of

the severity data. For real data application, we use a portfolio of major automobile insurer in

Iran in the calendar year 2007-2008 with a subsample of 59,547 policies in their portfolio.

Also, this dataset was used to the work of Katesari and Vajargah (2015) to test asymmetric

information in the collision insurance portfolio of this company.

We have organized the remains of the article as follows. In Section 2, the data de-

scription is given. In Section 3, the count copula regression model will be considered for

computing the pure premium and the estimation results are given. In Section 4, premium

estimation is presented and the results are compared with the actual premium. Finally, in

Section 5 we provide some concluding remarks.
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2. Data attributes

For fitting the model, we use a portfolio of a major automobile insurer in Iran in 2007-

2008 with a total of 59,547 policies available in their portfolio. According to the policy of

the company, policyholders buy insurance policy from these main and overall claims: over-

all accident, overall theft and overall fire. Furthermore, policyholders are able to purchase

one or more coverage options from the below items:

1. Damaged caused by flood, earthquake and hurricanes,

2. Broken glass,

3. Stolen parts and accessories of vehicle,

4. Damage caused by spills or splashes of paint, acid and chemicals,

5. Compensation by not using the vehicle in repair period,

6. Slippage (only in minor damage).

For our purpose, we ordered the levels as follows:

1. overall coverage of collision insurance,

2. overall coverage of collision insurance as well as one or two more item(s),

3. (comprehensive) overall coverage of collision insurance plus three, four, five or all of

more item(s).

Note that with increasing the levels (from 1 to 3), the insured coverage will increase. The

dataset comes from a major insurer in Iran and we use a subsample of 59,547 cases from

more than 800,000 recorded cases the portfolio in 2007-2008 for this insurer. One can find

frequency statistics of policy selection and the number of losses in Table (1).

Table 1: Frequency statistics of policy selection and number of losses

Levels

Claims 1 2 3 Total Number Percent

0 30176 20033 4879 55088 92.51

1 405 1497 2130 4032 6.77

2 39 161 192 392 0.66

3 2 11 21 34 0.06

4 0 1 0 1 0.00

Total Number 30622 21703 7222 59547

Percent 51.42 36.45 12.13 100

Like every insurance database, more than 90 percent of the policyholders did not have an

accident during the considered year. Moreover, Table (2) elaborates the available covariates
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Table 2: Descriptive statistics of the covariates

Variable Explanation Level 1 Level 2 Level 3
Mean StdDev Mean StdDev Mean StdDev Mean StdDev

Driver
attributes

Sexinsured =1 F, 0 M 0.2014 0.1694 0.2306 0.2779
NCD =1(0-15%) 0.4383 0.4538 0.4289 0.3827

=2(15-30%) 0.2156 0.2187 0.2131 0.2066
=3 (30-45%) 0.2529 0.2393 0.2684 0.2725
=4 (≥ 45%) 0.9320 0.0882 0.0896 0.1382

Vehicle
attributes

Vage 4.2951 3.4921 4.5838 4.0601 3.8714 2.5323 4.2597 2.8845
Vtype =Sedan 0.8849 0.8002 0.9882 0.9818

=Others 0.1151 0.1998 0.0117 0.0182
Vapplication =Personal 0.8632 0.7672 0.9798 0.9741

=Non-Personal 0.1368 0.2328 0.0202 0.0259

Table 3: Severity size by months for the calendar year 2007-2008

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar
Severity 1.3 4 6.3 9.5 13.1 13.8 19.2 21.1 26.2 28.5 26.8 17.2

in the dataset. One can classify each of these covariates as a driver or vehicle attributes.

Vehicle age (Vage), vehicle type (Vtype: Sedan or Non-Sedan) and vehicle application

(Vapplication: Personal or Non-Personal) are vehicle attributes while sex (Female and Male)

and No Claim Discount (NCD) are driver attributes. As can be seen from Table (2), many of

these covariates are categorical, which demonstrates the proportion of an observed variable

in each class. Moreover, both mean and standard deviation are presented for vehicle age,

which is the only continuous covariate in this dataset. Like Shi and Valdez (2011), we

used average claims in the observed calendar year. Table (3) provides summary of the

severity claims for different months of the year 2007-2008. As demonstrated in Table (3),

the majority of the policyholder’s loss, nearly 28.5 in this case, occurred in January and the

minority of the policyholder’s loss, roughly 1.3, occurred in April. One of our restrictions

is that the amounts of these losses are adjusted and we cannot distribute the exact amounts

to all.

3. Count copula model fitted to the data

A bivariate copula C(., .) is a joint cumulative distribution function C : [0,1]−→ [0,1]2.

The application of copula comes from Sklar’s theorem. Sklar (1959) says that for random

variables y1 and y2 with corresponding marginal distributions F1(y1) and F2(y2), the bivari-

ate distribution F(y1,y2) can be stated as

F(y1,y2) =C(F1(y1),F2(y2);θ) (1)
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where C is a copula function with dependence parameter θ . If the marginal distributions

are continuous, then the copula in Equation (1) is unique, otherwise C is uniquely deter-

mined on RanF1 × RanF2. In Shi and Valdez (2011) and Katesari and Vajargah (2015),

count copula models were used for testing asymmetric information and adverse selection

in automobile insurance market. Here, according to our database, we take yi1 and yi2 as

selected coverage level and loss number, correspondingly, for each policyholder. yi1 shows

the selected coverage level such that first level (overall), second level, and third level (com-

prehensive) coverages are connected with possible values 1, 2 or 3, correspondingly. We

use latent variables y∗i1 and y∗i2, for modelling yi1 and yi2 with a parametric copula C(., .).The

joint probability mass function of yi1 and yi2 can be express as:

fi(yi1,yi2) =C(Fi1(yi1),Fi2(yi2))−C(Fi1(yi1−1),Fi2(yi2)) (2)

−C(Fi1(yi1),Fi2(yi2−1))+C(Fi1(yi1−1),Fi2(yi2−1))

where Fi1 and Fi2 are the CDF of yi1 and yi2, correspondingly. Now, we need to calibrate

the marginal distribution functions of Fi1 and Fi2 for model identification (Shi and Valdez,

2011). For coverage level and catching the connection between yi1 and y∗i1, we use an

ordered multinomial model as follows:

yi1 =

⎧⎨
⎩

1, if y∗i1 ≤ α1

2, if α1 ≤ y∗i1 ≤ α2

3, if y∗i1 > α2

,

where α1 and α2 are unknown and should be estimated. Also, for estimating yi1, we fit an

ordered logistic regression model as follows:

Fi1(yi1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

1+ exp(−(α1−xi
′β ))

, if yi1 = 1

1

1+ exp(−(α2−xi
′β ))

, if yi1 = 2

1, if yi1 = 3

(3)

where xi is the vector of covariates used for the coverage level of the ith policyholder.

Another marginal variable yi2 can be calibrated by using a negative binomial regression

model. Like Shi and Valdez (2011), we define its probability mass function as follows:

fi2(yi2) = Pr(Yi2 = yi2) =
Γ(yi2 +ψ)

Γ(ψ)Γ(yi2 +1)
(

ψ
ψ +λi

)ψ(
λi

ψ +λi
)yi2 (4)

where ψ is the dispersion parameter for policyholder i, and we use a log link function for

the conditional mean that is Yi2|zi. Note that zi is the vector of covariates used for the risk

of the ith policyholder. For estimating this model, we can use maximum likelihood method.

The copula functions of the Gumbel and Clayton can be expressed, respectively, as follow:

C(u1,u2;θ) = exp{−[(−logu1)
θ +(−logu2)

θ ]1/θ},θ ≥ 1 (5)
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Table 4: Estimation results of Clayton copula model for all reported accidents

Choice-Cumulative Logit Risk-Negative Binomial
Estimate StdErr Estimate StdErr

Choice -α1 -0.9033 0.0131
Choice-α2 0.3767 0.0125 Risk-intercept -2.1585 0.0194
Choice-sex (F) 0.4938 0.0194 Risk-sex (F) 0.0189 0.9339
Choice-Vage 0.0614 0.0012 Risk-Vage 0.0235 0.0015
Choice-(NCD=2) 0.0675 0.0199 Risk-(NCD=2) -0.4443 0.0389
Choice-(NCD=3) 0.2301 0.0190 Risk-(NCD=3) -0.7799 0.0441
Choice-(NCD=4) 0.1362 0.0269 Risk-(NCD=4) -1.3939 0.0826
Choice-Vapplication (2) -0.0858 0.1036 Risk-Vapplication (2) -0.3052 0.2911
Choice-Vtype (2) -0.1704 0.0698 Risk-Vtype (2) -0.3052 0.2911

Dispersion 0.8326 0.0734
Dependence parameter θ 0.2615 0.0184
-2Loglikelihood 160165.1

C(u1,u2;θ) = (u−θ
1 +u−θ

2 −1)−1/θ ,θ > 0 (6)

where θ is the dependence parameter that shows the amount of association between two

marginals. For more details about application of copula in finance and actuarial science,

see Frees and Valdez (1998), Cherubini et al. (2004), Joe (2014), Zaroudi et al. (2018a),

Zaroudi et al. (2018b), and Shi and Yang (2018). In the similar work of Katesari and Va-

jargah (2015), they explained the problems arising from adverse selection based on copula

model. They estimated parameter of Frank copula with θ = 1.3 referred to the existence of

adverse selection in their dataset. In this paper, we are interested in modelling the severity

of claims and we will use the modelled copula for computing the pure premium with the

same database.

The estimation results of the fitted model by using the maximum likelihood method

for Frank copula is available in Table 2 of Katesari and Vajargah (2015). Here, we fit the

aforementioned model using the maximum likelihood method for two other members of

the Archimedean copula family, which are Gumbel and Clayton in equations (5) and (6),

respectively. The estimation results of these two famous copulas are presented in Table (4)

and Table (5). As can be seen from the results of Table (4) and Table (5), the dependence

parameter θ for Clayton and Gumbel copula is 0.2615 and 1.10207, respectively. These

results show a strong dependence between coverage level and the risk of policyholders in

the portfolio of the insurance company in Iran.

4. Computing premium

Here, we describe, discuss and compute the pure premium formula from a mathematical

viewpoint and then compare it with the gross premium in the original data. We define the

premium by ∏X that an insurance company charges to pay a loss X , which is a random

variable. Thus, a premium formula is of the form ∏X = φ(X) where φ is some function.

At first, we consider the mean of X and the simplest premium, which is called pure risk

premium (∏X = E(X)), which means the pure premium is equal to the insurer’s expected

claims under the considered risk (Dickson, 2016). Additional statistical properties of the
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Table 5: Estimation results of Gumbel copula model for all reported accidents

Choice-Cumulative Logit Risk-Negative Binomial
Estimate StdErr Estimate StdErr

Choice-α1 -0.9032 0.0131
Choice-α2 0.3768 0.0126 Risk-intercept -2.1590 0.0193
Choice-sex (F) 0.4947 0.0194 Risk-sex (F) 0.0188 0.0151
Choice-Vage -0.0194 0.2013 Risk-Vage 0.0172 1.6611
Choice-(NCD=2) 0.0671 0.0209 Risk-(NCD=2) -0.4435 0.0391
Choice-(NCD=3) 0.2299 0.0191 Risk-(NCD=3) -0.7780 0.0413
Choice-(NCD=4) 0.1633 0.0276 Risk-(NCD=4) -1.3928 0.1828
Choice-Vapplication (2) -1.7275 0.0765 Risk-Vapplication (2) 0.3179 0.0280
Choice-Vtype (2) -1.8164 0.1371 Risk-Vtype (2) -0.5796 0.2811

Dispersion 0.8321 0.0739
Dependence parameter θ 1.10207 0.4579
-2Loglikelihood 160164.8

premium computation were explored in Dickson (2016). Our data comes from a big insur-

ance company in Iran. In this section, we use the severity of losses for one year (in the

year 2007-2008) for this insurer with a sample of 62,602 policyholders out of total 800,769

recorded cases. Here, we compute the pure premium by using the selected coverage level

and the number of losses for the year in the work of Katesari and Vajargah (2015). The

common method for price evaluation in the automobile insurance market is modelling the

number and severity of losses separately. In reality, the independence assumption between

the number and severity of losses is straightforward and we need to model the size of claims

to compute the pure premium. So, we compute the claims mean for each of the three levels

of coverage using a regression model of Generalized Beta distribution of the second kind

(GB2) . The density function of GB2 with four positive parameter goes as follows (Kleiber

and Kotz, 2003):

f (x) =
axap−1

bapB(p,q){1+(x/b)a}p+q , x > 0, a,b, p,q > 0, (7)

where b is a scale parameter and a, b, c are shape parameters and B(p,q) is the usual Euler

beta function. For more information about GB2, one can refer to McDonald and Butler

(1987), Sun et al. (2008), Frees and Valdez (2008) and Shi and Valdez (2011). Here, we

follow the same way of Shi and Valdez (2011) with taking as bi = exp(l
′
i β ), where l

′
i and

β show covariates vector for each policyholder and the coefficients, respectively. In our

GB2 regression model, sets of parameters for estimation purpose are (β j,a j, p j,q j) , with

possible values j = 1,2,3, which show the three selected coverage levels, correspondingly.

Table (6) shows the results of estimating the three sets of parameters by using the likelihood-

based estimation method. Figure (1) demonstrates the pp-plots of the residuals from the

three regression models of GB2 for showing the quality of the fitted model. According to

the copula method that was used in Shi and Valdez (2011), we can additionally compute the

impact of the policyholder’s coverage preference yi1 on the number of losses (accidents) yi2,
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Table 6: Estimate results of the GB2 regressions for all coverage levels

1st level 2nd level 3rd level
Estimate StdError Estimate StdError Estimate StdError

a 3.1465 0.0016 4.6151 0.0100 3.7952 0.7432
Intercept 2.3920 0.0037 3.3120 0.0071 3.3122 0.0650
sexinsured (F) 0.0124 0.0095 0.0088 0.0003 - 0.0445 0.0286
NCD=2 0.0357 0.0024 0.0421 0.0416 - 0.0107 0.0099
NCD=3 0.1068 0.0052 0.0449 0.0003 0.0741 0.0683
NCD=4 0.2026 0.0010 0.1367 0.1164 - 0.0204 0.0835
Vapplication (2) 0.1193 0.0088 - 0.0802 0.0016 - 0.0056 0.0477
Vage - 0.0001 0.0001 - 0.0063 0.0000 - 0.0063 0.0059
Vtype (2) - 0.1443 0.0117 0.0736 0.0014 0.0256 0.1407
p 9.9716 0.0001 0.8890 0.0429 1.0804 0.2853
q 0.3398 0.0091 0.2567 0.0079 0.3388 0.0808
-2Loglikelihood 10127.15 14029.72 21469.40

conditionally by using Bayes’ formula:

Pr(Yi2 = yi2|Yi1 = yi1) = fi2|1(yi2|yi1,x,z)× fi(yi2,yi1|x,z)
fi1(yi1|x) . (8)

By applying this conditional formula, we can anticipate the likelihood of the number of

claims, condition on the policy selection. In the above equation, the joint probability dis-

tribution in the numerator can be computed by copula distribution in equation (2) and ob-

viously the marginal distribution of yi1 in the denominator by equation (3). According to

the coverage selection for yi1, we can conditionally compute the pure premium for the ith

policyholder as follows:

∏
i
=E(Yi2|Yi1 = yi1)×E(Xi|Yi1 = yi1) (9)

=
∞

∑
yi2=0

yi2 fi2|1(yi2|yi1,x,z)× exp(l
′
i β yi1)B(pyi1 +(1/a)yi1 ,qyi1 − (1/a)yi1)

B(pyi1 ,qyi1)

where B(p,q) =
Γ(p)Γ(q)
Γ(p+q)

, ∏X is the pure premium for the ith policyholder and Γ(.) is the

Gamma function. Using the above formula, we are able to compute the pure premium for

each policyholder in our dataset.

Dependency coefficients among the real gross premium and the estimated one for all

coverage levels have been computed by Spearman’s rho and demonstrated in Table (7),

which shows strong positive dependency. This strong positive correlation shows that the

actual premium paid by the policyholder is according to the conditional computation. In

comparison with the results of Shi and Valdez (2011), one can see the same positive de-

pendency in the portfolio of automobile insurance in Singapore. More precisely, the depen-

dency between real and computed premiums for the first, second and third levels of our work

is 0.6636, 0.2328, and 0.8372, respectively. This is while that the dependency between real

and computed premiums for the first, second and third levels of the work of Shi and Valdez

(2011) is 0.58282, 0.62215, and 0.80632, respectively. Also, descriptive statistics of the real
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Figure 1: pp-plot for GB2 regression models.

Table 7: Dependency between real and computed premiums

dependency p-value

first level 0.6636 0.0098
second level 0.2328 0.0223
third level 0.8372 0.0025

and computed premiums for all coverage levels have been shown in Table (8). These results

are not surprising at all and we expected the positive difference between the two premiums.

This positive difference can be justified by covering loading expenses such as profits, taxes

and other administrative charges, which the policyholder should pay for them as well.

Table 8: Comparison of real and computed premiums

first level second level third level
Mean StdDev Mean StdDev Mean StdDev

Real 23.3024 17.4888 17.6657 14.7873 19.6919 18.4127
Estimated 15.6222 9.1653 13.4348 7.8841 14.3349 16.8840

5. Conclusions

The main focus of this paper is to compute pure premium by using copula models in the

automobile insurance market. We applied a GB2 regression model to compute the claims

mean and conditional computation for all coverage levels. This model permits us to compare
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real and estimated premiums. For this comparison, the coverage level of policyholders is

fitted using an ordered multinomial model and the risk of the policyholder is measured with

a negative binomial regression model in the specific year. The difficulty of this method

is to modelling two count variables for finding the joint distribution, which is useful in

computing the pure premium for the ith policyholder. To address this problem, we used a

copula regression model, which builds a bivariate distribution function and measures both

linear and nonlinear dependency between marginal distributions. For testing the quality of

our model we used pp-plots of residuals of the fitted model. The estimation results of our

model showed a strong positive dependence between real and estimated premiums.

One of our restrictions in this research is that we used a cross-sectional dataset to fit

our model. If we could use a longitudinal dataset that followed each policyholder’s records

during the years, we would reach out to more knowledgeable results.
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Beta transmuted Lomax distribution with applications 
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ABSTRACT 

In this paper we propose and test a composite generalizer of the Lomax distribution .The 
genesis of the beta distribution and transmuted map is used to develop the so-called beta 
transmuted Lomax (BTL) distribution. The properties of the distribution are discussed and 
explicit expressions are derived for the moments, mean deviations, quantiles, distribution of 
order statistics and reliability. The maximum likelihood method is used for estimating the 
model parameters, and the finite sample performance of the estimators is assessed by 
simulation. Finally, the authors demonstrate the usefulness of the new distribution in 
analysing positive data. 

Key words: Lomax distribution, beta Lomax distribution, transmuted distribution, 
maximum likelihood estimation. 

1.  Introduction 

Lomax (1954) proposed Pareto Type – II (the shifted Pareto) distribution, also 
known as Lomax distribution, and used it for the analysis of business failure lifetime 
data. The Lomax distribution is widely applicable in reliability and life testing problems 
in engineering as well as in survival analysis as an alternative distribution. After the 
work of Lomax (1954), various authors studied the Lomax distribution. 

The cumulative distribution function of the Lomax arises as a limit distribution for 
the residual lifetime at a great age (Balkema and De Haan, 1974).  Myhre and Saunders 
(1982) gave application of the Lomax distribution using the right censored data. 
Lingappaiah (1986) proposed various procedures of estimation for the Lomax 
distributions. Nayak (1987) proposed a multivariate Lomax distribution and discussed 
its various properties and usefulness in reliability theory. Ahsanullah (1991) and 
Balakrishnan and Ahsanullah (1994) investigated distributional properties and 
moments of record values from the Lomax distribution respectively. Vidondo et al. 
(1997) used this distribution for modelling size spectra data in aquatic ecology. 

1 Department of Statistics, Sana’a University, Yemen. E-mail: Hurairah69@yahoo.com. 
2 Department of Statistics, Sana’a University, Yemen. E-mail: hakimdeput@gmail.com. 
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Childs et al. (2001) gave order statistics from nonidentical right-truncated Lomax 
distributions and gave applications for these situations. The Lomax distribution was 
used to obtain a discrete Poisson Lomax distribution (Al-Awadhi and Ghitany, 2001). 
Bayesian method of estimation was used for the estimation of the Lomax survival 
function (Howlader and Hossain, 2002). Non-Bayesian and Byesian estimators of the 
sample size in the case of type I censored samples from the Lomax distribution were 
proposed by Abd-Elfattah et al. (2007). Ghitany et al. (2007) proposed the properties of 
a new parametric distribution, which was investigated by Marshall and Olkin (1997) 
and comprehensively extended the distributions family which is being applied to the 
model of the Lomax. Hassan and Al-Ghamdi (2009) used the Lomax distribution for 
the determination of optimal times of changing level of stress for simple stress plans 
under a cumulative exposure model. Abd-Elfattah and Alharbey (2010) estimated the 
parameters of the Lomax distribution based on generalized probability weighted 
moments. Abdul-Moniem and Abdel-Hameed (2012) studied exponentiated Lomax 
(EL), Abdullahi and Ieren (2018) introduced transmuted Exponential Lomax 
distribution (TEL), Ghitany et al. (2007) introduced Marshall-Olkin extended Lomax 
(MOEL), Bindu and Sangita (2015) studied double Lomax (DL). 
The probability density function (pdf) and the cumulative distribution function (cdf) 

of a Lomax distribution is given by 

,                                      (1)

.                                    (2) 

In this article we propose a new generalizer, which is obtained by the composition 
of the genesis of beta distribution and transmutation map. We will execute this 
generalizer to the Lomax distribution to develop the so-called beta transmuted Lomax 
distribution. This will be the beta generalizer of the transmuted Lomax (TL) 
distribution studied by Ashour and Eltehiwy (2013). Consider a baseline cumulative 
distribution function (cdf)  with corresponding probability density function (pdf) 

 and parameter vector . Then, the cdf of the transmuted Lomax (TL) family of 
distributions (for ) is 

 .                              (3) 

The corresponding pdf of the transmuted Lomax distribution is given by 
,                                                           (4) 

where .                              

A class of generalized distributions F(x) has received considerable attention over 
the last few years, in particular, after the studies by Eugene, Lee, and Famoye (2002) 
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and Jones (2004). If G denotes the baseline cumulative distribution function (cdf) of a 
random variable, then the beta generalized distribution is defined as 

 ,                       (5) 

where  and  are shape parameters. Note that  is the 

incomplete beta function ratio, and  is the incomplete 
beta function,  is the beta function and  is the gamma function. 
The probability density function (pdf) of the Beta generated distribution has the form 

.                                        (6) 

Based on the above generalization, Lemonte and Cordeiro (2013) investigated beta 
Lomax (BL), Gupta et al. (2016) introduced Lomax-Gumbel and studied  expressions 
for its characteristic function,  Terna and David (2018) introduced the new extension 
of the exponential distribution is called Lomax-Exponential distribution (LED),  
Kawsar et al. (2018) introduced Rayleigh Lomax distribution, Kumaraswamy Lomax 
(KwL) and McDonald Lomax (McL) and Cordeiro et al. (2013) introduced gamma 
Lomax (GL) distributions. Recently Tahir et al. (2015) introduced the Weibull Lomax 
(WL) distribution and studied its mathematical and statistical properties, Tahir et al. 
(2016) introduced the Gumbel Lomax (GL) distribution and Oguntunde et al. (2018) 
developed a new compound distributions which is Gompertz Lomax distribution. 

The main aim of this paper is to define and study a new family of distributions by 
adding two extra shape parameters in (3) to provide more flexibility to the generated 
family. The additional advantage of the new distribution is that it has more parameters 
to have a better control. The rest of the paper is organized as follows. In Section 2 we 
define the BTL distribution and discuss some of its sub-models. In Section 3 we present 
the mixture representation of the BTL distribution. Section 4 discusses mathematical 
characteristics of the BTL distribution such as the moments, quantile, mean deviation, 
order statistics and stress-strength model. Estimation of parameters by the maximum 
likelihood method and the performance of the estimators is assessed by simulation in 
Section 5. In Section 6, the distribution is used for analysing real data. Finally, in Section 
7, we make some concluding remarks on our study. 

2.  The beta transmuted Lomax distribution 

In this section we provide the formulation of the beta transmuted Lomax (BTL) 
distribution. By inserting (3) into (5) the cumulative distribution function of the beta-
transmuted Lomax distribution with five parameters is given by 
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,             (7) 

where ,  and . 
 
The cdf can be expressed in a closed form using the hypergeometric function (see 

Cordeiro and Nadarajah 2011) as follows:  

, 

where   is the Gaussian hypergeometric function, 
where  is the ascending factorial defined by (assuming that ) 

 

 
Differentiating (7) with respect to , we get the probability density function of the 

BTL distribution given by 

,                  (8) 

where ,  and . 
 
The beta transmuted Lomax (BTL) distribution includes the following 

distributions as a special case: 
for , beta transmuted Lomax reduces to beta Lomax distribution. 
For , beta transmuted Lomax reduces to transmuted Lomax 
distribution. 
For  and , beta transmuted Lomax reduces to exponentiated Lomax 
distribution. 
For  and , beta transmuted Lomax reduces to Lomax 
distribution.  

 
Figure 1 illustrates some of the possible shapes of the density function of the BTL 

distribution for selected values of the parameters  with . 
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Figure 1. pdf of the BTL distribution for selected values of the parameters 

 

The plot for PDF reveals that the BTL distribution is positively skewed and 
therefore will be a good model for positively skewed data sets. 

 
Figure 2 illustrates some of the possible shapes of the cumulative distribution 

function of the BTL distribution for selected values of the parameters  with 
.  

 

 

 

Figure 2. cdf of the BTL distribution for selected values of the parameters 

 

The graphical representation of the cumulative function for different possible 
values of the parameters is shown in Figure 2, which is always an increasing function. 
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3.  Mixture representation 

In this section we find the series representations of cdf and pdf of the BTL 
distribution, which will be useful for studying its mathematical characteristics. As we 
shall see both pdf and cdf of BTL distribution can be expressed in terms of the Lomax 
distribution. By using (5) and the power series expansion of , we get 

 

with the binomial term  defined for any real . Hence, (7) reduces 

to        

 .                     (9) 

 
Again, using the binomial expansion of 

, we have 
 

 

   ,                    (10) 

 
where  is the Lomax cdf with scale  and shape  parameter. 
Differentiating (10) with respect to  gives a useful expansion of  as 

,                           (11) 

where 

 

and  is the Lomax pdf with scale  and shape  parameters. If 
 is an integer, the index  in the sum stops at , and if  is an integer, then the 

indices  and  in the sum stop at . 
Thus, several mathematical properties of the BTL distribution can be obtained 

simply from those properties of the exp-G family. Equations (10) and (11) are the main 
result of this section. 
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4.  Mathematical characteristics  

In this section we provide some mathematical properties of the BTL distribution 
including the moments and moment generating function, quantiles, mean deviations, 
order statistics and stress-strength model. 

4.1.  Moments and moments generating 

Moments are necessary and important in any statistical analysis, especially in 
applications. They can be used to study the most important features and characteristics 
of a distribution (e.g. tendency, dispersion, skewness and kurtosis). Using the mixture 
representation described in Section 3, the r-th moment of the BTL random variable  
is given by 

 

 

,  ,                                    (12) 

 ,                                                    (13) 

  , 

 ,   

, . 

 
The variance, skewness and kurtosis measures can now be calculated using the 

relations  

,              (14)  

,       (15) 

.                        (16) 
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Similarly, the moment generating function of  may be obtained as below: 

,  

(17) 

where . 

4.2.  Quantiles 

Quantiles are the points in a distribution that relate to the rank order of values. The 
quantile function of a distribution is the real solution of  for . The 
quantiles of beta transmuted Lomax distribution are obtained from (7) as 

                                        (18) 

 
where  is the inverse of the incomplete beta function with parameters  and 

. The following expansion for the inverse of the beta incomplete function  
can be found on the Wolfram website http://functions.wolfram.com/06.23.06.0004.01 

, 

where . 

4.3.  Mean deviation 

The amount of scatter in a population is evidently measured to some extent by the 
totality of deviations from the mean and median. If  has a BTL distribution, then we 
can derive the mean deviations about the mean  and about the median  as 

, 
and 

. 

The mean of the distribution is obtained from (12), and the median is obtained by 
solving the equation 

. 
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These measures can be calculated using the relationships that 

 

 

  

, 

and 

, 

where . From (11) we have     

 

          .                            (19) 

Using (10), one can easily find  and  .  

4.4.  Order statistics 

Let  be a simple random sample from the BTL distribution with 
cumulative distribution function (7) and probability density function (8). 

Let  denote the order statistics from this sample. The pdf  
of i-th order statistics  is given by 

 

and cdf is given by 

 

                        

The pdf of the  order statistic for the beta transmuted Lomax distribution is 
given by 
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.                   (20) 

Writing  ,  can be expressed as 

. 
 (21) 

We note that in (21) we can write 

 

and 

 

where  Further, from Gradshteyn and Ryzhik (2000), for any 
positive integer , 

,                                                                   (22) 

where the coefficients , for ,  can be determined from the recurrence 
equation 

                                       (23) 

and  . Hence,  comes directly from  and, therefore, from 
. Using (22) and (23) it follows that 

, 
where 

 

. 

Combining terms, we obtain 
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 ,                                                          (24) 

where  denotes the pdf of a Lomax distribution with parameter 
 and  parameter and 

.                                      (25) 

4.5.  Stress-strength model 

A stress-strength model describes the life of a component which has a random 
strength  and is subjected to a random stress . The component functions 
satisfactorily as long as , and fails when . The probability 

 defines the component reliability. Stress-strength models have many 
applications especially in engineering concepts such as structures, deterioration of 
rocket motors, static fatigue of ceramic components, fatigue failure of aircraft structures 
and the aging of concrete pressure vessels.  

Consider  and  to be independently distributed, with 
 and . The cdf of  and the pdf 

 of  are obtained from (10) and (11), respectively. Then,  

 

    
   , 

where 

, 

and 
. 

Now, 

 

            . 
Hence, 
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    ,                                              (26) 
where 

. 

5.  Maximum likelihood estimation 

Let  be a random sample from the beta transmuted Lomax distribution 
with observed values  and  be the parameter vector. The 
likelihood function  is given by 

.                                                                              (27) 

Then, the log-likelihood function for the vector of parameters 
 , is 

.                                                                    (28) 

We differentiate (28) with respect to  respectively to obtain the 

elements of score vector  as below 

     

  (29) 

                                                          

   (30) 



STATISTICS IN TRANSITION new series, June 2020 25

                                                                   

 (31)  

  
                                                                                     (32) 

,              
(33) 

where  is the digamma function defined by  , and  is the 
Gamma function. 

For a random sample  of size  from , distributed with pdf (8), the 
sample log-likelihood is , where  is the log-likelihood for the  
observation , and the score vector is 

. 

The maximum likelihood estimate (MLE)  of  is obtained by solving the system 

. 

Under certain regularity conditions, , (here  stands 
for convergence in distribution), where  denotes the information matrix given by 

. 

This information matrix  may be approximated by the observed information 
matrix 

. 

Then, using the approximation , one can carry out tests 
and find confidence regions for functions of some or all parameters in . 

5.1.  Simulation study 

Here, we evaluate the performance of MLEs for the beta transmuted Lomax 
distribution. The assessments were based on simulation studies. 
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The assessment of the finite sample behaviour of MLEs for this distribution was 
based on the following: 

1. use the inversion method to generate one thousand samples of size n from the 
BTL distribution, i.e. generate values of 

 

2.  compute MLEs for one thousand samples, say  for 
. 

3. compute the standard errors of MLEs for one thousand samples, say 
  for . The standard errors were 

computed by inverting the observed information matrix.  

4. compute the biases and mean squared errors by 

 

 

       For  and  

5. We repeated these steps for  with 
, so computing 

 for  and for 
. 

 
From Table 1 it is observed that as the sample size increases, the average biases, the 

standard error and the means squared errors decrease. This verifies the consistency 
properties of the estimates.  

Table 1. Estimated parameters, Bias, standard error, and MSE of the BTL distribution 

n  Bias S.E MSE 

10  
 
 
 
 

0.7720320 
0.1037850 
0.4210746 
0.3254056 
0.1704485 

0.3391303 
0.0089731 
1.9199212 
0.0615352 
0.0747316 

0.5960335 
0.0107714 
0.1773038  
0.1058888 
0.0290527 
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Table 1. Estimated parameters, Bias, standard error, and MSE of the BTL distribution  (cont.) 

n  Bias S.E MSE 

50  
 
 
 
 

0.7610562 
0.0496510 
0.4034083 
0.3050595 
0.1342013 

0.0725915 
0.0004640 
0.8194007 
0.0126729 
0.0124783 

0.5792066 
0.0021763 
0.1627383 
0.0940613 
0.0180100 

80  
 
 
 
 

0.7609200 
0.0494220 
0.4021352 
0.3054812 
0.1342981 

0.0482477 
0.0002847 
0.7258839 
0.0063866 
0.0071282 

0.5789992 
0.0021226 
0.1617127 
0.0933187 
0.0180036 

100  
 
 
 
 

0.7607430 
0.0485110 
0.4017062 
0.3049736 
0.1335229 

0.0394231 
0.0002302 
0.6649546 
0.0045990 
0.0054569 

0.5770819 
0.0020533 
0.1613679 
0.0930089 
0.0178284 

150  
 
 
 
 

0.7604350 
0.0475990 
0.4011389 
0.3043215 
0.1325220 

0.0273712 
0.0001553 
0.5515348 
0.0024106 
0.0033301 

0.5761872 
0.0016656 
0.1609124 
0.0926116 
0.0175621 

200  
 
 
 
 

0.7603690 
0.0471560 
0.4008572 
0.3040050 
0.1320344 

0.0211253 
0.0001171 
0.4719037 
0.0014553 
0.0023345 

0.5742380 
0.0022237 
0.1606865 
0.0924192 
0.0174331 

300  
 
 
 
 

0.7601090 
0.0467220 
0.4005767 
0.3036949 
0.1315549 

0.0146216 
0.0000784 
0.3665787 
0.0006557 
0.0014122 

0.5712876 
0.0021083 
0.1604617 
0.0922306 
0.0173067 

6.  Applications 

In this section, we provide applications to three real data sets to illustrate the 
importance and potentiality of the BTL distribution and some of the models generated 
from Lomax distributions, namely the Lomax (L), transmuted Lomax (TL),  beta 
Lomax (BL), Gamma Lomax (GaL), Marshall-Olkin Lomax (MOL) and Weibull Lomax 
(WL) distributions. 
Data Set I: The first real data set (Ghitany et al. 2008) consists of 100 observations on 
waiting time (in minutes) before the customer received service in a bank. The data are: 
0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4, 4.1, 4.2, 4.2, 4.3, 
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4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 
7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7, 
10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 2.9, 13.0, 13.1, 13.3, 13.6, 13.7, 
13.9, 14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 
23, 27, 31.6, 33.1, 38.5. The summary of the data set is provided as follows:   

Table 2. Summary Statistics for Data Set I 

Min.  Median  Mean Max. Var. Skewness Kurtosis 

0.80 4.65 8.1 13.05 9.877 38.5 52.3741 1.47277 5.54029 
 
Data Set II: The second data set (Gross and Clark (1975), page 105) on the relief times 
of twenty patients receiving an analgesic is: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 
4.1, 1.8, 1.5, 1.2, 1.4, 3, 1.7, 2.3, 1.6, 2. The summary of the data set is provided as follows: 

Table 3. Summary Statistics for the Data Set II 

Min.  Median  Mean Max. Var. Skewness Kurtosis. 

1.1 1.45 1.7 2.1 1.9 38.5 0.4958 1.7198 5.9241 

 
Data Set III : Here, we consider an uncensored data set corresponding to remission 
times (in months) of a random sample of 128 bladder cancer patients. These data were 
previously studied by Lee and Wang (2003) and Lemonte and Cordeiro (2011). Bladder 
cancer is a disease in which abnormal cells multiply without control in the bladder. The 
most common type of bladder cancer recapitulates the normal histology of the 
urothelium and is known as transitional cell carcinoma. The data are as follows: 0.08, 
0.20, 0.40, 0.50, 0.51, 0.81, 0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 
2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 
3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 4.40, 4.50, 4.51, 
4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 
6.76, 6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 
8.37, 8.53, 8.65, 8.66, 9.02, 9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 
11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 
16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 25.74, 25.82, 26.31, 
32.15, 34.26, 36.66, 43.01, 46.12, 79.05. The summary statistics of this data set is given 
below:   

Table 4. Summary Statistics for Data Set III 

Min.  Median  Mean Max. Var. Skewness Kurtosis 

0.08 3.335 6.395 11.885 9.366 79.05 110.425 3.287 18.483 
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From the descriptive statistics in Tables 2, 3 and 4 for the three data sets 
respectively, we observed that the three data sets are positively skewed, however, the 
third data set is highly peaked with a higher skewness coefficient followed by the second 
and then the first with a low peak. To compare this distribution, we have considered 
some criteria: the maximized log-likelihood (−2l), Akaike information criterion (AIC), 
corrected Akaike information criterion (CAIC), Bayesian information criterion (BIC), 
Hannan-Quinn information criterion (HQIC). These statistics are given as:   

, ,  

and 

, 

where  is the number of parameters in the statistical model,  the sample size and  
is the log-likelihood function evaluated at the maximum likelihood estimates,  is the 
parameters. The distribution with minimum values for these statistics would be chosen 
as the best distribution to fit the data set in question. 
 

Table 5. Criteria for comparison based on Data Set I 

Models -2l AIC CAIC BIC HQIC Ranks 

L 818.3085 822.3085 822.4323 827.5189 824.4173 7 
TL 732.5721 738.5721 738.8221 746.3876 741.7351 4 
BL 735.5881 743.5881 744.0091 754.0088 747.8055 5 
GaL 757.6042 767.6042 768.2425 780.63 772.8759 6 
MOL 720.1842 730.1842 730.8225 743.2101 735.4560 3 
WL 561.8530 571.8530 572.4914 584.8789 577.1249 2 
BTL 386.4596 396.4596 397.0979 409.4854 401.731 1 

 

Table 6. Criteria for comparison based on Data Set II 

Models -2l AIC CAIC BIC HQIC Ranks 

L 264.3777 274.3777 278.6634 279.3563 275.3496 7 
TL 250.2585 260.2585 264.5442 265.2372 261.2304 6 
BL 243.1503 253.1503 257.4359 258.1289 254.1222 4 
GaL 247.2609 257.2609 261.5466 262.2396 258.2328 5 
MOL 234.0875 244.0875 248.3732 249.0663 245.0594 3 
WL 229.1455 239.1455 243.4312 244.1241 240.1174 2 
BTL 222.134 232.134 236.4197 237.1127 233.1059 1 
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Table 7. Criteria for comparison based on data set III 

Models -2l AIC CAIC BIC HQIC Ranks 

L 669.5493 679.5493 680.0411 693.8095 685.3433 7 
TL 658.2596 668.2596 668.7514 682.5197 674.0535 6 
BL 642.6644 652.6644 653.1562 666.9246 658.4584 4 
GaL 651.7443 661.7443 662.2361 676.0045 667.5383 5 
MOL 636.3210 646.3210 646.8128 660.5812 652.1149 3 
WL 602.9675 612.9675 613.4593 627.2277 618.7615 2 
BTL 566.9087 576.9087 577.4005 591.1689 582.7027 1 

 
Tables 5, 6 and 7 provide corresponding values of the -2l, AIC, CAIC, BIC and 

HQIC for each of the distributions. The values of the statistics in all tables (5, 6 and 7) 
are lower for the BTL distribution followed by the WL and MOL distributions, which 
is an indication that the BTL distribution performed better than the other distributions 
considered in the analysis and could be chosen as the best model compared to the other 
distributions. This also provides additional evidence to the fact that generalizing 
probability distributions provides compound distributions that are more flexible 
compared to the parent distributions. 

 
We have also considered a goodness-of-fit test in order to know which distribution 

has a better fit given some data sets. Hence, we apply the Anderson-Darling ( ),  
Cramrvon Mises ( ) and Kolmogrov-Smirnov (K-S) statistics. Further information 
about this statistics can be obtained from Al-Zahrani (2012). These statistics can be 
computed as:   

 

 

 

 
where  is the empirical distribution function and  is the sample 
size. The distribution with minimum ,  and K-S values is chosen as the best 
distribution to fit the data sets. 
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Table 8. Goodness-of-fit statistics based on data sets I, II and III. 

Models 
Data set I Data set II Data set III 

 K-S K-S  K-S 
L 1.7758 0.5738 0.4354 1.9524 1.542 0.0794 2.6287 0.6648 0.4381 

TL 1.7386 0.4528 0.3957 1.7445 1.4726 0.0759 2.4113 0.4458 0.2175 
BL 1.4738 0.3739 0.3018 0.3351 0.0846 0.0563 1.6615 0.1619 0.1277 

GaL 1.5949 0.3974 0.3375 0.2754 0.0883 0.0636 1.6523 0.1558 0.1283 
MOL 1.4185 0.2585 0.1774 0.2527 0.0857 0.0539 1.4086 0.1382 0.1216 
WL 1.2528 0.2263 0,1517 0.2166 0.0808 0.0478 1.0637 0.1254 0.1137 
BTL 1.1853 0.1347 0.1013 0.1873 0.0725 0.0473 0.8467 0.1198 0.1039 

 
From the table above, we can observe the ,  and K-S values of the distributions 

based on data sets I, II and III. From the table, it is clear and we confirmed that BTL has 
smaller or lower values of the the ,  and K-S statistics for all the data sets compared 
to the WL, MOL, GaL, PL, TL and L distributions, which is an indication that it has a 
better performance compared to the other distributions. Hence, we can confidently 
conclude that the BTL distribution is better than the others.  

7.  Conclusions 

In this study, we have introduced the so-called beta transmuted Lomax (BTL) 
distribution. This is a generalization of the transmuted Lomax distribution using the 
genesis of the beta distribution. Many distributions including Lomax, beta Lomax and 
transmuted Lomax are embedded in this newly developed BTL distribution. The 
mathematical properties of the new family including explicit expansions for the 
ordinary moments, quantiles, generating functions and order statistics have been 
provided. The model parameters have been estimated by the maximum likelihood 
estimation method and the observed information matrix has been determined. It has 
been shown, by means of a real data set, that special cases of the BTL distribution can 
provide better fits than other families of distributions. 
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On the choice of the number of Monte Carlo iterations and 
bootstrap replicates in Empirical Best Prediction 

Adam Chwila1, Tomasz Żądło2 

ABSTRACT  

Empirical Best Predictors (EBPs) are widely used for small area estimation purposes. In the 
case of longitudinal surveys, this class of predictors can be used to predict any given 
population or subpopulation characteristic for any time period, including future periods. 
Generally, the value of an EBP is computed by means of Monte Carlo algorithms, while its 
MSE is usually estimated using the parametric bootstrap method. Model-based simulation 
studies of the properties of the predictors require numerous repetitions of the random 
generation of population data. This leads to a question about the dependence between the 
number of iterations in all the procedures and the stability of the results. The aim of the 
paper is to show this dependence and to propose methods of choosing the appropriate 
number of iterations in practice, using a set of real economic longitudinal data available at 
the United States Census Bureau website. 

Key words: survey sampling, economic longitudinal data, prediction for future periods. 

1. Introduction 

Empirical Best Predictors have been used in small area estimation problems for 
a long time. In papers published by Jiang and Lahiri (2001) and Jiang (2003) prediction 
problems under generalized linear mixed models were studied. A large number of 
papers were published after a well-known Molina and Rao (2010) paper, where this 
class of predictors was used to predict poverty measures. What is more, they presented 
a special case of the predictor under normality of the transformed variable of interest 
together with the proposal of a very fast algorithm for a special case of the model called 
the nested error mixed model. Then, many authors generalized these results relaxing 
normality assumption (e.g. Elbers and vad der Weide (2014), Diallo (2014) and Diallo 
and Rao (2018)), considering nonlinear models and usually the prediction of small area 

1 University of Economics in Katowice, Katowice, Poland, E-mail: achwila@gmail.com.  
 ORCID: https://orcid.org/0000-0003-4671-4298. 
2 University of Economics in Katowice, Katowice, Poland, E-mail: tomasz.zadlo@ue.katowice.pl.  
 ORCID: https://orcid.org/0000-0003-0638-0748. 



36                                                                                         A. Chwila, T. Żądło: On the choice of the number… 

fractions (e.g. Berg and Chandra (2014), Boubeta, Lombardía and Morales (2016, 2017), 
Hobza and Morales (2016), Zimmermann and Münnich (2018)), analyzing the 
problem of back transformation of the variable of interest (Molina and Martin (2018)) 
and studying the semi-parametric EBP (Marino et al. (2019)). 

In these papers, the authors assume a different number of iterations in the EBP 
procedure (which will be denoted by L ), in the parametric bootstrap method used to 
estimate MSE (which will be denoted by B ) and in Monte Carlo simulation studies 
(which will be denoted by K ). The applications presented in these papers are usually 
supported by model-based simulation studies. It gives possibility to use additional 
methods to choose the appropriate number of iterations based on simulation results, 
such as stability of simulation results or the simulation bias of unbiased Best Predictor, 
which cannot be computed in practice (for real data).  

It is clear that the appropriate choice of the number of iterations is different for 
different data, different models and different prediction problems and hence we would 
like to present some examples studied by different authors. Although in practice, as 
stated by Tzavidis et al. (2018), usually L  or L  is used, in the small area 
estimation literature different numbers of iterations L  in the EBP procedure are 
studied: 

− in applications: from 50 to 1000 in Molina and Rao (2010), 100 in Guadarrama, 
Molina and Rao (2018), 

− in simulation studies: 50 in Molina and Rao (2010), 100 in Das and Haslett 
(2019), 500 in Boubeta, Lombardίa, Morales (2017) and 2500 in Boubeta, 
Lombardίa, Morales (2016). 

Examples of numbers of iterations B  taken into account by different authors are: 
− in applications: 500 in Molina and Rao (2010), Hobza and Morales (2016), 

Boubeta, Lombardίa and Morales (2017), Guadarrama, Molina and Rao (2018), 
− in simulation studies: 500 in Molina and Rao (2010), Boubeta, Lombardίa and 

Morales (2016), Guadarrama, Molina and Rao (2018); and 1000 in González-
Manteiga, Lombardίa, Molina, Morales and Santamarίa (2008). 

The numbers of iterations in Monte Carlo simulation studies assumed by different 
authors equal: 500 in Das and Haslett (2019), 500 and 10 000 and 50 000 for different 
purposes in Molina and Rao (2010); 500 and 1 000 and 10 000 for different purposes in 
Guadarrama, Molina and Rao (2018); 1 000 in González-Manteiga, Lombardίa, Molina, 
Morales and Santamarίa (2008), Guadarrama, Molina and Rao (2014), Boubeta, 
Lombardίa, Morales (2016, 2017); 5 000 in Diallo and Rao (2018); 10 000 in Hobza and 
Morales (2016) and Molina and Martίn (2018); 50 000 in Jiang and Lahiri (2006). 
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Based on a real economic longitudinal dataset we analyse three problems which, 
according to our best knowledge, are not presented in the literature: 

− the dependence between the number of iterations L  of the EBP procedure and 
the stability of EBP values, 

− the dependence between the number of iterations B  in the parametric bootstrap 
procedure and the stability of values of MSE estimators, 

− the dependence between the number of Monte Carlo iterations K and the 
stability of ratios of MSEs of the predictors: the EBP and the BP. 

We also propose: 
− two criteria allowing the appropriate choice of L  and B , which can be used 

in practice (based on real sample data), 
− a criterion allowing to choose the appropriate number of iterations K  in 

simulation studies. 

2.  Some remarks on bootstrap procedures 

In this section we present the literature review on the convergence of bootstrap 
procedures taking into account two issues. Firstly, we are interested in analysing how 
bootstrap estimators under B  replications approximate their values when B  tends to 
infinity. Secondly, we show that based on some bootstrap procedures we can obtain 
asymptotically unbiased estimators of some unknown parameters. Although we are 
interested in the parametric bootstrap method, we discuss available results for different 
bootstrap procedures. 

Davison and Hinkley (1997) pp. 34−37 study the problem of the decomposition of 
variances of different bootstrap estimators into the part resulting from data variation 
and simulation variation. They study nonparametric bootstrap procedure and derive 
variances and bootstrap variances of the following statistics: bootstrap estimator of the 
bias of the sample mean, bootstrap estimator of the variance of the sample mean and 
bootstrap estimator of the variance of the sample quantile. They present bootstrap 
variances of these statistics as functions of: (i) their unconditional variance and (ii) the 
simulation variance depending on the number of bootstrap iterations. It gives a direct 
tool to determine the number of nonparametric bootstrap replicates to obtain the 
required ratio of the simulation variance and the unconditional variance. Davison and 
Hinkley (1997) pp. 155−156 study also the problem of the convergence of the 
parametric bootstrap procedure but in the case of testing hypotheses. They derive 
powers of tests in two cases: for the given number of bootstrap iterations and when it 
tends to infinity. Their ratio is a function of bootstrap replicates, which allows one to 
determine the number of replicates to obtain the required level of the ratio. 
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Efron and Tibshirani (1986) p. 72 study the number nonparametric bootstrap 
replications in the case of estimation of the standard error showing that the CV of the 
bootstrap estimator of the standard error based on B replications is a function of: (i) the 
CV of the bootstrap estimator of the standard error based on infinite B replications, (ii) 
the number of bootstrap replications and (iii) the expected value (over the distribution 
of the variable of interest) of the kurtosis of the bootstrap distribution of the considered 
estimator. Because the formula is generally not estimable, it is not used to find a specific 
value of bootstrap replications but to determine a range of acceptable values. 

An interesting procedure is proposed and studied by Andrews and Buchinsky 
(1997, 2000, 2001). They study two cases in bootstrap procedures – firstly, B iterations 
and, secondly, an infinite number of iterations. They determine the number of 
bootstrap iterations to obtain the value of the modulus of the percentage deviation 
between values of bootstrap estimators in these two cases not greater than the specified 
value with the declared probability close to 1. It can be used for different bootstrap 
techniques including parametric and nonparametric bootstrap and both for 
independent and dependent data. Estimation of the MSE is not considered by the 
authors – they consider estimation of the square root of variance, confidence intervals, 
test statistics and p-values. In simulation studies they consider properties of their 
method only for standard nonparametric bootstrap. 

Even if a bootstrap estimator accurately approximates its value under infinite 
number of replications, it does not mean that it is a good estimator of the parameter. 
Usually bootstrap approximates the population distribution of certain sample statistics 
but the failure in convergence of the bootstrap distribution to the correct distribution 
may also occur (e.g. Beran (1997)). Hall and Martin (1988) prove that the 
nonparametric bootstrap quantile variance estimator converges with the increase of the 
sample size to the true variance (but slowly). Singh (1981) shows that the 
nonparametric bootstrap asymptotically (when the sample size tends to infinity) 
approximates the population distribution of the standardized sample mean and the 
distribution of the sample quantiles. The parametric bootstrap MSE estimator of the 
empirical best linear unbiased predictor proposed by Butar and Lahiri (2003) estimates 
the unknown MSE with the bias of order o D , where D  is the number of small 
areas. Chatterjee, Lahiri and Li (2008) use parametric bootstrap to estimate the 
distribution of the centered and scaled empirical best linear unbiased predictor and 
show that it accurately approximates the true distribution (and derive the order of the 
approximation). Hall and Maiti (2006) propose a very accurately parametric bootstrap 
confidence intervals, that do not depend of the form of small area predictor, with the 
coverage error O D . Hall and Maiti (2006) present also results crucial for our 
analysis – they prove that the biases of parametric bootstrap MSE estimators 
(considered in this paper) of both the empirical best linear unbiased predictor and the 
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empirical best predictor are of order O D , where D  is the number of small areas. 
What is more, the double bootstrap MSE estimator of the predictor, not considered in 
our paper due to very time-consuming computations, is of order O D . 

3.  Empirical Best Predictor 

We consider the model-based approach in survey sampling assuming the following 
longitudinal mixed linear model for population data: 
 Q  (1) 

where Q  is the random vector of the variable of interest after transformation Q  
including random variables for future periods in the case of longitudinal data,  

and  are known matrices of full ranks of the auxiliary variables including known 
or assumed values for future periods,  is the unknown vector of fixed effects,  and 

 – called vectors of random effects and random components – are  independent,  
 and  where  is a vector of unknown parameters called 

variance components. Without the loss of the generality, we assume that first elements 
in the population vector Q  are the random variables which realizations are known 

from the longitudinal survey, which can be written as 
TT T

s rQ Q Q  
where subscript “s” is used for the sample and “r” for non-sampled elements.  What is 
more, a similar decomposition can be used for matrices of auxiliary variables: 

TT T
s r  and 

TT T
s r , for the vector of random components 

TT T
s r  and for covariance matrix of random components 

ss sr

rs rr

. Based on (1), the covariance matrix of Q , denoted by 

, is given by TD Q  and it can be decomposed as 

follows ss sr

rs rr

, where T
ss s s ss

T
rr r r rr , T

sr s r sr  and T
rs sr  

To estimate parameters of (1), i.e. vectors  and , different methods can be used 
including the restricted maximum likelihood method (REML) used in this paper (see 
e.g. Jiang (2007) pp. 12-15). In the method the value of the estimator of , denoted by 

, is computed by maximization of the Gaussian likelihood function of T
s , where 

 is any matrix such that T
s . The method is robust on non-normality – it gives 

consistent estimators even if the distribution is not normal (Jiang (1996)). The 
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estimator of  is given by (e.g. Jiang (2007) p. 75): T T
s ss s s ss s . 

The empirical best linear unbiased predictor of  is as follows (e.g. Jiang (2007) p. 76): 
T
s ss s s . 

Under (1) the best predictor  of any function Q or shortly 
minimizing the mean squared error is given by (e.g. Molina and Rao (2010)): 

 BP sE Q  (2) 

Special cases of Q  are population and subpopulation characteristics such 
as the mean or the median in the current or future period. The value of (2) can be 
computed if the shape and the parameters of the distribution r sQ Q  are known. 
In practical applications the shape of the multivariate distribution of Q is assumed, 
the parameters of the distribution (in the case of (1) -  and ) are estimated based on 

the known realization of sQ (which gives  and ), and the distribution of 

r sQ Q  is derived (or directly the conditional expectation given by (2)). The two-
stage predictor obtained according to this idea is called the Empirical Best Predictor 
(EBP). Its value can be computed based on the following iterative algorithm, presented 
originally by Molina and Rao (2010): 

− generate L  vectors rQ  (denoted by l
rQ , where l L ) based on 

the empirical distribution of  r sQ Q  (the distribution of r sQ Q  

where  and  are replaced by  and ), 

− construct L  population vectors 
Tl T l T

s rQ Q Q  l L  

where one realization of sQ  available from the sample and different 
realizations of rQ  are used, 

− compute the EBP as 
L

l
EBP

l
L Q  (which means that the back 

transformation is needed). 

If we assume (1) and multivariate normality of the transformed variable of interest, 
then the distribution r sQ Q  is multivariate normal with the following vector of 
expected values r rs ss s sQ  and the following variance-

covariance matrix rr rs ss sr . Molina and Rao (2010) also propose 
a very fast algorithm for EBP computation for the special case of (1) called the nested 
error mixed linear model, where the generation of population vectors from the 
multivariate normal conditional distribution is replaced by iid generation using the 
univariate normal distribution.  
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To estimate the mean squared error of the EBP the parametric bootstrap method 
can be used. The bootstrap model used to generate the data is given by (Chatterjee, 
Lahiri and Li (2008), González-Manteiga et al. (2008)):  

 Q    (3) 

where  s   and  are estimators of  and  
respectively. We use the restricted maximum likelihood method to estimate the 
parameters. The MSE estimator is given by (González-Manteiga et al. (2008)): 

 
B

EBP EBP s
b

MSE B Q Q   (4) 

where EBP sQ  and Q  are values of the predictor and the predicted 
characteristic, respectively, for the bth realization of the bootstrap model.  

4.  Data and model 

Our considerations are based on whole population real economic longitudinal data 
available at the website of the United States Census Bureau (https://www.census.gov/ 
library/ publications/ 2011/ compendia/ usa-counties-2011.html):  

− the number of new private housing units of single-family houses authorized by 
building permits for years 2007-2009 (the variable of interest), 

− the number of births for years 2006-2008 (the first auxiliary variable), 
− the private nonfarm annual payroll in USD for years 2006-2008 (the second 

auxiliary variable) 
for 177 counties from the following D  states: Washington, Idaho, Oregon and 
California. We consider a relatively small population because of very time-consuming 
computations. Auxiliary variables are from the year preceding the construction of 
housing units. What is more, we assume that values of both auxiliary variables for 2009 
are known and they are used to predict population and subpopulation characteristics 
of the variable of interest in 2010 (treated as the future period).  

We mimic a real analysis. Because our further considerations are model-based and 
conditional (based on the given sample), we draw one sample. It is a stratified sample 
of counties, where states are strata, with proportional allocation (of size 20% of the 
population size) in the first period. Then, the same elements in periods 2 and 3 are in 
the sample, which gives a balanced panel sample. This gives us the division of the whole 
population dataset into the sample, where both the auxiliary information and the values 
of the variable of interest are available, and the non-sampled elements for which only 
auxiliary information is known. 
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A relatively large sample fraction is considered because: (i) the population size is 
small due to the complexity of computations and (ii) – at the same time – we must 
obtain enough sample observations for model parameters estimation purposes. Of 
course, this specific setting implies a limited generalization of our results for different 
datasets. 

We consider the problem of prediction of the following population and 
subpopulations characteristics for the future period: means, medians, standard 
deviations, quartile deviations, moment and quartile skewness coefficients. For all 
of the variables the log transformation is used (after adding a constant), and hence the 
back transformation of the variable of interest is used to compute the EBP.  

To find the best fitted linear mixed model we use the procedure presented by 
Verbeke and Molenberghs (2009) pp. 121-132, where firstly the fixed effects models are 
considered, then different random effects are added, to finally obtain the mixed model 
(in our case based on the AIC criterion). We have considered about 700 different 
models for both cases considered below. 

The model we have chosen is given by (it will be called model 1): 

 idt d idt idt i i d idtQ Y v x x v t v v e ,  (5) 

where idt idt idtQ Y x x  are log transformed variables (after adding a constant) 
i N  d D  t M  d v dv d v dv  

i v iv  i v iv  idt ee  random effects and random components 
are mutually independent, in our case the population size N , the number of time 
periods (including the future one) M  and the number of subpopulations D .    

Additionally, we have chosen the best fitted nested error model with the 
logarithmic trend (as in (5)) and only one random effect for the purpose of the 
comparative study (it will be called model 2): 

 idt idt idt i idtQ Y x x t v e   (6) 

where i v iv idt ee  iv  and idte  are mutually independent and other 
notations are as in (5). The choice of this class of models is due to the possibility of 
using the fast algorithm for EBP computation proposed in Molina and Rao (2010).       

Based on permutation tests we can claim that parameters of both models are 
statistically significant. The normality assumption for both models is met for the 
considered longitudinal sample data (we have used Shapiro-Wilk test and residuals 
after the Cholesky transformation). 

In the next sections we will consider EBPs under model 1 (given by (5)) denoted by 
EBP1 and under model 2 (given by (6)) denoted by EBP2, and their parametric 
bootstrap MSE estimators based on (4). 
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5.  Number of iterations in EBP procedure 

We consider stability of values of EBP1 and EBP2 computed under different 
numbers of iterations L (where L ) taken into account in the EBP 
iterative procedure presented in Section 3. Each boxplot in Figure 1 presents 
M  values of EBP1 of one out of six population characteristics computed for 
different numbers of iterations L  For example, the first boxplot at the top left corner 
of Figure 1 presents 500 values of EBP1 used to predict the population mean, computed 
based on L  iterations. In Figure 1, we see that results in each out of six 
considered cases tend to stabilize at around L  

Similar plots are prepared for EBP2 and the prediction in the arbitrarily chosen 
third subpopulation (which gives 3 additional plots not presented in the paper). Then, 
based on values presented in each boxplot, we compute the value of the CV and present 
all of the results in Figure 2. The CV is given by: 

      
M M M

L L i L i L i
L EBP EBP EBP EBP

i i
L M

i

C CV M MV M ,    (7) 

where EL M
L
BPCV  is the coefficient of variation computed based on M  values of  EBP 

and L  is the number of iterations in the case of ith EBP estimation. For example, the 
star at the top left corner in Figure 2 is the value of the CV computed for values 
presented in the boxplot at the top left corner in Figure 1. Hence, in Figure 2 we can 
compare CVs of EBP1 and EBP2 of different population and subpopulation 
characteristics predicted for the future period. Coefficients of variation decrease from 
5.74% L  for the standard deviation to 0.34% L  for the median.  

In six parts of Figure 2 we present the differences for different functions of random 
variables predicted for the future period. If we compare prediction methods (EBP1 and 
EBP2 of population characteristics; EBP1 and EBP2 of subpopulation characteristics), 
the results are similar – the differences are substantial only in the case of prediction of 
the standard deviation and the mean for small numbers of iterations. The differences 
between CVs for the third subpopulation and the whole population (EBP1 of 
population and subpopulation characteristics; EBP2 of population and subpopulation 
characteristics) are higher, especially for prediction of functions based on quantiles. 

The results presented in Figure 2 are based on real sample data and they can be used 
to choose the number of iterations in practice assuming the maximum acceptable value 
of the CV (possibly different for different considered cases). For example, if – in the 
case of EBP computations – we accept values of the CV smaller or equal 3% in all of the 
considered cases, then L  is sufficient. It can be noticed that for all of the 
considered prediction problems the linear growth in L  causes a decrease in the CV 
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slower than the linear one. However, the exact path of the convergence is dependent on 
the predicted characteristic as well as on the choice of the population or the 
subpopulation (which is connected to the sample size). For the quantile measures the 
required number of iterations (for the certain CV goal) would be greater if the 
subpopulation was considered instead of the whole population. It can also be noticed 
that for certain characteristics (the standard deviation, the moment skewness 
coefficient, the quartile skewness coefficient) the absolute improvement of the results 
is more tangible, especially for the number of iterations around L . Therefore, 
the incentive of enlarging the number of iterations would be dependent of the above 
aspects. 

Alternatively, we can consider the assumed acceptable value of the change of the 
CV (see Figure 7 in Appendix), which is given by: 

 L
L L L LRCCV CV CV CV ,  (8) 

where LCV  is given by (7). For example, if we accept the decrease (comparing L  with 
L ) of the CV smaller or equal 20%, then L  is sufficient for all of the 
considered cases, too. It can be noticed that the relative change of CVs is a measure that, 
unlike the CV itself, behaves very similarly for all the considered characteristics. For 
example, the difference between L  and L  iterations causes the 
improvement around 30%. It can be also noticed that the relative improvements are 
independent on the choice of the population or the subpopulation. This means that the 
chosen measure (the CV or the relative change of CVs) may have an impact on the final 
conclusion. The difference in the observed convergence between EBP1 (based on the 
model with 4 random effects) and EBP2 (based on the model with 1 random effect) is 
negligible for all  cases besides the standard deviation and the mean. 
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Figure 1.  Variability of 500 values of EBP1 of different population characteristics in the future period 

computed for different numbers of iterations L  
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Figure 2.  CVs computed based on 500 values of EBP1 and EBP2 of different population and 
subpopulation characteristics in the future period for different numbers of iterations 
L  



STATISTICS IN TRANSITION new series, June 2020 47

6.  Number of iterations for parametric bootstrap MSE estimator 

In all of the cases considered in this section EBPs are computed assuming L  
– higher than suggested in the previous section (i.e. L ) to obtain more stable 
results for MSE estimation. We consider MSE estimators of EBP1 under model 1 and 
EBP2 under model 2 computed for different numbers of iterations B  (where 
B ) taken into account in the parametric bootstrap procedure 
presented in Section 3. Each boxplot in Figure 3 presents 100 values of MSE estimator 
of EBP1 computed for different numbers of iterations B  for one out of six prediction 
problems. For example, the first boxplot at the top left corner presents 100 values of the 
MSE estimator of EBP1 of the population mean computed based on B  
iterations. The results presented in Figure 3 for B  and B  are generally 
unstable, at B  they start to stabilize, for B  from 500 to 1000 are quite similar. 
Similar figures are created for bootstrap MSE estimators of EBP2 and the third 
subpopulation (which gives three additional figures not presented in the paper).  

Then, based on the values presented in each boxplot we compute the value of the 
CV and present all of the results in Figure 4. The coefficient of variation, similarly as in 
the case of (7), is given by: 

 
B L

B EBB PMCV MSC EV  

M M M
B i L B i L B i L

EBP EBP EBP
i i i

M MSE M MSE MSEM   (9) 

where B L
E PB M BC MSEV  is the coefficient of variation based on M values of the MSE 

estimator of EBP, L is the fixed number of EBP iterations, B is the number of bootstrap 
iterations in the case of ith MSE estimation. 

For example, the star symbol at the top left corner in Figure 4 presents the value of 
the CV computed based on the values presented in the boxplot at the top left corner in 
Figure 3. Hence, we can compare CVs of the values of MSE estimators of EBP1 and 
EBP2 for six different prediction problems.am 

Values in Figure 4 decrease, although the decrease is not as smooth as in the case of 
the EBP (compare with Figure 2) – possibly due to the additional source of the 
variability resulting from the computation of EBP values and a smaller number of 
values per boxplot. Coefficients of variation decrease from 43.5%  

B  for the standard deviation to 4.31% B  for the quantile skewness 
coefficient. The results for different models (MSEs estimators under model 1 and under 
model 2), the population and the third subpopulation and different prediction 
problems (except the prediction of the standard deviation in the future period) are 
similar, especially for larger numbers of iterations B .  
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Figure 3.  Variability of 100 values of parametric bootstrap MSE estimators of EBP1 of different 

population characteristics in the future period computed for different numbers of iterations 
B  



STATISTICS IN TRANSITION new series, June 2020 49

 

Figure 4.  CVs computed based on 100 values of parametric bootstrap MSE estimators of EBP1 and 
EBP2 of different population and subpopulation characteristics in the future period for 
different numbers of iterations B  
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Similarly to the previous section, the choice of the appropriate number of bootstrap 
iterations can be made based on the maximum acceptable value of the CV of values of 
MSE estimators. For example, if – in this case – we accept values of the CV smaller or 
equal 10%, then B  is sufficient in most of the considered cases except the 
problem of prediction of the standard deviation (see Figure 4). Similarly to the results 
presented in the previous section, the linear growth in the number of bootstrap 
iterations causes a decrease in the CV slower than the linear one for all the considered 
prediction problems. The exact paths of convergence vary in dependence on the 
considered characteristic, the choice between the subpopulation and the population 
and the considered model (which can be noticed especially for the median). 

Alternatively, we can consider the acceptable value of the change of the CV (see 
Figure 8 in Appendix), which is given by: 

  B B
B

BBRCCV CV CV CV ,  (10) 

where BCV  is given by (9). If we compare Figure 8 with Figure 7, we see that the changes 
are less stable because of the same reasons, as stated in the case of the comparison of 
Figure 4 with Figure 2 in the previous paragraph. If we accept the decrease (comparing 
B  with B ) of the CV smaller or equal 20%, then in most of the considered cases 
B  is sufficient. The relative changes of CVs behave similarly for all the 
considered characteristics, although the results are quite unstable and difficult for more 
in-depth analysis. The difference in the convergence between EBP1 (based on the 
model with 4 random effects) and EBP2 (based on the model with 1 random effect) is 
negligible for all the cases beside standard deviation and mean, similarly as in the 
previous section.  

7.  Number of iterations in Monte Carlo simulation studies 

Our considerations, proposals and conclusions in two previous sections were based 
on the real sample data. In this section we study the problem of model-based simulation 
studies of the properties of EBPs, where values of the variable of interest are generated 
based on model 1 (see (5)) for EBP1 and model 2 (see (6)) for EBP2. In simulation 
studies the appropriate number of Monte Carlo iterations is usually chosen based on 
the accepted value of the absolute simulation biases of unbiased statistics. For example, 
in design-based experiments Barbiero and Mecatti (2010) accept the relative values of 
modulus of simulation biases of the unbiased Horvitz-Thompson estimator and the 
unbiased estimator of its variance equal 1% and 3%, respectively. Similarly, in our case, 
we can assume the accepted relative value of modulus of simulation biases for the 
(unbiased) Best Predictors. But in the case of EBPs it is known that the ratio of MSEs of 
the EBP and the BP is greater than 1, while its simulation value may be lower than 1 
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even if the simulation bias of the unbiased BP is low. It means that the simulation ratio 
of MSEs of the EBP and BP may be of greater importance (as the measure of the quality 
of the Monte Carlo simulation study under the given number of iterations) than the 
value of the simulation bias of BP. Hence, we propose to check in simulation studies if 
(i) the simulation ratio of these MSEs is greater than 1 and (ii) to check the stability of 
values of these ratios. The value of the criterion is computed as: 

 
K K

k k k k
EBP BP

k k
K K ,  (11) 

where K  is the number of iterations in the simulation study, k
EBP , k

BP   and k  are the 
values of the EBP, BP and the predicted characteristic, respectively, in the kth iteration 
of the simulation study. 

All results in this section are computed for L . In Figures 5 and 6 we consider 
different numbers of iterations because model 1 is more complex than model 2. The 
results for the simpler model 2 presented in Figure 6 tend to stabilize at K . In 
the case of a more complex model 1 (see Figure 5), results for K  are unstable 
especially in the case of the prediction of the median and the quartile skewness 
coefficient. To explain these results we should take into account two issues. Firstly, we 
assume that the number of EBP iterations L  is acceptable as shown in Section 5. 
Secondly, the results presented in Figure 5 are obtained based on one simulation study 
for an assumed number of Monte Carlo iterations K , which can but does not have to 
show possible instability of one specific result. Hence, the observed peaks for these two 
cases should be interpreted as a result of too small number of Monte Carlo iterations 
leading to possible instability of the results. The results for the more complex model 
(Figure 6) tend to stabilize at K  iterations. What is more, in many cases MSEs 
ratios for the third subpopulation are close to 1, which is an argument for higher K  if 
it is possible. The paths of improvement of the results are different for different 
prediction problems, however the generalization of the results is quite difficult due to 
the single execution of the simulation for each K . Predictors of some characteristics 
(i.e. the standard and the quartile deviations) tend to behave more stable than others, 
which may indicate a different strategy of the optimal choice of K  for the specific 
simulation conditions like the considered characteristics. The complexity of the model 
has a significant impact on the simulation stability, which is opposite to the results 
presented in the two previous sections.  
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Figure 5.  Ratios of MSE(EBP1) and MSE(BP1) of different population and subpopulation 

characteristics in the future period computed for different numbers of Monte Carlo 
iterations under model 1 
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Figure 6.  Ratios of MSE(EBP2) and MSE(BP2) of different population and subpopulation 
characteristics in the future period computed for different numbers of Monte Carlo 
iterations under model 2 
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8.  Discussion 

In this section we present possible generalizations of the proposed criteria, some 
alternatives and limitations of our procedure. 

The CV, as well as the relative change of CVs, can be replaced by a more robust 
measure, e.g. based on quantiles (like the interquartile range) and the relative change of 
the chosen measure, respectively. It may be helpful especially in the case where two 
iterative algorithms are used at the same time as in the case of estimation of the MSE 
based on B bootstrap replications of the EBP approximated in L iterations (see Section 
6), where the simulation variability resulting from the first procedure influences the 
results of the second procedure. What is more, in the case of consideration of highly 
volatile characteristics such as the standard deviation, more robust measure may be 
applied in practice, however in most cases the CV should be sufficient. The adequate 
measure can be determined by the researcher after the study of some boxplots presented 
in Figures 1 and 3.  

The stopping role assumed in this paper to be the absolute or the relative difference 
of the appropriate measure of the simulation variability can also be changed. For 
example, we can assume that the required number of iterations is obtained (that the 
procedure should be stopped) if two distributions, represented  by two adjacent 
boxplots in Figure 1 or in Figure 3, are the same, which is verified by the appropriate 
nonparametric test. 

The drawback of our procedure results from the necessity of conducting the 
computations several times per one iteration number to obtain data represented by one 
boxplot. The alternative, to be developed and studied in further research, could be based 
on the idea of statistical quality control (e.g. control charts) where only one value is 
computed per one iteration number. In the statistical quality control it is checked when 
the monitored process becomes “not in control”. In our case, we will have to check, 
based on the appropriate criteria, when the process becomes “in control” (becomes 
stable). Although in this approach the number of computations per one iteration will 
be one, we will have to increase the number of steps and replace, e.g. 
L  by L  but even though the total number of 
iterations will be smaller.  

The methods considered in the paper are in practice highly dependent on the 
available time, overall complexity of the simulations and the available hardware. 
Furthermore, the sufficient improvement of the measures is a subjective case that is 
heavily dependent on the origin of the data (i.e. in the case of some medical simulations 
even small improvements can be very important). For the considered dataset the 
convergence of the CV computed for the EBP as well as the MSE estimator may vary, 
which provides additional difficulties in terms of generalization of the results.  
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9.  Conclusion 

We consider the problem of the stability of results in iterative procedures used for 
the computation of the empirical best predictor and its parametric bootstrap MSE 
estimator. We show the dependence between the number of iterations and the stability 
of iteratively obtained values of two predictors based on a simple and more complex 
model in the case of prediction of different future population and subpopulation 
characteristics. In the case of the EBP iterative algorithm and the parametric bootstrap 
procedure used to estimate the MSE we propose two methods of choosing the 
appropriate number of iterations. The first one is based on the maximum acceptable 
value of the CV of the results obtained several times for a given number of iterations. 
The second one is the stability criterion assessed based on the minimum relative 
decrease in the CV. In the case of Monte Carlo simulation studies we suggest two 
criteria based on the ratio of MSEs of the EBP and the BP. The number of Monte Carlo 
iterations should be controlled to obtain simulation ratios of the MSEs: stable and 
greater than one. All of the considerations are supported by real longitudinal economic 
data available at the United States Census Bureau website. 
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APPENDIX 

 

Figure 7.  Relative changes of CVs of 500 values of EBP1 and EBP2 of different population and 
subpopulation characteristics computed as L L LCV CV CV  for 
L   
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Figure 8.  Relative changes of CVs of 100 values of parametric bootstrap MSE estimates of EBP1 and 
EBP2 of different population and subpopulation characteristics computed as 

B B BCV CV CV  for B  
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How privacy may be protected in optional randomized response 
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ABSTRACT  

There are materials in literature about how privacy on stigmatizing features like alcoholism, 
history of tax-evasion, or testing positive in AIDS-related testing may be partially protected 
by a proper application of randomized response techniques (RRT). The paper demonstrates 
what amendments are necessary for this approach while applying optional RRTs covering 
qualitative characteristics, permitting a sampled respondent either to directly reveal sensitive 
data or choose a randomized response respectively with complementary probabilities. Only 
a few standard RRTs are illustrated in the text.  
AMS subject classification: 62D05 

Key words: protection of privacy, randomized response, sensitive issues, Warner and other 
techniques. 

1.  Introduction 

Chaudhuri (2011) and Chaudhuri and Christofides (2013) in their books and 
Chaudhuri and Dihidar (2009), Chaudhuri and Saha (2005) and Chaudhuri, 
Christofides and Saha (2009) in their published papers have recounted details about 
how to protect privacy in randomized responses (RR) given out by the respondents 
following various RR devices. 

We have reservations about only a few RR techniques because in a couple of text 
books and several authentic published review papers, only a few RR techniques are 
illustrated as we have done with no prejudice against the ones we omit to save space. 

Here, we intend to investigate possibilities of protecting privacy in generating 
optional RR’s covering qualitative stigmatizing issues. The optional RR (ORR) 
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technique was introduced by Chaudhuri and Mukerjee (1985). A large number of 
developments following Chaudhuri and Mukerjee (1985) approach were proposed by 
Gupta (2001), Gupta et al. (2002), Pal (2008) and many others. Subsequent 
developments are due to Arnab (2004), Chaudhuri and Saha (2005), Saha (2007), 
Huang (2008), Arnab and Rueda (2016) among others with slight differences 
in approaches. As we see, in ORR a sampled person is offered an option either to (i) 
report directly whether he/she bears a stigmatizing feature, say A  ( which may mean 
alcoholism or testing HIV positive, etc.) or (ii) give out an RR adopting a device offered 
and explained to him/her. The option (i) may be implemented with an unknowable 
probability and (ii) with the complementary probability. How to implement (i) or (ii) 
may be clearly explained to the respondent who may or may not divulge which of these 
options is actually applied. Different ORR techniques are described in this article.  

In the cases of RR’s, it is observed that privacy is protected only for specific  
parametric combinations in the RR devices and protection leads to loss of control 
in achieving accuracy in estimation of the population proportion of people bearing 
sensitive features. Such features will be seen in what follows with optional RR situations 
as well. But certain other striking possibilities are revealed below with optional RR’s 
(ORR) rather than with compulsory RR’s (CRR). Details are shown in Sections 2 and 3 
below. Section 4 presents some numerical findings, through simulation. 

2. Certain basics for protection of privacy in general sampling 

Let  U N denote a finite population of units. On drawing a sample 
according to a general sampling design P , the selected units are approached with 
a request to provide ORR's in order to  estimate the proportion of the population units 
bearing a sensitive characteristic A , say. 

Let, for a person labelled i , iL  be the unknowable prior probability that i  bears A 
and RLi  denote the posterior probability that given the RR or DR denoted R, the 
respondent bears A. Following Chaudhuri, Christofides and Saha (2009), the literature 
considers for a measure of jeopardy inherent in the response R the quantity 

ii

ii
i LRL

LRLRJ  

assuming the denominator is non-zero, with the RR device parameters rightly chosen. 
Let, for a general ORR device, Uicc ii be an unknowable probability 

that the thi person chooses to answer directly without divulging this secret to the 
enquirer. Further, let for i , 
             iI = the DR, with probability ic  

    = the RR for a specified device with probability (1- ic ) of course. 
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The investigator is to explain to a respondent a formal way to implement choosing 
such an undisclosed  ic  and  1- ic  to be the probability of giving a DR and respectively 

an RR with no option to change it for an alternative RR device. For example, ic  may be 

fixed (without disclosing to the investigator) as  on choosing a 2-digited random 

number from 01, ...., 13 leaving the rest namely 14, ...,99,00  for giving out an RR. 

Warner's RRT demands from a chosen person i  a response 

            
-py

),  p p(pyR

i

ii  

if i  chooses a card marked A  and bears the stigmatizing feature A  or chooses a card 
marked the complement of A cA  from a pack of cards with a proportion marked 
A  and the rest marked the complement of  cAA   and 

    
c

i

Ai

Aiy
 

Then, for this RRT due to Warner (1965) the expected value of iR  is 

    iiii yppyppyRE                          (I) 

for every i  in U . 

For the ORR technique instead for Warner's RRT the ORR is  

ii

ii

cR
cyOR

 

pccpc
yppcycORE

iii

iiiii

  

Clearly, if ic  equals zero, (II) matches (I) and if ic  differs from 0, (II) differs from 
(I) as well. 

For simplicity let the response be either ‘Yes’ or ‘No’ only. We may write, applying 
Bayes’ theorem, writing cA  as the  complement of A , 

i
c

i i

L Yes AA Yes
L Yes A L Yes A

 

on supposing that Warner’s RR device in Chaudhuri’s (2001) form is employed. 
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Defining iy  if i  bears A and 0 if i does not bear A, we may work out 

i i i iYes A c y c py  

                      pcp i since iy   

and c
i iYes A c p y  

                               icp   since iy  

Hence, it follows that  

i i

i i i i

L p c pA Yes
L p c p L p c

 

iii

ii

cLppL
cppL

       

and 
ii

ii
i LL

LLJ . 

With a little algebra, 

iii

i
i cLppL

LpL ; 

so, 

i

i

i

i
i L

L
L

LJ  

         i

i

cp
pcp

.                                                                                        (1) 

Again, 

ii

ii
i LL

LLJ . 

Now, 

c
ii

i

ANoobLANoobL
ANoobLNoAob  

pcycANoob iii  

pci          since iy ; 

pcycANoob iii
c  

                        ii cpc          since iy . 
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So, 

i i
i

i i i i i

i i i
i

i i i i i

L c pL
L c p L c c p

L c c pL
L c c p L c p

 

since  i
i

i i

L NoL
L No L No

, 

so, 

                      ii

ii
i LL

LLJ  

                           pcp
pc

pcc
pc

i

i

ii

i

.                            
(2) 

Hence, 

ii JJ  

Thus, our proposed measure of jeopardy is iJ  the G.M. of iJ and iJ and 

this carries over for every i as iJ . 
Ensuring privacy protection is not enough. The estimation of the variance of the 

estimator employed is also a crucial requirement. So, adjustments in the RRT’s are 
needed. Thus, in employing Warner’s RRT not just one RR is adequate; two 
independent RR’s are needed when the ORR technique is to be employed by Warner’s 
RRT allowing options for DR’s. This  is elaborated in Section 3. 

3.  Optional Randomized Response Technique with two independent 
randomized responses 

The person labelled i  is requested to give out two ORR’s  independently with 
different known RR device probabilities. Denoting the responses as R and R , the 
posterior probability and the measure of jeopardy may be written as RRLi and

RRJi respectively, corresponding to the thi person’s response RR . 
Now, applying Bayes’ theorem, 

cc
ii

i

ARobARobLARobARobL
ARobARobLRRAob         

(3) 

as the responses are independent for every person,  
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and the response specific jeopardy  measure for the ith person 

i i
i

i i

L R R LJ R R
L R R L                                            

(4) 

indicates the risk of divulging the respondent’s status due to his/her specific response 
(R,R ). Chaudhuri et al. (2009) preferred an average measure. Here, we propose 
geometric mean as an average measure instead of arithmetic mean, earlier suggested by 
Chaudhuri Christofides and Saha (2009). A Geometric Mean (GM) in lieu of 
Arithmetic Mean (AM) is proposed to achieve an algebraic simplicity. 
Thus, the measure of jeopardy for the ith person is  

i iJ J R R R R .                                        (5)    

In this section, we discuss the response specific measure of jeopardy in ORR 
technique and our proposed measure combining all the response specific jeopardy 
measures for qualitative  characteristics. 

Although RRJi depends on unknown probability ic , it can be shown in the 

later sections that the measure of jeopardy iJ  is free from ic .  

3.1. ORR using Warner’s (1965) RR model 

Suppose the sampled person labelled i  is directed to respond  his/her true value of 
the specific stigmatizing attribute or by Warner’s RR device. A box with identical cards  

with A or cA in proportions p p p p is given to the respondent. 

He/she is requested to draw a card and  without divulging the card-type drawn he/she 
is to truthfully say his/her outcome if   the card type drawn matches or not his/her 
characteristic. The whole process is repeated one more time independently but with 
different Warner’s RR device with another similar box - cards marked by A or cA , 

which are in proportions p p p p . 

Thus, the independent Optional randomized responses for i i N  

person are iZ and iZ . 

Here, ii yZ , with unknown probability ic  

           = the Warner’s RR, with unknown probability ic , using  first box 
and 

ii yZ , with unknown probability ic  
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       = the Warner’s RR, with unknown probability ic , using another box. 
Here,  

iy  if the person bears the sensitive characteristic 
      = 0, else. 

Note that the investigator's instruction is to keep the same  ic  for both z  and z . 

Then, denoting RR based expectations and variances as RE  and RV  we may write 

iiiiiiR ypypcycZE  

iiiiiiR ypypcycZE  

Thus, an unbiased estimator of iy  is i i
i

p Z p Zr p p
p p

and an 

unbiased estimator of the variance iR rV is i i i
p pv Z Z

p p
. The details 

of the proof is given in Appendix 1.This variance estimator form is slightly different 
from Chaudhuri  and Dihidar’s (2009).We prefer this form as it is a function of two 
independent responses. 

The possible responses for each individual in the above method are (1, 1) (0, 0) 
(1, 0) and (0, 1). 

Note that a different response 1  or  0  may come from the same person for the first 
and second trials; of course it does not matter because it may reveal that a person may 
have opted  for an RR rather than a DR; this does not reveal the person's sensitive 
feature. 

Suppose the response of thi  labelled person is (1, 1). Then, using the equation (3) 
we get 

iiiiiiiiii

iiii

i

i

yZPyZPLyZPyZPL
yZPyZP

L
L

 

pcpcLpccpccL
pccpcc

iiiiiiii

iiii

pcpcLpccpccL
pcpc

L
L

iiiiiiii

ii

i

i

 
So, from equation (4) the response (1,1) - specific jeopardy measure is 

pcpc
pccpcc

LL
LLJ

ii

iiii

ii

ii
i  

           (6) 
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If the thi  person’s response is (0,0) then we may write 

iiiiiiiiii

iiii

i

i

yZPyZPLyZPyZPL
yZPyZP

L
L

 

pccpccLpcpcL
pcpc

iiiiiiii

ii

 

pccpccLpcpcL
pccpcc

L
L

iiiiiiii

iiii

i

i . 

So, the response (0,0) - specific jeopardy measure is 

pccpcc
pcpc

LL
LLJ

iiii

ii

ii

ii
i .    

      (7) 

For the response (1,0), the corresponding posterior probability iL  and 

Jeopardy measure iJ  may be expressed as 

pccpcLpcpccL
pcpccLL

iiiiiiii

iiii
i

 

pccpc
pcpccJ

iii

iii
i .

 
                                             (8)

 

Similarly, for the response (0,1),  the posterior probability is 

pcpccLpccpcL
pccpcLL

iiiiiiii

iiii
i

and the response specific measure of jeopardy is 

pcpcc
pccpcJ

iii

iii
i .

                                                        (9)
 

Thus, our proposed measure of jeopardy is the geometric mean of all response 
specific jeopardy measures (6), (7), (8) and (9), which is exactly 1 for each and every 
individual. If pp , responses of  every individual are well protected but estimate 
of  the variance tends to be  infinite. Yet the overall measure does not reveal the status 
of the respondent. 
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3.2. ORR using Greenberg et al.’s (1969) unrelated question RR model 

The ORR technique with an unrelated question model is same as the above 
discussed technique except the RR device. Here, the RR device is Greenberg et al.’s 
unrelated question model (1969) instead of Warner’s model. In this RR, two boxes 
contain cards marked as A the stigmatizing attribute or B the innocuous attribute. 
The attribute A is unrelated to the attribute B . The two types of cards are mixed with 

different known proportions say p p  and p p  in box 1 and 
box 2 respectively. Each respondent is requested to draw two cards independently from 
box 1 and box 2 respectively and report according to the above device. 

So, the Optional randomized response for thi  person is 

ii yZ , with unknown probability ic  

      = the Greenberg et al.’s RR, with unknown probability ic , using box 1 
and 

ii yZ , with unknown probability ic  

      = the Greenberg et al.’s RR, with unknown probability ic , using box 2. 
Defining  

ix  if the person bears the innocuous character B 

      if the person bears the innocuous character BC , the complement of B, 
we may write, 

iiiiii xpypcycZP   and 

iiiiii xpypcycZP . 
Hence, it follows that  

iiiiiiR xpypcycZE . 
Similarly, 

iiiiiiR xpypcycZE . 

Thus, an unbiased estimator of iy under the above model is

i i
i

p Z p Zr p p
p p

and an unbiased estimator of the 

variance iR rV  is i i i
p pv Z Z p p

p p
. The proof is given 

in Appendix 2. 
The necessary conditional probabilities are shown below to calculate posterior 

probabilities and response specific jeopardy measures defined as in the equation (3). 
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Now, pcxpcyZP iiiii , as the situation 

arises if the response of the thi individual is 1 but the true value of the sensitive 
characteristic is zero. This is possible only if the respondent chooses RR device and 
responds to the question regarding the innocuous attribute B due to the assumption 
that the respondents provide true response. So, ix  is obvious. 

With the same line of reasoning, we get i i iP Z y c p . 

As we know, CP A B P A B . 

Clearly, i i i i i iP Z y P Z y c c p . 

Similarly, i i i i i iP Z y P Z y c c p .

Proceeding as described in 3.1, their response specific jeopardy measures are 

pcpc
pccpcc

LL
LLJ

ii

iiii

ii

ii
i

 
               (10)

 

pccpcc
pcpcJ

iiii

ii
i        (11) 

pccpc
pcpccJ

iii

iii
i         (12) 

pcpcc
pccpcJ

iii

iii
i .        (13) 

Now, our proposed measure of   jeopardy by the equation (5) is the geometric mean 
(G.M) of the above response specific jeopardy measures. Here, the GM is 

, whatever be the value of the selection probabilities of a card from RR devices. Here
p cannot  tend to p , otherwise variance estimate will be infinite. 

3.3. ORR using Forced response model 

In ORR with forced response model the sampled person labelled i  is requested to 
give out the truthful response iy  with unknown probability ic  or the  forced RR 

response  with probability ic .  In forced RR device, the person is offered two boxes 
with three types of cards marked as “Yes”, “No” and “Honest Response” but they are 
in different proportions. For the first box, “Yes”, “No” and “Honest Response” are 
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in proportions p , p  and p p p p  respectively. For the second 

box, they are in proportions p p p p p p respectively. 

But we should add the restriction pppp on the known probabilities 

pppp  to derive an unbiased estimator for the proportion with stigmatizing 

attribute A . 
So, the Optional randomized response for thi  person is 

ii yZ , with unknown probability ic  

      = the Forced RR, with unknown probability ic , using  the first box 
and 

ii yZ , with unknown probability ic  

      = the Forced RR, with unknown probability ic , using the second box. 
Then, 

pyppcycZP iiiii  

pyppcycZP iiiii  

pyppcycZP iiiii  

pyppcycZP iiiii . 

The unbiased estimator of iy  is i i
i

p Z p Zr p p
p p

  and the unbiased 

estimator of the variance iR rV  is i i
i

p p Z Zv
p p

. It is proved in  Appendix 2. 

Then, the posterior probabilities and the response specific jeopardy measures for 
different responses are shown below. 

pcpcLpccpccL
pccpccLL

iiiiiiii

iiiii
i

 

pccpccLpcpcL
pcpcLL

iiiiiiii

iii
i

 

pccpcLpcpccL
pcpccLL

iiiiiiii

iiii
i
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pcpccLpccpcL
pccpcLL

iiiiiiii

iiii
i

 

pcpc
pccpccJ

ii

iiii
i     (14) 

pccpcc
pcpcJ

iiii

ii
i                          (15) 

pccpc
pcpccJ

iii

iii
i                                            (16) 

pcpcc
pccpcJ

iii

iii
i .                                      (17) 

Here, the proposed jeopardy measure for the i th person  is the G.M of

i i i iJ J J J . 

It is   pccpccpp
pccpccpp

J
iiii

iiii
i

 

pccpcc
pccpcc

p
p

iiii

iiii  

Thus, the GM need not  always be unity  as is also the case in  (18.1) and later and 
also in (19) below. 

Thus, the measure of jeopardy depends on the selection of p p p p  

Here iJ  if pp  and p p . 

3.4. ORR using Kuk’s (1990) RR model 

Let the sampled person be  instructed to record his/her true value of bearing the 
sensitive attribute A  using the ORR device adopting the RR device or direct response. 
The respondent is directed to draw k  (with replacement) number of cards from one of 
two boxes having red and black cards in different proportions  and 

 with and requested to report the number k
fi

, if

being the number of red cards out of k cards if the sampled person i  decides to adopt 
Kuk’s RR device. Cards should be drawn from the first box if the respondent bears the 
sensitive attribute, otherwise  the cards are drawn from the second box having the 
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proportion of red and black cards in proportions  without disclosing 
which box is used to draw the cards. 

So, the ORR response for thi  person is 

ii yZ  with the unknown probability ic  

     

k
fi

 with the unknown probability ic , and   

R i i iE f k y y  

leading to 

i

R i i i i R i

f
kE Z c y c E y . 

To estimate the variance, the process is repeated one more time and the response 
variable iZ is the same as above but the number of red cards is denoted by if  . So, the 

final unbiased estimator of iy  is ii ZZ
 and the related  unbiased variance estimator 

is i i iv Z Z  following Chaudhuri et al. (2013, 2016). 

The posterior probability can be defined as   

iiiiiiiiiiiiii

iiiiiii
iii yfZPyfZPLyfZPyfZPL

yfZPyfZPL
ffL     

               
iiiiii

iii

LL
L  

where ii fkf
iiii cIc  with the indicator function iI  defining 

as iI if if and 0 otherwise and  ii fkf
iiii cIc  with 

another indicator function iI  defined as iI if if and 0 otherwise. 

Similarly, ii fkf
iiii cIc  and  

i if k f
i i i ic I c with two indicator functions defined as just above, 

and the response specific jeopardy measure is  

iiii
ii

ii
iii fJfJffJ                                           (18) 
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where 
i

i
ii fJ  ; 

i

i
ii fJ  for all ii ff  = 0,1,2,...k 

and 
k

f
ii

k

ff
iiii

k

ff
iiii

iiiii

fJfJfJffJJ . 

    (18.1) 

Consequently, k
ii

k
i

i cc
c

J  and  

k
i

k
ii

i c
cc

J  do not tend to 1 whatever the choice of  

But ii

ii

ii
fkf

fkf
i

fkf
i

ii c
c

fJ , for all 

kff ii . 

And it tends to 1 if  

k
iiiiii kJkJJJJJ  

k k k k k
i i i k

k k k k
i i i

c c c
c c c

k k k k k
i i i k

k k k k
i i i

c c c
c c c

. 

(19) 

It is observed that iJ  tends to 1 if . 

4.  Simulation study 

In this section, we present some numerical illustrations. The tables along the figures  
provide how our proposed method  works for different prior probabilities iL  with the 

probability of direct response ic , which is actually unknown, but here, for calculating 

posterior probabilities with their response specific jeopardy measures, we assume ic
artificially, say, 0.06,0.12,0.63,0.57,0.91, etc. In Figures 1 , 2 , 3 , taking iL along 
horizontal axis (in graph “Li”) and ic along vertical directions (in graph “Ci”), the 
plotted points represent the geometric mean of response specific jeopardy measures 
along with  relevant  “p”  values or  values (denoted by (GM_J; p1, p2) or (GM_J; 
p1, p2, p3, p4) or (GM_J; θ1, θ2)in graphs). Table 1 shows the calculations for ORR using 
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Warner’s model and Greenberg et al.’s unrelated question model with the overall 
measure of jeopardy iJ  in the last column, which is exactly 1, whatever the values of 

pcL ii  and p as discussed in Section 3.1. Here, it is slightly different from 1 due to  
approximations in posterior probabilities and response specific jeopardy measures. 
Figure 1 is a representation of the measure of jeopardy iJ  for all the combinations of 

ii cL as mentioned in Table 1. Table 2 represents the calculation for ORR using 

Forced response model imposing the restriction pppp as pointed out in 

Section 3.3. Figure 2 is a diagrammatic representation of the measure of jeopardy iJ  
while  the ORR survey is performed by using the forced model. The numerical study 
for ORR using Kuk’s model is shown in Table 3 along with Figure 3. If the number of 
cards (k) drawn for RR devices is 2, an artificial data set is used for the simulation study 
and the results are shown in Table 4. The data consist of an imaginary set of 116 
undergraduate students aged below 20 and their reckless driving with weekly 
expenditures. We are interested to estimate the proportion of the students who broke 
the traffic rules last year. An unrelated auxiliary variate, whether they are interested in 
painting, takes for the numerical illustration of optional randomized techniques with 
Greenberg et al.’s (1969) RR device, as mentioned in Section 3.2. Let U= (1,2,...i...,N) be 
a finite labelled population with N units and the proportion  may be defined as 

N

i
iy

N
treating y  as a “study qualitative stigmatizing variable”, as mentioned 

in Section 3.  
Samples are taken from the population with unequal probability sampling scheme 

of Lahiri (1951) – Midzuno (1952) – Sen (1953)   used for the selection of a sample of 
39 units to estimate the population proportion. Here, the first unit is selected with the 

probability
N

i
i i

zp Z z
Z

, the normed size measure and the remaining 

ones are selected by simple random sampling without replacement (SRSWOR) from 
the remaining units in the population after the first draw. The variable “Have you ever 
been fined for breaking traffic rules” is our study qualitative characteristic with “Weekly 
expenditure” as the size measure. In this design, the inclusion probability i of the thi

unit  in the sample of size n  from the population of size N is i i
np p
N

as 

the thi  unit may be selected in first position with probability ip  or in any other 

position with probability ip through SRSWOR with probability
N
n . Clearly, 
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the second order inclusion probability of the unit ji may be obtained by the 

following formula i j
ij

n N n p p n n
N N

. We employ 

Horvitz-Thompson estimator (HTE) to estimate the proportion i

i s i

y
N

in the 

case of qualitative character. Since iy is not directly assessable, an unbiased estimator

ir  of iy is assigned here. Hence, 
si i

ir
N

e is our the final unbiased estimator of 

the population proportion with an unbiased estimator of variance

i j ij ji i

i j s i sij i j i

rr ve
N

 where iv is an unbiased estimator 

of variance of ir . The HT estimator  e   for the proportion need not be a proper fraction 
and this anomaly arises not because of ORR as it is natural even for DR's.  Proportion 
estimation is a big challenge in statistics. In Randomized response surveys with unequal 
probabilities, we usually do not face the problem of getting e  values outside the range [0,1]. 

To judge the efficacy of our results, average coverage probabilities (ACP), average 
coefficient of variation (ACV) and the average Length (AL) of the 95% confidence 
intervals based on e v e  have been used. To calculate, we draw T 1000 
samples from the population by Lahiri (1951) – Midzuno (1952) – Sen (1953) sampling 
scheme. For each sample we perform ORR methods to calculate the estimates and 
variance estimates. 

The point estimator will be judged good if the estimated coefficient of variation, 

namely 
v e
e

, has a small magnitude, preferably less than 10% or at most 

30%. A confidence interval (CI) will be judged good if on drawing a large number of 
simulated samples, say B  in the number taken as 1000, from a population at hand, the 
(1) CI’s happen to cover the known value of the parameter, a percentage of times close 
to 95% -this percentage is called the ACP, the Average Coverage Percentage and (2) if 
the average value of the length, AL, say, of a CI is small enough. Between two CI’s the 
one with a lower value of AL will be preferred unless its ACP is too far from 95% 
compared to that for the other. Tables 4.1., 4.2., 4.3. and 4.4. represent the ACV (in %), 
ACP (in %) and AL for four different ORR techniques. Figures 4.1., 4.2., 4.3. represent 
the ACV and ACP values denoted as (ACV, ACP) taking paired p ( for optional 
Kuk model) values along horizontal and vertical axes. 
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Table 1.  ORR with Warner and Unrelated - measure of jeopardy. 

iL  ic  p  p  iJ  iJ  iJ  iJ  Warner iJ  Unrelated

iJ  

0.1 0.06 0.44 0.49 1.2216 0.8186 1.0409 0.9607 1 1 

0.3 0.63 0.3 0.73 3.1622 0.3162 0.039 25.6154 0.9989 0.9989 

0.4 0.42 0.95 0.11 0.0285 35.028 0.0335 29.8462 0.9981 0.9981 

0.5 0.91 0.42 0.28 0.8246 1.2128 0.0034 297.6667 1.0121 1.0121 

0.6 0.37 0.07 0.98 142.46 0.007 0.0145 68.7966 0.9948 0.9948 

0.8 0.55 0.43 0.62 1.7154 0.5829 0.072 13.8959 1.0004 1.0004 

0.9 0.53 0.57 0.73 1.6731 0.5977 0.0374 26.7692 1.0012 1.0012 

 

Table 2.  ORR with Forced model - measure of jeopardy. 

iL  
ic  p  p  p  p  iJ  

iJ  
iJ  

iJ  
iJ  

0.1 0.42 0.64 0.23 0.24 0.0863 0.1367 1.4002 0.012 15.9556 0.4375 

0.2 0.43 0.45 0.4 0.52 0.4622 1.1 0.7667 0.1154 7.3051 0.9183 

0.6 0.18 0.61 0.25 0.47 0.1926 0.4195 0.8615 0.1049 3.4467 0.6013 

0.6 0.26 0.39 0.31 0.43 0.3418 0.9762 0.7592 0.1191 6.2231 0.8609 

0.7 0.3 0.25 0.4 0.37 0.5920 2.2162 0.7749 0.1892 9.0769 1.3105 

0.9 0.1 0.69 0.21 0.6 0.1826 0.4544 0.7778 0.1739 2.0323 0.5945 

0.9 0.12 0.58 0.35 0.37 0.2233 0.4039 1.5337 0.1889 3.2799 0.7871 

 

Table 3.  ORR with Kuk model (k=2) - measure of jeopardy. 

iL  ic    iJ  iJ  iJ  iJ  

0.1 0.18 0.72 0.43 0.1333 1.75 2.867 0.874 

0.2 0.36 0.78 0.13 0.0357 6.7143 39 2.107 

0.3 0.55 0.54 0.34 0.1333 6.6 2.6 1.318 

0.4 0.72 0.49 0.5 0.0886 11.286 1 1 

0.5 0.8 0.58 0.53 0.0476 17 1.167 0.981 

0.6 0.74 0.55 0.2 0.0549 20 8 2.063 

0.7 0.78 0.75 0.76 0.0127 20.5 0.923 0.622 

0.9 0.49 0.77 0.81 0.0588 7.25 0.909 0.729 
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Table 4.1.  ACV, ACP, AL  for Optional Warner  Model 

p1 p2 ACV ACP AL 

0.28 0.19 48.1865 94.6 3.8623 

0.49 0.36 37.5586 99.1 2.0169 

0.54 0.29 26.3733 98 1.0650 

0.63 0.56 42.3268 97.3 2.6278 

0.66 0.45 24.7465 97.9 0.9712 

0.77 0.65 26.8792 99.4           1.0953 

0.81 0.63 20.2835 92.5 0.7143 

 

Table 4.2.  ACV, ACP, AL for Optional Unrelated  Model 

p1 p2 ACV ACP AL 
0.36 0.23 42.2166 95.2 2.4704 
0.51 0.39 38.2907 86.8 2.0682 
0.56 0.49 45.1583 86.5 3.0992 
0.69 0.54 28.0311 98.3 1.1740 
0.72 0.55 24.9143 93.6 0.9746 
0.88 0.34 11.7061 96.8 0.3454 
0.92 0.61 12.1766 93.5 0.3634 

 

Table 4.3.  ACV, ACP, AL for Optional Forced Model 

p1      p2       p3      p4 ACV ACP AL 
0.64 0.23 0.24 0.0863 33.7349 90.1 0.5066 
0.45 0.4 0.52 0.4622 46.4117 79.4 3.1305 
0.39 0.31 0.43 0.3418 55.3157 76.4 4.6584 
0.25 0.4 0.37 0.5920 27.8805 91.2 1.1824 
0.32 0.38 0.4 0.4750 37.776 84.4 2.0412 
0.35 0.23 0.47 0.3089 32.5996 87.7 1.5525 
0.15 0.13 0.22 0.1907 28.2077 98.1 1.1993 

 

Table 4.4.  ACV, ACP, AL for Optional Kuk Model if k=2 

  ACV ACP AL 

0.6 0.2 5.4740 94.5 0.1749 
0.8 0.6 11.3493 95.4 0.3933 

0.56 0.4 12.1329 96 0.3856 
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Figure 1.  Measure of Jeopardy for Warner and Unrelated ORR  

 
 

 
Figure 2.  Measure of Jeopardy for Forced ORR 
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Figure 3.  Measure of Jeopardy for Kuk ORR 

 
 
 

 
Figure 4.1.  Representation of ACP , ACV for Warner ORR 
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Figure 4.2.  Representation of ACP , ACV for Unrelated ORR 

 

 
Figure 4.3.  Representation of ACP , ACV for Kuk ORR 

5. Concluding remarks 

Most of the literature on the theory of RR is restricted to simple random sampling 
(SRS) with replacement (SRSWR). We strongly believe that extension of the theory of 
RR to varying probability sampling is necessary.  

In our proposed ORR method, the probability of choosing between a ‘direct’ and 
an ‘RR’ should vary across individuals rather than be a constant and that is unknown. 
To get an unbiased variance estimator, two responses from each individual are 
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necessarily required. Regarding the privacy protection of each individual, we can 
proceed with the ORR method. As a measure of jeopardy, the average jeopardy measure 
with geometric mean is successfully carried out.  

From our results we observe that all of the competing ORR methods show 
satisfactory results in terms of ACP and ACV values.  
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APPENDICES 

Appendix 1. variance estimation in  ORR  using Warner’s (1965) RR model  
(under Section 3.1. ) 

 

Estimator i i
i

p Z p Zr
p p

 (from Section 3.1) 

 

R i R i
R i

p V Z p V ZV r
p p

  and  

 

R i R i R i

R i R i

R i R i

i i i i i i i i

i i i i i i i i i i

V Z E Z E Z

E Z E Z
E Z E Z

c y c p p y c y c p p y

c y c p c p y c y c c p y i i i

i i i i i i

i i i i i

i i i i i i i i i

i i

c c p y

c c p y c p c p p y

c c p y c p y
c c y c p c p y c c p p y

c c p i i i i

i i i i i i i i i

i i i

i i i i i i i

y c p p p y p y
c c y c p c p y c c p y

c p c p p p y

c c y p p y c p y c p i i

i i i i i i i i

i i i i i i i i

i i

i i i

c p y

c p c y p c y c p y c p

c p c y p c y p c y c p
c p c p
c p c c p

 
Similarly, R i i i iV Z c p c c p . 
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So, 

i i i i i i
R i

i i i i i

i

p c p c c p p c p c c pV r
p p

p p c p c c p p c c p
p p
p p c p

p p i i

i i i

i i i

p c c p p p p

p p c p p c c p p p p
p p
p p c p p c c p p p p

p p
p p

p i i

i i

c p p c p p p p
p

p p c p p c p p
p p

 

Now, 
i i i i i i

i i i i

i i i i i i i i i

i i i i

i i i i i i i

E Z Z E Z Z Z Z
E Z E Z E Z Z
c y c p p y p p y c y c p p y

c y c p p y

c y c p p p p y c y c ci i

i i i i

i i i i i i i i

i

p p p p y

c p p p p y p p y p p y
c c y c p p p p y c c p p y

c p p p p p p i

i i i i i

i i

i i i i i i

i

p p p p p p y
c c p p y c p p p p y

c p p p p y

c p p c p p y c p p c p p y

c ip p c p p

 
Thus, 

i i i i R i
p p p pE Z Z c p p c p p V r

p p p p
 

i.e. i i i
p pv Z Z

p p
 is an unbiased estimator of R iV r . 
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Appendix 2. ORR using Greenberg et al.’s (1969) unrelated question RR model 

(under Section 3.2) 
 

Estimator i i
i

p Z p Zr
p p

 (from Section 3.2) 

R i R i
R i

p V Z p V ZV r
p p

  and  

R i R i R i i i i iV Z E Z E Z y x p c p p c  
 
Similarly, R i i i i iV Z y x p c p p c  
 
So, R iV r  can be written as, 

i i i
R i i

y x c p pV r c p p p p p p
p p

. 

 
Now, 

R i i R i R i R i R i

i i i i

E Z Z E Z E Z E Z E Z

y x c p p p p c p p
 

Thus, i i i
p pv Z Z

p p
 is an unbiased estimator of R iV r . 

 
ORR using Forced response model (under Section 3.3.) 
 

Estimator i i
i

p Z p Zr
p p

 (from Section 3.3) , 

R i R i R i
p pV r V Z V Z

p p p p
  and  

R i i i i i i

i i i i i i i

V Z y c p p y p c p p y p
p p p pp y c y c y y y

p p p

 

Similarly, 

R i i i i i i

i i i i i i

V Z y c p p y p c p p y p
p p p pp y c y c y y

p p p
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Using the condition p p p p , (see Section 3.3)

R i i i i i i i
p p p p p pV r y c y c y y

p p p pp p
. 

Now,

i i i i i i i i
p p p pE Z Z p p y c y c y y

p p p p
. 

So, i i i
p pv Z Z

p p
 is an unbiased estimator for R iV r . 
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ABSTRACT

In recent years, modifications of the classical Lindley distribution have been considered by

many authors. In this paper, we introduce a new generalization of the Lindley distribution

based on a mixture of exponential and gamma distributions with different mixing propor-

tions and compare its performance with its sub-models. The new distribution accommodates

the classical Lindley, Quasi Lindley, Two-parameter Lindley, Shanker, Lindley distribution

with location parameter, and Three-parameter Lindley distributions as special cases. Various

structural properties of the new distribution are discussed and the size-biased and the length-

biased are derived. A simulation study is conducted to examine the mean square error for the

parameters by means of the method of maximum likelihood. Finally, simulation studies and

some real-world data sets are used to illustrate its flexibility in terms of its location, scale

and shape parameters.

Key words: Lindley distribution, mixture distributions, size-biased distributions, maximum

likelihood estimation.

1. Introduction

In the modeling of the lifetime data, especially biomedical science, engineering, actu-

arial science, several continuous distributions bounded to 0 and ∞ have been developed,

which may have one or more parameter(s). Examples of such distributions are exponen-

tial, gamma, Lindley, log-normal, Weibull and their modifications. These distributions may

have various abilities to cover the tail-heaviness of a data set. The tail-heaviness of a data

set may be measured by the excess kurtosis (EK) and EK is defined as τ − 3, where τ is

the kurtosis of the data set. The EK > 0 is called a fatter tail (Leptokurtic) and EK < 0 is

called a thinner tail (Platykurtic) distributions. Among the distributions mentioned-above,

Lindley distribution (LD) which was developed by Lindley (1958), and its modifications

are more flexible than the above-mentioned distributions, especially when considering less

complexity of their mathematical forms, shapes, and failure rate criteria.
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The LD is a one-parameter exponential family lifetime distribution defined over the interval

[0,∞) having the density function:

fY (y) =
θ 2

1+θ
(1+ y)e−θy;y > 0,θ > 0, (1)

where θ is the shape parameter, and y is the respective random variable. The density func-

tion of this distribution can be verified that a two-component mixture of two different contin-

uous distributions namely exponential (θ) and gamma (2,θ) distributions with the mixing

proportion, p =
θ

1+θ
. Ghitany (2008) has done a comprehensive study on the mathemati-

cal and statistical properties of the LD and showed that the LD is more flexible and provides

a better fit than the exponential distribution for lifetime data.

Even though the LD is used for modeling of the lifetime data, researchers are more keen

on its modified forms in terms of increasing the flexibility of LD’s shapes and failure rate

criteria in recent years. Therefore, many researchers have proposed several modified forms

of the LD as an alternative to LD in the past few years. Proposed new distributions are

developed in terms of introducing new parameter(s) to the existing distributions. The new

parameter(s) might be introduced from the latent variable distribution or mixing components

that may be exponential and gamma or gamma and gamma. In this line of new proposed

distributions, we may make references to a considerable number of existing distributions

that are actual mixing components of LD with an exponential(θ ) and a gamma(2,θ ) distri-

butions mixture but different mixing proportions. The existing distributions are listed below.

Shanker et. al. (2013a) obtained Quasi Lindley distribution (QLD), and discussed its various

statistical properties. The distribution is a two-parameter family distribution with density

function:

fY (y) =
θ(α + yθ)

1+α
e−θy;y > 0,θ > 0,α >−1, (2)

where α and θ are shape, and scale parameters, respectively. The mixing proportion,

p =
α

α +1
. Note that the LD is a special case of the QLD when α = θ .

Shanker et. al. (2013b) introduced the two-parameter Lindley distribution (TwPLD) and

discussed its statistical properties. Its density function is given by:

fY (y) =
θ 2(1+αy)

θ +α
e−θy;y > 0,θ > 0,α >−θ , (3)

where θ and α are shape parameters. The mixing proportion, p =
θ

θ +α
. Note that the LD

is a special case of TwPLD when α = 1.

Shanker (2015) introduced a one-parameter family distribution, namely Shanker distribu-
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tion (SD) with the probability density function:

fY (y) =
θ 2

θ 2 +1
(θ + y)e−θy;y > 0,θ > 0, (4)

where θ is the shape parameter. The mixing proportion, p =
θ 2

θ 2 +1
.

To increase more flexibility in this line of development, Abdol-Monsef (2016) introduced

a new three-parameter family generalized Lindley distribution (TPLwLD) by adding the

location parameter for the exponential and gamma components. In this paper, a clear clari-

fication is given that the location parameter is an important parameter in a statistical model

to estimate the starting point of the distribution. The density function of TPLwLD is given

by:

fY (y) =
θ 2

θ +α
(1+α(y−β ))e−θ(y−β );y > β > 0,1+αy > 0,θ > 0,α +θ > 0, (5)

where θ and α are shape parameters and β is a location parameter. Equation (5) presents

two-component mixture of an exponential (θ ,β ) and gamma (2,θ ,β ) distributions with the

mixing proportion, p =
θ

θ +α
. Here the location parameter is added from the mixing com-

ponents when comparing with TwPLD. Note that LD is a special case of the TPLwLD when

α = 1,β = 0.

Shanker et. al. (2017) obtained the Three-parameter Lindley distribution (ThPLD) with

the following density function:

fY (y) =
θ 2

θα +β
(α +βy)e−θy;y > 0,θ > 0,β > 0,θα +β > 0, (6)

where θ , α and β are shape parameters. The mixing proportion, p =
θα

θα +β
. Note that

the LD is a special case of ThPLD when α = 1,β = 1.

It is clear that when introducing a new such types of LDs, the researchers incorporate with

three types of parameters, namely shape parameters from the latent variable distribution,

scale and location parameters from the mixing components. Table 1 summarizes the appli-

cation of the three types of parameters of the above-mentioned distributions.

The aim of this paper is to introduce a new generalized LD that accommodates all the

distributions given in Table 1, and study the importance of the location parameter in the

model and different mixing proportions in the development process of the new Lindly fam-

ily distributions. Further, the new distribution is based on the two-component mixture of

exponential and gamma distributions with different mixing proportions and it will be called

as the five-parameter generalized Lindley distribution (FPGLD). A simulation study will



92 Tharshan R., Wijekoon P.: A comparison study ...

be done to study the performance of the maximum likelihood estimators of FPGLD. Fur-

ther, a comparison study will be done with its sub-models by using simulated data sets, and

real-world applications. The characteristics of the data sets will be differentiated by their

skewness, Excess kurtosis (EK), and Fano factor values.

Organization of this paper is as follows: in section 2 we introduce the FPGLD and its

sub-models. Its statistical properties and reliability properties are presented in section 3 and

section 4, respectively. Further, section 5 covers the size-biased form of the FPGLD. The

parameter estimation is discussed in section 6. Finally, a simulation study is conducted to

examine the performance of the maximum likelihood estimators for FPGLD, and simulated

data sets and real-world data sets are used for the comparison study with its sub-models.

Table 1. Application of three types of parameters

Distribution Authors Parameters

shape scale location

LD(θ ) Lindley (1958) θ - -

TwPLD(θ ,α) Shanker et.al.(2013a) θ ,α - -

QLD(θ ,δ ) Shanker et.al.(2013b) α θ -

SD(θ ) Shanker (2015) θ - -

TPLwLD(θ ,α,β ) Monsef (2016) θ ,α β
ThPLD(θ ,α,β ) Shanker et.al.(2017) θ ,α,β - -

2. Five parameter generalized Lindley distribution

In this section, we introduce the five-parameter generalized Lindley distribution (FPGLD)

with its sub-models.

The probability density function (pdf) of the FPGLD with parameters θ ,β ,α,δ and η is

defined by;

fY (y) =
θ

δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β ), (7)

where y > β ≥ 0,θ > 0,δα >−η ,δα >−ηθ(y−β ), and the range of the parameters are

based on the log-likelihood function. The proposed distribution is a two-component mixture

of exponential distribution with parameters θ and β , and gamma distribution with parame-

ters 2,θ and β with mixing proportion, p =
δα

δα +η
, where δ ,α,η are shape parameters,

and θ and β are scale and location parameters, respectively. Note that the FPGLD has the

same mixing components of TPLwLD but different mixing proportion.

The probability density function of the FPGLD has some desirable properties:

(i) f (β ) =
θδα

δα +η
(ii) limy→∞ f (y) = 0

The first derivative of equation (7) is derived as:
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f
′
(y) =

θ 2e−θ(y−β )

δα +η

(
− (δα +ηθ(y−β ))+η

)
.

Then, f
′
(y) = 0 gives y0 =

η(1+θβ )−δα
ηθ

, when η >
δα

1+θβ
.

Therefore, the mode of the FPGLD is given by:

mode(y) =

⎧⎨
⎩

η(1+θβ )−δα
ηθ

if η >
δα

1+θβ
and η > 0.

β otherwise

Graphs in Figure 1 have drawn by fixing four parameters and changing the fifth parameter.

Figure 1 presents the possible shapes of the pdf of the FPGLD at different parameter values.

β α δ η

θ
θ
θ
θ

θ α δ η

β
β
β
β

θ α β η

δ
δ
δ
δ

θ α β δ

η
η
η
η

Figure 1: The probability density of FPGLD at different parameter values

(a) β ,α,δ and η are fixed, and θ values are changed, (b) θ ,α,δ and η are fixed, and β values are changed, (c)

θ ,β ,α and η are fixed, and δ values are changed, (d) θ ,β ,α and δ are fixed, and η values are changed.
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The corresponding cumulative distribution function of the FPGLD is given by:

F(y) = 1−
(

1+
ηθ(y−β )

δα +η

)
e−θ(y−β ), (8)

where, y > β ≥ 0,θ > 0,δα >−η ,δα >−ηθ(y−β ).

Sub-models of the FPGLD

The Five-parameter generalized Lindley distribution is nested with six existing Lindley

family distributions when setting different particular numerical values of subsets of pa-

rameters, namely Lindley distribution (Lindley, 1958), Two-parameter Lindley distribution

(Shanker et.al.,2013b), Quasi Lindley distribution (Shanker et.al.,2013a), Shanker distri-

bution (Shanker, 2015), Lindley distribution with location parameter (Monsef, 2016), and

Three-parameter Lindley distribution (Shanker et.al.,2017). Table 2 summarizes these mod-

ified Lindley distributions as sub-models of the FPGLD. From the knowledge of parameters

in the sub-models of the FPGLD, the performance of the newly introduced shape parame-

ters, δ and α in FPGLD in a data set could be studied comparing with TPLwLD, and the

performance of the location parameter in a data set could be studied comparing TPLwLD

and TwPLD.

Table 2. Sub-models of the FPGLD
Distribution Parameters References

Shape Scale Location

FPGLD(θ ,β ,α ,δ ,η) δ α η θ β in this paper

LD(θ ) θ 1 1 θ 0 Lindley (1958)

TwPLD(θ ,η) θ 1 η θ 0 Shanker et. al.(2013)

QLD (θ ,δ ) δ 1 1 θ 0 Shanker et. al.(2013)

SD(θ ) θ θ 1 θ 0 Shanker (2015)

TPLwLD(θ ,η ,β ) θ 1 η θ β Monsef (2016)

ThPLD(θ ,α,η) θ α η θ 0 Shanker et.al.(2017)

3. Statistical properties

In this section, we provide basic statistical properties of the FPGLD such as rth moment

about the origin, central moments, moment generating function, and characteristic function.

3.1. Moments and related measures

The statistical properties of the central tendency, dispersion, skewness, and kurtosis can

be studied through the moments. The following theorem gives the rth moment about the

origin.
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Theorem 1. The rth moment about the origin of the FPGLD is given by:

μ ′
r =

eθβ

(δα +η)θ r

(
rΓ(r,θβ )(δα−ηβθ +η(r+1))+δα(θβ )re−θβ

+η(r+1)(θβ )re−θβ

)
. (9)

Proof.

μ ′
r =

∫ ∞

β
yr θ

δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )dy

=
θeθβ

δα +η

(
δα

∫ ∞

β
yre−θydy+ηθ

∫ ∞

β
yr+1e−θydy−ηθβ

∫ ∞

β
yre−θydy

)

=
θeθβ

δα +η

(
δα

θ r+1
Γ(r+1,θβ )+

η
θ r+1

Γ(r+2,θβ )− ηβ
θ r Γ(r+1,θβ )

)

=
eθβ

(δα +η)θ r

(
rΓ(r,θβ )(δα−ηβθ +η(r+1))+δα(θβ )re−θβ +

η(r+1)(θβ )re−θβ

)
.

Subtituting r = 1,2,3 and 4 in equation (9), the first four moments about the origin are

derived as:

μ ′
1 =

1

(δα +η)θ

(
δα(1+θβ )+η(2+θβ )

)
= μ ,

μ ′
2 =

1

(δα +η)θ 2

(
δα(2+θβ (2+θβ ))+η(6+θβ (4+θβ ))

)
,

μ ′
3 =

1

(δα +η)θ 3

(
δα

(
6+θβ (6+θβ (3+θβ ))

)
+η

(
24+θβ (18+θβ (6+θβ )

))
,

and

μ ′
4 =

1

(δα +η)θ 4

(
δα

(
24+θβ (24+θβ (12+θβ (4+θβ )))

)
+η

(
120+βθ(96+

θβ (36+θβ (8+θβ )))

))
.

Then, the rth-order moments about the mean can be obtained by using the relationship

between moments about the mean and moments about the origin, i.e)



96 Tharshan R., Wijekoon P.: A comparison study ...

μr = E

[
(Y −μ)r

]
=

r

∑
r=0

(
r
i

)
(−1)r−iμ

′
i μr−i.

Therefore, some rth-order moments about the mean are:

μ2 =−μ2 +μ ′
2 =

δα(δα +4η)+2η2

(δα +η)2θ 2
= σ2,

μ3 = 2μ3−3μ ′
2μ +μ ′

3 =

2

(
δα

(
(δα)2 +6η2 +6η(δα)

)
+2η3

)

(δα +η)3θ 3
, and

μ4 =−3μ4 +6μ ′
2μ2−4μ ′

3μ +μ ′
4

=

3

(
δα

(
3(δα)3 +24η(δα)2 +44η2(δα)+32η3

)
+8η4

)

(δα +η)4θ 4
.

Now, the coefficient of variation (c.v), measures of skewness (γ1), measures of kurtosis

(γ2), and the Index of dispersion/Fano factor (γ3) of the FPGLD can be derived as:

c.v =
(μ2)

1/2

μ ′
1

=

√
δα(δα +4η)+2η2

δα(1+θβ )+η(2+θβ )
,

γ1 =
μ3

(μ2)3/2
=

2

(
δα

(
(δα)2 +6η2 +6η(δα)

)
+2η3

)

(δα(δα +4η)+2η2)3/2
,

γ2 =
μ4

(μ2)2
=

3

(
δα

(
3(δα)3 +24η(δα)2 +44η2(δα)+32η3

)
+8η4

)

(δα(δα +4η)+2η2)2
, and

γ3 =
μ2

μ ′
1

=
δα(δα +4η)+2η2

(δα +η)θ(δα(1+θβ )+η(2+θβ ))
.

The horizontal symmetry, and dispersion can be measured by γ1, and γ3, respectively. Fig-

ures 4 and 5 (Appendix) show various patterns of the kurtosis and the skewness functions

of FPGLD at different parameter values, respectively. From these figures, it is clear that the

kurtosis value is increasing when δ is increasing and decreasing when η is increasing for

δ ≤ 1. Among the different formats of α; α = 1,α = δ ,α = δ 2, and α = δ 3, the maximum

flexibility is obtained when α = 1, i-e) δα = δ , in terms of having higher kurtosis value for

δ ≤ 1. Further, the skewness value is increasing with δ and decreasing with η for δ ≤ 1.

Figures 6 and 7 (Appendix) represent different shapes of the Fano factor function of FPGLD

at different parameter values. Figure 6 (a) ,(b), (c), and (d) have drawn by fixing θ , β , and

η and changing δ and α . Note that all shapes are anti-U shaped and the higher Fano factor

values are obtained mostly when α = 1. Figure 7 (a), and (b) have drawn by fixing α,δ and
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η and changing θ , and β , respectively. All graphs show a monotonic decreasing pattern,

and the Fano factor value is increasing when β or θ value is decreasing. When comparing

Figures 6 and 7, it is clear that the effect on the Fano factor function of changing δ is totally

different than the effect of changing θ .

3.2. Moment generating and characteristic function

The moment generating function is useful to determine the distribution of a random

variable. The following theorem provides the moment generating function of the FPGLD.

Theorem 2. The moment generating function say MY (t) of the FPGLD is given as fol-

lows:

MY (t) =
θeβ t

(δα +η)(t−θ)2

(
−δα(t−θ)+ηθ

)
. (10)

Proof.

MY (t) = E(ety)

=
∫ ∞

β
ety θ

δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )dy

=
θ

δα +η

(
δα

∫ ∞

β
ety−θ(y−β )dy+ηθ

∫ ∞

β
yety−θ(y−β )dy−ηθβ

∫ ∞

β
yety−θ(y−β )dy

)

.

The integrals of the above equation will be taken separately as follows:

δα
∫ ∞

β
ety−θ(y−β )dy =

eθβ δα
t−θ

(
− eβ (t−θ)

)
=

δαeβ t

(θ − t)

ηθ
∫ ∞

β
yety−θ(y−β )dy

= eθβ ηθ
∫ ∞

β (θ−t)

z
θ − t

e−z dz
θ − t

; z = y(θ − t)

=
ηθeθβ

(θ − t)2
Γ(2,β (θ − t)) =

ηθeβθ

(θ − t)2

(
1+β (θ − t)

)

Therefore,

MY (t) =
θ

δα +η

(
−δαeβ t

(t−θ)
+

ηθeβ t

(θ − t)2
(1+β (θ − t))+ηθβeβ t(t−θ)

)

=
θeβ t

(δα +η)(t−θ)2

(
δα(θ − t)+ηθ

)
.
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Similarly, the characteristic function say, ψ(t) of the FPGLD can be derived as follows:

ψY (t) = E(eity) =
θeβ it

(δα +η)(θ − it)2

(
δα(θ − it)+ηθ

)
. (11)

3.3. Quantile function

The quantile function of FPGLD can be found by solving F(y) = u,0 < u < 1. It is

useful for the quantile estimations and for simulation studies. So, the uth quantile function

of FPGLD is derived as:

F(y) = 1−
(

1+
ηθ(y−β )

δα +η

)
e−θ(y−β ) = u

⇒
(

δα +η +ηθ(y−β )

)
e−θ(y−β ) = (1−u)(δα +η).

This equation can be rewritten as:

−
(

δα
η

+1+θ(y−β )

)
e
−θ(y−β )−

δα
η
−1

=
(u−1)(δα +η)

η
e

−δα
η

−1
.

Clearly−
(

δα
η

+1+θ(y−β )

)
is the negative branch of Lambert function, and one writes

it symbolically as W−1 . Therefore, the quantile function of the FPGLD can be written in

terms of the negative branch of the Lambert function as:

−
(

δα
η

+1+θ(y−β )

)
=W−1

(
(u−1)(δα +η)

η
e
−

δα
η
−1

)
.

Hence,

y = β − δα +η
ηθ

− 1

θ
W−1

(
(u−1)(δα +η)

η
e
−

δα
η
−1

)
;y > β ,0 < u < 1. (12)

Then, the first three quartiles of the FPGLD can be derived by substituting u = 0.25,0.5 and

0.75 in equation (12) and given by:

Q1 = β − δα +η
ηθ

− 1

θ
W−1

(
(−0.75)(δα +η)

η
e
−

δα
η
−1

)
,

Q2 = β − δα +η
ηθ

− 1

θ
W−1

(
(−0.5)(δα +η)

η
e
−

δα
η
−1

)
, and
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Q3 = β − δα +η
ηθ

− 1

θ
W−1

(
(−0.25)(δα +η)

η
e
−

δα
η
−1

)
.

4. Reliability properties

In this section, we study some important reliability properties of FPGLD, namely the

survival function/reliability function S(y), hazard rate function/failure rate function h(y),
reversed hazard rate function r(y), cumulative hazard rate function H(y), mean residual life

function m(y), Lorenz curve L(F(y)), and Benferroni curve B(F(y)) .

4.1. Hazard rate and mean residual life function

1. The survival function of equation (7) is defined as:

S(y) = 1−F(y) =

(
1+

ηθ(y−β )
δα +η

)
e−θ(y−β );y > β . (13)

It is clear that, S(β ) = 1 and limy→∞ S(y) = 0.

2. The hazard rate function(hrf) of the FPGLD is defined as:

h(y) = lim
Δy→0

P(y < Y < y+Δy|Y > y)
Δy

=
f (y)
S(y)

=

θ

(
δα +ηθ(y−β )

)

δα +η +ηθ(y−β )
;y > β .

(14)

Further, it can be seen that, h(β ) =
θδα

δα +η
= f (β ) and limy→∞ h(y) = θ .

Figure 2 illustrates the hazard rate function of FPGLD at different parameter values.

It is approximately same hazard rate shape of the TPLwLD.

3. The reversed hazard function of FPGLD is defined as:

r(y)= lim
Δy→0

P(y < Y < y+Δy|Y < y)
Δy

=

θ

(
δα +ηθ(y−β )

)
e−θ(y−β )

δα +η−
(

1+ηθ(y−β )

)
e−θ(y−β )

;y> β .

(15)

4. The cumulative hazard rate function of FPGLD is defined as:

H(y) =
∫ y

β
h(t)dt =−log[S(y)] =−log

(
1+

ηθ(y−β
δα +η

)
e−θ(y−β ). (16)

5. The following theorem gives the mean residual life function of FPGLD.
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Figure 2: The hazard rate function of FPGLD at different parameter values

(a) θ ,β ,α, and δ are fixed, and η values are changed, (b) θ ,α,δ and η are fixed, and β values are changed, (c)

β ,α, δ and η are fixed, and θ values are changed, (d) θ ,β ,η , and δ are fixed, and δ values are changed.

Theorem 3. The mean residual life function of FPGLD is given by:

m(y) =
δα +η(2+θ(y−β ))

θ

(
δα +η +ηθ(y−β )

) . (17)

Proof.

m(y) =
1

1−F(y)

∫ ∞

y
t f (t)dt− y, consider the integrals separately as follows:

∫ ∞

y
t f (t)dt =

∫ ∞

y
t

θ
θα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )dt

=
θeθβ

δα +η

(
δα

∫ ∞

y
te−θ tdt +ηθ

∫ ∞

y
t2e−θ tdt−βηθ

∫ ∞

y
te−θ tdt

)

=
θeθβ

δα +η

(
δα

(
δα
θ 2

Γ(2,θy)+
ηθ
θ 3

Γ(3,θy)− βηθ
θ 2

Γ(2,θy)

)

=
(1+θy)(δα +2η−βηθ)+η(θy)2

θ(δα +η)
e−θ(y−β ).

Therefore,

m(y) =
(1+θy)(δα +2η−βηθ)+η(θy)2

θ
(

δα +η +ηθ(y−β )

) − y =
δα +η(2+θ(y−β ))

θ
(

δα +η +ηθ(y−β )

) .
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Then, equation (17) satisfies the following properties:

m(y)≥ 0, m(β ) =
δα +2η

θ(δα +η)
, and limy→∞ m(y) =

1

θ
.

4.2. Lorenz and Bonferroni curves

The concept of the Lorenz and Bonferroni curves were formulated by Bonferroni to

measure the income inequalities. They are widely used in economics, reliability, demogra-

phy, medicine, and insurance. The following theorem gives the function of the Lorenz curve

of FPGLD.

Theorem 4. The Lorenz curve is defined for FPGLD as:

L(F(y)) = 1−

∫ ∞

y
x f (x)dx

μ
= 1−

e−θ(y−β )

[
(1+ yθ)

(
δα +η(2+θ(y−β ))

)]

αδ (1+θβ )+η(2+θβ )
. (18)

Proof.

L(F(y)) = 1−

∫ ∞

y
x f (x)dx

μ
.

Note that∫ ∞

y
x f (x)dx

=
∫ ∞

y
x

θ
δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )dx

=
θ

δα +η

[
eθβ δα

∫ ∞

y
xe−θydx+ eθβ ηθ

∫ ∞

y
x2e−θydy−ηθβeθβ

∫ ∞

y
xe−θydy

]

=
θ

δα +η

[
eθβ δα

θ 2
Γ(2,yθ)+

eθβ ηθ
θ 3

Γ(3,yθ)− eθβ ηθβ
θ 2

Γ(2,yθ)

]

=
e−θ(y−β )

(δα +η)θ

[
(1+ yθ)

(
δα +η(2+θ(y−β ))

)]
.

Therefore, L(F(y)) = 1−
e−θ(y−β )

[
(1+ yθ)

(
δα +η(2+θ(y−β ))

)]

αδ (1+θβ )+η(2+θβ )
.
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Then, the function of Bonferroni curve for the FPGLD is defined as:

B(F(y)) =
L(F(y))

F(y)

=

(δα +η)

[
δα(1+θβ )+η(2+θβ )− e−θ(y−β )

(
(1+ yθ)

(
δα +η(2+θ(y−β ))

)]
[
(δα +η)−

(
(δα +η)ηθ(y−β )

)
e−θ(y−β )

][
αδ (1+θβ )+η(2+θβ )

] .

(19)

4.3. Renyi entropy

The Renyi entropy (Renyi, 1961) is a basic uncertainty measure of a distribution say

HR(γ) and an extension of Shannon entropy (Shannon et.al.,1949). This entropy is widely

used in ecology and quantum information. The following theorem gives the Renyi entropy

of FPGLD.

Theorem 5. The Renyi entropy of the FPGLD is given by:

HR(γ) =
1

1− γ
log

∫ ∞

β
( f (y))γ dy

=
1

1− γ
log

(
θ γ−1(δα)γ

(δα +η)γ γ

γ

∑
k=0

(
γ
k

)(
η

δαγ

)k

kΓ(k)

)
;γ ≥ 0,γ �= 1. (20)

Proof.

HR(γ) =
1

1− γ
log

∫ ∞

β
( f (y))γ dy

=
1

1− γ
log

∫ ∞

β

(
θ

δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )

)γ

dy

=
1

1− γ
log

∫ ∞

β

θ γ(δα)γ

(δα +η))γ

(
1+

ηθ(y−β )
δα

)γ

e−γθ(y−β )dy

=
1

1− γ
log

∫ ∞

β

θ γ(δα)γ

(δα +η))γ

γ

∑
k=0

(
γ
k

)(
ηθ(y−β )

δα

)k

e−γθ(y−β )dy

=
1

1− γ
log

(
θ γ(δα)γ

(δα +η))γ

γ

∑
k=0

(
γ
k

)(
ηθ
δα

)k ∫ ∞

β
(y−β )ke−γθ(y−β )dy

)

=
1

1− γ
log

(
θ γ−1(δα)γ

(δα +η)γ γ

γ

∑
k=0

(
γ
k

)(
η

δαγ

)k

kΓ(k)

)
.
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5. The size-biased of FPGLD

The application of the size-biased distributions known as weighted distributions has

been significantly used in forestry and wood product studies (Gove, 2003a) incorporating

sampling probabilities that are proportional to weighted function w(y). The size-biased

distributions is defined as:

fw(y) =
w(y) f (y)
E(w(y))

, (21)

where, w(y) = yγ is a non-negative weighted function of order γ . Then, equation (21) can

be rewritten as f γ
Y (y) =

yγ f (y)
E(yγ)

,where Yr ∼ f γ
Y (y) is the size-biased random variable. The

following theorem gives the density function for the size-biased FPGLD.

Theorem 6. The density function for sized-biased FPGLD is given by:

f γ
Y (y) = yγ θ γ+1

(
δα +ηθ(y−β )

A

)
e−θy;y > β ,γ > 0, (22)

where, A = γΓ(γ,θβ )
(

δα +η(γ +1−θβ )
)
+ e−θβ (θβ )γ

(
δα +η(γ +1)

)
.

Proof.

f γ
Y (y) =

yγ f (y)
E(yγ)

.

Note that

E(yγ) =
∫ ∞

β
yγ f (y)dy

=
∫ ∞

β
yγ θ

δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )dy

=
θeθβ

δα +η

(
δα

θ γ+1
Γ(γ +1,θβ )+

ηθ
θ γ+2

Γ(γ +2,θβ )− ηθβ
θ γ+1

Γ(γ +1,θβ )

)

=
θeθβ

(δα +η)θ γ+1

(
Γ(γ,θβ )

(
δαγ +ηγ(γ +1)−ηθβγ

)
+δα(θβ )γ e−θβ +

η(γ+1)(θβ )γ e−θβ

)

=
θeθβ

(δα +η)θ γ

(
γΓ(γ,θβ )

(
δα +η(γ +1−θβ )

)
+

e−θβ (θβ )γ
(

δα +η(γ +1)

))
.
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Therefore,

f γ
Y (y)=

yγ θ
δα +η

(
δα +ηθ(y−β )

)
e−θ(y−β )

θeθβ

(δα +η)θ γ

(
γΓ(γ,θβ )

(
δα +η(γ +1−θβ )

)
+ e−θβ (θβ )γ

(
δα +η(γ +1)

))

= yγ θ γ+1

(
δα +ηθ(y−β )

γΓ(γ,θβ )(δα +η(γ +1−θβ ))+ e−θβ (θβ )γ(δα +η(γ +1))

)
e−θy.

The length biased probability density function can be derived from size-biased pdf of FPGLD

by substituting γ = 1. The length-biased probability density function is given by:

f 1
Y (y) = yθ 2

(
δα +ηθ(y−β )

δα +η(2−θβ )+θβ (δα +2η)

)
e−θ(y−β );y > β ,γ > 0. (23)

6. Parameter estimation and inference

In this section, the parameter estimation and inference are given. In the parameter es-

timation of FPGLD, the method of moment estimators (MME) and maximum likelihood

estimators (MLE) methods are introduced.

6.1. Method of moment estimation

The method of moment estimators can be derived by equating the raw-moments, say μ ′
r,

to the sample moments, say

n

∑
i=1

yr
i

n
,r = 1,2,3,4,5

Then, we need to solve the following system of non-linear equations.

n

(
δα(1+θβ )+η(2+θβ )

)
−θ(δα +η)

n

∑
i=1

yi = 0

n

(
δα(2+θβ (2+θβ ))+η(6+θβ (4+θβ ))

)
−θ 2(δα +η)

n

∑
i=1

y2
i = 0

n

(
δα

(
6+θβ (6+θβ (3+θβ ))

)
+η

(
24+θβ (18+θβ (6+θβ )

))
−

θ 3(δα +η)
n

∑
i=1

y3
i = 0

n

(
δα

(
24+θβ (24+θβ (12+θβ (4+θβ )))

)
+η

(
120+βθ(96+
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θβ (36+θβ (8+θβ )))

))
−θ 4(δα +η)

n

∑
i=1

y4
i = 0

n

(
δα

(
120+θβ (120+θβ (60+θβ (20+θβ (5+θβ ))))

)
+η

(
720+

θβ (600+θβ (240+θβ (60+θβ (10+θβ ))))

))
−θ 5(δα +η)

n

∑
i=1

y5
i = 0

6.2. Maximum likelihood estimation

Let y1,y2, ...yn be identically and independently distributed random variables from FPGLD

with the likelihood function of the ith sample value yi as:

L(θ ,β ,α,δ ,η |yi) =
θ

δα +η

(
δα +ηθ(yi−β )

)
e−θ(yi−β ).

Then, the log-likelihood function is given by:

log

(
L(θ ,β ,α,δ ,η |yi)

)

= l = nlogθ +
n

∑
i=1

log(δα +ηθ(yi−β ))−
n

∑
i=1

θ(yi−β )−nlog(δα +η).

The maximum likelihood estimators (MLE), say θ̂ , β̂ , α̂, δ̂ , η̂ can be derived by equating

the partial derivatives of the l with respect to each parameter to zero. Then, we have:

∂ l
∂θ

=
n
θ
+

n

∑
i=1

η(yi−β )
δα +ηθ(yi−β )

−
n

∑
i=1

(yi−β ) = 0,

∂ l
∂β

=
n

∑
i=1

−ηθ
δα +ηθ(yi−β )

+nθ = 0,

∂ l
∂α

=
n

∑
i=1

δ
δα +ηθ(yi−β )

− nδ
δα +η

= 0,

∂ l
∂δ

=
n

∑
i=1

α
δα +ηθ(yi−β )

− nα
δα +η

= 0, and

∂ l
∂η

=
n

∑
i=1

θ(yi−β )
δα +ηθ(yi−β )

− n
δα +η

= 0.

The asymptotic confidence intervals for the parameters of FPGLD, say θ ,β ,α,δ ,η are

derived under the regularity conditions of the maximum likelihood estimations. The second

partial derivatives of the log-likelihood function are:

∂ 2l
∂θ 2

=
−n
θ 2

+
n

∑
i=1

−η2(yi−β )2

(δα +ηθ(yi−β ))2
,
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∂ 2l
∂β 2

=
n

∑
i=1

(ηθ)2

(δα +ηθ(yi−β ))2
,

∂ 2l
∂α2

=
n

∑
i=1

−δ 2

(δα +ηθ(yi−β ))2
+

nδ 2

(δα +η)2
,

∂ 2l
∂δ 2

=
n

∑
i=1

−α2

(δα +ηθ(yi−β ))2
+

nα2

(δα +η)2
,

∂ 2l
∂η2

=
n

∑
i=1

−θ 2(yi−β )2

(δα +ηθ(yi−β ))2
+

n
(δα +η)2

,

∂ 2l
∂θ∂β

=
n

∑
i=1

−ηδα
(δα +ηθ(yi−β ))2

+n,

∂ 2l
∂θ∂α

=
n

∑
i=1

−ηδ (yi−β )
(δα +ηθ(yi−β ))2

,

∂ 2l
∂θ∂δ

=
n

∑
i=1

−ηα(yi−β )
(δα +ηθ(yi−β ))2

,

∂ 2l
∂θ∂η

=
n

∑
i=1

δα(yi−β )
(δα +ηθ(yi−β ))2

,

∂ 2l
∂β∂α

=
n

∑
i=1

ηθδ
(δα +ηθ(yi−β ))2

,

∂ 2l
∂β∂δ

=
n

∑
i=1

ηθα
(δα +ηθ(yi−β ))2

,

∂ 2l
∂β∂η

=
n

∑
i=1

−ηδθ
(δα +ηθ(yi−β ))2

,

∂ 2l
∂α∂δ

=
n

∑
i=1

ηθ(yi−β )
(δα +ηθ(yi−β ))2

− nη
(δα +η)2

,

∂ 2l
∂α∂η

=
n

∑
i=1

−δθ(yi−β )
(δα +ηθ(yi−β ))2

+
nδ

(δα +η)2
, and

∂ 2l
∂δ∂η

=
n

∑
i=1

−αθ(yi−β )
(δα +ηθ(yi−β ))2

+
nα

(δα +η)2
.

Let p̂ = (θ̂ , β̂ , α̂, δ̂ , η̂) be MLE of p. By the asymptotic theory the estimators are asymptot-

ically normal 5-variate with mean (θ ,β ,α,δ ,η), and observed information matrix is given
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by:

I(y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ∂ 2l
∂θ 2

− ∂ 2l
∂θ∂β

− ∂ 2l
∂θ∂α

− ∂ 2l
∂θ∂δ

− ∂ 2l
∂θ∂η

− ∂ 2l
∂β∂θ

− ∂ 2l
∂β 2

− ∂ 2l
∂β∂α

− ∂ 2l
∂β∂δ

− ∂ 2l
∂β∂η

− ∂ 2l
∂α∂θ

− ∂ 2l
∂α∂β

− ∂ 2l
∂α2

− ∂ 2l
∂α∂δ

− ∂ 2l
∂α∂η

− ∂ 2l
∂δ∂θ

− ∂ 2l
∂δ∂β

− ∂ 2l
∂δ∂α

− ∂ 2l
∂δ 2

− ∂ 2l
∂δ∂η

− ∂ 2l
∂η∂θ

− ∂ 2l
∂η∂β

− ∂ 2l
∂η∂α

− ∂ 2l
∂η∂δ

− ∂ 2l
∂η2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

at θ = θ̂ ,β = β̂ ,α = α̂,δ = δ̂ ,η = η̂ . By the asymptotic theory, the estimates are ap-

proximately multivariate normal. Therefore, the (1−α)100% confidence interval for the

parameters θ ,β ,α,δ ,η are given by:

θ̂ ± za/2

√
var(θ̂), β̂ ± za/2

√
var(β̂ ), α̂± za/2

√
var(α̂),

δ̂ ± za/2

√
var(δ̂ ), η̂± za/2

√
var(η̂)

wherein, the var(θ̂),var(β̂ ),var(α̂),var(δ̂ ), and var(η̂) are the variance of θ̂ , β̂ , α̂, δ̂ , and

η̂ , respectively, and can be derived by diagonal elements of I−1(y) and za/2 is the critical

value at a level of significance.

7. Applications

In this section, we perform a simulation study to examine the behavior of FPGLD’s pa-

rameter estimates by MLE method, performance of location parameter β , and performance

of scale parameter θ when it is incoperated in the mixing proportion. Further,the real-world

applications are used to study the performance of the FPGLD with TPLwLD, LD, TwPLD,

QLD, SD, and ThPLD. The estimates of the parameters for each distribution has been de-

rived by the MLE method.

7.1. Simulation study

7.1.1 Performance of maximum likelihood method

Here, we discuss the simulation study for the unknown parameter estimations of FPGLD

by maximum likelihood method for different sample sizes. The combination of parameter

values are set to θ = 0.5,δ = 0.1,α = 0.2,η = 0.4,β = 1.5. Then, the steps of the simula-

tion study are given below:

1. Generate 1000 samples for each of the sample size, n= 20,n= 50,n= 80 and n= 100

using equation (12).

2. Calculate the average MSE for the parameters of FPGLD using the equation
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MSE(p)=

1000

∑
i=1

( p̂i− p)2

1000
, where p = (θ ,δ ,α,η ,β ), represents the parameter set.

Table 3 summarizes the average mean square error(MSE) values of FPGLD at different

sample sizes. According to Table 3, the average MSE values for parameters θ ,β , α,δ
and η decreases when sample size increases. Further, it is notable that decreasing rates of

average MSE for the parameters θ and β are higher than decreasing rates of average MSE

for the parameters δ ,α, and η . This indicates that the parameters of the mixing components,

θ and β are highly sensitive than the parameters δ ,α, and η that are introduced from the

latent variable distribution in the unknown parameter estimations for this model.

Table 3. Simulation results for the average MSE values

Parameter MSE

n = 20 n = 50 n = 80 n = 100

θ = 0.5 0.014061 0.004528 0.004479 0.002029

δ = 0.1 0.009918 0.009916 0.009871 0.009870

α = 0.2 0.039809 0.039541 0.039524 0.039456

η = 0.4 0.158916 0.158795 0.156714 0.156594

β = 1.5 0.135841 0.040434 0.025789 0.019406

7.1.2 Performance of the FPGLD when the location parameter β = 0

In this subsection, the performance of the FPGLD is examined by a simulation study

when the location parameter β = 0. It was done by comparing FPGLD (θ ,β ,α,δ ,η) and

FPGLD(θ ,β = 0,α,δ ,η) for selected values of skewness, EK, and Fano factor. The study

is designed as follows:

1. Generate random samples of size, n = 150 from FPGLD (θ ,β ,α,δ ,η) with various

skewness (SK), Excees kurtosis (EK), and Fano factor (FF) values by setting the

parameter values.

2. Fit the FPGLD (θ ,β ,α,δ ,η) and FPGLD (θ ,β = 0,α,δ ,η) to the generated data

sets.

3. Calculate the differences of negative log-likelihood (−2logL) values for every gener-

ated data sets as:(
−2logL(FPGLD (θ ,β = 0,α,δ ,η))

)
−
(
−2logL(FPGLD (θ ,β ,α,δ ,η)))

)

The table 6 (Appendix) summarizes the differences of −2logL values between FPGLD

(θ ,β = 0,α,δ ,η) and FPGLD (θ ,β ,α,δ ,η). We may notice that −2logL difference is

decreasing when skewness, EK, and Fano factor values are increasing. Hence, this simula-

tion study reveals that the inclusion of the location parameter in this distribution resists the

flexibility to cover the higher skewness, EK, and Fano factor values.
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7.1.3 Performance of scale parameter θ when that is incorporated in the mixing pro-
portion

Here, we compare the LD and QLD using a simulation study since they just differ in

their defined mixing proportion. i-e) while the LD′s mixing proportion is defined incorpo-

rating the scale parameter of the mixing component θ , the QLD′s mixing proportion is not

incorporated with θ . The similar steps that have designed in section 7.1.2 are followed and

−2logL differences are calculated as: (−2logL(QLD(θ ,α)))-(−2logL(LD(θ))). Table 7

summarizes the differences of −2logL values between QLD and LD. We may notice that

−2logL difference is decreasing when skewness, EK, and Fano factor values are increasing.

The results indicates that the incorporation of the scale parameter in the mixing proportion

in LD resists the flexibility to cover the higher skewness, EK, and Fano factor values.

7.2. Real-world applications

The performance of the FPGLD with respect to the sub-models is now considered by

using real-world applications. The negative log-likelihood (−2logL), Akaike Information

Criterion (AIC), Bayesian Information Criterion (BIC) and Kolmogorov-Smirnov Statistics

(K-S Statistics) are utilized to compare the performance of distributions. The estimates of

the parameters for each distribution has been derived by the MLE method. The following

four real-world data sets have been fitted to the distributions for the goodness of fit of dis-

tributions.

Data set 1: This data set is the relief times (in minutes) of the 20 patients receiving an

analgesic and reported by Gross and Clark (1975).

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5 1.2, 1.4, 3.0 , 1.7, 2.3, 1.6, 2.0.

Data set 2: The data set reported by Bjerkedal (1960) that represents the survival times(in

days) of 72 guinea pigs infected with virulent tubercle bacilli is given below:

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59,

60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81, 83, 84, 85, 87, 91,

95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258,

263, 297, 341, 341, 376.

Data set 3: The data set was given by Fuller et. al. (1994) that represents the strength data

of glass of the aircraft window is given below:

18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.50, 25.52, 25.80, 26.69, 26.77, 26.78,

27.05, 27.67, 29.90, 31.11, 33.20, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08,

37.09, 39.58, 44.045, 45.29, 45.381.

Data set 4: The data set was used by Lawless (1982) and the data were recorded in tests

on the endurance of deep groove ball bearings. The corresponding random variable is the

number of million revolutions before failure for each of the 23 ball bearings in the life tests.

17.88, 28.92, 33, 41.52, 42.12, 45.6, 48.8, 51.84, 51.96, 54.12, 55.56, 67.8, 68.44, 68.64,

68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.4.
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Some of the important statistical measures for the data set 1 to 4 are summarized in

Table 4:

Table 4. Statistical measures for data set 1 to 4
Data Sample size Minimum value Mean Median Skewness EK Fano factor

Data 1 20 1.100 1.900 1.700 1.720 2.924 0.261

Data 2 72 12.000 99.819 70.000 1.796 2.614 65.920

Data 3 31 18.830 30.811 29.900 0.405 -0.713 1.708

Data 4 23 17.880 72.230 67.800 0.941 0.488 19.448

Figure 3 (Appendix) shows the density plots that compare the fitted densities of each

model with the empirical histogram of the real-world data sets. We can observe that the

fitted densities for the FPGLD and TPLwLD show a closer fit with the empirical distri-

butions for real-data sets 1, 3 and 4, and both fitted densities are approximately the same.

Further, QLD shows a closer fit with the empirical distribution for the data set 2. Table 8

( Appendix) shows the values of −2logL, AIC, BIC and K-S statistics and critical values

of the K-S statistics. According to Table 8, we may note that AIC and BIC values increase

when the number of parameters of the distributions increases. Therefore, we use −2logL
values and K-S statistics for the comparison of all models.

Based on the minimum −2logL, and the significant results by K-S statistics, FPGLD and

TPLwLD provide a better fit than all other sub-models for the data sets 1, 3, and 4. Data set

1, 3, and 4 have considerably smaller skewness and EK values or smaller Fano factor value.

There is no difference between the log-likelihood values of FPGLD and TPLwLD for these

data sets. This indicates that δα = θ and the performance of both distributions are the same.

Further, when we compare TPLwLD and TwPLD, the likelihood ratio (LR) test statistics for

the hypothesis testing H0 : β = 0 versus Ha : β �= 0 for data 1, 3 and 4 are 22.686, 53.413,

and 16.663, respectively, and all are greater than χ2
1,0.05 = 3.841. These results indicate the

importance of the location parameter in such type of lifetime data analysis than introducing

new shape parameters from the latent variable distribution to give different weights.

On the other hand, it is notable that in most of the real-data applications, the performance

of TwPLD, QLD, and ThPLD are the same except for data set 2, where the QLD shows

the minimum −2logL significant result by K-S statistic. The data set 2 has considerably

higher skewness, EK and Fano factor values. To show the effect of the higher skewness,

EK, and Fano factor values, data set 5 (Appendix) was also used to fit the distributions, and

Table 5 summarizes the results of the goodness of fittest. These results indicate that QLD

performs well than other distributions for the data sets with considerably higher skewness,

EK and Fano factor values. A possible reason may be that it has the flexibility with the

format δα = δ �= θ and exclusion of the location parameter. Therefore, when developing

a best-fitted distribution for the data sets that have higher skewness, EK, and Fano factor

values, it is recommended to use proper mixing weights and mixing components without a

location parameter.

We hope these findings could be helpful for the researchers when they develop a new Lind-

ley family distribution.
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Table 5. −2logL, and K-S statistics of the NGAD and LwLD for different data sets with various EK values

Data Distribution Sample size Skewness EK Fano factor −2logL AIC

FPGLD 252.416 262.416

TPLwLD 252.416 258.416

TwPLD 266.401 270.401

Data 5 QLD 60 2.437 7.018 2.547 250.920 254.920
ThPLD 266.401 272.401

LD 259.171 261.171

SD 257.096 259.096

8. Conclusions

In this paper, we have introduced a new five-parameter generalized Lindley distribu-

tion(FPGLD) based on exponential and gamma mixtures with different mixing proportions

and done a comparison study with its sub-models. The FPGLD generalizes the Lindley

distribution with location parameter(TPLwLD), Quasi Linley distribution (QLD), Two-

parameter Lindley distribution (TwPLD), Three-parameter Lindley distribution (ThPLD),

Shanker distribution (SD), and classical Lindley distribution (LD). Hence, using FPGLD

a researcher can compare the other existing lifetime distributions without considering its

sub-models separately. The statistical properties and estimates of parameters are obtained

for the FPGLD and compared it with its sub-models.
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APPENDIX

Table 6. Differences of −2logL values between FPGLD (θ ,β = 0,α,δ ,η)

and FPGLD (θ ,β ,α,δ ,η)
↓ SK(EK) FF→

6.70 7.70 12.70 15.80 20.50 28.30 34.60

0.918 (0.496 ) 37.442 32.105 19.087 15.009 11.112 7.656 6.147

0.920 (0.498) 34.758 29.892 16.788 12.822 9.151 5.896 4.435

0.928 (0.509) 31.223 26.807 13.746 9.840 6.392 3.392 2.239

0.969 (0.571) 28.037 23.353 10.201 6.563 3.370 1.160 0.421

1.044 (0.709) 27.116 22.081 8.693 5.069 2.164 0.368 0.014

1.102 (0.837) 27.108 22.031 8.321 4.656 1.822 0.189 0.002

1.208 (1.107) 27.082 22.003 8.242 4.540 1.634 0.089 0.001

Table 7. Differences of −2logL values between QLD (θ ,α) and LD (θ)
↓ SK(EK) FF→

6.70 7.70 12.70 15.80 20.50 28.30 34.60

0.918 (0.496 ) 71.804 70.212 64.911 62.578 59.815 56.668 54.969

0.920 (0.498) 70.585 69.019 63.197 60.659 57.701 54.250 52.264

0.928 (0.509) 68.506 66.906 60.250 57.248 53.771 49.493 47.189

0.969 (0.571) 65.186 63.199 54.971 51.261 46.605 41.265 38.026

1.044 (0.709) 62.391 60.046 50.563 46.135 40.695 34.049 29.988

1.102 (0.837) 60.962 58.641 48.365 43.576 37.731 30.405 27.083

1.208 (1.107) 57.306 52.694 41.795 36.615 30.199 22.009 20.084

Data set 5 (Hibatullah.et.al.,(2018): average wind speed per month.
1.04525, 2.78426, 2.54918, 6.90446, 2.46577, 2.83905, 2.09819, 0.47927, 1.41378, 4.77888,

2.28740 ,4.79976, 1.32359 ,1.71967, 3.52471, 0.38095, 10.9028 ,1.38314 ,1.89628, 1.03046,

2.44529, 13.1893 ,2.16495 ,3.78884, 2.20266, 0.71543 ,16.4941, 3.14792, 7.72747, 2.84926

,2.68460, 5.45061, 1.32353, 1.48582, 5.10102, 3.00342, 1.77735 ,4.88295, 0.80280, 5.02584,

1.50003, 2.01266, 1.74341, 3.11761,0.80668 ,2.65187, 4.64156, 1.65586, 6.95507, 5.83996

,3.33749, 1.27453, 2.29751 ,3.26983,2.65993, 4.53323, 5.73434, 2.09596, 1.52554, 2.71060.
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Figure 3: Empirical histograms with fitted densities of distributions
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Statistical properties and different methods of estimation
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ABSTRACT

The aim of this paper is to introduce a new weighted probability distribution to model the

non-monotone failure rate pattern for survival data. The proposed distribution is general-

ized by considering inverted Rayleigh distribution as a baseline distribution called an ex-

tended weighted inverted Rayleigh distribution. Different statistical properties such as mo-

ment, quantile function, moment generating function, entropy measurement, Bonferroni and

Lorenz curve, stochastic ordering and order statistics have been derived. Different estimation

procedures have also been discussed to estimate the unknown parameters of the proposed

probability distribution. The Monte Carlo simulation study has been conducted to compare

the performances of the proposed estimators obtained through various methods of estima-

tion. Finally, two real data sets have been used to show the applicability of the proposed

model in a real-life scenario.

Key words: moments and inverse moments, entropy measurements, order statistics, classi-

cal methods of estimation.

1. Introduction

In reliability analysis, numerous methods are available to generalize new probability

distribution by adding an extra parameter with specific baseline distributions. For example,

the well-known lifetime distributions, namely Weibull and gamma, are generalized by us-

ing power and Laplace transform of exponential random variates. Also, Gupta and Kundu

(1999) introduced exponentiated exponential distribution by adding a shape parameter as a

power of cumulative distribution function (CDF) of an exponential distribution. Nadarajah

et al. (2011) proposed an extension of exponential distribution by a simple modification in

the survival function of the exponential model. In reliability analysis, Rayleigh distribution

(2005) is one of the most popular lifetime distribution and several generalizations based

on Rayleigh distribution are advocated from time to time using the similar approach. The

inverted versions of these models are also frequently used and well justified for the real life

situations. For example, Voda (1972) introduced the inverted version of the Rayleigh model

and discussed its different statistical properties. Ahmad et al. (2014) derived the weighted

version of Rayleigh distribution and debated about the descriptive measure of statistics and

1Department of Statistics, Banaras Hindu University, Varanasi-221005, India. E-mail: asybhu10@gmail.com.

ORCID: https://orcid.org/0000-0002-2411-5190.
2Department of Statistics, Banaras Hindu University, Varanasi-221005, India.
3Department of Statistics, Banaras Hindu University, Varanasi-221005, India.
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estimation procedure for the unknown parameters. Exponentiated inverse Rayleigh dis-

tribution (EIRD) is a generalized form of inverse Rayleigh distribution as suggested by

Nadarajah and Kotz (2006), etc., although the weighted version of the inverted Rayleigh

distribution (IRD) has already been developed by Fatima and Ahmad (2017) using weight-

ing function (length-area biased) approach. In this paper, a new weighted version of IRD

has been proposed and studied with IRD as a base line distribution. IRD is the most popular

lifetime distribution and frequently used to model the data with non-monotone failure rate.

Let us assume that the variable Y is distributed as IRD with parameter θ . The probability

density and distribution functions of IRD are given by;

fY (x) =
2θ
x3

e−
θ
x2 , θ > 0, x > 0 (1)

and

FY (x) = e−
θ
x2 (2)

where, θ is scale parameter.

The proposed extended weighted version of IRD has been derived by using the approach

discussed by Azzalini (1985). The method mentioned by Azzalini is not new. It was given

in 1985 and introduced various skew-symmetric distributions namely skew-normal, skew-

chai, skew-Cauchy, skew-t, etc. Recently, Gupta and Kundu (2009) derived a new class

of weighted distribution by introducing shape parameters to exponential distributions using

the same approach. The lifetime distribution generated by this method possesses several

good properties and can be used as a good alternative to other popular distributions such as

gamma, Weibull, Rayleigh or generalized exponential distribution, etc.

The organization of the paper is as follows.The introduction of the considered problem

is given in Section 1. Section 2 discusses the model genesis and its reliability characteristics.

Statistical properties have been discussed in Sections 3, 4 & 5 respectively. Estimation of

the unknown parameters is proposed in Section 6. Monte Carlo simulation study has been

performed in Section 7. Section 8 has described the applicability of the model and study

using two real data sets. Finally, Section 9 concludes the paper.

2. The model

Let X1 and X2 be the two i.i.d. random variables, with probability density function (PDF)

fY (·) and CDF FY (·), then for any α > 0, consider a new random variable X = X1 given that

αX1 > X2. Then, the PDF of the new random variable X is;

fX (x,α) =
1

P[αX1 > X2]
fY (x)FY (αx) ;α > 0 & x > 0 (3)

Now, by using the Equations (1) and (2) in (3), the resulting probability distribution is called

as extended weighted inverted Rayleigh distribution (EWIRD). Hence, the PDF and CDF
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of the new model are given by;

fw(x,α,θ) =
(

1+α2

α2

)(
2θ
x3

)
e
−

θ
x2

⎛
⎝1+α2

α2

⎞
⎠

;x > 0 & α,θ > 0 (4)

and

Fw(x,α,θ) = e
−

θ
x2

⎛
⎝1+α2

α2

⎞
⎠

(5)

where, α is the shape parameter of the model.

2.1. Reliability characteristics

• The reliability function R(t) for specified value of t is given by

Rw(t) = 1−Fw(t) = 1− e
−

θ
t2

⎛
⎝1+α2

α2

⎞
⎠

; t > 0 (6)

• The hazard rate, i.e. instantaneous failure rate h(t) is the conditional probability of

failure in time interval (t, t +δ t) given that units has survived at least time t. Mathe-

matically, it is given by the following equation:

h(t) =
fw(t)
Rw(t)

=

(
1+α2

α2

)(
2θ
t3

)
e
−

θ
t2

⎛
⎝1+α2

α2

⎞
⎠

1− e
−

θ
t2

⎛
⎝1+α2

α2

⎞
⎠

(7)

• The reverse hazard function H(t) can be interpreted as the ratio of the probability

density function to the distribution function and is defined as;

H(t) =
fw(t)
Fw(t)

=

(
1+α2

α2

)(
2θ
t3

)
(8)

The different shape of the distribution, i.e. curve of density function and reliability function

are presented in Figure 1. The shape of the hazard is presented in Figure 2. From Figure

2, it is clear that the proposed model is unimodal and exhibits the pattern of non-monotone

failure rate. Usually, the problem of non-monotone failure rate is arising in medical and

engineering sciences. In survival analysis, several times it has been realized that the failure

rate of survival data is reached to a pick in the beginning stage and then declined abruptly

until it stabilized. Such behaviour of the hazard rate is called a non-monotone failure rate,

and the same behaviour of the failure rate is accommodated by the proposed model which,

would be more flexible and used as a alternative survival model.
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Figure 1: Density and reliability curve.
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Figure 2: Hazard rate and reverse hazard rate.
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3. Statistical properties

The different statistical properties of EWIRD are discussed in the following subsections.

3.1. Moments

The rth moment about the origin is defined as;

μ
′
r = E(Xr) =

∫ ∞

x=0
xr fw(x,α,θ)dx

=
∫ ∞

x=0

(
1+α2

α2

)
2θxr−3e

−
θ
x2

⎛
⎝1+α2

α2

⎞
⎠

dx

= Γ
(

1− r
2

)[θ(1+α2)

α2

] r
2

(9)

The above expression is valid only for r ≤ 1. Therefore, only mean of the distribution will

exist in closed form and obtained by setting r = 1 in the Equation (9).

Mean = E(X) =

√
πθ(1+α2)

α2
(10)

3.2. Inverse moments

The rth inverse moment about origin (M
′
r−1) is evaluated by the following expression:

M
′
r−1 = E

(
1

X

)r

=
∫ ∞

x=0
x−r fw(x,α,θ)dx

=
∫ ∞

x=0

(
1+α2

α2

)
2θx−r−3e

−
θ
x2

⎛
⎝1+α2

α2

⎞
⎠

dx

= Γ
(

1+
r
2

)[θ(1+α2)

α2

]−r
2

(11)

• The values of different inverse moments are obtained by putting r = 1, · · · ,4 in the

above equation and we get,

E
(

1

X

)
=

1

2

√
πα2

θ(1+α2)

E
(

1

X2

)
=

α2

θ(1+α2)

E
(

1

X3

)
=

3

4

√
πα6

θ 3(1+α2)3
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and

E
(

1

X4

)
=

2α4

θ 2(1+α2)2

respectively.

• Variance of the inverse variable is

Var
(

1

X

)
=

α2(4−π)
4θ(1+α2)

• Coefficient of variation (CV) is evaluated as

CV =

√
Var

(
1
X

)
E
(

1

X

) =

√
4−π

π
≈ 0.5223

3.3. Quantile function

The quantile function for the proposed model is computed by the following expression:

F(Qi) =
i
ζ

(12)

where, i and ζ indicates the position and total partition respectively. After simplification,

the quartile function is

Qi =

√
θ

[lnζ − ln i]

(
1+α2

α2

)
(13)

• Quartile: The first, second and third quartiles are evaluated by taking ζ = 4 & i =
1,2,3 respectively.

• Decile: The deciles are calculated by assuming ζ = 10, then the consecutive deciles

are obtained by taking i = 1,2, · · · ,9.

• Percentile: The percentiles are evaluated by assuming ζ = 100, then the consecutive

deciles are obtained by taking i = 1,2, · · · ,99.

3.4. Median and Mode

The median for the PDF (4) is evaluated by using the following expression:

P[X ≤M] = P[X ≥M] =
1

2
(14)

where, M is the median value. Also, it can be directly extracted from quantile expressions,

e.g. 2nd (in quartile), 5th (in deciles) and 50th (in percentile) quantiles are median. Thus, the
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median is

M =

√
θ(1+α2)

(ln2)α2
(15)

If the proposed probability distribution is moderately skewed then it has been verified that

the difference between mean and mode is almost equal to three times the difference between

the mean and median. Hence, we have

Mode=3 Median-2 Mean

which yield

Mode = 0.06

√
θ(1+α2)

α2
(16)

3.5. Sample generation

The random sample for EWIRD can be generated using an inverse CDF transformation

method as follows.

• Generate random deviates (U) from uniform distribution.

• Equate Fw(X) =U ⇒ X = F−1(U)

• After simplification, we get

X =

√
θ(1+α2)

ln(U−1)α2
(17)

3.6. Moment generating function

The moment generating function (mgf) of a continuous r.v. x is defined by the following

equation:

MX (t) = E(etX ) =
∫

x∈R+
etx fw(x,α,θ)dx (18)

Thus, using PDF (4) we get;

MX (t) =
∫ ∞

x=0
etx

⎡
⎢⎢⎣
(

1+α2

α2

)(
2θ
x3

)
e
−

θ
x2

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎦dx

=
∞

∑
r=0

tr

r!
Γ
(

1− r
2

)
r

√(
θ +θα2

α2

) (19)

Also, the moment can be obtained by using the above expression of m.g.f. Also, the char-

acteristics function is simply obtained by replacing t by it in the above equation.
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4. Entropy measurements

In information theory, entropy measurement plays a vital role in studying the uncertainty

associated with the probability distribution. In this section, we discuss a different measure

of change. For more detail about entropy, measurement see, Reniyi (1961).

4.1. Renyi entropy

Renyi entropy (RE) of a r.v. X is defined as

RE =
1

(1−κ)
ln

[∫ ∞

x=0
f κ
w (x,α,θ)dx

]

=
1

(1−κ)
ln

⎡
⎢⎢⎣
∫ ∞

x=0

⎧⎪⎪⎨
⎪⎪⎩
(

1+α2

α2

)(
2θ
x3

)
e
−

θ
x2

⎛
⎝1+α2

α2

⎞
⎠
⎫⎪⎪⎬
⎪⎪⎭

κ

dx

⎤
⎥⎥⎦

(20)

Hence, after solving the internal, we get the following

RE =
1

2
ln(θ +θα2)− lnα− ln2− (3κ−1)

2(κ−1)
lnκ +

1

(1−κ)
lnΓ

(
(3κ−1)

2

)
(21)

4.2. β -Entropy

The β -entropy (BE) is obtained as follows:

BE =
1

β −1

[
1−

∫ ∞

x=0
f β
w (x,α,θ)dx

]
(22)

Using PDF (4) and after simplification the expression for β -entropy is given by

BE =
1

β −1
[1−φ(α,θ ,β )] (23)

where, φ(α,θ ,β ) =
(

θ +θα2

α2

) 1−β
2 2β−1

β (3β−1)/2
Γ
(
(3β −1)

2

)

4.3. Generalized entropy

The generalized entropy (GE) is obtained by

GE =
νλ μ−λ −1

λ (λ −1)
;λ �= 0,1 (24)
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where, νλ =
∫ ∞

x=0 xλ fw(x,α,θ )dx. The value of νλ is calculated as;

νλ =
∫ ∞

x=0
xλ
(

1+α2

α2

)(
2θ
x3

)
e
−

θ
x2

⎛
⎝1+α2

α2

⎞
⎠

dx

=

(
θ(1+α2)

α2

)λ/2

Γ
(

1− λ
2

) (25)

Using the above expression

GE =

(
θ(1+α2)

α2

)λ/2

Γ
(

1− λ
2

)
μ−λ −1

λ (λ −1)
;λ �= 0,1 (26)

4.4. Bonferroni and Lorenz curves

Bonferroni and Lorenz curves have good link-up to each other, and their extensive ap-

plications can be found in economics to study the income and poverty level. In the present

time, these are frequently used in reliability theory also. These were initially proposed and

analysed by Bonferroni (1930) and are defined by

B(c) =
1

cm

∫ a

0
x fw(x,α,θ)dx (27)

L(c) =
1

m

∫ a

0
x fw(x,α,θ)dx (28)

respectively. where a = F−1
w (c) and m = E(x). Hence, using the Equation (4), the above

two equations are reduced as

B(c) =
1

c
√

π
IG
(

1

2
,

θ +θα2

a2α2

)
(29)

L(c) =
1√
π

IG
(

1

2
,

θ +θα2

a2α2

)
(30)

where, IG(a1,b1) stands for incomplete gamma function.

4.5. Stochastic ordering

The concept of stochastic ordering is used to show the ordering mechanism in life-

time distributions. For more detail about stochastic ordering see, Shaked and Shanthikumar

(1988). The random variable X and Y is said to possess the following ordering behaviour:

• stochastic order (X ≤st Y ) if FX (x)≥ FY (x) for all x.

• hazard rate order (X ≤hr Y ) if hX (x)≥ hY (x) for all x.

• mean residual life order (X ≤mrl Y ) if mX (x)≥ mY (x) for all x.
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• likelihood ratio order (X ≤lr Y ) if

(
f X
w (x)

f Y
w (x)

)
decreases in x.

From the above relations, we analyzed that;

(X ≤lr Y )⇒ (X ≤hr Y )⇓ (X ≤st Y )⇒ (X ≤mrl Y )

The proposed distribution is also ordered with respect to the strongest likelihood ratio or-

dering as shown in the following lemma.

Lemma: Let X ∼ fw(α1,θ1) and Y ∼ fw(α2,θ2). If α1 > α2, then (X ≤lr Y ) and hence

(X ≤hr Y ), (X ≤mrl Y ) and (X ≤st Y ).

Proof: According to the definition of likelihood ratio order, first we obtain the ratio

[
f X
w (x)

f Y
w (x)

]
i.e.

ψ =
f X
w (x)

f Y
w (x)

=

(
1+α2

1

α2
1

)(
2θ1

x3

)
e
−

θ1

x2

⎛
⎝1+α2

1

α2
1

⎞
⎠

(
1+α2

2

α2
2

)(
2θ2

x3

)
e
−

θ2

x2

⎛
⎝1+α2

2

α2
2

⎞
⎠

=
θ1α2

2 (1+α2
1 )

θ2α2
1 (1+α2

2 )
e
−

1

x2

⎡
⎣θ1(1+α2

1 )

α2
1

+
θ2(1+α2

2 )

α2
2

⎤
⎦

Therefore,

ψ
′
=

2θ1α2
2 (1+α2

1 )

x3θ2α2
1 (1+α2

2 )

[
θ1(1+α2

1 )

α2
1

+
θ2(1+α2

2 )

α2
2

]
e
−

1

x2

⎡
⎣θ1(1+α2

1 )

α2
1

+
θ2(1+α2

2 )

α2
2

⎤
⎦

(31)

from above equation, we observed that if ψ ′
> 0 ∀ α1,α2, hence (X ≤lr Y ). The remaining

statements can be established in the same way.

5. Order statistics

Let us consider X(1),X(2), · · · ,X(n) are the n ordered random sample from (4) then X(1) <

X(2) < · · · < X(n) denote the corresponding order statistics. X(1), X(n) and X(r) denote the

minimum, maximum and rth order statistics respectively. Then the PDF of rth order statis-

tics, as suggested by (1970), is given by

fr(X(r),α,θ) =
n!

(r)!(n− r)!

[
Fw(x(r))

]r−1 [
1−Fw(x(r))

]n−r fw(x(r),α,θ) (32)
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Using the expressions (4) and (5) for X(r) in the above equation we get the expression for

rth order statistics, i.e.

fr(X(r),α,θ) =
n!

(r)!(n− r)!

(
1+α2

α2

)(
2θ
x3
(r)

)⎡⎢⎢⎢⎣e
−

θ
x2
(r)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

r

×

⎡
⎢⎢⎢⎣1− e

−
θ

x2
(r)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

n−r (33)

5.1. Distribution of minimum, maximum and median

Let X(1),X(2), · · · ,X(n) be the n independent ordered random sample observed, then the

distribution of minimum X(1), maximum X(n) order statistics are obtained by putting r = 1

& r = n in the Equation (35). Hence, after simplification we get

fmini(X(1),α,θ) = n
[
1−Fw(x(1))

]n−1 fw(x(1),α,θ)

= n
(

1+α2

α2

)(
2θ
x3
(1)

)⎡⎢⎢⎢⎣e
−

θ
x2
(1)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣1− e

−
θ

x2
(1)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

n−1

(34)

fmax(X(n),α,θ) = n
[
Fw(x(n))

]n−1 fw(x(n),α,θ)

= n
(

1+α2

α2

)(
2θ
x3
(n)

)⎡⎢⎢⎢⎣e
−

θ
x2
(n)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

n

(35)
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Now, the density function for sample median for order statistics is given by X(m+1:n). It is

computed by

fm+1(X̃(m+1:n),α,θ) =
(2m+1)!

(m)!(m)!
[Fw(x̃m+1)]

m [1−Fw(x̃m+1)]
m fw(x̃m+1,α,θ)

=
(2m+1)!

(m)!(m)!

(
1+α2

α2

)(
2θ

x̃3
m+1

)⎡⎢⎢⎣e
−

θ
x̃2

m+1

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎦

m+1

×

⎡
⎢⎢⎣1− e

−
θ

x̃2
m+1

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎦

m

(36)

5.2. Joint distribution of rth and sth order statistics

The joint density function of rth and sth (r < s) order statistics is obtained by considering

the following expression:

fr:s:n(Xr,Xs,α,θ) =

= xi
[
Fw(x(r))

]r−1 [
1−Fw(x(s))

]n−s [Fw(x(s))−Fw(x(r))
]s−r−1 fw(x(r)) fw(x(s))

(37)

Using PDF and CDF of EWIRD, the density function for rth,sth is given by

fr:s:n(Xr,Xs,α,θ) = ξ

⎡
⎢⎢⎢⎣e
−

θ
x2
(r)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

r⎡
⎢⎢⎢⎣1− e

−
θ

x2
(s)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

n−s

×

⎡
⎢⎢⎢⎣e
−

θ
x2
(s)

⎛
⎝1+α2

α2

⎞
⎠
− e

−
θ

x2
(r)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

s−r−1

×
(

1+α2

α2

)2
(

4θ 2

x3
(r)x

3
(s)

)
e
−

θ
x2
(s)

⎛
⎝1+α2

α2

⎞
⎠



STATISTICS IN TRANSITION new series, June 2020 131

In particular, when r = 1 and s= n, we have the joint distribution of minimum and maximum

order statistics and it is written as

f1:n:n(X1,Xn,α,θ) =
n!

(n−2)!

(
1+α2

α2

)2
(

4θ 2

x3
(1)

x3
(n)

)
e
−

θ
x2
(n)

⎛
⎝1+α2

α2

⎞
⎠
⎡
⎢⎢⎢⎣e
−

θ
x2
(1)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣e
−

θ
x2
(n)

⎛
⎝1+α2

α2

⎞
⎠
− e

−
θ

x2
(1)

⎛
⎝1+α2

α2

⎞
⎠
⎤
⎥⎥⎥⎦

n−2

(38)

where, ξ =
n!

(r−1)!(s− r−1)!(n− s)!

6. Estimation of the parameters

In this section, we discuss different estimation procedures for estimating the unknown

model parameters of the proposed model. These methods are presented below;

6.1. Maximum Likelihood Estimation

Let X1,X2, · · · ,Xn be the random sample of size n from density function (4). The likeli-

hood function is written as;

L(α,θ) =
n

∏
i=1

fw(xi,α,θ)

=

(
1+α2

α2

)n
(2θ)n

∏n
i=1 x3

i
e
−∑n

i=1

θ
x2

i

⎛
⎝1+α2

α2

⎞
⎠ (39)

Hence, log-likelihood by ignoring the constant is written as;

L1 = lnL(α,θ) = n ln(1+α2)−2n lnα +n lnθ −3
n

∑
i=1

lnxi−
(

θ +θα2

α2

) n

∑
i=1

1

x2
i

(40)

Thus, the MLEs are obtained by maximizing the above equation w.r.t. to the parameters

and as a result we have two likelihood equations which yield the MLEs of the unknown

parameters.
n
θ
− 1+α2

α2

n

∑
i=1

1

x2
i
= 0 (41)
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and
nα

1+α2
− n

α
+

θ
α3

n

∑
i=1

1

x2
i
= 0 (42)

6.1.1 Interval estimate based on MLEs

From above, it is clear that the exact distribution for MLEs is not easy to find. Thus,

we considered the asymptotic distribution of MLE to construct 100(1−α)% approximate

confidence interval. Thus, for this purpose we evaluate the Fisher information matrix and it

is obtained as

I(α̂, θ̂) =
(−lαα − lαθ
−lθα − lθθ

)
α̂,θ̂

(43)

where, lαα =
∂ 2 lnL(α,θ)

∂α2
, lαθ =

∂ 2 lnL(α,θ)
∂α∂θ

, lθα =
∂ 2 lnL(α,θ)

∂θ∂α
, lθθ =

∂ 2 lnL(α,θ)
∂θ 2

The above matrix is inverted and its diagonal elements provide the asymptotic variance

of the estimates for the parameter. Hence, approximate CI is given by

[α̂L, α̂U ] ∈ [α̂∓Zγ/2

√
σ̂2αα ]

and

[θ̂L, θ̂U ] ∈ [θ̂ ∓Zγ/2

√
σ̂2θθ ]

6.2. Maximum Product Spacing method of estimation

In this subsection, we described a very effective and alternative method to MLEs named

maximum product spacing method. It was initially introduced and extensively studied by

Chen and Amin (1979). Coolen and Newby (1990) studied its invariance properties and con-

cluded that it possesses the similar features as MLEs. Recently, the utility of this method

has been nicely explained by Singh et al. (2014). Under this method of estimation tech-

niques the likelihood function is defined on the basis of spacing of two consecutive CDFs

and is given by

L
′
(α,θ) = n+1

√
n+1

∏
i=1

Di (44)

such that ∑n
i=1 Di = 1. Taking log both side, we get;

lnL
′
(α,θ) =

1

n+1

n+1

∑
i=1

lnDi

=
1

n+1

[
lnD1 +

n

∑
i=2

lnDi + lnDn+1

] (45)

where, D1 = F(x1), Di = F(xi)−F(xi−1) and Dn+1 = 1−F(xn)
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The MPS estimates of the parameter α,θ are obtained by maximizing the above equa-

tion w. r. t. the parameters.

6.2.1 Interval estimate based on MPS

Here, we consider the asymptotic confidence intervals based on maximum product spac-

ing estimates. It was mentioned by Cheng and Amin (1979), Ghosh and Jammalamadaka

(2001) that the MPS method also shows asymptotic properties like the Maximum likeli-

hood estimator and is asymptotically equivalent to MLE. Keeping this in mind, we have to

consider the Fisher information matrix and it is obtained as;

I
′
(α̂, θ̂) =

(−Wαα −Wαθ
−Wθα −Wθθ

)
α̂MP,θ̂MP

(46)

where, Wαα =
∂ 2 lnL

′
(α,θ)

∂α2
,Wαθ =

∂ 2 lnL
′
(α,θ)

∂α∂θ
,Wθα =

∂ 2 lnL
′
(α,θ)

∂θ∂α
,Wθθ =

∂ 2 lnL
′
(α,θ)

∂θ 2

Using similar approach as MLE the 100 (1− γ) asymptotic confidence interval is given

by

α̂MP∓Zγ/2

√
(σ2

αα)MP

and

θ̂MP∓Zγ/2

√(
σ2

θθ
)

MP

6.3. Estimators based on percentile

Estimation of the parameters based on percentile is not the new one and frequently used

when the distribution function is in closed form. It was proposed and extensively studied

by Kao (1958, 1959). Recently, this method has gained some popularity in the statistical

literature and used was by Gupta and Kundu (2001), Kundu, and Raqab (2005) based on

different lifetime models. Most of the time estimators obtained by this method have a

nice closed form. The percentile-based estimators are mainly obtained by minimizing the

Euclidean distance between the sample percentile and population percentile points. Hence,

using the expression of CDF, we get

x =

√
θ(1+α2)

ln[F−1(x,α,θ)]α2
(47)

The percentile estimators of α , θ are obtained by minimizing

PE =
n

∑
i=1

[
xi−

√
θ(1+α2)

ln[F−1(x, α̂, θ̂)]α2

]2

(48)
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where, F(x, α̂, θ̂) denotes the estimated value of CDF. It can be assumed as

E[F(xi,α,θ)] =
i

n+1
= pi

6.4. Ordinary and Weighted Least Squares Estimation

The theory of least squares estimation was proposed by Swain et al. (1988) to estimate

the parameters of Beta distribution using the principal of least squares. The LSEs of the

unknown parameters of EWIRD are evaluated by minimizing

LSE =
n

∑
i=1

[
F(xi,α,θ)− i

n+1

]2

(49)

using the Equation (5) in the above equation, we get

LSE =
n

∑
i=1

⎡
⎢⎢⎣e
−

θ
x2

⎛
⎝1+α2

α2

⎞
⎠
−
(

i
n+1

)⎤⎥⎥⎦
2

(50)

Hence, the least square estimators of the parameter α and θ are obtained by minimizing the

above equation w.r.t α and θ respectively.

7. Simulation study

In this section, Monte Carlo simulation study has been performed to compare the per-

formance of the obtained estimators in previous subsections. The comparisons of these es-

timators are made in terms of average mean square error (mse) based on 5000 replications.

Since, all estimators are not in closed form, thus non-linear optimization iterative proce-

dure has been used to obtain the estimates of the parameters. In result Tables, (θ̂ml , α̂ml),

(θ̂mp, α̂mp), (θ̂lse, α̂lse), (θ̂pse, α̂pse) denotes the estimators obtained by the method of MLE,

MPSE, LSE and PSE for scale and shape parameters respectively. The simulation study has

been carried out for n = 10,20,30,50,80, & 120 when θ = 2,α = 3. Average estimates

of the parameters and corresponding mse are reported in Table 1. From Table 1, it has been

noticed that the mse of all estimator is decreasing when the sample size is increasing, which

guarantees the consistency of the estimators. Also, among the estimators obtained by differ-

ent method of estimation the following patterns have been noticed in terms of their average

mse.

mse(θ̂lse)< mse(θ̂mp)< mse(θ̂mle)< mse(θ̂pse)

and

mse(α̂ml)< mse(α̂mp)< mse(α̂pse)< mse(α̂lse)

respectively. Thus, for the scale parameter θ , the LSE method performs better as compared

to the other methods of estimation, however in the case of the shape parameter α , MLE



STATISTICS IN TRANSITION new series, June 2020 135

Table 1: Average estimate and corresponding mse (in each second row) of the estimators

when θ = 2, α = 3.

n θ̂ml θ̂mp θ̂lse θ̂pse α̂ml α̂mp α̂lse α̂pse

10
2.2359 1.8034 1.8182 2.0608 3.2627 2.2831 1.9998 2.4456

0.6672 0.3576 0.3439 0.8425 0.3391 0.5349 1.0549 0.6935

20
2.1047 1.8103 1.8181 2.2620 3.0717 2.3244 2.0647 2.4320

0.2843 0.1999 0.1963 0.8403 0.2866 0.4674 0.9078 0.5880

30
2.0877 1.8238 1.8185 2.0987 3.1902 2.3333 2.0858 2.2867

0.1622 0.1327 0.1274 0.7143 0.2479 0.4513 0.8958 0.5624

50
2.0733 1.8299 1.8348 2.0993 3.3729 2.3333 2.0624 2.3249

0.0923 0.0922 0.0907 0.6439 0.1439 0.4485 0.8860 0.5584

80
2.0856 1.8499 1.7936 2.1270 3.1526 2.3263 2.0719 2.5151

0.0561 0.0596 0.0546 0.5961 0.0389 0.4456 0.8646 0.4825

120
2.0720 1.8495 1.8430 2.2823 3.1546 2.3245 2.0567 2.5827

0.0442 0.0483 0.0421 0.5926 0.0379 0.4358 0.8593 0.4576

method provides a better result.

8. Application to lifetime data

In this section, survival/reliability data applications of the proposed model are provided.

For this purpose, we have considered two data sets and checked the suitability of the pro-

posed model.

Data Set 1: Cancer data
These data represent the survival times (in days) of 45 head and neck cancer patients treated

with combined radiotherapy and chemotherapy. Firstly, the data set is reported by Efron

(1988). To check the suitability of the considered data set for the proposed model differ-

ent model selection tools are used such as AIC, BIC, and log-likelihood criterion. These

statistical tools are defined as follows:

AIC =−2∗ lnL(x, α̂, θ̂)+2∗ k

BIC =−2∗ lnL(x, α̂, θ̂)+ k ∗ ln(n)

where, k is the number of parameters involved in the probability distribution, and n is the

sample size. Smaller values of AIC, BIC and the LogL test statistic are indicators of better

fit of distributions. The proposed model is compared with the most commonly used non-

monotone failure rate models namely inverted exponential distribution (IED), generalized

inverted exponential distribution (GIED) and Inverse Weibull distribution (IWD). Among

these models, it has been observed that the proposed model has the least AIC, BIC and

negative LogL, see Table 4. Hence, the proposed model can be taken as an alternative to

these models when data have the non-monotone failure rate.

Data Set 2: Ball bearing failure data
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Figure 3: Estimated plot for the real data-I

Figure 4: Estimated plot for the real data-I
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Table 2: Estimates and values of various measures for data set-I

Models Estimate AIC BIC -LogL

IED 59.125 773.37 775.44 385.69

GIED (0.777,49.241) 773.18 777.30 384.59

IWD (28.505,0.786) 767.16 771.28 381.58

EWIRD (6.679,0.053) 691.04 694.65 343.52

Figure 5: Estimated plot for the real data-II

The considered data set represents the 23 ball bearing failure times (millions of cycles) for

units tested at one level of stress and it was firstly reported and analysed by Lawless (1982).

The summary of the ball bearing data set is

Minimum First Quartile Median Mean Third Quartile Maximum

17.88 47.20 67.80 72.22 95.88 173.40

To check the validity of the proposed model, we used Kolmogrov-Smirnov test. Thus,

the hypothesis is

H0 : Samples are observed from proposed model

H1 : Samples are not observed from proposed model

Hence, test statistic for testing the null hypothesis is

KSCal = Supx
ˆ|Fn(x)− F̂(x)|= 0.098 and KStab = 0.276
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Figure 6: Estimated plot for the real data-II

Figure 7: Empirical CDF plot for the real data
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We see that the calculated value of is less than the tabulated value. Hence the null

hypothesis may be accepted at α = 5% level of significance. Also, from the empirical

cumulative distribution function plot (see Figure 7) it is clear that the data set-II provides

excellent fit to the proposed model and hence, one may use EWIRD as an alternative lifetime

model. The estimated plots for the density function, reliability function, hazard function

and reverse hazard rate function are given in Figure 3, 4, 5 and 6 respectively. These plots

indicate that cancer data and ball bearing data both adequately accommodate the new model.

9. Conclusion

In this article, a new version of weighted probability distribution, named EWIRD has

been introduced. Different statistical properties such as moments, inverse moments, mo-

ment generating function, entropy, stochastic ordering and order statistics have been dis-

cussed. Different estimation procedures are also described to estimate the unknown param-

eters, and their performances are compared through Monte Carlo simulations. The applica-

tions of the proposed model are provided based on two real data sets and it has been found

that it can efficiently be used to model the data with a non-monotone failure rate pattern.
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ABSTRACT  

The article identifies the determinants of the asymmetry of foreign trade turnover between 
Ukraine and Poland based on an analysis of competitiveness indicators of the studied 
countries in the period 2003−2017. The emphasis is on calculation of the comparative 
advantages of particular commodity headings in Polish exports in the domestic market of 
Ukraine. Potential directions of the intensification of bilateral trade were evaluated. 

Key words: asymmetry, competitiveness, foreign trade, international cooperation. 

1. Introduction 

Asymmetry of trade integration is caused by differences in the levels of economic 
development of countries, the size of the market, the degree of integration of countries 
into the global economy and other factors. The current structure of exports and imports 
demonstrates a critical technological imbalance for Ukraine: raw materials are exported 
from Ukraine and high technology is imported from EU countries; trade deficit 
maintains for most product groups; domestic businesses show limited EU market entry 
due to high level of non-tariff protection, primarily on agricultural products. In this 
regard, the experience of Poland as an EU member demonstrates the possibility of 
overcoming technological imbalance. 

The main purpose of the empirical analysis undertaken in the article is to study the 
development trends of foreign trade of Poland with Ukraine in 2003–2017. This 
partnership is explained by these facts: 

Ukraine borders Poland. Upon its accession to the European Union, Ukrainian 
eastern borders will also become the borders of the European Union, which will 
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undoubtedly influence the building of relations and forms of cooperation 
between these partners in the future; 
these are countries with unequal levels of participation in international division 
of labour and levels of economic development, which, in our view, will allow us 
to broadly verify theories of international trade and, moreover, to answer the 
question whether they form the basis of trade policy and to what extent; 
the hypothesis is accepted in the analysis that the development of each country's 
international trade, especially with its key partners, is a reflection of the static 
and dynamic dimensions of its economy. In other words, the development of 
foreign trade is a proof of the formation of international competitive position 
and at the same time international competitiveness of the national economy. 

2.  Methodical approaches 

The concept of international competitiveness of the national economy has so far 
been ambiguously defined. Therefore, there are many suggestions and postulates 
measurement of international competitiveness of the national economy Broll, U., 
Gilroy, M., (1994), Dunning, J.H., (1992), Falvey, R.E., Kierzkowski, H., (1987), 
Grzywacz, W., (2001), The World Competitiveness Report 1994, (1994). The literature 
presents indicators of international competitiveness (competitiveness or competitive 
advantage) and indicators of international competitive position of the economy Misala, 
J., (1991, 2004). 

Among the various methods for assessing a country's competitive position on the 
international market, ex ante competitiveness indicators (predictive modelling of 
economic phenomena and processes based on theoretical concepts) deserve attention. 
In our opinion, the greatest successes in this area of research have been achieved in 
Germany: Giersch, H., (1979), Horn, E.J., (1985), Kojima, K.A., (1974), Von 
Stackelberg, K., (1991). According to German scientists T. Griez, S. Enchel and B. 
Wigger (1992), the essence of international competitiveness of each national economy 
at any moment is to optimize the use of resources on an international scale. Scientists 
have suggested the Revealed Absolute Competitiveness index – RAC, based on domestic 
and foreign resources, consisting of two components: Revealed Absolute Internal 
Competitiveness (RAIC) and Revealed Absolute External Competitiveness (RAEC). 

RAIC level setting depends on the internal economic performance of accessible 
production factors usage, due to more or less favourable exchange of the part of 
domestic resources for external (imported) resources. Indexes, calculated in this way, 
relate to the scale of the national economy. However, from a theoretical standpoint, it 
is possible to use them in particular directions, sectors and even particular products, 
under the condition of implementation of a specific database of statistics, which will 
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allow for comparative analysis. The absence of such base limits the range of analyses 
and forecasts and is a barrier to building indicators that are lower in aggregation. 

The empirical analysis is based on data of Foreign Economic Activity Commodity 
Nomenclature on single, double, four- and nine-digit numeric expression. After all, the 
degree of disaggregation of data and how they are compared significantly affect the 
statistical picture of the phenomena and processes discussed (their trends). For 
example, only as deep as possible disaggregation of data can allow comparisons of the 
same products, and then the real level of “overlap” in the value of exports and imports 
can be determined, or the actual level of intra-industry trade intensity Petrose, E., 
(1959). Therefore, the foreign trade turnover of Ukraine is analysed on the basis of the 
EU data in four-stage disaggregation, which makes studied product groups meet the 
theoretical concept of sector in the productive industrial classification. 

Based on EU statistics for the years 2003–2017, calculations have been made and 
the following are presented: 

1) Ukraine's participation in Poland's trade turnover; 
2) foreign trade balance of Poland with Ukraine; 
3) changes in the share of Poland in the markets of Ukraine, calculated by the 

formula(1): 

(1) 

 
where Сі– index of change in shares; 

x – export; 
m- import; 
i – specific product group or product; 
1 – analysed period; 
o – base period; 

4) the commodity structure of Poland's trade turnovers with Ukraine; 
5) typical structure (according to the apacity of production factors) of Poland's 

trade turnovers with Ukraine; 
6) the balance of trade turnover of Poland with Ukraine and the balance of exports 

in the group of resource-intensive products; 
7) Revealed Competitive Advantages indexes of Poland in the markets of Ukraine, 

calculated by the logarithmic formula (2) Grubel, H.G., Lloyd, P.J., (1975): 

 

where  – Revealed Competitive Advantages indexes; 
x – export;  
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m – import;  
i – specific product group or product. 

The value of this formula lies in the simultaneous consistency and symmetry of the 
presented RCA indexes; 

8) Intra-industry trade intensity indexes – in Poland's trade with Ukraine, 
calculated by the formula (3) Mączyńska, E., (1999): 

(3) 

where  the Intra-industry trade intensity; 
x – export; 
m – import; 
i - specific product group or product; 

9)  and  indexes of Poland's turnovers in general, including with Ukraine 
by capacity codes. From a methodological standpoint, the analysis of intra-industry 
trade intensity is complemented by indexes of the comparative advantages of . 
Such a supplement might help to determine to what extent intra-industry trade of high 
intensity can be a source of synergies for future export-import trade. Furthermore, it 
should be maintained that high levels of intra-industry trade intensity do not always 
keep up with a high share of the industry's exports in global exports. Therefore, when 
making forecasts, it is necessary to analyse the indicators of export dynamics and 
indicators of the level of export. 

The analysis of Poland's foreign trade flows with Ukraine is supplemented by 
indicators of 50 most important positions (with the highest or the lowest indexes): 

in the value of export; 
in the value of import; 
in the share of trade turnover with selected countries in Poland's exports in 
general; 
in the value of the  index; 
in the competitiveness of exports calculated by ; 
Intra-industry trade intensity, expressed in indicators. 

3. Empirical analysis 

The dynamics of absolute indexes of Poland's foreign trade turnover with Ukraine 
in 2003-2017 was generally characterized by an upward trend. In terms of the nature 
and trends of these indexes, their time series can be divided into 5 segments: 
2003−2008, 2008−2009, 2009−2013, 2013−2015, 2015−2017. In the period from 2003 
to 2008, according to Polish statistics, export from Poland to Ukraine increased at a 
higher rate than import from Ukraine to Poland, which led to the behaviour of the 
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balance of trade, which grew at almost the same pace as exports. As a result of the 2008 
financial crisis, all foreign trade turnover indicators declined sharply. However, starting 
from 2009, the process of restoring the growth of Poland's trade relations with Ukraine 
began and continued until 2013. In the subsequent years, from 2013 to 2015, there was 
a tendency towards a decrease in Poland's foreign trade turnover with Ukraine. But in 
2015, the situation changed to the opposite and lasted until 2017. 

 

 

Figure 1. Dynamics of foreign trade turnover of Poland with Ukraine for 2003-2017, USD million  
Source: Rocznik statystyczny handlu zagranicznego, GUS, wybrane wydania, www.stat.gov.pl 

 indexes should be applied, taking them as an introductory analysis of a country's 
competitive position relative to another trading partner country. 

If we analyse the dynamics of  indexes of Poland in general, that is Poland's trade 
turnovers with all their trading partners, in 2003–2017 Poland's position improved at 
different speeds, showing an upward trend compared to the base year (that is 2003). 
The export / import ratio during this period was advantageous for Poland because 
export growth rates were higher than imports (Table 1). Undoubtedly, this trend was 
influenced by favourable export / import ratios in trade with major partners. 

Table 1. Dynamics of Ci indexes of Poland with Ukraine from 2003 to 2017, % 

Countries 
Years 

2003 2005 2007 2009 2011 2013 2015 2017 

Poland in 
general 100.0 111.7 107.3 116.0 113.7 125.3 128.6 127.2 

Ukraine 100.0 120.9 155.2 142.0 80.1 122.8 92.7 94.6 

Source: Authors' calculations according to Eurostat database. 
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At the same time, Poland's foreign trade turnover with Ukraine during the studied 
period is characterized by ambiguous dynamics. Compared to 2003, in 2004 the value 
of  of Poland with Ukraine was 7.1 pp. lower, but in the next years there was an 
increasing trend until 2010, when it was above 100%. However, in 2011, the situation 
changed dramatically to the opposite, in favour of Ukraine, and lasted until 2012. In 
2013, the index was in favour of Poland. However, from 2014 to 2017, it was again 
in favour of Ukraine. 

A more detailed analysis of changes in Poland's shares in Ukrainian markets, the 
definition of structure and their evaluation require disaggregation of the statistical 
database. After all, the analysis by sections of product groups gives us an opportunity 
to evaluate changes – from the standpoint of the economy – whether they are positive 
or negative. 

An analysis of the Ci indexes, which represent export-import ratios for Poland and 
Ukraine, makes it possible to formulate such generalized conclusions. 

First, in the exchange between Poland and Ukraine, the quantitative asymmetry 
between export and import in certain product groups, which has increased significantly 
since 2003, is manifesting itself. Quantitative asymmetry is manifested in the following 
sections: 

basic metals and articles; 
fats and oils; 
mineral products; 
wood and wood products; 
plant-based products. 

Considering the share of these products in the total exchange of Poland with 
Ukraine, it can be stated that they had a negative impact on the Polish balance of trade 
and, at the same time, a positive one on the Ukrainian balance of trade. 

Secondly, at the same time, during the period there were positive structural changes 
in Poland's exchange between Poland and Ukraine, reflected by the increase in 

indicators in the following sections: 
optical, photographic, measuring instruments and apparatus; 
machinery and equipment, electrical and electrical engineering appliances; 
sawdust, paper, cardboard and articles; 
various finished products - furniture, prefabricated buildings, toys; 
live animals and products of animal origin; 
artificial materials and articles; 
articles of stone and ceramics, glass; 
pearls, precious stones, precious metals and articles; 
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chemical industry products; 
transport; 
shoes, hats. 

Thus, it can be stated that, despite the positive changes, indicators clearly inform 
that in Ukraine’s exports, products with a low level of processing, labour-intensive and 
capital-intensive continue to prevail. 

A much wider geographical diversification of Ukrainian exports could reduce the 
risk of fluctuations in the situation. However, the results of the analysis of the formation 
of competitiveness indexes for Poland and Ukraine do not confirm this. For many 
product groups, values of these indexes have declined due to the 2008 crisis. This is 
especially noticeable in the following sections: XV “Base metals and articles thereof”, 
V “Mineral products”; IX “Wood and articles of wood”; XVII "Transport equipment"; 
ІV “Prepared foodstuffs”. Instead, for sections XI “Textiles and textile articles”; 
XX “Miscellaneous manufactured articles” and XVI “Machinery and mechanical 
appliances, electrical and electrotechnical equipment” - a characteristic wavy change in 
the ratio of exports and imports. 

In the foreign trade turnover of Poland with Ukraine in only five sections,  values 
were less than 100%. The share in the total turnover of these sections was negligible. 
In the other product groups,  values were much higher than 100, and in some of them  
– even higher in a few dozen of times (for example, in the XV “Precious metals”). 
In many sections, values were gaining wavy values and tending to decline, especially 
after 2008. However, in other sections, there was a clear upward trend: XVI “Machinery 
and mechanical appliances, electrical and electrotechnical equipment; XI “Textiles and 
textile articles”; XVII "Transport equipment". The persistence of trends throughout this 
period of course indicates the comparative advantage of Poland in these sectors, as well 
as the level of technological development and unequal status of the economy of Poland 
and Ukraine. 

Summarizing the above calculations, it should not be overlooked that the 
informational value of is limited as they relate to the exports and imports of the 
surveyed partners only (Poland - Ukraine). They are a measure of internal specific 
advantage in terms of mutual exchange. At the same time, they allow to determine the 
participation of these countries in the international division of labour, the level of 
economic and technological development. In addition, the analysis, which covers a long 
period (more than 5 years), allows to determine the direction and pace of structural 
changes in the economies of the partner countries. However, formulation of 
conclusions and proposals in this field requires in-depth study and analysis using other 
methods and criteria that will increase the plausibility, thoroughness and adequacy of 
the results of the study, on which the strategy and economic policy is based. 
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The Ukrainian industry was restructuring during the study period, moreover, at 
a slow pace; as well as the external trade flows were transforming, which was manifested 
in the gradual decline in the value of inter-branch exchange. This is reflected 
in a decreasing trend of absolute value of RCA, but negative values of RCA for many 
goods indicate a low level of competitiveness of the Ukrainian economy. The 
predominant reason for this situation is, as we wrote earlier, an anachronistic and 
clearly asymmetric assortment and species structure. Imports were dominated by 
transformed products with a relatively high share of value added, while exports were 
dominated by products with relatively low levels of processing (Table 2). 

Table 2. Dynamics of RCA Poland with Ukraine by Capacity Codes 2003-2017 

Product group 2003 2005 2007 2009 2011 2013 2015 2017 

Raw materials -0.87 -0.83 -0.58 -0.46 -0.39 -0.29 -0.31 -0.32 

Labour-intensive goods - - 0.70 0.55 0.53 0.47 0.43 0.41 

Capital-intensive goods -0.24 -0.19 -0.10 -0.06 0.06 0.22 0.20 0.25 

Technology-intensive 
products easy to imitate 

- 0.04 -0.17 0.30 0.41 0.37 0.44 0.44 

Technology-intensive 
products difficult to 
imitate 

- - 0.52 0.16 0.32 0.23 0.19 0.27 

Non-classified goods - - - -0.17 -0.24 -0.42 -0.28 -0.26 

Source: Authors' calculations according to: United Nations Database. 

The intensity of Poland's inter-branch exchange with Ukraine was the highest 
among technology-intensive, easy to imitate and labour-intensive goods. 

Poland has shown a relative advantage of many goods, for example, in the export 
of furniture, parts of houses, products of vine and straw, clothing and accessories, fruits 
and vegetables, machinery and electrical equipment and spare parts, sports equipment 
and toys.  

At the same time, Poland has not demonstrated comparative advantages 
in material-intensive, capital-intensive, non-transformed land-use plants. The detailed 
analysis suggests that the exchange in Poland was predominantly complementary to the 
cross-industry type. 

Indexes of the revealed comparative advantage should also be looked into from the 
perspective of geographical directions of foreign trade, that is Poland's trade relations 
with Ukraine. 
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Analysis of indexes of the revealed comparative advantage enables to make 
generalized conclusions, namely: 

the structure of RCA indicators in trade between Poland and Ukraine is 
inherent to countries with lower levels of economic development; 
the exchange of products was dominated by land-intensive, non-transformed 
and raw materials, and Ukraine has a significant comparative advantage in 
these products. 

Therefore, it can be argued that trade relations between partner countries were 
determined by different product and species structure. Poland's foreign trade was 
clearly dominated by cross-industry exchanges, as measured by RCAs. The link 
between Poland's economic potential and the intensity and structure of external 
turnover with Ukraine is not only weak, but also heterogeneous. 

Of course, the form and dynamics of the development of relations were influenced 
and continue to be influenced by the new geopolitical system. The intensity of Poland's 
trade turnovers with Ukraine was much lower than their economic potential. There 
could be many reasons for this, but the most important are the structural factors. It was 
they who had a decisive influence on the asymmetry of indicators of Ukraine's revealed 
comparative advantage. 

However, the pragmatic value of the revealed comparative advantage indexes for 
creating a foreign trade development strategy is limited as they inform of the extent of 
the advantage or lack of it in the past and in the cross-sectoral dimension. From 
a methodological standpoint, this kind of analysis – as the basis of the concept of 
development – should, first of all, be supplemented by the indexes of the intensity of 
intra-industry trade. 

In modern international trade, the values of specialization and intra-industry trade 
(“intra-industry trade” towards "two-way trade") are constantly increasing. Its essence 
lies in the simultaneous characterization of imports and exports by products and their 
components, which belong to the same industry, usually during the year Soete, L.L.G., 
(1990), by one country or group of countries. Intra-industry trade was studied at the 4-
digit CN level of disaggregated data, aggregated to the 2-digit and 1-digit levels. An 
empirical analysis based on data from the Polish and Ukrainian foreign trade 
nomenclatures based on 4-digit CN disaggregation shows that the studied product 
groups in this classification correspond to the theoretical understanding of the industry 
in the industrial classification Petrose, E., (1959). 

The intensity of intra-industry exchange increases with the positive values of IIT. 
The analysis of IIT indexes for Poland's trade with Ukraine in the selected years shows 
that the highest intensities of intra-industry trade were detected in the sections: 
XX "Miscellaneous manufactured articles", IV "Prepared foodstuffs", V "Mineral 
products", XV “Base metals and articles thereof”, XIII “Articles of stone, ceramic 
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products, glass” and XXI “Works of art, collectors’ pieces and antiques” (Table 3). The 
values of IIT in these sections ranged from 0.75 to 0.98. Considering the above RCA 
indexes, whose values fluctuated within 0.25–0.44 in 2017, we can conclude that the 
products of external differentiation were dominated by vertical differentiation in 
Poland, while intra-industry exchange of horizontally differentiated products was of 
subordinary importance. The turnovers were dominated by slightly transformed 
products, when their share in total exports was negligible. 

Table 3. Dynamics of IIT Poland indicators with Ukraine by Product Groups in 2003-2017 

No.  2003 2005 2007 2009 2011 2013 2015 2017 

I Live animals; 
animal products 0.50 0.24 0.28 0.12 0.19 0.24 0.43 0.57 

II Vegetable 
products 0.60 0.86 0.47 0.71 0.78 0.97 0.71 0.74 

III Fats and oils 0.46 0.31 0.04 0.05 0.04 0.10 0.13 0.05 

IV Prepared 
foodstuffs 0.29 0.32 0.58 0.69 0.80 0.79 0.97 0.91 

V Mineral products 0.20 0.12 0.64 0.68 0.47 1.00 0.75 0.84 

VI Products of the 
chemical industry 0.70 0.29 0.74 0.32 0.65 0.31 0.32 0.38 

VII 
Plastics and rubber 
and articles 
thereof

0.14 0.09 0.08 0.04 0.09 0.03 0.10 0.14 

VIII 
Raw hides and 
skins, articles 
thereof

0.72 0.29 0.38 0.43 0.34 0.40 0.19 0.37 

IX Wood and articles 
of wood 0.72 0.91 0.96 0.88 0.81 0.97 0.31 0.33 

X 

Pulp of wood, 
paper, paperboard 
and articles 
thereof

0.04 0.04 0.06 0.09 0.09 0.15 0.18 0.31 

XI Textiles and textile 
articles 0.17 0.09 0.09 0.11 0.07 0.06 0.21 0.16 

XII Footwear, 
headgear, etc. 0.04 0.02 0.01 0.03 0.04 0.02 0.04 0.10 

XIII 
Articles of stone, 
ceramic products, 
glass 

0.03 0.05 0.07 0.14 0.21 0.19 0.66 0.75 

XIV 
Pearls, precious 
stones and metals, 
articles thereof 

0.04 0.07 - 0.01 0.01 - - - 

XV Base metals and 
articles thereof 0.98 0.98 0.88 0.78 0.78 0.85 0.76 0.79 
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Table 3. Dynamics of IIT Poland indicators with Ukraine by Product Groups in 2003-2017  (cont.) 

No.  2003 2005 2007 2009 2011 2013 2015 2017 

XVI 

Machinery and 
mechanical 
appliances, 
electrical and 
electrotechnical 
equipment 

0.17 0.10 0.14 0.39 0.34 0.21 0.35 0.29 

XVII Transport 
equipment 0.02 0.02 0.04 0.05 0.06 0.03 0.06 0.05 

XVII
I 

Optical, 
photographic, 
measuring, 
checking 
instruments, 
etc. 

0.20 0.07 0.04 0.03 0.04 0.03 0.11 0.05 

XIX Arms and 
ammunition 0.37 - - - - - - - 

XX 
Miscellaneous 
manufactured 
articles 

0.04 0.16 0.12 0.20 0.28 0.17 0.61 0.98 

XXI Works of art, 
collector's items 
and antiques 

0.73 0.00 0.12 0.77 0.12 0.01 - 0.67 

Source: Authors' calculations according to: Rocznik statystyczny handlu zagranicznego, GUS, 
wybrane wydania, www.stat.gov.pl 

Thus, the structure of intra-industry trade indicators for these partners was shaped 
by the exchange of low-conversion, material-intensive and labour-intensive goods. 

This is characteristic of the initial phase of development of intra-industry division 
of labor between partners, which differ in the level of technological progress, the 
development of system-restructuring transformation processes, as well as the level of 
gross domestic product per capita, which is a source of demand stimulation in intra-
industry division of labor Michalet, Ch.A., (1984). 

With the objective of determining the concentration of intra-industry trade, at the 
4-digit CN level codes aggregated to 2-digit codes, it was showed that: 

– Unfavourable trends in trade relations between Poland and Ukraine were 
revealed by a comparative analysis of their trade from the perspective of intra-industry 
division of labour. Namely: intra-industry exchange rates with values higher than 0.50 
were only in 14 product groups in 2003, whereas, at the same time, IIT index was higher 
than 0.70 only in 8 groups. In 2017, 12 product groups' indexes were more than 0.50, 
and only 7 groups with an index of more than 0.70. In 2003, the number of product 
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groups with an index of more than 0.50 was 15, and more than 0.70 - 10; in 2017, the 
number of groups decreased to 13 and 7. Consequently, there has been a clear tendency 
for these indicators to decline for more than 14 years. Moreover, the structure of intra-
industry IIT indexes encompassed, first of all, low-grade raw materials and labour-
intensive products, as mentioned above. The IIT structure was conditioned by an 
anachronistic commodity and species structure with a clear quantitative and, above all, 
qualitative asymmetry. 

In trade with Ukraine, only a few commodity groups have achieved intra-industry 
trade intensities of more than 0.85: Wood and articles of wood such as gluing and 
plywood, laminated timber; clothing, including women's and children's coats and kits; 
locomotives, in particular parts to them and to rolling-stock. 

The share of the 50 product groups and products with highest IIT indexes reached 
about 55% of Poland's total exports. But if these groups had accounted for about 54% 
of exports to the EU, and especially to Germany, then their part in exchange with 
Ukraine would have been minimal. 

The highest indicators of IIT in Poland's trade with Ukraine are typical for land-
intensive animal products that are not transformed and labour-intensive products, 
which require hard work. However, the participation of these goods in Poland's general 
turnover was subordinate. 

There was a noticeable convergence between the structures of imports and exports 
of Poland and Ukraine as an effect of the development of cooperation and partnership 
between these countries in the 2000s. 

Adaptation of the labour model to the intra-industry division is significant not only 
considering Ukraine's future place in industrial and trade integration, but also because 
of the scale of the benefits of international division of labour within the EU (measured 
by GDP per capita). In addition, improving the competitiveness of the Ukrainian 
economy in both the export structure (transition from traditional, inter-sectoral, to 
modern, intra-sectoral division of labour) and in prices (reduction of interest rates and 
claims on speculative capital turnover) is closely linked to the improvement of balance 
of trade, and thus with the reduction of the foreign trade deficit. 

4.  Conclusions 

One of the priority line of developments of Ukrainian foreign economic policy is 
to build relations with Poland, which is caused not only by the long tradition of 
Ukrainian-Polish relations, but, first of all, by the unity of political and strategic 
interests, active cooperation in all areas of public life of both countries. The deepening 
of cooperation with Poland, which has formed a qualitatively new economic system 
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within the EU, gives Ukraine the opportunity to use its experience to intensify its own 
transformation processes. 

Internal and external factors of innovation remain, above all, the key source of 
growth in intra-industry trade intensities in Ukraine and Poland. Increasing their use 
will reduce not only the technological gap of Ukraine, but also the difference in gross 
domestic product per capita between Poland and Ukraine, thereby attracting the 
demand factor to the sources of intensification of intra-industry trade. Intensification 
of internal (sources based on accelerating market transformation processes, especially 
privatization and implementation of the legal and institutional market system, and 
increasing the share of Research & Development expenditures in GDP and accelerating 
the pace of technological and technological restructuring) and external innovation 
sources (technology import, know-how, the intense inflow of foreign direct investment 
and the intensification of the international division of labour with EU countries) – the 
only rational way of real adaptation of the Ukrainian economy and its partners to 
changes in the markets of the EU and the world at large. 
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ABSTRACT  

In this paper, the authors propose a new methodological approach to the construction of a 
synthetic measure, where the objects are described by variables with strong asymmetry and 
extreme values (outliers). Even a single extreme value (very large or very small) of a variable 
for the object may significantly affect the attribution of an excessively high or low rank in 
the final ranking of objects. This dependence is particularly apparent when using the classical 
TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method. The 
aim of the study is to present the application potential of the positional MEF-TOPSIS 
method for the assessment of the level of development of complex economic phenomena for 
territorial units. In the positional TOPSIS method, the application of the spatial median of 
Oja, which limits the impact of strong asymmetry, is proposed. In order to weaken the 
influence of extreme values, the Mean Excess Function (MEF) is used, by means of which it 
is possible to identify the limits of extreme values and establish model objects. The proposed 
approach is used to assess the financial self-sufficiency of Polish municipalities in 2016. The 
study finally compares the results of applications of positional MEF-TOPSIS and the classic 
and positional TOPSIS methods. 

Key words: synthetic measure, TOPSIS, spatial median of Oja, Mean Excess Function. 

1. Introduction 

The complex nature of the economics phenomena taking place in the real world 
causes many problems in the research for territorial units. Complex economics 
phenomena (e.g. financial self-sufficiency, socio-economic development, standard of 
living) include many various problems, which are often difficult to identify and 
quantify. Therefore, these phenomena cannot be measured directly, but they can only 
be evaluated based on different criteria and variables. As there are many aspects to the 
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process, various analyses are carried out. One type of analysis is the assessment of the 
phenomenon level by a synthetic measure. In this case, the use of the classical statistical 
methods imposes some restrictions, which often lead to the excessive simplification of 
the analysis. In such studies the non-classical multi-criteria quantitative methods are 
very useful. Therefore, the authors proposed a novel hybrid approach to the 
construction of a synthetic measure in the study. 

The procedure for constructing the synthetic measure is a multi-stage process. One 
of the most important stages is selecting variables for studies. It is a very complicated 
issue, especially when unusual data values (e.g. extreme values) appear or strong 
asymmetry occurs within variables. It may result from the specifics of the complex 
phenomenon studied. These anomalous observations have a crucial impact on the 
results of the research. The occurrence of even only one problematic value of the 
variable for the object may significantly affect the attribution of the incorrect 
(excessively high or excessively low) rank in the final ranking of objects. This also leads 
to incorrect identification of types of the complex economics phenomena on its basis. 
Therefore, it is necessary to seek optimal methods to identify extreme values and 
develop new methodological approaches which are resistant to these phenomena. 

In this study the authors propose a novel hybrid methodological approach to the 
construction of the synthetic measure, where the objects are described by the variables 
with extreme values and strong asymmetry. The aim of the study is to present the 
application potential of the positional MEF-TOPSIS method to assess the development 
level of the complex economics phenomena for territorial units. The proposed method 
is based on the TOPSIS (Technique for Order of Preference by Similarity to Ideal 
Solution) method (Hwang and Yoon, 1981). The TOPSIS method is very useful in 
constructing the ranking of objects described by many variables. The synthetic measure 
is constructed on the base of the distances from the model values (positive ideal solution 
and negative ideal solution). In the case of data set with unusual variables, the 
assumption that the maximum and minimum values of the variables are model values 
leads to excessive remoteness from typical values of the considered variables and 
consequently narrows the range of variability of the constructed synthetic measure. The 
problem may be solved by application of the Mean Excess Function (MEF) for 
identifying the limits of extreme values and establishing the model objects. As a result, 
the influence of extreme values (outliers) was reduced, whereas the spatial median of 
Oja was used in order to limit the impact of strong asymmetry. This novel hybrid 
approach was used in the assessment of financial self-sufficiency of local administrative 
units in Poland in 2016. The research hypothesis was that the construction of a 
synthetic measure for complex economic phenomena, described by variables with 
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extreme values, using positional MEF-TOPSIS allows to perform more accurate 
classifications of objects and to distinguish more homogeneous types than approaches 
using the classical and positional TOPSIS methods. 

2. Methods 

The classical TOPSIS method was first presented by Hwang and Yoon (1981) and 
is the most established technique for solving Multi-Criteria Decision Making (MCDM) 
problems. TOPSIS is based on the idea that the best object should have the shortest 
distance from the positive ideal solution and the longest distance from the negative 
ideal solution. The main assumption of the method is that the variables monotonically 
increase or decrease. TOPSIS was further developed by Yoon (1987) and also Hwang, 
Lai and Liu (1993). Nowadays, many different extensions of TOPSIS exist. They are 
based on triangular fuzzy numbers (Chen, 2000), interval data (Jahanshahloo, Lotfi and 
Izadikhah, 2006), interval-valued fuzzy sets (Chen and Tsao, 2008), interval type-2 
fuzzy sets (Chen and Lee, 2010), interval-valued intuitionistic fuzzy sets (Li, 2010) and 
multi-granularity linguistic assessment information (Liu, Chan and Ran, 2013), 
positional notation (Wysocki 2010, Kozera, Łuczak and Wysocki, 2016).  

Extended versions of TOPSIS have solved many methodological problems in the 
assessment of the development level of the complex economics phenomena. The 
interval TOPSIS method is employed when determining the variable values of the 
object precisely is difficult and the values can be presented by means of intervals, i.e. 
two extreme variable values, which are minimum and maximum (Łuczak, 2015). The 
fuzzy TOPSIS method allows for the construction of the synthetic measure and the 
linear ordering of the objects described by means of both metrical and non-metrical 
(ordering) variables, owing to the transformation of the ordering characteristics into 
fuzzy numbers, which is one of the ways to strengthen the measurement scale (Wysocki 
and Łuczak, 2009). Furthermore, many hybrid approaches and their application have 
been presented. The approaches combine TOPSIS with the following methods: AHP 
(Kusumawardani and Agintiara, 2015), Pareto and genetic algorithm method 
(Taleizadeh, Niaki and Aryanezhad, 2009), SAW and GRA (Wang, Zhu and Wang, 
2016), POT (Łuczak, Just and Kozera, 2018). A broad review of different versions of the 
TOPSIS method and their application was carried out by Behzadian et al. (2012); 
Velasquez and Hester (2013); Mardani, Jusoh and Zavadskas (2015); Afsordegan et al. 
(2016); Nădăban, Dzitac and Idzitac (2016), Zavadskas et al. (2016). 

The novel hybrid approach to the construction of the synthetic measure, proposed 
by the authors, combines Technique for Order of Preference by Similarity to Ideal 



160                                                                         A. Łuczak , M. Just: The positional MEF-TOPSIS method… 

Solution (TOPSIS) and the Mean Excess Function (MEF). The procedure based on the 
modified positional MEF-TOPSIS method includes seven main stages: 
Stage 1. Selection of variables on the complex phenomenon and identification of 

extreme values by application of the Mean Excess Function, 
Stage 2. Determination of the impact direction of variables in relation to the complex 

phenomenon, 
Stage 3. Normalization of the variable values with utilization of the spatial median of 

Oja, 
Stage 4. Calculation of the positive ideal solution and negative ideal solution, 
Stage 5. Calculation of the distance of each object from positive and negative ideal 

solutions, 
Stage 6. Calculation of values of the synthetic measure, 
Stage 7. Ranking classification of objects and identification of the types. 

The first stage is the selection of variables of the complex phenomenon and the 
identification of  extreme values. The selection of variables for objects (e.g. territorial 
units: countries, regions, states, districts, municipalities) is to be carried out based on 
substantive and statistical analysis. The set of variables describing the complex 
phenomenon (e.g. financial self-sufficiency, socio-economic development, standard of 
living) for territorial units is usually characterized by strong asymmetry or includes 
extreme values. In the real data studied, the choice of a suitable threshold of extreme 
values is frequently a very difficult task. In order to identify extreme values, an approach 
based on the Extreme Value Theory (EVT) was used. The EVT is a powerful and robust 
theory for studying the tail behaviour of a distribution of variable. Two approaches are 
used in the EVT to model extreme values. The first approach is based on the Block 
Maxima Model (BMM), estimating the distribution of extremes. The second is based 
on the Peaks over Threshold Model (POT), estimating the tail of the distribution of the 
variable. The Mean Excess Function plot is useful for determining the appropriate 
thresholds for extreme values of the variable in the POT. The MEF is also a convenient 
visual tool for examining whether a variable has a specific distribution (Chen et al., 
2015). In the research, the MEF allows a threshold (limit) of extreme values to be 
established. 

In the POT (see e.g. McNeil, 1999, Echaust, 2014), the tail of the distribution of the 
variable is modelled using the Generalized Pareto Distribution (GPD), while the 
beginning of this tail is determined by specifying a threshold value kul . In this 
approach, the starting point for the considerations is the conditional distribution of 
excess over kul  of random variable kX  (kth variable), which is defined by the formula:  

k

kkk
kkkkkkul ulF

ulFulyFulXyulXPyF
k

,   (1) 
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where: kkk ulxy , F – an unknown distribution function of random variable

kX . According to the Pickands–Balkema–de Haan theorem, for a sufficiently large kul , 
the distribution function 

kulF  is definite and well approximated by the GPD with the 
distribution function: 

ulx
ulx

ulxG
kk

kk
kk ,    (2) 

where: kk ulx  for  and ulx kk  for . This 
distribution has two parameters:  – the shape parameter determining the thickness of 
the tail and  – the scale parameter. The positive values of the shape parameter mean 
that the distribution has fat tails. It is connected with an increased probability of 
extreme variable values. In turn, negative values of the shape parameter denote that the 
distribution has the finite right endpoint. The choice of the threshold value kul  is very 
important, because it affects the obtained values of the GPD parameter estimators. If 
N  is the number of observations, 

kulN  is the number exceeding kul  the estimator of 

the distribution function F  is calculated from the following formula: 

ulx
N

N
k

kkkulxF .        (3) 

Selecting the kul  threshold should take into account the specifics of the variable 
and their number. The threshold selection methods have been described, for example, 
by Coles (2001). One of the methods is the analysis of the stability of the GPD 
parameters estimates. This method was used in POT-TOPSIS by Łuczak, Just and 
Kozera (2018). The next method is based on the analysis of the graph of the Mean 
Excess Function. In this method, the starting point is the conditional expected value: 

ululXulXE k
kkkk      (4) 

Since kul  depends linearly on kul , the empirical estimator of the conditional 
expected value also must depend linearly on kul . Therefore, the graph of the Mean 
Excess Function: 
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after exceeding kul  should be linear. The lower limit ( kll ) of the variable is determined 
by performing calculations for the values of the variable with a negative coefficient.  

Identification of even one variable with extreme values (or even one value) does not 
allow the use of a classical approach to the construction of a synthetic measure. In the 
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second stage, the impact direction of variables in relation to the complex phenomenon 
is determined. The selected variables have a positive (stimulating) or negative (de-
stimulating) influence on the phenomenon. Variables that have a stimulating influence, 
contribute to increasing the phenomenon level. These variables are called stimulants. 
Variables that have a de-stimulating influence, decrease the phenomenon level. The 
destimulating variables are called destimulants. Destimulants should be converted into 
stimulants with the use of a negative coefficient transformation: 

D
ikik xbax , (6) 

where: D
ikx  – value of the kth variable, identified as a destimulant DIk , in the ith 

object (i = 1, …, N), ikx – value of the kth variable (k = 1, …, K) converted into a 
stimulant, a, b – constants establish arbitrarily (e.g. a = 0 and b = 1). 

The third stage is the normalization of variable values. There are many different 
ways to normalize the value of variables and these methods have different properties. 
The choice of the best approach for variables of the complex economic phenomena is 
not simple and requires innovative methods and approaches. In the case of the 
assessment of a complex phenomenon of units, variables with extreme values or 
characterized by an asymmetrical distribution of their values are often observed. 
Therefore, to solve this problem, the modified median standardization was proposed 
using the spatial median of Oja (cf. Lira, Wysocki and Wagner, 2002). The spatial 
median of Oja is resistant to variables with strong asymmetry (Oja, 1983, Ronkainen, 
Oja and Orponen, 2002). Additionally, for limiting the influence of extreme values of 
variables, threshold values of variables kul  and kll  (k = 1, …, K) were applied in the 
formula of the modified median standardization:  
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where: ikx – value of the kth variable in the ith object, kdem  – Oja’s median vector ( ) 
component corresponding to the kth variable, kikik demxmeddam  – median 
absolute deviation of kth variable values from the median component of the kth variable, 
1.4826 – a constant scaling factor corresponding to normally distributed data, 

Kk XXXdamE ,  standard deviation (see, e.g. Młodak 
2006). An alternative version of the spatial median was given by Weber (1909). 
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The median standardization is calculated for Winsorized data. Winsorization is the 
transformation of a variable by limiting its extreme values. In the process of 
Winsorization a specified number of extreme values of a variable is replaced with a 
constant (smaller or bigger) value. The constants are established based on the MEF plot. 
The authors propose to adopt threshold values of variables kul  and kll  (k = 1, 2, …, K) 
as the constants in Winsorization. 

In the fourth stage, the positive ideal solution (PIS) and the negative ideal solution 
(NIS) were calculated (Hwang and Yoon, 1981):  

PIS  iKiiiii
zzzA Kzzz ,    (8) 

NIS  KiKiiiii
zzzzzzA .   (9) 

The PIS are the best values of variables, which are stimulant or are transformed into 
stimulant, whereas the NIS are the worst values of normalized variables.  

Next, Manhattan distances (L1 distances) for each object from the PIS ( A ) and 
the NIS ( A ) were calculated based on (stage 5):  

K

k
kiki zzd ,    

K

k
kiki zzd .    (10) 

The sixth stage involves calculation of values of the synthetic measure with the use 
the Hwang and Yoon’s formula (1981):  

ii

i
i dd

dS  (i = 1,…, N).        (11) 

The higher the values of the synthetic measure, the better the development level of 
the complex phenomenon and vice versa.  

The calculated values of the synthetic measure are the basis of ranking the objects 
and identification of their typological classes (stage 7). Class identification can be 
carried out by different statistical methods or in an arbitrary manner. In the study the 
arbitrary approach based on a division of synthetic measure into eight classes is 
proposed, assuming: 

Class I (extremely high level) iS 0.875, 1.000  
Class II (very high level) iS 0.750, 0.875) 
Class III (high level) iS 0.625, 0.750) 
Class IV (medium-high level) iS 0.500, 0.625) 
Class V (medium-low level) iS 0.375, 0.500) 
Class VI (low level) iS 0.250, 0.375) 
Class VII (very low level) iS 0.125, 0.250) 
Class VIII (extremely low level) iS 0.000, 0.125) 
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The classes of the level of financial self-sufficiency for municipalities were evaluated 
by statistical criteria. For this purpose, measures of homogeneity were applied. It is a 
concept related to the degree of similarity of objects in the same class. The idea of the 
measures is based on distances of objects from the centre of gravity of a class (cf. 
Młodak, 2006): 

K

k
kcikic vxd   (c = 1,…, C), (12) 
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where: icd  – intra-class distances for each object in cth class from the centre of gravity 
of the cth class (c = 1,…, C), C – the number of typological classes, 

Kcccc , ..., v, vvv  ikPiikPiikPi
x, ..., x,x

C

the centre of gravity 

of the cth class (median of its elements), cP  – a set of subscripts of objects belonging to 

the cth class, cd  – the partial mean measure of homogeneity of cth class, Nc – the number 

of objects in cth class, MOH – the total mean measure of homogeneity, r – the number of 
non-empty classes.  

Also, the total inter-clusters homogeneity measure is based on the idea of Hubert 
and Lewin (cf. 1976) is proposed by the authors: 
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where OH  – the total measure of homogeneity. Also, the total mean intra-class distance 

is a useful measure for assessing homogeneity of clusters: 
N

i
icd

N
d . The lower the 

value of the measures dHH OMO , the more homogeneous the classes. 
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3.  Results of research 

The proposed approach was used to assess the level of financial self-sufficiency of 
municipalities (N=2412) in Poland in 2016. The study was based on statistical data from 
2016 coming from the Central Statistical Office of Poland (Local Data Bank). In the 
first stage of the study, five indicators (variables) were selected based on a substantive 
and statistical analysis. These were the following indicators: x1 – own income per capita 
(in PLN), x2 – share of own income in total income (in %), x3 – transfer income 
(including specific grants and the general subsidy) per capita (in PLN), x4 – share of tax 
income (tax bill of agriculture, forestry, real estate, from transport fund of civil law, 
income from taxation, income from mining fee) in current income (budgetary revenue 
other than income property) (in %), x5 – self-financing rate (share of operating 
surplus/deficit and capital income in capital expenditure). 

Table 1.  Descriptive statistics and threshold values of the indicators of municipalities in Poland in 
2016 

Specification 
Variables 

x1 x2 x3 x4 x5 
Mean 1575.14 38.17 2442.17 15.04 191.10 
Median 1382.34 35.98 2441.40 14.01 141.59 
Max 45340.71 95.04 4521.20 59.74 18507.88 
Min 508.17 13.08 1163.22 2.24 -134.22 
St. dev. 123.45 13.20 550.34 6.86 487.88 
Mad 352.63 9,30 412.50 3.99 40.65 
Range 44832.54 81.96 3357.98 57.50 18642.10 
Skewness 20.35 0.58 0.18 1.34 29.95 
Ex. kurtosis 667.11 -0.15 -0.37 3.30 1026.09 
llk 657.275 17.268 1310.765 3.840 73.015 
ulk 2239.219 65.852 3688.543 27.673 270.690 

 
Descriptive statistics of the indicators are presented in Table 1. The greatest 

volatility, measured by the range, standard deviation and median absolute deviation, 
was found for x1, x3 and x5. Positive skewness was observed for all indicators, with 
extremely high skewness noticed for x1 and x5. The distributions of three indicators x1, 
x4 and x5, demonstrated positive kurtosis. This means that extreme values in the 
indicators appear more frequently that in the normal distribution. In order to limit the 
influence of extreme values, the limits of extreme values of indicators were established 
based on analysis of the Mean Excess Function graph (Table 1). The calculations were 
performed with package fExtremes in R (Wuertz, Setz and Chalabi, 2017). The results 
of the analysis indicated the occurrence of very fat right tails of the distribution of 
indicators x1 (estimation of shape parameter 0.42) and x5 (estimation of shape 
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parameter 0.75). The distribution of Winsorized data demonstrated small skewness. 
Moreover, kurtosis for indicators x1, x4, x5 was close to normal distribution. 

In the second stage, it was assumed that four indicators have a stimulating effect 
(x1, x2, x4, x5) and one indicator (x3) has a de-stimulating effect on the level of financial 
self-sufficiency of municipalities. The indicator, which was a destimulant, was 
converted into an opposite indicator type. 

In next stage, the values of variables were standardized by the modified Oja’s 
median standardization. The spatial median of Oja was calculated with OjaNP package 
in R (Fischer et al., 2015). The standardized values of indicators allowed the authors to 
calculate the distances of each municipality considered from the PIS and the NIS using 
the Manhattan distance. In the sixth stage, the values of the synthetic measure were 
calculated using the positional MEF-TOPSIS method. This allowed the authors to 
identify eight types of municipal financial self-sufficiency levels in Poland in 2016 
(Table 2). The proposed approach (approach I) was compared with the classical 
TOPSIS (approach II), MEF-TOPSIS (approach III) and positional TOPSIS by Wysocki 
(approach IV). 

Table 2.  Typological classification of municipalities in Poland in terms of the level of financial self-
sufficiency in 2016 

Class 
Level of 

financial self-
sufficiency 

Si 

Approaches 
I II III* IV** 

Nc % Nc % Nc % Nc % 
I extremely high 0.875, 1.000  32 1.3 0 0.0 11 0.5 0 0.0 
II very high 0.755, 0.875) 194 8.0 0 0.0 112 4.6 2 0.1 
III high 0.625, 0.750) 359 14.9 0 0.0 425 17.6 12 0.5 
IV medium-high 0.500, 0.625) 431 17.9 2 0.1 496 20.6 43 1.8 
V medium-low 0.375, 0.500) 517 21.4 1 0.0 562 23.3 240 10.0 
VI low 0.250, 0.375) 521 21.6 1 0.0 525 21.8 827 34.3 
VII very low 0.125, 0.250) 294 12.2 135 5.6 248 10.3 976 40.5 
VIII extremely low 0.000, 0.125) 64 2.7 2273 94.2 33 1.4 312 12.9 

*  MEF-TOPSIS with Winsorized data. ** – positional TOPSIS with standardization using Oja’s spatial 
median and pseudo distances for each object from the PIS and the NIS calculated using median 
absolute deviation. 

 
The rankings obtained by means of the applied methods indicate differences 

(Wilcoxon rank sum test) in the values of synthetic measures and the arrangement of 
municipalities into classes (Tables 2, 3). A similar classification was created only for the 
positional MEF-TOPSIS and the MEF-TOPSIS methods. The values of synthetic 
measures for these methods did not differ significantly (at the significance level of 0.1, 
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Wilcoxon rank sum test). These methods are resistant to the occurrence of outliers. The 
use of the MEF graphs analysis and the determination of the values of PIS and NIS on 
this basis resulted in greater ranges of variability in the values of synthetic measures. 
The synthetic measures values fall within the following intervals: 0.003, 0.961  and 
0.006, 0.940 , respectively. This allowed eight types of municipalities to be determined 

(including eight levels of financial self-sufficiency of municipalities, from extremely low 
to extremely high). The application of the classical and positional TOPSIS methods was 
associated with obtaining the values of the synthetic measures from the intervals 0.011, 
0.515  and 0.023, 0.827 , respectively. The synthetic measure values in the classical and 
positional TOPSIS methods are more concentrated and have stronger skewness than in 
the positional MEF-TOPSIS and the MEF-TOPSIS methods. In the case of the classical 
TOPSIS method, almost all municipalities (99.8%) were qualified to classes representing 
an extremely low level or a very low level of financial self-sufficiency. The use of the 
positional TOPSIS method allowed to distinguish seven levels of financial self-
sufficiency of municipalities, from extremely low to very high. In this case, almost all 
municipalities (almost 98%) were qualified to classes representing levels of financial self-
sufficiency from extremely low to medium-low. Despite the indicated differences in the 
distribution of the values of synthetic measures obtained for the applied methods, the 
high values of Spearman’s and Kendall’s rank correlation coefficients of the synthetic 
measures pointed to a high agreement of the linear ordering results. However, the 
values of the synthetic measure obtained in classical and positional TOPSIS approaches, 
especially the values close to zero, do not allow for a meaningful identification of types 
of financial self-sufficiency of municipalities. 

Table 3.  Descriptive statistics of the synthetic measures of financial self-sufficiency of municipalities 
in Poland according to approaches  

Specification 
Approaches 

I II III IV 
Max 0.961 0.515 0.940 0.827 
Min 0.003 0.011 0.006 0.023 
Range 0.959 0.504 0.935 0.804 
Median 0.452 0.082 0.459 0.237 
Mean 0.467 0.085 0.468 0.249 
Skewness 0.172 3.309 0.076 0.673 
Ex. kurtosis -0.774 40.106 -0.774 0.818 

 
The classes of the level of financial self-sufficiency for municipalities were evaluated 

by statistical criteria. Measures of homogeneity were calculated for this purpose (Table 
4). Values of the calculated measures indicate that the use of the positional MEF-
TOPSIS and the MEF-TOPSIS methods allowed to identify municipality classes 
characterized by better homogeneity than using the classical and positional TOPSIS 
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methods. It should be added that the highest homogeneity was recorded for classes 
obtained with the positional MEF-TOPSIS method. 

Table 4.  Values of homogeneity measures according to approaches  

Specification 
Approaches 

I II III IV 
HMO 760.9 6775.5 840.5 3734.7 
d  621.2 963.5 622.2 643.4 
HO 0.017 0.215 0.019 0.186 

 
On the basis of the analyses carried out, there is no reason to reject the research 

hypothesis (the construction of a synthetic measure for complex economic phenomena, 
described by variables with extreme values, using positional MEF-TOPSIS allows to 
perform more accurate classifications of objects and to distinguish more homogeneous 
types than approaches using the classical and positional TOPSIS methods). 

4.  Conclusion 

The proposed positional MEF-TOPSIS method (using Oja’s spatial median) of 
linear ordering of objects reduces the impact of strong asymmetry and extreme values 
of variables describing objects. The Mean Excess Function to identify extreme values 
and establish model objects (PIS and NIS) was used in this approach for this purpose. 
In the case of linear ordering, the occurrence of even one outlier (very large or very 
small) for an object can significantly affect the assignment of an excessively high or low 
rank in the final classification of objects. This is particularly evident when the classical 
TOPSIS method is used. Using the positional TOPSIS with standardization based on 
Oja’s spatial median and pseudo distances for each object from the PIS and the NIS, 
calculations using median absolute deviation improve the classification of objects. The 
reason is that in the classical TOPSIS method the squared deviations of each multi-
variable object from the PIS and the NIS are calculated and aggregated, whereas in the 
positional TOPSIS the median from absolute deviations is used, which enables locating 
the centre of the set of absolute differences between each multi-variable object and the 
PIS and the NIS. In turn, it makes it possible to limit the impact of outliers on the 
construction of the synthetic measure. Similar rankings and classifications of objects 
gave the positional MEF-TOPSIS and the MEF-TOPSIS while in the case of the 
application of the first method, classes are characterized by greater homogeneity. 

The typology of municipalities in Poland in 2016 created on the positional MEF-
TOPSIS basis well reflects the inter-class differences in financial self-sufficiency of 
municipalities. It includes eight classes of municipalities, spanning from an extremely 
low to extremely high level of financial self-sufficiency. 
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The research showed that the construction of a synthetic measure for complex 
economic phenomena, described by variables with extreme values, using the positional 
MEF-TOPSIS allows to perform more correct classifications of objects and to 
distinguish more homogeneous types than approaches using the classical and 
positional TOPSIS methods.  

The authors recommend using the positional MEF-TOPSIS in the assessment of 
the development level of complex economics phenomena for territorial units described 
by variables with extreme values. In order to establish limits in the procedure of 
Winsorization, the authors recommend using the Mean Excess Function graphs 
analysis to determine the threshold of extreme values along with other statistical 
methods and substantive criteria to avoid mechanical and excessive Winsorization. The 
Winsorization based on only one criterion can lead to improper placement of objects 
in classes. 
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Application of iterated filtering to stochastic volatility models 
based on non-Gaussian Ornstein-Uhlenbeck process 
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ABSTRACT 

Barndorff-Nielsen and Shephard (2001) proposed a class of stochastic volatility models 
in which the volatility follows the Ornstein–Uhlenbeck process driven by a positive Levy 
process without the Gaussian component. The parameter estimation of these models is 
challenging because the likelihood function is not available in a closed-form expression. 
A large number of estimation techniques have been proposed, mainly based on Bayesian 
inference. The main aim of the paper is to present an application of iterated filtering for 
parameter estimation of such models. Iterated filtering is a method for maximum likelihood 
inference based on a series of filtering operations, which provide a sequence of parameter 
estimates that converges to the maximum likelihood estimate. An application to S&P500 
index data shows the model perform well and diagnostic plots for iterated filtering  ensure 
convergence iterated filtering to maximum likelihood estimates.  Empirical application is 
accompanied by a simulation study  that   confirms the validity of the approach in the case 
of Barndorff-Nielsen and Shephard’s stochastic volatility models. 

Key words: Ornstein–Uhlenbeck  process, stochastic volatility, iterated filtering. 

1. Introduction 

Barndorff-Nielsen and Shephard (2001) proposed a continuous-time stochastic 
volatility model (BN-S model), in which the logarithm of the asset price ty  is  
assumed to be the solution of the following stochastic differential equation: 

tdBtdtttdy                             (1) 

where ttB  is the Brownian motion, R is the drift parameter, R is the 

risk premium. Latent instantaneous volatility process tt  is determined by the 
stochastic differential equation 

tdzdtttd                                   (2) 
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where R and ttz  is pure jump Lévy process with stationary, independent 

and positive increments, and z . The process ttz  is called Background 

Driving Lévy Process (BDPL) of the process tt . Figure 1 presents examples of 

the pair of the processes ttz  and tt . There are several important 
features of such a stochastic volatility process defined by (2), some of which will be 
outlined in Section 2 on the basis of a series of Barndorff-Nielsen and Shephard papers 
(Barndorff-Nielsen and Shephard, 2001, 2002, 2003).  

A great number of estimation techniques have been proposed to estimate  
BN-S model. In their introductory paper (Barndorff-Nielsen and Shephard, 2001), 
Barndorff-Nielsen and Shephard employed a nonlinear least squares estimation and 
suggested other possible methods: Bayesian inference, quasi-likelihood inference by 
means of Kalman filter (for more details of Kalman filter implemented for BN-S model, 
see Szczepocki (2018)), estimation equations (Sørensen, 2000) and indirect estimation 
(Gourieroux, Monfort and Renault, 1993). In the following years much work on 
estimation was devoted to the Bayesian Markov Chain Monte Carlo (MCMC) 
approach: Roberts et al. (2004), Griffin and Steel (2006, 2010), Gander and Stephens 
(2007a,b), Frühwirth-Schnatter and Sögner (2009). Hubalek and Posedel (2006, 2011) 
proposed an estimator based on martingale estimating functions. Taufer, Leonenko 
and Bee (2011) introduced a characteristic function-based estimation method. 
Raknerud and Skare (2011) implemented an indirect inference method  based on 
approximate Gaussian state space representation. Andrieu et al. (2010) proposed to use 
Particle Markov Chain Monte Carlo (PMCMC) estimation method, which combines 
particle filter with Bayesian inference. Chopin et al. (2013) proposed SMC2 algorithm, 
which substantially extends PMCMC. James et al. (2018) also used PMCMC for OU-
Gamma Time Change version of BN-S model.  

In this paper we propose estimation based on iterated filtering. It is relatively a new 
class of methods for maximum likelihood inference introduced by Ionides et al. (2006) 
and substantially modified by Ionides et al. (2015). It is based on a series of filtering 
operations which provide a sequence of parameter estimates that converges to the 
maximum likelihood estimate. In the discussion on (Andrieu et al., 2010) Anindya 
Bhadra (one of co-authors of Ionides et al., 2011) showed some results from applying 
the iterated filtering to a single example of BN-S model. However, he applied the initial 
version of iterated filtering (IF1) from Ionides et al. (2006). In this paper we employed 
the second generation version of iterated filtering (IF2) from Ionides et al. (2015). 

The paper is organized as follows. Section 2 presents background material on 
Barndorff-Nielsen and Shephard stochastic volatility model. Section 3 presents  iterated 
filtering. Section 4 contains simulation results on estimation and Section 5 applications 
to real data. Section 6 gives concluding remarks. 
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Figure 1.   Two simulations of  instantaneous volatility process with Gamma marginal  (a) and (b), 

and corresponding Background Driving Lévy Process (c) and (d)  
Source: Own work using R software. 

2.  Barndorff-Nielsen and Shephard stochastic volatility model 

BN-S model has several important features which makes it very important for 
financial modelling. Firstly, instantaneous volatility tt  moves up by jumps 

according to ttz  and tails off exponentially at the rate . Thus, memory of the 
volatility process depends strictly on the rate . High values of  result in high jumps, 
which are quickly discounted. On the contrary, a small value leads to a small jump but 
the process tails off slowly. Figure 1 shows the impact of on the volatility process.  

Secondly, the time index of the process ttz  in (2) is chosen deliberately so 

that marginal distribution of t  does not depend on . Barndorff-Nielsen and 
Shephard (2001) proved that for any one-dimensional self-decomposable distribution 
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D  there is a stationary Ornstein-Uhlenbeck process tt  and Lévy process 

ttz  satisfying equation (2),  for which marginal distribution of t  is D . 
The class of self-decomposable distribution includes many distributions important in 
financial econometrics: gamma, normal-inverse Gaussian, inverse Gaussian, tempered 
stable, variance gamma, symmetric gamma, the Euler’s gamma, Mexiner. (Schoutens, 
2003) is a comprehensive reference text on financial application of self-decomposable 
distributions. 

Thirdly, although instantaneous volatility tt  has discontinuous paths (due 
to jumps),  integrated volatility  

t

duut                                                 (3) 

has continuous paths. Consequently, the resulting process of the logarithm of the asset 
price ty also has continuous paths. One advantage of stochastic volatility of Ornstein-
Uhlenbeck type is that many important process characteristics are analytically tractable.  
For example, integrated volatility has a simple structure  

ttzt                                (4) 

Finally, the implication of the formula (1) is that log-returns observed at time 
n=1,..., T (we assume that time differences  nnn tt are fixed and equal Δ) take 
the form: 

nynytdyy
n

n
n                                  (5) 

and have conditional Normal distribution  

nnn Ny                                              (6) 

where nnn . This discretely observed volatility n  
(n=1,..., T) was called actual volatility by Barndorff-Nielsen and Shephard (2001). 
Marginal distribution of yn is a location scale mixture of normals. Thus, returns may 
capture empirical facts such as skewness and thick tails. Moreover, when  
marginal distribution of yn tends to normal distribution. Hence, non-normality of 
returns vanishes under temporal aggregation, which is another empirical fact observed 
in financial data.  

BN-S model has attracted much interest and research in mathematical finance and 
financial econometrics. Nicolato and Venardos (2003) studied equivalent martingale 
measures and provided closed-form prices for European call options for BN-S model. 
The minimal entropy martingale measure and numerical option pricing for BN-S 
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model are investigated in (Benth and  Karlsen, 2005) and (Benth and Meyer-Brandis, 
2005).  Hubalek and Sgarra (2009) provided option pricing by Esscher transform. Benth 
et al. (2003) considered Merton’s portfolio optimization problem in a Black and Scholes 
market with stochastic volatility of BN-S type. Benth et al. (2007) provided explicit 
evaluation of the variance swaps. Hubalek and  Sgarra (2011) developed a semiexplicit 
valuation formula for geometric Asian options.  

3.  Iterated filtering 

3.1. General remarks 

Iterated filtering (Ionides et al. 2006, 2015) are methods for maximum likelihood 
inference for state space models (SSMs). These models are also known as partially 
observed Markov Processes (POMP) or hidden Markov models (HMMs). SSMs consist 
of a pair of processes: nn YX . The former is a Markov process (state process) which 
is not observed directly but may be estimated through the latter (observation processes).  
The observations of nY  are assumed to be conditionally independent given the nX  (for 
details, see Durbin And Koopman, 2012). SSMs are very flexible and have been widely 
applied in economics, medicine, biology, mechanical system monitoring, patter 
recognition (see Chapter 1 in Cappé et al., 2008 for examples). However, estimation for 
SSMs is very challenging because likelihood functions are analytically intractable in 
general.  

Iterated filtering is one of the few if not the only available likelihood-based (based 
on the likelihood function for the full data), simulation-based (dynamics of the model 
is captured only via a simulator), frequentist (based on frequency interpretation of 
probability) methods for SSMs. Iterated filtering has been successfully applied to 
perform parameter estimation in SSMs, mostly in the context of biological applications 
(King et al., 2008, He et al., 2009, Bhadra et al., 2011) but also in economic modelling 
(Bretó, 2014). 

The key idea behind iterated filtering is to replace the model we are interested in, 
which have constant parameters, with a similar model but with parameters that take a 
random walk in time. This extra variability smooths the likelihood surface and 
counteracts particle depletion. Over multiple repetitions of the filtering procedure 
(made by means of a particle filter), the variance of this random walk goes to zero and 
the augmented model approaches the original one. As an output of iterated filtering, 
the algorithm provides a sequence of updated parameter estimates that converge to the 
maximum likelihood estimate. Iterated filtering algorithms use basic sequential Monte 
Carlo techniques (also known as bootstrap particle filter, Gordon et al., 1993). Thus, 
they have the property that they do not need to evaluate the transition density of the 
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latent Markov process. Algorithms with this property have been called plug-and-play 
(Ionides et al., 2006) or simulation-based. It is vitally important in the case of BN-S 
model, for which the transition density takes no explicit form. The plug-and-play 
methodology is relatively recent and have been developing rapidly because of its less 
restrictive requirements. Examples of plug-and-play methodologies that follow the 
Bayesian paradigm are Approximate Bayesian Computation (Toni et al., 2009) and 
Particle Markov Chain Monte Carlo (Andrieu et al., 2010).  

There are two generations of iterated filtering which are typically abbreviated by 
IF1 and IF2. The first was introduced by Ionides et al. (2006) and theoretically justified 
by Ionides et al. (2011). Later, Lindström et al. (2012) improved numerical performance 
of IF1 and Doucet et al. (2013) expanded it to include smoothing algorithm. The second 
generation was initiated by Ionides et al. (2015) and later supported by theoretical study 
of Nguyen (2016). Although both generations of iterated filtering recursively perform 
filtering through the augmented model, the theoretical justifications of these algorithms 
are essentially different. IF1 approximates the Fisher score function, whereas IF2 
combines the idea of data cloning (Lele et al., 2007), with convergence of an iterated 
Bayes map (Nguyen, 2016). Ionides et al. (2015) showed that IF2 outperforms IF1 
in empirical examples. 

Convergence of iterated filtering IF2 to the maximum likelihood estimate has been 
shown under some regularity conditions (see Ionides et al., 2015 and Nguyen, 2016,  for 
details). The conditions are rather technical so, in practical applications, convergence 
of algorithm should be assessed via diagnostic plots (Bretó, 2014). 

In this paper, we use implementation of iterated filtering provided by the software 
package POMP (King et al., 2010) written for the R statistical computing environment 
(R Development Core Team, 2010).  

3.2. Implementation of the BN-S model 

Barndorff-Nielsen and Shephard (2001) presented their model in state space model 
representation with yn as an observation process and actual volatility as a state process. 
Conditional distribution of observation process given the state process nny   is given 
by the formula (6). The transition density is not available in explicit form. Griffin and 
Steel (2007) showed that the actual volatility can be written as 

nennn                        (7) 

where 
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tdz

tdzee t

n                                                (8) 

is a vector of random jumps,  which is a pair of stochastic integrals with respect to the 
BDLP ttz . The instantaneous volatility process from equation (7) may be 
discretized by recursion   

nenn .                                 (9) 

In this paper, we use the series representation from Barndorff-Nielsen and 
Shephard (2001) given by 
 

 

j

ji

j

ji

n a
W
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                                    (10) 

 
where for each j (j=1,2,…) ai,j are the arrival times of a Poisson process of intensity 1, 
and ri,j  U(0, 1), independent of the ai,j. W-1 denotes the inverse of the tail mass 
function  

x

dyywxW                                               (11) 

where yw  is a density the Lévy measure of the Lévy-Khintchine representation for 
z(1) (see chapter 8 in Schoutens (2001) for detailed information of simulation 
techniques for Lévy processes). The only special case where the sums in (10) have only 
a finite number of non-zero terms is the gamma marginal distribution of instantaneous 
volatility. In other cases sums need to be truncated. In the case of the gamma 
distribution for instantaneous volatility process: gammat (ν > 0 is the 
scale parameter and α is the precision parameter) the inverse of the tail mass function 
W-1 takes the form (Barndorff-Nielsen and Shephard, 2001):  

ji

ji

a
a

W                                (12) 

which is zero for jia  
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There is no agreement in the literature on how to choose a marginal distribution. 
In the rest of the paper we follow Roberts et al. (2004), Griffin and Steel (2006), 
Frühwirth-Schnatter and Sögner (2009), Raknerud and Skare (2011), Chopin et al. 
(2013) and use the gamma marginal distribution.  

4. Simulation study 

Since convergence of iterated filtering IF2 to the maximum likelihood estimates in 
the case of BN-S model is difficult to prove analytically, we checked the performance of 
the method in a simulation study. We considered 4 scenarios with different 
combinations of parameters. Values of the parameter were taken from Barndorff-
Nielsen and Shephard (2002) and Creal (2008). We simulated 500 realizations of each 
scenario of length T=1000 observations. We run iterated filtering algorithm using 
J=100 and J=200 iteration with M=5000 particles. Table 1 presents mean errors (MEs) 
and mean standard errors (MSEs) obtained in the study. For the purpose of 
comparison, Table 1 reports also MEs and MSEs for the quasi-likelihood inference 
based on the Kalman filter. Thus, we set and assessed precision only for 
volatility parameters:  λ – the persistence parameter, ξ – the expected value of marginal 
distribution ( tE ) and the standard deviation of marginal 

distribution ( tVar ). 

Table 1.  MEs and MSEs of the estimators 

Parameters 
KF IF2 (J=100) IF2 (J=200) 

ME MSE ME MSE ME MSE 

 0.066 0.261 0.021 0.163 0.013 0.121 
 0.061 0.166 0.042 0.159 -0.032 0.143 

 0.093 0.13 -0.046 0.186 -0.011 0.012 

 0.056 0.219 0.015 0.126 0.011 0.109 
 -0.011 0.142 0.045 0.166 0.039 0.132 

 0.072 0.146 0.051 0.232 -0.086 0.123 

 0.011 0.119 -0.005 0.086 0.019 0.021 

 0.063 0.242 -0.021 0.166 -0.012 0.159 

 0.091 0.246 0.051 0.131 0.013 0.011 

 0.013 0.145 0.009 0.026 0.019 0.021 
 -0.051 0.171 -0.032 0.146 -0.022 0.169 

 0.093 0.381 0.046 0.322 0.023 0.186 

Source: Own work. 



STATISTICS IN TRANSITION new series, June 2020 181

The results indicate that the proposed iterated filtering IF2 algorithm is quite 
reliable. For a smaller number of iterations J=100, the estimators seem to be biased but 
they become more precise as J increases. Both versions of IF2 outperform quasi-
likelihood inference. 

5. Empirical example 

We estimate models by using Standard & Poor’s 500 index (S&P500) daily data for 
the period 9.10.2012-30.09.2016. S&P500 index is one of the most important American 
stock market index. It is based on the market capitalizations of 500 large companies 
listed on the NYSE or NASDAQ. Data consist of 1001 closing values and 1000 log-
returns.  Table 2 and Figure 2 present data.  

 

 
Figure 2. S&P500 daily index (a) and log-returns (b) 
Source: Own work using R software. 

Table 2. Descriptive statistics of S&P500 daily log-returns 

Mean Standard 
deviation Skewness Kurtosis 

Quantiles 

25% 50% 75% 

0.0004 0.0083 -0.3830 5.0486 -0.0036 0.0005 0.0050 

Source: Own work. 

We run the iterated filtering algorithm with J=200 iteration. Each of iteration uses 
the bootstrap particle filter with M=5000 particles.  Results of estimation are presented 
in Table 3. The drift parameter μ is close to zero. As may be expected from financial 
theory, the risk-premium coefficient β is positive. The estimated average actual 
volatility ξ and standard deviation ω correspond to gamma distribution with the scale 
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parameter ν=1.571 and the precision parameter α=14.124. Figure 3  presents diagnostic 
plots for iterated filtering. These plots suggest that the likelihood has in fact been 
maximized by iterated filtering in our analysis of log-returns of S&P500 index. 

Table 3. Estimation results for the log-returns of the S&P500 index 

Parameter      
Estimates -0.001 0.051 0.026 0.111 0.089 

Source: Own work. 

 

 
Figure 3.  Diagnostic plots for iterated filtering: sliced likelihoods for the inquired parameters. For 

each plot the likelihood surface is explored along one of the parameters, keeping the other 
parameters fixed at the point which iterated filtering algorithm converges to. Points show 
the likelihood estimate obtained with 2,000 particles and the curves result from smoothing 
the likelihood evaluations with local quadratic regression. The vertical lines show iterated 
filtering estimates. 

Source: Own work using R software. 
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6. Conclusions 

In this article, we presented estimation of a class of stochastic volatility models 
where the volatility follows an Ornstein–Uhlenbeck process driven by a positive Lévy 
process via iterated filtration. This class of models, introduced by Barndorff-Nielsen 
and Shephard (2001), and therefore typically abbreviated to BN-S, has several 
important features, which aroused great interest in financial modelling for this class of 
stochastic volatility models.  

From a theoretical point of view, the estimation method proposed in this article is 
convenient because it only requires to simulate the state process and to evaluate 
conditional density of the observation process given the simulated values of the state 
process. This feature, also known as plug-and-play property, is crucial for BN-S models, 
for which transition density is not available as a closed-form expression. Iterated 
filtration provides likelihood-based inference based on frequentist probability, which 
may be seen as competitive to plug-and-play methods that are based on Bayesian 
paradigm such as Particle Markov Chain Monte Carlo or Approximate Bayesian 
Computation. In this article, we exploited the second generation of iterated filtration 
IF2 introduced by Ionides et al. (2015), which outperforms the first generation IF1 in 
the rates of convergence to maximum likelihood estimates. 

The results of the simulation study confirmed the validity of the approach in the 
case of BN-S model. In an application of the proposed method to S&P500 daily data, 
we presented, apart from estimates of parameters, also diagnostic plots for iterated 
filtering to ensure convergence to maximum likelihood estimates. 
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New linear model for optimal cluster size in cluster sampling 

Alok Kumar Shukla1, Subhash Kumar Yadav2  

ABSTRACT  

In this paper, a nonlinear model is proposed for improving the relationship between the size 
of a cluster and the variance within the cluster. This model describes the most appropriate 
functional relation between the within-cluster variance and the cluster size. Through this 
model, we can obtain the optimum size of a cluster and an estimate of the variance between 
clusters. The proposed model leads to further improvement in the estimation of the 
optimum size of a cluster, and the formula for the determination of optimum cluster size 
leads to explicit solution of models. 

Key words: Non-linear models, optimum cluster size, four-parameter model, variance 
function. 

1. Introduction 

Regression analysis is widely used for better explanation and future prediction of 
any phenomenon which is assumed to develop in some patterns whether in economics 
or any other field. In cluster sampling, it is of interest to find the most suitable 
functional relationship between variance within the cluster ( wS ) and the cluster size  
( M ) for prediction [Singh and Chaudhary (2009)]. Smith (1938), Jessen (1942), 
Hansen and Hurwitz (1942), Mahalanobis (1940, 1942), Misra et al. (2010), Tiwari and 
Misra (2011), Shukla et al. (2013), Shukla and Yadav (2016), Lawson and Skinner (2017) 
etc., have discussed the problem of determining the optimum cluster size in two 
important contexts of variance function and cost function respectively. Scarneciu et al. 
(2017) compared various nonlinear models in determining pulmonary pressure 
in hyperthyroidism. Kaplan and Gurcan (2018) compared different growth curves 
using non-linear regression function in Japanese quail. Riazoshams et al. (2019) 
described in detail the robust nonlinear regression models with applications using R 
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software. All the functional relations given by the above authors are of similar 
functional form describing the relationship between the size of the cluster and variance 
within the cluster. It is well established in cluster sampling that sampling variance 
increases as the cluster size increases and it decreases with the number of clusters. The 
cost also decreases as cluster size decreases and increases as the number of clusters 
increases. Thus, it becomes important to seek a balancing point through the optimum 
size of the cluster and the number of clusters in the sample by minimizing the variance 
for a given/fixed cost or vice-versa. 

y y
n

y  

bS
n

fyV           (1) 

where 
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nf is finite population correction and 
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iYY as population total for the study variable.  

Now, it is of crucial importance to know the behaviour of yV with the cluster 
size M . This involves knowing the relationship between bS  and M . Through analysis 

of variance (ANOVA) technique, bS can be found if we know 

The Total variance S between all the NM  elements in the population,  
The variance wS within all M  elements of the same cluster for all N  
clusters, 

where S and wS are respectively given by 

N

i

M

j
ij YY

NM
S and 

N

i

M

j
iijw YY

MN
S . 

 



STATISTICS IN TRANSITION new series, June 2020 191

Thus, the total variance S of all population units can be written in the form of bS
and wS as 

NMSMNSNMS wb       (2) 
If N  is large, we express the above equation (2) as  

MSMSS wb        (3) 

Hence,  

MSMSS wb .       (4) 

Thus, bS  also depends on wS . 
We are considering the problem of determining the best relationship between 

variance function and the size of the cluster. 
Jessen (1942) suggested the following relationship for wS and M  by a non-linear 

form of model as 

MSw , M                     (5) 

where and are the parameters of the above non linear model.  

Misra et al. (2010) established the relationship between wS  and M  through an 
asymptotic regression model given as  

M
wS , M           (6) 

where , and are the parameters of the asymptotic regression model. 

Tiwari and Misra (2011) suggested a three-parameter linear regression model for 
the relationship between wS  and M  as 

MMSw , M         (7) 

where , and are the parameters to be estimated for the above linear regression 
model. 

2.  Suggested model 

In the present paper, we have proposed the following four-parameter model for the 
most appropriate relationship between wS  and M as 

MMMSw , M           (8) 
Expression (8) is a linear model in which its parameters are appearing linearly and 

there is no problem in assuming an additive error term in model (8). 
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The above model can be postulated as a statistical model as 

iw eMMMS , M , ni                     (9) 

where the random variable sei  are assumed to be independently and identically 

normally distributed with mean zero and fixed variance  and , , and are 
the parameters of the model (9). 

2.1. Fitting of models  

Draper and Smith (1998) have classified the above models in two groups; one as 
intrinsically linear and another as intrinsically non-linear models. The model (5) is an 
intrinsically linear model as it can be transformed into a linear model. Model (6) is 
purely nonlinear model as it cannot be transformed by means of any transformation 
into a linear model. The OLS method is not directly applied for estimating the 
parameters of model (6). The parameters of model (6) are estimated through the iterative 
procedure as Levenberg-Marquardt’s method. Model (7) and the proposed model (8) are 
linear in parameters so their parameters are estimated by the method of least squares.  

2.2. Goodness of fit of different models 

Coefficient of Determination - R  
The assessment of the regression model is to observe how much of the total sum of 

squares (TSS) has fallen into the sum of squares due to the regression (SSR).  

TSS
SSRR  

Adjusted Coefficient of Determination - AdjR  

Montgomery et al. (2012) have described AdjR  considering good for model 
comparison when the number of parameters is not equal in two models. 

R
pn

nRAdj  

Residual Mean Square- s  
The residual mean square is defined as 

pn
SSEs  

where n  is the number of observations and p  is the number of the model parameters 

used and SSE is the sum of squares due to errors. A small value of s reflects the 
appropriateness of the fitted model. 
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Mean Absolute Error (M.A.E) 
The Mean Absolute Error is defined as 

n

errors
EAM

n

i  

where n  is the number of observations. A smaller EAM  is preferred in fitting of 
various models. 
 
Akaike Information Criterion (A.I.C.)  

Gujarati and Sangeetha (2007) have given a lot of importance to Akaike 
Information Criterion (A.I.C.), defined as,  

n
RSS

n
pExpCIA  

where n  is the number of observations and  p  is the number of parameters. RSS  is 
residual or error sum of square. 

2.3. Examination of Residuals  

Analysis of the residuals (errors) is strongly recommended to decide about the 
suitability of a model by Draper and Smith (1998). Three important assumptions of the 
model are:  

(i) Errors are not auto correlated.  
(ii) Errors are independent.  
(iii)Errors are normally distributed.  

The assumptions can be verified by examining the residuals.  
Test for auto correlation of errors (Durbin-Watson Test) 

We test H : Errors are not auto correlated (if DW test values > Ud ) 

Against H : Errors are auto correlated (if DW test values < Ld ) 
where  Ld  and Ud  are given in Draper and Smith (1998). DW Test values greater 

than 1.72 times Ud  confirm that there is no problem of auto-correlation. 

Test for independence of errors (Run Test) 
We test H : Errors are independent. 

Against H : Errors are not independent. 

Test for normality (Shapiro-Wilk Test, n ) 
We test H : Errors are normally distributed. 

Against H : Errors are not normally distributed. 
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2.4. Determination of Variance Function 

If the total population is considered as a single cluster containing NM elements, the 

wS  will be equal to the total variance S . Thus, for the proposed model, we have 

NMNMNMS                 (10) 

The between-cluster variance for the proposed model is obtained by putting (8) and 
(10) in (4) as,  

NMMM
M

MNMNMNMSb
 

                   (11) 

where , , and  are the estimated values of the parameters of the suggested 
model. 

The variance of the sample mean of the characteristic under study through the 
suggested model in cluster sampling can be obtained as 

                                                  
bS

n
fyV                                                       (12) 

3.  Empirical study 

The appropriateness and model adequacy of various models have been examined 
by using two natural data sets from Sukhatme et al. (1984) and Govindarajulu (1999) 
respectively. The wS  have been calculated for different sizes of the clusters in (acre)2, 
with the study variable as the area under wheat crop. We have computed the estimated 
values of parameters, goodness of fit and residuals analysis for the models (5)-(8) given 
in Table-1(a) and Table-1(b). The Estimated values of wS  and bS  are given in Table-
1(c) and Table-1(d). These values are given in Table-2(c) and Table-2(d) for the models 
(5)-(8) respectively. The above values have been obtained using SPSS 17.0 Statistical 
software.  

Table-1(a). Parameter estimates for various models 

Model     

Model (5) 78.886   0.0473 - - 

Model (6) 108.171   31.530 - 0.948 

Model (7) 93.813   0.012 - -32.888 

Model (8) 88.1502   0.4272 -0.0003 -21.8678 
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Table-1(b). Goodness of fit of models and Residuals Analysis 

 Model (5) Model (6) Model (7) Model (8) 

R  0.941 0.983 0.984 0.999 

AdjR  0.921 0.966 0.978 0.998 

s  10.479 4.410 2.756 0.0248 

M.A.E.  2.078 1.208 0.9 0.055 
A.I.C.  13.6643 5.8573 3.6594 0.0245 
DW#  1.3457 2.2104 2.3238 3.4161 
R* 0.001 

(1.000) 
0.109 

(0.913) 
0.001 

(1.000) 
1.200 

(0.230) 
W^ 0.9917 

(0.9784) 
0.8994 

(0.4037) 
0.9713 

(0.8749) 
0.9952  

(0.9926) 

# is Durbin and Watson Test values, * is Run test values, ^ is Shapiro-Wilk test values, the p-values 
are given in parentheses. 
 

Table-1(c). Estimated wS  for various models 

M  

Observed 
value of 

wS  

Estimated 
value 

of wS for 
model (5) 

Estimated 
value 

of wS for 
model (6) 

Estimated 
value 

of wS for 
model (7) 

Estimated 
value 

of wS for 
model (8) 

2  78.10  81.53 79.84 77.39 78.0695 
4  84.28  84.25 82.71 85.64 84.3868 
8  88.92  87.05 87.60 89.80 88.8127 
16  93.50  89.95 94.75 91.96 93.5308 
NM

=1176 
108.33  110.22 108.17 108.34 

108.33 
 

Table-1(d). Estimated bS  from equation (4) for various models 

M  

Observed 
value of 

bS  
from 

equation (4) 

Estimated 
value 

of bS for 
model (5) 

Estimated 
value 

of bS for 
model (6) 

Estimated 
value 

of bS for 
model (7) 

Estimated 
value 

of bS for 
model (8) 

2  69.28  69.45 68.25 69.64 69.2952 
4  45.12  47.03 46.13 44.11 45.0399 
8  30.52  34.05 31.53 29.76 30.6188 
16  20.69  25.89 19.34 22.12 20.6448 
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Table-2(a). Parameter estimates for various models 

Model     

Model (5) 0.072   0.182 - - 
Model (6) 0.372   -0.566 - 0.966 
Model (7) 0.3163   0.0000061 - -4.311 
Model (8) -0.3039   0.0132 -0.000001 2.3414 

 
 

Table-2(b). Goodness of fit of models and Residuals Analysis 

 Model (5) Model (6) Model (7) Model (8) 

R  0.768 0.982 0.959 0.996 

AdjR  0.710 0.971 0.932 0.991 

s  0.0039 0.0004 0.0009 0.0001 

M.A.E.  0.0433 0.0116 0.0183 0.0045 
A.I.C.  0.0051 0.0004 0.0013 0.00006 
DW#  0.9083 1.8057 1.6865 3.5122 
R* -1.369 

(0.171) 
0.001 

(1.000) 
0.001 

(1.000) 
1.369  

(0.171) 
W^ 0.9648 

(0.8577) 
0.9577 

(0.8127) 
0.9447 

(0.7175) 
0.9759 

(0.9217) 

# is Durbin and Watson Test values, * is Run test values, ^ is Shapiro-Wilk test values, the p-values 
are given in parentheses. 
 
 

Table-2(c). Estimated wS  for various models 

M  

Observed 
value of 

wS  

Estimated 
value 

of wS for 

model (5) 

Estimated 
value 

of wS for 

model (6) 

Estimated 
value 

of wS for 

model (7) 

Estimated 
value 

of wS for 

model (8) 
15  0.05  0.1176 0.0361 0.0289 0.0501 
20  0.08  0.1239 0.0898 0.1008 0.0770 
25  0.11  0.1290 0.1349 0.1440 0.1193 
30  0.18  0.1334 0.1728 0.1727 0.1694 
35  0.22  0.1372 0.2046 0.1933 0.2239 

NM =8820 0.37  0.3747 0.3717 0.3727 0.3699 
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Table-2(d). Estimated bS  from equation (4) for various models 

M  

Observed value 

of bS from 
equation (4) 

Estimated 
value 

of bS for 

model (5) 

Estimated 
value 

of bS for 

model (6) 

Estimated 
value 

of bS for 

model (7) 

Estimated 
value 

of bS for 

model (8) 

15  0.320  0.265 0.338 0.346 0.3231 

20  0.294  0.257 0.286 0.277 0.2967 

25  0.264  0.251 0.242 0.234 0.2553 

30  0.196  0.246 0.205 0.206 0.2061 

35  0.156  0.241 0.173 0.185 0.1523 

4.  Results and discussion 

From Table-1(b) and Table-2(b), it is easily evident that the value of R  for the 
competing models ranges from [0.941 0.984] and [0.768 0.982] respectively for Data 
Set-1 and Data Set-2, while that for the suggested model is 0.999 and 0.996 respectively. 
The value of AdjR  for the competing models lies between [0.921 0.978] and [0.710 
0.971] respectively while that for the suggested model between 0.998 and 0.991 
respectively. The values of the s for the competing models range from [2.756 10.479] 
and [0.0039 0.0004] while for the proposed model are 0.0248 and 0.0001 for Data Set-1 
and Data Set-2 respectively. The values of M.A.E. are between [0.9 2.208] and [0.0183 
0.0433] for the models in comparison while for the suggested models they are 0.055 and 
0.0045 for Data Set-1 and Data Set-2 respectively. The values of A.I.C. lie between 
[3.6594 13.6643] and [0.0004 0.0051] for the competing models while these of proposed 
models are 0.0245 and 0.00006 for Data Set-1 and Data Set-2 respectively. Other 
measures are also better for the suggested model as compared to competing models.  

Figure-1 and Figure-2 show the graph of R and AdjR  and s , M.A.E. and A.I.C. 
for the suggested and the competing models respectively for Data Set-1 while Figure-3 
and Figure-4 for Data Set-2.   
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Figure-1. R and AdjR  for data set-1 for 
various models 

Figure-2. s , MAE and AIC for data 
set-1 for various models 

 
 
 

Figure-3. R and AdjR  for data set-2 
for various models 

Figure-4. s , MAE and AIC for data 
set-2 for various models 

 

5.  Conclusion 

In the present manuscript, we have proposed a four-parameter linear regression 
model for enhanced estimation of the variance function for clustered data. The 
parameters of the proposed model have been estimated through a well-known method 
of least squares. The proposed model and many other linear and nonlinear models have 
been fitted for the real data sets. The suggested model is compared with the competing 
linear and non-linear models. It has been shown that the proposed model fits well 
in comparison with other models for variance function in cluster sampling as it has 
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lesser mean residual error and other good measures of adequacy. Thus, it 
is recommended to use the proposed model for improved estimation of variance 
function, the relation between within-cluster variance and cluster size, between cluster 
variance and the cluster size in cluster sampling.  
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Report 

The XXXVIII Conference on Multivariate Statistical  
Analysis 4–6 November 2019, Łódź, Poland 

The 38th edition of the International Conference on Multivariate Statistical 
Analysis (MSA) was held in Łódź, Poland, on November 4-6, 2019. The MSA 
conference was organized by the Department of Statistical Methods of the University 
of Łódź, the Institute of Statistics and Demography of the University of Łódź, the 
Polish Statistical Association, Branch in Łódź and the Committee on Statistics and 
Econometrics of the Polish Academy of Sciences. The conference organization was 
financially supported by the National Bank of Poland, the Polish Academy of Sciences 
and the Ministry of Science and Higher Education1.  

The Scientific Committee was headed by Professor Czesław Domański and the 
Organizing Committee consisted of members: Aleksandra Baszczyńska, Assistant 
Professor from the Department of Statistical Methods of the University of Łódź and 
Katarzyna Bolonek-Lasoń, Assistant Professor from the Department of Statistical 
Methods of the University of Łódź. 

The Multivariate Statistical Analysis conference constituted a forum for 
discussion and exchanging opinions about development of statistics. Participants 
presented the latest theoretical achievements in the field of the multivariate statistical 
analysis, its practical aspects and applications. The scientific programme covered 
a wide range topics of statistical mathematics and multivariate statistical methods 
including multivariate distributions, statistical tests, nonparametric inference, factor 
analysis, cluster analysis, discrimination analysis, Bayesian methods, stochastic 
analysis and application of statistical methods in finance, economy, capital market 
and risk management. 

The conference was attended by 72 participants from many academic centres 
in Poland (Gdańsk, Katowice, Kraków, Łódź, Poznań, Rzeszów, Szczecin, Warszawa, 
Wrocław) and from abroad (Germany, Italy). Representatives of Statistics Poland and 
Statistical Office in Łódź, Statistical Office in Poznań and Statistical Office in Rzeszów 

1  Organization of the international conference "Multivariate Statistical Analysis 2019 (MSA 2019)" − task 
financed under contract 712 / P-DUN/202019 from the funds of the Minister of Science and Higher Education 
allocated to the dissemination of science. 



202                                                                                                            The XXXVIII Conference… 

were also participants of the 2019 MSA conference. In 15 sessions (plenary and 
parallel) 42 papers were presented including 4 invited lectures. 

The conference was opened by the Head of the Scientific Committee, Professor 
Czesław Domański. The subsequent speakers at the conference opening were 
Professor Antoni Różalski, Rector of the University of Łódź, and Professor Michał 
Przybyliński, the Vice Dean − Education and Student Affairs of the Faculty of 
Economics and Sociology of the University of Łódź.  

The chairman of the session Czesław Domański opened the first plenary session 
with two papers. The first one was an invited lecture entitled “Optimal sample 
allocation in stratified sampling schemes − linear algebra methods and algorithms” 
and it was presented by Professor Jacek Wesołowski (Statistics Poland, Warsaw 
University of Technology). The description how methods of linear algebra 
(eigenvectors and eigenvalues of a population based matrix) can be used in order to 
determine such sample allocations in stratified schemes which are domains-wise 
optimal was presented. The second paper “Kernel discriminant coordinates in the 
case of geographically weighted temporal-spatial data with variable selection” 
presented by Professor Mirosław Krzyśko (Adam Mickiewicz University Poznań) 
where the extension of a method developed by Mika et al. (1999) as well as Baudat and 
Anouar (2000) in kernel discriminant coordinates analysis for fixed vector data is 
used.  

The second session (chairman Professor Mirosław Krzyśko) was a historical one 
with papers devoted to two important statisticians: Jakub Kazimierz Haur (a paper 
presented by Professor Czesław Domański) and Marcin Kromer (a paper presented by 
Professor Jerzy T. Kowaleski, University of Łódź). 

In the third reminiscent session (chairman Professor Czesław Domański), the 
conference participants recalled outstanding statisticians who died last year. Professor 
Krystyna Katulska was commemorated by Professor Mirosław Krzyśko, Professor 
Mirosław Krzysztofiak was commemorated by Ewa Wycinka (University of Gdańsk),  
Professor Józef Kolonko by Professor Janusz Wywiał (University of Economics 
in Katowice),  Professor Stanisław Wydmus and Professor Michał Major by Professor 
Stanisław Wanat (Cracow University of Economics). 

During the conference other invited lectures were presented: 
“Selected aspects of households’ well-being measurement” by Professor Józef 
Dziechciarz (Wroclaw University of Economics and Business), where an attempt 
to review problems and methodological proposals for measuring households’ well-
being was presented. 
“Advances in learning from contaminated datasets” by Professor Francesca 
Greselin (University of Milan-Bicocca, Italy), with an introduction into a robust 
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and adaptive version of the Discriminant Analysis rule, capable of handling 
situations in which one or more of the afore-mentioned problems occur.  
“A new virtual library containing interactive learning objects for statistics 
education” by Professor Hans-Joachim Mittag (University of Hagen, Germany), 
with presentation of project activities aiming at developing interactive learning 
objects for statistics education. 

 
Papers presenting the latest theoretical achievements in the field of the 

multivariate statistical analysis are the following: 
Andrzej Bąk, “Methods of imputation of missing data using the R program on the 
example of the Local Data Bank”, with results of attempts to apply supplementing 
missing data using methods proposed in the literature and packages of the 
R program. 
Katarzyna Budny, “Multivariate Chebyshev’s inequality – some bounds on the 
probability of a random vector taking values in the Euclidean ball”, where some 
multivariate generalizations of Chebyshev’s inequality with the bounds on the 
probability of a random vector taking values in the Euclidean ball, expressed by the 
moments of a random vector based on the definition of the power of a vector are 
proposed. 
Anna Denkowska, Stanisław Wanat, “Linkages and systemic risk in the European 
insurance sector: Some new evidence based on dynamic spanning trees”, with 
presentation of the analysis results of linkage dynamics and systemic risk in the 
European insurance sector, which are obtained using correlation networks. 
Czesław Domański, “Some remarks about normality tests based on characteristics 
of stochastic  processes”, with some results on normality tests. 
Wojciech Gamrot, „On Likert scale and regression coefficient”, where an approach 
of using the Likert scale variables in statistical surveys with closed questions is 
considered.  
Grzegorz Kończak, “On permutation multivariate extension of McNemar test”, 
with the proposal of the extension of the well-known McNemar test based on data 
from k (k > 2) samples.  
Jerzy Korzeniewski, “Determining semantic relatedness of concepts – 
modifications proposals”, with presenting the modification of the Leacock and 
Chodorow method in determining the semantic relatedness of concepts.  
Małgorzata Krzciuk, “On EBLUP under some linear mixed model with correlated 
random effects”, with considerations on the problem of small area prediction 
under a linear mixed model with presenting results of the Monte Carlo simulation 
analyses based on real data from the Local Data Bank of Statistics Poland.   
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Dominika Polko-Zając, “On permutation tests for comparing multidimensional 
populations”, with presentations of a permutative, simultaneous procedure for 
identifying differences between the vectors of average values and the variance-
covariance matrices in two studied populations.  
Dominik Sieradzki, Wojciech Zieliński, “Sample allocation in estimation of 
proportion in finite populations”, where comparison of precision of estimation 
depending on chosen sample allocation for new proposed method and Neyman 
allocation and proportional allocation is presented.  
Agnieszka Stanimir, “Multivariate statistical methods in the analysis of multiple 
responses questions”, with presentation of the possibility of using multivariate 
statistical methods in the analysis of questions with multiple choices of responses.  
Piotr Sulewski, “Recognizing distributions rather than goodness-of-fit testing”, 
where the idea of recognizing distributions rather than carrying out classic 
goodness-of-fit tests based on the measure of discrepancy is considered.  
Krzysztof Szymoniak-Książek, “Properties of nonparametric isotropy tests” 
focusses on the discussion of properties of nonparametric significance tests 
verifying random field isotropy hypothesis.  
Janusz L. Wywiał, Grzegorz Sitek, “On variance of sample matrix eigenvalue”, 
where the  estimator being a function of simple random sample variances and 
covariances of a multidimensional random variable whose distribution is not 
necessarily normal is regarded.  
Artur Zaborski, “Triads or tetrads? Comparison of incomplete methods for 
measuring similarity in preferences” with the comparison of the two incomplete 
methods for measuring the similarity of preferences, i.e. the triad method and the 
tetrad method. 
Tomasz Żądło, “On generalization of Quatember’s bootstrap”, where 
a generalization of the Quatember algorithm is proposed with the study on the 
properties of the proposal with recent competitors. 

 
Papers presenting practical aspects as well as theoretical ones in the field of the 

multivariate statistical analysis are the following: 
Maciej Beręsewicz, Katarzyna Zadroga, “Estimation of the number of illegally 
residing foreigners in Poland in 2017−2018 using Bayesian non-linear mixed 
count regression models” focuses on estimating the number of foreigners residing 
illegally in Poland in 2017−2018, where the Bayesian non-linear mixed model for 
count data was proposed, depending solely on the aggregated data reported by the 
Border Guards, the Police and in the PESEL register.  
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Michał Bernardelli, “Identification of turning points in time series from the 
cryptocurrency market” with the investigation of the possibility of using the 
hidden Markov models and Viterbi paths for the analysis of one-dimensional price 
series from the cryptocurrency market.  
Jacek Białek, “Chain drift problem in the CPI measurement based on scanner 
data” with presentation of some simulation results which show the situations on 
the market leading to the biggest chain drift bias if the index differs from unity 
when prices revert back to their base level. 
Beata Bieszk-Stolorz, “Selected models of recurrent events in the assessment of the 
risk of re-registration in the labour office” with the analysing of the risk of 
subsequent registrations in the labour office depending on selected characteristics 
of the unemployed: gender, age, education and seniority.  
Second Bwanakare, Marek Cierpiał-Wolan, “Generalised Cross-Entropy 
Econometrics vs conflicting cross-border (Big) data sources. National accounts 
updating”, where the proposal of an efficient approach to combining data from 
various sources and a comparison of the results with the traditional technique 
applied in official statistics are presented.  
Grażyna Dehnel, Marek Walesiak, “An assessment of social cohesion of Poland’s 
provinces based on classic and interval-valued data” focusses on the description of   
a comparative analysis of results of assessing social cohesion with two assessment 
criteria: cluster analysis to identify similarities and differences in the ranking of 
provinces, and the analysis of the degree to which different rankings of objects 
with respect to specific variables correspond to those obtained by using the 
aggregate measure for 4 datasets. 
Małgorzata Graczyk, Bronisław Ceranka, “Some remarks about highly D-efficient 
spring balance weighing designs”, with consideration of a new construction 
method of determining highly D-efficient spring balance weighing designs 
in classes in which D-optimal design does not exist.  
Małgorzata Graczyk, Bronisław Ceranka, “New results regarding the construction 
method of D-optimal chemical balance weighing designs”, where the study of the 
experiment in that determination of the unknown measurements of p objects in n 
weighing operations according to the model of the chemical balance weighing 
design is presented.  
Wioletta Grzenda, “Bayesian multinomial logit models for disordered categories in 
the analysis of the situation of young people in the labour market in Poland” 
focusses on the binomial logit model used  in the analysis of the situation of 
respondents in the labour market with special attention paid to inequalities in the 
labour market in Poland and the problem of saturation of this market with 
university graduates. 
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Stanisław Jaworski, “Some remarks about estimation of Polish unemployment 
rate”, where the discussion on the estimation of unemployment rate by using 
structural time series model is presented.  
Alina Jędrzejczak, Kamila Trzcińska, “Application of the Zenga Distribution to the 
analysis of household income in Poland by socio-economic group” with the results 
of the calculations confirming that the Zenga distribution is a good income 
distribution model, which can be successfully applied to income inequality analysis 
and income distribution comparisons. 
Adam Juszczak, “Application of web-scrapping in inflation measurement”, where 
both positive and negative aspects of web-scraping usage in the Consumer Price 
Index Calculation (CPI) are considered. 
Marta Małecka, “Asymptotic Properties of Duration-Based VaR Backtests” 
focusses on applying the non-standard likelihood ratio properties, especially 
a generalized geometric VaR test, with presenting its asymptotic distribution.  
Iwona Markowicz, Paweł Baran, “Divergences in intra-Community trade: the case 
of Poland”  deals with the analysis of data discrepancies in Polish trade 
in relations: Poland–EU country (bilateral relations) and Poland–EU countries 
(country–countries relationship, called an aggregate). 
Aneta Ptak-Chmielewska, “Application of multidimensional classification to 
prediction of SME”, with a comparison of the effectiveness of linear discriminant 
analysis with multidimensional discrimination, such as support vector machines. 
Elżbieta Roszko-Wójtowicz, Maria M. Grzelak, “Innovation activities and 
competitiveness of manufacturing divisions in Poland in the years 2009–2017”, 
where measuring and assessing the impact of innovative activity on the 
competitiveness of manufacturing divisions are presented using both static lagged 
panel models and dynamic panel models.  
Grażyna Trzpiot, “Seniors in cities and senior friendly cities analysis for selected 
Polish cities” focusses on the results of a study assessing selected Polish cities as 
senior-friendly cities, using the robust taxonomic approach. 
Łukasz Wawrowski, “Impact of dependent variable transformation on poverty rate 
estimates in poviats” presenting the results of the estimation of headcount ratio at 
LAU 1 level in Poland that was possible through the use of data from the EU-SILC 
and The Polish Census of Population and Housing and indirect estimation 
methods. 
Ewa Wycinka, Beata Jackowska, “Competing risks models in estimation of 
companies life time” focuses on the proposal of the use of estimators (the naive 
Kaplan-Meier estimator, the Aalen-Johansen estimator and the IPCW estimator) 
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which take into account the type of event in modelling the distribution of 
enterprise existence time.  
Łukasz Ziarko, “On the possibility of using association analysis to describe the 
behaviour of contractors in public tenders” with the presentation of the 
application of association analysis (basket analysis) described in the literature to 
identify illegal agreements concluded between the applicants for public 
procurement and  evaluation of the proposed approach. 

The XXXVIII conference on Multivariate Statistical Analysis 2019 was closed by 
the Head of the Scientific Committee, Professor Czesław Domański, who summarized 
the conference and thanked the guests for arriving and taking active participation 
in the conference. The next edition of MSA 2020 conference is planned for November 
16–18, 2020 and will be held in Łódź, Poland. 

 
 

Prepared by 
Aleksandra Baszczyńska 
Katarzyna Bolonek-Lasoń 
Department of Statistical Methods, University of  
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