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ABSTRACT

Classic survey methods are ineffective when surveying a small or rare population. Several

methods have been developed to address this issue, but often without providing a full math-

ematical justification. In this paper we propose estimators of parameters relating to Random

Route Sampling and explore their basic properties. A formula for the Horvitz-Thompson es-

timator weights is presented. Finally, a case of a tourism-related survey conducted in Poland

is discussed.
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1. Introduction

Nowadays official statistics is looking for cost-effective and time-effective survey methods.

It is particularly noticeable when we deal with surveys of small populations such as unem-

ployed, foreigners, homeless, etc. Usually a frame for such a subpopulation is not available.

Some methods for solving these problems have been developed, but often without a full

theoretical background. The representativeness and unbiasedness of the sample surveyed in

that way is a question of concern.

2. Random Route Sampling

We shall present some details on the Random Route Sampling method. Assume that we

want to survey a subpopulation S of a population P. The frame of members of P is avail-

able, but the frame of members of S is unknown. In this paper we focus on household (or

dwelling) population. In the Random Route procedure, interviewers walk from house to

house and survey households on a prescribed route that ensures randomness. At the first

stage, a group of n households (list of starting points) is sampled. At the second stage, an

interviewer sets out from the starting point. If a household is not a member of S, then the

interviewer continues walking and surveying. There are two alternative models. In the first

one the interviewer is surveying until he/she finds a member of S. In the second model

the interviewer continues until he/she finds a member of S or he/she reaches the limit of K
steps. Each visited dwelling is called a step. The interviewer follows some rules that ensure

randomness such as: always on the right, always clockwise or always downstairs.

In this paper we unify two aforementioned models by assuming that:
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• the interviewer makes up to K = 1,2, ...,∞ steps until he/she finds a member of S. The
starting point is the first step. The sequence of up to K steps will be called a route;

• the interviewer walks only within his/her district (Primary Statistical Unit);

• there is only one interviewer per district;

• the interviewer does not survey the household that has been already surveyed;

• if in a route interviewer surveys another starting point from the list then he/she counts

it as a step. The next household to be surveyed after the route is completed, becomes

a new (replaced) starting point.

Clearly, the better survey completeness and the larger size of the subpopulation S in a rela-

tion to the size of the population P, the lower number of steps made in a route. Obviously,

if K = 1 then the Random Route (RR) becomes the Simple Random Sampling (SRS). Thus,

SRS can be treated as a special case of RR and all of the results for RR for K = 1 should be

consistent with results for SRS.

Several papers assess the quality of random route samples. Biasedness and sample repre-

sentativeness are studied based on case studies (Hoffmeyer-Zlotnik (2003), de Rada, Martin

(2014)) or simulations (Bauer (2014), Bauer (2016)).

Hoffmeyer-Zlotnik compared three different models of Random Route Sampling:

1) uncontrolled Random Route Sampling with Kish tables and net number of interviews

defined used in German General Social Survey (ALLBUS) in 1992,

2) controlled Random Route Sampling with Kish tables and gross number of addresses

defined used in German General Social Survey (ALLBUS) in 1998,

3) Random Route plus quota design with net number of interviews defined used in a na-

tional survey of the German Youth Institute.

Hoffmeyer-Zlotnik, based on data analysis, found out that the uncontrolled Random Route

Sampling saves 30% of expenses in comparison to the controlled version and to the version

with quota. In the extreme, case the version with quota caused the walk to be very long and

the interviewer had to contact about 100 households for carrying out 10 interviews. More-

over, with modification of the sampling process in the controlled version or the version with

quota, the Random Route Sampling becomes non-probability sampling and the sampling

error cannot be calculated.

In this paper we refer to the uncontrolled Random Route Sampling. We propose an

estimator of the fraction of a subpopulation S in a population P and prove that this estimator

is asymptotically unbiased and consistent. Further, we derive sample weights.

3. Parameter estimation under the Random Route Sampling

Since the Random Route method is focused on surveying members of S the question that

arises naturally is how to estimate the size of a population S. We will derive some estimators
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and check their consistency and unbiasedness. Let us denote by M the size of population

- the only known parameter. We introduce two further parameters r and p - the unknown

parameters of the level of completeness and the fraction of a subpopulation S in a population

P, respectively. We assume that r and p are such that prM and pM are integers.

Now, we divide our analysis into two cases.

3.1. Unlimited number of steps in a single route

Let X be a number of visited P\S members (members of P but not S) until an S member is

surveyed. Clearly X is a random variable. Furthermore, for every k ∈ {0,1, ...,(1− pr)M},
X takes the value k provided the following two conditions are satisfied:

• in each of the first k steps of the route the interviewer either visited a member of P\S
or he/she did not get an answer due to the incompleteness;

• in the (k+1)th he/she surveyed a member of S.

Therefore,

P(X = k) =

( M−k−1
(1−pr)M−k

)
( M
(1−pr)M

) for k = 0,1, ...,(1− pr)M. (1)

That is X follows the negative hypergeometric distribution HY P−(M,(1− pr)M,1). In

order to survey exactly n members of S the interviewer will make n+∑n
i=1 Xi steps, where

Xi for i = 1, ..,n are i.i.d. random variables with probability distribution described by (1).

Guenther (1975) proposed the following maximum-likelihood estimator of pr

Y ∞
HY P−(n) =

n
n+∑n

i=1 Xi
. (2)

The estimator Y ∞
HY P− being the maximum-likelihood estimator has a number of attractive

limiting properties such as consistency and efficiency (Pfanzagl (1994)). Nevertheless, the

estimator given by (2) is biased (Zhang, Johnson (2011)). It is still an open question if this

estimator is asymptotically unbiased. Therefore, we are going to modify the model in such

a way that the estimator defined by (2) becomes asymptotically unbiased.

Assume that M is relatively large compared to n. According to the result of Johnson and
Kotz (1969), if M → ∞ with p and r being fixed, then

Y ∞
HY P−(n)→D Y

where Y is a random variable following the negative binomial distribution BIN−(1− pr,1).
Therefore, for relatively large M, we can treat the Random Route Sampling as a sampling

with replacement. Note, however, that

BIN−(1− pr,1) = GEO(1− pr)

where GEO(1− pr) denotes the geometric distribution with parameter 1− pr. So, it is

reasonable to replace the underlying negative hypergeometric distribution by the geometric
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one. Then, we get

P

(
n

∑
i

Xi = k

)
=

(
k+n−1

k

)
(pr)n(1− pr)k for k = 0,1,2, ....

Furthermore, ∑n
i Xi being a sum of i.i.d. random variables having the geometric distribution

with parameter 1− pr (cf. Bandyopadhyay P.S., Forster M.R. (2011)), follows the negative

binomial distribution BIN−(1− pr,n). Hence,

E

(
n

∑
i

Xi

)
=

n(1− pr)
pr

and D2

(
n

∑
i

Xi

)
=

n(1− pr)
(pr)2

. (3)

Define an estimator Y ∞
BIN− as follows:

Y ∞
BIN−(n) =

n
n+∑n

i=1 Xi
. (4)

For every n ∈ N, Y ∞
BIN−(n) expresses the ratio of the number of surveyed S-members in

a relation to the number of surveyed P-members in an n-route survey. Note that Y ∞
BIN− is the

maximum-likelihood estimator of pr (cf. Hilbe (2011)). Moreover, taking into account (3)

and applying the result by Stuart (Stuart (1998), p. 351) we obtain

E
(
Y ∞

BIN−(n)
)
= E

(
n

∑n
i=1 Xi +n

)
=

n
E (∑n

i=1 Xi)+n
+O

(
1

n

)
=

n
n(1−pr)

pr +n
+O

(
1

n

)
= pr+O

(
1

n

)
.

Thus,

lim
n→∞

E
(
Y ∞

BIN−(n)
)
= pr, (5)

which shows that Y ∞
BIN− is asymptotically unbiased.

3.2. Limited number of steps in a single route

In practice, the most important case of the Random Route is when the number of steps is

finite. In this approach, on the one hand surveying is less sensitive to clustering of P\S-
members, but on the other, we need more starting points to survey the same number of

S-members. Moreover, in this setting it is possible that the interviewer will not survey a

S-member in his/her route. Thus, the number of surveyed S-members is a random variable,

taking two values: 0 and 1. Let us denote it by LK . Then, assuming that M is relatively large

comparing to n and treating the Random Route Sampling as the sampling with replacement,

we obtain the following probability distribution of LK

P
(
LK = l

)
=

{
1− (1− pr)K for l = 1,

(1− pr)K for l = 0.
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We shall determine the maximum-likelihood estimator of pr. To this end, assume that

l =(l1, ..., ln) is a vector of observed data in a K-step route. Then, the log-likelihood function

L (pr, l,K) is given by

L (pr, l,K) =
n

∑
i=1

ln[(1− (1− pr)K)li +(1− pr)K(1− li)].

Derivating L (pr, l,K) with respect to pr, we obtain

∂L (pr, l,K)

∂ pr
=

n

∑
i=1

2li−1

(1− pr)1−Kli +(1− pr)(1−2li)
. (6)

Hence, the maximum-likelihood estimator of pr is of the form

ZK(n) = 1−
(
1− ∑n

i=1 Li

n

) 1
K

. (7)

Obviously, ZK is consistent and efficient. It is an open question if ZK is asymptotically

unbiased.

Let XK be the number of visited households until an S member is surveyed in a K-step

route. Then XK is a random variable taking the values 1, ...,K. Furthermore, assuming as

previously that M is relatively large compared to n and treating the Random Route Sam-

pling as the sampling with replacement, we conclude that XK has the following probability

distribution:

P
(
XK = k

)
=

{
pr(1− pr)k for k < K,

(1− pr)K for k = K.
(8)

Thus, we have

E
(
XK)= (1− pr)(1− (1− pr)K)

pr
(9)

and

D2
(
XK

)
= 1

(pr)2 [(1− pr)− (2K−1)pr(1− pr)K− (1− pr)K(1− (1− pr)K)p2]+

1
(pr)2 [2pr(1− pr)(1− (1− pr)K)2− (1− pr)2K ]−

1
(pr)2 [2pr(1− pr)(1− (1− pr)K−K(1− pr)K−1+K(1− pr)K)].

(10)

Note that

lim
K→∞

E
(
XK)= 1− pr

pr
and lim

K→∞
E
(
LK)= 1.

Hence, (9)-(10) are consistent with the case of K = ∞.

Now, we are going to determine the maximum-likelihood estimator of pr. Assume that
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x = (x1, ...,xn) is a vector of observed data in a K-step route. Let l = (l1, ..., ln) where

li =
{

0 whenever xi = K,

1 whenever xi < K.

The log-likelihood function L (pr,x,K) is given by

L (pr,x,K) =
n

∑
i=1

ln[pr(1− pr)ki−1li +(1− pr)K−1(1− li)]. (11)

Derivating L (pr,x,K) with respect to pr, we get

∂L (pr,x,K)

∂ pr
=

n

∑
i=1

(li−1)(K−1)(1− pr)K−2+ li((1− pr)xi−1− pr(xi−1)(1− pr)ki−2)
li pr(1− pr)xi−1+(1− li)(1− pr)K−1 .

Hence, the maximum-likelihood estimator of pr is of the form

Y K(n) =
∑n

i=1 LK
i

∑n
i=1 LK

i XK
i +K(n−∑n

i=1 LK
i )+∑n

i=1 LK
i
. (12)

Note that for i = 1, ..,n we have

LK
i →D 1 with K → ∞.

Moreover, if Xi follows GEO(1− pr) for i = 1, ..,n, then taking into account (8), we get

XK
i →D Xi with K → ∞.

Thus, in view of (12), for every n, we obtain

Y K(n)→D Y ∞
BIN−(n) with K → ∞.

The estimator Y K is asymptotically unbiased. In fact, applying the result of Stuart (Stuart

(1998), p. 351) and making use of (9)-(10), we obtain

E
(
Y K(n)

)
= E

(
∑n

i=1 LK
i

∑n
i=1 XK

i

)
=

E
(
∑n

i=1 LK
i
)

E
(
∑n

i=1 XK
i

) +O
(
1

n

)
=

n(1− (1− pr)K)

n 1−(1−pr)K

pr

+O
(
1

n

)
= pr+O

(
1

n

)
.

Hence,

lim
n→∞

E
(
Y K(n)

)
= pr.
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4. Horvitz-Thompson estimators

In order to use direct estimators we need to know probabilities of inclusion of a household

in the sample. In the Simple Random Sampling, these probabilities can be calculated before

survey is conducted. In fact, in the Random Route we can derive them after we data from

the survey are collected.

By πi|S and πi|P\S we denote probability of inclusion of ith household into the sample for

S-member and P\S-member, respectively. Assume that M is the size of population, p is the

share of S-members in population, r is the level of completeness and q = 1− pr.
If K = ∞ then

1−πi|S =
prM−1

M
+

qM
M

prM−1

M−1
+

qM
M

qM−1

M−1

prM−1

M−2
+ ...=

prM−1

prM
,

1−πi|P\S =
prM
M

+
qM−1

M
prM

M−1
+

qM−1

M
qM−2

M−1

prM
M−2

+ ...=
prM

prM+1
.

Hence,

πi|P\S =
1

prM+1
<

1

prM
= πi|S

so πi|P\S and πi|S are not equal and depend on size of S only. However, the difference

between these probabilities becomes negligible for relevant size of S, e.g. if prM ≥ 1000

then we have πi|S−πi|P\S ≤ 10−6. In the case K = ∞, the parameter pr can be estimated

from (4).

Consider the case where K is finite. Then

1−πi|S =
prM−1

M
+

qM
M

prM−1

M−1
+

qM
M

qM−1

M−1

prM−1

M−2
+ ...+

qM
M

qM−1

M−1
× ...× qM−K +2

M−K +2

prM−1

M−K +1
,

1−πi|P\S =
prM
M

+
qM−1

M
prM

M−1
+

qM−1

M
qM−2

M−1

prM
M−2

+ ...+

qM−1

M
qM−2

M−1
× ...× qM−K +1

M−K +2

prM
M−K +1

.

In the case of a finite K, the parameter pr can be estimated from (12).

5. The Random Route in practice. Case of tourism survey in Poland.

The survey "Participation of Polish residents in tourism" has been carried out by the Sta-

tistical Office in Rzeszów since the first quarter of 2014. The target population are Polish

people who travelled abroad (for one day or more) and people who made a domestic trip

for at least one night. Taking into account possibly low completeness rate and the fact that

the population of travellers is not very big, the Random Route was applied with 8 steps and

18,750 starting points in a population over 13 million of households.
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The data base from the third quarter of 2017 was analysed to assess the aforementioned

methods of estimating pr. We collected information about the step on which in a route the

household was surveyed. All of the households on the first step of the route could be treated

as data collected in the Simple Random Sampling. Thus, it allowed us to estimate pr like a
simple fraction. We expected that the level of completeness r should be higher in the Simple

Random Sampling than in the Random Route Sampling because all of the households in the

starting points are informed about the survey from a letter of President of Statistics Poland.

Therefore, an estimate of pr should be also higher.

The table below presents the precision of formulas described above.

Fraction formula Formula (12) Formula (7) Formula (4)

Estimate of pr 0.104 0.091 0.083 0.081

Clearly, (12) estimate is the closest to pr obtained from the fraction formula. It may stem

from the observation that (4) is derived under the assumption of infinite number of steps

while (7) is not utilizing information on the total number of steps.

Further investigations based on simulations may create a better picture of properties of the

estimators given by (4), (7) and (12).

6. Conclusions

As a cost-effective and time-effective survey method, the Random Route may be preferred

to the Simple Random Sampling, especially when we deal with small populations. Under

some natural assumptions the weights for the Horvitz-Thompson estimator are easy to

compute. The Random Route proved its usefulness also in practice.
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