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From the Editor   

A compilation of eleven articles by twenty-four authors from nine countries 
demonstrates the journal's growing variety, at least from a geographic point of view. 
Diversity is also a feature of the content of this volume, addressing a variety of 
methodological and substantive issues, ranging from estimation, statistical 
distributions and data modelling to econometric analyses and statistical characteristics 
of the national economic performance.  

This issue opens with Jiani Yin’s and Balgobin Nandram’s article A Bayesian 
Small Area Model with Dirichlet Processes on the Responses. The authors begin by 
observing that typically  survey data have responses with gaps, outliers and ties, and the 
distributions of the responses might be skewed. Usually, in small area estimation, 
predictive inference is done using a two-stage Bayesian model with normality at both 
levels (responses and area means). This is the Scott-Smith (S-S) model and it may not 
be robust against these features. Another model that can be used to provide a more 
robust structure is the two-stage Dirichlet process mixture (DPM) model, which has 
independent normal distributions on the responses, which, however does not 
accommodate gaps, outliers and ties in the survey data directly. This is the problem 
tackled in this paper using a two-stage non-parametric Bayesian model with several 
independent Dirichlet processes. This model has a Gaussian (normal) distribution on 
the area means, and is called the DPG model. Therefore, the DPM model and the DPG 
model are essentially the opposite of each other and they are both different from the S-
S model. Of the three models, the DPG model turns out to be the best one for 
accommodating the features of the survey data. For Bayesian predictive inference, we 
need to integrate two data sets, one with the responses and other with area sizes. 
The body mass index application - which is integrated with the census data - and the 
simulation study used to compare the three models (S-S, DPM, DPG) showed that the 
DPG model may be preferred.  

Mirosław Krzyśko and Łukasz Smaga in the article Measuring and Testing 
Mutual Dependence of Multivariate Functional Data consider new measures of 
mutual dependence between multiple multivariate random processes representing 
multidimensional functional data. In the case of two processes, the extension of 
functional distance correlation is used by selecting appropriate weight function in the 
weighted distance between characteristic functions of joint and marginal distributions. 
For multiple random processes, two measures are sums of squared measures for 
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pairwise dependence. The dependence measures are zero if and only if the random 
processes are mutually independent. This property is used to construct permutation 
tests for mutual independence of random processes. The finite sample properties of 
these tests are investigated in simulation studies. The use of the tests and the results of 
simulation studies are illustrated with an example based on real data.  

In the paper Detection of Outliers in Univariate Circular Data by Means of the 
Outlier Local Factor by Ali H. Abuzaid discussed is the problem of outlier detection 
in univariate circular data, which become an object of increased interest over the last 
decade. New numerical and graphical methods were developed for samples from 
different circular probability distributions. The main drawback of the existing methods 
is, however, that they are distribution-based and ignore the problem of multiple 
outliers. The local outlier factor (LOF) is a density-based method for detecting outliers 
in multivariate data and it depends on the local density of every k nearest neighbours. 
The aim of this paper is to extend the application of the LOF to the detection of possible 
outliers in circular samples, where the angles of circular data are represented in two 
Cartesian coordinates and treated as bivariate data. The performance of the LOF is 
compared against other existing numerical methods by means of a simulation based on 
the power of a test and the proportion of correct detection. The LOF performance is 
compatible with the best existing discordancy tests while outperforming other tests. 
The level of the LOF performance is directly related to the contamination and 
concentration parameters while having an inverse relationship with the sample size. 
In order to illustrate the process, the LOF and other existing discordancy tests are 
applied to detect possible outliers in two common real circular data sets.    

Rama Shanker and Kamlesh Kumar Shukla in the paper A New Quasi Sujatha 
Distribution propose  a new quasi Sujatha distribution (NQSD), of which the following 
are particular cases: the Sujatha distribution devised by Shanker (2016), the size-biased 
Lindley distribution, and the exponential distribution. Its moments and moments-
based measures are derived and discussed. Statistical properties, including the hazard 
rate and mean residual life functions, stochastic ordering, mean deviations, Bonferroni 
and Lorenz curves and stress-strength reliability are also analysed. The method of 
moments and the method of maximum likelihood estimations are discussed for 
estimating parameters of the proposed distribution. A numerical example is presented 
to test its goodness of fit, which is then compared with other one-parameter and two-
parameter lifetime distributions. 

The article Power Size-Biased Two-Parameter Akash Distribution by Khaldoon 
Alhyasat, Ibrahim Kamarulzaman, Amer Ibrahim Al-Omari and Mohd Aftar Abu 
Bakar presents the two-parameter Akash distribution generalized to size-biased two-
parameter Akash distribution (SBTPAD). A further modification to SBTPAD is 
introduced, creating the power size-biased two-parameter Akash distribution 
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(PSBTPAD). Several  statistical properties of PSBTPAD distribution are proved. These 
properties include the following: moments, coefficient of variation, coefficient of 
skewness, coefficient of kurtosis, the maximum likelihood estimation of the 
distribution parameters, and finally order statistics. Moreover, plots of the density and 
distribution functions of PSBTPAD are presented and a reliability analysis is 
considered. The Rényi entropy of PSBTPAD is proved and the application of real data 
is discussed.  

Amal S. Hassan, Salwa M. Assar, Ahmed M. Abdelghaffar in the article Statistical 
Properties and Estimation of Power-Transmuted Inverse Rayleigh Distribution 
constructed a three-parameter continuous distribution using a power transformation 
related to the Transmuted Inverse Rayleigh (TIR) distribution. A comprehensive 
account of the statistical properties is provided, including the following: the quantile 
function, moments, incomplete moments, mean residual life function and Rényi 
entropy. Three classical procedures for estimating population parameters are analysed. 
A simulation study is provided to compare the performance of different estimates. 
Finally, a real data application is used to illustrate the usefulness of the recommended 
distribution in modelling real data. 

In the article Generalised Odd Frechet Family of Distributions: Properties and 
Applications by Shahdie Marganpoor, Vahid Ranjbar, Morad Alizadeh, and Kamel 
Abdollahnezhad a new distribution called Generalized Odd Fréchet (GOF) 
distribution is presented and its properties explored. Some structural properties of the 
proposed distribution, including the shapes of the hazard rate function, moments, 
conditional moments, moment generating function, skewness, and kurtosis are 
presented. Mean deviations, Lorenz and Bonferroni curves, Rényi entropy, and the 
distribution of order statistics are given. The maximum likelihood estimation technique 
is used to estimate the model parameters. Finally, applications of the model to a real 
data set is presented to illustrate the usefulness of the proposed distribution. 

Oleksandr H. Osaulenko, Taisiia Bondaruk, and Liudmyla Momotiuk in the 
paper Ukraine’s State Regulation of the Economic Development of Territories in the 
Context of Budgetary Decentralisation are discussing the theoretical and 
methodological foundations of Ukraine’s state legislation regulating the economic 
development of territories in the context of budget decentralization. They also describe 
the transformation of the public administration system necessitated by the above-
mentioned phenomenon. The authors reflect also on  the basic methods by which the 
state can regulate the activity of local self-government bodies: the legislative regulation 
and the administrative regulation, which provides rules and instructions that determine 
the relations between central and local authorities. They conduct a systematic analysis 
of state regulations which support the local self-governments’ activity focusing 
especially on those problems that have not been solved yet during the ongoing reform. 
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Also, statistical estimations of the phenomena relating to the process of producing state 
legislation regulating the economic development of territories in the context of 
budgetary decentralization are provided.   

Marta Marszałek’s paper The Unobserved Economy − Invisible Production 
in Households. The Household Production Satellite Account and the National Time 
Transfer Accounts starts with  observation that not only monetary value or economic 
products create welfare, but non-monetary components should also be included in the 
System of National Accounts. Although household production is registered in official 
statistics, the main part of it (nearly 75-80 percent) of the total home production 
remains beyond GDP. The Household Production Satellite Account (HHSA) is 
a macroeconomic analysis covering both market and non-market home production. 
The National Time Transfer Accounts (NTTA) is, next to HHSA, an analysis aimed to 
register and observe the directions of transfers and to present the recipients and givers 
of home production. Regular estimations provided by the HHSA and NTTA may prove 
to be a valuable supporting tool to national accounts, pension systems, or social policy 
as they provide a great deal of macroeconomic information regarding households, their 
economic and living conditions and well-being. 

In the paper by Bilal Ahmed Para and Tariq Rashid Jan, Poisson Weighted Ishita 
Distribution: A Model for the Analysis of Over-Dispersed Medical Count Data a new 
over-dispersed discrete probability model is introduced by compounding the Poisson 
distribution with the weighted Ishita distribution. The statistical properties of the newly 
introduced distribution have been derived and discussed. Parameter estimation has 
been done with the application of the maximum likelihood method of estimation, 
followed by the Monte Carlo simulation procedure to examine the suitability of the ML 
estimators. In order to verify the applicability of the proposed distribution, a real-life 
set of data from the medical field has been analysed for modelling a count data set 
representing epileptic seizure counts.  

The section Research Communicate contains just one paper by Sebastian Wójcik, 
entitled Through a Random Route to the Goal: Theoretical Background and 
Application of the Method in Tourism Surveying in Poland. This paper is motivated 
by the shortcomings of traditional methods of surveying small or rare population and 
the lack of mathematical foundation of some recently available approaches. The author 
proposes estimators of parameters related to Random Route Sampling (RRS), along 
with their basic properties. A formula for the Horvitz-Thompson estimator weights is 
given and a case of a tourism-related survey conducted in Poland is discussed. 

 
 
Włodzimierz Okrasa 
Editor  
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A Bayesian Small Area Model with Dirichlet Processes
on the Responses

Jiani Yin1, Balgobin Nandram2

ABSTRACT

Typically survey data have responses with gaps, outliers and ties, and the distributions of the

responses might be skewed. Usually, in small area estimation, predictive inference is done

using a two-stage Bayesian model with normality at both levels (responses and area means).

This is the Scott-Smith (S-S) model and it may not be robust against these features. Another

model that can be used to provide a more robust structure is the two-stage Dirichlet process

mixture (DPM) model, which has independent normal distributions on the responses and

a single Dirichlet process on the area means. However, this model does not accommodate

gaps, outliers and ties in the survey data directly. Because this DPM model has a normal dis-

tribution on the responses, it is unlikely to be realized in practice, and this is the problem we

tackle in this paper. Therefore, we propose a two-stage non-parametric Bayesian model with

several independent Dirichlet processes at the first stage that represents the data, thereby

accommodating some of the difficulties with survey data and permitting a more robust pre-

dictive inference. This model has a Gaussian (normal) distribution on the area means, and

so we call it the DPG model. Therefore, the DPM model and the DPG model are essentially

the opposite of each other and they are both different from the S-S model. Among the three

models, the DPG model gives us the best head-start to accommodate the features of the sur-

vey data. For Bayesian predictive inference, we need to integrate two data sets, one with the

responses and other with area sizes. An application on body mass index, which is integrated

with census data, and a simulation study are used to compare the three models (S-S, DPM,

DPG); we show that the DPG model might be preferred.

Key words: Bayesian computation, bootstrap, predictive inference, robust modeling, com-

putational and model diagnostics, survey data.

1. Introduction

There are many methods in the current statistical literature for making inferences based

on samples selected from a finite population. The most widely used approach is design-

based inference, which is nonparametric but requires large sample sizes. Model-based in-

ference for survey sampling has been proposed as an alternative to the design-based theory,

and this is particularly useful for small area estimation (Rao and Molina 2015) when there

are sparse data from many areas. We consider the simplest version of a small area model,

and we show how to robustify it to fit survey responses with gaps, outliers and ties.

1Takeda Pharmaceuticals. USA. E-mail: jianiyin@gmail.com. ORCID: https://orcid.org/0000-0002-5007-

2833.
2Worcester Polytechnic Institute. USA. E-mail: balnan@wpi.edu. ORCID: https://orcid.org/0000-0002-3204-

0301.
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Figure 1: Dot plots of body mass index (BMI) for thirty-five areas (counties)

Generally, in a unit-level model, the responses from each area might have a distribution

with a mean and a variance. The variance is usually taken constant over areas, but the mean

varies over the areas. Sometimes each mean is written as global constant plus a random

effect, different over areas. The area random effects or means share a common distribution

allowing a borrowing of strength adaptively across areas (sample sizes are generally differ-

ent). Complete pooling is generally a bad idea, because there is usually heterogeneity across

areas. A degree of heterogeneity can be accommodated using covariates, but while useful

covariates are particularly important in any analysis, this is not enough because there will
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still be heterogeneity across areas. So there is a need to model area means, for example,

to provide a small area model. Here, we consider continuous responses from a number of

small areas using a unit-level model.

Our application is on body mass index (BMI), a continuous variable used to measure

lifestyle. (Because of how survey data are collected, the BMI data can be discrete and

there will be gaps, outliers and ties.) We use data from the 35 largest counties (areas) with

at least 500,000 people from the third National Health and Nutrition Examination Survey

(NHANES III), a survey conducted during the period October 1988 through September

1994. We do not have access to data from other smaller counties. In fact, these are the

BMI data from the same 35 counties we analyzed in Nandram and Choi (2005, 2010) and

in other places too numerous to mention. However, we have used data for adults who are

older than 20 years because these data have very few nonresponse, rather than for children

younger than 19 years, because our current study is not about nonresponse. We use BMI

data where the BMI values are given up to the first decimal place. Dot plots of the data from

35 counties are shown in Figure 1. There are three things we observe in these data. First,

there are ties because several adults have the same BMI values. This is clear because an

adult BMI value is some value from about 18.0 kgm−2 to about 40.0 kgm−2 (one decimal

place). Second, there are gaps (i.e. no BMI values between two adjacent values) and this is

especially true in the right extreme areas of the dot plots. Third, there are outliers, which

occur mostly in the right tails of the dot plots, thereby showing some right skewness with

outliers. Therefore, it is clear that these BMI values do not follow normal distributions; a

kernel density estimator will hide these features in the data. The data have natural gaps (e.g.

there are no values in between 20.1 and 20.2) and ties (e.g. several values at say 20.1); these

will exist in the population as well. This is why we model the gaps, outliers and ties in these

data. We note that there are some demographic variables such as age, race and sex, which

we do not study here, but we discuss in the concluding section how to incorporate covariates

into our models.

Our goal is to predict the finite population mean, 85th (overweight) and 95th (obese)

finite population percentiles of BMI for all eligible adults from each county. The sample

from each area is at least about 100; we have a small area problem because these sample

sizes are about a 0.01% of the population. Our problem is how to take care of the gaps,

outliers and ties in the BMI data. To this end, we use two-stage Bayesian models with

one model having a component that addresses directly these non-standard features in the

responses. To do Bayesian predictive inference for the finite population quantities, we also

need a data set with the population sizes of the areas (counties). To achieve this end, we

integrate the NHANES BMI data with the population counts from the US 1990 Census.

Let yi j denote the value for the jth unit within the ith area, i = 1, . . . , �, j = 1, . . . ,Ni.

Throughout, we assume that yi j, i = 1, . . . , �, j = 1, . . . ,ni, are the samples from ith area

and are observed, and yi j, j = ni + 1, . . . ,Ni are not observed. Inference is required for the

finite population mean or a finite population percentile. For example, the finite population

mean of the ith area is Ȳi = ∑Ni
j=1 yi j/Ni, i = 1, . . . , �. We use Bayesian predictive inference

that requires specification of parametric distributions. Moreover, to help protect against

posterior impropriety, we use non-informative (vague) independent priors, which are proper,

for all hyper-parameters. Specifically, we have used Cauchy priors for location parameters
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(e.g. Gelman, Jakulin, Pittau and Su 2008) and shrinkage priors for non-negative parameters

(e.g. Nandram and Yin 2016 a, b and the references therein).

Scott and Smith (1969) introduced the basic two-stage model for cluster sampling, but

the same model has been used for small areas. The difference is that in small area estima-

tion, we are interested in inference about the population of each small area, but in cluster

sampling, we are interested in all sub-populations combined into a single one. Nandram,

Toto and Choi (2011) has given a Bayesian analysis of this model. However, the use of mod-

els raises the question of the robustness of the inference to possible model mis-specification.

Again, in particular, survey data tend to have gaps, outliers and ties and we need to rem-

edy this defect. A generalization to include covariates is the model of Battese, Harter and

Fuller (1988) in non-Bayesian survey sampling; for a full Bayesian formulation, see Toto

and Nandram (2010) and Molina, Nandram and Rao (2014); but this is not our key issue

here.

The Bayesian Scott-Smith (S-S) model, as formulated by Nandram, Toto and Choi

(2011), is

yi j|μi,σ2 ind∼ N
(
μi,σ2

)
, j = 1, . . . ,Ni, (1)

μi | θ ,σ2,ρ ind∼ N
(

θ ,
ρ

1−ρ
σ2

)
, i = 1, . . . , �, (2)

π(θ ,σ2,ρ) =
1

π(1+θ 2)

1

(1+σ2)2
, (3)

where −∞ < θ < ∞, σ2 > 0, 0≤ ρ ≤ 1. Here, ρ is the intra-cluster correlation. It is

worth noting that we have taken ρ ∼Uniform(0,1), θ to have a standard Cauchy distribution

and σ2 to have a shrinkage distribution (i.e. f (2,2) distribution), all independent. Here, we

have used vague proper priors on all parameters.

Suppose we have written μi | θ ,δ 2 ind∼ Normal(θ ,δ 2) and define ρ = δ 2/(δ 2 + σ2),

then we will get δ 2 = ρ
1−ρ σ2. Clearly, 0 ≤ ρ ≤ 1 and this makes one variance component

bounded instead of two unbounded ones, σ2 and δ 2. This simplifies the computations by

permitting a random sampler, which requires no monitoring, rather than a Gibbs sampler,

which requires monitoring; see Appendix A.

Another standard model that relaxes some parametric assumptions is the Dirichlet pro-

cess mixture (DPM) model,

yi j|μi,σ2 ind∼ Normal(μi,σ2), j = 1, . . . ,Ni, (4)

μi|G ∼ G, i = 1, . . . , �,

G | θ ,σ2,γ,ρ ∼ DP

{
γ,Normal(θ ,

ρ
1−ρ

σ2)

}
, (5)

π(θ ,σ2,γ,ρ) =
1

π(1+θ 2)

1

(1+σ2)2
1

(1+ γ)2
, (6)

where −∞ < θ < ∞, σ2 > 0,γ > 0, 0 ≤ ρ ≤ 1, and γ is called the concentration

parameter; see Ferguson (1973) for a definition of the Dirichlet process (DP) and Lo (1984),

who extended the DP to DPM. Here, in this formulation the S-S model is a baseline model;
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the DPMmodel is centred on the S-S model and γ controls how close DPMmodel gets to the

S-S model. Here, G is a random distribution function, discrete with probability one, and had

distribution DP(·, ·). Escobar and West (1995) proposed a simple (not necessarily efficient)

algorithm by integrating out the random distribution function in the model. Kalli, Griffin

and Walker (2011) suggested slice-efficient samplers, an improved slice sampling scheme

that we use in our work, and it is based on the stick-breaking construction of Sethuraman

(1994); see Appendix B. Nandram and Choi (2004) and Polettini (2017) have applications

on small area estimation, but they did not use the slice-efficient sampler of Kalli, Griffin and

Walker (2011).

However, this DPM model does not address our main concern. It does not model the

responses non-parametrically to take care of gaps, outliers and ties in the survey data in

general, not just BMI data. It models ties among the μi, thereby clustering the μi. Indeed,

this is the strength of the Dirichlet process prior. In reality, we want to do the opposite. That

is, we want to have independent Dirichlet processes on the responses and possibly a normal

distribution on the random effects. This is the key issue we address in this paper, and we

will call this model the DPG model (G refers to the normal assumption on the μi). However,

the DPM model gives a good sense of how to proceed to meet our requirement.

The plan of the rest of the paper is as follows. In Section 2, we discuss the DPG model

with independent Dirichlet processes on the responses. In Section 2.1, we discuss the

methodology and inferences. In Section 2.2, we discuss the prediction for a finite popu-

lation quantity using a data integration. In Section 3, we compare the three models (S-S,

DPM, DPG). Specifically, in Section 3.1, we discuss an illustrative example on the body

mass index (BMI) data and in Section 3.2 a small simulation study. In Section 4, we present

our conclusion and two important extensions.

2. DPG Model, Computations and Prediction

In this section, we describe the DPG model that has independent Dirichlet processes on

the responses and a normal distribution on the area means. This robustifies the S-S model in

the opposite direction to the DPM, our novel contribution. In Section 2.1, we describe the

DPG model, in Section 2.2, we describe how to draw samples from it, and in Section 2.3,

we show how to do the prediction.

2.1. DPG Model

Using DPs in the first level and a parametric distribution as prior gives us,

yi j|Gi
ind∼ Gi, j = 1, . . . ,Ni, (7)

Gi|μi,αi,σ2 ind∼ DP{αi,Normal(μi,σ2)}, i = 1, . . . , �,

μi|ρi.e.θ ,σ2,ρ iid∼ Normal(θ ,
ρ

1−ρ
σ2).
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A full Bayesian model can be obtained by adding prior distributions. We use proper non-

informative priors,

π(αi) =
1

(αi +1)2
, αi > 0, i = 1, . . . , �, (8)

π(θ ,σ2,ρ) =
1

π(1+θ 2)

1

(1+σ2)2
,

−∞ < θ < ∞,0< σ2 < ∞,0≤ ρ ≤ 1, (9)

with independence. Here, (7), (8) and (9) define the DPGmodel. Note that the concentration

parameters αi are not included in the S-S model or the DPM model. It is not sensible to

assume that the αi are identically distributed, because they can be very different.

We give a brief comparison of the three models and how they are related. The S-S

model is a special case of the DPG model and the DPM model, and both are centred on the

S-S model. This occurs when the αi are large for the DPG model and when γ is large for

the DPM model. The DPM model is actually the opposite of the DPG model with normal

distribution for the data in each area and a DP prior on the area means. In the DPG model,

each area has a distinct DP (i.e. � DPs with different μi and αi) and there is pooling across

areas because the μi share an effect and σ2 is common.

We look at the sampling process for the DPG model. When we integrate out the random

probability measure (Blackwell and MacQueen, 1973), we get

f (y
˜

i | μi,σ2,αi) =
1

σ
φ(

yi1−μi

σ
)

×
ni

∏
k=2

{
k−1

αi + k−1

∑k−1
j=1 δyi j(yik)

k−1
+

αi

αi + k−1

1

σ
φ(

yik−μi

σ
)

}
, (10)

where δa(y) means that y is a point mass at a and φ(.) is the standard normal density.

Therefore, in each area we are mixing the distributions in (10) using normal mixing dis-

tributions in the DPG model. The DPM is different being a Dirichlet process mixture of

normals. The DPM model actually produces ties among the random effects (clustering),

its major strength, but it does not model gaps, outliers, ties and possibly skewness among

the responses. By putting DPs on the responses in different areas, we are actually taking

a head-start on the data, because they accommodate the gaps, ties and outliers in the data;

see Figure 1. It is important to note that δyi j(yik) is a statement that for each i, yik is a point

mass at yi j, j = 1, . . . ,k−1. That is, for the ith area, yik can be the same as yi j with nonzero

probability and this is crucial in our new model. Therefore, equation (10) is the key to how

we attempt to accommodate gaps, outliers and ties, particularly ties, in the data. The DPG

model is attractive even if there are a few ties (or no ties at all) because the data may have

heavy tails where the normal distribution is not appropriate (true for the BMI data).
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2.2. Computations

Letting ψ
˜
= {μ

˜
,θ ,σ2,ρ} and α

˜
= {α1, . . . ,α�}, it is easy to get a sample from the joint

posterior density of (ψ
˜
,α
˜
), and therefore inference under the DPG model can be easily

performed.

The posterior densities of the αi are independent of the other parameters ψ
˜
in the model,

conditioning on only the distinct values. Let ki denote the number of distinct values for

each area in the observed data, k
˜
= {ki, i = 1, . . . , �} be the vector of ki, y∗i1, . . . ,y

∗
iki

be the

ki distinct sample values for each i and y
˜

∗ = {y∗i1, . . . ,y∗iki
, i = 1, . . . , �} be the vector of y∗i j.

Thus, the joint posterior density is

π(α
˜
,ψ
˜
| k
˜
,y
˜

∗) =

[
�

∏
i=1

π(αi | ki)

]
π(ψ

˜
| y
˜

∗), (11)

where π(αi|ki) ∝ π(ki | αi)π(αi). For the parameters ψ
˜
, we have

y∗i j|μi
ind∼ N

(
μi,σ2

)
, i = 1, . . . , �, j = 1, . . . ,ki, (12)

μi
iid∼ N

(
θ ,

ρ
1−ρ

σ2

)
,

π(θ ,σ2,ρ) =
1

π(1+θ 2)

1

(1+σ2)2
,−∞ < θ < ∞,0< σ2 < ∞,0≤ ρ ≤ 1.

Therefore, the algorithm for the DPG model is

Step 1 : For each i, i = 1, . . . , �, draw αi from π(αi|ki) ∝ αki Γ(αi)
Γ(αi+ni)

1
(αi+1)2

; see Antoniak

(1974).

Step 2: Draw ψ
˜
from the parametric model (12), which is easy to fit; see Appendix A for

the S-S model.

Step 1 is easily realized using the grid method (Nandam and Yin 2016 a,b). Step 2 is

accomplished using a random sampler together with the sampling importance resampling

(SIR) algorithm. Therefore, samples can be drawn from the DPG model using a random

sampler rather than a Gibbs sampler (as in the DPM, Markov chain samplers need monitor-

ing).

2.3. Prediction for the Finite Population

We have a simple random sample of size ni from a finite population of size Ni, i =
1, . . . , �. Let yi1, . . . ,yini denote the sampled values. We want to predict yini+1, . . . ,yiNi , the

nonsampled values, and obtain the predictive distribution and the prediction interval for any

finite population quantity (e.g. Ȳi for the ith area). Prediction under the S-S model and the

DPM model is straightforward.

For the DPG model, the sampling process is

yi j|Gi
ind∼ Gi, i = 1, . . . , �, j = 1, . . . ,Ni,

Gi|μi
ind∼ DP{αi,G0(μi)}.
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Predictive inference for the DPG model simply uses the generalized Polya urn scheme

(Blackwell and MacQueen 1973) for each i, since all areas are independent (see Nandram

and Yin 2016 a,b). Once the nonsampled yi j, j = ni+1, . . . ,Ni, i= 1, . . . , �, are obtained, one

can now calculate any finite population quantity of interest. Here, we are interested in the

finite population mean, the 85th percentile (overweight individuals) and the 95th percentile

(obese individuals). The Ni are assumed known, and they can be obtained from a census.

Binder (1982), a very nice paper, frustrated with the bootstrap method (discussed later)

that does not produce values different from the sample values, introduced the Dirichlet

process into finite population sampling. We note that when prediction is done using any

of the three models, including the DPG model, new values different from the samples will

be generated. For the S-S model and the DPM model, this will happen with probability

one, but for the DPG model with just a positive probability. For the DPG model, because

the nonsample values are generated from the generalized Polya urn scheme, values already

sampled can be repeated. However, for the DPG model, as the prediction proceeds in an

order for a long run (population sizes are large here), the αi will be dominated, thereby

making the process draw more and more values that have already been drawn as in “the rich

gets richer scheme”.

Letting fi =
ni
Ni
, i= 1, . . . , �, denote the sample fractions, the finite population mean is the

composite, Ȳi = fiȳi,s +(1− fi)Ȳi,ns, where ȳi,s =
1
ni

∑ni
j=1 yi j, the mean of the sample values,

and Ȳi,ns =
1

Ni−ni
∑Ni

j=ni+1 yi j, the mean of the non-sample values. To obtain the percentiles,

one simply sorts all the data (sample values and predicted non-sample values) in increasing

order. Then, for the 85th percentile, pick the value at .85Ni (nearest integer) position, and

for the 95th percentile, pick the value at .95Ni (nearest integer) position.

It is worth noting that it is easy to estimate the finite population mean; it is more difficult

to estimate the two percentiles because they are in the right tail of the posterior distributions.

It is interesting that in finite population mean, the sample mean, ȳi,s, is constant a posteriori

but ȳi,ns is dynamic (i.e. changes with the iterations). However, when the finite population

percentiles are estimated, all the sample values and the predicted values are ordered at each

iteration (i.e. the actual positions of the sample values in the ordering will change). There-

fore, computation of the finite population percentiles at each iteration takes more time than

the finite population mean.

3. Empirical Studies

In this section, we compare the three models (S-S model, DPMmodel and DPG model).

Specifically, in Section 3.1, we describe an application on body mass index (BMI) data, and

in Section 3.2, we present a small simulation study.

3.1. Application to Body Mass Index Data

As described in the introduction, we use the example on BMI data for illustration. Since

the predictive inference for the overweight and obese population is very important, the heavy

tail of the distribution cannot be ignored. Thus, we cannot automatically use the S-S model
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nor the DPMmodel to accommodate the gaps, outliers and ties in the BMI data; see Figure 1.

A more robust assumption on the responses, such as the DPGmodel, needs to be considered.

For the DPM, we ran 10,000 MCMC iterations, used 5,000 as a “burn in” and thinned

every 5th to obtain 1,000 converged posterior samples. We have monitored the parameters,

σ2, θ , δ 2 and γ , for the DPM model. The Geweke test of stationarity gives p-values of

.483, .414, .459, 0.620 respectively; therefore the iterates pass the test of stationarity. The

effective sample sizes are 1000, 1000, 698, 1084 respectively, thereby showing that the iter-

ates form an efficient sample. Numerical summaries such as trace plots and auto-correlation

plots (not shown) indicate that the MCMC chains converge and mix well, and a ‘random

sample’ is obtained from the joint posterior density. To get samples from the S-S model and

the DPG model, we do not need a Gibbs sampler; a random sampler suffices and monitoring

of a Gibbs sampler is not needed.

As a comparison, we also use the Bayesian bootstrap to do prediction in each county

individually without borrowing across counties. This will allow us to see how much im-

provement we can have over direct estimation. Note that for each area (county), all sample

sizes are over 100. Here, we describe the Bayesian bootstrap (see Rubin 1981 for more

details). Momentarily we consider a single subscript (drop subscript i), so that we have

y1, . . . ,yn (sample values) from an area and we need to predict yn+1, . . . ,yN (nonsample val-

ues), where N is the population size of this area. First, we find the distinct values among

y1, . . . ,yn and we assume that there are d distinct values, denoted by y∗1, . . . ,y
∗
d . Let n j denote

the number of times the jth value occurs in the sample. In the bootstrap it is assumed that

only y∗1, . . . ,y
∗
d can occur, and let Nj denote the number of times the jth distinct value occurs

in the population; the Nj are unknown. The Bayesian bootstrap has the following model,

n
˜
| p
˜
∼Multinomial(n, p

˜
), p

˜
∼ Dirichlet(0

˜
),

where the improper Haldane’s prior is used. Then, the posterior density of p
˜
is

p
˜
| n
˜
∼ Dirichlet(n

˜
),

which is proper. The Bayesian bootstrap has the following steps,

1. Sample p
˜
| n
˜
∼ Dirichlet(n

˜
);

2. Sample (N1−n1, . . . ,Nd−nd) | p
˜
,n
˜
∼Multinomial(N−n, p

˜
);

3. Repeat (1) and (2) a large number of times.

We have repeated the bootstrap procedure 1000 times. At each repetition, for the nonsam-

ples, y∗j occurs Nj − n j times, j = 1, . . . ,d; so we have got the entire population with y∗j
occurring Nj times with 1000 repetitions. It is worth noting that the Bayesian bootstrap is

different from the DPG model (one-level DP model) when it is applied to an individual area

because while the Bayesian bootstrap cannot produce new values, the DPG model can do

so.

The 85th and 95th percentiles are also important and the methodology is essentially the

same. We perform the predictive inference of the population mean, 85th and 95th percentiles
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for each area using the three models (S-S, DPM, DPG). We have compared the DPG model

to the S-S model, the DPM model and Bayesian bootstrap. We have computed summary

statistics, posterior mean (PM), posterior standard deviation (PSD), and coefficient of vari-

ation (CV = 100× PSD/PM), as a measure of reliability.

We have looked at the five-number summaries (Min, Q1, Med, Q3, Max) of the shrink-

age coefficients over the areas; for example, see Appendix A. For the S-S model and the

DPM model, these are virtually the same (.48, .55, .58, .60, .84) but there is only a small

difference from the DPG model, which has (.52, .59, .62, .64, .87). These numbers indi-

cate that there is comparable and moderate pooling for all three models.

In Table 1, as a further measure of shrinkage, we have presented five-number summaries

over the areas of PB = (PM−B)/B, where B is the posterior mean from the Bayesian boot-

strap method; recall that the bootstrap is a method to obtain the finite population quantities

for each area separately (no pooling). We observe that for the finite population mean, the

five-number summaries are virtually the same with 50% negative PBs and 50% positive

PBs. The three models are almost the same for the finite population 85th percentile; Min

is negative for all three models but they are different. They differ for the finite population

95th percentile; virtually all the PBs are positive under the DPG model, but 25% are positive

under the S-S and DPM models. Therefore, there is some evidence that the DPG model is

more responsive to the gaps, outliers and ties in the BMI data. The assumption of indepen-

dent normal responses in the S-S and DPM models is overly restrictive, especially when we

get out into the tails of the BMI data.

Table 1: Five-number summaries of PB = (PM−B)/B of the finite population mean, 85th

percentile and 95th percentile for BMI data by three models (S-S, DPM, DPG)

Mean 85th Percentile 95th Percentile

Model Min Q1 Med Q3 Max Min Q1 Med Q3 Max Min Q1 Med Q3 Max

S-S -0.02 -0.01 0.00 0.01 0.02 -0.05 0.00 0.01 0.02 0.05 -0.11 -0.04 -0.01 0.00 0.04

DPM -0.02 -0.01 0.00 0.01 0.02 -0.05 0.00 0.01 0.03 0.05 -0.11 -0.04 -0.01 0.00 0.04

DPG -0.02 -0.01 0.00 0.01 0.02 -0.02 0.01 0.02 0.03 0.05 -0.05 0.00 0.01 0.02 0.04

NOTE: Min=Minimum; Q1= 1st quartile; Med=median; Q3=3rd quartile; Max=

Maximum.

In Table 2, as a measure of reliability, we present the five-number summaries of the

coefficient of variation (CV = 100×PSD/PM) over the areas. Overall these are very good

for all finite population quantities and models (including the bootstrap) although under the

bootstrap these CVs should be a bit bigger because the bootstrap generally underestimates

variability. For the finite population mean, the CVs from the three models are mostly similar

and those under the S-S, DPM and DPG models are mostly smaller than the bootstrap. For

the finite population 85th percentile and the finite population 95th percentile, the S-S model

and DPM model are similar, but their CVs are mostly to the left of those of the bootstrap.

However, the five-number summaries of DPG model for estimating the finite population

95th percentile are to the right of those of the S-S and DPM models, but still to the left of

the bootstrap. Nevertheless, all three models appear to show good reliability.
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Table 2: Five-number summaries of coefficient of variation (CV = 100×PSD/PM), of the

finite population mean, 85th percentile and 95th percentile for BMI data by three models

(S-S, DPM , DPG) and Bayesian bootstrap (Boot)

Mean 85th Percentile 95th Percentile

Model Min Q1 Med Q3 Max Min Q1 Med Q3 Max Min Q1 Med Q3 Max

S-S 0.62 1.20 1.26 1.37 1.57 0.59 1.11 1.19 1.25 1.48 0.60 1.12 1.18 1.27 1.46

DPM 0.66 1.28 1.36 1.45 1.60 0.60 1.20 1.29 1.32 1.52 0.63 1.21 1.25 1.30 1.53

DPG 0.61 1.18 1.23 1.30 1.55 1.13 1.60 1.84 2.24 2.65 1.85 2.19 2.44 2.54 3.97

Boot 0.61 1.34 1.49 1.62 1.97 1.19 2.04 2.67 3.04 4.49 2.17 2.99 3.58 4.10 7.39

NOTE: Min=Minimum; Q1= 1st quartile; Med=median; Q3=3rd quartile; Max=

Maximum, Boot=Bootsrap.

We have looked at plots (not shown) of the posterior densities of the finite population

mean, 85th and 95th percentiles for the three models (S-S, DPM and DPG) and Bayesian

bootstrap for the 35 areas of BMI data. For the population mean, most parts of the density

under the S-S, DPM and DPG models are similar, the DPG model has slightly smaller

variation. Plots of the estimated densities of the population 85th and 95th percentiles under

the DPG model are not smooth and the estimated densities of the population 85th and 95th

percentiles under the S-S and DPM models are similar. Because the BMI data have some

gaps, ties and outliers in the right tails, the estimations given by parametric models may be

incorrect. Thus, based on a belief that the parametric model is too restrictive, we prefer the

analysis based on the nonparametric DPG model.

Finally, we compare predictive inference of the finite population mean, 85th and 95th

percentile for each area by the three models (S-S, DPM and DPG). We use three plots (not

shown), which contain posterior means with credible bands versus direct estimates for BMI

data. The posterior means are very similar under the S-S, DPM and DPG models and the

predictive inferences of the population percentile are similar under the S-S and DPM mod-

els. For the finite population mean, the points (plot not shown) are all roughly on a straight

line crossing the 45-degree straight line with slightly smaller slope, as it is should be. For

the 85th percentile, the points (plot not shown) are a little bit more spread out. However, as

expected, the DPG model tends to have higher predictions (closer to the 45-degree straight

line) of the population percentiles with similar credible bands when it is compared to the

other two models. We suspect that S-S and DPM model might underestimate the 85th and

95th population percentiles when the data are right skewed. Without the restrictive para-

metric assumptions, the DPG model tends to provide less biased estimation with similar

variation comparing to the other candidate models, thereby showing a distinct advantage of

the DPG model; see Figure 2 for the finite population 95th percentile. We investigate this

issue in a small simulation study.
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Figure 2: Comparison for body mass index (BMI) data (posterior means with credible bands

versus direct estimates): the predictive inference of the finite population 95th percentile for

each county under the three models (S-S, DPM, DPG)

3.2. Simulation Study

We conduct a small simulation study. We choose � = 50 and the sample sizes, ni, for

50 areas. The sample sizes are 35 for each of the first 10 areas, 50 for each of the second

10 areas, 100 for each of the third 10 areas, 200 for each of the fourth 10 areas and 500 for

each of the last 10 areas. Then, the population sizes are selected as Ni = 100ni, i = 1, . . . , �.

These are comparable to the BMI data. For convenience, we have taken θ = 0.0, σ2 = 0.01,

δ 2 = 0.04, thereby making ρ = 0.8. For the concentration parameters of the Dirichlet

processes, we have selected γ = 0.5, and αi
ind∼ 0.5+Beta(5,5), i = 1, . . . , �. These choices

allow us to have data similar to the BMI data with some flexibility to get gaps, outliers and

ties when data are simulated from the DPG model.

We have simulated the entire finite population separately under the three models. This

is done the same way under each model separately. For example, under the S-S model,

because we have set θ , σ2 and ρ , we have generated μ1, . . . ,μ� from (2) and for the ith area,

we have generated yi j, j = 1, . . . ,Ni from (1). Therefore, we have all three finite population

quantities. Given the parameters, because the observations are independent and identically

distributed within each area, we simply take the first ni values as the sample. In the case

of the DPG model, the population values are exchangeable and so we still take the first ni

values as our sample.

When data are generated from the S-S model and the DPM model, there could be gaps

and outliers in different areas. We note, in particular, there will be no ties because two data

values cannot be the same (this happens with probability zero). Of course, the data from

distinct areas will show some differences. However, as we have explained in this paper,

when data are generated from the DPG model, there will be gaps, outliers and ties because
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the data values are generated via the Polya urn scheme. By the nature of a DP, two values

can be the same with nonzero probability; so there can be ties.

We fit the three models to the simulated data in exactly the same manner as for the

NHANES-III BMI data. When the DPM model was fit, the Geweke tests show stationar-

ity and the effective sample sizes are comparable to 1000. We have looked at plots (not

shown) of the posterior means with 95% credible bands and true population means for the

simulated S-S, DPM and DPG data under three different models (S-S, DPM and DPG mod-

els). The values are close to the true population mean. We also use absolute bias (AB)

and posterior root mean squared error (PRMSE) to compare the models. We know the

true value of the finite population quantities, denoted by T . Then, AB =| PM− T | and
PRMSE =

√
(PM−T )2+PSD2. We compute these quantities for each of the fifty coun-

ties for the finite population mean and the 85th and 95th finite population percentiles, and

respectively we average them. We present AB and PRMSE in Table 3; note that the entries

in the table must be divided by 10,000.

First, consider the finite population mean in Table 3 (a). We observe that AB is always

too large when the DPM model is fit to any of the three simulated data sets. The S-S model

and DPG model show comparable AB, much smaller than those for DPM. The PRMSEs

under the DPG model are larger than those from S-S model and the DPM model (first two

rows) by about 7% (marginal) but they are not larger than that of the DPM model when

data are generated from the S-S model (0.01272 vs. 0.01008). The DPG is almost always

better when data are generated from it; there is only a minor difference for AB under the

S-S model and the DPG model (0.0001409 vs. 0.0001484).

Second, consider the finite population 85th percentile in Table 3 (b). When data are

generated from the S-S model, the S-S model and the DPG model are comparable and

better than the DPM model. When data are generated from the DPM model, the three

models are comparable with the PRMSE under the DPG model slightly higher than the

other two models. When data are generated from the DPG model, the DPG model is a clear

winner by far.

Third, consider the finite population 95th percentile in Table 3 (c). When data are gener-

ated from the S-S model, the S-S model and the DPG model are comparable and better than

the DPM model. When data are generated from the DPM model, the three models are more

comparable. When data are generated from the DPG model, the DPG model is enormously

better than the S-S model and DPM model.

When data are generated from the DPG model, in terms of AB and PRMSE, it performs

much better than the S-S model and the DPMmodel for all three finite population quantities.

This is strong evidence that when there are gaps, outliers and ties, the DPGmodel is the best.

It is risky to use the S-S model or the DPM model for such data. The DPG model does not

have to do better for data that are generated from the S-S model or the DPM model. By

drawing a dot plot, one can see clearly which model is appropriate; data generated from the

DPG model will have gaps, outliers and ties. Therefore, it is safe to conclude that the DPG

model will perform better for data like the BMI data; see Figure 1.
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Table 3: Comparison of absolute bias (AB) and posterior root mean squared error (PRMSE)

of the finite population mean, 85th percentile and 95th percentile for each simulated data by

three models (S-S, DPM and DPG) averaged over areas

(a) Mean

S-S DPM DPG

Data AB PRMSE AB PRMSE AB PRMSE

S-S 6.172 94.21 87.32 127.2 6.536 100.8

DPM 6.169 93.82 43.27 85.44 6.32 100.70

DPG 1.409 42.88 28.95 64.55 1.484 27.64

(b) 85th Percentile

S-S DPM DPG

Data AB PRMSE AB PRMSE AB PRMSE

S-S 70.21 130.7 111.2 155.1 77.39 137.4

DPM 69.93 133.9 75.49 123.4 78.38 141.3

DPG 379.0 385.9 384.1 394.6 18.05 40.0

(c) 95th Percentile

S-S DPM DPG

Data AB PRMSE AB PRMSE AB PRMSE

S-S 120.6 182.1 150.3 203.5 133.8 188.4

DPM 104.0 168.9 114.9 166.0 118.9 176.1

DPG 550.2 556.3 555.3 563.7 35.5 101.0

NOTE: Each row gives a model that generates the data and each column gives a model that

is fit to the simulated data. The same three data sets are used in (a), (b) and (c). [The

numbers in the table must be multiplied by 10−4.]

4. Concluding Remarks and Future Work

If the parametric distribution assumption does not hold, the model is mis-specified and

the inference may be invalid. The Bayesian nonparametric methods are motivated by the de-

sire to avoid overly restrictive assumptions. We believe that our DPG model, which has in-

dependent Dirichlet processes on the responses and a normal distribution on the area means,

can accommodate survey responses with gaps, outliers and ties reasonably well.

Our illustration using the BMI data in our novel DPG model is a step forward. Our

simulation shows the advantage of the DPG model when the finite population mean and the

85th and 95th finite population percentiles are being estimated. In the illustrative example

on BMI data, it is interesting that Bayesian predictive inference can be performed using a

data integration because the area sizes are available from the 1990 census. In future, we

can adjust the DPG model to include a DP prior on the area means, rather than a normal

distribution (Nandram and Yin 2019).

For future work, we may also include covariates in the DPG model in a manner in

which Battese, Harter and Fuller (1988) actually extended the model of Scott and Smith

(1969) to include covariates. The two-stage nonparametric alternative of the DPG model
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with p covariates and an intercept, xij = (1,x′ij
(0))′, is

yi j−x′ij
(0)β (0)|Gi

ind∼ Gi, i = 1, . . . , �, j = 1, . . . ,Ni,

Gi|β0i
ind∼ DP

{
αi,Normal(β0i,σ2)

}
,

β0i | θ ,σ2,ρ ind∼ Normal(θ ,
ρ

1−ρ
σ2),

π(αi) =
1

(αi +1)2
, αi > 0, i = 1, . . . , �,

π(β (0),θ ,σ2,ρ) ∝
1

1+θ 2

1

(1+σ2)2
,

−∞ < θ ,β (0)
s < ∞,s = 1, . . . , p,0< σ2 < ∞,0≤ ρ ≤ 1, where ρ is the intra-cluster correla-

tion, xij
(0) and β (0) denote xij and β without the intercepts. Note also that a priori the αi are

independent and there is a flat prior on β (0). This is how we can incorporate demographic

variables (age, race and sex) for the BMI data from NHANES III.

In many complex surveys, there are also survey weights; this is also true for NHANES

III. We may include the survey weights in the model using a normalized composite like-

lihood. However, if the survey weights for the nonsampled values are unknown, it is not

obvious how to perform predictive inference under the model. One solution may be to use

surrogate sampling (Nandram 2007).
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APPENDICES

A: Fitting the S-S Model

Let y
˜
= (y

˜
s,y
˜

ns), where y
˜

s = {yi j, i = 1, . . . , �, j = 1, . . . ,ni} is the vector of observed values

and y
˜

ns = {yi j, i = 1, . . . , �, j = ni + 1, . . . ,Ni} vector of unobserved values. First, define

the sample means and sample variances, ȳi =
1
ni

∑ni
j=1 yi j and s2i =

1
ni−1 ∑ni

j=1(yi j− ȳi)
2,ni >

1, i = 1, . . . , �. Second, let λi =
ni

ni+(1−ρ)/ρ , i = 1, . . . , �, ỹ = ∑�
i=1 λiȳi/∑�

i=1 λi, and A1 =
1−ρ

ρ ∑�
i=1 λi(ỹ− ȳi)

2+∑�
i=1(ni−1)s2i . Here, the λi are shrinkage coefficients.

Then, using Bayes’ theorem, the joint posterior density of μ
˜
,θ ,σ2,ρ is

π(μ
˜
,θ ,σ2,ρ|y

˜
s) ∝

(
1

σ2

)(n+�)/2(
1−ρ

ρ

)�/2

exp

{
− 1

2σ2

{ �

∑
i=1

{
(ni−1)s2i

+

(
ni +

1−ρ
ρ

)
(μi− [λiȳi +(1−λi)θ ])2

+ λi

(
1−ρ

ρ

)
(ȳi−θ)2

}}}
× 1

(1+σ2)2
× 1

π(1+θ 2)
. (A.1)

We use a simple method called the sampling importance resampling (SIR) algorithm to draw

from the posterior distribution π(μ
˜
,θ ,σ2,ρ|y

˜
s) in (A.1). That is, we take a sample of draws

from a proposal density πa(μ
˜
,θ ,σ2,ρ|y

˜
s), then use these draws to produce a sample from

π(μ
˜
,θ ,σ2,ρ|y

˜
s). As a well-known result, one would need π(μ

˜
,θ ,σ2,ρ|y

˜
s)/πa(μ

˜
,θ ,σ2,ρ|y

˜
s)

to be uniformly bounded in its parameters. A reasonable approximation to the joint poste-

rior density (A.1) and one from which it is easy to draw samples will suffice. We use the

same likelihoods (1) and (2) in the two-level normal model together with an improper prior

π(θ ,σ2,ρ) ∝ 1
σ2 ,−∞ < θ < ∞,0< σ2 < ∞,0≤ ρ ≤ 1 as a Bayesian model from which we

use the posterior density as a proposal density,

πa(μ
˜
,θ ,σ2,ρ|y

˜
s) ∝ πa(μ

˜
|θ ,σ2,ρ,y

˜
s)πa(θ |σ2,ρ,y

˜
s)πa(σ2|ρ,y

˜
s)πa(ρ|y

˜
s) (A.2)

∝
�

∏
i=1

N
[

μi;λiȳi +(1−λi)θ ,(1−λi)
ρ

1−ρ
σ2

]

× N
(

θ ; ỹ,
σ2ρ

∑�
i=1 λi(1−ρ)

)
× IG

[
σ2;(n−1)/2,A1/2

]

× Γ[(n−1)/2]

(A1/2)(n−1)/2

�

∏
i=1

(1−λi)
1/2

[
ρ

∑�
i=1 λi(1−ρ)

]1/2

.

Note that π(μ
˜
,θ ,σ2,ρ|y

˜
s)/πa(μ

˜
,θ ,σ2,ρ|y

˜
s) =

1
π(1+θ2)

σ2

(1+σ2)2
≤ 1

π (uniformly bounded

as required). We draw a sample from the approximate joint posterior density (A.2) by first

drawing a sample from πa(ρ|y
˜

s) using the grid method and continue using the multiplication

rule of probability. The algorithm works fine because the sub-sampling weights are nearly

uniform.
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B: Fitting the DPM Model

Kalli, Griffin and Walker (2011) suggested slice-efficient samplers, and it is based on the

stick-breaking algorithm (Sethuraman 1994). Letting G = ∑∞
s=1 πsδμ∗s , where

π1 = β1, πs = βs

s−1

∏
j=1

(1−β j), βs
iid∼ Beta(1,γ), μ∗s

iid∼ G0,

and G0 is a baseline distribution. Here, for convenience, we will use a short-hand nota-

tion for the formulas below, h(yi j;μi) = Normalyi j(μi,σ2), j = 1, . . . ,ni, i = 1, . . . , � and so

h(y
˜

i;μi)=∏ni
j=1{Normalyi j(μi,σ2)}, i= 1, . . . , �. Also, we use g(μi)=Normalμi(θ ,

ρ
1−ρ σ2),

i = 1, . . . , �.

The idea is to introduce latent variables {u1,u2, . . . ,u�}, which allows us to sample a fi-

nite number of variables at each iteration. One can introduce further latent variables,

{d1,d2, . . . ,d�} that indicate the components of the mixture from which observations are

to be taken to give a general class of slice samplers,

f (y
˜

i,ui,di|π,μ∗) = 1(ui < ξdi)πdi/ξdih(y
˜

i;μ∗di
),

where ξ1,ξ2, . . . is any positive sequence. Typically, the sequence will be deterministic de-

creasing sequence. In our computation, we use ξs = (1−κ)κs−1 where the tuning constant

κ is between 0 and 1; other choices are possible. Let K = max�i=1(Ki), where Ki is the

largest integer t such that ξt > ui.

Specifically, for our DPM model, the joint posterior distribution is proportional to

π(θ ,σ2,ρ,γ)
K

∏
s=1

Beta(βs;1,γ)g0(μ∗s )
�

∏
i=1

1(ui < ξdi)πdi/ξdih(y
˜

i;μ∗di
).

The variables {(μ∗s ,βs),s = 1,2, . . . ,K;(di,ui), i = 1, . . . , �} need to be sampled at each

iteration. The Gibbs sampler is obtained by drawing samples, each in turn, from the

conditional posterior distributions, (a) π(ui| . . .) ∝ 1(0 < ui < ξdi); (b) π(μ∗s | . . .) ∝
g0(μ∗s )∏{i|di=s} h(y

˜
i;μ∗s ); (c) π(βs| . . .) ∝ Beta(as,bs), where as = 1+∑�

i=1 1(di = s) and
bs = γ +∑�

i=1 1(di > s); (d) P(di = r| . . .) ∝ 1(r : ξr > ui)πr/ξrh(y
˜

i;μ∗r ), r = 1, . . . ,K.

The other parameters are included in the Gibbs sampler, and the grid method is used to

draw some of them (e.g. γ).



 



STATISTICS IN TRANSITION new series, September 2020
Vol. 21, No. 3, pp. 21–37, DOI 10.21307/stattrans-2020-042
Received – 17.12.2019; accepted – 11.05.2020

Measuring and Testing Mutual Dependence of Multivariate
Functional Data

Mirosław Krzyśko1, Łukasz Smaga2

ABSTRACT

This paper considers newmeasures of mutual dependence between multiple multivariate ran-

dom processes representing multidimensional functional data. In the case of two processes,

the extension of functional distance correlation is used by selecting appropriate weight func-

tion in the weighted distance between characteristic functions of joint and marginal distri-

butions. For multiple random processes, two measures are sums of squared measures for

pairwise dependence. The dependence measures are zero if and only if the random pro-

cesses are mutually independent. This property is used to construct permutation tests for

mutual independence of random processes. The finite sample properties of these tests are

investigated in simulation studies. The use of the tests and the results of simulation studies

are illustrated with an example based on real data.

Key words: characteristic function, dependence measure, distance covariance, multivariate

functional data, permutation method, test of independence..

1. Introduction

In recent years, statistical methods for analysing data expressed as functions or curves have

received much attention. Such data are called functional data, which can be univariate and

multivariate, and appear in many application domains as, for instance, chemometrics, eco-

nomics, medicine, meteorology. For analysis of such data (i.e. the so called functional

data analysis), there is currently a wide spectrum of models and methods as, for exam-

ple, clustering and classification, functional principal component analysis, hypothesis test-

ing, regression models. For an overview, we refer to the following monographs and re-

cent review papers: Ramsay and Silverman (2005), Ferrary and Vieu (2006), Horváth and

Kokoszka (2012), Zhang (2013), Kokoszka and Reimherr (2017) and Cuevas (2014), Wang

et al. (2016) respectively.

This paper addresses the correlation analysis and testing independence for functional

data in both univariate and multivariate cases. For functional time series, independence

testing was considered by Horváth and Rice (2015). We would like to explore the asso-

ciation between two or more sets of functional variables. For two multivariate variables,

the canonical correlation in the framework of canonical correlation analysis (CCA) was

first proposed for this problem by Hotelling (1936). For functional data, this method was

1Interfaculty Institute of Mathematics and Statistics, The President Stanisław Wojciechowski State University

of Applied Sciences in Kalisz, Poland. E-mail: mkrzysko@amu.edu.pl. ORCID: https://orcid.org/0000-0001-

8075-4432
2Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznań, Poland.

E-mail: ls@amu.edu.pl. ORCID: https://orcid.org/0000-0002-2442-8816.
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extended by Leurgans et al. (1993), He et al. (2004), Krzyśko and Waszak (2013) and

Krzyśko and Smaga (2019). Unfortunately, the association viewed by canonical correlation

is not a global measurement, since the intensity of the relationship is expressed component

by component (see, Górecki et al., 2017, for more details). This was one of the reasons for

constructing other association measures. The two very popular of them are the ρV coeffi-

cient by Escoufier (1970, 1973) and the distance correlation dCor coefficient proposed in

Székely et al. (2007). Their functional extensions were investigated in Górecki et al. (2016,

2017). Moreover, Górecki et al. (2019) used the functional distance correlation coefficient,

among others, to construct variable selection procedures for classification of functional data.

Unfortunately, the ρV coefficient may not detect non-linear dependence between two sets

of variables, and it is difficult to evaluate the magnitude of the relationship just by consid-

ering its value. In these directions, the distance correlation coefficient seems to perform

better and, moreover, (under mild conditions) it is equal to zero if and only if the random

vectors are independent, which is not true for the ρV coefficient in general. Recently, Chen

et al. (2019) proposed other distance-based coefficients with similar properties to distance

correlation coefficient, which can even result in more powerful test for independence of

two random vectors. In this paper, we adapt their results to a functional data framework

by defining the functional version of their coefficient using a basis function representation

of functional observations. In contrast to Górecki et al. (2016), we allow non-orthogonal

basis making our results more general. In particular, we redefine the functional distance

correlation coefficient in more generality.

The above considerations concern the case of two sets of variables only. Sometimes,

there is a need of measure association or test independence of more than two sets of features.

In this direction, very good results were obtained by Jin and Matteson (2018) in the case of

multivariate data. They proposed a few methods, but the best of them are two procedures

based on sums of squared distance covariance coefficients. Thus, in this paper, we extend

these methods for functional data using also the functional versions of coefficients by Chen

et al. (2019).

The remainder of this paper is organized as follows. In Section 2, we propose permu-

tation tests of independence and dependence measures of multiple random processes. The

finite sample properties of the testing procedures are investigated in simulation studies in

Section 3. In Section 4, the real data example is presented. Finally, Section 5 is the summary

of our work.

2. Methodology

In this section, we first present the basis representation of functional data, which is a kind

of dimension reduction method. Then, using this representation and characteristic func-

tion apparatus, we propose tests of independence and dependence measures of two random

processes. Finally, we extend these results for more than two processes.
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2.1. Basis representation of functional data

Let X = (X1, . . . ,Xp)
� be a random process belonging to the Hilbert space Lp

2(I) of p-
dimensional vectors of square integrable functions defined on the interval I = [a,b], a,b∈R.

This space is endowed with the following inner product:

〈f,g〉p =
∫

I
f�(t)g(t)dt

for f,g ∈ Lp
2(I). For i = 1, . . . , p, let {φi j}∞

j=1 be basis in L1
2(I). Then each element of L1

2(I)
can be represented as an infinite linear combination of basis functions. Such representation

is difficult to apply in practice. Moreover, only a number of the first coefficients in this

representation is usually the largest and the most important (Ramsey and Silverman, 2005).

Therefore, we assume that each component of the process X can be represented by a finite

number of basis functions, i.e.

Xi(t) =
Bi

∑
j=1

αi jφi j(t), (1)

for t ∈ I and i = 1, . . . , p. The linear combination of basis functions in the right hand side of

equality (1) will be called the basis representation of the process Xi.

The choice of the basis is usually not very crucial. However, some suggestions for this

subject can be found in the literature (see, for example, Horváth and Kokoszka, 2012). The

value of Bi determine the degree of smoothness of the basis representation, i.e. small value

cause more smoothness. This value can be chosen deterministically or taking into account

the problem at hand or using the Bayesian Information Criterion (BIC). The coefficients αi j

are usually estimated by the least squares method. For details about the practical construc-

tion of the basis representation, see, for example, Krzyśko and Waszak (2013).

Finally, let us introduce the following matrix form of the basis representation of a ran-

dom process X. Let

α = (α11, . . . ,α1B1
, . . . ,αp1, . . . ,αpBp)

�

and

Φ(t) = diag
(

φ�1 (t), . . . ,φ
�
p (t)

)
is the block diagonal matrix of

φ�i (t) = (φi1(t), . . . ,φiBi(t)),

for i = 1, . . . , p. Then the representation (1) can be expressed as follows:

X(t) = Φ(t)α

which can be seen as the basis representation of the process X. This means that the process

X belongs to the finite dimensional subspace, say L p
2 (I), of the space Lp

2(I).
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2.2. Two sets of functional data

Assume that X and Y are two random processes belonging to the Hilbert spaces Lp
2(I1) and

Lq
2(I2) respectively, where I1 = [a1,b1] and I2 = [a2,b2], a1,b1,a2,b2 ∈R. We would like to

test the following hypotheses:

H0 : X,Y are independent vs. H1 : X,Y are dependent

and in the case of rejecting the null hypothesis, to measure the correlation between the

processes X and Y. For this purpose, we use the concept of characteristic function. Namely,

(roughly speaking) we want to use the fact that the null hypothesis H0 is equivalent to the

equality of the characteristic function of the joint distribution of X and Y with the product

of the characteristic functions of the distributions of X and Y.

Let us first recall the definition of the characteristic function of a random process (Bosq,

2000, p. 37) in our framework. The characteristic functions of the processes X and Y are as

follows:

ϕX(u) = E(exp(i〈u,X〉p)), ϕY(v) = E(exp(i〈v,Y〉q))
for u ∈ Lp

2(I1) and v ∈ Lq
2(I2), where i2 =−1. (Of course, we assume that for all u ∈ Lp

2(I1)
the integral 〈u,X〉p converges for almost all realizations of X, and the same applies to v ∈
Lq
2(I2) and Y.) Then the joint characteristic function of the pair of processes X and Y is of

the form

ϕX,Y(u,v) = E(exp(i〈u,X〉p + i〈v,Y〉q)).
The next step is to combine these definitions with the basis representation of the pro-

cesses X and Y (see Section 2.1). Suppose that X ∈L p
2 (I1) and Y ∈L q

2 (I2) and

X(t) = Φ1(t)α, Y(s) = Φ2(s)β ,

where Φ1(t) = diag(φ�11(t), . . . ,φ
�
1p(t)), Φ2(s) = diag(φ�21(s), . . . ,φ

�
2q(s)), α ∈RKx and β ∈

RKy are random vectors, Kx = Bx
1+ · · ·+Bx

p and Ky = By
1+ · · ·+By

q. Moreover, we assume

that the functions u ∈L p
2 (I1) and v ∈L q

2 (I2), and they are represented as follows:

u(t) = Φ1(t)γ, v(s) = Φ2(s)δ ,

where γ ∈ RKx and δ ∈ RKy are constant vectors. Then we have

〈u,X〉p =
∫

I1
u�(t)X(t)dt = γ�

∫
I1

Φ�1 (t)Φ1(t)dtα = γ�JΦ1
α,

where JΦ1
= diag(Jφ 11

, . . . ,Jφ 1p
) and Jφ 1i

=
∫

Ii φ 1i(t)φ�1i(t)dt is the Bx
i ×Bx

i cross product

matrix, i = 1, . . . , p. Analogously, we obtain 〈v,Y〉q = δ�JΦ2
β . Therefore, the characteris-

tic functions of the random processes X and Y are the characteristic functions of the random

vectors JΦ1
α and JΦ2

β , i.e.

ϕX(u) = E(exp(iγ�JΦ1
α)) = ϕJΦ1

α (γ), ϕY(v) = E(exp(iδ�JΦ2
β )) = ϕJΦ2

β (δ ).
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Furthermore, the joint characteristic function of random processes X and Y is the joint

characteristic function of random vectors JΦ1
α and JΦ2

β , i.e.

ϕX,Y(u,v) = E(exp(iγ�JΦ1
α + iδ�JΦ2

β )) = ϕJΦ1
α ,JΦ2

β (γ,δ ).

These relations imply that for our purpose, we can use the distance methods for random

vectors, which are based on

Dw =
∫
RKx+Ky

|ϕJΦ1
α ,JΦ2

β (γ,δ )−ϕJΦ1
α (γ)ϕJΦ2

β (δ )|2w(γ,δ )dγdδ ,

where |z| is the modulus of z ∈ C, and w is a weight function, which is positive almost

everywhere. Different choices of the function w may result in plenty different methods. In

the following, we consider two of them, which seem to be meaningful.

The most famous method of this kind was proposed by Székely et al. (2007). Górecki

et al. (2016) used their methodology and considered the following functional distance co-

variance of random processes X and Y:

FdCov(X,Y) = dCov(JΦ1
α,JΦ2

β ) = VJΦ1
α ,JΦ2

β =
√

Dw0
,

where

w0(γ,δ ) =
1

CKxCKy‖γ‖Kx+1
Kx

‖δ‖Ky+1

Ky

,

and

Cl =
π(l+1)/2

Γ((l +1)/2)

and ‖ ·‖l is the standard Euclidean norm in Rl . The functional distance correlation between

random processes X and Y is defined as follows:

FdCor(X,Y) =
FdCov(X,Y)√

FdCov(X,X)FdCov(Y,Y)
,

when FdCov(X,X) and FdCov(Y,Y) are positive, otherwise FdCor(X,Y) = 0. Note that

Górecki et al. (2016) used orthonormal basis, which implies the matrices JΦ1
and JΦ2

are

identity matrices. Thus the above definition is a bit more general. For distributions with

finite first moments, FdCor(X,Y) ∈ [0,1] and FdCor(X,Y) = 0 if and only if X and Y are

independent. The distance covariance by Székely et al. (2007) is implemented in the R

package energy (R Core Team, 2019; Rizzo and Székely, 2019), which can be also used to

calculate the functional distance covariance.

Recently, Chen et al. (2019) proposed other choice of weight function, which resulted in

a kind of generalization of distance covariance. Namely, their weight functions are products

of density functions. Let us now describe the details. Similarly as Székely et al. (2007),

assume that the weight function w(γ,δ ) = wKx(γ)wKy(δ ), where wKx and wKy are functions

defined in the corresponding dimensions. This considerably simplifies expressions without
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giving up much generality. Let fKx and fKy be densities and let ϕKx and ϕKy be characteristic

functions of Kx×1 and Ky×1 random vectors respectively. Chen et al. (2019) proved that

when the densities fKx and fKy are positive with probability 1, then taking wKx = fKx and

wKy = fKy , Dw is as follows:

D f =E
(

Re{ϕKx(JΦ1
(α−α1))}Re{ϕKy(JΦ2

(β −β 1))}
)

+E
(

Re{ϕKx(JΦ1
(α−α1))}

)
E
(

Re{ϕKy(JΦ2
(β −β 1))}

)
−2E

(
Re{ϕKx(JΦ1

(α−α1))}Re{ϕKy(JΦ2
(β −β 2))}

)
,

where Re(z) denotes the real part of z ∈ C, α1
d
= α , β m

d
= β for m = 1,2 and

d
= stands for

equality in distribution. Moreover, D f is equal to zero if and only if JΦ1
α and JΦ2

β are

mutually independent, and it is strictly positive otherwise.

There are many possible choices of the densities fKx and fKy . To greatly simplify D f ,

the densities of spherical stable distributions can be used. The characteristic function of a

spherical stable distribution with exponent α ∈ (0,2] is ϕα(t) = exp(−‖t‖α). For α = 1

and α = 2, we have the multivariate standard Cauchy and normal distributions respectively.

Further details about spherical stable distributions can be found in Zolotarev (1981) and

Nolan (2013). A recent application of spherical stable distributions in the change-point

methods to multivariate time-series can be found in Hlávka et al. (2020). When fKx and

fKy are the densities of spherical stable distributions with the same exponent α , D f can be

written as

Dα =E
(
exp(−(‖JΦ1

(α−α1)‖α +‖JΦ2
(β −β 1)‖α))

)
+E

(
exp(−‖JΦ1

(α−α1)‖α)
)

E
(
exp(−‖JΦ2

(β −β 1)‖α)
)

−2E
(
exp(−(‖JΦ1

(α−α1)‖α +‖JΦ2
(β −β 2)‖α))

)
.

Thus, we can define the functional distance covariance and correlation with exponent α of

random processes X and Y as

FdCovα(X,Y) =
√

Dα , FdCorα(X,Y) =
FdCovα(X,Y)√

FdCovα(X,X)FdCovα(Y,Y)

respectively. Similarly to FdCor(X,Y), FdCorα(X,Y) ∈ [0,1] and FdCorα(X,Y) = 0 if

and only if X and Y are independent.

In practice, FdCor(X,Y) and FdCorα(X,Y) have to be estimated. Assume that X1, . . . ,Xn

and Y1, . . . ,Yn are independent realizations of random processes X and Y respectively. Let

Xi(t) = Φ1(t)α i and Yi(s) = Φ2(s)β i, i = 1, . . . ,n be the basis representations of the ob-

servations. The estimator of FdCor(X,Y), say F̂dCor(X,Y), was derived in Górecki et al.
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(2016), so we omit it to save space. The estimator of FdCov2α(X,Y) is as follows:

F̂dCov
2

α(X,Y) =
1

n2 ∑
1≤ j,k≤n

exp
(
−(‖JΦ1

(α j−αk)‖α +‖JΦ2
(β j−β k)‖α)

)

+
1

n4 ∑
1≤ j,k≤n

exp
(
−‖JΦ1

(α j−αk)‖α
)

∑
1≤ j,k≤n

exp
(
−‖JΦ2

(β j−β k)‖α
)

− 2

n3 ∑
1≤ j,k,l≤n

exp
(
−(‖JΦ1

(α j−αk)‖α +‖JΦ2
(β j−β l)‖α)

)
.

To sum up, both FdCor(X,Y) and FdCorα(X,Y) can be used as measures of depen-

dence of random processes X and Y. Moreover, since they both are equal to zero if and only

if the processes X and Y are independent, testing the null hypothesis H0 is equivalent to test-

ing HdCor
0 : FdCor(X,Y) = 0 or Hα

0 : FdCorα(X,Y) = 0. For testing these hypotheses, we

propose permutation tests based on test statistics F̂dCor(X,Y) and F̂dCorα(X,Y), because

the asymptotic null distributions of nF̂dCor(X,Y) and nF̂dCorα(X,Y) are complicated and

not distribution free and the convergence rate may be slow (see Székely et al., 2007; Chen

et al., 2019). In the permutation method, the test statistics are recalculated many times with

the permutation samples X1, . . . ,Xn,Yπ(1), . . . ,Yπ(n), where a permutation π is uniformly

chosen from the symmetric group Sn, the set of all n! permutations of (1, . . . ,n).

In the next section, we show how the above results can be extended for measuring and

testing mutual dependence of more than two random processes.

2.3. Multiple sets of functional data

Let X1, . . . ,Xd be d random processes belonging to Lp1
2 (I1), . . . ,L

pd
2 (Id) respectively, where

Il = [al ,bl ], al ,bl ∈ R, l = 1, . . . ,d. Of interest is to test the following hypotheses

H0 : X1, . . . ,Xd are independent vs. H1 : X1, . . . ,Xd are dependent

and in the case of rejecting the null hypothesis, to measure the correlation between the

processes X1, . . . ,Xd .

The methods based on characteristic functions of Section 2.2 can be extended for case

d > 2. Namely, for random vectors, this was recently done by Jin and Matteson (2018),

whose results could be directly applied to functional data in much the same way as presented

in Section 2.2. However, such tests may not perform well as was already shown in Jin and

Matteson (2018) for random vectors. Fortunately, they also proposed some alternatives

to these methods, which have better finite sample properties. Therefore, we are limited

only to these alternative methods, which are asymmetric and symmetric measures of mutual

dependence to capture mutual dependence via aggregating pairwise dependence.

Assume that Xl ∈ L pl
2 (Il) and we have the following basis representation of the pro-

cesses Xl :

Xl(tl) = Φl(tl)α l ,
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where tl ∈ Il and α l ∈ RKl are random vectors, l = 1, . . . ,d. Let

αc+ =
(

α�c+1, . . . ,α
�
d

)�
, c = 1, . . . ,d−1,

α−c =
(

α�1 , . . . ,α
�
c−1,α

�
c+1, . . . ,α

�
d

)�
, c = 1, . . . ,d.

Thus, αc+ denotes the subset of processes on the right of αc, while α−c denotes the subset

of processes except αc. Let Cor be a dependence measure for two random vectors such that

it is equal to zero if and only if the random vectors are independent. Then the asymmetric

and symmetric measures of mutual dependence of random vectors α1, . . . ,αd are defined

by

R(α1, . . . ,αd) =
1

d−1

d−1

∑
c=1

Cor2(αc,αc+), S(α1, . . . ,αd) =
1

d

d

∑
c=1

Cor2(αc,α−c).

Under mild condition, Jin and Matteson (2018) showed that

R(α1, . . . ,αd) ∈ [0,∞), S(α1, . . . ,αd) ∈ [0,∞)

and

R(α1, . . . ,αd) = 0, S(α1, . . . ,αd) = 0

if and only if α1, . . . ,αd are mutually independent.

In the framework of functional data, we can use FdCor or FdCorα as Cor above. Then

for testing the null hypothesis H0, we can verify

HR
0 : R(α1, . . . ,αd) = 0 or HS

0 : S(α1, . . . ,αd) = 0.

For these purposes, we use permutation tests based on the following test statistics being

estimators of R and S:

R̂ =
1

d−1

d−1

∑
c=1

F̂dCor
2
(Xc,Xc+), Ŝ =

1

d

d

∑
c=1

F̂dCor
2
(Xc,X−c)

or

R̂α =
1

d−1

d−1

∑
c=1

F̂dCor
2

α(Xc,Xc+), Ŝα =
1

d

d

∑
c=1

F̂dCor
2

α(Xc,X−c).

The pooled permutation sample is constructed by separately permuting the samples corre-

sponding to processes X2, . . . ,Xd . More precisely, when

X11, . . . ,X1n,X21, . . . ,X2n, . . . ,Xd1, . . . ,Xdn

are the observations, the pooled permutation sample is as follows:

X11, . . . ,X1n,X2π1(1), . . . ,X2π1(n), . . . ,Xdπd−1(1), . . . ,Xdπd−1(n),
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where the permutations π1, . . . ,πd−1 are uniformly chosen from the symmetric group Sn.

Under appropriate conditions, we have that R̂, Ŝ, R̂α and Ŝα belong to the interval [0,1].

Therefore, they can be used as measures of dependence of random processes X1, . . . ,Xd .

3. Simulation studies

In this section, the finite sample behaviour of the permutation tests R̂, Ŝ, R̂α and Ŝα for

α = 0.1,0.5,1,1.5,2 is determined in simulation studies. We investigate both the control of

the type I error and power of the tests.

3.1. Simulation experiments

We set the number of observations n = 15 and investigate d = 3 random processes X1 =

(X11,X12)
�, X2 = (X21,X22)

�, X3 = (X31,X32)
� with dimensions p1 = p2 = p3 = 2. The

functional observations corresponding to these processes are generated in the following

three models:

Model 1. They are represented by their values in an equally spaced grid of 50 points

t1,1 = t2,1 = t3,1 = 0, . . . , t1,50 = t2,50 = t3,50 = 1 in I1 = I2 = I3 = [0,1], which are generated

in the following way:

⎡
⎣ X1r(t1,u)

X2r(t2,u)
X3r(t3,u)

⎤
⎦=

⎡
⎣ Φ1(t1,u) 0 0

0 Φ2(t2,u) 0
0 0 Φ3(t3,u)

⎤
⎦
⎡
⎣ α1,r

α2,r

α3,r

⎤
⎦+ εr,u,

where r = 1, . . . ,n, u = 1, . . . ,50, the matrices Φl are as in Section 2 and contain the Fourier

basis functions only and Bl
i = 5, i = 1,2, l = 1,2,3, (α�1,r,α

�
2,r,α

�
3,r)

� are 30-dimensional

random vectors, and ε�r,u = (εr,u,1, . . . ,εr,u,6) are the measurement errors such that εr,u,v ∼
N(0,0.025ar,v) and ar,v is the range of the v-th row of the following matrix:

⎡
⎣ Φ1(t1,1)α1,r . . . Φ1(t1,50)α1,r

Φ2(t2,1)α2,r . . . Φ2(t2,50)α2,r

Φ3(t3,1)α3,r . . . Φ3(t3,50)α3,r

⎤
⎦ .

The random vectors (α�1,r,α
�
2,r,α

�
3,r)

� are generated as ZrΣ
1/2
ρ , where Σρ = (1− ρ)I30 +

ρ1301�30, ρ = 0,0.1, Ia is the a×a identity matrix, 1a is the a×1 vector of ones, and Zr are

30× 1 random vectors with iid coordinates from the following distributions: the standard

normal distribution N, the Student t-distribution t3 with three degrees of freedom, the Fisher-

Snedecor distribution F1,5 with 1 and 5 degrees of freedom, the standard Cauchy distribution

C, the log-normal distribution LN. When ρ = 0, the null hypothesis about independence is

true and we study the type I error of tests, while for ρ = 0.1, the alternative holds and we

investigate their power. Note that for Cauchy distribution C, the expected value does not

exist, but this distribution was among others considered in similar simulations of Chen et al.

(2019), so we also use it.
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Model 2. First, for each t ∈ {0.04,0.08, . . . ,1}, the observations for Xli(t), l = 1,2,

i = 1,2 are generated as independent random variables of normal distribution N(0,0.25)

or other non-normal distributions considered in Model 1. Then, for the same t, X3i(t) =
ρX1i(t)+ εi(t) for i = 1,2, where εi(t) are independent random variables of normal distri-

bution N(0,0.1). We set ρ = 0,0.5 and then the null, alternative hypothesis is true respec-

tively.

Model 3. This model is similar to Model 2, but here we consider non-linear dependence

instead of linear dependence. More precisely, we set X3i(t) = Xρ
1i(t)+ εi(t) and ρ = 2,3.

For both values of ρ , the alternative hypothesis holds.

The test statistics are calculated using the Fourier basis with Bl
i = 5, i = 1,2, l = 1,2,3.

We use the least squares method to estimate the coefficients of the basis representation of

generated functional data. The empirical sizes and powers (resp. p-values) of the permu-

tation tests were estimated in 500 simulation runs (resp. 1,000 permutation samples). For

simplicity, the significance level is set to 5%. The simulation experiments as well as real

data example of Section 4 were conducted in the R program (R Core Team, 2019).

3.2. Simulation results

The empirical sizes and powers of the permutation tests obtained in Models 1-3 are pre-

sented in Tables 1-3 respectively. Let us now discuss these simulation results.

The empirical sizes of all tests obtained in Models 1-2 (Tables 1-2 with ρ = 0) are

usually very close to the level of significance of 5%. However, we can observe that the

testing procedures F̂dCorα with larger α (i.e. α = 1.5,2) tend to highly over-reject the

null hypothesis in the case of Cauchy distribution C in Model 1. It seems that this can be

explained by non-existence of the first moment of this distribution. Thus, the permutation

tests seem to control the type I error level, except possibly tests based on F̂dCor1.5 and

F̂dCor2.
In Model 1, all three processes X1,X2,X3 are equally correlated, which is a similar sce-

nario to that considered in Jin and Matteson (2018) for random vectors. Then both methods

R and S perform very similarly in terms of size control and power. On the other hand, in

Model 2, the processes X1 and X3 are correlated (when ρ > 0), and they are uncorrelated to

process X2. Such setting was not considered by Jin and Matteson (2018). In this case, the

testing procedures Ŝ and Ŝα are much more powerful than the tests R̂ and R̂α respectively.

This perhaps can be explained by that the S method considers more comparisons between

processes X1,X2,X3 than the R method. In the case of Model 3, the processes X1 and X3

are non-linearly dependent (quadratically [ρ = 2] or cubically [ρ = 3]), and they are uncor-

related to process X2. Here, the comparison between methods R and S is more complicated

and depends on the distribution of the data as well as the test statistic used. For tests F̂dCor
and F̂dCor0.1, the methods R and S have similar empirical powers in most cases. For the

other estimators (i.e. F̂dCorα , α = 0.5,1,1.5,2), the method R is usually more powerful

than the method S. However, there are some exceptions, for example, under normal distri-

bution N and cubic dependence or under Student distribution t3 and quadratic dependence,

the reverse is true.
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Table 1: Empirical sizes (ρ = 0) and powers (ρ = 0.1) (as percentages) of all tests obtained
in Model 1.

Distr. ρ Method F̂dCor F̂dCor0.1 F̂dCor0.5 F̂dCor1 F̂dCor1.5 F̂dCor2
N 0 R 4.2 5.0 5.0 5.8 5.0 7.0

S 4.4 5.4 5.4 6.4 6.4 4.6

0.1 R 33.8 29.8 25.2 9.0 6.2 5.8

S 35.2 30.8 25.2 9.8 5.2 4.0

t3 0 R 5.6 5.2 5.2 4.6 4.4 5.2

S 6.0 4.8 4.6 5.2 4.4 9.4

0.1 R 26.6 24.0 19.2 5.2 4.8 4.8

S 24.8 22.2 18.0 8.0 5.8 7.6

F1,5 0 R 5.0 6.2 6.2 4.2 5.0 5.8

S 5.0 4.8 5.0 3.4 4.6 7.0

0.1 R 26.8 35.4 29.2 12.2 11.0 14.2

S 24.4 30.6 29.8 10.8 8.8 14.8

C 0 R 4.4 4.6 5.6 3.0 19.4 80.4

S 5.0 4.2 6.2 4.8 24.8 83.6

0.1 R 43.0 65.8 36.4 11.8 35.0 88.8

S 37.6 57.6 26.6 9.6 40.8 90.0

LN 0 R 4.2 5.0 4.8 4.6 4.8 4.8

S 4.0 4.0 4.0 7.2 6.8 4.8

0.1 R 24.8 29.6 26.4 10.6 8.2 7.4

S 21.2 25.2 25.0 10.8 6.8 6.4

We can observe that the empirical powers of the tests F̂dCorα usually decrease with the

increasing α . There are only few exceptions (e.g. Model 3 and normal distribution N), but

in these cases, the power loss between the most and the least powerful tests is not so large

as in the remaining ones. Thus, among the tests F̂dCorα , the test F̂dCor0.1 (i.e. with small

α) is the most powerful in most scenarios.

In Models 1-2 and in Model 3 with normal distribution N, the tests F̂dCorα with small α
(e.g. α = 0.1) are usually comparable with tests F̂dCor in terms of power. Nevertheless, in

some cases (e.g. under Fisher-Snedecor distribution F1,5, Cauchy distributionC and the log-

normal distribution LN), the tests F̂dCor0.1 may have greater power than the tests F̂dCor.
In Model 3 and non-normal distributions, the testing procedures F̂dCor0.1 are much more

powerful than the tests F̂dCor.

To sum up, the permutation test Ŝ0.1 seems to perform best. It maintains the type I error

level very well and has power, which is greater than or comparable to power of the other

tests considered. This test is followed by testing procedure Ŝ. The test Ŝ0.1 overcomes the

test Ŝ especially in the case of non-linear dependence.
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Table 2: Empirical sizes (ρ = 0) and powers (ρ = 0.5) (as percentages) of all tests obtained
in Model 2.

Distr. ρ Method F̂dCor F̂dCor0.1 F̂dCor0.5 F̂dCor1 F̂dCor1.5 F̂dCor2
N 0 R 4.4 4.6 5.4 4.8 4.8 5.0

S 4.0 4.8 4.6 4.6 3.8 4.2

0.5 R 50.4 45.2 44.2 48.4 49.2 50.0

S 77.6 69.2 70.6 76.0 80.6 82.2

t3 0 R 5.6 5.4 5.8 5.8 6.4 5.8

S 5.4 4.2 4.4 4.0 3.8 3.6

0.5 R 48.2 47.2 41.8 36.8 33.0 29.0

S 87.0 82.0 84.6 82.0 70.0 50.4

F1,5 0 R 5.4 5.6 6.0 5.4 6.2 5.6

S 4.6 5.8 6.0 6.4 6.2 4.4

0.5 R 41.4 45.4 36.6 24.8 17.0 11.0

S 67.4 67.8 72.6 56.8 23.0 9.6

C 0 R 5.0 5.2 6.2 3.8 5.2 4.8

S 4.0 4.8 6.6 6.2 6.8 6.0

0.5 R 34.4 44.0 31.8 8.2 6.2 5.2

S 46.4 61.6 54.8 15.8 9.6 14.4

LN 0 R 4.6 4.0 4.0 3.8 4.2 4.2

S 4.0 3.8 3.8 4.0 4.4 4.6

0.5 R 48.8 46.4 41.0 35.8 30.0 25.6

S 81.8 75.6 77.8 74.4 54.6 26.4

4. Real data example

In this section, we illustrate the use of the dependence measures and tests of independence

for functional data proposed in Section 2 and the simulation results of Section 3. For this

purpose, we consider the famous Canadian weather data, which are available in the R pack-

age fda (Ramsay et al., 2018).

The Canadian weather data contain the daily temperature and precipitation records of

35 Canadian weather stations averaged over 1960 to 1994 for 365 days. The raw temper-

ature and precipitation curves for 35 weather stations are presented in Figure 1. Thus, we

have n = 35 observations of two random processes (d = 2) representing temperature and

precipitation. These functional observations are discretized in 365 time points. For illustra-

tive purposes, we would like to measure dependence and test independence of temperature

and precipitation treated as functional data. From Figure 1, (rather positive) correlation be-

tween temperature and precipitation may be observed. More precisely, weather stations with

large temperature are also characterized by higher precipitation (dashed lines). In contrast,

weather stations with lower temperature record lower rainfall (solid lines). To theoretically

confirm this relationship, we use the methods described in Section 2 in the following.
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Table 3: Empirical powers (as percentages) of all tests obtained in Model 3.

Distr. ρ Method F̂dCor F̂dCor0.1 F̂dCor0.5 F̂dCor1 F̂dCor1.5 F̂dCor2
N 2 R 6.8 7.0 7.6 6.4 6.2 6.4

S 6.6 5.8 6.6 6.4 6.0 7.0

3 R 11.4 9.6 10.2 10.2 11.8 13.2

S 15.8 13.8 14.6 16.0 17.0 17.8

t3 2 R 54.4 59.2 53.8 26.4 12.8 7.4

S 52.0 56.0 53.6 30.2 15.8 8.8

3 R 68.8 84.0 69.2 27.6 14.0 8.6

S 69.0 82.8 64.0 6.8 3.6 3.4

F1,5 2 R 91.0 98.8 98.4 46.6 16.8 12.6

S 84.0 96.8 95.6 6.4 3.4 3.2

3 R 75.6 97.2 68.6 19.0 11.2 15.0

S 71.2 95.0 8.0 5.2 5.4 5.0

C 2 R 74.6 95.8 64.4 23.0 34.4 52.6

S 58.8 89.6 11.6 5.8 10.0 24.2

3 R 67.2 98.0 54.0 29.0 40.4 60.8

S 61.4 94.0 5.6 4.8 8.8 27.2

LN 2 R 98.0 99.6 100.0 71.0 28.0 11.6

S 96.6 99.4 99.6 24.6 6.6 5.4

3 R 85.4 98.0 79.4 30.4 6.8 6.6

S 82.6 95.6 23.6 6.8 5.6 6.4

We use the permutation tests F̂dCor and F̂dCorα with α = 0.1,0.5,1,1.5,2 and 1,000

permutation samples. For the basis representation of the weather data, we use the Fourier

basis with different size (i.e. Bl
1 = 3,5, . . . ,15 for l = 1,2) and the least squares method

to estimate coefficients. The Fourier basis is recommended for periodical data (see, for

example, Horváth and Kokoszka, 2012), so it is sensible for temperature and precipitation

data, since they have annual cycles.

The results of statistical analysis are depicted in Table 4. We observe quite big values

of correlation coefficients, especially F̂dCorα ’s. Moreover, these values seem to not de-

pend on the basis size. The same is true for p-values of the tests F̂dCor and F̂dCorα with

α = 0.1,0.5. However, this is not true for the remaining testing procedures. This follows

from the fact that the tests F̂dCor and F̂dCorα with small α are more robust to increasing

dimension than the tests F̂dCorα with moderate and large α . This was observed for ran-

dom vectors in simulation studies in Chen et al. (2019) and moves to the case of functional

data. Moreover, the p-values of the tests F̂dCorα usually increase with the increasing α .

Finally, the tests F̂dCor and F̂dCorα with α = 0.1,0.5 reject the null hypothesis at level of

significance of 5%, in contrast to the remaining tests. These confirm the simulation results

of Section 3, since the tests F̂dCor and F̂dCorα with small α were observed there to be
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Figure 1: Temperature and precipitation for Canadian weather stations.

Table 4: Functional coefficients of correlation (FCor) and p-values of tests of independence
for temperature and precipitation for Canadian weather stations.

Bl
1 F̂dCor F̂dCor0.1 F̂dCor0.5 F̂dCor1 F̂dCor1.5 F̂dCor2

FCor 3 0.7379 0.9921 0.9825 0.9907 0.9914 0.9909

5 0.7436 0.9935 0.9895 0.9975 0.9985 0.9988

7 0.7449 0.9939 0.9913 0.9989 0.9998 0.9999

9 0.7461 0.9942 0.9924 0.9993 0.9999 0.9999

11 0.7464 0.9943 0.9932 0.9995 0.9999 0.9999

13 0.7466 0.9944 0.9937 0.9996 0.9999 0.9999

15 0.7468 0.9946 0.9942 0.9997 0.9999 0.9999

p-value 3 0.001 0.000 0.037 0.250 0.279 0.319

5 0.001 0.000 0.015 0.339 0.352 0.306

7 0.001 0.000 0.008 0.341 0.429 0.422

9 0.001 0.000 0.002 0.228 0.407 0.411

11 0.001 0.000 0.003 0.350 0.410 0.413

13 0.001 0.000 0.006 0.360 0.353 0.325

15 0.001 0.000 0.006 0.352 0.402 0.452

more powerful than the tests F̂dCorα with moderate and large α . For these reasons, we

should reject the null hypothesis about independence and conclude that there is a relation-

ship between temperature and precipitation recorded in Canadian weather stations.
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5. Conclusions

We have proposed new measures of mutual dependence for two or more sets of univariate

and multivariate functional data. Our construction is based on the equivalence to mutual

independence through characteristic functions and the basis function representation of the

functional observations. Then, the problem is reduced to random vectors of basis expan-

sion coefficients. We do not assume that the basis is orthogonal in contrast to the previous

literature. For two sets of functional data, we follow the idea of functional distance cor-

relation and construct functional versions of coefficients by Chen et al. (2019) indexed by

hyperparameter α ∈ (0,2]. In the case of more than two sets of functional data, we use

the coefficients for pairs of sets and aggregate them by sums of their squares adapting the

asymmetric and symmetric methods by Jin and Matteson (2018) to functional data frame-

work. Simulation studies and real data example suggest that permutation tests based on new

functional coefficients with small α and symmetric method perform best in terms of size

control and power.
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Detection of Outliers in Univariate Circular Data by Means  
of the Outlier Local Factor (LOF) 

Ali H. Abuzaid1 

ABSTRACT  

The problem of outlier detection in univariate circular data was the object of increased 
interest over the last decade. New numerical and graphical methods were developed for 
samples from different circular probability distributions. The main drawback of the existing 
methods is, however, that they are distribution-based and ignore the problem of multiple 
outliers. 
The local outlier factor (LOF) is a density-based method for detecting outliers in multivariate 
data and it depends on the local density of every k nearest neighbours.  
The aim of this paper is to extend the application of the LOF to the detection of possible 
outliers in circular samples, where the angles of circular data are represented in two 
Cartesian coordinates and treated as bivariate data. The performance of the LOF is 
compared against other existing numerical methods by means of a simulation based on the 
power of a test and the proportion of correct detection. The LOF performance is compatible 
with the best existing discordancy tests, while outperforming other tests. The level of the 
LOF performance is directly related to the contamination and concentration parameters, 
while having an inverse relationship with the sample size.  
In order to illustrate the process, the LOF and other existing discordancy tests are applied to 
detect possible outliers in two common real circular datasets. 
Key words: discordancy, distance, multiple outliers, neighbours, spacing theory. 

1. Introduction 

The analyses of directions in xy -plane is more convenient to be considered as 
circular data, which are distributed on a unit circle circumference, measured by degrees 
or radians and belonging to 0 360,   or  0 2,  , respectively.  

In the context of circular data, due to its closed bounded range property, then 
considering an outlier as an extreme value is no longer valid, where the extreme value 
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is defined as a point with the maximum circular deviation from the mean direction. 
Thus, the problem of outliers in circular data needs special discordancy tests. Collett 
(1980) proposed four tests of discordancy for circular samples. The past decade has seen 
a renewed interest in the detection and classification of outliers in the univariate 
circular data, either numerically (see Abuzaid et al. 2009, Mohamed 2016, Sidik et al. 
2019) or graphically (Abuzaid et al. 2013). Recently, the problem of outliers in circular 
regression and functional relationship models has been well investigated (see, Satari et 
al. 2014, Alkasady et al. 2019).  

Existing methods of outlier-detection in univariate circular data have some 
drawbacks: firstly, they are distribution-based methods, which rely on certain 
probabilistic distributional assumptions, where the cut-off points are needed for any 
combination of distribution parameters. Secondly, they were built for single outlier 
detection, and did not address the masking effect or multiple outliers. Lastly, they 
consider outlying as a binary property (i.e. either the angle is an outlier or not).  

In geometrics, for a given angle   with corresponding coordinates x,y   on the 
unit circle, these coordinates are obtained as cosx   and siny  . Thus, treating 
the associated coordinates instead of the angle will allow us to use the available methods 
of outlier-detection in multivariate linear data. One of these methods is the local outlier 
factor (LOF), which is a density-based method. It computes the outlying factor of every 
point in a dataset based on its average distance to its k  nearest neighbours. 
Furthermore, the outlier factor estimates the degree the suspected point is being 
outlying (Breunig et al. 2000). Recently, Abuziad (2020) has extended the concept of 
density-based local outliers to the medical multivariate circular data based on circular 
distances. 

This article considers the LOF method, which is widely used in the multivariate 
analysis and available in most of statistical software programs as an alternative method 
of outlier-detection in univariate circular data, regardless of the probability 
distribution. The rest of this article is organized as follows: Section 2 reviews the main 
methods for outlier-detection in univariate circular data. Section 3 introduces the LOF 
in the circular data context. A comparative power of performance of available methods 
is presented in Section 4. For illustration, Section 5 analyses two real circular datasets. 

2.  Tests of discordancy in univariate circular data 

Let 1 n,...,   be a random sample from a circular variable, and the resultant length, 
2 2

1 1

n n

i i
i i

R cos sin 
 

   
    

   
  . The interest is to test the null hypothesis that r , where 
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1 r n  , is not an outlier. The following subsections review five discordancy tests to 
identify outliers.  

2.1. M statistic 

Mardia (1975) proposed a statistic based on the effect of removing the j th angle 

on the resultant length R , given by 1rR R
M

n R

 



, where   r j jR max R   and 

 jR  is the resultant length after excluding the j th angle. The asymptotic distribution 

of M  statistic is approximated by the standard normal distribution for large values of 
the concentration parameter (Collett, 1980). 

2.2. C statistic 

Collett (1980) proposed an alternative test of discordancy based on the mean 

resultant length, 
R

R
n

  and defined as  j
j

R R
C max

R
 

 , where  jR  is the mean 

resultant length after excluding the j th angle. 

2.3. D statistic 

The third statistic was derived by Collett (1980) based on the relative arc lengths 
between the ordered angles such as      1 2 n...     . The arc length between 

consecutive angles is defined by    1 1 1j j jT , j ,...,n      and 

   12n nT      . The test statistic is given by 
1

1j
j

j

T
D , j ,...,n

T 

  . It corresponds 

to the greatest arc containing a single angle, r , which is obtained by 
1

r
r

r

T
D

T 

 . The 

 1r rmin D ,D  is considered because statistic rD  is a two-tailed statistic. 

2.4. A statistic 

Abuzaid et al. (2009) proposed a test statistic based on the summation of all circular 

distances from the angle r  to all other angles j ;  
1

1
n

r j r
j

d cos  


    for 

1j , r ,...,n . The test statistic is given by 
 

1
2 1

r
r

d
max , r ,...,n

n

      
. The 

approximated distribution of the A  statistic was discussed in Abuzaid et al. (2012). 
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2.5. G statistic  

Mohamed et al. (2016) extended the theory of arc length, which was used in D  
statistic to the spacing theory. The statistic is defined based on the a-step spacing where 

1 2 3a , , ,...,  for the j th ordered angle as    aj j a jG ,   for 1j ,...,n a   and 

   2aj j j a nG        , for    1 2j n a, n a,...,n     . Then the test 

statistics is defined as  a j ajG max G . 

To identify possible outliers in circular samples, the previous five test statistics have 
to exceed a pre-determined cut-off points which have been obtained via simulation 
under the assumptions that the circular data come from certain distribution with 
known sample size and parameters. The cut-off points and power of performance for 
the five statistics have been obtained for von Mises distribution and wrapped normal 
distribution (Sidik et al. 2019), while only the associated values of cut-off points for the 
first four statistics were obtained for the wrapped Cauchy distribution (Abuzaid et al. 
2015) and Cardioid distribution (Das and Gogoi, 2015). 

3. Local outlier factor (LOF) for univariate circular data 

Breunig et al. (2000) proposed a density-based method for detecting outliers 
in multivariate data.  It depends on the local density of every k  nearest neighbours. It is 
the so-called a local outlier factor (LOF), and it does not consider the outlier as a binary 
property, where it assigns a factor for each point to indicate its outlying degree. 
The term "local" is derived from the fact that the value of the factor for a point   
depends on how that point is isolated with respect to the surrounding neighbourhood. 
A higher LOF value reflects more sparse neighbourhoods and represents an outlier 
point, while lower value of LOF reflects more dense neighbourhoods and represents a 
normal point.  

LOF for a point   is obtained by computing its average distance to its k  nearest 
neighbours, then the distance is normalized by computing the average distance of each 
of those neighbours to their k  nearest neighbours. The set of the following definitions 
explains the LOF algorithm. 
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1) Distance  d ,  between any two angles   and  : 

Let   and   be two angles in a univariate circular dataset,  , with coordinates of  
x ,y    and x ,y   , respectively. Then, the distance between any two angles   and 

 is obtained by 

     2 2
d , x x y y         . 

 

2) k -distance of an angle  :  

For any positive integer k , the k -distance of an angle    is denoted by 

 kdist   and it is defined as the distance  d ,   between an angle   and an angle 

  . It represents the k -th nearest neighbourhoods of an angle  , where there is at 

least k  angles such that    d , d ,     and at most 1k   angles, such that 

   d , d ,    , where   is an angle and  \   . 
 

3) k  -distance neighborhood of a point   :  

It contains every point whose distance from   is not greater than the k -distance. 

It is defined as       k kN dist , dist       and it could be greater than k , 

where multiple points have the same distance. 
 

4) Reachability distance from angle   to angle  : 

For all close angles  's to an angle  , it is expected that there is a statistical 

fluctuation of  dist ,  , which can be significantly reduced by defining the 
reachability distance as 

      k kreach _ dist , max dist ,d ,     . 

The higher the value of k , the more similar the reachability distances for angles 
within the same neighbourhood. 

 

5) Local reachability density of an angle  : 

It is the inverse of the average reachability distance based on the k  nearest 
neighbours of an angle  , and it is defined as 

   
  k

k
k

kN

N
lrd

reach _ dist ,
 




 





. 
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6) Local outlier factor of an angle  :  

It estimates the degree to which an angle   is called an outlier, and it is defined 
as  

 

 
  

 
k

k

N
k

k
k

lrd

lrd
LoF

N

 












. 

It is the average of the ratio of the local reachability density of   and those of  ’s 
k -nearest neighbours. 

 
The minimum number of neighbour angles to determine the density, which the so-

called MinPts, and its effect on changing the values of the LOF was discussed by Breunig 
et al. (2000). They concluded that the MinPts can be between two and 1n , and 
suggested it to be at least 10 to remove unwanted statistical fluctuations. Furthermore, 
the angle is considered as an outlier if its LOF value is significantly greater than one. 

In general A  and aG  statistics have outperform other statistics (Sidik et al. 2019). 
Therefore, the following section will investigate the performance of the A  statistic and 
LOF via simulation. 

4. Power of performance 

The performance of discordancy tests is evaluated by three measures, namely  
power function; 1 1P    where  is the probability of type-II error, 3P which is 
the probability of identifying a contaminated value as an outlier when it is in fact an 
extreme value, and the probability of wrongly identifying a good observation as 
discordant, which is denoted by 1 3P P (Barnett and Lewis, 1984).  

To obtain the three measures of performance, the following settings are considered 
in this simulation study, which were conducted based on 2000 random samples 
generated from two different circular distributions; namely the von Mises distribution 
with mean   and concentration parameter  ; denoted as  vM ,  , and the 
wrapped Cauchy distribution with mean   and concentration parameter  ; denoted 
as  WC ,  . Without loss of generality, the mean direction of generated samples 
from both distributions were fixed equal to zero. Five different sample sizes, namely 

20 50 70 100n , , ,  and 150 were generated. 
The considered values of concentration parameters are 0 5 2 5 7. , , ,   and 
0 2 0 4 0 6 0 8 0 99. , . , . , . , .   for samples generated from von Mises and wrapped 

Cauchy distributions, respectively.  
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The samples are generated in such a way that 1n  of the observations come from 
the distribution, i.e.  0vM ,  or  0WC , , and the remaining one observation comes 

from  vM ,   or  WC ,  , respectively, where   is the degree of contamination 

and 0 1  . Then A  statistic and LOF are calculated as given in Sections 2 and 3, 
respectively, where the value of k  is fixed as the rounded up median for each sample 
size.  

Figure 1 shows that LOF and A  statistic are compatible in the case of samples from 
von Mises distribution, while LOF outperforms the A  statistic in the case of samples 
from wrapped Cauchy distribution. The full results of the simulation study can be 
requested from the author. Simulation results show that two measures of performance, 
namely 1P  and 3P  are almost the same, thus the values of 1 3P P  are always close 
to zero. The performance of outlier-detection methods is highly dependent on the 
circular distribution. In general, the methods of outlier-detection for samples from von 
Mises distribution perform significantly better than the case of wrapped Cauchy 
distribution. This may referred to the heavy tailed property of wrapped Cauchy 
distribution. 

 

Figure 1. Performance of A  statistic and LOF, for n =50,  =0.8 and  =5 

The performance of the LOF method has a direct relationship with the 
concentration parameter of circular sample as partially shown in Figure 2, while it has 
an inverse relationship with the sample size as shown in Figure 3. Moreover, in all 
considered cases, the performance has a direct relationship with the degree of 
contamination,  . 
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Figure 2. Performance of LOF, for samples of size n =50 from von Mises distribution 

 

 

Figure 3.  Performance of LOF, for samples with concentration parameter  =5 from von 
Mises distribution  

5. Practical examples 

For illustration purposes, this section revisits two common circular datasets, which 
have been analysed in the context of outliers in circular data. 
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5.1. Frogs Data 

Directions taken by 14 frogs after 30 hours of enclosure within a dark 
environmental chamber (Fergusion et al. 1967) are illustrated in Figure 4. The circular 
mean direction is 146 104.  and the estimated concentration parameter is 2.18. 
 

 
Figure 4. Circular plot of the frogs’ directions, ( n =14) 

 
The results of applying seven discordancy tests on frogs' directions show that all 

tests except C  statistic are consistent on identifying observation number 14 with value 
316  (5.515 radians) as an outlier, which is apparent in Figure 4. 

Table 1. Results of outlier-detection tests for frogs’ directions, ( n =14) 

Statistic Statistic value Observation Cut-off point Decision 

C  0.182 14 0.20 Not outlier 

D  0.78 14 0.74 Outlier 

M  0.52 14 0.50 Outlier 

A  0.92 14 0.83 Outlier 

1G  2.03 14 1.69 Outlier 

2G  2.16 14 2.05 Outlier 

LOF  1.88 14 1 Outlier 

 
The values of LOF at k =10 are presented in Figure 5. It is shown that the LOF for 

all observations except the observation number 14 is close to one, which means that 
they are closed to each other and have similar density as their neighbours, while the 
LOF value of the observation number 14 is 1.88, which reveals that it has lower density 
than its neighbours.  
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Figure 5. LOF for frogs' directions, k =10 

5.2. Eye Data 

Mohamed et al. (2016) considered the angle of posterior corneal curvature for 23 
glaucoma patients as presented in Figure 6. The circular mean direction is 92  (1.61 
radians) and the estimated concentration parameter is 6.84. 

 

 
Figure 6.  Circular plot of posterior corneal curvature, ( n =23) 

 
The results of applying discordancy tests on eye data show that only M statistic, 

2G  and LOF at k =17 identified the observation number 17 as an outlier. Moreover, 
only 2G  and LOF  identified the observation number 10 as an outlier. This reveals the 
weakness of most existing outlier-detection methods in the case of multiple outliers, 
which are apparently outliers from Figure 6. 
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Table 2. Results of outliers detection tests for eye dataset, ( n =23) 

Statistic Statistic value Observation Cut-off point Decision 

C  0.02 17 0.03 Not outlier 
D  0.04 17 0.18 Not outlier 
M  0.31 17 0.12 Outlier 
A  0.28 17 0.32 Not outlier 

2G  0.78 17 0.67 Outlier 

2G  0.68 10 0.67 Outlier 
LOF  2.10 17 1 Outlier 
LOF  1.97 10 1 Outlier 

The values of LOF  at k =17 are presented in Figure 7. It is shown that the LOF  
for all observations except the observation numbers 17 and 10 is close to one, which 
means that they are closed to each other and have similar density as their neighbours. 
On the other hand, the LOF  values for the observation numbers 17 and 10 are 2.10 and 
1.97, respectively, which reveals that they have lower density than their neighbours. 
Furthermore, the observation number 23 has a slightly high value of LOF and equals 
1.36. 

 
Figure 7. LOF for eye data, k =17 

 

6. Conclusions 

The presentation of angles in circular data as pairs of Cartesian coordinates gives a 
chance to use the LOF method for outlier detection. The LOF is a density-based method 
compared to the existing distribution-based methods. Furthermore, it does not 
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consider being an outlier as a binary property, while it gives the degree of being 
outlying.  

The LOF performance is compatible with A  test and then it outperforms the other 
tests of discordancy. The performance of the LOF has a direct relationship with the 
degree of contamination and concentration parameter, while it has an inverse 
relationship with the sample size.  

The two considered practical examples illustrated the ability of LOF in dealing with 
multiple outliers compared to other existing outlier-detection methods.  

The findings of this article pave the way to detect outliers in multivariate circular 
samples, either by representing their variates into pair coordinates, or by defining 
possible circular distances. 
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A New Quasi Sujatha Distribution 

Rama Shanker1, Kamlesh Kumar Shukla2 

ABSTRACT  

The aim of this paper is to introduce a new quasi Sujatha distribution (NQSD), of which the 
following are particular cases: the Sujatha distribution devised by Shanker (2016 a), the size-
biased Lindley distribution, and the exponential distribution. Its moments and moments-
based measures are derived and discussed. Statistical properties, including the hazard rate 
and mean residual life functions, stochastic ordering, mean deviations, Bonferroni and 
Lorenz curves and stress-strength reliability are also analysed. The method of moments and 
the method of maximum likelihood estimations is discussed for estimating parameters of 
the proposed distribution. A numerical example is presented to test its goodness of fit, which 
is then compared with other one-parameter and two-parameter lifetime distributions. 
Key words: Sujatha distribution, quasi Sujatha distribution, moments, reliability properties, 
stochastic ordering, stress-strength reliability, estimation of parameters, goodness of fit.  

1. Introduction 

The Sujatha distribution, introduced by Shanker (2016 a), is defined by its 
probability density function (pdf) and cumulative distribution function 
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This distribution has been introduced for modelling lifetime data from engineering 
and biomedical science and it has been shown by Shanker (2016a) that it gives better fit 
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than both exponential and Lindley (1958) distributions. It is a convex combination of 
exponential   , gamma  2,  and gamma  3, distributions.  

The first four moments about origin of the Sujatha distribution (1.1) are obtained as 
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The central moments of the Sujatha distribution (1.1) are obtained as   

     
 

4 3 2

2 22 2

4 18 12 12

2

   
  

   


 
 

     
 

6 5 4 3 2

3 33 2

2 6 36 44 54 36 24

2

     


  

     


 
 

 
 

8 7 6 5 4 3 2

4 44 2

3 3 24 172 376 736 864 912 480 240

2

       


  

       


 
. 

Shanker (2016a) studied some of its important properties including skewness, 
kurtosis, index of dispersion, hazard rate function, mean residual life function, 
stochastic ordering, mean deviations, Bonferroni and Lorenz curves and stress-strength 
reliability. Shanker (2016a) discussed the estimation of parameter using maximum 
likelihood estimation and discussed the applications of the Sujatha distribution for 
modelling lifetime data from engineering and biomedical sciences. Shanker (2016b) has 
also obtained a Poisson mixture of the Sujatha distribution named “Poisson-Sujatha 
distribution (PSD)” and discussed its various properties, estimation of parameter and 
applications for counts data. Further, Shanker and Hagos (2016a, 2015) have obtained 
the size-biased and zero-truncated version of PSD, discussed their statistical properties, 
estimation of their parameter, and applications for modelling data which structurally 
excludes zero-counts. Shanker and Hagos (2016b) have a detailed and critical study on 
applications of zero-truncated Poisson, Poisson-Lindley and Poisson-Sujatha 
distributions. 

Recently Shanker (2016 c) has introduced a quasi Sujatha distribution (QSD) 
having pdf and cdf                 
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It can be easily verified that the Sujatha distribution and the size-biased Lindley 
distribution (SBLD) are particular cases of QSD at   and 0  , respectively. 
Also, if   , QSD reduces to exponential distribution. Shanker (2016c) has studied 
its various mathematical and statistical properties including coefficient of variation, 
skewness, kurtosis, index of dispersion, hazard rate function, mean residual life 
function, stochastic ordering, mean deviations, Bonferroni and Lorenz curves and 
stress-strength reliability. The estimation of the parameters using both the maximum 
likelihood estimation and the method of moments has also been discussed and the 
goodness of fit has been discussed with a real lifetime data and compared with several 
well-known distributions.  

The main motivation for searching a new two-parameter quasi Sujatha distribution 
(NQSD) is that  the Sujatha distribution is a particular case of QSD whereas both 
Sujatha and exponential distributions are particular cases of NQSD and hence it is 
expected and hoped that NQSD will provide a better fit than QSD, Sujatha and 
exponential distributions. 

In this paper, a new two-parameter quasi Sujatha distribution (NQSD) of which 
one-parameter Sujatha distribution introduced by Shanker (2016a) and exponential 
distribution are particular cases, has been proposed. Its raw moments and central 
moments have been obtained and coefficients of variation, skewness, kurtosis and index 
of dispersion have been discussed. Some of its important statistical properties including 
hazard rate function, mean residual life function, stochastic ordering, mean deviations, 
Bonferroni and Lorenz curves, and stress-strength reliability have also been discussed. 
The estimation of the parameters has been discussed using both the method of 
moments and the maximum likelihood estimation. A numerical example has been 
given to test the goodness of fit of the distribution and the fit has been compared with 
other well-known one-parameter and two-parameter lifetime distributions. 

2. A New Quasi Sujatha Distribution 

A two-parameter new quasi Sujatha distribution (NQSD) having parameters   and 
  is defined by its pdf and cdf 
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It can be easily verified that the Sujatha distribution and exponential distribution 
are particular cases of NQSD at   and 0  respectively. Like QSD,  if  
, NQSD reduces to exponential distribution. Further, it can be easily shown that NQSD 
(2.1) is a convex combination of exponential    gamma  2, and gamma  3,
distributions. We have 
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Graphs of the pdf of NQSD for varying values of parameters   and  have been 
presented in Figure 1. Graphs of the cdf of NQSD for varying values of parameters   
and  have also been presented in Figure 2.  

 

 
Figure 1. Graphs of the pdf of NQSD for varying values of parameters   and   
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Figure 2. Graphs of the cdf of NQSD for varying values of parameters   and   

3. Moments and Related Measures 

Using the mixture representation (2.3), the r th moment about origin of NQSD 
(2.1) can be obtained as 
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The first four moments about origin of NQSD are thus obtained as 
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Using the relationship between central moments and moments about origin, 
central moments of NQSD are obtained as     
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The coefficient of variation  .CV , coefficient of skewness  1 , coefficient of 

kurtosis  2 and index of dispersion    of NQSD are given by 
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Note that at   and 0  , these statistical constants reduce to the 

corresponding statistical constants of Sujatha and exponential distributions. Graphs for  

C.V, 1 , 2  and   for varying values of parameters and   have been drawn 
and presented in Figure 3.  
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Figure 3. Graphs of C.V, C.S, C.K and I.D of NQSD for varying values of parameters   and   

4. Hazard Rate Function and Mean Residual Life Function 

The hazard rate function (also known as the failure rate function) and the mean 
residual life function of a continuous random variable X  having pdf and cdf  f x  

and  F x  are respectively defined as  

          
 0

lim
1x

P X x x X x f x
h x

x F x 

   
 

 
                                       (4.1) 

and 

     1
 1

1 x
m x E X x X x F t dt

F x


                                      (4.2) 

The corresponding  h x and  m x of NQSD (2.1) are obtained as  

                                  
   

3 2

32 2
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h x

x x

   

     

 


    
                                (4.3) 
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It is obvious that    
4

3
0 0

2
h f


  

 
 

and    
3

13

2 6
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2
m

   
   

   
 

. 

Graphs of  h x  of NQSD for varying values of parameters   and   are presented in 

Figure 4, whereas graphs of  m x  of NQSD for varying values of parameters   and 

are presented in Figure 5. Graphs of  h x  are either monotonically increasing or 

decreasing for varying values of parameters. Graphs of  m x  are monotonically 
decreasing for varying values of parameters.  

 

 

Figure 4. Graphs of  h x  of NQSD for varying values of parameters   and   
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Figure 5. Graphs of  m x  of NQSD for varying values of parameters   and   

5. Stochastic Orderings 

Stochastic ordering of positive continuous random variables is an important tool 
for judging their comparative behaviour. A random variable X is said to be smaller 
than a random variable Y in the:  

(i) stochastic order  stX Y if    X YF x F x for all x  

(ii) hazard rate order  hrX Y if    X Yh x h x  for all x  

(iii) mean residual life order  mrlX Y if    X Ym x m x for all x  

(iv) likelihood ratio order  lrX Y if 
 
 

X

Y

f x

f x
 decreases in x . 

The following results due to Shaked and Shanthikumar (1994) are well known for 
establishing stochastic ordering of continuous distributions 

                                   lr hr mrlX Y X Y X Y                                                 

                                                       
stX Y
  
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The NQSD is ordered with respect to the strongest ‘likelihood ratio ordering’ as 
established in the following theorem: 
 
Theorem: Let X   NQSD  1 1,   and Y   NQSD  2 2,  . If 1 2 1 2and      

or 1 2 1 2and     , then lrX Y and hence hrX Y , mrlX Y and stX Y
. 
 
Proof: We have  
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Thus, if 1 2 1 2and      or 1 2 1 2and     ,  
 

1 1

2 2

; ,

; ,
ln 0X

Y

f x

f x

d

dx
 
   . This 

means that lrX Y and hence hrX Y , mrlX Y and stX Y . This shows 
flexibility of NQSD over the Sujatha distribution introduced by Shanker (2016 a) and 
exponential distributions. 

6. Mean Deviations 

The amount of scatter in a population is measured to some extent by the totality of 
deviations usually from the mean and the median, known as the mean deviation about 
the mean and the mean deviation about the median, and is defined by 

   1

0

X x f x dx 


   and     2

0

X x M f x dx


  , respectively, where 

 E X   and  Median M X . The measures  1 X  and  2 X can be 
calculated using the following simplified relationships 

                             1

0

X x f x dx x f x dx
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
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                                       
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and  
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Using pdf  (2.1) and expression for the mean of NQSD, we get    
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(6.4)    
Using expressions from (6.1), (6.2), (6.3) and (6.4), the mean deviation about mean

 1 X  and the mean deviation about median  2 X  of NQSD are obtained as 

 
    

 
3 2

1 3

2 1 2 2 1 6

2

e
X

       


   

    


 
                   (6.5) 



64                                                                                                            R. Shanker , K. K. Shukla: A New Quasi … 

 

 

 

   
 

 

4 3 2 3 2 2

2 3

1 3 2
2

6 2 6

2

M
M M M M M

e
M

X


      

   
 

   


      
 
     

 
    (6.6) 

7. Bonferroni and Lorenz Curves 

The Bonferroni and Lorenz curves (Bonferroni, 1930) and Bonferroni and Gini 
indices have applications not only in economics to study income and poverty, but also 
in other fields like reliability, demography, insurance and medicine. The Bonferroni 
and Lorenz curves are defined as 
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 and  
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(7.2) 
respectively or equivalently  

                                 1
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1
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B p F x dx
p

                                                                       (7.3) 

and                           1

0

1
p

L p F x dx


                                                                          (7.4) 

respectively, where  E X   and  1q F p . 

The Bonferroni and Gini indices are thus defined as 

                                      
1
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1B B p dp                                                                    (7.5) 

and                                         
1

0

1 2G L p dp                                                                  (7.6) 

respectively. 
 
 
 



STATISTICS IN TRANSITION new series, September 2020 

 

65

Using pdf of NQSD  (2.1), we get  
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            (7.7) 

Now, using equation (7.7) in (7.1) and (7.2), we get  
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                                           (7.8) 

and     
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               (7.9) 

Now, using equations (7.8) and (7.9) in (7.5) and (7.6), the Bonferroni and Gini 
indices of QSD are thus obtained as 
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                 (8.11) 

8. Stress-Strength Reliability 

The stress-strength reliability describes the life of a component which has random 
strength X that is subjected to a random stress Y . When the stress applied to it exceeds 
the strength, the component fails instantly and the component will function 
satisfactorily until X Y . Therefore,  R P Y X  is a measure of component 
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reliability and in the statistical literature it is known as stress-strength parameter. It has 
wide applications in almost all areas of knowledge especially in biomedical sciences and 
engineering.  

Let X and Y be independent strength and stress random variables having NQSD 
(2.1) with parameter  1 1,   and  2 2,   respectively. Then, the stress-strength 

reliability R of NQSD can be obtained as 
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It can be easily verified that the above expression reduces to the corresponding 

expression for the Sujatha distribution and exponential distribution at 

 1 1 2 2,     and  1 2 0   .   
 

9. Estimation of Parameters 

9.1. Method of Moments Estimates (MOME) 

Since NQSD (2.1) has two parameters to be estimated, the first two moments about 
origin are required to estimate its parameters. Equating the population mean to the 
sample mean, we have 
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Again, replacing the second population moment with the corresponding sample 

moment, we have 
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                                                                                           (9.1.2) 

 
Equations (9.1.1) and (9.1.2) give the following cubic equation in   

                          3 2
2 24 2 10 1 12 0m m x x                                 (9.1.3) 

Solving equation (9.1.3) using any iterative methods such as the Newton-Raphson 
method, the Regula-Falsi method or the Bisection method, the method of moments 
estimate (MOME)  of   can be obtained, and substituting the value of  in equation 
(9.1.1) MOME  of  can be obtained as 
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9.2. Maximum Likelihood Estimates (MLE) 

Let  1 2 3, , , ... , nx x x x  be a random sample from NQSD (2.1). The likelihood 

function L of (2.1) is given by 
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The natural log likelihood function is thus obtained as 
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The maximum likelihood estimates (MLEs) ̂  and ̂  of   and   are then the 
solutions of the following log likelihood equations: 
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where x is the sample mean. 

These two natural log likelihood equations do not seem to be solved directly 
because they are not in closed forms. However, Fisher’s scoring method can be applied 
to solve these equations. We have 
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The following equations can be solved for  MLEs  ̂  and ̂  of   and  of NQSD 
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where 0 and 0 are the initial values of   and  , respectively, as given by the method 

of moments. These equations are solved iteratively until sufficiently close values of ̂  
and ̂  are obtained.  

10. An Illustrative Example 

A numerical example of real lifetime data has been presented to test the goodness 
of fit of NQSD over other one-parameter and two-parameter lifetime distribution. 
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The following data represent the tensile strength, measured in GPa, of 69 carbon fibres 
tested under tension at gauge lengths of 20mm, available in Bader and Priest (1982) 
1.312   1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944 1.958 1.966 1.997    
2.006 2.021 2.027 2.055 2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270  
2.272 2.274 2.301 2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490  
2.511 2.514 2.535 2.554 2.566 2.570 2.586 2.629 2.633 2.642 2.648 2.684  
2.697 2.726 2.770 2.773 2.800 2.809 2.818 2.821 2.848 2.880 2.954 3.012  
3.067 3.084 3.090 3.096 3.128 3.233 3.433 3.585 3.585  

 
For this data set, NQSD has been fitted along with one-parameter exponential, 

Lindley and Sujatha distributions and two-parameter QSD. The ML estimates of 
parameters, values of 2 ln L , AIC (Akaike Information Criterion), AICC (Akaike 
Information Criterion Corrected), BIC (Bayesian Information Criterion) and K-S 
Statistic (Kolmogorov-Smirnov Statistic) for the considered data set have been 
computed and presented in Table 1.  The formulae for computing AIC, AICC, BIC and 
K-S Statistic (Kolmogorov-Smirnov Statistic) are as follows:  

2 ln 2AIC L k   ,    
 

 
2 1

1

k k
AICC AIC

n k


 

 
,    2ln lnBIC L k n   ,  and  

   0- Sup n
x

K S F x F x  , where k  is the number of parameters involved in the 

respective distributions, n  is the sample size and  nF x is the empirical distribution 

function. The distribution corresponding to the lower values of 2 ln L , AIC, AICC, 
BIC and K-S statistic is the best fit distribution.  

Table 1: MLE’s, - 2ln L, AIC, AICC, BIC, and K-S of the fitted distributions  

Distributions 
ML Estimates 

2 ln L  AIC AICC BIC KS 
̂  ̂  

NQSD 1.0693 40.01604 199.36 205.36 205.54 205.36 0.332 
QSD 0.44259 87.0494 264.72 268.72 268.90 270.72 0.448 

Sujatha 0.93611 ------ 221.60 223.60 223.66 224.60 0.364 

Lindley 0.65450 ------- 238.38 240.38 240.44 241.37 0.401 

Exponential 0.40794 -------- 261.73 263.73 263.79 264.73 0.448 
 

It is obvious from the above table that NQSD is the best distribution among the 
considered distributions for modelling the considered lifetime data from engineering. 
Therefore, NQSD can be one of the important lifetime distributions for lifetime data 
from engineering. 
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11. Concluding Remarks 

A two-parameter new quasi Sujatha distribution (NQSD), which includes one-
parameter Sujatha distribution and exponential distribution as particular cases, has 
been proposed and studied. Its mathematical properties including moments, coefficient 
of variation, skewness, kurtosis, index of dispersion, hazard rate function, mean 
residual life function, stochastic ordering, mean deviations, Bonferroni and Lorenz 
curves, and stress-strength reliability have been discussed. The method of moments and 
the method of maximum likelihood estimation have also been discussed for estimating 
its parameters. Finally, a numerical example of real lifetime data set has been presented 
to test the goodness of fit of NQSD over one-parameter exponential, Lindley, Sujatha 
distributions and two-parameter QSD. 
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Power Size Biased Two-Parameter Akash Distribution 
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ABSTRACT  

In this paper, the two-parameter Akash distribution is generalized to size-biased two-
parameter Akash distribution (SBTPAD). A further modification to  SBTPAD is introduced, 
creating the power size-biased two-parameter Akash distribution (PSBTPAD). Several  
statistical properties of PSBTPAD distribution are proved. These properties include the 
following: moments, coefficient of variation, coefficient of skewness, coefficient of kurtosis, 
the maximum likelihood estimation of the distribution parameters, and finally order 
statistics. Moreover, plots of the density and distribution functions of PSBTPAD are 
presented and a reliability analysis is considered. The Rényi entropy of PSBTPAD is proved 
and the application of real data is discussed. 
Mathematics Subject Classification: 62E10, 62F15. 
Key words: Akash distribution, two-parameter Akash distribution, size-biased distribution, 
moments, coefficient of variation, coefficient of skewness, coefficient of kurtosis, maximum 
likelihood estimation, entropy. 

1.  Introduction 

Recently, it has been noted that there has been an increasing interest in suggesting 
new flexible distributions for explaining and fitting data in different fields of science 
such as medicine, pharmacy, environment and so on. Many authors have introduced 
several types of new flexible distributions such as weighted distributions. The weighted 
distributions are quite flexible for model specification and data interpretation.  
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Fisher (1934) was the first who introduced the concept of weighted distributions. 
He studied how the verification methods can affect the form of the distribution of 
recorded observations. Also, see Rao (1965), Patil and Rao (1978), Gupta and Keating 
(1986), Gupta and Kirmani (1990), and (Oluyede 1999).  

For a non-negative continuous random variable Y with probability density 
function (pdf) ( )f y , the pdf of the weighted random variable wY  is defined as 

 
( ) ( ) ( ) ( )

( )
[ ( )]w

w

w y f y w y f y
f y

E w y 
  ,                                                                    (1) 

where ( )w y  is a non-negative weight function. A special case of Equation (1) arises 
when the weight function is ( )w y y . In this case the distribution is known as a size-
biased distribution of order   with pdf given by 

( )
( )

( )

y f y
f y

y f y dy



 



, 

where for 1   or 2, the resulting are known as the length-biased and area-biased 
distributions, respectively. 
 

Saghir et al. (2017) proposed several weighted distributions. A size biased Ishita 
distribution is introduced by Al-Omari et al. (2019) as a generalization of the Ishita 
distribution. Haq et al. (2017) proposed Marshall-Olkin length-biased exponential 
distribution. Al-Omari and Alsmairan (2019) suggested a length-biased Suja 
distribution as a modification of the Suja distribution, which is suggested by Shanker 
(2017). 

Shanker (2015) suggested a one-parameter Akash distribution (AD). Then, 
Shanker and Shukla (2017) generalized the AD to suggest a two-parameter Akash 
distribution (TPAD) with pdf  given by 

                               
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and a cumulative distribution function (cdf) defined as 
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The mean of TPAD is given by 
2

2

6
( ) .
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E Y


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
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
 

Abebe and Shanker (2018) suggested a discrete Akash distribution. Shanker et al. 
(2018) proposed a two-parameter Poisson-Akash distribution. Shanker et al. (2016) 
considered Poisson-Akash distribution. Shanker et al. (2018) proposed a generalized 
Akash distribution. Tesfalem et al. (2019) suggested a weighted Quasi Akash 
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distribution. Shanker (2016) suggested Qausi Akash distribution. Shanker and Shukla 
(2017) introduced the power Akash distribution. 

The main objective of this study is to add a more flexibility distribution for fitting 
real data in the field. This paper is organized as follows: in Section 2, the pdf and the cdf 
of SBTPAD and PSBTPAD are presented as well as the shapes of the distribution are 
illustrated for various parameters. In Section 3 we present some statistical properties of 
the PSBTPAD, including the rth  moment, mean, variance, coefficients of variation, 
skewness and kurtosis. Also, some simulations results are presented to illustrate these 
properties. The maximum likelihood estimators of the distribution parameters are 
derived in Section 4. The distributions of order statistics and reliability analysis are 
introduced in Section 5. An application of real data set is presented in Section 6 for 
illustration. Finally, the main results and some conclusions are provided in Section 7. 

2. Suggested distributions 

This section presents the pdf and cdf of the suggested distributions. A random 
variable Y  is said to have a size biased two-parameter Akash distribution (SBTPAD) if 
its probability density function is given by 

                 
 4 2

2
( ; , ) , 0, , 0,
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                         (4) 

and a cumulative distribution function is in the form 
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             (5) 

It is easy to derive the pdf given in Equation (4) by utilizing Equations (1) and the 
pdf of the TPAD given in (2),  with the mean of the TPAD.  
 

In this paper we modified the SBTPAD to a power size biased two-parameter Akash 
distribution (PSBTPAD) Taking the power transformation 1/X Y   in (4) a pdf of a 
random variable X  can be defined as  

 
4

2 1 2
2

( ; , , ) , 0, , , 0.
6PSBTPAD

xf x x x e x
        


    


                        (6) 

We would call the density in (6) as the power size biased two-parameter Akash 

distribution (PSBTPAD). It is easy to prove that 
0

( ; , , ) 1f x dx  


 .  

Shukla and Shanker (2018) proposed a power Ishita distribution. Ghitany et al. 
(2013) introduced power Lindley distribution. Al-Omari et al. (2019) proposed a power 
length-biased Suja distribution. The corresponding pdf of the PSBTPAD is 
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Figures 1 and 2 illustrate the shape of the pdf and cdf of the PSBTPAD for various 
values of the distribution parameters.   
 

 

Figure 1.  The pdf of PSBTPAD random variable X for 1,2,3,4,5  , 1.7   and 0.5   

 

 

Figure 2.  The cdf of PSBTPAD random variable X for 1,2,3,4,5  , 1.7   and 0.5   

 
Based on Figure 1, it can be seen that the PSBTPAD is asymmetric and skewed to 

the right. 
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3. Statistical properties 

This section presents the rth moment, mean, variance, coefficients of variation, 
skewness and kurtosis of the PSBTPAD. Also, some simulations for these properties are 
provided. 

3.1. Moments of the PSBTPAD 

Theorem 2: Let ~ ( ; , , )PSBTPADX f x    , then the rth  moment of X about the origin is 
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Proof: By the expectation definition of the rth moment we have 
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Based on Equation (8), it is simple to deduce the first, second, third and fourth 
moments of the BTPAD, respectively, as 
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where  2 6    . Hence, the variance of PSBTPAD is given by 
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3.2.  The coefficient of skewness 

The coefficient of skewness determines the degree of skewness of SBTPAD. It is 
given by: 
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where  2 6     and   1
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3.3. The coefficient of kurtosis 

The coefficient of kurtosis measures the flatness of the distribution. The coefficient 
of kurtosis for PSBTPAD is defined as 
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3.4.  The coefficient of variation 

The coefficient of variation of the PSBTPAD is given by 
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where 0, 0.    

Theorem 2: Let ~ ( ; , , )PSBTPADX f x    , then the harmonic mean of X is 
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To investigate the behaviour of these measures, we calculate some values of 
, ,PSBTPAD PSBTPAD   ,PSBTPADCv PSBTPADSk  and PSBTPADKu  of the PSBTPAD for ( 5  ,

3  ), ( 5  , 7  ), for various values of   and the results are presented in Tables 
1 and 2, respectively. 

Table 1. The mean, variance, coefficients of variation, skewness and kurtosis for the SBTPAD 
distribution for some values of   with 5   and 3   

  PSBTPAD  PSBTPAD  PSBTPADCv  PSBTPADSk  PSBTPADKu  

1 0.736221 0.187730 0.254991 0.080619 2.79987 

1.1 0.733241 0.186927 0.254933 0.085470 2.80863 
1.2 0.730675 0.186195 0.254826 0.089115 2.81627 
1.3 0.728442 0.185527 0.254690 0.091850 2.82290 
1.4 0.726482 0.184916 0.254536 0.093889 2.82868 
1.5 0.724746 0.184356 0.254373 0.095393 2.83371 
1.6 0.723200 0.183842 0.254206 0.096480 2.83809 
1.7 0.721813 0.183368 0.254039 0.097241 2.84192 
1.8 0.720562 0.182931 0.253873 0.097745 2.84528 
1.9 0.719427 0.182527 0.253711 0.098047 2.84822 
2 0.718395 0.182151 0.253553 0.098188 2.85080 

2.1 0.717450 0.181802 0.253400 0.098202   2.85308 
2.2 0.716583 0.181477 0.253253 0.098113 2.85509 
2.3 0.715784 0.181173 0.253111 0.097944 2.85687 
2.4 0.715045 0.180888 0.252974 0.097711 2.85844 
2.5 0.714361 0.180621 0.252843 0.097426 2.85984 
2.6 0.713725 0.180370 0.252717 0.097102 2.86107 
2.7 0.713132 0.180134 0.252596 0.096747 2.86218 
2.8 0.712578 0.179912 0.252480 0.096368 2.86315 
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Table 2.  The mean, variance, coefficients of variation, skewness and kurtosis for the SBTPAD 
distribution for some values of   with 5   and 7   

  PSBTPAD  PSBTPAD  PSBTPADCv  PSBTPADSk  PSBTPADKu  

1 0.869614 0.098748 0.113554 -0.35893 3.12901 
1.1 0.868112 0.098522 0.113490 -0.35521 3.13229 
1.2 0.866818 0.098309 0.113413 -0.35250 3.13574 
1.3 0.865692 0.098109 0.113330 -0.35056 3.13918 
1.4 0.864704 0.097922 0.113244 -0.34918 3.14253 
1.5 0.863829 0.097748 0.113157 -0.34824 3.14572 
1.6 0.863049 0.097587 0.113072 -0.34761 3.14874 
1.7 0.862350 0.097436 0.112989 -0.34725 3.15158 
1.8 0.861719 0.097296 0.112909 -0.34707 3.15424 
1.9 0.861147 0.097165 0.112832 -0.34705 3.15673 
2 0.860626 0.097042 0.112758 -0.34714 3.15906 

2.1 0.860150 0.096928 0.112687 -0.34732 3.16123 
2.2 0.859713 0.096821 0.112620 -0.34757 3.16326 
2.3 0.859310 0.096720 0.112555 -0.34787 3.16515 
2.4 0.858938 0.096625 0.112494 -0.34821 3.16693 
2.5 0.858593 0.096536 0.112435 -0.34859 3.16859 
2.6 0.858272 0.096452 0.112380 -0.34899 3.17015 
2.7 0.857973 0.096373 0.112326 -0.34940 3.17162 
2.8 0.857693 0.096298 0.112275 -0.34982 3.17300 

 
From Tables 1- 3 we can conclude the following: 

1. For fixed values of  , the values of PSBTPAD  and PSBTPADKu  of the PSBTPAD 
decrease as the values of   increase. 

2. The PSBTPADCv  values are about 0.25 when 5   and 3  , and it is about 0.11 
when 5   and 7  . 

3. The PSBTPADSk  values are about 0.098 for all the parameter values in Table 1 and 
about -0.35 in for the parameters in Table 2. This indicates that the shape of the 
PSBTPAD depends on the parameter values. 

4. Maximum likelihood estimation 

Let 1 2, ,..., nX X X  be a random sample of size n  from PSBTPAD with parameters 
0  , 0   and 0.  The maximum likelihood estimators for the parameters of 

PSBTPAD can be derived based on the likelihood function as 
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Then, the log likelihood function is given by 
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(14) 
Take the derivative of Equation (14) with respect to ,   and , respectively, as 
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Since there is no closed form solutions for the above system of equations, the MLEs 

of the PSBTPAD parameters  , ,  and   denoted as ̂ ,̂  and ˆ ,  respectively, can 

be obtained by solving the equations  , ,
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5.  Order statistics and reliability analysis 

Let 1 2, , ... mX X X  be a random sample of size m  from the power size biased two-
parameter Akash distribution. Also, let (1: ) (2: ) ( : ), ,...,m m m mX X X  denote the 
corresponding order statistics of the sample. The probability density function of the ith 
order statistic ( : )i mX  for 1 i m   is 

                   1
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By substituting the pdf and cdf of the PSBTPAD in Equation (18), the pdf of ( : )i mX  
is given by 

 

       
 

 
4 2 1 2

( : ) 2

!
( ; , , ) ,

6 ( ) ( 1)

x

i m

m x x e
f x

i i m

   
  



 


     
H                            (19) 

where 
       1

2 2

2 2

2, 4, 2, 4,
1

6 6
.

i m i

x x x x        

 

                       
   

H  

 
Based on Equation (19) the pdfs of smallest order statistic, (1: )mX  and largest order 

statistic, ( : )m mX , are respectively, given by 
 

 
     

 

1
4 2 1 2 2

(1: )
2

2, 4,
( ; , , ) ,

6

m
x

m m

m x x e x x
f x

        
  




        



(20) 
and  

   
      

 

1
4 2 1 2 2

: 2

1 2, 4, 6
; , ,

6

m
x

m m m

m x x e x x
f x

        
  




        



.(21) 
 
The reliability and hazard rate functions of the PSBTPAD random variable are 

given by 
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Figure (3) shows the reliability and hazard rate functions of the PSBTPAD with 
1,2,3,4,5  , 1.7   and 0.5  .  
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Figure 3.  The reliability and hazard rate functions PSBTPAD for 1,2,3,4,5  , 1.7   and 

0.5  . 

 
Figure (3) shows that the plots of the reliability and hazard rate functions of the 

PSBTAD are decreasing functions. 
 

The reversed hazard rate and odds functions of the PSBTAD, respectively, are 
defined as 
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Figure (4) represents the reversed hazard and odds functions of the PSBTPAD 

distribution with 1,2,3,4,5  , 1.7   and 0.5  .  
 

  
Figure 4. The reversed hazard and odds functions of the PSBTPAD for 1,2,3,4,5  , 1.7   

and 0.5  .  
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The mean residual life function is defined as 
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The Mills ratio of the PSBTAD is defined as 
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Plots of the Mills ratio of the PSBTAD are given in Figure (4) for various 
parameters. 
 

 

Figure 4. The Mills ratio of the PSBTPAD for 1,2,3,4,5  , 1.7   and 0.5   

6. Rényi Entropy 

The Rényi entropy (RE) of a random variable X  is a measure of variation of  

the uncertainty. The RE is defined as 
0

1
( ) log ( ) ,

1
RE f x dx



 
    

 0   and 

1  . The entropy can be used for performing a goodness fit test. For more about 
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entropy see, for example, Al-Omari and Zamanzade (2017, 2018) for goodness of fit for 
Laplace and logistic distributions, respectively; Zamanzade and Mahdizadeh (2017) for 
entropy estimation using ranked set sampling; Zamanzade (2014) for testing 
uniformity using new entropy estimators, and Zamanzade and Arghami (2011) for 
goodness-of-fit test with correcting moments of modified entropy estimator; Al-Omari 
and Haq (2019) for novel entropy estimators of a continuous random variables. 
 
Theorem 3: If ( ; , , )PSBTPADf xX    , the Rényi entropy of X is defined as   
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Proof: The Rényi entropy of the PSBTPAD can be obtained as  
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To investigate the behaviour of the PSBTPAD Rényi entropy, Tables 3 and 4 involve 

some Rényi entropy values of the PSBTPAD for some values of the distribution 
parameters.  
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Table 3. Rényi entropy values for the PSBTPAD with 2   , 9  and 2,3,...,46   

  ( )PSBTPADRE     ( )PSBTPADRE     ( )PSBTPADRE   
1 0.191233 17 0.037523 32 0.014837 
2 0.167737 18 0.034947 33 0.014018 
3 0.143430 19 0.032617 34 0.013246 
4 0.123293 20 0.030499 35 0.012515 
5 0.107162 21 0.028566 36 0.011823 
6 0.094186 22 0.026795 37 0.011167 
7 0.083608 23 0.025166 38 0.010544 
8 0.074857 24 0.023663 39 0.009951 
9 0.067515 25 0.022272 40 0.009387 

10 0.061276 26 0.020981 41 0.008849 
11 0.055914 27 0.019779 42 0.008336 
12 0.051260 28 0.018658 43 0.007845 
13 0.047184 29 0.017610 44 0.007376 
14 0.043585 30 0.016627 45 0.006928 
15 0.040386 31 0.015705 46 0.006497 

Table 4. Rényi entropy values for the PSBTPAD with 3  , 4  , 1.1  and 1,2,...,45   

  ( )PSBTPADRE     ( )PSBTPADRE     ( )PSBTPADRE   
1 0.56641 16 4.26337 31 5.36132 
2 1.11634 17 4.36373 32 5.41414 
3 1.62485 18 4.45843 33 5.46534 
4 2.03848 19 4.54806 34 5.51501 
5 2.37837 20 4.63313 35 5.56325 
6 2.66442 21 4.71409 36 5.61013 
7 2.91043 22 4.79132 37 5.65573 
8 3.12584 23 4.86514 38 5.70012 
9 3.31722 24 4.93583 39 5.74336 

10 3.48928 25 5.00366 40 5.78551 
11 3.64551 26 5.06884 41 5.82662 
12 3.78853 27 5.13158 42 5.86674 
13 3.92037 28 5.19205 43 5.90591 
14 4.04264 29 5.25040 44 5.94419 
15 4.15663 30 5.30678 45 5.98161 

Based on Table 3, we can say that the RE values approach zero for 2    and 
9  as   starts increasing from 2 up to 46. But from Table 4, the RE values are 

increasing as the values of   are increasing for fixed values of 3  , 4   and 
1.1 . 
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7. Application and goodness of fit  

In this section, the proposed PSBTPAD is applied to model data. We compare the fits 
of the PSBTPAD model with 
1)  Sushila distribution (SD) suggested Shanker et al. (2013): 
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2)  Akash distribution (AD) Shanker (2015): 
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3)  Size biased Akash distribution (SBAD): 
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4)  Two-parameters Akash distribution (TPAD) Shanker and Shukla (2017): 
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5)  Two-parameter quasi Akash distribution (TPQAD): 
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6)  Marshall-Olkin Esscher Transformed Laplace distribution (MOETL), Georgea and 
 Georgea (2013): 
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We considered  the negative maximized log-likelihood values (-MLL), Hannan-

Quinn Information Criterion (HQIC), Bayesian Information Criterion (BIC), Akaike 
Information Criterion (AIC), Consistent Akaike Information Criterion (CAIC) and 
Kolmogorov-Smirnov (K-S) test statistic. These measures are defined as 
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2 ( )BIC MLL iLog n    and  2 ( )( 2 ) ,HQIC ln ln n i MLL   
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where i  is the number of parameters and n  is the sample size. Also, the Kolmogorov-

Smirnov (KS) test is defined as ( ) ( ) ,n nKS Sup F x F x   where
1

1
( )

i

n

n x x
i

F x I
n 



   is 

the empirical distribution function and ( )F x  is the cumulative distribution function. 
In general, lesser values of the above measures indicate a better fit of the model to the 
data set. The data set  represent the strength data of glass of the aircraft window 
reported by Fuller et al. (1994). The data are as follows: 
 
18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.80, 26.69, 26.77, 26.78, 
27.05, 27.67, 29.90, 31.11, 33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 
37.09, 39.58, 44.045, 45.29, 45.381. 
 

Table 5. The -2LL, KS, P-value, AIC, CAIC, BIC, HQIC and the MLE based on the real data    

Model AIC CAIC BIC HQIC KS P-Value -2LL MLE 
AD 242.68 242.82 244.12 243.15 0.2987 0.0060 120.34 ̂  0.0971 
SD 256.48 256.91 259.35 257.42 0.3616 0.0004 126.24 ̂  0.1327 

SBAD 545.82 546.00 547.25 546.29 0.6472 3.4 e-13 271.91 ̂  0.1298 
        ̂  0.0086 

MOETL 278.57 279.00 281.44 279.51 0.4585 1.8 e-06 137.29 k̂  -0.0262 
        ̂  -1.2363 

TPAD 244.56 244.99 247.43 245.50 0.2902 0.0083 120.28 ̂   0.0959 
        ̂   0.3316 

TPQAD 238.77 239.20 241.64 239.70 0.4520 2.7 e-06 117.38 ̂  0.0904 
        ̂  11.7621 

PSBTPAD 215.84 216.72 220.14 217.24 0.1074 0.8295 104.92 ̂  0.0052 
        ̂  0.5914 
        ̂  1.9242 

Accordingly, the PSBTPAD is the appropriate model for fitting the data since it has 
the smallest values of AIC, CAIC, BIC, HQIC and KS with larger P-value as compared 
to the competitive models considered in this study. 

7. Conclusions 

In this paper, we proposed a new continuous distribution which generalizes the size 
biased two-parameter Akash distribution. The distribution is named  power size biased 
two-parameter Akash distribution. Various statistical properties of the PSBTPAD are 
derived and discussed such as the moments, coefficient of variation, coefficient of 
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skewness, coefficient of kurtosis and the distribution of order statistics. The model 
parameters are estimated using the maximum likelihood estimation procedure. Finally, 
the distribution is fitted to real data.  The new distribution is found to provide a better 
fit than its competitors used in this study. 
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Statistical Properties and Estimation of Power-Transmuted 
Inverse Rayleigh Distribution 

Amal S. Hassan1, Salwa M. Assar2, Ahmed M. Abdelghaffar3 

ABSTRACT  

A three-parameter continuous distribution is constructed, using a power transformation 
related to the transmuted inverse Rayleigh (TIR) distribution. A comprehensive account of 
the statistical properties is provided, including the following: the quantile function, 
moments, incomplete moments, mean residual life function and Rényi entropy. Three 
classical procedures for estimating population parameters are analysed. A simulation study 
is provided to compare the performance of different estimates. Finally, a real data application 
is used to illustrate the usefulness of the recommended distribution in modelling real data. 
Key words: transmuted inverse Rayleigh, mean residual life function, maximum likelihood, 
percentiles. 
 

1.  Introduction 

Trayer (1964) introduced an important model for lifetime analysis, known as the 
inverse Rayleigh (IR) distribution. The probability density function (pdf) and the 
cumulative distribution function (cdf) of a random variable Y have the IR distribution 
with scale parameter   and are defined by: 

23( ; ) 2 ,y
IRf y y e  

  ; 0,y  0.   
and 

2

( ; ) ; , 0.y
IRF y e y 

   
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Voda (1972) studied some properties of the maximum likelihood (ML) of its scale 
parameter. Gharraph (1993) provided closed-form expressions for the mean, harmonic 
mean, geometric mean, mode and the median of the IR distribution. A lot of works 
have been done in the literature upon estimation of the IR distribution; the reader can 
refer to Mohsin and Shahbaz (2005), Soliman et al. (2010), Dey (2012), Sindhu et al. 
(2013), Fan (2015), Rasheed et al. (2015), Panwar et al. (2015), Rasheed and Aref (2016). 

In recent years, a number of extensions for the IR distribution have been developed 
using different methods of generalization by several authors, see, for example, beta IR 
distribution (Leao et al.; 2013), transmuted IR (TIR) distribution (Ahmed et al. 2014), 
modified IR (MIR) distribution (Khan; 2014), transmuted modified IR (TMIR) 
distribution (Khan and King; 2015) transmuted exponentiated IR (TEIR) distribution 
(Haq; 2015), Kumaraswamy exponentiated IR (KEIR) distribution (Haq; 2016), 
weighted IR distribution (Fatima and Ahmad; 2017) and odd Fréchet IR distribution 
(Elgarhy and Alrajhi; 2018). 

The power transformation (PT) methodology has been used in many statistical 
aspects, although PT has been first proposed by Box and Cox (1964). One of the most 
important uses of the PT methodology is developing new distributions out of well-
known distributions by adding an additional parameter, which gives several desirable 
properties and more flexibility in the form of the hazard rate and density functions. 
Also, it offers a more flexible model that can describe different types of real data. So, 
our objective in this study is developing a power transmuted inverse Rayleigh (PTIR) 
distribution out of the TIR distribution via the PT technique. Several statistical 
properties and different methods of estimation are discussed to obtain the point 
estimators regarding the proposed distribution.  

This paper is organized as follows. Section 2 introduces the formation of the PTIR 
model. The structural characteristics of the PTIR distribution are studied in Section 3. 
Section 4 discusses parameter estimators for the PTIR distribution based on ML, least 
squares and percentile methods. Simulation schemes are performed in Section 5. A real 
life data application illustrates the potential of the PTIR distribution compared with 
some other distributions in Section 6. The article ends with some concluding remarks. 

2. Model Formulation 

The TIR distribution is a generalization of the IR distribution using the quadratic 
rank transmutation map (see Ahmed et al. 2014). The cdf of the TIR distribution is 
given by: 

2 2

( ; , ) (1 ), ; 0, 1, 0.y y
TIRF y e e y      

         
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Here, we propose a new extension of the TIR distribution by considering 
1

X Y  , 
where the random variable Y follows the TIR distribution with parameters  and . 
The distribution function of a random variable X has the PTIR distribution and is 
defined as follows: 

2 2

( ; , , ) (1 ); , 0, 1, 0.x x
PTIRF x e e x

         
                         (1) 

The pdf of the PTIR distribution corresponding to (1) is given by 

2 2

2 1

2
( ; , , ) (1 2 ); , 0, 1, 0.x x

PTIRf x e e x
x

  


       
  

                     (2) 

A random variable X that follows the distribution (2) is denoted by X ~ ( , , ).    
Two special sub models can be obtained from (2) as follows. 

 For 0,  the pdf (2) reduces to a power IR (PIR) distribution as a new model. 
 For 0  and 1,  the pdf (2) reduces to the IR distribution.  
Some descriptive pdf plots of X have the PTIR distribution, which is illustrated 

in Figure 1 for some specific values of parameters. 
 

(a) 
 

(b) 

Figure 1.  The pdf plots of the PTIR distribution (a) for some choices of parameters (b) for
1.5, 1.0, =0.5     

 
From Figure 1, it can be shown that the shape of the PTIR distribution is unimodal. 

It can also be said that the distribution is positively skewed. 
Furthermore, the survival function and the hazard rate function (hrf) are given, 

respectively, by 
2 2

( ; , , ) 1 (1 ),x x
PTIRS x e e

      
       

 
and 



96                                                                        A. S. Hassan et al.: Statistical Properties and Estimation … 

 

 

 2 2 2 2 1
(2 1)( ; , , ) 2 (1 2 ) 1 (1 ) .x x x x

PTIRh x e x e e e
              

    
            

Some descriptive hrf plots of X are illustrated in Figure 2 for some specific values 
of parameters. 
 

 

Figure 2. The hrf plots of the PTIR distribution for some choices of parameters  

 
From Figure 2, it can be shown that the plots at several selected values of the 

parameters of hrfs have an increasing tendency.  
The reversed hrf and cumulative hrf are given, respectively, by: 

2 1( ; , , ) 2 ,PTIRr x x        

and 

 2 2

( ; , , ) ln 1 (1 ) .x x
PTIRH x e e

      
        

 
 
 

3.  Some Structural Properties 
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In this section some structural properties are provided. 

3.1. Quantile Function 

The quantile function of the PTIR distribution, say 
1( ) ( )Q u F u of X can be 

obtained by inverting (1) as follows: 

                     
    2 22

( ) ( )(1 ) 0,Q u Q ue e u
                                                    (3)                       

Factorizing (3) leads to 

                             
1

22
1 1 4

( ) ln ,
2

u
Q u


  




        
  
   

                               (4) 

where u has a uniform random variable on (0, 1). Also, (4) can be used in simulating 
PTIR random variables when the parameters ,   and   are known. Median (m) of 
the distribution is obtained by setting u = 0.5 in (4). Also, the first and third quantiles 
can be obtained by setting u = 0.25 and u = 0.75 in (4). 

3.2. Moments of the PTIR Distribution 

Moments are used to understand various characteristics of a frequency 
distribution. They have been applied in order to obtain mean, variance, in addition to 
some measures, such as skewness and kurtosis. 

The rth moment of X has the PTIR distribution and is derived by using (2) as follows: 

                         2 2

2 1
0

2
( ) (1 2 ) .r r x xE X x e e dx

x
 
 



  
 



 
   

  
                               (5) 

Let
 

2 ,z x    then the rth moment of the PTIR distribution is given by 

22 2 2 2

0 0 0

( ) 2 ,
r r r r

r z z zE X z e z e z e dz     
    

  
  

        
    

which is the gamma function, so the rth moment can be formed as follows:   

2 2( ) 1 1 2 ,
2

r r
r r

E X    


  
      

    
2 ,r  1,2,3,...r   

Hence, the mean and variance of the PTIR distribution are given, respectively, by 
1 1

2 21
1 1 2 ,

2
    


  

      
    

> 0.5,  

and 
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2
1 1 1 1

2 21 1
( ) 1 1 2 1 1 2 ,

2
Var X         

 

       
                           

 > 1.  

 
Measurement of skewness and kurtosis of the distribution is obtained from 

complete moments using the well-known relationship. Plots of the PTIR skewness and 
kurtosis for some selected values are displayed in Figure 3. 
 

 
 

Figure 3. The skewness and kurtosis of the PTIR for 0.5  and different values of  and   

 
From Figure 3, it can be seen that both the skewness and the kurtosis are decreasing 

functions of ,   and .  

3.3. Incomplete Moments  

The answer to many important questions in economics requires more than just 
knowing the mean of a distribution, but its shape as well. This is obvious not only in 
the study of econometrics and income distribution, but in other areas as well (see Butler 
and McDonald; 1989). 

The ths  incomplete moment of a random variable X has the PTIR distribution 
and is obtained as follows: 

2 2(2 1)

0

( ) 0
( ; , , ) 2 (1 2 )( ) .£

t
s x x

PT R

t s
s It f x dx x ex x e dx

 
 

     
 

  
   

  
    

 

Let 2 ,z x   then the ths  incomplete moment of the PTIR distribution is given 
by: 
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2

22 2 2
)

2
(£ ( ) 2 ,

s s s s
z z z

t

s t z e z e z e dz



   



  
  

  
 

    
 


 

which is the upper incomplete moments, so 

  2 2
2 2( ) 2

2
1 , 1 , 2 1 , ,

2 2 2
£ ( )

s

s

s
s s s

t
t t t

 
  

    
  

      
              

       

            (6)                       

where (.,x) is the upper incomplete moments. The first incomplete moment can be 
obtained by setting 1s   in (6). The mean deviation about the mean ( ) , denoted by

1
, and the mean deviation about the median, denoted by 

2 , can be obtained, respectively, 
as follows: 

 
2 2

1

1

(1)

1

2 2

1 1

2 2
2 2 2

2 2 ( )

1
    =2 1 1 2 (1 )

2

1 1 1 2
   2 1 , 1 , 2 1 , .

2 2

£

2

PTIRF

e e
 
 

   

 
  

   

    


    
     

 

 

    
                   

      
              

       

 

(1)2

1 1 1 1

2 2 2 2
2 2 2

2 ( ).

1 1 1 1 2
    = 1 1 2 2 1 ,    1 , 2 1 , .

2 2 2 2

£ m

m m m
   

  

 

       
   

 

                                                

 

Lorenz curve of the PTIR distribution is obtained as follows:                                       

(1)

1

2
2 2 2

1

2

1 1 1 2
1 , 1 , 2 1 ,

2 2 2
( ) .

( ) 1
1 1

£ ( )

2
2

F

t t tt
L t

E T


  



   
  

 


      
             
        

  
     
    

 

Bonferroni curve is obtained as follows: 

2 2

1

2
2 2 2

1

2

1 1 1 2
1 , 1 , 2 1 ,

2 2 2( )
( ) .

( ) 1
1 1 2 (1 )

2

F
F

t t

t t tL t
B t

F t
e e

 


  

 


   
  

   


 

      
             
        

   
               

 

3.4. Mean Residual Life Function 

Mean residual life (MRL) function has been used in estimating time to failure for 
one or more existing and future failure modes. For an example nowadays MRL or 
remaining useful life is recognized as a key feature in maintenance strategies, while the 
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real prognostic systems are rare in industry, even in mining industry. The thn moment 
of the residual life of X is given by 

    1
( ) ) ( t) ( )

( )
n n

n

t

m t E X t X t X f x dx
S t



      

Using the binomial expansion, for the term (X-t)n, then mn(t) will be 

                   0( t)

( )

) ( ) d .
( )

n
n j

j jn
n

t

n
t

m t E X X t
j

x f x x
S t




 


 


  


                            (7) 

The nth moment of the residual life is obtained by substituting (2) in (7) and using
2 ,z x   which leads to 

   
2

0

22

0(

1
( ) (1 2

)
) ,

jn j t

n
P

n j z z

jT IR

n
t z e e dz

j
m t

S t




  


  




         

   

which is the lower incomplete gamma function, so the nth moment of the PTIR 
distribution takes the following form: 

    22
2 2 2

0

1 2
( ) 1 , 1 , 2 1 , ,

2 2( 2)

jn j
n j

n
T R jP I

n j j j
t

j t t
m t

S tt


  

     
  





        
           

       


 



  

where  .,x is the lower incomplete moments. 

3.5. Rényi Entropy 

The Rényi entropy is used to quantify the diversity, uncertainty or randomness of 
a system; it has various fields of application such as ecology, statistics. Also, it is   
important in quantum information, where it can be used as a measure of entanglement.  

 1
( ) ln ,

1R

R

I X f x dx


    

   
  

where for some real values 0   and 1  , the entropy of the PTIR random variable 
X has the pdf (2) and is given by                   

2 2

(2 1)
0

1 (2 )
( ) ln 1 2 .

1
x x

RI X e e
x

 

 

 

  


 



            
  

So, 

 2 2

(2 1)
0

1 (2 ) 2
( ) ln 1 1 .

1 1
x x

RI X e e
x

 

 


 

 
 

 



            
  

By using binomial expansion and after simplification, the Rényi entropy is  
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4.  Parameter Estimation 

In this section, parameter estimators are obtained for the PTIR distribution based 
on ML, least squares (LS) and percentiles (PR) methods. 

4.1. Maximum Likelihood Estimators 

The ML estimator procedure is considered to estimate the population parameters 
of the PTIR distribution. The likelihood function is given by  

2 2(2 1)

1

(2 ) (1 2 ).i i

n
x xn

i
i

L x e e
 
 

  
 

 



    

The log likelihood function is given by 
2

2
1 1 1

ln ln 2 ln (2 1) ln ln(1 2 ).i

n n n
x

i
i i ii

L n n x e
x






    


  

                          (8)

 Therefore, the ML estimators of ,   and , which maximizes (8), satisfy the 
following normal equations. 
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                                     (11) 

Then ML estimators of the parameters ,  and denoted by , 
 

and 


 are 
determined by solving numerically the non-linear Equations (9), (10) and (11) after 
setting them equal to zeros simultaneously. 

4.2. Least Squares Estimators 

Let X1,...,Xn be a random sample of size n from the PTIR distribution. Suppose that 
X(1),...,X(n) denotes the corresponding ordered sample. Therefore, the LS estimators of 

,  and   say, ,   and   respectively, can be obtained by minimizing the following 
function with respect to ,   and .  
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Differentiating (12) with respect to ,  and   respectively, and equating with 
zeros, allows the LS estimators ,   and  to be obtained. 

4.3. Percentiles Estimators 

Let X1,…,Xn be a random sample of size n from the PTIR distribution. Suppose that 
X(1),...,X(n) denotes some estimates of  ( ) ; , ,iF x    then the estimates of ,   and 
can be obtained by minimizing the following equation: 

                    
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                          (13) 

with respect to ,   and .  In percentiles method, we estimate the unknown parameters 
,   and  by equating the sample percentile points with the corresponding population 

percentile points, where  1ip i n   is the estimates for  ( ) ; , , .iF x    Then the PR 

estimators of ,   and  say, ,  and   respectively, can be obtained by minimizing 
(13) with respect to ,   and .  

5.  Simulation Studies 

A numerical study is performed to evaluate and compare the performance of the 
estimates with respect to their absolute biases (ABs), and mean square errors (MSEs) 
for different sample sizes and for different parameter values. The numerical procedures 
are described as follows: 
Step (1): A random sample X1,…,Xn of sizes n=10,20,30,100 is selected. These random 
samples are generated from the PTIR distribution by using the transformation (4). 
Step (2): Four different set values of the parameters are selected as: 
Set 1 = ( 1.0,  0.5,  0.5     ), Set 2 =( 1.0,  0.5,  1.5     ), Set 3 = (

1.0,  0.5,  2     ) and Set 4 = ( 0.5,  0.7,  1      ). 

Step (3): The ML, LS and PR estimates of ,   and  are computed for each set of 
parameters and for each sample size. 
Step (4): Steps from 1 to 3 are repeated 5000 times for each sample size and for selected 
sets of parameters. Then, the ABs and MSEs of the ML, LS, PR estimates are computed.  
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Table 1. ABs and MSEs of the PTIR distribution for Set 1, Set 2, Set 3 and Set 4 

n Method    Properties 
Set 1 Set 2 

         

10 

ML MSE 0.0022 0.0055 0.0002 0.0017 0.0041 0.0013 
AB 0.0425 0.0667 0.0132 0.0365 0.0540 0.0319 

LS MSE 0.0048 0.0122 0.0006 0.0005 0.0027 0.0007 
AB 0.0695 0.1106 0.0241 0.0226 0.0516 0.0259 

PR MSE 0.0121 0.0397 0.0008 0.0060 0.0175 0.0038 
AB 0.1101 0.1993 0.0282 0.0774 0.1325 0.0619 

20 

ML MSE 0.0003 0.0006 0.0000 0.0010 0.0025 0.0007 
AB 0.0043 0.0016 0.0013 0.0282 0.0442 0.0240 

LS MSE 0.0015 0.0035 0.0002 0.0005 0.0016 0.0007 
AB 0.0386 0.0595 0.0128 0.0219 0.0396 0.0258 

PR MSE 0.0013 0.0039 0.0001 0.0031 0.0088 0.0018 
AB 0.0367 0.0622 0.0095 0.0554 0.0939 0.0428 

30 

ML MSE 0.0002 0.0004 0.0000 0.0005 0.0013 0.0005 
AB 0.0027 0.0010 0.0009 0.0177 0.0292 0.0181 

LS MSE 0.0011 0.0022 0.0001 0.0003 0.0011 0.0002 
AB 0.0333 0.0470 0.0116 0.0160 0.0326 0.0155 

PR MSE 0.0006 0.0014 0.0000 0.0013 0.0038 0.0008 
AB 0.0244 0.0375 0.0060 0.0360 0.0618 0.0275 

100 

ML MSE 0.0001 0.0002 0.0000 0.0001 0.0002 0.0001 
AB 0.0020 0.0058 0.0005 0.0035 0.0058 0.0048 

LS MSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
AB 0.0068 0.0070 0.0029 0.0009 0.0050 0.0006 

PR MSE 0.0001 0.0003 0.0000 0.0005 0.0014 0.0003 
AB 0.0098 0.0170 0.0040 0.0218 0.0373 0.0187 

(cont.) 

 

N Method    Properties 
Set 3 Set 4 

         

10 

ML MSE 0.0006 0.0013 0.0002 0.0002 0.0018 0.0000 
AB 0.0065 0.0176 0.0091 0.0053 0.0226 0.0023 

LS MSE 0.0156 0.0287 0.0044 0.0008 0.0071 0.0000 
AB 0.1248 0.1695 0.0663 0.0277 0.0844 0.0068 

PR MSE 0.0129 0.0222 0.0025 0.0004 0.0051 0.0006 
AB 0.1135 0.1489 0.0500 0.0189 0.0712 0.0240 

20 

ML MSE 0.0003 0.0006 0.0001 0.0001 0.0011 0.0000 
AB 0.0043 0.0017 0.0015 0.0040 0.0166 0.0007 

LS MSE 0.0054 0.0112 0.0016 0.0007 0.0061 0.0000 
AB 0.0734 0.1060 0.0401 0.0266 0.0784 0.0060 

PR MSE 0.0045 0.0093 0.0010 0.0001 0.0016 0.0001 
AB 0.0668 0.0967 0.0309 0.0115 0.0400 0.0108 

30 

ML MSE 0.0002 0.0005 0.0001 0.0001 0.0007 0.0000 
AB 0.0057 0.0076 0.0005 0.0027 0.0105 0.0009 

LS MSE 0.0040 0.0079 0.0012 0.0005 0.0041 0.0000 
AB 0.0632 0.0887 0.0340 0.0219 0.0637 0.0028 

PR MSE 0.0030 0.0059 0.0005 0.0001 0.0008 0.0000 
AB 0.0550 0.0766 0.0232 0.0086 0.0291 0.0061 

100 

ML MSE 0.0001 0.0002 0.0000 0.0000 0.0002 0.0000 
AB 0.0077 0.0101 0.0038 0.0009 0.0049 0.0015 

LS MSE 0.0004 0.0007 0.0001 0.0000 0.0002 0.0000 
AB 0.0206 0.0270 0.0106 0.0045 0.0124 0.0007 

PR MSE 0.0002 0.0003 0.0000 0.0000 0.0001 0.0000 
AB 0.0132 0.0170 0.0052 0.0046 0.0106 0.0002 
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The following conclusions can be observed on the properties of estimated parameters 
(see Table 1). 

 The MSEs of the ML, LS and PR estimates decrease as the sample sizes increase 
for selected sets of parameters. 

 The MSEs for the ML estimates of ,   and   take the smallest values compared 
to the MSEs of the LS and PR estimates in almost all of the cases. 

 The ABs of the ML estimates are smaller than the ABs of the PR and LS estimates 
in almost all of the cases especially at small and moderate sample sizes. 

 The ABs and MSEs of the ML, PR and LS estimates of   are smaller than the 
corresponding estimates of   and   in almost all of the cases. 

6.  Applications to Real Data 

In this section, a real data analysis is provided in order to assess the goodness-of-fit 
of the PTIR model comparing with some known distributions such as IR, TIR, PIR, 
MIR, TMIR, KEIR. 

In order to compare the models, criteria like maximized likelihood ( ˆ2  ), Akaike 
information criterion (AIC), consistent AIC (CAIC), Bayesian information criterion 
(BIC) and Hannan-Quinn information criterion (HQIC) are applied. The model with 
the minimum values of AIC, BIC, CAIC and HQIC is considered to be the best model 
to fit the proposed data.  

The data set represents the survival times (in days) of 72 guinea pigs infected with 
virulent tubercle bacilli, observed and reported by Bjerkedal (1960).  Plots of the 
estimated PTIR density and cumulative functions in addition to that of the compared 
models (TIR – PIR – IR – KEIR – MIR - TMIR) for the data set are displayed in Figure 4. 
 

 
Figure 4. Estimated pdfs and cdfs of models for the data set 
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It can be observed from Figure 4 that the PTIR distribution is the most fitted 
distribution compared with the other models mentioned above concerning the 
Bjerkedal data. 

The ML estimates and their standard errors (SEs) of the PTIR model compared 
with some known distributions such as IR,TIR, PIR,MIR, TMIR, KEIR are computed 
(see Table 2). Also, the corresponding measures of fit statistic using ˆ2  , AIC, BIC, 
CAIC, and HQIC, are provided in Table 3. 
 

Table 2. ML estimates of the model parameters and the corresponding SEs  

 

Table 3. The statistics ˆ2  , AIC, CAIC, BIC and HQIC 

Distribution PTIR IR TIR PIR MIR TMIR KEIR 

ˆ2   225.273 327.518 280.538 236.332 237.825 236.819 280.492
AIC 231.273 329.518 284.538 240.332 241.825 243.825 288.492

CAIC 231.625 329.575 284.712 240.506 241.999 244.178 289.089
BIC 238.103 331.795 289.092 244.885 246.378 250.655 297.599

HQIC 233.992 330.424 286.351 242.145 243.638 246.544 292.118

 
 
Also, it can be confirmed from Table 3 that the PTIR distribution is the most fitted 

distribution among other models for the data set as the PTIR distribution has the 
minimum values of AIC, BIC, CAIC and HQIC. 

Model         a  b  

PTIR 0.6056 
(0.0808) 

0.6577 
(0.0463) 

-0.9108 
(0.0873)    

TIR 0.3525 
(0.0434)  

 
-0.9416 

(0.0539) 
   

PIR 1.0691 
(0.1325) 

0.5865 
(0.0421)     

IR 
0.4629 

(0.0546)      

KEIR 0.4001 
(4.7575)   0.3657 

(4.3316) 
1.4444 

(17.4921) 
0.4045 

(0.0581) 

MIR 0.0465 
(0.0187)   1.2500 

(0.1537)   

TMIR 0.0105 
(0.0278)  -0.9166 

(0.0989) 
0.6575 

(0.0960)   
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7.  Concluding Remarks  

In this article, a new model, called a power transmuted inverse Rayleigh 
distribution is introduced. Some statistical properties of the proposed distribution are 
derived and discussed. The estimation of the model parameters is discussed through 
the maximum likelihood, least squares and percentiles methods. A simulation study is 
carried out to compare the performance of different estimates. The simulation study 
revealed that the ML performs better than the LS and PR estimates, in approximately 
most of the situations.  An application to a real data set indicates that the new model is 
superior to the fits than the other suggested distributions. 
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ABSTRACT

A new distribution called Generalized Odd Fréchet (GOF) distribution is presented and its

properties explored. Some structural properties of the proposed distribution, including the

shapes of the hazard rate function, moments, conditional moments, moment generating func-

tion, skewness, and kurtosis are presented. Mean deviations, Lorenz and Bonferroni curves,

Rényi entropy, and the distribution of order statistics are given. The maximum likelihood

estimation technique is used to estimate the model parameters, and finally applications of the

model to a real data set are presented to illustrate the usefulness of the proposed distribution.

Key words: Fréchet distribution, Wiebull distribution, structural properties, failure-time,

maximum likelihood estimation.

1. Introduction

Recently, some attempts have been made to define new families of distributions to ex-

tend well-known models and at the same time provide great flexibility in modelling data in

practice. Several techniques could be employed to form a larger family from an existing

distribution by incorporating extra parameters. These generalized distributions give more

flexibility by adding one "or more" parameters to the baseline model. For example, Gupta

et al. (1998) proposed the exponentiated-G class, which consists of raising the cumulative

distribution function (cdf) to a positive power parameter. Many other classes can be cited

such as the Marshall-Olkin-G family by Marshall and Olkin (1997), beta generalized-G

family by Eugene et al. (2002), the gamma-generated family by Zografos and Balakrish-

nan (2009), Kumaraswamy G family by Cordeiro and de Castro (2011), Generalized beta

generated distributions by Alexanderet et al. (2015a), exponentiated generalized-G family

by Cordeiro et al. (2013), a new method for generating families of continuous distribu-

tions by Alzaatreh et al. (2013), exponentiated T-X family of distributions by Alzaghal et

al. (2013), the Lomax generator of distributions by Cordeiro et al. (2014), the WeibullG

family of probability distributions by Bourguignon et al. (2014), beta Marshall-Olkin by

Alizadeh et al. (2015a), Kumaraswamy odd log-logistic by Alizadeh et al. (2015b), beta

odd log-logistic by Cordeiro et al. (2015), Kumaraswamy Marshall-Olkin by Alizadeh et
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al. (2015c), transmuted exponentiated generalized-G family by Yousof et al. (2015), gen-

eralized transmuted-G by Nofal et al. (2015), generalized transmuted family by Alizadeh

et al. (Alizadeh2015a), another generalized transmuted family by Merovci et al. (2015),

Kumaraswamy transmuted-G by Afify et al. (2016a), transmuted geometric-G by Affify

et al. (2016b), beta transmuted-H by Afify et al. (2016c), Burr X-G by Yousof et al.

(2016), the odd Lindley-G family of distributions by Silva et al. (2016), exponentiated

transmuted-G family by Merovci et al. (2016), odd-Burr generalized family by Alizadeh

et al. (2016a) the complementary generalized transmuted Poisson family by Alizadeh et al.

(2016b), logistic-X by Tahir et al. (2016a), a new Weibull-G by Tahir et al. (2016b), the

two-sided power-G class by Korkmaz and Genc (2016), the type I half-logistic family by

Cordeiro et al. (2016a), the Zografos-Balakrishnan odd log-logistic family of distributions

by Cordeiro et al. (2016b), the generalized odd log-logistic family by Cordeiro et al.(2016c),

the beta odd log-logistic generalized family of distributions by Cordeiro et al. (2016d), the

Kumaraswamy odd log-logistic family of distributions by Alizadeh et al. (2016d) and a new

generalized odd log-logistic family of distributions by Haghbin et al. (2017), the general-

ized odd log-logistic family of distributions: properties, regression models and applications

by Cordeiro et al. (2017), the odd power Cauchy family of distributions by Alizadeh et

al. (2018), a new family of the continuous distributions: the extended Weibull-family by

Korkmaz (2018a), the Marshll-Olkin generalized G Piosson of distributions by Korkmaz

et al. (2018b) and a new family of distributions with properties, regression models and

applications by Yousof et al. (2018), among others.

The article is outlined as follows: in Section 2, we introduce the GOF distribution and

provide plots of the density and hazard rate functions. Shapes, quantile function, moments,

and moment generating function are also obtained. Moreover, mean deviation, order statis-

tics, Lorenz and Bonferroni curves and finally asymptotic properties are presented in this

section. Estimation by the method of maximum likelihood and an explicit expression for the

observed information matrix are presented in Section 3. The simulation study is presented

in Section 4. The applications to real data sets are considered in Section 5. Finally, Section

6 offers some concluding remarks.

2. Generalized Odd Frechet Family of distribution

The cdf of the Generalized Odd Frechet (GOF) Family of distributions is given by

F(x;a,b,ξ ) = exp
{
−(G(x,ξ )−a−1)b

}
(1)

where ξ = (ξ1;ξ2; ...) is a parameter vector, and a and b are positive parameters. The

corresponding probability density function (pdf) is

f (x;a,b,ξ ) = abg(x,ξ )G(x,ξ )−a−1[G(x,ξ )−a−1]b−1 exp
{
−(G(x,ξ )−a−1)b

}
(2)

For a= 1 we obtain Odd Frechet family. Some of the possible shapes of the density function

(2) of generalized odd Frechet Wiebull distribution (GOFW), for the selected parameter
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values are illustrated in Figure 1. As seen in Figure 1, the density function can take various

forms depending on the parameter values.
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Figure 1: Different shapes of GOFW pdf (left) and Hazard function (right)

2.1. Survival and Hazard Rate Functions

A central role is played in the reliability theory by the quotient of the pdf and survival

function. We obtain the survival function corresponding to (1) as

R(x) = 1− exp
{
−(G(x,ξ )−a−1)b

}

In reliability studies, The hazard rate [h(x)], reversed-hazard rate function [r(x)] and

cumulative hazard rate function [H(X)] are important characteristics and fundamental to

the design of safe systems in a wide variety of applications. Therefore, we discuss these

properties of the GOF distribution. The h(x),r(x) and H(x) of X take the form

h(x) =
abg(x)G(x)−a−1 [G(x)−a−1]

b−1
e−[G(x)

−a−1]
b

1− e−[G(x)−a−1]b

r(x) = abg(x,ξ )G(x,ξ )−a−1[G(x,ξ )−a−1]b−1

and

H(x) =− log
(
1− exp

{
−(G(x,ξ )−a−1)b

})
Plots of the hrf of the GOFW distribution for several parameter values are displayed in

Figure 1.
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2.2. Mixture representations for the pdf and cdf

Several structural properties of the extended distributions may be easily explored using

mixture forms of Exp-G models. Therefore, we obtain mixture forms of exponentiated-G

("Exp-G") for F (x) and f (x). In this subsection, we provide alternative mixture representa-

tions for the pdf and cdf of X . Some useful expansions for (1) can be derived by using the

concept of power series and generalized binomial expansion. We have

F(x) = exp
(
−(G(x)−a−1)b

)
= exp

(
−
(
1−G(x)a

G(x)a

)b
)

=
∞

∑
i=0

(−1)i

i!

(
1−G(x)a

G(x)a

)bi

=
∞

∑
i, j=0

(−1)i+ j

i!

(
bi
j

)
G(x)a j G(x)−abi (3)

=
∞

∑
j,k=0

k

∑
l=0

w j,k,l G(x)a j+l (4)

where

w j,k,l =
∞

∑
i=0

(−1)i+ j+k+l

i!

(
bi
j

)(−abi
k

)(
k
l

)

Furthermore, the corresponding GOF density function is obtained by differentiating (4)

f (x) =
∞

∑
j,k=0

k

∑
l=0

w j,k,l (a j+ l)g(x)G(x)a j+l−1 (5)

Using relation (3) we obtain another form of expansions for (1) as bellow, which is used in

rest of the paper,

F(x) =
∞

∑
i, j=0

(−1)i+ j

i!

(
bi
j

)
G(x)a( j−bi) =

∞

∑
k=0

ek Hk(x) (6)

where Ḡ(x) = 1−G(x),

ek =
∞

∑
i, j=0

(−1)i+ j+k

i!

(
bi
j

)(
a( j−bi)

k

)
(7)

and Hδ (x) = (1−G(x))δ is the survival function of the Exp-G distribution with power

parameter δ . Then the corresponding GOF density function is obtained by differentiating

(6)

f (x) =
∞

∑
k=0

ek hk(x) (8)

where hδ (x) = δ g(x)G(x)δ−1.
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2.3. Moments and Moment Generating Function

Some of the most important features and characteristics of a distribution can be studied

through moments (e.g. tendency, dispersion, skewness and kurtosis). Now we obtain ordi-

nary moments and the moment generating function (mgf) of the GOF distribution. The rth
ordinary moment of X is given by

μ ′r = E(Xr) =
∫

xr f (x)dx =
∞

∑
k=0

ekE(Y r
k ) (9)

where E(Y r
k ) =

∫
xrk g(x)G(x)k−1dx; which can be computed numerically for most parent

distributions. The skewness and kurtosis measures can be calculated from the ordinary

moments using well-known relationships. One can also find the kth central moment of the

GOF distribution through the following well-known equation

μk = E(X−μ)k =
k

∑
r=0

(
k
r

)
μ ′r(−μ)k−r. (10)

Using (10), the variance, skewness and kurtosis measures can be obtained. Skewness mea-

sures the degree of the long tail and kurtosis is a measure of the degree of tail heaviness.

The skewness can be computed as

S =
μ3

μ3/2
2

=
μ ′3−3μ ′2μ ′1+2μ ′31

(μ ′2−μ ′21 )3/2

and the kurtosis is based on octiles as

K =
μ4

μ2
2

=
μ ′4−4μ ′1μ ′3+6μ ′21 μ ′2−3μ ′41

μ ′2−μ ′21
.

When the distribution is symmetric S = 0, and when the distribution is right (or left) skewed

S > 0(or S < 0). As K increases, the tail of the distribution becomes heavier. These mea-

sures are less sensitive to outliers and they exist even for distributions without moments.

The rth moment of generalized odd Frechet Weibull (GOFW) distribution using relation

(8) is given by

μ ′r =
∫ ∞

0
xr f (x)dx =

∞

∑
k=0

k ek

∫ ∞

0
xr α

λ
(

x
λ
)α−1 e−(

x
λ )α

(e−(
x
λ )α

)k−1dx

=
∞

∑
k=0

k ek

∫ ∞

0
xr α xα−1

λ α e−k( x
λ )α

dx = λ r A(λ ,α,r) (11)

where Γ(a) =
∫ ∞
0 xa−1e−xdx is gamma function and

A(λ ,α,r) =
∞

∑
k=0

(
ek

kr/α )Γ(1+
k1/α r

λ
).
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Using power series, the moment generating function of GOFW is as bellow

MX (t) = E(etX ) =
∞

∑
n=0

tn

n!
E(Xn) =

∞

∑
n=0

tn

n!
λ n A(λ ,α,n)

It is to be highlighted that the equation (11) can be easily computed numerically using

mathematical or statistical software. For this purpose, one can compute this equation for a

large natural number, say N, instead of infinity in the sums. Therefore, several quantities of

X such as moments, skewness and kurtosis can be computed numerically using (11). Plots

for skewness and kurtosis are presented in Figure 2.
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Figure 2: The skewness and kurtosis plots of GOF distribution for selected a,b,α,β .

2.4. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.

Suppose X1, . . . ,Xn is a random sample from any GOF distribution. Let Xi:n denote the ith
order statistic. The pdf of Xi:n can be expressed as

fi:n(x) = K f (x)Fi−1(x) {1−F(x)}n−i = K
n−i

∑
j=0

(−1) j
(

n− i
j

)
f (x)F(x) j+i−1,

where K = 1/B(i,n− i+1). We use the result of Gradshteyn and Ryzhik (2000) for a power

series raised to a positive integer n (for n≥ 1)(
∞

∑
i=0

ai ui

)n

=
∞

∑
i=0

dn,i ui, (12)
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where the coefficients dn,i (for i = 1,2, . . .) are determined from the recurrence equation

(with dn,0 = an
0)

dn,i = (ia0)
−1

i

∑
m=1

[m(n+1)− i]am dn,i−m. (13)

We can show that the density function of the ith order statistic of any GOF distribution can

be expressed as

fi:n(x) =
∞

∑
r,k=0

mr,k Hr+k+1(x), (14)

where Hr+k+1(x) stands for the the survival function of the Exp-G distribution with power

parameter r+ k+1.

mr,k =
n!(r+1)(i−1)!er+1

(r+ k+1)

n−i

∑
j=0

(−1) j f j+i−1,k

(n− i− j)! j!
.

Here, er is given by (7) and the quantities f j+i−1,k can be determined given that f j+i−1,0 =

e j+i−1
0 and recursively we have:

f j+i−1,k = (k e0)
−1

k

∑
m=1

[m( j+ i)− k]em f j+i−1,k−m,k ≥ 1.

Equation (14) is the main result of this section. Therefore, several mathematical quanti-

ties of these order statistics like ordinary and incomplete moments, factorial moments, mgf,

mean deviations and others can be derived using this result.

2.5. Mean Deviations, Lorenz and Bonferroni Curves

Mean deviation about the mean and mean deviation about the median as well as Lorenz

and Bonferroni curves for the GOF distribution are presented in this section. Bonferroni

and Lorenz curves are a widely used tool for analysing and visualizing income inequality.

Lorenz curve, L(p) can be regarded as the proportion of total income volume accumulated

by those units with income lower than or equal to the volume y, and Bonferroni curve, B(p)

is the scaled conditional mean curve, that is, ratio of group mean income of the population.

2.5.1 Mean deviations

The amount of scatter in a population may be measured to some extent by deviations

from the mean and median. These are known as the mean deviation about the mean and the

mean deviation about the median, defined by

δ1 (X) =
∫ ∞

0
|x−μ| f (x)dx, and δ2 (X) =

∫ ∞

0
|x−M| f (x)dx.
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respectively, where μ = E(X) and M =Median(X) = Q(0.5) denotes the median and Q(p)
is the quantile function. The measures δ1 (X) and δ2 (X) can be calculated using the rela-

tionships

δ1 (X) = 2μ F(μ)−2

∫ μ

0
x f (x)dx, and δ2 (X) = μ−2

∫ M

0
x f (x)dx

Finally for GOFW distribution we have

δ1 (X) = 2μ F(μ)−2
∞

∑
k=0

k ek

∫ μ

0
x

α xα−1

λ α e−k( x
λ )α

dx

= 2μ F(μ)−2λ B(λ ,α,μ)

where γ(s,x) =
∫ x
0 ts−1e−tdt is lower incomplete gamma function and

B(λ ,α,μ) =
∞

∑
k=0

ek

k1/α γ(2,
μ λ α

k
)

And

δ2 (X) = μ−2λ B(λ ,α,M).

2.5.2 Bonferroni and Lorenz curves

The Bonferroni and Lorenz curves have applications in economics as well as other fields

like reliability, medicine and insurance. Let X ∼ GOFW (a,b,α,λ ) and F(x) be the cdf of

X , then the Bonferroni curve of the GOFW distribution is given by

B(F(x)) =
1

μ F(x)

∫ x

0
t f (t)dt,

where μ = E(X). Therefore, from (15), we have

B(F(x)) =
1

μ F(x)
×λ B(λ ,α,x).

The Lorenz curve of the GOFW distribution can be obtained using the relation

L(F(x)) = F(x)B(F(x)) =
λ
μ

B(λ ,α,x).

2.6. Asymptotic Properties

One of the main usage of the idea of an asymptotic distribution is in providing approxi-

mations to the cumulative distribution functions of the statistical estimators.
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The asymptotic of cdf, pdf and hrf of the GOF distribution as x→ 0 are, respectively,

given by

F(x)∼ exp(−G(x)−ab) as x→ 0,

f (x)∼ abg(x)G(x)−ab−1 exp(−G(x)−ab) as x→ 0,

h(x)∼ abg(x)G(x)−ab−1 as x→ 0.

The asymptotic of cdf, pdf and hrf of the GOF distribution as x→∞ are, respectively, given

by

1−F(x)∼ (aḠ(x))b as x→ ∞,

f (x)∼ bab g(x)Ḡ(x)b−1 as x→ ∞,

h(x)∼ bg(x)
Ḡ(x)

as x→ ∞.

These equations show the effect of parameters on the tails of the GOF distribution.

3. Estimation

Several approaches for parameter estimation have been proposed in the literature but

the maximum likelihood method is the most commonly employed. Here, we consider es-

timation of the unknown parameters of the GOF distribution by the method of maximum

likelihood. Let x1,x2, ...,xn be observed values from the GOF distribution with parameters

a,b and ξ , where ξ is the parameter of based distribution function. The log-likelihood

function for (a;b;ξ ) is given by

�n = n log(a)+n log(b)+
n

∑
i=1

log(g(xi,ξ ))− (a+1)
n

∑
i=1

log(G(xi,ξ ))

+(b−1)
n

∑
i=1

log(G(xi,ξ )−a−1)−
n

∑
i=1

(G(xi,ξ )−a−1)b.

The derivatives of the log-likelihood function with respect to the parameters (a;b;ξ ) are

given respectively, by

∂�n

∂a
=

n
a
−

n

∑
i=1

log(G(xi,ξ ))+(b−1)
n

∑
i=1

− log(G(xi,ξ ))G(xi)
−a

G(xi,ξ )−a−1

+
n

∑
i=1

b(G(xi,ξ )−a−1)b−1G(xi,ξ )−a log(G(xi,ξ ))

∂�n

∂b
=

n
b
+

n

∑
i=1

log(G(xi,ξ )−a−1)−
n

∑
i=1

log(−(G(xi,ξ )−a−1))(G(xi,ξ )−a−1)b
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and

∂�n

∂ξ
=

n

∑
i=1

g′(xi,ξ )
g(xi,ξ )

− (a+1)
n

∑
i=1

G′(xi,ξ )
G(xi,ξ )

− (b−1)
n

∑
i=1

aG′(xi,ξ )G(xi,ξ )
G(xi,ξ )−a−1

+
n

∑
i=1

abG′(xi,ξ )(G−a−1)b−1

where

g′(xi,ξ ) =
∂g(xi,ξ )

∂ξ
, G′(xi,ξ ) =

∂G(xi,ξ )
∂ξ

The maximum likelihood estimates (MLEs) of (a;b;ξ ) , say (â; b̂; ξ̂ ), are the simulta-

neous solution of the equations ∂�n
∂a = 0; ∂�n

∂b = 0; ∂�n
∂ξ = 0.

For estimating the model parameters, numerical iterative techniques should be used to

solve these equations. We can investigate the global maxima of the log-likelihood by setting

different starting values for the parameters. The information matrix will be required for

interval estimation. Let θ = (α;β ,γ,λ )T , then the asymptotic distribution of
√

n(θ − θ̂)
is N4(0,K(θ)−1), under standard regularity conditions (see Lehmann and Casella, 1998,

pp. 461-463), where K(θ) is the expected information matrix. The asymptotic behaviour

remains valid if K(θ)) is superseded by the observed information matrix multiplied by 1/n,
say I(θ)/n, approximated by θ̂ , i.e. I(θ̂)/n. We have

I(θ) =−

⎡
⎢⎢⎣

Iαα Iαβ Iαγ Iαλ
Iβα Iββ Iβγ Iβλ
Iγα Iγβ Iγγ Iγλ
Iλα Iλβ Iλγ Iλλ

⎤
⎥⎥⎦

where

Iαα =
∂ 2�n

∂α2
; Iαβ = Iαβ =

∂ 2�n

∂α∂β
; Iαγ = Iαγ =

∂ 2�n

∂α∂γ
; Iαλ = Iαγ =

∂ 2�n

∂α∂λ

Iβγ = Iγβ =
∂ 2�n

∂β∂γ
; Iβλ = Iλβ =

∂ 2�n

∂β∂λ
; Iγλ = Iλγ =

∂ 2�n

∂γ∂λ
.

4. Simulation study

In this section, we propose the inverse cdf method for generating random data from the

GOF distribution. If U ∼U(0,1) and if G has an inverse function, then

x = G−1

([
1+(−ln(u))

1
b

]−1
a
)
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has cdf (1). Particularly,

x = λ
[
− ln

(
([1+(− ln(u))

1
b ]
−1
a )

)]−1
α

is a random data with GOFW distribution.

Moreover, the performance of the maximum likelihood method is evaluated for estimat-

ing the GOFW parameters using a Monte Carlo simulation study. The mean square error

(MSES) and the bias of the parameter estimates are calculated. We generate N = 10,000

samples of sizes n = 50,55, ...,300 from the GOFW distribution with a = 2, b = 1.5,

α = 1.5,λ = 1. Let (α̂, λ̂ , â, b̂) be the MLEs of the newmodel parameters and (sα̂ ,sλ̂ ,sâ,sb̂)

be the standard errors of the MLEs. The estimated biases and MSEs are given by

B̂iasε(n) =
1

N

N

∑
i=1

(ε̂i− ε)

and

M̂SEε(n) =
1

N

N

∑
i=1

(ε̂i− ε)2,

for ε = α,λ ,a,b. Figure 3 displays the numerical results for the above measures. We

conclude below results from these plots:

� The estimated biases decrease when the sample size n increases,

� The estimated MSEs decay toward zero as n increases,

These results reveal the consistency property of the MLEs.
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Figure 3: Estimated biases and MSEs for the selected parameter values.
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5. Application

In this section, we illustrate the fitting performance of the GOFW distribution using two

real data sets. For the purpose of comparison, we fitted the following models to show the

fitting performance of GOFW distribution by means of real data set:

i) Weibull Distribution, W (α,λ ).
ii) Exponentiated Weibull distribution, EW (α,λ ,a), with distribution function given by

Few(x) =
(
1− e−(

x
λ )α

)a
.

iii) Kumaraswamy Weibull, KwW (a,b,α,λ )

Fkww(x) = 1− [1−W (x,α,λ )a]b .

iv) Beta Weibull, BW (a,b,α,λ ), with distribution function given by

Fbw(x) =
∫ W (x,α,λ )

0
ta−1(1− t)b−1dt.

v) Mc Weibull distribution McW (a,b,αλ ,c), with distribution function given by

Fmcw(x) =
∫ (W (x,α,λ ))c

0
ta−1(1− t)b−1dt.

vi) Generalized Odd Log-Logistic Weibull distribution GOLLW (a,b,α,λ ), with distribu-

tion function given by

Fgollw(x) =
W (x,α,λ )ab

W (x,α,λ )ab +(1−W (x,α,λ )a)b .

vii) Type I General Exponential Weibull distribution T IGEW (a,b,α,λ ), with distribution

function given by

Ftigew(x) = eb{1−W (x,α,λ )−a}.

viii) Odd Frechet Weibull distribution OFW (b,α,λ ), with distribution function given by

F(x;a,b,ξ ) = exp
{
−(G(x,ξ )−1)b

}

Estimates of the parameters of GOF distribution, Akaike Information Criterion (AIC),

Bayesian Information Criterion (BIC), Cramer Von Mises and Anderson-Darling statistics

(W ∗ and A∗) are presented for each data set. We have also considered the Kolmogorov-
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Smirnov (K-S) statistic and its corresponding p-value and the minimum value of the mi-

nus log-likelihood function (-Log(L)) for the sake of comparison. Generally speaking, the

smaller values of AIC,BIC,W ∗ and A∗, the better fit to a data set. All the computations were

carried out using the software R.

In the rest of the paper, we model the lower discharge of at least seven consecutive days

and return period (time) of ten years (Q7,10) of the Cuiabá River, Cuiabá, Mato Grosso,

Brazil. We consider the data set presented by Andrade et al. (2007). The calculation of the

lower discharge for seven consecutive days and return period (time) of ten years (Q7,10) is an

important hydrological parameter with applications in the study planning and management

of the use of water resources. This study aims to model the lower flood (discharge) of at

least seven consecutive days and return period (time) of 10 years (Q7,10) in Cuiabá River,

part of the Brazilian Pantanal (Swamp), since the ecosystem is strongly influenced by the

hydrological system. The calculations of Q7,10 use a data series from 38 years (January

1962 to October 1999) relating to lower flows of no66260001 hydrological station, installed

in the Cuiabá River in the city of Cuiabá, Mato Grosso, Brazil. The data, which have also

been analysed by Cordeiro et al. (2012), are listed in Table 1.

Table 1: Data set.

43.86 44.97 46.27 51.29 61.19 61.20 67.80 69.00 71.84

77.31 85.39 86.59 86.66 88.16 96.03 102.00 108.29 113.00

115.14 116.71 126.86 127.00 127.14 127.29 128.00 134.14 136.14

140.43 146.43 146.43 148.00 148.43 150.86 151.29 151.43 156.14

163.00 186.43

The ML estimates of the parameters and the goodness-of-fit test statistics for the real

data set are presented in Table 3 and 4 respectively. As we can see, the smallest values

of AIC,BIC,A∗,W ∗ and −l statistics and the largest p-values belong to the GOFW distri-

bution. Therefore, the GOFW distribution outperforms the other competitive considered

distribution in the sense of this criteria.

Here, we also applied likelihood ratio (LR) tests. The LR tests can be used for compar-

ing the GOFW distribution with its sub-models. For example, the test of H0 : α = 1 against

H1 : α �= 1 is equivalent to comparing the GOFW and OFW distributions with each other.

For this test, the LR statistic can be calculated by the following relation:

LR = 2
[
l(α̂, β̂ , γ̂, λ̂ )− l(α̂∗,1, γ̂∗, λ̂ ∗)

]
,

where α̂∗, γ̂∗ and λ̂ ∗ are the ML estimators of α,γ and λ , respectively, obtained under H0.

Under the regularity conditions and if H0 is assumed to be true, the LR test statistic con-

verges in distribution to a chi square with r degrees of freedom, where r equals the difference
between the number of parameters estimated under H0 and the number of parameters esti-

mated in general, (for H0 : β = 1, we have r = 1). Table 4 gives the LR statistics and the

corresponding p-value. From Table 4, we observe that the computed p-value is too small so
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Table 2: Parameter ML estimates (standard errors in the parentheses).

Model â b̂ α̂ λ̂ ĉ
Weibull(α,λ ) – – 3.3298 123.2008 –

(0.4430) (6.3067) –

EW (a,α,λ ) 0.3522 – 6.8679 150.7316 –

(0.2271) (3.3323) (14.4243) –

KwW (a,b,α,λ ) 42.6066 1964.352 0.2112 7.2576 –

(33.5498) (8567.8074) (0.1208) (18.8249) –

BL(a,b,α,λ ) 0.4034 0.3105 5.7524 114.9745 –

(0.2071) (0.3381) (2.1554) (33.4861) –

McW (a,b,α,λ ,c) 0.1293 868.3850 0.5352 24.3734 112.9874

(0.1093) (4921.221) (0.8856) (122.134) (401.6450)

GOLLW (a,b,α,λ ) 0.1734 4.7498 5.2297 94.0411 –

(0.0234) (0.0093) (0.0039) (0.0039) –

T IGEW (a,b,α,λ ) 1.9133 0.0787 9.8806 164.239 –

(2.2559) (0.0555) (5.6555) (15.3034) –

OFW (b,α,λ ) – 3.3892 0.8968 49.1821 –

– (6.624) (0.8048) (54.0428) –

GOFW (a,b,α,λ ) 2.2737 0.1542 5.0860 92.4172 –

(0.5557) (0.0274) (0.0034) (0.0034) –

Table 3: Goodness-of-fit test statistics.

Model W ∗ A∗ p− value AIC BIC −l
Weibull(α,λ ) 0.1019 0.6238 0.4312 386.6742 389.9494 191.3371

EW (a,α,λ ) 0.0585 0.4091 0.8515 386.8977 391.8104 190.4488

KwW (a,b,α,λ ) 0.1210 0.7323 0.3251 391.7345 398.2848 191.8672

BL(a,b,α,λ ) 0.0540 0.3879 0.8466 388.6756 395.2260 190.3378

McW (a,b,α,λ ,c) 0.0616 0.4093 0.5995 389.6777 397.8656 189.8388

GOLLW (a,b,α,λ ) 0.0358 0.2887 0.7564 385.1893 391.7396 188.5946

T IGEW (a,b,α,λ ) 0.0615 0.4140 0.6144 387.4896 394.0399 189.7448

OFW (b,α,λ ) 0.2655 1.6203 0.1651 400.1903 405.1031 197.0951

GOFW (a,b,α,λ ) 0.0285 0.2391 0.9775 382.8198 389.3701 187.4099

we reject the null hypotheses and conclude that the GOFW fits the first data better than the

considered sub-model according to the LR criterion.

Table 4: The LR test results.

Hypotheses LR p-value

GOFW versus OFW H0 : a = 1 18.8816 0.00001
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In addition, PP plot of the GOFW distribution are plotted in Figure 4. We also plotted

the fitted pdfs and cdfs of the considered models for the sake of visual comparison, in Figure

5. Figure 4 and 5 suggest that the GOFW fits the skewed data very well.
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Figure 4: The PP plot.
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6. Conclusion

In this paper, we present a new class of distributions called the Generalized Odd Frechet

(GOF) family of distributions. The statistical properties of the GOF distribution including

the hazard and reverse hazard functions, quantile function, moments, incomplete moments,

generating functions, mean deviations, Bonferroni and Lorenz curves, order statistics and

maximum likelihood estimation for the model parameters are given. Simulation studies

were conducted to examine the performance of the new GOF distribution. We also present

applications of this new model to a real life data set in order to illustrate the usefulness of

the distribution.
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ABSTRACT  

The paper presents the theoretical and methodological foundations of Ukraine’s state 
legislation regulating the economic development of territories, in the context of budget 
decentralization. The study also describes the transformation of the public administration 
system necessitated by the above-mentioned phenomenon. The authors discuss the basic 
methods by which the state can regulate the activity of local self-government bodies: the 
legislative regulation, where the intervention of public authorities is minimized, and the 
administrative regulation, which provides rules and instructions which determine the 
relations between central and local authorities. The authors conduct and describe 
a methodologically consistent, systematic analysis of state regulations which support the 
local self-governments’ activity. The paper also discusses the recent economic changes in 
Ukraine  which demonstrate that the reform of the local self-government system and the 
decentralization of authority entail both prospects and problems for the country's 
development. As might be expected, the authors focus particularly on those problems that 
have not been solved yet. Additionally, statistical estimations of the phenomena relating to 
the process of producing state legislation regulating the economic development of territories 
in the context of budgetary decentralization have been provided. The authors conclude that 
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1.  Introduction 

State regulation plays a significant role in the efficient functioning of the economy 
and is an effective tool for the economic development of the country and its territories. 
The problem of transformation of the state role, its goals in regulating the development 
of local self-government under conditions of budgetary decentralization requires 
special consideration. The urgency of studying the problems of state regulation of 
economic development of territories in terms of budget decentralization for Ukraine is 
conditioned by the need to develop an effective system of macroeconomic regulation 
of socio-economic processes in the context of decentralization. The process of socio-
economic development of Ukraine on a democratic and legal basis is impossible 
without strengthening the role of local self-government. Budget decentralization is one 
of the main drivers of the much needed reform of self-government today. 

There are many problems concerning the management of territories which are not 
only solved by financial and budgetary methods. This is the first and foremost problem 
of economic development of territories. Lack of investment can lead to systematic 
degradation and “extinction” of particular settlements. However, it is not possible to 
focus on the ongoing support of apparently unpromising territories. 

Having gained independence from the state in terms of economic and financial 
activity as well as the right to its own regional policy, the local government authorities 
faced the problems of forming the local budget, distribution of state property at the 
regional and local levels, implementation of administrative reform, etc. 

With the same analysis of the territorial entities within the regions there is even 
more disharmony in the issues of conformity with their economic development. 
Practice shows that quite often miscalculations of local management in the financial 
policy are explained by low skilled risk management, poor management training and 
so on. At the same time, there are many bureaucratic obstacles in management 
regulation procedures which hinder the use of local reserves. 

The purpose of the study is to deepen the theoretical and methodological 
foundations of state regulation of economic development of territories in conditions of 
budgetary decentralization.  

2.  Transformation of public administration in conditions of 
decentralization 

One of the main problems facing local authorities of any country is the problem of 
relations with the state government bodies, especially central and regional ones. Taking 
into account this fact, a key problem is about the autonomy of local self-government. 
Among many beliefs regarding the solution of the problems of public administration, 
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the issue of decentralization, as one of the means of improving the efficiency of the 
functioning of public power, has been in the field of view of scholars and practitioners 
for a long period of time.  

In particular, this is due to the successful implementation of the principles of 
decentralization in the practice of most European Union countries. Thus, changes 
in the distribution of competences during 2000-2016 show that there has been 
a considerable reform in the allocation of competences between levels of government 
in the field of governance and spatial planning in the EU since 2000 (COMPASS (2016-
2018). In particular, there are dominant trends that show decentralization and 
centralization tendencies in different parts of Europe. In many countries there were 
processes of management decentralization and planning of competences from national 
and sub-national levels to local level and strengthening local authorities' autonomy 
(COMPASS (2016-2018)), (Lidström, 2007). However, an increase in the processes of 
planning at the sub-national level (regionalization) has been observed. The third group 
of countries shows strengthening of national or sub-national government authority.  

Local government autonomy is always relative since it is characterized by the 
presence of two types of restrictions (Grybanova G., 1998). The first type is the 
economic and social restrictions that are from different sources. Firstly, the conditions 
of local economy functioning limit the tax base. In the absence of subsidies from the 
central government, it is much more difficult for the “poor” areas than it is for the “rich” 
one to finance an adequate level of public services. In order to avoid a financial crisis 
local authority should take care of the productive use of land, capital and labour, with 
a well-developed strategy for developing a particular district. They also have to do it 
transparently so that the residents could see the feasibility of the ratio of costs (in the 
form of taxes paid to them) and the benefits received (through the use of services 
provided locally) are not worse than in neighbouring areas. Secondly, local-dominant 
interests can put pressure on political decision-making. First and foremost it deals with 
the interests of business and relevant elites (coalitions). The opinions are also expressed 
that the primary point in organizing state regulation is the issue of distribution of 
expenditures between the levels of government and consequently the budgetary system 
(Brosio G., 1985). As a result, the consequences of misallocation of expenditures lead 
to inefficient allocation of resources (Musgrave R.A., 1985). 

The second type of restriction which is crucial for a political system and a society, 
peculiar to a particular country is imposed on local autonomy by senior levels of 
government. At the same time the following factors influence the autonomy of local 
self-government bodies: the sphere of competence, basic functions of local self-
government bodies, forms and methods of their implementation; forms and methods 
of control over the activity of local self-government bodies by public authorities. 
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Management and spatial planning competencies are generally shared at different 
levels in most countries (Hooghe and Marks, 2003). The study of the evolution of the 
concepts of territorial management and spatial planning in terms of research methods 
and comparative planning trends has been addressed by Nadin V., Stead D. (Nadin V., 
Stead D., 2013), and Reimer M. (Reimer M., Getimis P., Blotevogel H., (eds.) 2014). 

The studies of Central European countries that have successfully undergone 
economic and institutional transformation in the area of territorial governance and 
finance (for example, regarding the foreign capital involvement policy and its impact 
on Poland's economic development) have been successfully conducted by such authors 
as W. Dziemianowicz, B. Jałowiecki (Wojciech Dziemianowicz, Bohdan Jałowiecki, 
2004). 

3.  Methodology of state regulation in the sphere of activity of local self-
government authorities  

When characterizing the methodological basis of cardinal decision-making in the 
system of state regulation it is important to evaluate the effectiveness of implementation 
of the regulatory policy of the state in the sphere of ensuring the activity of the local 
self-government authorities. In order to develop the effective forms and methods of 
such a policy of the state in a market economy it is necessary to determine its 
effectiveness without fail. Consequently, it is necessary to develop a comprehensive 
system for monitoring and assessing the impact of state regulation on the activities of 
local governments. 

In terms of complexity and consistency, the state regulation is determined by the 
mode of influence, and this is a radical or liberal intervention; or non-interference by 
ignoring the adverse market situation due to the lack of effective tools of influence. 
The nature of state regulation is also manifested in the need for solidarity or individual 
balancing of the complex interests of local governments: economic, social and financial 
in particular.  

There are two main methods with the help of which the state can regulate the 
activity of self-government authorities. 

The first is legislative regulation, where the intervention of public authorities is 
minimized; it is a kind of “remote” control. Following the adoption of the relevant laws 
local governments may act at their discretion as long as they remain within the law. The 
main instrument of legislative regulation is the constitution. The respective 
constitutional position of local self-government bodies in a particular country is 
determined primarily by the legislative consolidation of the right to local self-
government within the constitutional system. The legal basis of local self-government 
is not only constitutional provisions but also the rules of current legislation. Typically, 
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local self-government issues are regulated in detail in specific local self-government 
laws as well as in some sectoral legislative acts. However, in some countries there is 
a single law on local self-government and in others – laws on certain types of local self-
government. As a rule, the federal states do not have a special federal law on local self-
government granting the subjects of the federation (lands, cantons) the right to fully 
regulate the issues of local self-government (Grybanova G., 1998). Most often political 
discussions between the state and local self-government unfold precisely around issues 
of current legislation. 

Thus, the factors of state regulation policy are characterized by a set of objective 
and subjective, structured by directions, means of predominantly regulatory content 
with the help of which this policy is formed, implemented and evaluated. Such factors 
include macroeconomic, structural and dynamic, administrative and organizational, 
pricing, financial, credit, technical and technological, infrastructural and transport, 
foreign economic, social and demographic, ecological and recreational, and historical 
and cultural ones (Kvasha G. 2013). Conditions for the implementation of state 
regulation policy are shaped by the influence of external and internal political, 
economic and social environments. 

Another method is administrative regulation, which provides such an order of 
relations between the central and local authorities where by creating rules and 
instructions the state in the person of the central authorities gives a detailed account to 
local self-government bodies on one or another course of action. When implementing 
this kind of regulation the legitimacy of the actions of local self-government bodies is 
determined by the individual decisions of state officials (Grybanova G., 1998). 
In addition, administrative regulation often requires the prior approval of certain 
actions, which is legally stipulated. At the same time, in the legislative regulation only 
a judicial evaluation of the action is taken into account. Administrative control is by no 
means “remote”. 

It is important to evaluate the consequences of state regulation of socio-economic 
development of territories in terms of achieving results, although the effectiveness of 
regulatory policy will undoubtedly depend on the decision-making procedure that is 
predetermined by the political process and on the tasks that ensure the implementation 
of such decisions. 

When analysing the regulatory framework on the state regulation and relevant 
practical measures, a special attention is drawn to the fact that at the present stage of 
implementation of state regulation policy in Ukraine the main emphasis has been 
shifted from the stage of development of regulatory acts to the stage of gathering data 
on the effects of the adopted regulatory acts, monitoring their effectiveness as well as 
the efficiency of making decisions about changing or repealing them. 
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Preliminary evaluation of the results of state regulation makes it possible to 
determine more precisely the amount of financing of socio-economic development of 
territories, because it is at this stage that the idea of priority goals of state regulation, 
the tasks needed to be fulfilled to achieve the goals and the volume of necessary 
resources (material, human, time, information, etc.) are formed.  

The methodological orientation of the systematic analysis of state regulation 
in support of the activity of local self-government bodies in the general form will be 
presented by the chain of operations shown in Figure 1. 

 

Figure 1.  Methodological consistency in conducting a systematic analysis of state regulation on 
ensuring the activities of local self-government bodies (Compiled by the authors) 

 
The methodology of systematic analysis of the process of state regulation does not 

only open the space for qualitative analysis but also allows to make an analytical 
description of the mechanism of interaction in the model of state regulation, the 
development of methods, methodological recommendations and provisions on the 
formation of the objectives and their solutions on the basis of the developed models, etc. 

In the study of mechanisms and instruments of state regulation, the synthesis of the 
action of streamlining the system of public administration and self-organization of the 
economic system is used (Borysenko O., 2017), which can also be used in the 
assessment of state regulation for ensuring the activities of local self-government 
authorities. 

With their rational ratio, the synergy effect (that is the excess of the final effect 
compared to a simple summation of the effects of the action of certain instruments of 
state regulation) will give a much better result than the applied resources of public 
administration. This effect depends on the quality of the identified priorities in the 
public administration system, the establishment of proper internal interdependence 
and the interplay of tasks that are solved in the process of state regulation. Therefore, 
the purpose and objectives of state regulation are at the heart of the synergy effect. The 
use of synergies in a systematic approach ensures a qualitative transition from simple 
planning technology to public administration programming. 
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Taking into account the aforementioned information, it is necessary, firstly, 
to maintain the system of regulators of public administration in the sphere of ensuring 
the activity of local self-government bodies in a controlled state (i.e. within the 
parameters that must ensure and maintain the stability of management); and secondly, 
to apply methodological approaches that will facilitate the choice of the right 
management decision on state regulation as well as the identification of issues that 
determine further starting parameters of state regulation on the support of activities of 
local governments. 

Thus, the system-synergistic approach to the analysis of state regulation for support 
of the activities of local governments is the most constructive of the applied areas of 
systemic research. It directs researchers not only to establish certain regularities in the 
functioning and development of mechanisms of public administration, but also to 
develop a methodology for organizing the decision-making process in the context of 
interconnection and interaction of factors that are in constant motion. This 
methodology requires the involvement of experts from different fields of knowledge 
and the application of different research methods, as well as systematic analysis of the 
public administration system itself and the assessment of the synergistic effect of 
applying elements of state regulation to support the activities of local governments. 

4.  Assessment of regulation of the economic development of territories  

4.1. Economic changes that have taken place in Ukraine  

In 2014, the local self-government reform was launched and the course on 
decentralization of power was developed in Ukraine. The course on decentralization 
outlines both prospects and problems of Ukraine's development. Despite receiving 
positive results of fiscal decentralization reform, the issues of forming and 
implementing local budgets still remain relevant. 

Five years have passed since the introduction of the new model of 
intergovernmental budgetary relations, but the bulk of local budget revenues is still 
being generated by deductions from the state budget. In recent years, the volume of 
transfers in the structure of local budget revenues has increased, so in 2017 
intergovernmental transfers from the state budget to local budgets were 1.5 times 
higher than in 2014. It is appropriate to note that the budget autonomy is largely 
determined by the level of own revenues. At the same time, the possibilities of local 
taxation were rather limited. 

In addition to the problems caused by management risks and the implementation 
of the targets, other problems that have a direct or indirect impact on certain budget 
revenues, such as occurrence of adverse events in the national economy, deterioration 
of internal macroeconomic conditions of economy functioning (instability of the level 
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of industrial production and consumption, inflation and other factors causing increase 
in production costs), significant volumes of shadow economy, the dangers of the budget 
system and the management of the budget process are related to the inefficient 
redistribution of revenue sources and liabilities between the state and local budgets, low 
payment discipline, etc. 

The issues of the expenditure part of the budget cause the following risks: 
− making decisions that affect the increase in budget expenditures in excess of 

the approved amounts (increase in social payments, subsidies, benefits); 
− increasing the share of budget expenditures on defence and security sector 

financing due to the military conflict and conducting an anti-terrorist 
operation in eastern Ukraine; 

− increase in budget expenditures due to the influence of foreign economic factor 
(increase in energy prices, unfavourable change in prices for imported 
products, changes in exchange rates, etc.); 

− debt component of budgetary risks as growth of expenses for servicing and 
repayment of public debt (as a result of currency, interest, price and credit 
risks).  

In the analysis of the impact of the economic changes that have taken place 
in Ukraine regarding budgetary decentralization, it is established that they are 
characterized by such trends. The high level of GDP redistribution through the 
budgetary system remains. In 2016, the share of consolidated budget revenues in GDP 
was 32.9% and the share of consolidated budget expenditures in GDP was 35.1% 
(the highest figure in the last six years). An increase in the total amount of public and 
government guaranteed debt of Ukraine is observed, as well as a significant increase in 
budget expenditures to finance its servicing and repayment. The high level of the state 
budget deficit remains, the growth of which from 1.6% of GDP in 2015 to 2.9% of GDP 
in 2016 was conditioned particularly by the need to make debt payments, secure 
defence spending, social protection and security. 

Failure to comply with the plan of revenues and expenditures of the consolidated, 
state and local budgets is caused by management risks and risks of failure to meet the 
targets. In the structure of state budget expenditures, in particular for 2016, the largest 
share is spent on financing intergovernmental transfers (28.5%), on social protection 
and social security (22.1%), on national functions (17.2%), public order, security and 
the judiciary (10.5%) and defence (8.7). The high level of centralization of budgetary 
funds remains, which results in the increase in the volume of intergovernmental 
transfers in the structure of budget revenues. The identified trends make it necessary to 
assess the unresolved issues for Ukraine. 
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4.2.  Assessment of unresolved issues of regulation of economic development of 
 territories in Ukraine  

According to the economic policy pursued by local governments, we are 
increasingly observing the belief that the natural condition for the formation of the 
usual reproductive process in the region is the material and financial balance of the 
development of the region (Dolishniy M., 2001, Varnaliy Z., 2005). 

Presently, no appropriate coordination mechanisms have been developed: on the 
one hand, on the long-term policies of the central executive bodies among themselves 
over a specific territory; on the other hand,  between central and local governments in 
accordance with the development of goals and priorities at the state and local levels, 
which leads to a slow reform of the local government in the process of implementing 
administrative reform at the local level and insufficient rates of economic and social 
transformation. 

Effective implementation of the regulation of economic development of the 
territories is also hindered by the insufficient provision of local self-government bodies 
with financial resources. Local governments should have adequate financial capacity to 
implement development policies. The lack of such opportunities will lead to territorial 
dispersion of state and local financial resources, inefficient use of them. 

The issues of providing local budget revenues for the fulfilment of their own powers 
are not fully resolved. In rural areas, the list of incomes for fulfilling one's own powers 
is not enough: for one resident the level of own incomes of rural budgets is 4–6 times 
lower than the corresponding level of incomes of city budgets (Varnaliy Z., 2005). The 
relationship of the regional budget with the budgets of the local self-government body 
can be determined by the indicator of average budgetary provision per capita, 
calculated for two types of local government: urban and rural. In modern conditions, 
the cost per inhabitant in rural areas is much higher than in cities through 
transportation costs, the use of unstable sources of electricity and energy, etc. 

Reforming intergovernmental budgetary relations at the basic level should be done 
in conjunction with the reform of the administrative-territorial structure and the 
formation of territorial communities in rural areas, which are capable of providing 
quality services to the population at the level of socially guaranteed standards. Another 
reason that hinders the effective implementation of territorial economic development 
regulation is the lack of a mechanism for forming local budgets based on socially 
guaranteed standards for providing services to the population, regardless of their place 
of residence. Local budgets are planned depending on the available capabilities of the 
state budget, which provides only the fair distribution of state resources but does not 
take into account the objective needs of territorial communities. Budget expenditures 
per inhabitant of a village, town or city fluctuate 10–15 times (Varnaliy Z, 2005). 
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This demonstrates significant territorial differences both in the economic development 
of rural, urban territorial communities and in the living standards of the population. 

Finally, the mechanism for regulating the relationship between regional budgets 
and local government budgets needs to be improved particularly with regard to the 
setting of rates for local budgets. The state of financial support in most territorial 
entities depends as before on deductions from the state budget. At the same time the 
possibilities of local taxation are very limited. It is appropriate to note that the 
independence of budgets is largely determined by the size and level of their own 
incomes. Today the vast majority of local budgets are subsidized. 

The fulfilment of the tasks facing local self-government requires the solution of a 
number of problems and the search for priorities. The right choice of priorities is the 
most important condition for the success of economic transformations, especially the 
structural ones. In this context, the stabilization of the economy which should be 
comprehensive in nature, that is be carried out simultaneously in all areas, namely 
production, finance, budget, taxes, property relations, politics and management and 
recognized as the paramount task. Macroeconomic stabilization should be based and 
complemented by specific approaches to local problems. 

4.3.  Statistical evaluation of the processes of state regulation of economic 
 development of territories in the process of budgetary decentralization 

In the process of regulating the economic development of territories, it is important 
to analyse the factors that determine the need for such regulation. First of all, the 
efficiency of regulating the economic development of territories is characterized by the 
process of generating local budget revenues. Therefore, we will analyse the formation 
of local budget revenues, which on the one hand allow to study the dynamics and 
structure of these revenues and on the other hand characterize the process of forming 
the local budget revenues in the current conditions of decentralization of the budget 
system in order to implement regulatory processes that would meet the real needs of 
citizens, society and the state. 

The main tasks of the analysis of budget revenues are to determine their volume 
and dynamics. The level of income redistribution through the consolidated budget in 
the years of Ukraine's independence is characterized by the data presented in Figure 2. 

According to Figure 2 data, a considerable part of the budget resources is 
concentrated in the local budgets of Ukraine. However, in recent years there has been 
a steady downward trend in the share of local budget revenues in the consolidated 
budget revenue structure – from 47.6% in 1992 to 18.5% in 2015, which is more than 
double. In recent years, about 80% of budget resources have been accumulated in the 
State Budget of Ukraine, which indicates a high degree of centralization of the budget 
system. 
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Figure 2. Dynamics of revenue distribution in the consolidated budget of Ukraine, % 
Source: Calculated by the authors according to the State Treasury Service of Ukraine.  

 

Expenditures play a leading role in regulating the economic development of the 
territories, i.e. the need for resources shapes the need for their accumulation. 
Expenditures of local budgets are considered to reflect the degree of decentralization of 
power, as they characterize the volume of meeting the needs of the population of 
a certain administrative-territorial formation, the priorities of its socio-economic 
development. 

As can be seen from Figure 3 in 1992, 1993 and 1997, the share of local budget 
revenues exceeded their share of expenditures; since 1998 the situation has changed 
dramatically – each year the share of expenditures exceeds the share of local budget 
revenues. In the period of 1992–2014, the growth of expenditures of local budgets of 
Ukraine has significantly outstripped the dynamics of their revenues. 

Moreover, each year the lag of such excess increases; if in 1998 the share of revenues 
relative to the share of expenditures of local budgets in the consolidated budget of 
Ukraine was 0.95, in 2012 it was already 0.5, and in 2014 and 2017 – 0.52, i.e. it has 
almost halved (Figure 3), which indicates a significant increase at the level of 
centralization of budgetary funds.  
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Figure 3.   Revenue share relative to the share of local budget expenditures in the consolidated 
budget of Ukraine  

Source: Calculated by the authors according to the State Treasury Service of Ukraine. 

 
Analysis of the local budgets of Ukraine allows to draw a conclusion that existing 

approaches to their formation do not create any economic incentives for local 
authorities as for development of their regions (administrative-territorial units), 
expanding their own tax base as well as to efficiently use the budgetary funds (Lunina 
I. O., 2014). 

The need for state regulation of the economic development of the territories also 
predetermines that the formation of the revenue part of local budgets takes place 
in quite difficult conditions. The lack of financial autonomy of local self-government 
bodies, namely the lack of financial resources and the instability of their revenue 
sources have become an urgent and acute problem. 
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Ukraine. In 2001 it was 12.2%, in 2007 already 14.9%. In 2012 and 2017 we note the 
maximum value of this indicator – 16% and 16.8% respectively. 

 

 
 

Figure 4. The share of local budget revenues in the GDP of Ukraine  

Source: Calculated by the authors according to the State Treasury Service of Ukraine. 
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Table 1. Dynamics of local budget revenues and transfers from the state budget to GDP in 1996–2017  

Years 
GDP  

(in actual 
prices) 

Revenues 
Transfers from the 

state budget 

% of the 
share of 

transfers in 
GDP to the 

share of 
revenue 
in GDP 

Mil. UAH 
% of 
GDP 

Mil. UAH 
% of 
GDP 

Before the processes of budgetary decentralization 

1996 81519 12138.6 14.9 1186.2 1.5 10.07 
1997 93365 14615.0 15.7 2476.8 2.7 17.20 
1998 102593 15413.6 15.0 2202.8 2.1 14.00 
1999 130442 16094.8 12.3 2942.4 2.3 18.70 
2000 170070 18689.8 11.0 4378.0 2.6 23.64 
2001 204190 24972.7 12.2 7237.1 3.5 28.69 
2002 225810 28247.4 12.5 8818.1 3.9 31.20 
2003 267344 34306.5 12.8 11729.1 4.4 34.38 
2004 345113 39593.1 11.5 16819.4 4.9 42.61 
2005 441452 53677.3 12.2 23361.1 5.3 43.44 
2006 544153 75895.2 13.9 34150.3 6.3 45.32 
2007 720731 107050.5 14.9 48701.5 6.8 45.64 
2008 948056 137455.3 14.5 63583.2 6.7 46.21 
2009 914720 134552.4 14.7 63523.7 6.9 46.94 
2010 1094607 159397.1 14.6 78881.3 7.2 49.32 
2011 1314000 181600.0 13.8 94900.0 7.2 52.17 
2012 1411238 225273.4 16.0 124459.6 8.8 55.00 
2013 1454931 221019.4 15.2 115848.3 8.0 52.63 
2014 1566728 231702.0 14.8 130160.0 8.3 56.08 

During the process of budgetary decentralization 

2015 1979500 294500.0 14.9 173980.0 8.8 59.06 
2016 2383182 366143 15.4 195935 8.2 53.51 
2017 2982920 502098 16.8 272603 9.1 54.29 

Source: Calculated by the authors according to the State Treasury Service of Ukraine, Ministry 
of Finance of Ukraine. 

 
The analysis of local budget revenues in Ukraine shows that their level increased 

from 14.9% of GDP in 1996 to 15.7% of GDP in 1997 but in the following years there 
was a decrease to 11.0% in 2000. From 2005 to 2013, not only the stable dynamics of 
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nominal earnings growth was observed but also the highest annual growth rates since 
2001. Only in 2011 the share of local budget revenues did not exceed 14%, in 2013 this 
indicator reached 15.2%, but in 2014 it decreased to 14.8%, and in 2016 and 2017 it 
increased to 15.4 and 16.8%. This trend indicates an increase in the role of local budgets 
in the distribution of GDP during 2016–2017, i.e. during the budget decentralization 
process. 

An indicator of increasing dependence of local budgets on the state budget is the 
growth in the volume of transfers. Thus, in the structure of local budget revenues the 
share of transfers from the state budget grew from 1.5% of GDP in 1996 to 8.8% in 2012, 
i.e. five times, in 2013–2014 it decreased slightly compared to 2012. In 2013 this 
indicator decreased to 8.0% compared to 2012. However, in 2014 the share of transfers 
from the state budget of Ukraine increased relatively to 8.3% and in 2017 it amounted 
to 9.1%, which is the highest indicator for the analysed period. Having considered the 
ratio of transfers to GDP to the share of revenues in GDP we note a steady upward trend 
from 10% in 1996 to 59.06% in 2015, which also indicates an increase in the financial 
dependence of local budgets on transfers. 

The steady growth of transfers from the State Budget of Ukraine to the local budgets 
leads to important risk factors for financial decentralization in Ukraine. Thus, the 
priority of the budget policy of Ukraine is to ensure favourable conditions for state 
regulation of the activities of local self-government bodies, particularly in the formation 
of local budgets. 

5. Analysis and discussion of the results  

As a rule, most European countries use the approach of combining an active and 
passive policy of state regulation, which involves increasing the role and responsibility 
of local governments for the economic development of the territory, the need to find 
new tools to stimulate economic development. 

The purpose of the first approach is a qualitative change in the structure of the 
economy. Such a policy is first and foremost applied when it is considered that the 
market conditions are not sufficient to resolve disparities in territorial development. 
It envisages raising the level of labour productivity in regions with low levels of 
development through public investment in local infrastructure, stimulating local 
development by providing the right conditions for creating and functioning of small 
and medium-sized businesses. 

The aim of the second trend of state regulation policy is to improve regional 
development by implementing measures that promote the effective functioning of 
market mechanisms by removing obstacles to labour and capital mobility and ensuring 
better exchange of information and technology between regions. 
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Local governments play a key role in organizing territorial development. The state 
delegates the powers them to maximize administrative and social services to the 
population, enhances the capacity of local communities to solve local problems.  

As a rule, the state is entrusted with the task of forming the concept of a state 
regulation strategy, the key goal of which should be to maximize the criteria for the 
sustainability of territorial development, the coherence of interests of territories. 

In this case, the state's task is to forecast and plan further regional development. 
Forecasting and planning at the level of local self-government must be complex, 
systematic, scientifically based and legally binding. Regional planning is a form of state 
regulation of the economy and social sphere at the local level in order to resolve acute 
regional imbalances and social contradictions. 

The important tasks of the state are also to ensure the regional unity of reproductive 
macroeconomic processes, to promote active socio-economic activity of the regions, to 
form and ensure stable links vertically – between the centre and the regions, and 
horizontally – between the regions in order to achieve the goal of providing sustainable 
development of the regions. 

In the process of analysing numerous approaches and trends regarding the specific 
participation of the state and local self-government bodies in regulating the 
development of territories, a general understanding of the three most important ways 
of their activity has been formed. 

Firstly, the creation of legal and organizational conditions necessary for the 
functioning of market institutions. 

Secondly, state restructuring of the principles of democracy in accordance with the 
requirements of the market economy. This means a profound transformation, 
including mastering new methods of managing the economy. 

Thirdly, the transition to new forms of regulation, economic and social policies, the 
goal of which is to find the best way of solving the most important three-fold problem: 
1) to maintain stability in a society where social stratification is increasing, the 
subsistence level is not provided for a large part of the population, the unemployment 
rate is rising (L. Grygoriev, 2008); 2) stabilize the economy; 3) ensure economic growth. 

If the first two areas of state involvement in the economy, namely the creation of a 
legislative framework for a market economy and the reform of the state itself, are 
explained by researchers as the need for leading state participation in these processes, 
the same cannot be stated about all the three areas in general. Starting from this block 
of questions the differences become particularly noticeable and get a specific history. 

At the initial stage of market transformations some opinions were expressed about 
the possibility of combining the processes of stabilization and structural adjustment of 
the economy. Some scientists found it unrealistic to carry out a structural 
transformation in the face of high inflation and a deep decline in production. 
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Supporters of the possibility of combining these processes argued their own position 
with the scientific substantiation and positive practical experience of Japan and 
Germany, in which the processes of economic stabilization and its structural 
adjustment were combined. 

6. Summary and conclusion  

Generalization of theoretical developments and positive experience makes it 
possible to say that in order to carry out structural adjustment in the economy, at least 
several goals must be achieved: 

− to ensure the readiness of the state to carry out structural adjustment of the 
economy considering such a goal as a long-term strategic one; 

− to develop a scientifically sound program of socio-economic development and 
financial stabilization of the territories in conditions of limited budget resources 
at a proper professional level, to carry out a thorough review of goals and priorities 
of a structural policy. 

There are both objective and subjective problems, the solution of which will 
contribute to the economic stabilization of the country and the economic and social 
development of the territories. Objective problems of the country (differences in the 
level of development of its regions, difficulties in the coexistence and interaction of 
public institutions) should not remove responsibility from the political and intellectual 
elite for the fate of citizens and the state. The subjective reasons that mostly relate to 
Ukraine include the following: 
1. Inability of politicians to take into account the interests of leading social groups that 

change dynamically in the course of economic and social development, the absence 
of a long-term strategy based not on the faith but on the conscious participation of 
citizens in its implementation. 

2. Constant preferences for certain oligarchic clans, who try to keep their own income 
at the expense of other layers of society. 

3. Depriving citizens of liberty for protecting themselves from external or other threats 
and subsequent restriction of their activities, which means stagnation for society, 
and for politicians – the loss of support from population, government and finally, 
a good name in history. 

4. Negligent attitude to the scientific and social creativity of the individual, the 
emphasis on simple diligence instead of activity. Attractive for many, the high 
American standard of living is based not only on the rich resources and vast 
expanses of the country but also on democratic values promoting the idea of the 
personal success and vertical mobility within public institutions. The problem of the 
country is the lack or weakness of encouraging (from above) of protection of one's 
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own dignity as well as the responsibility of local authorities to citizens instead of 
paternalism, etc. 

The major disadvantage of most of Ukraine's state programs of the past years was 
that one or the other path of development was offered either as an ideological dogma, 
whether it was the foundations of the former state plan or liberal programs, or as a set 
of projects and expenditures. In the transformation period, there was a traditionally 
high activity of theories, schemes which have not been confirmed by the world science. 

Their biggest drawback is the inadequate understanding of the interests of 
participants of the modernization process: big and small business, different layers of the 
population, etc. In some cases the efficiency of the market is exaggerated and the 
importance of forming market institutions is ignored; in others, the efficiency of state 
regulation is praised and no attention is paid to the objectives of creating the quality 
market institutions. 

The development of a successful territorial development strategy requires the 
modernization of civil society, business and the state at the same time.  

There is definitely dependence of future modernization of the development of 
territories on modernization in the country and the sustainability of civil society for 
modernization based on the implementation of the inevitability of compromises and 
compensations considering that it is impossible to solve simultaneously all the 
problems in the regions with a significant differentiation of economic development and 
in a socially heterogeneous society. 
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The Unobserved Economy − Invisible Production in Households. 
The Household Production Satellite Account and the National 

Time Transfer Account 
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ABSTRACT  

Standard measures of economic activity relate to goods and services offered by the market. 
Stiglitz’s report, however, suggests that not only monetary value or economic products create 
welfare, but non-monetary components should also be included in the System of National 
Accounts. Although household production is registered in official statistics, the main part of 
it, i.e. nearly 75-80% of the total home production remains outside of the GDP. 
The Household Production Satellite Account (HHSA) is a macroeconomic analysis covering 
both market and non-market home production. The National Time Transfer Accounts 
(NTTA) is, next to HHSA, an analysis aimed to register and observe the directions of 
transfers and to present the recipients and givers of home production. Regular estimations 
provided by the HHSA and NTTA may prove a valuable supporting tool to national 
accounts, pension systems, or social policy as they provide a great deal of macroeconomic 
information regarding households, their economic and living conditions, social changes, 
and welfare. 
Key words: generational economy, household production, unpaid work, GDP, Household 
Production Account, National Time Transfer Accounts.  

1.  Historical view of the valuation of unpaid work and household production 
in Poland 

The estimations of the unpaid work done by household members for their own use 
and to satisfy their needs have its relatively long tradition in Poland. The latest one was 
a foundation to provide the first full sequence of accounts titled the Household 
Production Satellite Account (Marszałek, 2015). 

The first attempts to estimate monetary value of housework were made in the 
1970s. In 1976 L. Szczerbińska estimated the unpaid work in Poland as PLN 448 007 
million, which was 25.6% in relation to GDP. The monthly value of the unpaid work 

                                                           
1 Warsaw School of Economics, Collegium of Economic Analysis, Institute of Statistics and Demography, Poland. 

E-mail: mmars1@sgh.waw.pl. ORCID: https://orcid.org/0000-0002-6810-7977. 



150                                                           M. Marszałek: The Unobserved Economy - Invisible Production… 

 

 

per person accounted PLN 1585, which constituted 39.9% of the average monthly net 
remuneration in the economy. According to L. Szczerbińska’s estimations, the 
monetary value of women’s unpaid work was 79.2%, for men’s  20.8% of the total 
housework done in 1976. In that analysis to estimate the monetary value of housework, 
the replacement cost approach and the market cost method were used (Szczerbińska, 
1987; Błaszczak-Przybycińska, 2008). 

An expanded valuation of unpaid housework was carried out in the 1980s by the 
Central Statistical Office in Poland (GUS) and the Polish Academy of Science (PAN). 
L. Szczerbińska complied the next valuation of unpaid work made in households in 
Poland in 1984. The analysis was a continuation of the researches of the estimates of 
extended final consumption expenditure. Childcare, adult care and disabled persons 
care, were excluded from the calculation then. Why care as a group of non-market 
household activities is outside the official estimations of GDP? The main reason is that 
each of caring activities generate only costs and they are not significant for total 
consumption of all housework in households (Marszałek, 2015; Błaszczak-
Przybycińska, 2008). 

The next analyses of housework were provided in 1990s in Warsaw School of Life 
Science (SGGW). K. Niewierowska observed households of farmers in Drohiczyn 
commune. Based on empirical analysis she counted the unpaid work in that type of 
households in one of region in north-eastern Poland. The monthly value of housework 
was estimated using two methods: replacement cost method and simplified method. 
The average monthly monetary value was different for each method. First of them was 
counted as PLN 658, second PLN 546. The average remuneration in the region was PLN 
578. The author of that calculation noticed that the highest wage in the analysis was 
assigned to food management (Niewierowska, 1997).  

In 1995, the estimation of the monetary value of housework focused on women’s 
work and their participation in creating non-market household production. B. Mikuta 
applied and implemented two different approaches: simplified method and replacement 
cost method (Mikuta, 1998). The simplified method was calculated as the amount of time 
of performing activities multiplied by unified gross remuneration rate. The replacement 
cost method was estimated as a sum of an average duration of some groups of household 
activities multiplied by an average gross remuneration rate for each group of housework 
(Błaszczak-Przybycińska, 2008: pp. 111-112).  

The monthly monetary value of home activities was counted as PLN 808 (simplified 
method) and PLN 722 (replacement cost method). The average monthly gross 
remuneration in Płock region in 1996, where the survey was carried out, amounted to 
PLN 929 (the average monthly remuneration in Poland was PLN 874). The dimension 
and the monetary value of unpaid work confirm that economic impact of households’ 
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activities could be more significant in the economy than it is observed in official 
statistics, which registers only a small part of household production. 

The most comprehensive estimations of the monetary value of unpaid work for 
women and men in households in Poland were based on time distribution of 
households in Time Use Survey for Poland 2003/2004 and 2013. The Time Use Survey 
2003/2004 and 2013 was harmonized with the European Time Use Survey, and it 
guarantees the comparability with results of other European countries, where the 
survey was carried out. 

I. Błaszczak-Przybycińska developed the basis and methodological guidelines to 
further analyses of the non-market household production (Marszałek, 2015). The 
author applied the input method to calculate the value of unpaid work in 5 groups of 
home activities: household upkeep, food management, making and care for textiles, 
child and adult care, help for other households (Błaszczak-Przybycińska, 2007). Groups 
of home activities were corresponding with households’ functions which are fulfilled to 
meet own needs or other household member’s needs. Only the household and family 
care group was taken into account from TUS 2003/2004 and 2013 because other 
activities, e.g. personal services, hobby, interests, sport were excluded from the 
estimation and it was in accordance with the productivity criterion also known as a third 
part criterion, a third person criterion or M. Reid criterion. That criterion assumes that 
only activities that could be done by a hired person without losing any utility for that 
household can be valuated (Eurostat, 1999, p.7). Thereby each household’s productive 
activity can be valuated using the market cost of similar services offered on the market. 

In order to estimate the monetary value of housework, also Survey of Wages 
According to Professions 2002 (GUS, 2004) was used. Hence, average hourly wages of 
professions were adapted to the housework monetary valuation.  

Monthly average gross value of housework in 2004 was assumed at 1000 PLN per 
person. The relation of women’s household work to men’s household work was 1:0.574  
in 2004. In 2013, the monetary value of housework amounted to PLN 1672. The 
proportion of women’s housework and men’s housework was 1:0.576 in 2013. 

In comparison with 2004, the highest changes in the value of housework in 2013 
were noticed in the case of help for other households and childcare. Probably it is 
convergent with the tradition. Polish society is more traditional than the societies of 
Western European countries. The care, mainly childcare, adult care and informal help 
for other households, e.g. supporting elder parents or grandparents is closed to family 
model and social expectations. Households in Poland take care of their family members 
more often than they outsource the care, although they are burdened with other 
liabilities.  
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2. Data source of HHSA and NTTA 

The time use survey 2003/2004 (TUS 2003/2004) and 2013 (TUS 2013) was the 
fundamental source of information about the time spent on unpaid household work. 
Those surveys were harmonized with the European Time Use Survey methodology, 
which ensures comparability with other countries. 

In both time use surveys the respondents were 15 and above, in TUS 2013 also the 
sample of 10 and above was observed. All activities were registered in diaries in 10-
minute intervals. In TUS 2003/2004 and 2013 the lists of more than 200 activities within 
ten groups were arranged. In both surveys the six household types were distinguished 
by the main source of income: employees, employees-farmers, farmers, self-employed, 
retirees and invalid pensioners and those living on unearned sources other than invalid-
pension and retirement. Every respondent registered all activities done in 2 days: one 
day from Monday-Friday and the other day: festive day during Monday-Friday or 
Saturday-Sunday. In the Household Production Satellite Account 2011 the system of 
wages was applied in accordance with the wage for the day from the time use survey. 

As far as the valuation of household work and production is taken into account, the 
main group of activities was the household and family care group. In accordance with 
Margaret Reid’s third party criterion only productive activities can be valued in the 
estimation of unpaid work and non-market household production. Some activities such 
as personal services must be excluded from the estimation. Finally, 47 household 
activities within 5 groups were taken into account in the calculations. The groups of 
activities in the estimation of household work were compatible with the household’s 
functions. In the analysis, the following were distinguished: household upkeep, food 
management, making and care for textiles, care (childcare and adult care), help for 
other households (voluntary work for other households). Also, transport and 
household management were estimated in the analysis in proportional part for the each 
group of activities.  

3. Household production satellite account for Poland 

The household production satellite account (HHSA or HPSA) is a full sequence of 
accounts with information about the value of domestic work, intermediate 
consumption and capital which are collected and used in households for own needs or 
other households member’s needs. The HHSA could be a comprehensive compilation 
and a supporting tool for the national accounts. It presents the monetary value of 
unobserved household production generated for themselves and outside their 
household, e.g. grandparental help, adult care for elder parents, neighbourly help. 
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International discussions on that topic have been continuing for at least  
4-5 decades. The Eurostat (European Union Statistical Office) and other global 
institutions recommend that to better understand the social and economic conditions 
of households and their contribution to the national economy is to estimate the 
monetary value of domestic work and home production as the household production 
satellite account. That compilation of full sequence of accounts provides information 
about unpaid products and services which were produced in households but are not 
offered on the market. The households’ goods and services made for own use do not 
have a price, but they are valuable. No price is not equal with no value. Household 
members used the products made in home, e.g. home-made dinner, clean and tidy 
home, washed clothes, childcare, help for other households without any market price 
and cost. Also, any market transaction exists in home production for own use. 
If someone acquires the same goods or services, they will buy it on the market and that 
transaction will be noticed in GDP. 

In international calculations of the HHSA, the value of homemade products and 
services is estimated at nearly 10-20% of total household production (market and non-
market), and it was called market production and registered in the national accounts. 
The major part of the home production is generated for own consumption (Marszałek, 
2015). It is called the non-market household production, so it is non-observed in the 
national economy and it is made outside GDP. Non-market home production does not 
generate any monetary transactions so it is excluded from the market. Although the 
non-market home production is outside the national statistics, it has a crucial role in 
well-being research of the households’ economic and living conditions.  

The estimation of non-market household production is based on calculations of the 
amount and value of housework, intermediate consumption and capital. The domestic 
work has the basic and crucial share in total home production made for their own final 
consumption. The next critic point of the home production estimation is calculating 
consumption. In order to provide a comprehensive view of the production’s process in 
households, consumption is divided into three types: final consumption, intermediate 
consumption and capital consumption (depreciation). The final consumption, which 
means the proper using up of a product: eating food, wearing clothes, feeding baby. 
Secondly, there is intermediate consumption, which covers the products as a part of the 
production process, e.g. vegetables, meat, fruits used when cooking dinner. Thirdly, 
consumption refers to capital services produced by the machines, appliances required 
in the production process. Capital services consist of: consumption of fixed capital, i.e. 
depreciation of equipment, machinery, appliances used at home, and interest referring 
to the acquisition of capital. In the Household Production Satellite Account only the 
consumption of fixed capital (depreciation) is included (Varjonen & Aalto, 2006, p. 22). 
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4. Valuing of housework and household production in HPSA – methods 

The full sequence of accounts for household production (market and non-market) 
in Poland and the methodology is based on the framework of national accounts 
consisting of the whole sequence of accounts (Eurostat 1999; Eurostat 2003). 

In literature and economic practice two different methods are recognized and used 
– input method and output method. Input method was implemented more frequent than 
output approach. When considering the choice of a specific production valuation 
method, some important assumptions should be included. 

Input method is better known and permanently developing. The pioneer Eurostat’s 
framework recommends to apply the input method for estimations of unpaid work in 
households (Eurostat, 1999).  

Input method is based on the structure of time distributing during the 24-hours by 
all household’s members. Data of time budget is using from the time use survey. Time 
is a main component to estimate the total monetary value of housework in each group 
of activity, i.e. house maintenance, food preparation, making and caring of clothes, 
childcare and adult care, volunteer work. Afterwards, when the structure of daily 
distribution of time between all housekeepers is recognized, the selection of a specific 
approach should be implemented (Figure 1).  

 

Input method Output method 

The total value of housework (hours x 
professional rates of similar market work or 
service) 

+ other taxes on production 
subsidies on production 
+ consumption of capital 
= gross value added 
+ intermediate consumption 
= total household production 

The value of output (quantity x market price) = 
total household production 

intermediate consumption 
= gross value added 

consumption of the capital 
other taxes on production 
+ other subsidies on production 

= mixed income (with compensation of 
employees and capital) 

Figure 1. Input – output method of valuing the non-market household production 
Source: Based on Eurostat 2003, pp. 12. 

 
Finland (Varjonen, Hamunen & Soinne, 2014; Varjonen & Aalto, 2006) and 

Germany (Varjonen & Rüger, 2008) also applied the input method and compared the 
results per capita between their countries. Hungary adjusted the input approach to 
valuing home production by size of household and type of the family. France provided 
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the estimation based on input method with three definitions of housework (unpaid 
work). The results of the widest perspective showed that over 80% in relation to French 
GDP were generated in households (Poissonnier and Roy 2013).  

Poland reflects continuing works of the valuing housework and home production 
with the input method (Błaszczak-Przybycińska & Marszałek, 2019; Błaszczak-
Przybycińska, 2008, 2007; Marszałek, 2015). 

Individual estimation was proposed by the United Kingdom (Holloway, Short, 
Tamplin, 2002; Ironmonger & Soupourmas, 2009). The UK used the output method, 
which was more proper to make comparisons with GDP and production counted in the 
national accounts, but it did not cover a lot of controversial issues in home production 
estimation, e.g. caregiving activities, volunteering work, etc. The most crucial and 
debatable point is that the output method does not ensure the total overview of 
productive results of home activities. The output of washing clothes is possible to 
recognize if we have, for example, the total amount of clean clothing. The result of some 
housework in the output method is impossible to indicate if the effect is hard to identify, 
e.g. the output of caring children. 

The input method is based on time spent used on home activities, so it can be 
countable and it is more useful to compare between the regions or the countries. 
This method is divided into two different approaches: replacement cost and 
opportunity cost. The replacement cost approach uses the rates of professions’ salaries, 
which is calculated in the sum of the value of housework (1.). 

Replacement cost method:  
𝑦 ൌ 𝑡௠/௪ ∗ 𝑟,         (1.) 

where: 
tw, tm  – time of all housework for women or men (in hours and minutes) 
r – average rate per hour of professions (in market price) 

The opportunity cost method provides the information about the hypothetical 
value of housework in relation to type of profession which is realized by individuals. 
This approach is less applicable than the replacement cost approach because the 
specification and differences between rates of the salaries determined not the volume 
but the monetary value of housework. If more paid specialists live in households, e.g. 
doctors of medicine, lawyers or others, their value of housework will be more expensive 
than housework of lower paid jobs, e.g. builders, nurses, teachers, home-cleaners (2.).  

Opportunity cost method: 
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 ℎ𝑜𝑢𝑠𝑒𝑤𝑜𝑟𝑘 ሺ𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 𝑐𝑜𝑠𝑡 𝑚𝑒𝑡ℎ𝑜𝑑ሻ ൌ  𝑡௠/௪ ∗  𝑟௦ ,    (2.) 

where: 
𝑡௠/௪ – time of all housework for women or men (in hours and minutes) 
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𝑟௦ – rate per hour for different professions according with the specialization of 
someone’s job (in market price) 

The whole sequence of valuing processes (equations, scheme of the uses-resources 
tables of accounts) were presented in the previous analyses of the valuation of 
housework (Błaszczak-Przybycińska, 2008 & 2007; Błaszczak-Przybycińska & 
Marszałek, 2019 & 2015) and in the Household Production Satellite Account for Poland 
(Marszałek, 2018 & 2015). 

5. Full sequence of accounts – Household Production Satellite Account 2011 
– results 

The first full sequence of accounts in the Household Production Satellite Account 
for Poland was in 2011. The output of household production (sum of market and non-
market production) in Poland reached PLN 1109.8 billion (Table 1). Gross value added 
of household production was PLN 807.3 billion, of which 15% was included in the 
national accounts. The major part of household production is outside the market and 
official statistics. The fact that such a large amount of  household production is not 
registered in the system of national accounts (SNA) might contribute to incomplete 
information about conditions of households. 

Value added of housework is counted as more than 75% of total household 
production, while intermediate consumption – goods and services used in the 
production process – constitute 16 per cent of total output. The value of unpaid work 
made at home is the most important and a major component of non-market household 
production, because it provides information not only about time distribution 
in households by functions, but also informs about cost inputs of time spent doing 
housework. Input of domestic work constitutes the starting point for other social and 
macroeconomic estimations, e.g. for advanced analyses of childcare or adult care for 
family and social policy. 

Sums of capital and intermediate consumption are lower than one third part of the 
total non-market production, which confirms that the value of labour is the most 
significant category of the household production valuation. Therefore, working on 
regular implementation and providing the household production satellite account 
should be pointed out at solving problems of estimation and harmonized methodology 
of domestic labour calculation. 
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Table 2. Household production in Poland in 2011 (million PLN) 

Components of household 
production 

Household production

SNA NonSNA Total 
(SNA + nonSNA) (market 

production) 
 

in GDP 

(non-market  
production) 

 
outside GDP 

Value of labour (number of hours 
spent on housework x hourly rates) 
 

◦ 644 390 644 390 

Paid domestic staff 796 ◦ 796 

Housing services produced by 
owner occupiers (rents of equivalent 
rented accommodation) 

53 160 ◦ 53 160 

Own-account house construction 42 088 ◦ 42 088 

Agricultural production for own use 
(hunting, fishing, picking berries 
and mushrooms) 

7 598 3 301 10 899 

Taxes on production 4 458 893 5 351 
Subsidies on production -5 030 -20 619 -25 650 
Net value added 103 070 627 965 731 035 
Consumption of fixed capital 
(depreciation) 21 515 54 708 76 223 

Gross value added 124 585 682 673 807 258 
Intermediate consumption 145 595 156 973 302 567 
Output  
(household production) 

270 179 839 646 1 109 825 

Source: Own calculations based on the method proposed by Marszałek (2015), p. 163-167. 

 
The incomplete data in official statistics, skipped in the non-market value of home 

production, might provide an incorrect view on social-economic analyses of welfare 
and living conditions, and as a result it may generate false conclusions of the situation 
of households. Households use all their resources: individual and group, cultural, social, 
monetary, and others to well-organized life and to fulfil needs. The utility that 
households strive for is in some sense produced by them. Households, which are both 
consumers and producers, perform basic functions with using not only monetary goods 
and services, but also non-monetary units. Therefore, it should considered by official 
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statistics, not only in the core of national accounts, but as an additional complementary 
analysis – Satellite Account. 

The contribution of households in the formation of GDP was counted as PLN 124.6 
billion, and it was near 8.2% of total market production in 2011 in Poland. If the non-
market home production sums up with market production the household production 
in relation to GDP will achieve 52.8%. The home production made outside the market 
was assumed at 44.7% in comparison with GDP (Figure 2).  
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Figure 2. Structure of GDP, market and non-market household production (billion PLN) 

Source: Own calculations. 

 
The non-market household production is invisible and it has no full reflection 

in the European System of National Accounts, which constitutes the gap of that value 
in the economy. If the non-market household production is included in official 
statistics, GDP will increase more than 30.9%. The extended GDP concept assumes 
inclusion of the non-market home production in the national accounts, therefore total 
production made in households as a goods and services offer to other households 
members and on the market will achieve 36.5% of the extended GDP measure. 

Households carry out a lot of different functions to fulfil individual and group 
needs inside and for the other family members or neighbours outside home. The results 
of the monetary valuation of market and home production is presented in Figure 3. 

The most diverse of the principal functions is housing. The sum of SNA home 
production and household upkeep spent for own use without any monetary 
transactions is the most valuable of all the groups of activities made at home. It assumes 
more than one third of total household production in 2011.  
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In the economic practise, housing consists of a wide scope of different domestic 
works carried out in a space called a dwelling. Housing production is understood in the 
Satellite Account in a deeper and broader sense than in the official statistics. Only 
a small part of the total home production made as housing is covered in the core 
national accounts. SNA-housing production contained: housing services produced by 
owner-occupiers, own-account house construction. Also, paid domestic staff is included 
in market boundaries called SNA housing. Non-SNA home production includes all 
other equipment related to maintain home clean and tidy. Home production covers 
also furnishing, minor repairs, gardening and yard maintenance. Only goods related to 
hobbies and interests are excluded from the calculations in the Household production 
satellite account (Błaszczak-Przybycińska & Marszałek, 2019). 
 

 
Figure 3. Structure of the household production for Poland in 2011 by functions (in %) 

Source: Own calculations. 

 
Considering groups of domestic work separately, the most valuable and crucial to 

life is the food management. The preparation of meals and snacks consumed within the 
household, so the output of the services, is fully clearly visible and tangible in opposite 
to other services offered in the households, e.g. childcare or help for other adults from 
the same household or outside home. The SNA food management covers the 
agricultural production for own use (hunting, fishing, picking berries and mushrooms). 

Non-SNA food management provides the production of meals, snacks, baking, 
preserving and other related activities, such as buying groceries, utensils and appliances 
for the food preparation. Also, non-SNA home production of food management 
included housework relative to washing dishes, setting the table, cleaning after a meal 
and other related activities. The food management covers 38% of total home production 
made in households in 2011 (Figure 3). 
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Making and care textiles do not have a crucial role in the formation of home 
production in Polish households now. Twenty-thirty years ago, when the lack of many 
goods and products was noticed in Poland, the households members, mainly women, 
were engaged in making clothes by themselves for own use or for others. Currently, the 
most visible services made in households are related to washing and ironing clothes, 
rarely mangling, repairing clothes or footwear. Near 5% of home production is 
provided by making and care textiles. 

Childcare and adult care is the most complicated function to organize and estimate 
the monetary value. Caregiving assumes not only services offered to other dependent 
underage or adult persons but also goods used during the production process. It is hard 
to distinct, select and integrate them into the Household production satellite accoun. 
The most troublesome for home production of care is to estimate the value of time 
input dedicated to children or adults. Some of activities are treated as a second activity 
done during other housework, e.g. the main activity is cooking dinner, the second is 
passive taking care of a child. Therefore, it is important to count the proper part of 
home production in providing care. Production related to the care of a household 
member is not registered as such in the core national statistics. The home care of one’s 
own children or adult family member who lives in the same household or outside in a 
separate household is supported by allowances, e.g. parent’s allowance, nursing support 
for elder or disabled person. In the Household Production Satellite Accoun, allowances 
were taken into account in the form of subsidies on production. Care provided at home 
was counted more than one fifth of the household production. 

Pet care has a similar concept of the estimation to childcare and adult care. Some 
researchers claim that caring for pet is discussable to calculate it into the Household 
production satellite account. If it is treated as a hobby, it should not be included into 
the calculation of home production. But if it is considered as a work which could be 
done on the market by a third person, it will be productive for households and in 
accordance with the third part criterion.    

Help for other households has provided 4% of home production. Some activities 
are dedicated by elder person to other family member who lives in a separate household 
or to friends or neighbours. That group of housework is also a minor component of the 
household production determined by the amount and the value of domestic work but 
it is important for social and family life. Probably, in near future the role of help for 
other households or voluntary work will increase, which is related to demographical 
changes in the Polish society.  
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6. National Time Transfer Account for Poland 

The National Time Transfer Account (NTTA) for Poland in 2013 was based on the 
Time Use Survey 2013 results of time dimension of households’ members. The NTTA 
is the part of the global concept of understanding the generational economy (Mason & 
Lee, 2011). Making home production and consumption visible is a crucial assumption 
of the NTTA conception. Also, private and public transfers in households are important 
to be registered into the National Transfer Accounts (NTA). Both formations of 
accounts: the NTTA and NTA, present the receivers and givers of home production 
and consumption, public and private transfers. They figure interactions between family 
inside and outside their own households. Those calculations of the NTTA and NTA 
could be important, valuable and crucial information carriers for the core national 
accounts. In the case of the NTTA, the number of members living in a household is not 
relevant, aspects such as age and sex of the receiver or giver of the unpaid home 
production are more informative. The fundament aim of the estimation of different 
transfers could provide the existing gap in social statistics of households’ role and 
households’ productivity in the economy.  

In the National Time Transfer Accounts, each group of housework which defined 
the household production was counted as a result of time spent on housework multiply 
by the average rate per hour of professions corresponding to selected domestic 
productive activity. The monetary value of childcare is based on an aggregate of some 
types of average rates of different professions, e.g. teachers, nurses, coaches, lecturers. 
The same concept of estimation might also be applied to other types of home services: 
household upkeep, food management, making and care for textiles, help for other 
households. The distinction between average rates of professions for each group of 
domestic work is significant because the knowledge, skills and abilities are different for 
them (Table 2).  

Table 2.  The average net hourly rates for monetary valuation of home production in National Time 
Transfer Accounts for Poland in October 2013 (in PLN) 

Groups of activities of housework 
Average net hourly rates  

Oct. 2013 (PLN) 
Household upkeep (cleaning) 8.01 
Making and care for textiles (laundry) 8.68 
Food management (cooking) 8.31 
Household maintenance 10.37 
Gardening  10.09 
Household management 13.41 
Pet care 9.00 
Shopping and other services 11.21 
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Table 2.  The average net hourly rates for monetary valuation of home production in National Time 
Transfer Accounts for Poland in October 2013 (in PLN)  (cont.) 

Groups of activities of housework 
Average net hourly rates  

Oct. 2013 (PLN) 
Travelling 10.98 
Childcare (household) 21.61 
Childcare (non-household) 22.44 
Help to an adult family member (household adults) 11.27 
Help to an adult (non-household adults) 14.54 
Informal help to other households (volunteering care) 10.41 

Source: Own analysis based on POLNTA project realized at SGH. 

 
The transfers of production and consumption in the NTTA are based on detailed 

estimations and the sum of the time units allocated in different home productive 
activities to fulfil own needs or other housekeepers’ needs or expectations, and also for 
outside the household, e.g. for the elder parents, grandparents, other family, 
neighbours, etc., multiplied by average rates of professions for different groups of 
housework. The value of household production was estimated separately for women 
and men. Their arrangement of performing home activities is different, which is 
registered in the final calculation of the transfers between generations and households 
(Table 2).  

In the NTTA, the process of selected information is analogical to the HPSA. Time 
is an important component to estimate the monetary value of unpaid work 
(housework) and home production. The differences focus on the average rates of 
professions. In the HPSA, the average monthly wages of professions are directly from 
the “Survey of Wages According to Professions”. Market wages were matched to similar 
home activities, e.g. cooking dinner with average monthly wage of a sub chef of the 
cook, not the cook – because in the HPSA only the lowest wages were implemented 
in the estimation of housework. It indicates that the valuation of housework and home 
production is not overestimated but it is more possible that some activities which were 
registered in time use survey as a secondary activity were not counted and observed in 
HPSA. 

The rates (wages) implemented in the NTTA are different than in the HPSA 
because they are the sum of average of few various rates of professions for the group of 
activities, e.g. to calculate the value of childcare from own households of the selected 
wages of teachers, tutors, nurses, babysitter, etc. were used in the estimation. Both 
methods implemented in the NTTA and in the HPSA are effective, but they ensure 
various type of information for the analyses of distribution and transfers of time 
in households. 
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7. Unobserved production in households – NTTA results 

The idea that ageing is only a developed country problem is no longer valid in 
practise. Rapid fertility decline in many developing countries and results of that have 
been observed. The response is the concept of National Time Transfer Accounts 
(NTTA), which provides the statistical tool to observe how societies are dealing with 
age or generational issues. 

Households is the most differential sector in national accounts, which covers the 
entire economy although the monetary transactions which exist are an insignificant 
part of the total home production. The major part of goods and services is invisible and 
unobserved in official statistics and registry. Even though a lot of products that are 
consumed in households are not available and do not take action on the market, they 
allow to fulfil fundamental individual or group needs. The non-market production is 
not a monetary cycle but it occurs outside the market. Observing and registering 
transfers inside and between the households could be provided by the National Transfer 
Accounts and the National Time Transfer Accounts, which compare the public and 
private transfers. 

The Time use survey 2013 (TUS 2013) for Poland registered that men spend on 
average one hour per day more than women doing paid work, while women spend more 
time at home or making duties related to housework (Marszałek, 2016). The proportion 
of total time spent on doing tasks at work and home is different. The entire time of paid 
work and domestic work is higher for women than men (Figure 4).  

 

 
Figure 4. Time transfers of total paid and unpaid work by age and sex in Poland 2013 (in hours/ week) 

Source: Own calculations based on POLNTA project carried out at SGH. 
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unpaid domestic work. Men are responsible for gaining income for their households, 
women for home, even though they are both employed. It confirms the women’s 
double-burdened of domestic work but also stereotypes, social roles and patterns that 
Polish society is still deep traditional.  However, mainly young couples in big towns or 
cities declare that households in Poland sharing the majority of home tasks between 
spouses or partners. During the age women are more often unemployed than men in 
the age. In Poland, a social expectation of women is a deeper commitment in home 
tasks than in market paid job. Especially help for elder parents or disabled person is 
dedicated more often for women than men. Therefore, social, cultural and traditional 
factors are crucial and decisive indicators influence in the population transfers of time, 
and next in home production and consumption. 

The National Transfer Accounts (NTA) and the National Time Transfer Accounts 
(NTTA) present the economic life cycle as a universal feature of the society. For a long 
period at the beginning and the end of life people consume more than produce 
regardless of the type of work: housework (unpaid) or market (paid). In the middle of 
life there is a period when more is produced than consumed. Many social, behavioural, 
cultural, educational, political and other factors influence how the labour income, 
consumption and home production vary with age. 

The NTTA profiles of production and consumption present a longitudinal 
formation of the households’ inside and outside transfers (United Nations, 2013). They 
indicate the toward of transfers not the person to whom the production is offered. 
It also provides the information about receivers of home production (consumers) and 
givers of the non-market goods and services. 

The current aggregate level of the economic life cycle also reflects the population 
age structure and the results of activities performed during life. At the beginning, very 
young and teenager populations, the life cycle deficit equal consumption minus 
production is dominated. Over the years, when the demographic transition in 
population age exists, the proportion of the life cycle deficit or surplus is melting down. 

During the observations of time distribution in households, the current life cycle 
stadium reflects. The highest receivers of home production are children, both females 
and males aged 0-6 (Figure 5). Over the age of 6, they are more decisive and have more 
skills and abilities to better organize their life and to arrange domestic tasks. In TUS 
2013 for Poland it was noticed that children aged 10 and over are not involved in doing 
housework. Probably, their parents do not expect any or only small portion of help at 
home as they take the view that children should focus mainly on how better to organize 
scholar activities and the rest, not on being involved in home tasks.  

The most burdened group is women aged 50+ (Figure 5). Women in this cohort 
are a part of a sandwich generation. It means that people in this group are doubly 
burdened, they help for their elder parents and they take care of their growing children, 
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who need a lot of attention and support. Sometimes the sandwich generation 
participates in help or care of grandchildren. In Polish households women aged 50+ are 
pensioners, but they still have the ability to support others, e.g. elder neighbours in daily 
activities or they work outside the market registration, usually women do care jobs: 
childcare or adult care. 

 
 

 
Figure 5. NTTA profiles of the production and consumption transfers by age and sex (PLN/ year) 
Source: Own calculations based on POLNTA project implemented at SGH. 

 
In Poland, social expectations focus on providing care and help for the elder family 

members or children by women. Even if men share housework, the major part of total 
domestic duties are the women’ domain. Tradition and a fundamental view are stronger 
than the social changes which are observed especially in the big cities and in households 
with men with higher education. 

Men make less non-market production than women across their life. The highest 
volume of domestic work is for men aged 30 to 45 and 60+. Based on the NTTA data, 
the value and amount of home production is observed by age and sex. The towards of 
the transfers is not fully registered. Men aged 30-45 do a lot of their housework made 
not for themselves but for children. It is a time when men and women have children, 
and they carry out different domestic work for the youngest generation. The opposite 
perspective is observed in a cohort of men aged 60+, especially the ones who live alone, 
make a non-market household production for themselves. In Poland, the most valuable 
group of home duties is food management. Men aged 60+ spend most of their time on 
activities related to the preparation of a meal (Figure 5). 
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8. Conclusions 

The social and economic changes which have been observed in the last decades 
focus not only on the market production made in the economy, but also on the non-
market factors that influence the general and current macroeconomic horizon. The 
macro perspective centres on development and economic growth. The micro 
perspective, which is households’ domain, covers all individual and group needs, social 
expectations, economic decisions. Home production provides the fulfilment of 
different needs, which is indirectly reflected in companies, financial and governmental 
institutions, and finally in the national economy. Moreover, households generate value 
added of their non-market productive activities, e.g. home repairs, cleaning, preparing 
food, making textiles and clothes, childcare, etc. Although domestic work does not have 
any market price, it provides a lot of different needs, so it has a value. Therefore, it 
should be reflected in the core national system of accounts. GDP, value added, national 
income are formatted not only based on market decision. The social behaviour, needs 
and expectations create the final demand even if a lot of housework is made for 
themselves in own households. The real impact of households for the economy should 
be regularly estimated as an additional comprehensive sort of households information 
to the official statistics called Household Production Satellite Account (HHSA or HPSA). 
The HHSA with the National Time Transfer Accounts (NTTA) are the 
multidimensional sequence of accounts with information about the volume and value 
of home production and consumption across the life cycle. Using the information on 
the social and the economic situation of households can provide a solution to better 
organize e.g. social and family system, pension system, the law, entrepreneurs’ 
decisions. The observation of time transfers can be supporting in organizing the 
families’ life or adjusting the working system, especially in more flexible work time or 
partly-time jobs, which will be reflected in better use of the labour resources. The 
influence of the changes in some areas is necessary, because a lot of international 
phenomena are observed, such as the aging of society or low fertility rate. Therefore, 
new but not costly methods and statistical tools to measure and observe the households 
situation is required and needful. It is necessary to better understand and register the 
real conditions of the largest and most dimensional sector of the economy (in a more 
detailed way). 
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Poisson Weighted Ishita Distribution: Model for Analysis  
of Over-Dispersed Medical Count Data 
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ABSTRACT  

A new over-dispersed discrete probability model is introduced, by compounding the 
Poisson distribution with the weighted Ishita distribution. The statistical properties of the 
newly introduced distribution have been derived and discussed. Parameter estimation has 
been done with the application of the maximum likelihood method of estimation, followed 
by the Monte Carlo simulation procedure to examine the suitability of the ML estimators. 
In order to verify the applicability of the proposed distribution, a real-life set of data from 
the medical field has been analysed for modeling a count dataset representing epileptic 
seizure counts. 
Key words: compounding model, coverage probability, simulation, count data, epileptic 
seizure counts. 

1.  Introduction 

Compounding mechanism for generating new count data probability models has 
received a great attention from researchers to obtain new probability distributions to 
fit data sets not adequately fit by common parametric distributions. Compound 
distributions serve well to describe various phenomena in biology, epidemiology and 
so on. The work has been done in this particular area since 1920. Using compounding 
mechanism, Greenwood and Yule (1920) established a relationship between Poisson 
distribution and a negative binomial distribution by treating the rate parameter in 
Poisson model as gamma variate. Skellam (1948) proposed a probability distribution 
from the binomial distribution by regarding the probability of success as a beta variable 
between sets of trials. Lindely (1958) proposed a one parameter probability distribution 
to illustrate the difference between fiducial distribution and posterior distribution. 
Gerstenkorn (1993,1996) introduced several compound distributions and obtained 
compound of gamma distribution with exponential distribution by treating the 
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parameter of gamma distribution as an exponential variate and also obtained 
compound of polya with beta distribution. Mahmoudi et al. (2010) generalized the 
Poisson-Lindely distribution of Sankaran (1970) and showed that their generalized 
distribution has more flexibility in analysing count data. Zamani and Ismail (2010) 
proposed a new compound distribution by compounding negative binomial with one 
parameter Lindley distribution that provides good fit for count data where the 
probability at zero has an inflated value. A new generalized negative binomial 
distribution was proposed by Gupta and Ong (2004). This distribution arises from 
Poisson distribution if the rate parameter follows generalized gamma distribution; the 
resulting distribution so obtained was applied to various data sets and can be used as a 
better alternative to negative binomial distribution. Rashid, Ahmad and Jan (2016) 
proposed a new competitive count data model, by compounding negative binomial 
distribution with Kumaraswamy distribution, which finds its application in biological 
sciences. Para and Jan (2018) introduced two compounding models with applications 
to handle count data in medical sciences. 

In this paper, we propose a new compounding distribution by compounding 
Poisson distribution with weighted Ishita distribution. Ishita distribution is a flexible 
probability model introduced by Shanker and Shukla (2017) and its weighted version 
was introduced by Shukla and Shanker (2019) as a new life time probability model. 
The new model is introduced as there is a need to find more flexible models for 
analyzing over-dispersed count data. 

2.  Definition of Proposed Model (Poisson Weighted Ishita Distribution) 

If ~|X Poisson   , where  is itself a random variable following weighted Ishita 
distribution with parameter c and  , then determining the distribution that results 
from marginalizing over  will be known as a compound of Poisson distribution with 
that of weighted Ishita distribution, which is denoted by  ,;cXPWID . It may be noted 
that the proposed model will be a discrete since the parent distribution is discrete. 
Theorem 2.1: The probability mass function of a Poisson weighted Ishita distribution, i.e. 

 ,;cXPWID is given by 
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Proof: Using the definition (2), the pmf of a Poisson weighted Ishita distribution, i.e. 

 ,;cXPWID can be obtained as 
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When its parameter  follows weighted Ishita distribution (WID) with pdf 
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0,0;,...3,2,1,0  cx   

which is the pmf of  Poisson weighted Ishita distribution. 

 

Figure 1. pmf plot of Poisson weighted Ishita distribution for different parameter combinations 
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The corresponding cdf of Poisson weighted Ishita distribution is obtained as: 
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Cdf is not in the closed form and it can be solved using software like mathematica 
and MathCAD for getting numerical results. 

2.1. Random Data Generation from Poisson weighted Ishita distribution 

In order to simulate the data from Poisson weighted Ishita distribution, we employ 
the discrete version of inverse cdf method. Simulating a sequence of random numbers 

nyyy ,....,, 21  from Poisson weighted Ishita random variable K with pmf 
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In order to generate n random numbers nyyy ,....,, 21  from Poisson weighted Ishita 
distribution, repeat step-1 and step-2 n times. We have employed R studio software for 
running the simulation study of the proposed model. 

3.  Statistical properties 

In this section, structural properties of the Poisson weighted Ishita model have been 
evaluated. These include the moment, moment generating function and probability 
generating function. 
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3.1. Factorial Moments 

Using (2.1), the rth factorial moment about origin of the Poisson weighted Ishita 
distribution (2.1) can be obtained as 
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Taking r=1,2,3,4 in (3.1.1), the first four factorial moments about origin of Poisson 
weighted Ishita distribution can be obtained as 
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3.1.2.  Moments about origin (Raw moments)          

Using the relationship between factorial moments about origin and the moments 
about origin of Poisson weighted Ishita distribution (2.1), we have 
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4.  Reliability Analysis 

In this section, we have obtained the reliability and hazard rate function of the 
proposed Poisson weighted Ishita distribution. 

4.1. Reliability Function R(x) 

The reliability function is defined as the probability that a system survives beyond 
a specified time. It is also referred to as survival function of the distribution. The 
reliability function or the survival function of Poisson weighted Ishita distribution is 
given by 
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4.2. Hazard Function 

The hazard function is also known as the hazard rate, instantaneous failure rate or force of 

mortality, and is given as: 
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5.  Order statistics 

Let        nXXXX ....,,, 321 be the ordered statistics of the random sample 

nXXXX ,....,, 321  drawn from the discrete distribution with cumulative distribution 
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function  xFX and probability mass function  xPX , then the probability mass 
function of rth order statistics  rX  is given by: 
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 r=1, 2, 3,…,n 

Using the equations (2.1) and (2.2), the probability mass function of rth order 
statistics of Poisson weighted Ishita distribution is given by: 
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Then, the pmf of first order  1X  Poisson weighted Ishita distribution is given by: 
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and the pmf of nth order  nX Poisson Ishita model is given as: 
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6.  Estimation of Parameters 

In this section, we estimate the parameters of the Poisson weighted Ishita 
distribution using methods of maximum likelihood estimation. 

6.1. Method of Maximum Likelihood Estimation 

This is one of the most useful method for estimating the different parameters of the 
distribution. Let nXXXX ,...,,, 321  be the random size of sample n draw from Poisson 
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weighted Ishita distribution. Then, the likelihood function of Poisson weighted Ishita 
distribution is given as: 
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By differentiating log-likelihood function with respect to c and , and equating 

them to zero we get normal equations for estimating the parameters of the Poisson 
weighted Ishita distribution. 
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These two derivative equations cannot be solved analytically, therefore ̂ ˆ andc

will be obtained by maximizing the log likelihood function numerically using the 
Newton-Raphson method, which is a powerful technique for solving equations 
iteratively and numerically. 

6.2. Monte Carlo Simulation 

In order to investigate the performance of the maximum likelihood estimators for 
a finite sample size n using Monte Carlo simulation procedure. Using the inverse cdf 
method discussed in sub-section 2.1, random data is generated from Poisson weighted 
Ishita distribution. We took four random parameter combinations as 4.0,4.0  c ,

9.0,8.0  c , 7.1,5.1  c  and 2.3,5.2  c , to carry out the simulation study 
and the process was repeated 1000 times by going from small to large sample sizes n = 
(10,25,75,200,300,600). From Table 1, it is clear that the estimated variances and MSEs 
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decrease when the sample size n increases. The coverage probabilities (CP) are near to 
0.95 when the sample size increases. Thus, the agreement between theory and practice 
improves as the sample size n increases. Hence, the maximum likelihood method 
performs quite well in estimating the model parameters of the Poisson weighted Ishita 
distribution. 

Table 1. Simulation study of ML estimators of Poisson weighted Ishita distribution 

Sample 
size (n) 

Parameters 
4.0,4.0  c  9.0,8.0  c  

Bias Variance MSE Coverage 
Probability 

Bias Variance MSE Coverage 
Probability 

10 
c  -0.0948 0.008298 0.017285 0.899 0.054353 0.016773 0.0197272 0.919 

  0.214834 0.091871 0.1380246 0.922 0.033567 0.039843 0.0409697 0.911 

25 
c  -0.07802 0.005691 0.0117781 0.939 -0.00876 0.005471 0.0055477 0.929 

  0.078574 0.043124 0.0492979 0.943 0.037584 0.010208 0.0116206 0.922 

75 
c  -0.06463 0.003127 0.007304 0.949 0.016155 0.000861 0.001122 0.942 

  -0.05445 0.031839 0.0348038 0.953 0.011167 0.000993 0.0011177 0.949 

200 
c  -0.04363 0.003372 0.0052756 0.959 -0.00825 0.001847 0.0019151 0.956 

  -0.01411 0.007967 0.0081661 0.957 0.007271 0.001054 0.0011069 0.955 

300 
c  -0.02236 0.001644 0.002144 0.958 0.001713 0.000411 0.0004139 0.959 

  -0.00354 0.004377 0.0043895 0.961 0.006739 0.000308 0.0003534 0.966 

600 
c  -0.01746 0.000182 0.0004869 0.959 0.006854 0.000149 0.000196 0.963 

  -0.00046 0.002975 0.0029752 0.971 0.002234 0.000175 0.000180 0.969 

Sample 
size (n) 

Parameters 
7.1,5.1  c  2.3,5.2  c  

Bias Variance MSE 
Coverage 

Probability Bias Variance MSE 
Coverage 

Probability 

10 
c  -0.050778 0.000497 0.003075 0.939 0.054253 0.016673 0.054253 0.829 

  0.040750 0.003891 0.005552 0.889 0.033467 0.039743 0.033467 0.915 

25 
c  -0.044688 0.000719 0.002716 0.938 -0.00886 0.005371 -0.00886 0.927 

  -0.016717 0.002150 0.002429 0.952 0.037484 0.010108 0.037484 0.943 

75 
c  -0.032848 0.000382 0.001461 0.956 0.016055 0.000761 0.016055 0.949 

  0.000015 0.000310 0.000310 0.953 0.011067 0.000893 0.011067 0.943 

200 
c  0.003141 0.000628 0.000638 0.962 -0.00835 0.001747 -0.00835 0.959 

  0.003232 0.000001 0.000011 0.958 0.007171 0.000954 0.007171 0.959 

300 
c  -0.005717 0.000003 0.000036 0.961 0.001613 0.000311 0.001613 0.962 

  -0.001419 0.000012 0.000014 0.959 0.006639 0.000208 0.006639 0.961 

600 
c  0.002955 0.000040 0.000049 0.965 0.006754 0.000049 0.006754 0.972 

  0.000943 0.000036 0.000037 0.962 0.002134 0.000075 0.002134 0.968 
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7. Applications of Poisson Weighted Ishita Distribution 

In this section, we fit our proposed model and other related models to a vaccine 
adverse event count data studied by Rose et al. (2006). The data are the frequencies 
which correspond to 4020 observed systemic adverse events for four injections for each 
of the 1005 study participants. The data set is given in Table 2. 

Table 2.  Data set representing vaccine adverse event count data studied by Rose et al. (2006) 

Vaccine adverse 
event 

0 1 2 3 4 5 6 7 8 9 10 11 12 

Frequency 1437 1010 660 428 236 122 62 34 14 8 4 4 1 

Maximum likelihood estimation method is used in estimating the parameters for 
all the suggested models using R software. Parameter estimates with standard errors in 
parenthesis for each fitted model are given in Table 3. 

Table 3.  Estimated Parameters by ML method for fitted distributions for data set representing 
epileptic seizure counts 

Distribution 
Parameter Estimates 

(Standard Error) 
Model function 
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Zero Inflated Poisson 
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We compute the expected frequencies for fitting Poisson weighted Ishita, Poisson 
Ishita, Poisson, Geometric, Negative Binomial, Zero Inflated Poisson, Poisson Lindley 
and discrete Weibull distributions with the help of R studio statistical software, and 
Pearson’s chi-square test is applied to check the goodness of fit of the models discussed. 
The calculated expected frequencies for each fitted model are given in Table 4. For 
Poisson weighted Ishita, negative binomial and discrete Weibull distributions, p-value 
is >0.05, hence it fits the data statistically good. Poisson Ishita, Poisson, Geometric, zero 
inflated Poisson and Poisson Lindley does not fit the data at all as p-value in the case of 
these models is <0.05. Based on the chi-square, we observe that Poisson weighted Ishita 
distribution has the highest p-value (0.8162), which signifies that  Poisson weighted 
Ishita provides a better fit for the data set representing vaccine adverse event count data 
studied by Rose et al. (2006) as compared to other fitted models. 

Table 4.  Fitted proposed distribution and other competing models to a data set representing epileptic 
seizure counts 

Epileptic 
seizure 

(X) 

Observ
ed 

Poisson 
Weighte
d Ishita 

Poisson 
Ishita Poisson Geometric Negative 

Binomial 

Zero 
Inflated 
Poisson

Poisson 
Lindley 

Discrete 
Weibull 

0 1437 1427.4 1518.0 890.8 1603.5 1409.1 1437.0 1500.1 1410.7 

1 1010 1035.2 965.9 1342.3 963.9 1068.7 787.3 1003.5 1065.4 

2 660 665.7 620.3 1011.4 579.4 670.7 803.3 629.2 667.7 

3 428 401.0 386.5 508.1 348.3 391.6 546.4 378.7 393.1 

4 236 229.5 231.9 191.4 209.4 220.2 278.7 221.6 222.6 

5 122 126.0 134.4 57.7 125.9 120.9 113.8 127.0 122.6 

6 62 66.9 75.5 14.5 75.7 65.3 38.7 71.7 66.0 

7 34 34.5 41.4 3.1 45.5 34.9 11.3 39.9 34.9 

8 14 17.4 22.2 0.6 27.3 18.5 2.9 22.0 18.2 

9 8 8.6 11.7 0.1 16.4 9.7 0.7 12.1 9.3 

10 4 4.2 6.1 0.0 9.9 5.1 0.1 6.6 4.7 

11 4 2.0 3.1 0.0 5.9 2.6 0.0 3.5 2.4 

12 1 1.8 3.1 0.0 9.0 2.8 0.0 4.1 2.3 

P-value 0.8162 0.0036 0.0003 0.0001 0.2619 <0.0001 0.0322 0.3564 
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Furthermore, in order to compare our proposed distribution and other competing 
models, we consider the criteria like AIC (Akaike information criterion), AICC 
(corrected Akaike information criterion) and BIC (Bayesian information criterion). 
The better distribution corresponds to lesser AIC, AICC and BIC values. From Table 5, 
it is observed that the Poisson weighted Ishita distribution has lesser AIC, AICC and 
BIC values as compared to other competing models. Hence, we can conclude that the 
Poisson weighted Ishita distribution leads to a better fit than the other competing 
models for analysing the data set given in Table 2. 

Table 5.   Model comparison criterion for fitted models to a data set  

Criterion 
Poisson 

Weighted 
Ishita 

Poisson 
Ishita 

Poisson Geometric
Negative 
Binomial 

Zero 
Inflated 
Poisson 

Poisson 
Lindley 

Discrete 
Weibull 

-logL 6737.2 6747.5 7231.1 6778.0 6740.6 6868.8 6746.0 6739.7 

AIC 13478.4 13496.9 14464.3 13558.1 13485.2 13741.6 13494.0 13483.4 

BIC 13491.0 13503.2 14470.6 13564.4 13497.8 13754.2 13500.3 13496.0 

 

We also use Likelihood Ratio (LR) test to check whether the fitted Poisson weighted 
Ishita distribution for a given data set is statistically “superior” to the fitted Poisson 
Ishita distribution. In any case, hypothesis tests of the type   : 00 H versus 

01  : H  can be performed using LR statistics. In this case, the LR statistic for testing 

H0 versus H1 is ))ˆ()ˆ((2 0 LL where ̂and 0̂ are the MLEs under H1 and H0. 
The statistic   is asymptotically nas ( ) distributed as 2

k , with k degrees of 

freedom, which is equal to the difference in dimensionality of ̂and 0̂ . H0 will be 
rejected if the LR-test p-value is <0.05 at 95% confidence level. 

Table 6.  Likelihood Ratio test of Poisson weighted Ishita distribution versus Poisson Ishita 
distribution 
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We have 35.62
1  < Likelihood Ratio Statistic (20.60), thus the null hypothesis is 

rejected and it is concluded that parameter c is playing a significant role in Poisson 
weighted Ishita distribution for analysing the data set given in Table 2. 

8.  Conclusion 

A new over-dispersed probability distribution is introduced using the 
compounding technique. Statistical properties of the proposed model are studied and 
application in handling count data set representing epileptic seizure counts is analyzed. 
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Through a Random Route to the Goal: Theoretical
Background and Application of the Method in Tourism

Surveying in Poland
Sebastian Wójcik 1

ABSTRACT

Classic survey methods are ineffective when surveying a small or rare population. Several

methods have been developed to address this issue, but often without providing a full math-

ematical justification. In this paper we propose estimators of parameters relating to Random

Route Sampling and explore their basic properties. A formula for the Horvitz-Thompson es-

timator weights is presented. Finally, a case of a tourism-related survey conducted in Poland

is discussed.

Key words: random route, Horvitz-Thompson estimator.

1. Introduction

Nowadays official statistics is looking for cost-effective and time-effective survey methods.

It is particularly noticeable when we deal with surveys of small populations such as unem-

ployed, foreigners, homeless, etc. Usually a frame for such a subpopulation is not available.

Some methods for solving these problems have been developed, but often without a full

theoretical background. The representativeness and unbiasedness of the sample surveyed in

that way is a question of concern.

2. Random Route Sampling

We shall present some details on the Random Route Sampling method. Assume that we

want to survey a subpopulation S of a population P. The frame of members of P is avail-

able, but the frame of members of S is unknown. In this paper we focus on household (or

dwelling) population. In the Random Route procedure, interviewers walk from house to

house and survey households on a prescribed route that ensures randomness. At the first

stage, a group of n households (list of starting points) is sampled. At the second stage, an

interviewer sets out from the starting point. If a household is not a member of S, then the

interviewer continues walking and surveying. There are two alternative models. In the first

one the interviewer is surveying until he/she finds a member of S. In the second model

the interviewer continues until he/she finds a member of S or he/she reaches the limit of K
steps. Each visited dwelling is called a step. The interviewer follows some rules that ensure

randomness such as: always on the right, always clockwise or always downstairs.

In this paper we unify two aforementioned models by assuming that:

1Institute of Mathematics, University of Rzeszow, Division of Mathematical Statistics, Statistical Office

in Rzeszów, Poland. E-mail: s.wojcik@stat.gov.pl. ORCID: https://orcid.org/0000-0003-2425-9626.
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• the interviewer makes up to K = 1,2, ...,∞ steps until he/she finds a member of S. The
starting point is the first step. The sequence of up to K steps will be called a route;

• the interviewer walks only within his/her district (Primary Statistical Unit);

• there is only one interviewer per district;

• the interviewer does not survey the household that has been already surveyed;

• if in a route interviewer surveys another starting point from the list then he/she counts

it as a step. The next household to be surveyed after the route is completed, becomes

a new (replaced) starting point.

Clearly, the better survey completeness and the larger size of the subpopulation S in a rela-

tion to the size of the population P, the lower number of steps made in a route. Obviously,

if K = 1 then the Random Route (RR) becomes the Simple Random Sampling (SRS). Thus,

SRS can be treated as a special case of RR and all of the results for RR for K = 1 should be

consistent with results for SRS.

Several papers assess the quality of random route samples. Biasedness and sample repre-

sentativeness are studied based on case studies (Hoffmeyer-Zlotnik (2003), de Rada, Martin

(2014)) or simulations (Bauer (2014), Bauer (2016)).

Hoffmeyer-Zlotnik compared three different models of Random Route Sampling:

1) uncontrolled Random Route Sampling with Kish tables and net number of interviews

defined used in German General Social Survey (ALLBUS) in 1992,

2) controlled Random Route Sampling with Kish tables and gross number of addresses

defined used in German General Social Survey (ALLBUS) in 1998,

3) Random Route plus quota design with net number of interviews defined used in a na-

tional survey of the German Youth Institute.

Hoffmeyer-Zlotnik, based on data analysis, found out that the uncontrolled Random Route

Sampling saves 30% of expenses in comparison to the controlled version and to the version

with quota. In the extreme, case the version with quota caused the walk to be very long and

the interviewer had to contact about 100 households for carrying out 10 interviews. More-

over, with modification of the sampling process in the controlled version or the version with

quota, the Random Route Sampling becomes non-probability sampling and the sampling

error cannot be calculated.

In this paper we refer to the uncontrolled Random Route Sampling. We propose an

estimator of the fraction of a subpopulation S in a population P and prove that this estimator

is asymptotically unbiased and consistent. Further, we derive sample weights.

3. Parameter estimation under the Random Route Sampling

Since the Random Route method is focused on surveying members of S the question that

arises naturally is how to estimate the size of a population S. We will derive some estimators
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and check their consistency and unbiasedness. Let us denote by M the size of population

- the only known parameter. We introduce two further parameters r and p - the unknown

parameters of the level of completeness and the fraction of a subpopulation S in a population

P, respectively. We assume that r and p are such that prM and pM are integers.

Now, we divide our analysis into two cases.

3.1. Unlimited number of steps in a single route

Let X be a number of visited P\S members (members of P but not S) until an S member is

surveyed. Clearly X is a random variable. Furthermore, for every k ∈ {0,1, ...,(1− pr)M},
X takes the value k provided the following two conditions are satisfied:

• in each of the first k steps of the route the interviewer either visited a member of P\S
or he/she did not get an answer due to the incompleteness;

• in the (k+1)th he/she surveyed a member of S.

Therefore,

P(X = k) =

( M−k−1
(1−pr)M−k

)
( M
(1−pr)M

) for k = 0,1, ...,(1− pr)M. (1)

That is X follows the negative hypergeometric distribution HY P−(M,(1− pr)M,1). In

order to survey exactly n members of S the interviewer will make n+∑n
i=1 Xi steps, where

Xi for i = 1, ..,n are i.i.d. random variables with probability distribution described by (1).

Guenther (1975) proposed the following maximum-likelihood estimator of pr

Y ∞
HY P−(n) =

n
n+∑n

i=1 Xi
. (2)

The estimator Y ∞
HY P− being the maximum-likelihood estimator has a number of attractive

limiting properties such as consistency and efficiency (Pfanzagl (1994)). Nevertheless, the

estimator given by (2) is biased (Zhang, Johnson (2011)). It is still an open question if this

estimator is asymptotically unbiased. Therefore, we are going to modify the model in such

a way that the estimator defined by (2) becomes asymptotically unbiased.

Assume that M is relatively large compared to n. According to the result of Johnson and
Kotz (1969), if M → ∞ with p and r being fixed, then

Y ∞
HY P−(n)→D Y

where Y is a random variable following the negative binomial distribution BIN−(1− pr,1).
Therefore, for relatively large M, we can treat the Random Route Sampling as a sampling

with replacement. Note, however, that

BIN−(1− pr,1) = GEO(1− pr)

where GEO(1− pr) denotes the geometric distribution with parameter 1− pr. So, it is

reasonable to replace the underlying negative hypergeometric distribution by the geometric
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one. Then, we get

P

(
n

∑
i

Xi = k

)
=

(
k+n−1

k

)
(pr)n(1− pr)k for k = 0,1,2, ....

Furthermore, ∑n
i Xi being a sum of i.i.d. random variables having the geometric distribution

with parameter 1− pr (cf. Bandyopadhyay P.S., Forster M.R. (2011)), follows the negative

binomial distribution BIN−(1− pr,n). Hence,

E

(
n

∑
i

Xi

)
=

n(1− pr)
pr

and D2

(
n

∑
i

Xi

)
=

n(1− pr)
(pr)2

. (3)

Define an estimator Y ∞
BIN− as follows:

Y ∞
BIN−(n) =

n
n+∑n

i=1 Xi
. (4)

For every n ∈ N, Y ∞
BIN−(n) expresses the ratio of the number of surveyed S-members in

a relation to the number of surveyed P-members in an n-route survey. Note that Y ∞
BIN− is the

maximum-likelihood estimator of pr (cf. Hilbe (2011)). Moreover, taking into account (3)

and applying the result by Stuart (Stuart (1998), p. 351) we obtain

E
(
Y ∞

BIN−(n)
)
= E

(
n

∑n
i=1 Xi +n

)
=

n
E (∑n

i=1 Xi)+n
+O

(
1

n

)
=

n
n(1−pr)

pr +n
+O

(
1

n

)
= pr+O

(
1

n

)
.

Thus,

lim
n→∞

E
(
Y ∞

BIN−(n)
)
= pr, (5)

which shows that Y ∞
BIN− is asymptotically unbiased.

3.2. Limited number of steps in a single route

In practice, the most important case of the Random Route is when the number of steps is

finite. In this approach, on the one hand surveying is less sensitive to clustering of P\S-
members, but on the other, we need more starting points to survey the same number of

S-members. Moreover, in this setting it is possible that the interviewer will not survey a

S-member in his/her route. Thus, the number of surveyed S-members is a random variable,

taking two values: 0 and 1. Let us denote it by LK . Then, assuming that M is relatively large

comparing to n and treating the Random Route Sampling as the sampling with replacement,

we obtain the following probability distribution of LK

P
(
LK = l

)
=

{
1− (1− pr)K for l = 1,

(1− pr)K for l = 0.
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We shall determine the maximum-likelihood estimator of pr. To this end, assume that

l =(l1, ..., ln) is a vector of observed data in a K-step route. Then, the log-likelihood function

L (pr, l,K) is given by

L (pr, l,K) =
n

∑
i=1

ln[(1− (1− pr)K)li +(1− pr)K(1− li)].

Derivating L (pr, l,K) with respect to pr, we obtain

∂L (pr, l,K)

∂ pr
=

n

∑
i=1

2li−1

(1− pr)1−Kli +(1− pr)(1−2li)
. (6)

Hence, the maximum-likelihood estimator of pr is of the form

ZK(n) = 1−
(
1− ∑n

i=1 Li

n

) 1
K

. (7)

Obviously, ZK is consistent and efficient. It is an open question if ZK is asymptotically

unbiased.

Let XK be the number of visited households until an S member is surveyed in a K-step

route. Then XK is a random variable taking the values 1, ...,K. Furthermore, assuming as

previously that M is relatively large compared to n and treating the Random Route Sam-

pling as the sampling with replacement, we conclude that XK has the following probability

distribution:

P
(
XK = k

)
=

{
pr(1− pr)k for k < K,

(1− pr)K for k = K.
(8)

Thus, we have

E
(
XK)= (1− pr)(1− (1− pr)K)

pr
(9)

and

D2
(
XK

)
= 1

(pr)2 [(1− pr)− (2K−1)pr(1− pr)K− (1− pr)K(1− (1− pr)K)p2]+

1
(pr)2 [2pr(1− pr)(1− (1− pr)K)2− (1− pr)2K ]−

1
(pr)2 [2pr(1− pr)(1− (1− pr)K−K(1− pr)K−1+K(1− pr)K)].

(10)

Note that

lim
K→∞

E
(
XK)= 1− pr

pr
and lim

K→∞
E
(
LK)= 1.

Hence, (9)-(10) are consistent with the case of K = ∞.

Now, we are going to determine the maximum-likelihood estimator of pr. Assume that
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x = (x1, ...,xn) is a vector of observed data in a K-step route. Let l = (l1, ..., ln) where

li =
{

0 whenever xi = K,

1 whenever xi < K.

The log-likelihood function L (pr,x,K) is given by

L (pr,x,K) =
n

∑
i=1

ln[pr(1− pr)ki−1li +(1− pr)K−1(1− li)]. (11)

Derivating L (pr,x,K) with respect to pr, we get

∂L (pr,x,K)

∂ pr
=

n

∑
i=1

(li−1)(K−1)(1− pr)K−2+ li((1− pr)xi−1− pr(xi−1)(1− pr)ki−2)
li pr(1− pr)xi−1+(1− li)(1− pr)K−1 .

Hence, the maximum-likelihood estimator of pr is of the form

Y K(n) =
∑n

i=1 LK
i

∑n
i=1 LK

i XK
i +K(n−∑n

i=1 LK
i )+∑n

i=1 LK
i
. (12)

Note that for i = 1, ..,n we have

LK
i →D 1 with K → ∞.

Moreover, if Xi follows GEO(1− pr) for i = 1, ..,n, then taking into account (8), we get

XK
i →D Xi with K → ∞.

Thus, in view of (12), for every n, we obtain

Y K(n)→D Y ∞
BIN−(n) with K → ∞.

The estimator Y K is asymptotically unbiased. In fact, applying the result of Stuart (Stuart

(1998), p. 351) and making use of (9)-(10), we obtain

E
(
Y K(n)

)
= E

(
∑n

i=1 LK
i

∑n
i=1 XK

i

)
=

E
(
∑n

i=1 LK
i
)

E
(
∑n

i=1 XK
i

) +O
(
1

n

)
=

n(1− (1− pr)K)

n 1−(1−pr)K

pr

+O
(
1

n

)
= pr+O

(
1

n

)
.

Hence,

lim
n→∞

E
(
Y K(n)

)
= pr.
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4. Horvitz-Thompson estimators

In order to use direct estimators we need to know probabilities of inclusion of a household

in the sample. In the Simple Random Sampling, these probabilities can be calculated before

survey is conducted. In fact, in the Random Route we can derive them after we data from

the survey are collected.

By πi|S and πi|P\S we denote probability of inclusion of ith household into the sample for

S-member and P\S-member, respectively. Assume that M is the size of population, p is the

share of S-members in population, r is the level of completeness and q = 1− pr.
If K = ∞ then

1−πi|S =
prM−1

M
+

qM
M

prM−1

M−1
+

qM
M

qM−1

M−1

prM−1

M−2
+ ...=

prM−1

prM
,

1−πi|P\S =
prM
M

+
qM−1

M
prM

M−1
+

qM−1

M
qM−2

M−1

prM
M−2

+ ...=
prM

prM+1
.

Hence,

πi|P\S =
1

prM+1
<

1

prM
= πi|S

so πi|P\S and πi|S are not equal and depend on size of S only. However, the difference

between these probabilities becomes negligible for relevant size of S, e.g. if prM ≥ 1000

then we have πi|S−πi|P\S ≤ 10−6. In the case K = ∞, the parameter pr can be estimated

from (4).

Consider the case where K is finite. Then

1−πi|S =
prM−1

M
+

qM
M

prM−1

M−1
+

qM
M

qM−1

M−1

prM−1

M−2
+ ...+

qM
M

qM−1

M−1
× ...× qM−K +2

M−K +2

prM−1

M−K +1
,

1−πi|P\S =
prM
M

+
qM−1

M
prM

M−1
+

qM−1

M
qM−2

M−1

prM
M−2

+ ...+

qM−1

M
qM−2

M−1
× ...× qM−K +1

M−K +2

prM
M−K +1

.

In the case of a finite K, the parameter pr can be estimated from (12).

5. The Random Route in practice. Case of tourism survey in Poland.

The survey "Participation of Polish residents in tourism" has been carried out by the Sta-

tistical Office in Rzeszów since the first quarter of 2014. The target population are Polish

people who travelled abroad (for one day or more) and people who made a domestic trip

for at least one night. Taking into account possibly low completeness rate and the fact that

the population of travellers is not very big, the Random Route was applied with 8 steps and

18,750 starting points in a population over 13 million of households.
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The data base from the third quarter of 2017 was analysed to assess the aforementioned

methods of estimating pr. We collected information about the step on which in a route the

household was surveyed. All of the households on the first step of the route could be treated

as data collected in the Simple Random Sampling. Thus, it allowed us to estimate pr like a
simple fraction. We expected that the level of completeness r should be higher in the Simple

Random Sampling than in the Random Route Sampling because all of the households in the

starting points are informed about the survey from a letter of President of Statistics Poland.

Therefore, an estimate of pr should be also higher.

The table below presents the precision of formulas described above.

Fraction formula Formula (12) Formula (7) Formula (4)

Estimate of pr 0.104 0.091 0.083 0.081

Clearly, (12) estimate is the closest to pr obtained from the fraction formula. It may stem

from the observation that (4) is derived under the assumption of infinite number of steps

while (7) is not utilizing information on the total number of steps.

Further investigations based on simulations may create a better picture of properties of the

estimators given by (4), (7) and (12).

6. Conclusions

As a cost-effective and time-effective survey method, the Random Route may be preferred

to the Simple Random Sampling, especially when we deal with small populations. Under

some natural assumptions the weights for the Horvitz-Thompson estimator are easy to

compute. The Random Route proved its usefulness also in practice.
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