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Measuring and Testing Mutual Dependence of Multivariate
Functional Data
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ABSTRACT

This paper considers newmeasures of mutual dependence between multiple multivariate ran-

dom processes representing multidimensional functional data. In the case of two processes,

the extension of functional distance correlation is used by selecting appropriate weight func-

tion in the weighted distance between characteristic functions of joint and marginal distri-

butions. For multiple random processes, two measures are sums of squared measures for

pairwise dependence. The dependence measures are zero if and only if the random pro-

cesses are mutually independent. This property is used to construct permutation tests for

mutual independence of random processes. The finite sample properties of these tests are

investigated in simulation studies. The use of the tests and the results of simulation studies

are illustrated with an example based on real data.

Key words: characteristic function, dependence measure, distance covariance, multivariate

functional data, permutation method, test of independence..

1. Introduction

In recent years, statistical methods for analysing data expressed as functions or curves have

received much attention. Such data are called functional data, which can be univariate and

multivariate, and appear in many application domains as, for instance, chemometrics, eco-

nomics, medicine, meteorology. For analysis of such data (i.e. the so called functional

data analysis), there is currently a wide spectrum of models and methods as, for exam-

ple, clustering and classification, functional principal component analysis, hypothesis test-

ing, regression models. For an overview, we refer to the following monographs and re-

cent review papers: Ramsay and Silverman (2005), Ferrary and Vieu (2006), Horváth and

Kokoszka (2012), Zhang (2013), Kokoszka and Reimherr (2017) and Cuevas (2014), Wang

et al. (2016) respectively.

This paper addresses the correlation analysis and testing independence for functional

data in both univariate and multivariate cases. For functional time series, independence

testing was considered by Horváth and Rice (2015). We would like to explore the asso-

ciation between two or more sets of functional variables. For two multivariate variables,

the canonical correlation in the framework of canonical correlation analysis (CCA) was

first proposed for this problem by Hotelling (1936). For functional data, this method was
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extended by Leurgans et al. (1993), He et al. (2004), Krzyśko and Waszak (2013) and

Krzyśko and Smaga (2019). Unfortunately, the association viewed by canonical correlation

is not a global measurement, since the intensity of the relationship is expressed component

by component (see, Górecki et al., 2017, for more details). This was one of the reasons for

constructing other association measures. The two very popular of them are the ρV coeffi-

cient by Escoufier (1970, 1973) and the distance correlation dCor coefficient proposed in

Székely et al. (2007). Their functional extensions were investigated in Górecki et al. (2016,

2017). Moreover, Górecki et al. (2019) used the functional distance correlation coefficient,

among others, to construct variable selection procedures for classification of functional data.

Unfortunately, the ρV coefficient may not detect non-linear dependence between two sets

of variables, and it is difficult to evaluate the magnitude of the relationship just by consid-

ering its value. In these directions, the distance correlation coefficient seems to perform

better and, moreover, (under mild conditions) it is equal to zero if and only if the random

vectors are independent, which is not true for the ρV coefficient in general. Recently, Chen

et al. (2019) proposed other distance-based coefficients with similar properties to distance

correlation coefficient, which can even result in more powerful test for independence of

two random vectors. In this paper, we adapt their results to a functional data framework

by defining the functional version of their coefficient using a basis function representation

of functional observations. In contrast to Górecki et al. (2016), we allow non-orthogonal

basis making our results more general. In particular, we redefine the functional distance

correlation coefficient in more generality.

The above considerations concern the case of two sets of variables only. Sometimes,

there is a need of measure association or test independence of more than two sets of features.

In this direction, very good results were obtained by Jin and Matteson (2018) in the case of

multivariate data. They proposed a few methods, but the best of them are two procedures

based on sums of squared distance covariance coefficients. Thus, in this paper, we extend

these methods for functional data using also the functional versions of coefficients by Chen

et al. (2019).

The remainder of this paper is organized as follows. In Section 2, we propose permu-

tation tests of independence and dependence measures of multiple random processes. The

finite sample properties of the testing procedures are investigated in simulation studies in

Section 3. In Section 4, the real data example is presented. Finally, Section 5 is the summary

of our work.

2. Methodology

In this section, we first present the basis representation of functional data, which is a kind

of dimension reduction method. Then, using this representation and characteristic func-

tion apparatus, we propose tests of independence and dependence measures of two random

processes. Finally, we extend these results for more than two processes.
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2.1. Basis representation of functional data

Let X = (X1, . . . ,Xp)
� be a random process belonging to the Hilbert space Lp

2(I) of p-
dimensional vectors of square integrable functions defined on the interval I = [a,b], a,b∈R.

This space is endowed with the following inner product:

〈f,g〉p =
∫

I
f�(t)g(t)dt

for f,g ∈ Lp
2(I). For i = 1, . . . , p, let {φi j}∞

j=1 be basis in L1
2(I). Then each element of L1

2(I)
can be represented as an infinite linear combination of basis functions. Such representation

is difficult to apply in practice. Moreover, only a number of the first coefficients in this

representation is usually the largest and the most important (Ramsey and Silverman, 2005).

Therefore, we assume that each component of the process X can be represented by a finite

number of basis functions, i.e.

Xi(t) =
Bi

∑
j=1

αi jφi j(t), (1)

for t ∈ I and i = 1, . . . , p. The linear combination of basis functions in the right hand side of

equality (1) will be called the basis representation of the process Xi.

The choice of the basis is usually not very crucial. However, some suggestions for this

subject can be found in the literature (see, for example, Horváth and Kokoszka, 2012). The

value of Bi determine the degree of smoothness of the basis representation, i.e. small value

cause more smoothness. This value can be chosen deterministically or taking into account

the problem at hand or using the Bayesian Information Criterion (BIC). The coefficients αi j

are usually estimated by the least squares method. For details about the practical construc-

tion of the basis representation, see, for example, Krzyśko and Waszak (2013).

Finally, let us introduce the following matrix form of the basis representation of a ran-

dom process X. Let

α = (α11, . . . ,α1B1
, . . . ,αp1, . . . ,αpBp)

�

and

Φ(t) = diag
(

φ�
1 (t), . . . ,φ

�
p (t)

)

is the block diagonal matrix of

φ�
i (t) = (φi1(t), . . . ,φiBi(t)),

for i = 1, . . . , p. Then the representation (1) can be expressed as follows:

X(t) = Φ(t)α

which can be seen as the basis representation of the process X. This means that the process

X belongs to the finite dimensional subspace, say L p
2 (I), of the space Lp

2(I).
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2.2. Two sets of functional data

Assume that X and Y are two random processes belonging to the Hilbert spaces Lp
2(I1) and

Lq
2(I2) respectively, where I1 = [a1,b1] and I2 = [a2,b2], a1,b1,a2,b2 ∈R. We would like to

test the following hypotheses:

H0 : X,Y are independent vs. H1 : X,Y are dependent

and in the case of rejecting the null hypothesis, to measure the correlation between the

processes X and Y. For this purpose, we use the concept of characteristic function. Namely,

(roughly speaking) we want to use the fact that the null hypothesis H0 is equivalent to the

equality of the characteristic function of the joint distribution of X and Y with the product

of the characteristic functions of the distributions of X and Y.

Let us first recall the definition of the characteristic function of a random process (Bosq,

2000, p. 37) in our framework. The characteristic functions of the processes X and Y are as

follows:

ϕX(u) = E(exp(i〈u,X〉p)), ϕY(v) = E(exp(i〈v,Y〉q))

for u ∈ Lp
2(I1) and v ∈ Lq

2(I2), where i2 =−1. (Of course, we assume that for all u ∈ Lp
2(I1)

the integral 〈u,X〉p converges for almost all realizations of X, and the same applies to v ∈
Lq
2(I2) and Y.) Then the joint characteristic function of the pair of processes X and Y is of

the form

ϕX,Y(u,v) = E(exp(i〈u,X〉p + i〈v,Y〉q)).

The next step is to combine these definitions with the basis representation of the pro-

cesses X and Y (see Section 2.1). Suppose that X ∈ L p
2 (I1) and Y ∈ L q

2 (I2) and

X(t) = Φ1(t)α, Y(s) = Φ2(s)β ,

where Φ1(t) = diag(φ�
11(t), . . . ,φ

�
1p(t)), Φ2(s) = diag(φ�

21(s), . . . ,φ
�
2q(s)), α ∈RKx and β ∈

RKy are random vectors, Kx = Bx
1+ · · ·+Bx

p and Ky = By
1+ · · ·+By

q. Moreover, we assume

that the functions u ∈ L p
2 (I1) and v ∈ L q

2 (I2), and they are represented as follows:

u(t) = Φ1(t)γ, v(s) = Φ2(s)δ ,

where γ ∈ RKx and δ ∈ RKy are constant vectors. Then we have

〈u,X〉p =
∫

I1
u�(t)X(t)dt = γ�

∫
I1

Φ�
1 (t)Φ1(t)dtα = γ�JΦ1

α,

where JΦ1
= diag(Jφ 11

, . . . ,Jφ 1p
) and Jφ 1i

=
∫

Ii φ 1i(t)φ�
1i(t)dt is the Bx

i ×Bx
i cross product

matrix, i = 1, . . . , p. Analogously, we obtain 〈v,Y〉q = δ�JΦ2
β . Therefore, the characteris-

tic functions of the random processes X and Y are the characteristic functions of the random

vectors JΦ1
α and JΦ2

β , i.e.

ϕX(u) = E(exp(iγ�JΦ1
α)) = ϕJΦ1

α (γ), ϕY(v) = E(exp(iδ�JΦ2
β )) = ϕJΦ2

β (δ ).
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Furthermore, the joint characteristic function of random processes X and Y is the joint

characteristic function of random vectors JΦ1
α and JΦ2

β , i.e.

ϕX,Y(u,v) = E(exp(iγ�JΦ1
α + iδ�JΦ2

β )) = ϕJΦ1
α ,JΦ2

β (γ,δ ).

These relations imply that for our purpose, we can use the distance methods for random

vectors, which are based on

Dw =
∫
RKx+Ky

|ϕJΦ1
α ,JΦ2

β (γ,δ )−ϕJΦ1
α (γ)ϕJΦ2

β (δ )|2w(γ,δ )dγdδ ,

where |z| is the modulus of z ∈ C, and w is a weight function, which is positive almost

everywhere. Different choices of the function w may result in plenty different methods. In

the following, we consider two of them, which seem to be meaningful.

The most famous method of this kind was proposed by Székely et al. (2007). Górecki

et al. (2016) used their methodology and considered the following functional distance co-

variance of random processes X and Y:

FdCov(X,Y) = dCov(JΦ1
α,JΦ2

β ) = VJΦ1
α ,JΦ2

β =
√

Dw0
,

where

w0(γ,δ ) =
1

CKxCKy‖γ‖Kx+1
Kx

‖δ‖Ky+1

Ky

,

and

Cl =
π(l+1)/2

Γ((l +1)/2)

and ‖ ·‖l is the standard Euclidean norm in Rl . The functional distance correlation between

random processes X and Y is defined as follows:

FdCor(X,Y) =
FdCov(X,Y)√

FdCov(X,X)FdCov(Y,Y)
,

when FdCov(X,X) and FdCov(Y,Y) are positive, otherwise FdCor(X,Y) = 0. Note that

Górecki et al. (2016) used orthonormal basis, which implies the matrices JΦ1
and JΦ2

are

identity matrices. Thus the above definition is a bit more general. For distributions with

finite first moments, FdCor(X,Y) ∈ [0,1] and FdCor(X,Y) = 0 if and only if X and Y are

independent. The distance covariance by Székely et al. (2007) is implemented in the R

package energy (R Core Team, 2019; Rizzo and Székely, 2019), which can be also used to

calculate the functional distance covariance.

Recently, Chen et al. (2019) proposed other choice of weight function, which resulted in

a kind of generalization of distance covariance. Namely, their weight functions are products

of density functions. Let us now describe the details. Similarly as Székely et al. (2007),

assume that the weight function w(γ,δ ) = wKx(γ)wKy(δ ), where wKx and wKy are functions

defined in the corresponding dimensions. This considerably simplifies expressions without
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giving up much generality. Let fKx and fKy be densities and let ϕKx and ϕKy be characteristic

functions of Kx ×1 and Ky ×1 random vectors respectively. Chen et al. (2019) proved that

when the densities fKx and fKy are positive with probability 1, then taking wKx = fKx and

wKy = fKy , Dw is as follows:

D f =E
(

Re{ϕKx(JΦ1
(α −α1))}Re{ϕKy(JΦ2

(β −β 1))}
)

+E
(

Re{ϕKx(JΦ1
(α −α1))}

)
E
(

Re{ϕKy(JΦ2
(β −β 1))}

)

−2E
(

Re{ϕKx(JΦ1
(α −α1))}Re{ϕKy(JΦ2

(β −β 2))}
)
,

where Re(z) denotes the real part of z ∈ C, α1
d
= α , β m

d
= β for m = 1,2 and

d
= stands for

equality in distribution. Moreover, D f is equal to zero if and only if JΦ1
α and JΦ2

β are

mutually independent, and it is strictly positive otherwise.

There are many possible choices of the densities fKx and fKy . To greatly simplify D f ,

the densities of spherical stable distributions can be used. The characteristic function of a

spherical stable distribution with exponent α ∈ (0,2] is ϕα(t) = exp(−‖t‖α). For α = 1

and α = 2, we have the multivariate standard Cauchy and normal distributions respectively.

Further details about spherical stable distributions can be found in Zolotarev (1981) and

Nolan (2013). A recent application of spherical stable distributions in the change-point

methods to multivariate time-series can be found in Hlávka et al. (2020). When fKx and

fKy are the densities of spherical stable distributions with the same exponent α , D f can be

written as

Dα =E
(
exp(−(‖JΦ1

(α −α1)‖α +‖JΦ2
(β −β 1)‖α))

)

+E
(
exp(−‖JΦ1

(α −α1)‖α)
)

E
(
exp(−‖JΦ2

(β −β 1)‖α)
)

−2E
(
exp(−(‖JΦ1

(α −α1)‖α +‖JΦ2
(β −β 2)‖α))

)
.

Thus, we can define the functional distance covariance and correlation with exponent α of

random processes X and Y as

FdCovα(X,Y) =
√

Dα , FdCorα(X,Y) =
FdCovα(X,Y)√

FdCovα(X,X)FdCovα(Y,Y)

respectively. Similarly to FdCor(X,Y), FdCorα(X,Y) ∈ [0,1] and FdCorα(X,Y) = 0 if

and only if X and Y are independent.

In practice, FdCor(X,Y) and FdCorα(X,Y) have to be estimated. Assume that X1, . . . ,Xn

and Y1, . . . ,Yn are independent realizations of random processes X and Y respectively. Let

Xi(t) = Φ1(t)α i and Yi(s) = Φ2(s)β i, i = 1, . . . ,n be the basis representations of the ob-

servations. The estimator of FdCor(X,Y), say F̂dCor(X,Y), was derived in Górecki et al.
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(2016), so we omit it to save space. The estimator of FdCov2α(X,Y) is as follows:

F̂dCov
2

α(X,Y) =
1

n2 ∑
1≤ j,k≤n

exp
(
−(‖JΦ1

(α j −αk)‖α +‖JΦ2
(β j −β k)‖α)

)

+
1

n4 ∑
1≤ j,k≤n

exp
(
−‖JΦ1

(α j −αk)‖α
)

∑
1≤ j,k≤n

exp
(
−‖JΦ2

(β j −β k)‖α
)

− 2

n3 ∑
1≤ j,k,l≤n

exp
(
−(‖JΦ1

(α j −αk)‖α +‖JΦ2
(β j −β l)‖α)

)
.

To sum up, both FdCor(X,Y) and FdCorα(X,Y) can be used as measures of depen-

dence of random processes X and Y. Moreover, since they both are equal to zero if and only

if the processes X and Y are independent, testing the null hypothesis H0 is equivalent to test-

ing HdCor
0 : FdCor(X,Y) = 0 or Hα

0 : FdCorα(X,Y) = 0. For testing these hypotheses, we

propose permutation tests based on test statistics F̂dCor(X,Y) and F̂dCorα(X,Y), because

the asymptotic null distributions of nF̂dCor(X,Y) and nF̂dCorα(X,Y) are complicated and

not distribution free and the convergence rate may be slow (see Székely et al., 2007; Chen

et al., 2019). In the permutation method, the test statistics are recalculated many times with

the permutation samples X1, . . . ,Xn,Yπ(1), . . . ,Yπ(n), where a permutation π is uniformly

chosen from the symmetric group Sn, the set of all n! permutations of (1, . . . ,n).

In the next section, we show how the above results can be extended for measuring and

testing mutual dependence of more than two random processes.

2.3. Multiple sets of functional data

Let X1, . . . ,Xd be d random processes belonging to Lp1
2 (I1), . . . ,L

pd
2 (Id) respectively, where

Il = [al ,bl ], al ,bl ∈ R, l = 1, . . . ,d. Of interest is to test the following hypotheses

H0 : X1, . . . ,Xd are independent vs. H1 : X1, . . . ,Xd are dependent

and in the case of rejecting the null hypothesis, to measure the correlation between the

processes X1, . . . ,Xd .

The methods based on characteristic functions of Section 2.2 can be extended for case

d > 2. Namely, for random vectors, this was recently done by Jin and Matteson (2018),

whose results could be directly applied to functional data in much the same way as presented

in Section 2.2. However, such tests may not perform well as was already shown in Jin and

Matteson (2018) for random vectors. Fortunately, they also proposed some alternatives

to these methods, which have better finite sample properties. Therefore, we are limited

only to these alternative methods, which are asymmetric and symmetric measures of mutual

dependence to capture mutual dependence via aggregating pairwise dependence.

Assume that Xl ∈ L pl
2 (Il) and we have the following basis representation of the pro-

cesses Xl :

Xl(tl) = Φl(tl)α l ,
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where tl ∈ Il and α l ∈ RKl are random vectors, l = 1, . . . ,d. Let

αc+ =
(

α�
c+1, . . . ,α

�
d

)�
, c = 1, . . . ,d −1,

α−c =
(

α�
1 , . . . ,α

�
c−1,α

�
c+1, . . . ,α

�
d

)�
, c = 1, . . . ,d.

Thus, αc+ denotes the subset of processes on the right of αc, while α−c denotes the subset

of processes except αc. Let Cor be a dependence measure for two random vectors such that

it is equal to zero if and only if the random vectors are independent. Then the asymmetric

and symmetric measures of mutual dependence of random vectors α1, . . . ,αd are defined

by

R(α1, . . . ,αd) =
1

d −1

d−1

∑
c=1

Cor2(αc,αc+), S(α1, . . . ,αd) =
1

d

d

∑
c=1

Cor2(αc,α−c).

Under mild condition, Jin and Matteson (2018) showed that

R(α1, . . . ,αd) ∈ [0,∞), S(α1, . . . ,αd) ∈ [0,∞)

and

R(α1, . . . ,αd) = 0, S(α1, . . . ,αd) = 0

if and only if α1, . . . ,αd are mutually independent.

In the framework of functional data, we can use FdCor or FdCorα as Cor above. Then

for testing the null hypothesis H0, we can verify

HR
0 : R(α1, . . . ,αd) = 0 or HS

0 : S(α1, . . . ,αd) = 0.

For these purposes, we use permutation tests based on the following test statistics being

estimators of R and S:

R̂ =
1

d −1

d−1

∑
c=1

F̂dCor
2
(Xc,Xc+), Ŝ =

1

d

d

∑
c=1

F̂dCor
2
(Xc,X−c)

or

R̂α =
1

d −1

d−1

∑
c=1

F̂dCor
2

α(Xc,Xc+), Ŝα =
1

d

d

∑
c=1

F̂dCor
2

α(Xc,X−c).

The pooled permutation sample is constructed by separately permuting the samples corre-

sponding to processes X2, . . . ,Xd . More precisely, when

X11, . . . ,X1n,X21, . . . ,X2n, . . . ,Xd1, . . . ,Xdn

are the observations, the pooled permutation sample is as follows:

X11, . . . ,X1n,X2π1(1), . . . ,X2π1(n), . . . ,Xdπd−1(1), . . . ,Xdπd−1(n),
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where the permutations π1, . . . ,πd−1 are uniformly chosen from the symmetric group Sn.

Under appropriate conditions, we have that R̂, Ŝ, R̂α and Ŝα belong to the interval [0,1].

Therefore, they can be used as measures of dependence of random processes X1, . . . ,Xd .

3. Simulation studies

In this section, the finite sample behaviour of the permutation tests R̂, Ŝ, R̂α and Ŝα for

α = 0.1,0.5,1,1.5,2 is determined in simulation studies. We investigate both the control of

the type I error and power of the tests.

3.1. Simulation experiments

We set the number of observations n = 15 and investigate d = 3 random processes X1 =

(X11,X12)
�, X2 = (X21,X22)

�, X3 = (X31,X32)
� with dimensions p1 = p2 = p3 = 2. The

functional observations corresponding to these processes are generated in the following

three models:

Model 1. They are represented by their values in an equally spaced grid of 50 points

t1,1 = t2,1 = t3,1 = 0, . . . , t1,50 = t2,50 = t3,50 = 1 in I1 = I2 = I3 = [0,1], which are generated

in the following way:

⎡
⎣ X1r(t1,u)

X2r(t2,u)
X3r(t3,u)

⎤
⎦=

⎡
⎣ Φ1(t1,u) 0 0

0 Φ2(t2,u) 0
0 0 Φ3(t3,u)

⎤
⎦
⎡
⎣ α1,r

α2,r

α3,r

⎤
⎦+ εr,u,

where r = 1, . . . ,n, u = 1, . . . ,50, the matrices Φl are as in Section 2 and contain the Fourier

basis functions only and Bl
i = 5, i = 1,2, l = 1,2,3, (α�

1,r,α
�
2,r,α

�
3,r)

� are 30-dimensional

random vectors, and ε�r,u = (εr,u,1, . . . ,εr,u,6) are the measurement errors such that εr,u,v ∼
N(0,0.025ar,v) and ar,v is the range of the v-th row of the following matrix:

⎡
⎣ Φ1(t1,1)α1,r . . . Φ1(t1,50)α1,r

Φ2(t2,1)α2,r . . . Φ2(t2,50)α2,r

Φ3(t3,1)α3,r . . . Φ3(t3,50)α3,r

⎤
⎦ .

The random vectors (α�
1,r,α

�
2,r,α

�
3,r)

� are generated as ZrΣ
1/2
ρ , where Σρ = (1− ρ)I30 +

ρ1301�30, ρ = 0,0.1, Ia is the a×a identity matrix, 1a is the a×1 vector of ones, and Zr are

30× 1 random vectors with iid coordinates from the following distributions: the standard

normal distribution N, the Student t-distribution t3 with three degrees of freedom, the Fisher-

Snedecor distribution F1,5 with 1 and 5 degrees of freedom, the standard Cauchy distribution

C, the log-normal distribution LN. When ρ = 0, the null hypothesis about independence is

true and we study the type I error of tests, while for ρ = 0.1, the alternative holds and we

investigate their power. Note that for Cauchy distribution C, the expected value does not

exist, but this distribution was among others considered in similar simulations of Chen et al.

(2019), so we also use it.
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Model 2. First, for each t ∈ {0.04,0.08, . . . ,1}, the observations for Xli(t), l = 1,2,

i = 1,2 are generated as independent random variables of normal distribution N(0,0.25)

or other non-normal distributions considered in Model 1. Then, for the same t, X3i(t) =
ρX1i(t)+ εi(t) for i = 1,2, where εi(t) are independent random variables of normal distri-

bution N(0,0.1). We set ρ = 0,0.5 and then the null, alternative hypothesis is true respec-

tively.

Model 3. This model is similar to Model 2, but here we consider non-linear dependence

instead of linear dependence. More precisely, we set X3i(t) = Xρ
1i(t)+ εi(t) and ρ = 2,3.

For both values of ρ , the alternative hypothesis holds.

The test statistics are calculated using the Fourier basis with Bl
i = 5, i = 1,2, l = 1,2,3.

We use the least squares method to estimate the coefficients of the basis representation of

generated functional data. The empirical sizes and powers (resp. p-values) of the permu-

tation tests were estimated in 500 simulation runs (resp. 1,000 permutation samples). For

simplicity, the significance level is set to 5%. The simulation experiments as well as real

data example of Section 4 were conducted in the R program (R Core Team, 2019).

3.2. Simulation results

The empirical sizes and powers of the permutation tests obtained in Models 1-3 are pre-

sented in Tables 1-3 respectively. Let us now discuss these simulation results.

The empirical sizes of all tests obtained in Models 1-2 (Tables 1-2 with ρ = 0) are

usually very close to the level of significance of 5%. However, we can observe that the

testing procedures F̂dCorα with larger α (i.e. α = 1.5,2) tend to highly over-reject the

null hypothesis in the case of Cauchy distribution C in Model 1. It seems that this can be

explained by non-existence of the first moment of this distribution. Thus, the permutation

tests seem to control the type I error level, except possibly tests based on F̂dCor1.5 and

F̂dCor2.
In Model 1, all three processes X1,X2,X3 are equally correlated, which is a similar sce-

nario to that considered in Jin and Matteson (2018) for random vectors. Then both methods

R and S perform very similarly in terms of size control and power. On the other hand, in

Model 2, the processes X1 and X3 are correlated (when ρ > 0), and they are uncorrelated to

process X2. Such setting was not considered by Jin and Matteson (2018). In this case, the

testing procedures Ŝ and Ŝα are much more powerful than the tests R̂ and R̂α respectively.

This perhaps can be explained by that the S method considers more comparisons between

processes X1,X2,X3 than the R method. In the case of Model 3, the processes X1 and X3

are non-linearly dependent (quadratically [ρ = 2] or cubically [ρ = 3]), and they are uncor-

related to process X2. Here, the comparison between methods R and S is more complicated

and depends on the distribution of the data as well as the test statistic used. For tests F̂dCor
and F̂dCor0.1, the methods R and S have similar empirical powers in most cases. For the

other estimators (i.e. F̂dCorα , α = 0.5,1,1.5,2), the method R is usually more powerful

than the method S. However, there are some exceptions, for example, under normal distri-

bution N and cubic dependence or under Student distribution t3 and quadratic dependence,

the reverse is true.
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Table 1: Empirical sizes (ρ = 0) and powers (ρ = 0.1) (as percentages) of all tests obtained
in Model 1.

Distr. ρ Method F̂dCor F̂dCor0.1 F̂dCor0.5 F̂dCor1 F̂dCor1.5 F̂dCor2
N 0 R 4.2 5.0 5.0 5.8 5.0 7.0

S 4.4 5.4 5.4 6.4 6.4 4.6

0.1 R 33.8 29.8 25.2 9.0 6.2 5.8

S 35.2 30.8 25.2 9.8 5.2 4.0

t3 0 R 5.6 5.2 5.2 4.6 4.4 5.2

S 6.0 4.8 4.6 5.2 4.4 9.4

0.1 R 26.6 24.0 19.2 5.2 4.8 4.8

S 24.8 22.2 18.0 8.0 5.8 7.6

F1,5 0 R 5.0 6.2 6.2 4.2 5.0 5.8

S 5.0 4.8 5.0 3.4 4.6 7.0

0.1 R 26.8 35.4 29.2 12.2 11.0 14.2

S 24.4 30.6 29.8 10.8 8.8 14.8

C 0 R 4.4 4.6 5.6 3.0 19.4 80.4

S 5.0 4.2 6.2 4.8 24.8 83.6

0.1 R 43.0 65.8 36.4 11.8 35.0 88.8

S 37.6 57.6 26.6 9.6 40.8 90.0

LN 0 R 4.2 5.0 4.8 4.6 4.8 4.8

S 4.0 4.0 4.0 7.2 6.8 4.8

0.1 R 24.8 29.6 26.4 10.6 8.2 7.4

S 21.2 25.2 25.0 10.8 6.8 6.4

We can observe that the empirical powers of the tests F̂dCorα usually decrease with the

increasing α . There are only few exceptions (e.g. Model 3 and normal distribution N), but

in these cases, the power loss between the most and the least powerful tests is not so large

as in the remaining ones. Thus, among the tests F̂dCorα , the test F̂dCor0.1 (i.e. with small

α) is the most powerful in most scenarios.

In Models 1-2 and in Model 3 with normal distribution N, the tests F̂dCorα with small α
(e.g. α = 0.1) are usually comparable with tests F̂dCor in terms of power. Nevertheless, in

some cases (e.g. under Fisher-Snedecor distribution F1,5, Cauchy distributionC and the log-

normal distribution LN), the tests F̂dCor0.1 may have greater power than the tests F̂dCor.
In Model 3 and non-normal distributions, the testing procedures F̂dCor0.1 are much more

powerful than the tests F̂dCor.

To sum up, the permutation test Ŝ0.1 seems to perform best. It maintains the type I error

level very well and has power, which is greater than or comparable to power of the other

tests considered. This test is followed by testing procedure Ŝ. The test Ŝ0.1 overcomes the

test Ŝ especially in the case of non-linear dependence.
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Table 2: Empirical sizes (ρ = 0) and powers (ρ = 0.5) (as percentages) of all tests obtained
in Model 2.

Distr. ρ Method F̂dCor F̂dCor0.1 F̂dCor0.5 F̂dCor1 F̂dCor1.5 F̂dCor2
N 0 R 4.4 4.6 5.4 4.8 4.8 5.0

S 4.0 4.8 4.6 4.6 3.8 4.2

0.5 R 50.4 45.2 44.2 48.4 49.2 50.0

S 77.6 69.2 70.6 76.0 80.6 82.2

t3 0 R 5.6 5.4 5.8 5.8 6.4 5.8

S 5.4 4.2 4.4 4.0 3.8 3.6

0.5 R 48.2 47.2 41.8 36.8 33.0 29.0

S 87.0 82.0 84.6 82.0 70.0 50.4

F1,5 0 R 5.4 5.6 6.0 5.4 6.2 5.6

S 4.6 5.8 6.0 6.4 6.2 4.4

0.5 R 41.4 45.4 36.6 24.8 17.0 11.0

S 67.4 67.8 72.6 56.8 23.0 9.6

C 0 R 5.0 5.2 6.2 3.8 5.2 4.8

S 4.0 4.8 6.6 6.2 6.8 6.0

0.5 R 34.4 44.0 31.8 8.2 6.2 5.2

S 46.4 61.6 54.8 15.8 9.6 14.4

LN 0 R 4.6 4.0 4.0 3.8 4.2 4.2

S 4.0 3.8 3.8 4.0 4.4 4.6

0.5 R 48.8 46.4 41.0 35.8 30.0 25.6

S 81.8 75.6 77.8 74.4 54.6 26.4

4. Real data example

In this section, we illustrate the use of the dependence measures and tests of independence

for functional data proposed in Section 2 and the simulation results of Section 3. For this

purpose, we consider the famous Canadian weather data, which are available in the R pack-

age fda (Ramsay et al., 2018).

The Canadian weather data contain the daily temperature and precipitation records of

35 Canadian weather stations averaged over 1960 to 1994 for 365 days. The raw temper-

ature and precipitation curves for 35 weather stations are presented in Figure 1. Thus, we

have n = 35 observations of two random processes (d = 2) representing temperature and

precipitation. These functional observations are discretized in 365 time points. For illustra-

tive purposes, we would like to measure dependence and test independence of temperature

and precipitation treated as functional data. From Figure 1, (rather positive) correlation be-

tween temperature and precipitation may be observed. More precisely, weather stations with

large temperature are also characterized by higher precipitation (dashed lines). In contrast,

weather stations with lower temperature record lower rainfall (solid lines). To theoretically

confirm this relationship, we use the methods described in Section 2 in the following.
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Table 3: Empirical powers (as percentages) of all tests obtained in Model 3.

Distr. ρ Method F̂dCor F̂dCor0.1 F̂dCor0.5 F̂dCor1 F̂dCor1.5 F̂dCor2
N 2 R 6.8 7.0 7.6 6.4 6.2 6.4

S 6.6 5.8 6.6 6.4 6.0 7.0

3 R 11.4 9.6 10.2 10.2 11.8 13.2

S 15.8 13.8 14.6 16.0 17.0 17.8

t3 2 R 54.4 59.2 53.8 26.4 12.8 7.4

S 52.0 56.0 53.6 30.2 15.8 8.8

3 R 68.8 84.0 69.2 27.6 14.0 8.6

S 69.0 82.8 64.0 6.8 3.6 3.4

F1,5 2 R 91.0 98.8 98.4 46.6 16.8 12.6

S 84.0 96.8 95.6 6.4 3.4 3.2

3 R 75.6 97.2 68.6 19.0 11.2 15.0

S 71.2 95.0 8.0 5.2 5.4 5.0

C 2 R 74.6 95.8 64.4 23.0 34.4 52.6

S 58.8 89.6 11.6 5.8 10.0 24.2

3 R 67.2 98.0 54.0 29.0 40.4 60.8

S 61.4 94.0 5.6 4.8 8.8 27.2

LN 2 R 98.0 99.6 100.0 71.0 28.0 11.6

S 96.6 99.4 99.6 24.6 6.6 5.4

3 R 85.4 98.0 79.4 30.4 6.8 6.6

S 82.6 95.6 23.6 6.8 5.6 6.4

We use the permutation tests F̂dCor and F̂dCorα with α = 0.1,0.5,1,1.5,2 and 1,000

permutation samples. For the basis representation of the weather data, we use the Fourier

basis with different size (i.e. Bl
1 = 3,5, . . . ,15 for l = 1,2) and the least squares method

to estimate coefficients. The Fourier basis is recommended for periodical data (see, for

example, Horváth and Kokoszka, 2012), so it is sensible for temperature and precipitation

data, since they have annual cycles.

The results of statistical analysis are depicted in Table 4. We observe quite big values

of correlation coefficients, especially F̂dCorα ’s. Moreover, these values seem to not de-

pend on the basis size. The same is true for p-values of the tests F̂dCor and F̂dCorα with

α = 0.1,0.5. However, this is not true for the remaining testing procedures. This follows

from the fact that the tests F̂dCor and F̂dCorα with small α are more robust to increasing

dimension than the tests F̂dCorα with moderate and large α . This was observed for ran-

dom vectors in simulation studies in Chen et al. (2019) and moves to the case of functional

data. Moreover, the p-values of the tests F̂dCorα usually increase with the increasing α .

Finally, the tests F̂dCor and F̂dCorα with α = 0.1,0.5 reject the null hypothesis at level of

significance of 5%, in contrast to the remaining tests. These confirm the simulation results

of Section 3, since the tests F̂dCor and F̂dCorα with small α were observed there to be
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Figure 1: Temperature and precipitation for Canadian weather stations.

Table 4: Functional coefficients of correlation (FCor) and p-values of tests of independence
for temperature and precipitation for Canadian weather stations.

Bl
1 F̂dCor F̂dCor0.1 F̂dCor0.5 F̂dCor1 F̂dCor1.5 F̂dCor2

FCor 3 0.7379 0.9921 0.9825 0.9907 0.9914 0.9909

5 0.7436 0.9935 0.9895 0.9975 0.9985 0.9988

7 0.7449 0.9939 0.9913 0.9989 0.9998 0.9999

9 0.7461 0.9942 0.9924 0.9993 0.9999 0.9999

11 0.7464 0.9943 0.9932 0.9995 0.9999 0.9999

13 0.7466 0.9944 0.9937 0.9996 0.9999 0.9999

15 0.7468 0.9946 0.9942 0.9997 0.9999 0.9999

p-value 3 0.001 0.000 0.037 0.250 0.279 0.319

5 0.001 0.000 0.015 0.339 0.352 0.306

7 0.001 0.000 0.008 0.341 0.429 0.422

9 0.001 0.000 0.002 0.228 0.407 0.411

11 0.001 0.000 0.003 0.350 0.410 0.413

13 0.001 0.000 0.006 0.360 0.353 0.325

15 0.001 0.000 0.006 0.352 0.402 0.452

more powerful than the tests F̂dCorα with moderate and large α . For these reasons, we

should reject the null hypothesis about independence and conclude that there is a relation-

ship between temperature and precipitation recorded in Canadian weather stations.
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5. Conclusions

We have proposed new measures of mutual dependence for two or more sets of univariate

and multivariate functional data. Our construction is based on the equivalence to mutual

independence through characteristic functions and the basis function representation of the

functional observations. Then, the problem is reduced to random vectors of basis expan-

sion coefficients. We do not assume that the basis is orthogonal in contrast to the previous

literature. For two sets of functional data, we follow the idea of functional distance cor-

relation and construct functional versions of coefficients by Chen et al. (2019) indexed by

hyperparameter α ∈ (0,2]. In the case of more than two sets of functional data, we use

the coefficients for pairs of sets and aggregate them by sums of their squares adapting the

asymmetric and symmetric methods by Jin and Matteson (2018) to functional data frame-

work. Simulation studies and real data example suggest that permutation tests based on new

functional coefficients with small α and symmetric method perform best in terms of size

control and power.

REFERENCES

BOSQ, D., (2000). Linear Processes in Function Spaces. Theory and Applications,
Springer.

CHEN, F., MEINTANIS, S. G., ZHU, L., (2019). On some Characterizations and Multi-

dimensional Criteria for Testing Homogeneity, Symmetry and Independence. Journal
of Multivariate Analysis, 173, pp. 125–144.

CUEVAS, A., (2014). A Partial Overview of the Theory of Statistics with Functional Data.

Journal of Statistical Planning and Inference, 147, pp. 1–23.

ESCOUFIER, Y., (1970). Echantillonnage dans une population de variables aléatoires

réelles. Ph.D thesis, Université des Sciences et Techniques du Languedoc, Montpel-

lier.

ESCOUFIER, Y., (1973). Le Traitement des Variables Vectorielles. Biometrics, 29, pp.
751–760.

FERRATY, F., VIEU, P., (2006). Nonparametric Functional Data Analysis: Theory and
Practice, Springer: New York.
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36 M. Krzyśko, Ł. Smaga : Measuring and Testing ...
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KRZYŚKO, M., SMAGA, Ł., (2019). Robust Estimation in Canonical Correlation Analy-

sis for Multivariate Functional Data. Hacettepe Journal of Mathematics and Statistics,
48, pp. 521–535.
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