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Generalised Odd Frechet Family of Distributions:
Properties and Applications
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ABSTRACT

A new distribution called Generalized Odd Fréchet (GOF) distribution is presented and its

properties explored. Some structural properties of the proposed distribution, including the

shapes of the hazard rate function, moments, conditional moments, moment generating func-

tion, skewness, and kurtosis are presented. Mean deviations, Lorenz and Bonferroni curves,

Rényi entropy, and the distribution of order statistics are given. The maximum likelihood

estimation technique is used to estimate the model parameters, and finally applications of the

model to a real data set are presented to illustrate the usefulness of the proposed distribution.

Key words: Fréchet distribution, Wiebull distribution, structural properties, failure-time,

maximum likelihood estimation.

1. Introduction

Recently, some attempts have been made to define new families of distributions to ex-

tend well-known models and at the same time provide great flexibility in modelling data in

practice. Several techniques could be employed to form a larger family from an existing

distribution by incorporating extra parameters. These generalized distributions give more

flexibility by adding one "or more" parameters to the baseline model. For example, Gupta

et al. (1998) proposed the exponentiated-G class, which consists of raising the cumulative

distribution function (cdf) to a positive power parameter. Many other classes can be cited

such as the Marshall-Olkin-G family by Marshall and Olkin (1997), beta generalized-G

family by Eugene et al. (2002), the gamma-generated family by Zografos and Balakrish-

nan (2009), Kumaraswamy G family by Cordeiro and de Castro (2011), Generalized beta

generated distributions by Alexanderet et al. (2015a), exponentiated generalized-G family

by Cordeiro et al. (2013), a new method for generating families of continuous distribu-

tions by Alzaatreh et al. (2013), exponentiated T-X family of distributions by Alzaghal et

al. (2013), the Lomax generator of distributions by Cordeiro et al. (2014), the WeibullG

family of probability distributions by Bourguignon et al. (2014), beta Marshall-Olkin by

Alizadeh et al. (2015a), Kumaraswamy odd log-logistic by Alizadeh et al. (2015b), beta

odd log-logistic by Cordeiro et al. (2015), Kumaraswamy Marshall-Olkin by Alizadeh et
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al. (2015c), transmuted exponentiated generalized-G family by Yousof et al. (2015), gen-

eralized transmuted-G by Nofal et al. (2015), generalized transmuted family by Alizadeh

et al. (Alizadeh2015a), another generalized transmuted family by Merovci et al. (2015),

Kumaraswamy transmuted-G by Afify et al. (2016a), transmuted geometric-G by Affify

et al. (2016b), beta transmuted-H by Afify et al. (2016c), Burr X-G by Yousof et al.

(2016), the odd Lindley-G family of distributions by Silva et al. (2016), exponentiated

transmuted-G family by Merovci et al. (2016), odd-Burr generalized family by Alizadeh

et al. (2016a) the complementary generalized transmuted Poisson family by Alizadeh et al.

(2016b), logistic-X by Tahir et al. (2016a), a new Weibull-G by Tahir et al. (2016b), the

two-sided power-G class by Korkmaz and Genc (2016), the type I half-logistic family by

Cordeiro et al. (2016a), the Zografos-Balakrishnan odd log-logistic family of distributions

by Cordeiro et al. (2016b), the generalized odd log-logistic family by Cordeiro et al.(2016c),

the beta odd log-logistic generalized family of distributions by Cordeiro et al. (2016d), the

Kumaraswamy odd log-logistic family of distributions by Alizadeh et al. (2016d) and a new

generalized odd log-logistic family of distributions by Haghbin et al. (2017), the general-

ized odd log-logistic family of distributions: properties, regression models and applications

by Cordeiro et al. (2017), the odd power Cauchy family of distributions by Alizadeh et

al. (2018), a new family of the continuous distributions: the extended Weibull-family by

Korkmaz (2018a), the Marshll-Olkin generalized G Piosson of distributions by Korkmaz

et al. (2018b) and a new family of distributions with properties, regression models and

applications by Yousof et al. (2018), among others.

The article is outlined as follows: in Section 2, we introduce the GOF distribution and

provide plots of the density and hazard rate functions. Shapes, quantile function, moments,

and moment generating function are also obtained. Moreover, mean deviation, order statis-

tics, Lorenz and Bonferroni curves and finally asymptotic properties are presented in this

section. Estimation by the method of maximum likelihood and an explicit expression for the

observed information matrix are presented in Section 3. The simulation study is presented

in Section 4. The applications to real data sets are considered in Section 5. Finally, Section

6 offers some concluding remarks.

2. Generalized Odd Frechet Family of distribution

The cdf of the Generalized Odd Frechet (GOF) Family of distributions is given by

F(x;a,b,ξ ) = exp
{
−(G(x,ξ )−a−1)b

}
(1)

where ξ = (ξ1;ξ2; ...) is a parameter vector, and a and b are positive parameters. The

corresponding probability density function (pdf) is

f (x;a,b,ξ ) = abg(x,ξ )G(x,ξ )−a−1[G(x,ξ )−a−1]b−1 exp
{
−(G(x,ξ )−a−1)b

}
(2)

For a= 1 we obtain Odd Frechet family. Some of the possible shapes of the density function

(2) of generalized odd Frechet Wiebull distribution (GOFW), for the selected parameter
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values are illustrated in Figure 1. As seen in Figure 1, the density function can take various

forms depending on the parameter values.
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Figure 1: Different shapes of GOFW pdf (left) and Hazard function (right)

2.1. Survival and Hazard Rate Functions

A central role is played in the reliability theory by the quotient of the pdf and survival

function. We obtain the survival function corresponding to (1) as

R(x) = 1− exp
{
−(G(x,ξ )−a−1)b

}
In reliability studies, The hazard rate [h(x)], reversed-hazard rate function [r(x)] and

cumulative hazard rate function [H(X)] are important characteristics and fundamental to

the design of safe systems in a wide variety of applications. Therefore, we discuss these

properties of the GOF distribution. The h(x),r(x) and H(x) of X take the form

h(x) =
abg(x)G(x)−a−1 [G(x)−a−1]

b−1
e−[G(x)

−a−1]
b

1− e−[G(x)−a−1]b

r(x) = abg(x,ξ )G(x,ξ )−a−1[G(x,ξ )−a−1]b−1

and

H(x) =− log
(
1− exp

{
−(G(x,ξ )−a−1)b

})
Plots of the hrf of the GOFW distribution for several parameter values are displayed in

Figure 1.
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2.2. Mixture representations for the pdf and cdf

Several structural properties of the extended distributions may be easily explored using

mixture forms of Exp-G models. Therefore, we obtain mixture forms of exponentiated-G

("Exp-G") for F (x) and f (x). In this subsection, we provide alternative mixture representa-

tions for the pdf and cdf of X . Some useful expansions for (1) can be derived by using the

concept of power series and generalized binomial expansion. We have

F(x) = exp
(
−(G(x)−a−1)b

)
= exp

(
−
(
1−G(x)a

G(x)a

)b
)

=
∞

∑
i=0

(−1)i

i!

(
1−G(x)a

G(x)a

)bi

=
∞

∑
i, j=0

(−1)i+ j

i!

(
bi
j

)
G(x)a j G(x)−abi (3)

=
∞

∑
j,k=0

k

∑
l=0

w j,k,l G(x)a j+l (4)

where

w j,k,l =
∞

∑
i=0

(−1)i+ j+k+l

i!

(
bi
j

)(−abi
k

)(
k
l

)
Furthermore, the corresponding GOF density function is obtained by differentiating (4)

f (x) =
∞

∑
j,k=0

k

∑
l=0

w j,k,l (a j+ l)g(x)G(x)a j+l−1 (5)

Using relation (3) we obtain another form of expansions for (1) as bellow, which is used in

rest of the paper,

F(x) =
∞

∑
i, j=0

(−1)i+ j

i!

(
bi
j

)
G(x)a( j−bi) =

∞

∑
k=0

ek Hk(x) (6)

where Ḡ(x) = 1−G(x),

ek =
∞

∑
i, j=0

(−1)i+ j+k

i!

(
bi
j

)(
a( j−bi)

k

)
(7)

and Hδ (x) = (1−G(x))δ is the survival function of the Exp-G distribution with power

parameter δ . Then the corresponding GOF density function is obtained by differentiating

(6)

f (x) =
∞

∑
k=0

ek hk(x) (8)

where hδ (x) = δ g(x)G(x)δ−1.
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2.3. Moments and Moment Generating Function

Some of the most important features and characteristics of a distribution can be studied

through moments (e.g. tendency, dispersion, skewness and kurtosis). Now we obtain ordi-

nary moments and the moment generating function (mgf) of the GOF distribution. The rth
ordinary moment of X is given by

μ ′r = E(Xr) =
∫

xr f (x)dx =
∞

∑
k=0

ekE(Y r
k ) (9)

where E(Y r
k ) =

∫
xrk g(x)G(x)k−1dx; which can be computed numerically for most parent

distributions. The skewness and kurtosis measures can be calculated from the ordinary

moments using well-known relationships. One can also find the kth central moment of the

GOF distribution through the following well-known equation

μk = E(X−μ)k =
k

∑
r=0

(
k
r

)
μ ′r(−μ)k−r. (10)

Using (10), the variance, skewness and kurtosis measures can be obtained. Skewness mea-

sures the degree of the long tail and kurtosis is a measure of the degree of tail heaviness.

The skewness can be computed as

S =
μ3

μ3/2
2

=
μ ′3−3μ ′2μ ′1+2μ ′31

(μ ′2−μ ′21 )3/2

and the kurtosis is based on octiles as

K =
μ4

μ2
2

=
μ ′4−4μ ′1μ ′3+6μ ′21 μ ′2−3μ ′41

μ ′2−μ ′21
.

When the distribution is symmetric S = 0, and when the distribution is right (or left) skewed

S > 0(or S < 0). As K increases, the tail of the distribution becomes heavier. These mea-

sures are less sensitive to outliers and they exist even for distributions without moments.

The rth moment of generalized odd Frechet Weibull (GOFW) distribution using relation

(8) is given by

μ ′r =
∫ ∞

0
xr f (x)dx =

∞

∑
k=0

k ek

∫ ∞

0
xr α

λ
(

x
λ
)α−1 e−(

x
λ )α

(e−(
x
λ )α

)k−1dx

=
∞

∑
k=0

k ek

∫ ∞

0
xr α xα−1

λ α e−k( x
λ )α

dx = λ r A(λ ,α,r) (11)

where Γ(a) =
∫ ∞
0 xa−1e−xdx is gamma function and

A(λ ,α,r) =
∞

∑
k=0

(
ek

kr/α )Γ(1+
k1/α r

λ
).
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Using power series, the moment generating function of GOFW is as bellow

MX (t) = E(etX ) =
∞

∑
n=0

tn

n!
E(Xn) =

∞

∑
n=0

tn

n!
λ n A(λ ,α,n)

It is to be highlighted that the equation (11) can be easily computed numerically using

mathematical or statistical software. For this purpose, one can compute this equation for a

large natural number, say N, instead of infinity in the sums. Therefore, several quantities of

X such as moments, skewness and kurtosis can be computed numerically using (11). Plots

for skewness and kurtosis are presented in Figure 2.
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Figure 2: The skewness and kurtosis plots of GOF distribution for selected a,b,α,β .

2.4. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.

Suppose X1, . . . ,Xn is a random sample from any GOF distribution. Let Xi:n denote the ith
order statistic. The pdf of Xi:n can be expressed as

fi:n(x) = K f (x)Fi−1(x) {1−F(x)}n−i = K
n−i

∑
j=0

(−1) j
(

n− i
j

)
f (x)F(x) j+i−1,

where K = 1/B(i,n− i+1). We use the result of Gradshteyn and Ryzhik (2000) for a power

series raised to a positive integer n (for n≥ 1)(
∞

∑
i=0

ai ui

)n

=
∞

∑
i=0

dn,i ui, (12)
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where the coefficients dn,i (for i = 1,2, . . .) are determined from the recurrence equation

(with dn,0 = an
0)

dn,i = (ia0)
−1

i

∑
m=1

[m(n+1)− i]am dn,i−m. (13)

We can show that the density function of the ith order statistic of any GOF distribution can

be expressed as

fi:n(x) =
∞

∑
r,k=0

mr,k Hr+k+1(x), (14)

where Hr+k+1(x) stands for the the survival function of the Exp-G distribution with power

parameter r+ k+1.

mr,k =
n!(r+1)(i−1)!er+1

(r+ k+1)

n−i

∑
j=0

(−1) j f j+i−1,k

(n− i− j)! j!
.

Here, er is given by (7) and the quantities f j+i−1,k can be determined given that f j+i−1,0 =

e j+i−1
0 and recursively we have:

f j+i−1,k = (k e0)
−1

k

∑
m=1

[m( j+ i)− k]em f j+i−1,k−m,k ≥ 1.

Equation (14) is the main result of this section. Therefore, several mathematical quanti-

ties of these order statistics like ordinary and incomplete moments, factorial moments, mgf,

mean deviations and others can be derived using this result.

2.5. Mean Deviations, Lorenz and Bonferroni Curves

Mean deviation about the mean and mean deviation about the median as well as Lorenz

and Bonferroni curves for the GOF distribution are presented in this section. Bonferroni

and Lorenz curves are a widely used tool for analysing and visualizing income inequality.

Lorenz curve, L(p) can be regarded as the proportion of total income volume accumulated

by those units with income lower than or equal to the volume y, and Bonferroni curve, B(p)

is the scaled conditional mean curve, that is, ratio of group mean income of the population.

2.5.1 Mean deviations

The amount of scatter in a population may be measured to some extent by deviations

from the mean and median. These are known as the mean deviation about the mean and the

mean deviation about the median, defined by

δ1 (X) =
∫ ∞

0
|x−μ| f (x)dx, and δ2 (X) =

∫ ∞

0
|x−M| f (x)dx.
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respectively, where μ = E(X) and M =Median(X) = Q(0.5) denotes the median and Q(p)
is the quantile function. The measures δ1 (X) and δ2 (X) can be calculated using the rela-

tionships

δ1 (X) = 2μ F(μ)−2

∫ μ

0
x f (x)dx, and δ2 (X) = μ−2

∫ M

0
x f (x)dx

Finally for GOFW distribution we have

δ1 (X) = 2μ F(μ)−2
∞

∑
k=0

k ek

∫ μ

0
x

α xα−1

λ α e−k( x
λ )α

dx

= 2μ F(μ)−2λ B(λ ,α,μ)

where γ(s,x) =
∫ x
0 ts−1e−tdt is lower incomplete gamma function and

B(λ ,α ,μ) =
∞

∑
k=0

ek

k1/α γ(2,
μ λ α

k
)

And

δ2 (X) = μ−2λ B(λ ,α,M).

2.5.2 Bonferroni and Lorenz curves

The Bonferroni and Lorenz curves have applications in economics as well as other fields

like reliability, medicine and insurance. Let X ∼ GOFW (a,b,α,λ ) and F(x) be the cdf of

X , then the Bonferroni curve of the GOFW distribution is given by

B(F(x)) =
1

μ F(x)

∫ x

0
t f (t)dt,

where μ = E(X). Therefore, from (15), we have

B(F(x)) =
1

μ F(x)
×λ B(λ ,α,x).

The Lorenz curve of the GOFW distribution can be obtained using the relation

L(F(x)) = F(x)B(F(x)) =
λ
μ

B(λ ,α,x).

2.6. Asymptotic Properties

One of the main usage of the idea of an asymptotic distribution is in providing approxi-

mations to the cumulative distribution functions of the statistical estimators.
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The asymptotic of cdf, pdf and hrf of the GOF distribution as x→ 0 are, respectively,

given by

F(x)∼ exp(−G(x)−ab) as x→ 0,

f (x)∼ abg(x)G(x)−ab−1 exp(−G(x)−ab) as x→ 0,

h(x)∼ abg(x)G(x)−ab−1 as x→ 0.

The asymptotic of cdf, pdf and hrf of the GOF distribution as x→∞ are, respectively, given

by

1−F(x)∼ (aḠ(x))b as x→ ∞,

f (x)∼ bab g(x)Ḡ(x)b−1 as x→ ∞,

h(x)∼ bg(x)
Ḡ(x)

as x→ ∞.

These equations show the effect of parameters on the tails of the GOF distribution.

3. Estimation

Several approaches for parameter estimation have been proposed in the literature but

the maximum likelihood method is the most commonly employed. Here, we consider es-

timation of the unknown parameters of the GOF distribution by the method of maximum

likelihood. Let x1,x2, ...,xn be observed values from the GOF distribution with parameters

a,b and ξ , where ξ is the parameter of based distribution function. The log-likelihood

function for (a;b;ξ ) is given by

�n = n log(a)+n log(b)+
n

∑
i=1

log(g(xi,ξ ))− (a+1)
n

∑
i=1

log(G(xi,ξ ))

+(b−1)
n

∑
i=1

log(G(xi,ξ )−a−1)−
n

∑
i=1

(G(xi,ξ )−a−1)b.

The derivatives of the log-likelihood function with respect to the parameters (a;b;ξ ) are

given respectively, by

∂�n

∂a
=

n
a
−

n

∑
i=1

log(G(xi,ξ ))+(b−1)
n

∑
i=1

− log(G(xi,ξ ))G(xi)
−a

G(xi,ξ )−a−1

+
n

∑
i=1

b(G(xi,ξ )−a−1)b−1G(xi,ξ )−a log(G(xi,ξ ))

∂�n

∂b
=

n
b
+

n

∑
i=1

log(G(xi,ξ )−a−1)−
n

∑
i=1

log(−(G(xi,ξ )−a−1))(G(xi,ξ )−a−1)b
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and

∂�n

∂ξ
=

n

∑
i=1

g′(xi,ξ )
g(xi,ξ )

− (a+1)
n

∑
i=1

G′(xi,ξ )
G(xi,ξ )

− (b−1)
n

∑
i=1

aG′(xi,ξ )G(xi,ξ )
G(xi,ξ )−a−1

+
n

∑
i=1

abG′(xi,ξ )(G−a−1)b−1

where

g′(xi,ξ ) =
∂g(xi,ξ )

∂ξ
, G′(xi,ξ ) =

∂G(xi,ξ )
∂ξ

The maximum likelihood estimates (MLEs) of (a;b;ξ ) , say (â; b̂; ξ̂ ), are the simulta-

neous solution of the equations ∂�n
∂a = 0; ∂�n

∂b = 0; ∂�n
∂ξ = 0.

For estimating the model parameters, numerical iterative techniques should be used to

solve these equations. We can investigate the global maxima of the log-likelihood by setting

different starting values for the parameters. The information matrix will be required for

interval estimation. Let θ = (α;β ,γ,λ )T , then the asymptotic distribution of
√

n(θ − θ̂)
is N4(0,K(θ)−1), under standard regularity conditions (see Lehmann and Casella, 1998,

pp. 461-463), where K(θ) is the expected information matrix. The asymptotic behaviour

remains valid if K(θ)) is superseded by the observed information matrix multiplied by 1/n,
say I(θ)/n, approximated by θ̂ , i.e. I(θ̂)/n. We have

I(θ) =−

⎡⎢⎢⎣
Iαα Iαβ Iαγ Iαλ
Iβα Iββ Iβγ Iβλ
Iγα Iγβ Iγγ Iγλ
Iλα Iλβ Iλγ Iλλ

⎤⎥⎥⎦
where

Iαα =
∂ 2�n

∂α2
; Iαβ = Iαβ =

∂ 2�n

∂α∂β
; Iαγ = Iαγ =

∂ 2�n

∂α∂γ
; Iαλ = Iαγ =

∂ 2�n

∂α∂λ

Iβγ = Iγβ =
∂ 2�n

∂β∂γ
; Iβλ = Iλβ =

∂ 2�n

∂β∂λ
; Iγλ = Iλγ =

∂ 2�n

∂γ∂λ
.

4. Simulation study

In this section, we propose the inverse cdf method for generating random data from the

GOF distribution. If U ∼U(0,1) and if G has an inverse function, then

x = G−1

([
1+(−ln(u))

1
b

]−1
a
)
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has cdf (1). Particularly,

x = λ
[
− ln

(
([1+(− ln(u))

1
b ]
−1
a )

)]−1
α

is a random data with GOFW distribution.

Moreover, the performance of the maximum likelihood method is evaluated for estimat-

ing the GOFW parameters using a Monte Carlo simulation study. The mean square error

(MSES) and the bias of the parameter estimates are calculated. We generate N = 10,000

samples of sizes n = 50,55, ...,300 from the GOFW distribution with a = 2, b = 1.5,

α = 1.5,λ = 1. Let (α̂, λ̂ , â, b̂) be the MLEs of the newmodel parameters and (sα̂ ,sλ̂ ,sâ,sb̂)

be the standard errors of the MLEs. The estimated biases and MSEs are given by

B̂iasε(n) =
1

N

N

∑
i=1

(ε̂i− ε)

and

̂MSEε(n) =
1

N

N

∑
i=1

(ε̂i− ε)2,

for ε = α,λ ,a,b. Figure 3 displays the numerical results for the above measures. We

conclude below results from these plots:

� The estimated biases decrease when the sample size n increases,

� The estimated MSEs decay toward zero as n increases,

These results reveal the consistency property of the MLEs.
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Figure 3: Estimated biases and MSEs for the selected parameter values.
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5. Application

In this section, we illustrate the fitting performance of the GOFW distribution using two

real data sets. For the purpose of comparison, we fitted the following models to show the

fitting performance of GOFW distribution by means of real data set:

i) Weibull Distribution, W (α,λ ).
ii) Exponentiated Weibull distribution, EW (α,λ ,a), with distribution function given by

Few(x) =
(
1− e−(

x
λ )α

)a
.

iii) Kumaraswamy Weibull, KwW (a,b,α,λ )

Fkww(x) = 1− [1−W (x,α,λ )a]b .

iv) Beta Weibull, BW (a,b,α,λ ), with distribution function given by

Fbw(x) =
∫ W (x,α,λ )

0
ta−1(1− t)b−1dt.

v) Mc Weibull distribution McW (a,b,αλ ,c), with distribution function given by

Fmcw(x) =
∫ (W (x,α,λ ))c

0
ta−1(1− t)b−1dt.

vi) Generalized Odd Log-Logistic Weibull distribution GOLLW (a,b,α,λ ), with distribu-

tion function given by

Fgollw(x) =
W (x,α,λ )ab

W (x,α,λ )ab +(1−W (x,α,λ )a)b .

vii) Type I General Exponential Weibull distribution T IGEW (a,b,α,λ ), with distribution

function given by

Ftigew(x) = eb{1−W (x,α,λ )−a}.

viii) Odd Frechet Weibull distribution OFW (b,α,λ ), with distribution function given by

F(x;a,b,ξ ) = exp
{
−(G(x,ξ )−1)b

}
Estimates of the parameters of GOF distribution, Akaike Information Criterion (AIC),

Bayesian Information Criterion (BIC), Cramer Von Mises and Anderson-Darling statistics

(W ∗ and A∗) are presented for each data set. We have also considered the Kolmogorov-
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Smirnov (K-S) statistic and its corresponding p-value and the minimum value of the mi-

nus log-likelihood function (-Log(L)) for the sake of comparison. Generally speaking, the

smaller values of AIC,BIC,W ∗ and A∗, the better fit to a data set. All the computations were

carried out using the software R.

In the rest of the paper, we model the lower discharge of at least seven consecutive days

and return period (time) of ten years (Q7,10) of the Cuiabá River, Cuiabá, Mato Grosso,

Brazil. We consider the data set presented by Andrade et al. (2007). The calculation of the

lower discharge for seven consecutive days and return period (time) of ten years (Q7,10) is an

important hydrological parameter with applications in the study planning and management

of the use of water resources. This study aims to model the lower flood (discharge) of at

least seven consecutive days and return period (time) of 10 years (Q7,10) in Cuiabá River,

part of the Brazilian Pantanal (Swamp), since the ecosystem is strongly influenced by the

hydrological system. The calculations of Q7,10 use a data series from 38 years (January

1962 to October 1999) relating to lower flows of no66260001 hydrological station, installed

in the Cuiabá River in the city of Cuiabá, Mato Grosso, Brazil. The data, which have also

been analysed by Cordeiro et al. (2012), are listed in Table 1.

Table 1: Data set.

43.86 44.97 46.27 51.29 61.19 61.20 67.80 69.00 71.84

77.31 85.39 86.59 86.66 88.16 96.03 102.00 108.29 113.00

115.14 116.71 126.86 127.00 127.14 127.29 128.00 134.14 136.14

140.43 146.43 146.43 148.00 148.43 150.86 151.29 151.43 156.14

163.00 186.43

The ML estimates of the parameters and the goodness-of-fit test statistics for the real

data set are presented in Table 3 and 4 respectively. As we can see, the smallest values

of AIC,BIC,A∗,W ∗ and −l statistics and the largest p-values belong to the GOFW distri-

bution. Therefore, the GOFW distribution outperforms the other competitive considered

distribution in the sense of this criteria.

Here, we also applied likelihood ratio (LR) tests. The LR tests can be used for compar-

ing the GOFW distribution with its sub-models. For example, the test of H0 : α = 1 against

H1 : α �= 1 is equivalent to comparing the GOFW and OFW distributions with each other.

For this test, the LR statistic can be calculated by the following relation:

LR = 2
[
l(α̂, β̂ , γ̂, λ̂ )− l(α̂∗,1, γ̂∗, λ̂ ∗)

]
,

where α̂∗, γ̂∗ and λ̂ ∗ are the ML estimators of α,γ and λ , respectively, obtained under H0.

Under the regularity conditions and if H0 is assumed to be true, the LR test statistic con-

verges in distribution to a chi square with r degrees of freedom, where r equals the difference
between the number of parameters estimated under H0 and the number of parameters esti-

mated in general, (for H0 : β = 1, we have r = 1). Table 4 gives the LR statistics and the

corresponding p-value. From Table 4, we observe that the computed p-value is too small so
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Table 2: Parameter ML estimates (standard errors in the parentheses).

Model â b̂ α̂ λ̂ ĉ
Weibull(α,λ ) – – 3.3298 123.2008 –

(0.4430) (6.3067) –

EW (a,α,λ ) 0.3522 – 6.8679 150.7316 –

(0.2271) (3.3323) (14.4243) –

KwW (a,b,α,λ ) 42.6066 1964.352 0.2112 7.2576 –

(33.5498) (8567.8074) (0.1208) (18.8249) –

BL(a,b,α,λ ) 0.4034 0.3105 5.7524 114.9745 –

(0.2071) (0.3381) (2.1554) (33.4861) –

McW (a,b,α,λ ,c) 0.1293 868.3850 0.5352 24.3734 112.9874

(0.1093) (4921.221) (0.8856) (122.134) (401.6450)

GOLLW (a,b,α,λ ) 0.1734 4.7498 5.2297 94.0411 –

(0.0234) (0.0093) (0.0039) (0.0039) –

T IGEW (a,b,α,λ ) 1.9133 0.0787 9.8806 164.239 –

(2.2559) (0.0555) (5.6555) (15.3034) –

OFW (b,α,λ ) – 3.3892 0.8968 49.1821 –

– (6.624) (0.8048) (54.0428) –

GOFW (a,b,α,λ ) 2.2737 0.1542 5.0860 92.4172 –

(0.5557) (0.0274) (0.0034) (0.0034) –

Table 3: Goodness-of-fit test statistics.

Model W ∗ A∗ p− value AIC BIC −l
Weibull(α,λ ) 0.1019 0.6238 0.4312 386.6742 389.9494 191.3371

EW (a,α,λ ) 0.0585 0.4091 0.8515 386.8977 391.8104 190.4488

KwW (a,b,α,λ ) 0.1210 0.7323 0.3251 391.7345 398.2848 191.8672

BL(a,b,α,λ ) 0.0540 0.3879 0.8466 388.6756 395.2260 190.3378

McW (a,b,α,λ ,c) 0.0616 0.4093 0.5995 389.6777 397.8656 189.8388

GOLLW (a,b,α,λ ) 0.0358 0.2887 0.7564 385.1893 391.7396 188.5946

T IGEW (a,b,α,λ ) 0.0615 0.4140 0.6144 387.4896 394.0399 189.7448

OFW (b,α,λ ) 0.2655 1.6203 0.1651 400.1903 405.1031 197.0951

GOFW (a,b,α,λ ) 0.0285 0.2391 0.9775 382.8198 389.3701 187.4099

we reject the null hypotheses and conclude that the GOFW fits the first data better than the

considered sub-model according to the LR criterion.

Table 4: The LR test results.

Hypotheses LR p-value

GOFW versus OFW H0 : a = 1 18.8816 0.00001
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In addition, PP plot of the GOFW distribution are plotted in Figure 4. We also plotted

the fitted pdfs and cdfs of the considered models for the sake of visual comparison, in Figure

5. Figure 4 and 5 suggest that the GOFW fits the skewed data very well.
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Figure 4: The PP plot.
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6. Conclusion

In this paper, we present a new class of distributions called the Generalized Odd Frechet

(GOF) family of distributions. The statistical properties of the GOF distribution including

the hazard and reverse hazard functions, quantile function, moments, incomplete moments,

generating functions, mean deviations, Bonferroni and Lorenz curves, order statistics and

maximum likelihood estimation for the model parameters are given. Simulation studies

were conducted to examine the performance of the new GOF distribution. We also present

applications of this new model to a real life data set in order to illustrate the usefulness of

the distribution.
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