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From the Editor   

With this release of the Statistics in Transition new series, we conclude the 2020 
edition of our quarterly issued journal, which this time has been expanded due to 
publishing recently an extraordinary, special issue devoted to statistical data 
integration. An international team of experts led by Partha Lahiri of the University 
Maryland – who served as a Guest Editor of the special issue – has succeeded with 
arranging for a set of original papers addressing frontiers in theoretical and application 
aspects of multiple data sources creation and use, delivered by leaders in the relevant 
topics. It begun with the invited paper by Malay Ghosh on small area estimation during 
the past decades, based on his 2019 Morris Hansen lecture:  
https://sit.stat.gov.pl/SiT/SpecialIssue/August%202020/gus_sit_2020_04_special_issue.pdf. 
The topics covered by the papers were grouped in four categories, as follows: (i) small 
area estimation, (ii) advances in probabilistic record linkage and analysis of linked data, 
(iii) statistical methods for longitudinal data, multiple-frame, and data fusion, and (iv) 
synthetic data for microsimulations, disclosure avoidance and multi-purpose 
inferences.  

Traditionally, as the last in the annual cycle of publication, this issue provides us 
with the opportunity to express gratitude to all contributors to our success, i.e. to 
publishing articles of high quality guaranteed, among other things, by the participation 
of outstanding experts as reviewers in the double-blind review process. A list of the 
names of these people of merit for our journal is included in the Acknowledgements. 
On behalf of the Editorial Board, Associate Editors and the journal’s readers I sincerely 
thank to all our partners and patrons. 

The set of eight original scientific articles that make up this issue is opened by the 
article Estimating the population mean using a continuous sampling design dependent 
on an auxiliary variable by Janusz Wywiał. Its purpose is to estimate the mean of the 
variable under study using a sampling design which is dependent on the observation of 
a continuous auxiliary variable in the whole population. Auxiliary variable values 
observed in this population allow one to estimate the inclusion density function of the 
sampling design. The variance of the continuous version of the Horvitz-Thompson 
estimator under the proposed sampling design is compared with the variance of the 
mean of a simple random sample. The accuracy of the estimation strategies is analysed 
by means of simulation experiments.  
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In the paper entitled The Gamma Kumaraswamy-G family of distributions: 
theory, inference and applications, Rana Muhammad Imran Arshad, Muhammad 
Hussain Tahir, Christophe Chesneau, and Farrukh Jamal introduce a new family of 
univariate continuous distributions called the Gamma Kumaraswamy-generated 
family of distributions. Most of its properties are studied in detail, including skewness, 
kurtosis, analytical comportments of the main functions, moments, stochastic ordering 
and order statistics, followed by a particular member of the family with four parameters, 
called the gamma Kumaraswamy exponential distribution. It has several advantages, 
including the corresponding probability density function which can have symmetrical, 
left-skewed, right-skewed and reversed-J shapes, while the corresponding hazard rate 
function can have (nearly) constant, increasing, decreasing, upside-down bathtub, and 
bathtub shapes. The inference on the gamma Kumaraswamy exponential model is 
performer using the method of maximum likelihood to estimate the model parameters. 
In order to demonstrate the importance of the new model, analyses on two practical 
data sets were carried out showing that the proposed model prevails over  any of the 
other eight competitive models.  

Warisa Thangjai’s and Suparat Niwitpong’s paper on Comparing particulate 
matter dispersion in Thailand using the Bayesian Confidence Intervals for ratio of 
coefficients of variation addresses the problem of measuring air pollution detected 
in Thailand. A high dispersion of PM is measured by a coefficient of variation of log-
normal distribution applied to environmental data such as hazardous dust particle 
levels and daily rainfall data. The authors  develop confidence interval estimation for 
the ratio of coefficients of variation of two log-normal distributions constructed using 
the Bayesian approach, and compare them with the existing approaches: the method of 
variance estimates recovery (MOVER), modified MOVER, and approximate fiducial 
approaches using their coverage probabilities and average lengths via Monte Carlo 
simulation. The simulation results show that the Bayesian confidence interval 
performed better than the others in terms of coverage probability and average length. 
The proposed approach and the existing approaches are illustrated using examples 
from data selected regions in the northern Thailand. 

The next article, A new generalization of the Pareto distribution and its 
applications by Ehab M. Almetwally and Hanan A. Haj Ahmad takes up the problem 
of generalization of the Pareto distribution using the Marshall-Olkin generator and the 
method of alpha power transformation. The Authors demonstrate several desirable 
properties due to which the new model is appropriate for modelling right skewed data 
and how the hazard rate function and moments are obtained. Also, an estimation for 
the new model parameters is provided, through the application of the maximum 
likelihood and maximum product spacing methods, as well as the Bayesian estimation. 
Approximate confidence intervals are obtained by means of an asymptotic property of 
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the maximum likelihood and maximum product spacing methods, while the Bayes 
credible intervals are found by using the Monte Carlo Markov Chain under different 
loss functions. A simulation analysis is conducted to compare the estimation methods. 
Finally, the application of the proposed new distribution to three real-data examples is 
presented and its goodness-of-fit is demonstrated. Some comparisons to other models 
are made in order to prove the efficiency of the distribution under consideration 
including better data fit than some other sub models.  

Shakti Prasad’s paper Some linear regression type ratio exponential estimators for 
estimating the population mean based on quartile deviation and deciles deals with 
some linear regression type ratio exponential estimators for estimating the population 
mean using the known values of quartile deviation and deciles of an auxiliary variable 
in survey sampling. The expressions of the bias and the mean square error of the 
suggested estimators have been derived and comparison was made with the usual mean, 
usual ratio (Cochran (1977)), Kadilar and Cingi (2004, 2006) and Subzar et al. (2017) 
estimators. After the comparison, the condition which makes the suggested estimators 
more efficient than others is found. To verify the theoretical results, numerical results 
are performed on two natural population data sets. 

In the next paper, Modelling bid-ask spread conditional distributions using 
hierarchical correlation reconstruction, Jarosław Duda, Robert Syrek and Henryk 
Gurgul discuss the problem of prediction of the exact values given that the information 
available is rarely sufficient; consequently, only conditional probability distributions 
are possible to be predicted. Hierarchical correlation reconstruction (HCR) 
methodology is used for such a prediction starting with normalized marginal 
distributions, nearly uniform. Next, joint densities are modelled as linear combinations 
of orthonormal polynomials, obtaining their decomposition into mixed moments. 
Each moment of the predicted variable is modelled separately as a linear combination 
of mixed moments of known variables using least squares linear regression. 
By combining these predicted moments, the predicted density is obtained as 
a polynomial, for which the expected value and other characteristics are calculated. 
An advantage of using this methodology is also its computational efficiency; estimating 
and evaluating a model with hundreds of parameters and thousands of data points by 
means of this methodology takes only a second on a computer, at relatively low-cost. 

Adetola Adedamola Adediran, Femi Barnabas Adebola, Olesegun Sunday 
Ewemooje are discussing Unbiased estimator modelling in unrelated dichotomous 
randomized response constructed by incorporating an unrelated question into the 
alternative unbiased estimator in the dichotomous randomized response model 
(proposed by Ewemooje in 2019). An unbiased estimate and variance of the model are 
obtained, and the latter decreases as the proportion of the sensitive attribute π_A  and 
the unrelated attribute π_U increases. The relative efficiency  of the proposed model 
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over the earlier model (by Ewemooje) decreases as π_U increases and increases as π_U 
increases. Application of the proposed model also revealed its efficiency over the direct 
method in estimating the prevalence of examination malpractices among university 
students; for instance, the direct method gave an estimate of 19.0 percent, compared to 
the proposed method’s estimate of 23.0 percent. 

In the next paper, A Bayesian analysis of complete multiple breaks in a panel 
autoregressive (CMB-PAR(1)) time series model by Varun Agiwal, Jitendra Kumar, 
Dahud Kehinde Shangodoyin discussed is the problem of economic time series − such 
as GDP, real exchange rate and banking series – which are irregular by nature and often 
affected by a variety of discrepancies such as:  political changes, policy reforms, import-
export market instability, etc. The Authors propose to manage this problem using 
a generalised structural break time series model. The Bayesian approach is applied to 
estimate the model parameters and to obtain the highest posterior density interval. 
Strong evidence is observed to support the Bayes estimator and then it is compared with 
the maximum likelihood estimator. A simulation experiment is conducted and an 
empirical application on the SARRC association’s GDP per capita time series is used to 
illustrate the performance of the proposed model.   

In the section Other articles, there is one article based on conference presentation 
(Multivariate Statistical Analysis 2019, Łódź) by Czesław Domański and Piotr 
Szczepocki entitled Comparison of selected tests for univariate normality based on 
measures of moments. It deals with univariate normality, tests which are typically 
classified into tests based on empirical distribution, moments, regression and 
correlation, and other. The Authors present results of power comparisons of nine 
normality tests based on measures of moments via the Monte Carlo simulations. 
The effects on power of the sample size, significance level, and on the number of 
alternative distributions are investigated. None of the considered tests proved 
uniformly most powerful for all types of alternative distributions. However, the most 
powerful tests for different shape departures from normality (symmetric short-tailed, 
symmetric long-tailed or asymmetric) are indicated. 

In the section containing articles classified as research communicates there are two 
papers. In the first one, Predicting Polish transport industry equilibrium 
characteristics as an inverse problem: An Entropy Econometrics Model by Second 
Bwanakare and Marek Cierpiał-Wolan the problem of decision-making process in the 
business environment is discussed, given that it is governed by a high degree of 
uncertainty and risk. Moreover, when detailed statistical information relating to the 
industry is missing, any decisions may become a matter of highly risky conjectures. 
The Authors propose a simultaneous equation model based on the entropy 
econometrics estimator for recovering some key industrial subsector long-term 
equilibrium characteristics under condition that only sparse, insufficient statistical 
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information is available (e.g. only aggregated data on the whole industry). The model 
is applied to the transportation equipment manufacturing industry in Poland, which is 
composed of eight sub-sectors, showing that all firms from different sub-sectors have 
to increase their steady-state concentration ratios, while the highest concentration 
corresponds to the lowest increase in profitability. The model outputs conform to the 
market tendency in this sector and should lead to further applications of the NCEE 
methodology in business activity on a world-wide scale. 

The paper by Piotr Zawada, Włodzimierz Okrasa and Jack Warchalowski 
entitled Flow management system for maximising business revenue and profitability 
starts with an observation that most for-profit organisations must constantly improve 
their business strategies and approaches to remain competitive. Many of them choose 
to embark on Lean or Six Sigma journeys with the intention of maximising productivity 
and increasing sales. Despite a significant progress in the development of the  
Big 3 Improvement Methodologies (Lean, Six Sigma, Theory of Constraints (TOC)), 
many manufacturers still involve themselves in ineffective operations, resulting in 
longer-than-desired lead times, late deliveries, high inventories and considerable 
operational costs. All of these issues seriously challenge the company’s competitiveness. 
The aim of the paper is to demonstrate the importance of effective analysis of 
maintaining certain level of inventory to gain a competitive advantage and using the 
company's key resources in the competitive struggle on the market while conducting 
continuous reporting of reasons for not achieving the assumed business goals. 

 
 
Włodzimierz Okrasa 
Editor  
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Estimating the population mean using a continuous
sampling design dependent on an auxiliary variable

Janusz L. Wywiał 1

ABSTRACT

Continuous distribution of variables under study and auxiliary variables are considered. The
purpose of the paper is to estimate the mean of the variable under study using a sampling
design which is dependent on the observation of a continuous auxiliary variable in the whole
population. Auxiliary variable values observed in this population allow to estimate the in-
clusion density function of the sampling design. The variance of the continuous version of
the Horvitz-Thompson estimator under the proposed sampling design is compared with the
variance of the mean of a simple random sample. The accuracy of the estimation strategies
is analysed by means of simulation experiments.

Key words: continuous sampling design, Horvits-Thompson estimator, inclusion density,
sampling scheme, bivariate gamma distribution, ratio estimator.

1. Introduction

Survey sampling theory is well developed for inference based on a finite and fixed popu-
lation, where the variable under study as well as auxiliary variables are non-random (see,
e.g. Särndal, Swenson, Wretman (1992) and Tillé (2006)). The estimation of population
parameters is based on a sampling design defined as functions of auxiliary variable values
observed in the whole population.

In this paper, the auxiliary variable is also treated as random. We assume that the con-
tinuous distribution function of the variable under study and the auxiliary variable (denoted
by X and Y respectively) is known, or can be estimated. Values of X and Y are observed
on the whole population of size N and in the sample respectively. For instance, the joint
distribution of these two variables can be suggested by economic theory. Tax registers are
an example of auxiliary variable observation in the whole population.

Another example deals with application of statistics in auditing. Book values of account-
ing documents are inspected (audited) in order to assess the true values of the documents.
Calculating the mean of the true values is one of the purposes of auditing. We can consider
joint continuous distribution of the book values and the true values of the documents. The
book values can be treated as observations of X throughout the population of the documents,
while values of Y are observations of the variable under study. Our aim is to estimate the
mean of Y based on a sample selected according to a sampling design dependent on X . For
example, Frost and Tamura (1986) and Wywiał (2018) considered gamma distribution for
modelling book values in statistical auditing.

1University of Economics in Katowice, Poland. E-mail: janusz.wywial@ue.katowice.pl.
ORCID: https://orcid.org/0000-0002-3392-1688.
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Benhenni and Cambanis (1992) and Thompson (1997) considered continuous sampling
for Monte Carlo integration. Some continuous sampling designs were studied in Ba̧k (2014,
2018), Wilhelm, Tillé and Qualité (2017), and Wywiał (2016). The efficiency of estima-
tion of parameters based on stratified and systematic samples was studied by, e.g. Cressie
(1993) and Zubrzycki (1958). A sampling design dependent on the positively valued contin-
uous auxiliary variable proposed by Cox and Snell (1979) was applied to financial auditing.
The continuous sampling designs and inclusion density functions were defined by Cordy
(1993), who also adapted the well-known Horvitz-Thompson (1952) estimator to estimate
parameters. This paper draws on these two sources. In Section 2.1, the properties of the
Horvitz-Thompson statistic for the continuous sampling design are presented. Next, in Sec-
tion 2.2, these properties are generalized to the joint distribution of Y and X . A continuous
sampling design with inclusion function proportional to the density function of the auxil-
iary variable is considered in the third chapter. In the fourth chapter, the main results of the
paper are used to construct the estimation strategies under the assumption that the sample
was drawn from the continuous population defined by bivariate gamma distribution. The
accuracy of these strategies is studied using simulation analysis. In the last chapter, the
main conclusions are formulated.

2. Horvitz-Thompson statistic from sample selected according to con-
tinuous sampling design

2.1. Basic results

This section has been prepared according to Cordy (1993) results. Let the population
U ⊂ Rq, q = 1,2, .... To simplify our analysis we assume that q = 1. The sample space,
denoted by Sn = Un, is the set of ordered samples denoted by y = (y1, ...,yn), yk ∈ U ,
k = 1, ...,n, where yi is the outcome of the variable observed in the first draw. Let y
be a value of the n-dimensional random variable Y = (Y1, ...,Yn) with density function
f (y) = f (y1, ...,yn). Let fi(y) and fi, j(y,y′), y ∈U , y′ ∈U , be marginal density functions of
Yi and (Yi,Yj) respectively, j > i = 1, ...,n. The inclusion functions of the first order and the
second order are defined respectively as follows:

π(y) =
n

∑
i=1

fi(y), π(y,y′) =
n

∑
i=1

n

∑
j=1, j 6=i

fi, j(y,y′), y ∈U,y′ ∈U (1)

and
∫

U π(y)dy = n,
∫

U
∫

U π(y,y′)dydy′ = n(n−1).

Let f (yi|yi−1,yi−2, ...,y1), i = 1, ...,n−1 be the conditional density function of the ran-
domly selected yi value in the i-th draw (provided that the values (yi−1,yi−2, ...,y1) were
drawn earlier). Therefore, the density function of the sampling design can be written as
follows:

f (yn, ...,yi,yi−1, ...,y1) = f (y1)
n

∏
i=2

f (yi|yi−1,yi−2, ...,y1) (2)
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Let g(y) be an integrable function g : U → R. We estimate the following parameter:

θ =
∫

U
g(y)dy. (3)

The continuous version of the well-known Horvitz and Thompson (1952) estimator is:

TY =
n

∑
i=1

g(Yi)

π(Yi)
(4)

T heorem 2.1. [Cordy (1993)] The statistic TY is an unbiased estimator for θ , if the
function g(y) is either bounded or non-negative, and π(y)> 0 for each y ∈U .

T heorem 2.2 [Cordy (1993)] If the function g(y) is bounded, π(y) > 0 for each y ∈U ,
and

∫
U (1/π(y))dy < ∞, then

V (TY) =
∫

U

g2(y)
π(y)

dy+
∫

U

∫
U

g(y)g(y′)
π(y,y′)−π(y)π(y′)

π(y)π(y′)
dydy′ =

=
∫

U

g2(y)
π(y)

dy+
∫

U

∫
U

g(y)g(y′)
π(y,y′)

π(y)π(y′)
dydy′−θ

2. (5)

When, in addition, π(yi,y j) > 0 for all yi,y j ∈U , i 6= j = 1, ...,n, an unbiased estimator of
the variance in (5) is:

V̂ (TY) =
n

∑
i=1

g2(Yi)

π2(Yi)
+

n

∑
i=1

n

∑
j=1,i6= j

g(Yi)g(Yj)
π(Yi,Yj)−π(Yi)π(Yj)

π(Yi,Yj)π(Yi)π(Yj)

In particular, when h(y) is a density function and g(y) = η(y)h(y), then θ = E(η(Y )). Of
course if η(y) = y, then θ = E(Y ).

When Y1, . . . ,Yn is a random sample from a distribution with density f (y), then the
density function of the sampling design defined by (2) and its inclusion functions become
as follows:

f (y1, ...,yn) =
n

∏
i=1

f (yi), π(y) = n f (y), π(y,y′) = n(n−1) f (y) f (y′). (6)

This allows us to transform expressions (4) and (5) as follows:

TY =
1
n

n

∑
i=1

η(Yi)h(Yi)

f (Yi)
, E(TY) = θ , (7)

V (TY) =
1
n

(∫
U

η2(y)h2(y)
f (y)

dy−θ
2
)
=

=
1
n

(
E
(

η2(Y )h2(Y )
f 2(Y )

)
−E2

(
η(Y )h(Y )

f (Y )

))
=

1
n

V
(

η(Y )h(Y )
f (Y )

)
. (8)
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Sampling design f (yn, ...,y1), given by (6) provides what is known as the importance sample
considered, e.g. by Bucklew (2004) and Ripley (1987). When the importance sample is
drawn from density h(y), then it becomes the well-known simple random sample defined
as the sequence of independent and identically distributed random variable (see e.g. Wilks
(1962)) and θ = E(Y ) = µy is estimated by means of the following statistic:

TY = Ȳ =
1
n

n

∑
i=1

Yi, V (TY ) =V (Ȳ ) =
1
n

V (Y ) (9)

where V (Y ) =
∫

∞

−∞
(y−E(Y ))2 f (y)dy.

2.2. Estimation using auxiliary variable

Let h(x,y), (x,y) ∈ U ⊆ R2, be the density function. The marginal densities are: h1(x)
and h2(y). h(y|x) = h(x,y)/h1(x) is the conditional density. Moreover, µy = E(Y ) =∫ −∞

−∞
yh2(y)dy, µx = E(X) =

∫ −∞

−∞
xh1(x)dx, E(Y |x) =

∫ −∞

−∞
yh(y|x)dy, V (Y |x) =

∫ −∞

−∞
(y−

E(Y |x))2h(y|x)dy. Our purpose is estimation of parameter θ , given by (3) where

g(x) = E(η(Y )|x)h1(x) = h1(x)
∫

∞

−∞

η(y)h(y|x)dy.

We set η(y) = y. Therefore:

g(x) = E(Y |x)h1(x) = h1(x)
∫

∞

−∞

yh(y|x)dy. (10)

In this case:

θ = µy =
∫

∞

−∞

E(Y |x)h1(x)dx =
∫

∞

−∞

∫
∞

−∞

yh(y|x)h1(x)dxdy. (11)

Parameter µy is estimated by means of the following statistic:

TX,Y =
n

∑
i=1

Yih1(Xi)

π(Xi)
(12)

where {Xi, i = 1, ..,n} is the sample drawn according to sampling design defined by expres-
sion (2) and yi should be replaced by xi. Let us assume that:

h(y|x) = h(y1, ...,yn|x1, ...,xn) =
n

∏
i=1

h(yi|xi) (13)

T heorem 2.3 If E(Y ) < ∞ and π(x) > 0 for all (x,y) ∈U and assumption (13) holds,
then Ef(X)Eh(Y/X) (TX,Y) = µy.

Proof: When in (4) we replace g(Yi) with g(Xi), given by (10), then Theorem 2.1 let us
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write

Ef(X)

(
n

∑
i=1

g(Xi)

π(Xi)

)
= Ef(X)

(
n

∑
i=1

Eh(Y/X)(Yi)h1(Xi)

π(Xi)

)
= Ef(X)Eh(Y/X) (TX,Y) .

This derivation shows that Theorem 2.3 is a special case of Theorem 2.1.

T heorem 2.4 If the function E(Y ) is bounded, π(y)> 0 for each (x,y) ∈U ,
and

∫
U (1/π(y))dy < ∞, then

V (TX,Y) =
∫

U

V (Y |x)h2
1(x)

π(x)
dx+

∫
U

E2(Y |x)h2
1(x)

π(x)
dx+A (14)

where

A =
∫

U

∫
U

E(Y |x)h1(x)E(Y |x′)h1(x′)
π(x,x′)−π(x)π(x′)

π(x)π(x′)
dxdx′

or

A =
∫

U

∫
U

E(Y |x)h1(x)E(Y |x′)h1(x′)
π(x,x′)

π(x)π(x′)
dxdx′−E2(Y ).

Proof: Adding Eh(Y/X)(TX,Y) to E f (X)Eh(Y/X)(TX,Y−µy)
2 we have:

V (TX,Y) = E f (X)Eh(Y/X)((TX,Y−Eh(Y/X)(TX,Y))+(Eh(Y/X)(TX,Y)−E(Y )))2 =

= E f (X)Eh(Y/X)

((
n

∑
i=1

Yi−Eh(Y/X)(Yi)h1(Xi)

π(Xi)

)
+(Eh(Y/X)(TX,Y)−µy)

)2

=

= E f (X)

(
n

∑
i=1

Vh(Y/X)(Yi)h2
1(Xi)

π2(Xi)

)
+E f (X)

(
n

∑
i=1

Eh(Y/X)(Yi)h1(Xi)

π(Xi)
−µy

)2

,

because Eh(Y/X)(Yi−Eh(Y/X)(Yi)) = 0 and Eh(Y/X)(Yi−Eh(Y/X)(Yi))
2 =VY/X(Yi). Continuing

the derivation we have:

V (TX,Y) =

= E f (X)

(
n

∑
i=1

V (Yi|Xi)h2
1(Xi)

π2(Xi)

)
+E f (X)

(
n

∑
i=1

E(Yi|Xi)h1(Xi)

π(Xi)
−µy

)2

. (15)

By setting V (Yi|Xi)h2
1(Xi)

π(Xi)
= g(Xi) Theorem 2.1 allows us to write the following:

E f (X)

(
n

∑
i=1

V (Yi|Xi)h2
1(Xi)

π2(Xi)

)
=
∫

U

V (Y |x)h2
1(x)

π(x)
dx. (16)
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Similarly, by setting E(Yi|Xi)h1(Xi) = g(Xi), the second term in (15) becomes:

E f (X)

(
n

∑
i=1

g(Xi)

π(Xi)
−µy

)2

=

= E f (X)

(
n

∑
i=1

g(Xi)

π(Xi)
−E f (X)

(
n

∑
i=1

g(Xi)

π(Xi)

))2

=Vf (X)

(
n

∑
i=1

g(Xi)

π(Xi)

)
. (17)

This, expression (16) and Theorem 2.2 lead straightforward to the conclusion of Theorem
2.4.

Similarly to expression (6) let us assume that

f (x1, ...,xn) =
n

∏
i=1

f (xi), π(x) = n f (x), π(x,x′) = n(n−1) f (x) f (x′). (18)

This, expression (17) and Theorem 2.4 lead to the following:

V (TX,Y) =
1
n

(∫
U

V (Y |x)h2
1(x)

f (x)
dx+

∫
U

E2(Y |x)h2
1(x)

f (x)
dx−E2(Y )

)
=

=
1
n

(
E f (X)

(
V (Y |X)h2

1(X)

f 2(X)

)
+Vf (X)

(
E(Y |X)h1(X)

f (X)

))
(19)

We estimate µy with the following sampling design:

f (x1, ...,xn) =
n

∏
i=1

h1(xi). (20)

Under additional assumption that E(Y |x) = ax where a = ρ

√
V (Y )
V (X) and ρ is the correlation

coefficient between X and Y then expressions (12) and (19) lead to the following:

TX,Y = Ȳ =
1
n

n

∑
i=1

Yi, E(Ȳ ) = µy, V (Ȳ ) =
V (Y )

n
(1+ρ

2) (21)

Hence, when ρ 6= 0, estimator TX,Y of the mean based on sampling design, given by (20) is
less accurate than the simple random sample mean.
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3. Inclusion function of sampling design proportional to values of aux-
iliary variable

3.1. Density function of the auxiliary variable is known

After Cox and Snell (1979), let us consider the following sampling design:

f (x1, ...,xn) =
n

∏
i=1

f (xi), f (xi) =
xih1(xi)

µx
. (22)

where µx = E(X) = E(Xi) for all i = 1, ...,n. In this case, according to (18) the inclusion
function is proportional to the value of the auxiliary variable because π(x) = nxh1(x)

µx
. Ex-

pression (12), (19), Theorems 2.3 and Theorem 2.4 lead to the following:

TX,Y = ŶR =
µx

n

n

∑
i=1

Yi

Xi
, E(ŶR) = µy, (23)

V (TX,Y) =
1
n

(
µx

∫
U

V (Y |x)h1(x)
x

dx+µx

∫
U

E2(Y |x)h1(x)
x

dx−µ
2
y

)
=

=
µx

n

∫
U

V (Y |x)h1(x)
x

dx+
µx

n
V
(

E(Y |x)
x

)
. (24)

Statistic ŶR is an unbiased ratio-type estimator of µy.
When parameter µx and other parameters of the auxiliary variable density function are

known, the sample can be select. The following sections address selection when these
parameters are estimated.

3.2. Estimated parameters of the auxiliary variable density function

The values x1, ...,xN of the auxiliary variable observed in whole population are regarded
as a random sample from a distribution with density h1(x,θ1, ...,θr). Let θ̂1...θ̂r and µ̂x be
consistent estimators of parameters θ1, ...,θr and µx respectively. According to expression
(22) we have the following density function of sampling design:

f̂ (x1, ...,xn) = f (x1, ...,xn, θ̂1...θ̂r) =
n

∏
i=1

f̂ (xi), f̂ (x) =
xh1(θ̂1...θ̂r)

µ̂x
. (25)

Estimation of parameters could be based on data observed, e.g. in the previous round of a
regularly conducted survey.

By replacing µx in eq. (23) with µ̂x we obtain the following estimator:

TX,Y = ỸR =
µ̂x

n

n

∑
i=1

Yi

Xi
. (26)
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where X1, ...,Xn is the sample drawn according to sampling design based on density f (x1, ...,xn,

θ̂1...θ̂r). The variance of ỸR could be estimated by means of the well-known parametric or
non-parametric method of bootstrap.

3.3. Kernel estimator of the auxiliary variable density function

Density function h1(x) can be estimated by means of the following well-known kernel-type
estimator on the basis of all observations of auxiliary variable in the population:

h̃1(x) =
1
N

N

∑
i=1

k(x,xi,∆),
∫

∞

−∞

k(x,xi,∆)dx = 1 (27)

where ∆ > 0 is the bandwidth parameter. This leads to the following estimator of f (x):

f̃ (x) =
xh̃1(x)

µ̃x
=

∑
N
i=1 xk(x,xi,∆)

Nµ̃x
(28)

where:
µ̃x =

∫
∞

−∞

xh̃1(x)dx (29)

is the estimator of µx.

Let us consider the following simple kernel function based on the uniform distribution:

k(x,xi,∆) =

{
1

2∆
, x ∈ [xi−∆;xi +∆],

0, x /∈ [xi−∆;xi +∆].
(30)

For this kernel function we have:∫
∞

−∞

xk(x,xi,∆)dx = xi for i = 1, ...N, and µ̃x = x̄ =
1
N

N

∑
i=1

xi. (31)

Expression (28) leads to the following:

f̃ (x) =
1

Nx̄

N

∑
i=1

xk(x,xi,∆) =
1

Nx̄

N

∑
i=1

xi f̃i(x,xi,∆) =
N

∑
i=1

wi f̃i(x,xi,∆) (32)

where: wi =
xi
Nx̄ , for i = 1, ...,N and

f̃i(x,xi,∆) =

{
x

2xi∆
, x ∈ [xi−∆;xi +∆],

0, x /∈ [xi−∆;xi +∆]
(33)

where f̃i(x,xi,∆) is the trapezoid density function of the probability distribution on interval
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[xi−∆;xi +∆]. After simplifications we have:

f̃ (x) =
1

2∆Nx̄

N

∑
i=1

xI(x,xi,∆) (34)

where:

I(x,xi,∆) =

{
1, x ∈ [xi−∆;xi +∆],

0, x /∈ [xi−∆;xi +∆].
(35)

Expressions (32) and (33) allows us to derive the following distribution function esti-
mator:

F̃(x) =
∫ x

−∞

f̃ (t)dt =
N

∑
i=1

wiF̃i(x,xi,∆) (36)

where: wi =
xi
Nx̄ , for i = 1, ...,N and

F̃i(x,xi,∆) =


0, x ∈ (−∞;xi−∆],
x2−(xi−∆)2

4xi∆
, x ∈ (xi−∆;xi +∆],

1, x ∈ [xi +∆;∞).

(37)

The inverse function to F̃i(x) (the quantile function), i = 1, ..,N, is as follows:

x = F̃−1
i (u) =

√
4xi∆u+(xi−∆)2, z ∈ [0;1] (38)

where u has uniform distribution on interval [0;1]. This allows us to easily generate the
pseudovalues of the trapezoid distribution on interval [xi−∆;xi +∆].

3.4. Sampling schemes

Let us assume that observations of x = [x1, ...,xk, ...,xN ] are known book values or they
are gathered from a census or surveys made on a previous occasion. Function h1(x) is
also known. Our purpose is to select sample xs = [x1, ...,xk, ...,xn] as the sub-vector of x
according to the sampling design defined by expression (22). In order to do this, values of
vector x′s = [x′1, ...,x

′
n] are generated by means of the quantile functions x′ = F−1(u), where

u is the value of the uniformly distributed variable on interval [0;1], F(x) =
∫ x
−∞

f (t)dt and
f (t) are given by (22). Elements of xs are selected from x according to

xk = arg min
j=1,...,N

|x j− x′k|. (39)

This algorithm could lead to a repetition of the elements in xs. If the algorithm yields a
sample with duplicate elements, the sample is rejected and the algorithm repeated until a
sample with no duplicates is obtained.

The next algorithm, which leads to drawing xs without repetition, is explained by ex-
pression:

xs = arg min
xs∈Xs

(xs−x′s)(xs−x′s)
T (40)
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where Xs consists of all n-element combinations selected without replacement from x. The
complete data d = [(x1,y1), ...,(xn,yn)] are evaluated after observation values y j, j = 1, ...,n
(observations of the variable under study) are attached to the appropriate elements of vector
xs. This algorithm becomes simpler when elements of x′s and x are ordered from the lowest
to highest.

The next variant of the sampling design is as follows. Let us note that the kernel density
function f̃ (x), defined by expression (32), could be treated as a mixture of density functions
f̃i(x), i = 1, ...,N given by (33). Therefore, the k-th element of vector x′s could be generated
as follows. Firstly, the value of index i is randomly (with probability wi) selected from the
sequence 1, ...,N. Next, the values x′k (k=1,...,n) are generated by means of the quantile
function, given by (36)-(38). Finally, the elements of vector xs could be selected according
to expression (39) or (40).

The complete data d = [(x1,y1)...(xn,yn)] are evaluated after observation values y j, j =
1, ...,n are attached to appropriate elements of vector x.

4. Estimation in the case of McKay’s bivariate gamma distribution

Suppose the random variables Ui have distributions with gamma densities

li(ui) = li(ui,θi,c) =
cθi

Γ(θi)
uθi−1

i e−cui (41)

where: ui > 0, c > 0, θi > 0, E(Ui) =
θi
c , V (Ui) =

θi
c2 , i = 0,1,01, θ01 = θ0 +θ1 and U01 =

U0 +U1 provided U0 and U1 are independent. θ and c are called the shape parameter and
the scale parameter respectively.

The McKay’s (1934) density function of joint probability distribution of X = U01 and
Y =U0 takes the following form (see also Ghirtis (1967) and Kotz et al. (2000)):

l(x,y) =
cθ01

Γ(θ0)Γ(θ1)
yθ0−1(x− y)θ1−1e−cx, x > y > 0. (42)

This could be useful with valuation of damage supported by declared observed data as
values of X . In this case µy is mean of the true valuation of damage.

According to expression (22), the sampling design density function is defined as follows:

f (x) =
x
µx

l01(x) (43)

where f (x) is also density function of gamma distribution with shape and scale parameters
equal to θ01 +1 and c respectively.

The conditional density function is:

l(y|x) = Γ(θ01)

Γ(θ0)Γ(θ1)
x−θ0yθ0−1

(
1− y

x

)θ1−1
, x > y.
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Its first two moments are:{
E(Y |x) = xE(U) = θ0x

θ01
,

V (Y |x) = E(Y 2|x)−E2(Y |x) = x2V (U) = θ0θ1x2

(θ01)2(θ01+1)

(44)

where U has the beta probability distribution with parameters θ0 and θ1.
Expressions (24) and (44) lead to the following:

V (ŶR) =
θ0

nc

((
θ1

θ01(θ01 +1)
+

θ0

θ01

)
E(X)− θ0

c

)
.

By substituting the expression θ01
c for E(X) we obtain:

V (ŶR) =
θ0θ1

nc2(θ01 +1)
=

1
n

µy(µx−µy)
γ2

x

1+ γ2
x
, γx =

σx

µx
.

Finally, we have:

V (ŶR) =
θ1

θ01 +1
V (Ȳ )<V (Ȳ ) =

θ0

nc2 . (45)

The variation coefficient of the estimator is as follows:

γ(ŶR) = 100%

√
V (ŶR)

µy
. (46)

The relative efficiency coefficient takes the following form:

de f f (ŶR) = 100%
V (ŶR)

V (Ȳ )
=

100%θ1

θ01 +1
< 100%. (47)

Hence, the estimator ŶR is more precise than Ȳ .
Parameters θ0 and c of the auxiliary variable can be estimated based on the observed data

x = [x1, ...,xN ]. The method of moments yields the following estimates of the parameters:

θ̂01 =
x̄2

v̂x
= γ̂

−2
x , θ̂0 = ỸR

x̄
v̂x
, θ̂1 =

(x̄− ỸR)x̄
v̂x

, ĉ =
x̄
v̂x

(48)

where

v̂x =
1

N−1

N

∑
k=1

(xk− x̄)2, x̄ =
1
N

N

∑
k=1

xk, γ̂x =
v̂x

x̄2 .

We estimate the density f (x) by

f̂ (x) =
x
x̄

l̂01(x, θ̂01, ĉ) (49)

which is the gamma density with parameters θ̂01+1 = x̄ĉ+1 and ĉ. The expectation µy can
be estimated using the statistic ỸR, given by (26).
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Owing to (45), the variance V (ŶR) can be estimated by means of the following statistic:

Ṽ (ỸR, f̂ (x)) =
1
n

ỸR(x̄− ỸR)
γ̂2

x

1+ γ̂2
x
. (50)

The variance could be estimated by means of the following non-parametric bootstrap
method. Firstly, the value of the estimator ŶR is evaluated based on the data observed in
the original sample D = [(Yj,X j) , j = 1, ...,n]. Bootstrap samples will be denoted by D(k) =[(

Y (k)
j ,X (k)

j

)
, j = 1, ...,n

]
, k = 1, ...,B which are independently drawn with replacement

from sample D. This leads to the following bootstrap-type estimators of variance:

V̂
(
ỸR
)
=

1
B−1

B

∑
k=1

(
Ỹ (k)

R − ỸR

)2
, Ỹ (k)

R =
x̄
n

n

∑
k=1

Y (k)
i

X (k)
i

(51)

or

V̂ ′
(
ỸR
)
=

1
B−1

B

∑
k=1

(
Ỹ (k)

R − ¯̃YR

)2
, ¯̃YR =

1
B

B

∑
k=1

Ỹ (k)
R . (52)

We set that B = 1000.

Example

Let us suppose that the population data are generated according to bivariate gamma distri-
bution defined by density l(x,y), given by (42). We estimate µy by two methods denoted
by (ỸR, f̃ (x)) and (ỸR, f̂ (x)), explained by expressions (32) and (49) respectively. They are
implemented in ”R” language.

First, the program draws random samples Di =
[
(Yj,X j)i , j = 1, ...,3000

]
, i = 1, ...,T

from McKay distribution. Next, the parameters of the inclusion density function are esti-
mated. This allows us to draw the samples D1i =

[
(Yj,X j)i , j = 1, ...,n

]
from Di and eval-

uate the values of Ỹ (i)
R of µy, i = 1, ...,T . This is replicated T = 1000-times. Results for

some alternative sample sizes and the gamma density function parameters are in columns
1-6 of Table 1. Under the assumed parameters of gamma distribution, the true values of
the variation coefficient and deff coefficient (given by expression (46) and (47) respectively)
have been calculated. They are presented in columns 7 and 8 respectively. In columns 10
and 12 there are values of the relative bias coefficients of the variance estimation, given by
the following expressions:

b2 = 100
Ṽ (ỸR, f̂ (x))
V̌ (ỸR, f̂ (x))

, b′2 = 100
¯̂V (ỸR, f̃ (x))
V̌ (ỸR, f̃ (x))

, ¯̂V (ỸR, f̃ (x)) =
1
T

T

∑
i=1

V̂i(ỸR, f̃ (x)) (53)

where V̂i(ỸR, f̃ (x)) explains the right side of equation (51) for the bootstrap samples: D(k)
1i =[(

Y (k)
j ,X (k)

j

)
i
, j = 1, ...,n

]
, k = 1, ...,B drawn from D1i, i = 1, ...T . In columns 9, 11 and
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13, there are the following estimated relative efficiency coefficients:

d = 100
V̌ (ỸR, f̂ (x))

V̌ (Ȳ )
, d′ = 100

V̌ (ỸR, f̃ (x))
V̌ (Ȳ )

, e = 100
V̌ (ỸR, f̃ (x))
V̌ (ỸR, f̂ (x))

(54)

where ỹR is given by (26) and:

V̌ (ỸR, .) =
1

T −1

T

∑
i=1

(
Ỹ (i)

R − ¯̃YR

)2
, ¯̃YR =

1
T −1

T

∑
i=1

Ỹ (i)
R (55)

are evaluated based on samples D1i, i = 1, ...T .

Table 1. Relative efficiency and bias of the estimation methods.
(ỸR, f̂ (x)) (ỸR, f̃ (x))

n θ1 θ0 c µy µx γ(ŶR) deff d b2 d′ b′2 e
1 2 3 4 5 6 7 8 9 10 11 12 13
30 1 10 1 10 11 1.7 8.3 8.3 93.7 9.0 82.8 97.1
60 1 10 1 10 11 1.2 8.3 9.4 89.0 10.5 72.5 102.3
150 1 10 1 10 11 0.8 8.3 11.5 65.9 13.4 59.2 109.6
60 1 10 0.01 1000 1100 1.2 8.3 8.3 90.1 10.8 74.7 110.1
60 3 10 0.01 1000 1300 1.9 21.4 24.0 99.9 22.1 94.0 85.9
60 10 3 0.01 300 1300 6.3 71.4 65.2 105.6 75.1 91.7 99.9

Source: Own calculations.

Statistic V̌ (Ȳ ) is evaluated by replacing ỸR with the sample mean in equation (55). The
relative efficiency coefficients in columns 9 and 10 deal with the case when the sample
is selected according to the inclusion density function defined by expression (49). The
coefficients from columns 11-12 are calculated based on the data from the sample drawn
according to the inclusion density function defined by expressions (32) and (33), where we
assumed that the bandwidth parameter ∆ =

√
v̂x. Moreover, in this case variance of ỸR is

estimated by means of the bootstrap method based on expression (51). In column 13, there
are values of the relative efficiency coefficient of the estimation methods (ỸR, f̂ (x)) and
(ỸR, f̃ (x)) denoted by e. This is evaluated based on expressions (54).

The simulation analysis allows us to calculate values of the relative bias coefficient of
the mean estimation defined by b1 = 100 ¯̃yR/µy. Its values for both considered estimation
methods oscillate between 98% and 101%. This confirms that both methods give unbiased
estimates of the expected value of the variable under study. Therefore, the values of the
coefficient b1 are not presented in Table 1.

Column 7 shows that in the case when θ1 > θ0, a value of the variation coefficient of ŶR

is larger then its value for θ1 < θ0. Column 8 allows us to conclude that the variance of the
estimator under the continuous sampling design equal to the modified density function of
the auxiliary variable has a lower value than the variance of the simple random sample mean.
Column 9 gives the relative efficiency coefficient value evaluated under the assumption that
the parameters of the inclusion density function are estimated. Values of this coefficient
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differ from appropriate values of deff by no more than 4.2%. This is the effect of variability
of the parameter estimators. Similarly (see column 11), the kernel-type estimator of the
inclusion density function leads to the higher (but not by more than 4.3%) values of d′ than
the appropriate values of deff.

The proposed estimators of the variances are quite significantly biased. Usually, they
underestimate the variances (see columns 10 and 12). The bias depends on the parameter
values of gamma distribution, and its level is not more than 11% of the true variance.

Efficiency of the two estimators is compared in the last column of Table 1. The relative
efficiency coefficient, given in expression (54), oscillates between 85.9% and 110.1%. The
estimators of the expected value have comparable accuracy. Both estimation methods are
unbiased. Their variances differ from each other by not more than 14.1%. However, the
method based on a kernel-type estimator of the inclusion density function is preferable
because it does not entail the assumption of bivariate gamma distribution.

5. Conclusion

This paper contributes to research on estimating of the mean value of the variable under
study using continuous sampling designs. The well-known properties of the conditional
distribution of the variable under study under an assumed value of the auxiliary variable
and results from Cordy (1993) allow us to construct the estimator of the mean of the vari-
able under study. It has been shown that this estimator is unbiased. The theorems presented
in this paper also deal with estimating parameters other than the mean. These results al-
low us to consider a particular (inspired by Cox and Snell (1979)) sampling design with
inclusion function dependent on the auxiliary variable. This provides a ratio-type estimator
of the mean value. Estimation of the inclusion density function by means of a kernel-type
estimator is also proposed. It does not need additional assumptions about density functions.
From the results of a simulation study, we conclude that the expected value can be estimated
more efficiently than by the sample mean.

Perhaps, additional studies could show, if the considered estimation method can be use-
ful in statistical applications like auditing, insurance problems, and analysis of joint distribu-
tions of income and expenditures. There are many possibilities for modifying the sampling
designs represented by continuous inclusion functions and their estimators. For instance,
other kernels can be applied. We could apply classical statistical inference procedures for
large sample sizes. All the considered estimators could be shown as sums of independent
identically distributed random variables. Therefore, the well-known asymptotic methods
of statistical inference could be used to constructions of confidence intervals and statistical
tests. Moreover, there are possibilities for applying well-known bootstrap techniques to test
statistical hypotheses or confidence interval estimation.
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The Gamma Kumaraswamy-G family of distributions:
theory, inference and applications

Rana Muhammad Imran Arshad1,
Muhammad Hussain Tahir2 , Christophe Chesneau3,

Farrukh Jamal4

ABSTRACT

In this paper, we introduce a new family of univariate continuous distributions called the
Gamma Kumaraswamy-generated family of distributions. Most of its properties are stud-
ied in detail, including skewness, kurtosis, analytical comportments of the main functions,
moments, stochastic ordering and order statistics. The next part of the paper focuses on
a particular member of the family with four parameters, called the gamma Kumaraswamy
exponential distribution. Among its advantages, the following should be mentioned: the
corresponding probability density function can have symmetrical, left-skewed, right-skewed
and reversed-J shapes, while the corresponding hazard rate function can have (nearly) con-
stant, increasing, decreasing, upside-down bathtub, and bathtub shapes. Subsequently, the
inference on the gamma Kumaraswamy exponential model is performed. The method of
maximum likelihood is applied to estimate the model parameters. In order to demonstrate
the importance of the new model, analyses on two practical data sets were carried out. The
results proved more favourable for the studied model than for any of the other eight compet-
itive models.

Key words: Kumaraswamy distribution, gamma distribution, generalised family, moments,
stochastic ordering, maximum likelihood method, data analysis.

1. Introduction

In order to meet scientific requirements, modern experiments require high precision in data
analysis. Unfortunately, in most situations this requirement cannot be achieved through
the use of standard statistical models. For this reason, the creation of new flexible models,
well adapted to the context, remains a passionate challenge for the statisticians. From a
probabilistic point of view, attractive models can be derived from families of distributions
enjoying desirable properties. Such families can be defined by the use of effective tech-
niques introducing tuning parameters to well-established distributions. These families are
often characterized by sophisticated but flexible functions, which can be handled thanks to
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the computational and analytical facilities available in modern programming software (as R,
Maple, Mathematica. . . ). In particular, the use of this software can easily tackle the prob-
lems involved in computing eventual special functions. Among the high impacted families
of distributions, there are the beta-G family by Eugene et al. (2002) and Jones (2004), the
Kumaraswamy-G (Kw-G) family by Cordeiro and de Castro (2011) and Ramos (2014), the
Kumaraswamy Poisson-G (Kw-G) family by Ramos (2014), the McDonald-G (Mc-G) fam-
ily by Alexander et al. (2012), the gamma-G type 1 family by Zografos and Balakrishnan
(2009) and Amini et al. (2014), the gamma-G type 2 family by Ristic and Balakrishnan
(2012) and Amini et al. (2014), the odd-gamma-G type 3 family by Torabi and Montazari
(2012), the logistic-G family by Torabi and Montazari (2014), the odd exponentiated gen-
erated (odd exp-G) family by Cordeiro et al. (2013), the transformed-transformer (T-X)
(Weibull-X and gamma-X) family by Alzaatreh et al. (2013a), the exponentiated T-X fam-
ily by Alzaatreh et al. (2013b), the odd Weibull-G family by Bourguignon et al. (2014),
the exponentiated half-logistic by Cordeiro et al. (2014), the T-X{Y}-quantile based ap-
proach family by Aljarrah et al. (2014), the T-R{Y} family by Alzaatreh et al. (2014), the
odd Burr-III-G family by Jamal et al. (2017), the Kumaraswamy odd Burr-G family by
Nasir et al. (2018), the generalized odd gamma-G family by Hosseini et al. (2018), the
truncated Cauchy power-G family by Aldahlan et al. (2019) and the type II general inverse
exponential-G family by Jamal et al. (2020).

In this study, we introduce a new family of distributions derived to two important fam-
ilies: the Kumaraswamy-G and odd gamma-G families introduced by Cordeiro and de
Castro (2011) and Torabi and Montazari (2012), respectively. Before going further in the
motivation, let us briefly describe these two well-recognized families, beginning with the
Kumaraswamy-G family of distributions. Let a > 0, b > 0, G(x) be the cumulative distri-
bution function (cdf) of an univariate continuous distribution and g(x) be the corresponding
probability distribution function (pdf). Then, the Kumaraswamy-G family of distributions
is characterized by the cdf given by

H(x) = 1−{1−G(x)a}b , x ∈ R (1)

and the corresponding pdf can be expressed as

h(x) = abg(x)G(x)a−1 {1−G(x)a}b−1 , x ∈ R. (2)

Thus, the feature of the Kumaraswamy-G family is to add two shape parameters to the
former distribution characterized by the cdf G(x), increasing mechanically its flexible prop-
erties. This allows the construction of more flexible models to analyse a wide variety of
data sets, as developed in Cordeiro and de Castro (2011) for the normal, Weibull, gamma,
Gumbel and inverse Gaussian distributions. The Kumaraswamy-G family of distributions
is also known to be a simple alternative to the beta-G family of distribution established by
Eugene et al. (2002). The essentials of the standard Kumaraswamy distribution are detailed
in Jones (2008). Current developments and extensions of the Kumaraswamy-G family of
distributions can be found in, e.g. Paranaiba et al. (2012), de Pascoa et al. (2011), Ramos
(2014), Gomes et al. (2014), Rodrigues and Silva (2015) and Jamal et al. (2019).



STATISTICS IN TRANSITION new series, December 2020 19

On the other side, Torabi and Montazari (2012) introduced the odd gamma-G family of
distributions, briefly described below. Let α > 0, H(x) be the cdf of an univariate contin-
uous distribution, H̄(x) = 1−H(x) and h(x) be the corresponding pdf. Let γ1(α,z) be the
regularized lower incomplete gamma function defined by γ1(α,z) = γ(α,z)/Γ(α), where
γ(α,z) =

∫ z
0 tα−1e−tdt and Γ(α) =

∫ +∞

0 tα−1e−tdt. Then, the odd gamma-G family of dis-
tributions ”with G = H” is characterized by the cdf given as

F(x) = γ1

(
α,

H(x)
H̄(x)

)
, x ∈ R (3)

and the corresponding pdf is specified by

f (x) =
1

Γ(α)

h(x)H(x)α−1

H̄(x)α+1 exp
(
−H(x)

H̄(x)

)
, x ∈ R. (4)

The odd-gamma-G family of distributions gives an alternative to the useful gamma-G type
1 family of distributions introduced by Zografos and Balakrishnan (2009) in the follow-
ing stochastic ordering sense: F(x) ≥ K(x), where K(x) = γ1 (α,− log[H̄(x)]) is the cdf
corresponding to the gamma-G type 1 family of distributions. Also, the merits of the odd-
gamma-G family have been highlighted in recent studies, including those of Torabi and
Montazari (2012), Hosseini et al. (2018), Oluyede et al. (2018) and Nasir et al. (2020), via
the exploration of various theoretical and practical aspects. In particular, it is shown that the
parental distribution characterized by the cdf H(x) can take the benefits of the considered
polynomial-exponential transformation with α as the tuning parameter, allowing the con-
struction of new flexible statistical models. In particular, for appropriated H(x), the analyses
of a wide broad range of real life data sets are favourable to the odd-gamma-G models in
comparison to well-recognized competitors.

In the light of the previous arguments, a promising direction of work becomes the com-
bination of the Kumaraswamy-G and odd gamma-G families via the composition technique
of the respective cdfs. Thus, we aim to create a new generalized family of distributions
benefiting of the respective qualities of these two families, aiming

• to skew any symmetrical distribution;

• to modulate the weight of the tails of any parental distribution;

• to increase the possible shapes of the (probabilistic or reliability) functions of the
parental distribution;

• to construct new statistical models with better (fits) properties than other competitive
models, or enlarging the horizon of fields of applications.

The proposed family is called the gamma Kumaraswamy-G (GKw-G) family of distribu-
tions. This study explores, in both theoretical and practical terms, the properties of the
GKw-G family. A special member defined with the exponential distribution as the parent,
called the GKw-E distribution, will serve as a statistical model. The complete analyses of
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two practical data sets are proposed, showing that the GKw-E model presents better fit to
eight notorious models in the field.

The rest of the article is organized as follows. In Section 2, we present the main func-
tions and properties of the GKw-G family of distributions. In Section 3, the GKw-E distri-
bution is introduced, as well as some of its structural properties. In Section 4, the GKw-E
model parameters are estimated by the maximum likelihood method and a simulation study
is performed to verify the convergence properties. Also, the usefulness of the GKw-E model
is illustrated by means of two practical data sets. Finally, Section 5 offers some concluding
remarks.

2. The gamma Kumaraswamy-G family of distributions

2.1. Presentation

We characterize the GKw-G family of distributions by the cdf of the odd gamma-H family
of distributions given by (3), defined with the cdf H(x) of the Kumaraswamy-G family of
distributions given as (1). Hence, by noticing that H(x)/H̄(x) = {1−G(x)a}−b− 1, the
corresponding cdf is defined by

F(x) = γ1

(
α,{1−G(x)a}−b−1

)
, x ∈ R. (5)

One can remark that, if b = 1, this cdf becomes the one of the generalized odd gamma-G
family introduced by Hosseini et al. (2018), that is F(x) = γ1 (α,G(x)a/[1−G(x)a]), x∈R.
In this sense, the GKw-G family of distributions can be viewed as a generalization of this
family. The parameter b plays an important role, as we shall see later. The corresponding
survival (sf) function is

S(x) = 1− γ1

(
α,{1−G(x)a}−b−1

)
, x ∈ R.

The pdf of the GKw-G family can be obtained by putting (1) and (2) into (4). More directly,
upon almost everywhere differentiation of F(x), it is obtained as

f (x) =
ab

Γ(α)
g(x)G(x)a−1 {1−G(x)a}−b−1

{
{1−G(x)a}−b−1

}α−1

× exp
[
1−{1−G(x)a}−b

]
. x ∈ R. (6)

The corresponding hazard rate function (hrf) is obtained as π(x) = f (x)/S(x), that is

π(x) =
ab

Γ(α)

g(x)G(x)a−1 {1−G(x)a}−b−1
{
{1−G(x)a}−b−1

}α−1
exp
[
1−{1−G(x)a}−b

]
1− γ1

(
α,{1−G(x)a}−b−1

) .

Some special members of the GKw-G family characterized by their cdfs are presented in
Table 1.
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Table 1: Some members of the GKw-G family of distributions characterized by their cdfs.

cdf G(x) Support GKw-G cdf F(x) Parameters

Uniform (0,θ) γ1

(
α,{1− (x/θ)a}−b−1

)
(α,a,b,θ)

Exponential (0,+∞) γ1

(
α,
{

1− [1− e−λx]a
}−b
−1
)

(α,a,b,λ )

Weibull (0,+∞) γ1

(
α,
{

1− [1− e−(λx)β

]a
}−b
−1
)

(α,a,b,λ )

Inverse Weibull (0,+∞) γ1

(
α,
{

1− e−a(λ/x)β
}−b
−1
)

(α,a,b,λ ,β )

Burr XII (0,+∞) γ1

(
α,
{

1−{1− [1+(x/s)c]−k}a}−b−1
)

(α,a,b,c,k,s)

Logistic R γ1

(
α,
{

1− [1+ e−(x−µ)/s]−a
}−b
−1
)

(α,a,b,µ,s)

Gumbel R γ1

(
α,
{

1− exp(−ae−(x−µ)/σ )
}−b
−1
)

(α,a,b,µ,σ)

Normal R γ1

(
α,{1−Φ((x−µ)/σ)a}−b−1

)
(α,a,b,µ,σ)

Cauchy R γ1

(
α,{1− [(1/π)arctan((x− x0)/θ)+1/2]a}−b−1

)
(α,a,b,x0,θ)

Thanks to its simplicity in the definition, the special member of the GKw-G family based
on the exponential distribution will be the object of all the attention in our applications.

Let QG(x) be the quantile function corresponding to G(x), that is, the function satisfying
the following equation: G(QG(p)) = QG(G(p)) = p for any p ∈ (0,1). Then, the quantile
function of the GKw-G family of distributions can be expressed as

Q(p) = QG

([
1−
{

1+ γ
−1
1 (α, p)

}−1/b
]1/a

)
, p ∈ (0,1), (7)

where γ
−1
1 (α, p) denotes the inverse function of γ1 (α, p), i.e., satisfying γ1

(
α,γ−1

1 (α, p)
)
=

γ
−1
1 (α,γ1 (α, p)) = p for any p ∈ (0,1). Further details on γ

−1
1 (α, p) can be found in

(Abramowitz and Stegun, 1965, Section 6.5). In particular, the median of the GKw-G fam-
ily is specified by M = Q(1/2). Also, the three quartiles are defined by Q1 = Q(1/4),
Q2 = M and Q3 = Q(3/4), and the seven octiles by O1 = Q(1/8), O2 = Q(2/8) = Q1,
O3 = Q(3/8), O4 = Q(4/8), O5 = Q(5/8), O6 = Q(6/8) = Q3 and O7 = Q(7/8).

The quantile function and its related values are useful to evaluate some properties of the
GKw-G family, such as the skewness and kurtosis, as described below.

2.2. Skewness and kurtosis

A measure of the skewness of the GKw-G family is given by

S =
Q3 +Q1−2Q2

Q3−Q1
. (8)

In full generality, for given G(x), α , a and b, when the corresponding GKw-G distribution
is symmetric, we have S = 0, when it is right skewed, we have S > 0 and when it is left
skewed, we have S < 0. See Kenney and Keeping (1962).
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Also, a measure of the kurtosis of the GKw-G family of distributions is proposed by

K =
O3−O1 +O7−O5

O6−O2
. (9)

For given G(x), α , a and b, as K increases, the tail of the corresponding GKw-G distribution
becomes heavier. We refer to Moors (1998).

The advantages of these measures are to be robust in presence of outliers and they always
exist (even if the distribution does not admit moments).

2.3. Properties

Diverse and important properties of the new family are now described.

2.3.1 Asymptotic properties

The two following propositions investigate the asymptotic properties of the cdf, sf, pdf and
hrf of the GKw-G family of distributions.

Proposition 2.1 The asymptotic equivalences of the cdf, pdf and hrf of the GKw-G family
when G(x)→ 0 are, respectively,

F(x)∼ bα

αΓ(α)
G(x)aα , f (x)∼ abα

Γ(α)
g(x)G(x)aα−1, h(x)∼ abα

Γ(α)
g(x)G(x)aα−1.

Proof 2.1 The proof follows from the following equivalences: when y→ 0, we have (1−
ya)−b ∼ 1+bya and γ1(α,y)∼ yα/(αΓ(α)).

Proposition 2.2 The asymptotic equivalences of the sf, pdf and hrf of the GKw-G family
when G(x)→ 1 are, respectively,

S(x)∼ a−b(α−1)

Γ(α)
{1−G(x)}−b(α−1)e1−a−b{1−G(x)}−b

,

f (x)∼ ba−αb

Γ(α)
g(x){1−G(x)}−αb−1 e1−a−b{1−G(x)}−b

and
h(x)∼ ba−bg(x){1−G(x)}−b−1 .

Proof 2.2 The proof follows from the following equivalences: when y → +∞, we have
γ1(α,y)∼ 1− yα−1e−y/Γ(α) and, when y→ 1, we have ya ∼ 1−a(1− y).

Propositions 2.1 and 2.2 are useful to understand the roles of G(x), g(x), α , a and b on the
asymptotic properties of the cdf, sf, pdf and hrf of the GKw-G family. In particular, we see
that b has a strong impact, mainly when G(x)→ 1.
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2.3.2 Critical points

The analytical study of the pdf and hrf of the GKw-G family is crucial to understand their
complexity. The critical points are essential in this regard. As usual, they can be determined
by solving the following nonlinear equations ∂ log[ f (x)]/∂x = 0 and ∂ log[h(x)]/∂x = 0,
respectively, both obtained as

∂g(x)/∂x
g(x)

+(a−1)
g(x)
G(x)

+a(b+1)
g(x)G(x)a−1

1−G(x)a

+ab(α−1)
g(x)G(x)a−1{1−G(x)a}−b−1

{1−G(x)a}−b−1
−abg(x)G(x)a−1{1−G(x)a}−b−1 = 0 (10)

and

∂g(x)/∂x
g(x)

+(a−1)
g(x)
G(x)

+a(b+1)
g(x)G(x)a−1

1−G(x)a

+ab(α−1)
g(x)G(x)a−1{1−G(x)a}−b−1

{1−G(x)a}−b−1
−abg(x)G(x)a−1{1−G(x)a}−b−1

+
ab

Γ(α)

g(x)G(x)a−1 {1−G(x)a}−b−1
{
{1−G(x)a}−b−1

}α−1
exp
[
1−{1−G(x)a}−b

]
1− γ1

(
α,{1−G(x)a}−b−1

)
= 0. (11)

The nature of the obtained critical points can be determined by investigating the signs of
∂ 2 log[ f (x)]/∂x2 and ∂ 2 log[h(x)]/∂x2 taken at these points, respectively.

2.3.3 Some results in distribution

As usual, for any random variable U following the uniform distribution over (0,1), the
random variable X defined by X = Q(U) has the cdf F(x). For given G(x), α , a and b,
this characterization is useful to generate random values distributed according to the related
GKw-G distribution through the inverse transform sampling.

Now, we say that a random variable follows the gamma distribution Gam(1,α) if it has
the cdf given by K(x) = γ1(α,x), x > 0. If X is a random variable having the cdf of the
GKw-G family, then the random variable Y defined by Y = {1−G(X)a}−b−1 follows the
gamma distribution Gam(1,α).

Also, if Y is a random variable following the gamma distribution Gam(1,α), then the

random variable X defined by X = QG

([
1−{1+Y}−1/b

]1/a
)

has the cdf of the GKw-G

family.

2.3.4 Linear representations

This subsection is devoted to exploitable linear representations for the cdf and pdf of the
GKw-G family.
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Proposition 2.3 We have the following linear representations for the cdf and pdf of the
GKw-G family of distributions:

F(x) =
+∞

∑
i=0

wiG(x)ai, f (x) =
+∞

∑
i=1

wi
[
aig(x)G(x)ai−1] , (12)

where

wi =
+∞

∑
j,k=0

(−1)i+ j+k

Γ(α)k!(α + k)

(
α + k

j

)(
b( j−α− k)

i

)

and
(b

a

)
denotes the generalized binomial coefficient, i.e.

(b
a

)
= b(b−1) . . .(b−a+1)/a!.

Proof 2.3 By using the regularized lower incomplete gamma function series expansion, i.e.

γ1(α,y) =
+∞

∑
k=0

(−1)k yα+k

Γ(α)k!(α + k)
, y≥ 0,

and after some simplifications, we can express F(x) as

F(x) = γ1

(
α,

1−{1−G(x)a}b

{1−G(x)a}b

)

=
+∞

∑
k=0

(−1)k

Γ(α)k!(α + k)
{1−G(x)a}−b(α+k)

[
1−{1−G(x)a}b

]α+k

︸ ︷︷ ︸
A

.

By virtue of the generalized binomial series expansion, the term A can expressed as

A =
+∞

∑
j=0

(−1) j
(

α + k
j

)
{1−G(x)a}b j .

By putting the previous equalities together, we get

F(x) =
+∞

∑
j,k=0

(−1) j+k

Γ(α)k!(α + k)

(
α + k

j

)
{1−G(x)a}b( j−α−k)︸ ︷︷ ︸

B

.

By using again the generalized binomial series expansion, we get

B =
+∞

∑
i=0

(−1)i
(

b( j−α− k)
i

)
G(x)ai.

The desired linear representation of F(x) follows from the combination of all the equalities
above. Upon differentiation, we derive the linear representation of f (x). This completes the
proof of Proposition 2.3.

Since it depends on the well-known exp-G family of distributions (with parameter ai for any
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integer i), the linear representations presented in Proposition 2.3 are useful to derive related
analytical and numerical properties. Some of them are explored in the subsections below.

2.3.5 Moments and derivations

Here, we assume that all the presented integrals and sum exist (which is not necessarily the
case, depending on the definition of G(x), among others). Let r be an integer. Then, the r-th
ordinary moment of the GKw-G family is given as

µ
′
r =

∫ +∞

−∞

xr f (x)dx =
∫ +∞

−∞

xr ab
Γ(α)

g(x)G(x)a−1 {1−G(x)a}−b−1
{
{1−G(x)a}−b−1

}α−1

× exp
[
1−{1−G(x)a}−b

]
dx.

By using the quantile function in (7), with the change of variable x = Q(p), we can express
µ ′r as

µ
′
r =

∫ 1

0
Q(p)rd p =

∫ 1

0

[
QG

([
1−
{

1+ γ
−1
1 (α, p)

}−1/b
]1/a

)]r

d p.

For given G(x), r, α , a and b, this integral can be computed numerically via any mathemat-
ical software (R, Maple, Matlab, Mathematica. . . ). Also, a linear representation of µ ′r can
be deduced from Proposition 2.3. Indeed, owing to (12), we have

µ
′
r =

+∞

∑
i=1

wi

∫ +∞

−∞

xr [aig(x)G(x)ai−1]dx =
+∞

∑
i=1

wiai
∫ 1

0
pai−1QG(p)rd p.

Among others, one can deduce the mean defined by µ = µ ′1, the variance given by σ2 =

µ ′2− (µ ′1)
2, the r-th central moment given as

µr =
∫ +∞

−∞

(x−µ
′
1)

r f (x)dx =
r

∑
k=0

(
r
k

)
(−1)k(µ ′1)

k
µ
′
r−k, (13)

the coefficient of skewness given as CS = µ3/µ
3/2
2 , the coefficient of kurtosis obtained as

CK = µ4/µ2
2 and the moment generating function given by

M(t) =
∫ +∞

−∞

etx f (x)dx =
+∞

∑
r=0

tr

r!
µ
′
r.

Alternatively, we can use (12) to have a linear representation for M(t) without using mo-
ments. Indeed, we have

M(t) =
+∞

∑
i=1

wi

∫ +∞

−∞

etx [aig(x)G(x)ai−1]dx =
+∞

∑
i=1

wiai
∫ 1

0
pai−1etQG(p)d p.
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Finally, let us mention that the incomplete moments can be expressed in a similar way,
giving expressions for the Bonferroni and Lorenz curves, mean residual-life, mean waiting-
time, mean deviation about the mean and mean deviation about the median. For similar
developments, we refer to the methodology of Hosseini et al. (2018).

2.3.6 Stochastic ordering

We now prove a result on the stochastic ordering involving the GKw-G family of distribu-
tions with a and b as common parameters. Further details on stochastic ordering can be
found in Shaked and Shanthikumar (1994).

Proposition 2.4 Let X be a random variable having the pdf f1(x) given by (6) with pa-
rameters α1, a and b and Y be a random variable having the pdf f2(x) given by (6) with
parameters α2, a and b. Then, if α1 ≤ α2, we have X ≤lr Y , i.e. f1(x)/ f2(x) is decreasing.

Proof 2.4 We have

f1(x)
f2(x)

=
Γ(α2)

Γ(α1)

{
{1−G(x)a}−b−1

}α1−α2
.

By differentiating with respect to x, since α1 ≤ α2, we have

∂

∂x
f1(x)
f2(x)

=

Γ(α2)

Γ(α1)
(α1−α2)

{
{1−G(x)a}−b−1

}α1−α2−1
abg(x)G(x)a−1 {1−G(x)a}−b−1 ≤ 0.

Hence, we have X ≤lr Y . This ends the proof of Proposition 2.4.

2.4. Order statistics

The order statistics naturally arise in many applications involving data relating to survival
testing studies. All the details can be found in the book of David and Nagaraja (2003). This
subsection is devoted to the order statistics of the GKw-G family. Let X1, . . . ,Xn be the
random sample from the GKw-G family and Xi:n be the i-th order statistic. Then, the pdf of
Xi:n is given by

fi:n(x) =
n!

(i−1)!(n− i)!
f (x)F(x)i−1 [1−F(x)]n−i , x ∈ R. (14)

Hence, by using (5) and (6), we have

fi:n(x) =
n!

(i−1)!(n− i)!
ab

Γ(α)
g(x)G(x)a−1 {1−G(x)a}−b−1

{
{1−G(x)a}−b−1

}α−1

exp
[
1−{1−G(x)a}−b

]
γ1

(
α,{1−G(x)a}−b−1

)i−1 [
1− γ1

(
α,{1−G(x)a}−b−1

)]n−i
.

In particular, the pdfs of X1:n = inf(X1, . . . ,Xn) and Xn:n = sup(X1, . . . ,Xn) are given by
f1:n(x) and fn:n(x), respectively.
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The proposition below presents a result characterizing fi:n(x).

Proposition 2.5 The pdf of Xi:n can be expressed as a linear combination of pdfs of the
exp-G family of distributions.

Proof 2.5 Let us consider the expression of fi:n(x) given by (14). It follows from the bino-
mial formula and (12) that

fi:n(x) =
n!

(i−1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1) j f (x)F(x) j+i−1

=
n!

(i−1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1) j

{
+∞

∑
`=1

w`

[
a`g(x)G(x)a`−1

]}[+∞

∑
k=0

wkG(x)ak

] j+i−1

.

By virtue of a result established by (Gradshteyn and Ryzhik, 2000, Section 0.314), we have[
+∞

∑
k=0

wkG(x)ak

] j+i−1

=
+∞

∑
m=0

d j+i−1,mG(x)am,

where d j+i−1,0 = w j+i−1
0 and, for any integer m≥ 1,

d j+i−1,m =
1

mw0

m

∑
k=1

(k( j+ i)−m)wkd j+i−1,m−k.

By putting the equalities above together, we obtain

fi:n(x) =
n!

(i−1)!(n− i)!

n−i

∑
j=0

+∞

∑
`=1

+∞

∑
m=0

(
n− i

j

)
(−1) jw`d j+i−1,m

`

`+m
q`,m(x), (15)

where q`,m(x) = a(`+m)g(x)G(x)a(`+m)−1. Since q`,m(x) is a pdf of the exp-G family with
parameter a(`+m), the proof of Proposition 2.5 is complete.

By using the existing results on the exp-G family, we can use Proposition 2.5 to derive
mathematical properties of the distribution of the i-th order statistics, as moments and all
the related quantities.

3. GKw-Exponential distribution

3.1. Definition

In this section, we focus our attention on the special member of the GKw-G family based
on the exponential distribution. Hence, by substituting the cdf G(x) = 1− e−λx, x > 0, into
(5), the cdf of this special distribution is given by

FGKw−E(x) = γ1

(
α,
{

1−
(

1− e−λx
)a}−b

−1
)
, x > 0. (16)
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The related distribution is called the GKw-Exponential (GKw-E) distribution. Naturally,
the corresponding sf is

SGKw−E(x) = 1− γ1

(
α,
{

1−
(

1− e−λx
)a}−b

−1
)
, x > 0.

The corresponding pdf is specified by

fGKw−E(x) =

abλ

Γ(α)
e−λx

(
1− e−λx

)a−1{
1−
(

1− e−λx
)a}−b−1

{{
1−
(

1− e−λx
)a}−b

−1
}α−1

× exp
[

1−
{

1−
(

1− e−λx
)a}−b

]
. x > 0, (17)

and the corresponding hrf is given as

πGKw−E(x) =

abλ

Γ(α)

e−λx
(
1− e−λx

)a−1
{

1−
(
1− e−λx

)a
}−b−1

{{
1−
(
1− e−λx

)a
}−b
−1
}α−1

1− γ1

(
α,
{

1−
(
1− e−λx

)a}−b−1
)

× exp
[

1−
{

1−
(

1− e−λx
)a}−b

]
, x > 0. (18)

Let us now investigate some asymptotic properties of FGKw−E(x), SGKw−E(x), fGKw−E(x)
and hGKw−E(x). When x→ 0, we have

FGKw−E(x)∼
bα λ aα

αΓ(α)
xaα , fGKw−E(x)∼

abα λ aα

Γ(α)
xaα−1, hGKw−E(x)∼

abα λ aα

Γ(α)
xaα−1.

The following limits follow. If aα < 1, we have fGKw−E(x)→ +∞, if aα = 1, we have
fGKw−E(x)→ ab1/aλ/Γ(α), and if aα > 1, we have fGKw−E(x)→ 0. Similarly, if aα < 1,
we have hGKw−E(x)→+∞, if aα = 1, we have hGKw−E(x)→ ab1/aλ/Γ(α), and if aα > 1,
we have hGKw−E(x)→ 0. When x→+∞, we have

SGKw−E(x)∼
a−b(α−1)

Γ(α)
eλb(α−1)xe1−a−beλbx

, fGKw−E(x)∼
λba−αb

Γ(α)
eλbαxe1−a−beλbx

and
hGKw−E(x)∼ λba−beλbx.

Hence, we have fGKw−E(x)→ 0 and hGKw−E(x)→+∞.

In order to give more concrete illustrations on their shapes, Figure 1 displays some plots
of the GKw-E pdf and hrf for specified parameters values. It indicates that the GKw-E
distribution can be right-skewed, left-skewed and reversed-J shaped, whereas the GKw-E
hrf can produce various shapes such as increasing, decreasing, bathtub and upside-down
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bathtub shapes.
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Figure 1: Plots of (a) GKw-E pdfs and (b) GKw-E hrfs for some parametric values with
fixed λ = 1.

Since QG(p) =−(1/λ ) log(1− p), based on (7), the GKw-E quantile function is given
by

QGKw−E(p) =− 1
λ

log
[

1−
[
1−
{

1+ γ
−1
1 (α, p)

}−1/b
]1/a

]
, p ∈ (0,1).

From this definition, the quartiles and octiles can be determined, as well as skewness and
kurtosis, and some results on distributions, as the useful one: for a random variable U
following the uniform distribution on (0,1), QGKw−E(U) follows the GKw-E distribution.

3.2. Linear representation with applications

A result on linear representations of FGKw−E(x) and fGKw−E(x) in terms of exponential
functions is presented below.

Proposition 3.1 We have the following linear representations for the cdf and pdf of the
GKw-E distribution:

FGKw−E(x) =
+∞

∑
m=0

w∗me−λmx, fGKw−E(x) =
+∞

∑
m=1

w∗∗m e−λmx, x > 0,

where

w∗m =
+∞

∑
i, j,k=0

(−1)i+ j+k+m

Γ(α)k!(α + k)

(
α + k

j

)(
b( j−α− k)

i

)(
αi
m

)
, w∗∗m =−λmw∗m.
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Proof 3.1 Let G(x) = 1−e−λx and g(x) = λe−λx. Then, owing to Proposition 2.3, we have

FGKw−E(x) =
+∞

∑
i=0

wiG(x)ai, fGKw−E(x) =
+∞

∑
i=1

wi
[
aig(x)G(x)ai−1] ,

where

wi =
+∞

∑
j,k=0

(−1)i+ j+k

Γ(α)k!(α + k)

(
α + k

j

)(
b( j−α− k)

i

)
.

Now, for any positive integer i, by virtue of the generalized binomial formula, we have

G(x)αi = (1− e−λx)αi =
+∞

∑
m=0

(
αi
m

)
(−1)me−λmx.

Therefore

FGKw−E(x) =
+∞

∑
i=0

wiG(x)ai =
+∞

∑
m=0

w∗me−λmx,

where w∗m =
+∞

∑
i=0

(
αi
m

)
(−1)mwi. The desired expansion for the pdf is obtained by differenti-

ating FGKw−E(x). This ends the proof of Proposition 3.1.

Thanks to Proposition 3.1, several structural properties of the GKw-E distribution can be
derived. Some of them are described below.

The r-th ordinary moment of the GKw-E distribution is defined by

µ
′
r =

+∞

∑
m=1

w∗∗m

∫ +∞

0
xre−λmxdx =

1
λ r+1 Γ(r+1)

+∞

∑
m=1

w∗∗m
1

mr+1 .

Then, we can easily deduce the mean, the variance, the r-th central moment, the coefficient
of skewness and the coefficient of kurtosis. The numerical values of these measures for
some chosen parameters are collected in Table 2.
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Table 2: First four moments, variance skewness and kurtosis of the GKw-E distribution for
some parameter values.
(α,a,b,λ ) µ ′1 µ ′2 µ ′3 µ ′4 σ2 CS CK
(0.5,0.5,0.5,0.5) 0.7273 1.6188 5.0408 18.9862 1.0898 2.0021 10.2919
(2,0.5,0.5,0.5) 2.8256 10.5036 45.5683 219.8988 2.5192 0.4129 11.6882
(4,0.5,0.5,0.5) 4.8084 25.4660 144.9078 872.9899 2.3447 -0.0260 77.1860
(0.5,2,0.5,0.5) 2.1594 7.7311 35.2336 186.3619 3.0678 0.9841 5.0394
(0.5,3,0.5,0.5) 2.7489 11.1864 56.3355 325.4536 3.6295 0.8140 4.6925
(0.5,4,0.5,0.5) 3.2045 14.2449 76.8333 471.4195 3.9758 0.7194 4.8590
(2,3,0.5,0.5) 6.0439 40.1030 285.8935 2158.8840 3.5734 0.0468 55.1839
(4,3,0.5,0.5) 8.2805 71.2060 632.6335 5784.2410 2.6379 -0.1592 355.3071
(2,2,1,0.5) 3.1275 10.8143 40.2792 159.0419 1.0327 -0.0030 136.0614
(2,2,1.5,0.5) 2.3533 6.0758 16.8069 49.0889 0.5375 -0.0555 237.7113
(2,2,1.5,0.1) 11.7668 151.8967 2100.8630 30680.5800 13.4387 -0.0583 0.1911

It is clear from Table 2 that the GKw-E distribution is numerically versatile in mean and
variance. Also, the values of CS reveal that it can be right-skewed, almost symmetrical,
and slightly left-skewed. The values of CK indicate that the GKw-E distribution can be
mesokurtic, leptokurtic (thin bell shape) and platykurtic (flat bell shape). All these charac-
teristics illustrate a certain flexibility of the GKw-E distribution, which remains attractive
for modelling purposes.

In addition, the r-th incomplete moment is obtained as, for t ≥ 0,

Ir(t) =
∫ t

−∞

xr fGKw−E(x)dx =
+∞

∑
m=1

w∗∗m

∫ t

0
xre−λmxdx =

1
λ r+1

+∞

∑
m=1

w∗∗m
1

mr+1 γ(r+1,λmt).

The incomplete moments are useful to determine other important mathematical quantities
such as the Bonferroni and Lorenz curves, mean residual-life, mean waiting-time, mean
deviation about the mean and mean deviation about the median.

4. Estimation and application

In this section, we adopt the GKw-E distribution as a model and consider the estimation of
the unknown parameters by the maximum likelihood method. In addition, the convergence
of the obtained estimates is investigated through a simulation study and applications are
given to two practical data sets.
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4.1. Method of estimation

The usefulness of the maximum likelihood estimates (MLEs) in statistical inference is due
to their theoretical and practical merits. The log-likelihood function for the vector of pa-
rameters Ω =

(
a,b,α,λ

)> is given by

`(Ω) = n log(a)+n log(b)−n log [Γ(α)]+n log(λ )−λ

n

∑
i=1

xi +(a−1)
n

∑
i=1

log
[
1− e−λxi

]
− (b+1)

n

∑
i=1

log
[
1−
(

1− e−λxi
)a]

+(α−1)
n

∑
i=1

log
[{

1−
(

1− e−λxi
)a}−b

−1
]
+n

−
n

∑
i=1

{
1−
(

1− e−λxi
)a}−b

.

The MLEs of the parameters are defined by Ω̂ =
(
â, b̂, α̂, λ̂

)> making maximum the log-
likelihood function `(Ω) with respect to Ω. Since they have no closed forms, one can use
standard statistical software to approximate them. Also, let us mention that the observed
Fisher information for the MLEs can be computed, allowing the construction of confidence
intervals for the parameters based on the limiting normal distribution. In particular, this is
useful to examine the probability coverage of these intervals through simulation.

4.2. A numerical study

Now, we assess the performance of the maximum likelihood method for estimating the
GKw-E parameters by using Monte Carlo simulations. The simulation study is repeated
5000 times each with sample sizes n = 50, 100, 200 and the following parameter scenarios
are followed: I: a = 0.5, b = 0.5, α = 0.5, and λ = 1, II: a = 0.3, b = 1.5, α = 0.7, and
λ = 2.5 and III: a = 1.7, b = 0.7, α = 0.2, and λ = 0.3, IV: a = 0.1, b = 2.5, α = 1.1,
and λ = 1.5,V: a = 2.5, b = 1.7, α = 2.5, and λ = 1, VI: a = 1.8, b = 1.7, α = 2.1, and
λ = 0.1. Under this setting, Table 3 gives the average biases (Bias) of the MLEs, mean
square errors (MSEs) and model-based coverage probabilities (CPs) for the parameters a,
b, α and λ . Based on these results, we conclude that the MLEs perform quite well in
estimating the parameters. In addition, the CPs of the confidence intervals are quite close to
the 95% nominal level. Therefore, the MLEs and their asymptotic results can be adopted to
estimate and construct efficiently confidence intervals for the model parameters.



STATISTICS IN TRANSITION new series, December 2020 33

Table 3: Monte Carlo simulation results for the GKw-E distribution: Biases, MSEs and
CPs.

I II III

n Bias MSE CP Bias MSE CP Bias MSE CP

a 50 −0.015 0.051 0.98 −0.008 0.044 0.94 0.810 14.386 0.85
100 0.007 0.047 0.97 0.023 0.049 0.95 0.616 4.488 0.90
200 0.039 0.045 0.96 0.004 0.037 0.95 0.576 2.908 0.95

b 50 −0.140 0.162 0.97 −0.404 1.318 0.90 0.244 3.047 0.97
100 −0.125 0.127 0.97 −0.217 0.918 0.96 0.307 2.484 0.98
200 −0.113 0.104 0.95 −0.072 0.477 0.99 0.287 0.977 0.99

α 50 0.153 0.257 0.91 0.465 1.300 0.92 0.452 1.404 0.83
100 0.084 0.116 0.91 0.307 0.710 0.93 0.225 0.989 0.89
200 0.046 0.082 0.89 0.306 0.628 0.96 0.139 0.958 0.96

λ 50 1.807 6.527 0.95 2.601 2.726 0.92 0.752 1.324 1.00
100 1.461 4.742 0.94 1.136 1.129 0.93 0.555 1.002 1.00
200 1.180 3.136 0.95 0.202 0.847 0.97 0.364 0.743 0.97

IV V VI

n Bias MSE CP Bias MSE CP Bias MSE CP

a 50 −0.904 1.154 0.65 0.146 0.535 0.94 0.441 1.253 0.95
100 −0.665 0.461 0.92 0.164 0.309 0.95 0.194 0.579 0.96
200 −0.002 0.019 0.97 0.195 0.228 0.97 0.015 0.263 0.99

b 50 −0.032 0.349 0.98 0.172 0.241 1.00 0.018 0.893 0.95
100 0.014 0.333 0.98 0.053 0.065 0.96 0.072 0.633 0.96
200 −0.051 0.052 0.96 0.001 0.031 0.97 0.136 0.438 0.98

α 50 0.477 0.480 0.89 0.311 0.163 0.99 −0.158 0.112 0.97
100 0.270 0.163 0.96 0.271 0.132 0.95 −0.145 0.106 0.96
200 −0.051 0.052 0.98 0.222 0.100 0.96 −0.148 0.110 0.97

λ 50 0.337 0.601 0.99 −0.062 0.022 0.95 0.179 0.298 0.95
100 0.214 0.284 0.96 −0.059 0.017 0.96 0.204 0.323 0.96
200 0.243 0.814 0.98 −0.051 0.011 0.98 0.253 0.392 0.97

4.3. Application

Here, we compare the proposed GKw-E model with well-known models in the fitting of two
real data sets.

Application 1. The first data set is reported in Ristic and Balakrishnan (2012). The data
represent the annual maximum precipitation (inches) for one rain gauge in Fort Collins,
Colorado from 1900 through 1999. The data are as follows: 239, 232, 434, 85, 302, 174,
170, 121, 193, 168, 148, 116, 132, 132, 144, 183, 223, 96, 298, 97, 116, 146, 84, 230, 138,
170, 117, 115, 132, 125, 156, 124, 189, 193, 71, 176, 105, 93, 354, 60, 151, 160, 219, 142,
117, 87, 223, 215, 108, 354, 213, 306, 169, 184, 71, 98, 96, 218, 176, 121, 161, 321, 102,
269, 98, 271, 95, 212, 151, 136, 240, 162, 71, 110, 285, 215, 103, 443, 185, 199, 115, 134,
297, 187, 203, 146, 94, 129, 162, 112, 348, 95, 249, 103, 181, 152, 135, 463, 183, 241.

In the statistical literature, several models are appropriate to the analysis of such kinds
of data. The most commonly used are the lognormal, generalized logistic (GL), Gumbel,
gamma, Weibull and generalized binomial exponential 2 (GBE2) models. Several exten-
sions have also been introduced by this purpose. Here, in order to highlight the potentiality
of the GKw-E model, the comparison is made between the GKw-E model and eights noto-
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rious models: the Kumaraswamy Weibull (Kw-W) model studied by Cordeiro et al. (2010),
the Beta Weibull (BW) model elaborated by Lee et al. (2007), the exponentiated gener-
alized Weibull (EGW) model by Oguntunde et al. (2015), the generalized binomial expo-
nential 2 (GBE2) model introduced by Asgharzadeh et al. (2016), the generalized logistic
(GL) model, and some classic models, which are the Gumbel, gamma and Weibull models.
We estimate the unknown model parameters by the maximum likelihood method (as de-
scribed in Section 4 for the GKw-E model). For the comparison of the models, we consider
three well-known statistics: Akaike information criterion (AIC), Anderson-Darling (A∗),
Cramér–von Mises (W ∗) and Kolmogorov-Smirnov (K-S) measures, where lower values of
these statistics indicate good fits.

Table 4 lists the MLEs and standard errors for the considered models. Table 5 lists the
AIC, A∗, W ∗ and K-S for the considered models. The values of the statistics in Table 5
indicate that the GKw-E model shows small values of the statistics and thus provides the
best fit compared to the other models. Figure 2 shows the graphs of the estimated pdf of the
GKw-E model over the histogram of the data, along with the graphs of the pdfs of the top
four competitors.

Table 4: MLEs and their standard errors (in parentheses) for Precipitation data.

α β a b µ σ θ λ

GKw-E 0.2975 - 67.1975 0.1802 - - - 0.0261
(0.1594) - (24.7418) (0.0599) - - - (0.0072)

Kw-W 0.0228 1.3122 13.4486 0.2461 - - - -
(0.0053) (0.2462) (7.6120) (0.1229) - - - -

BW 0.0243 1.4375 12.6298 0.1734 - - - -
(0.0033) (0.0193) (5.5638) (0.0446) - - - -

EGW 0.3105 0.7061 0.2357 27.1942 - - - -
(0.0148) (0.0117) (0.0276) (7.6257) - - - -

GBE2 9.0774 - - - - - 0.0222 0.0165
(1.9764) - - - - - (0.3265) (0.0029)

GL 13.5845 0.0174 - - -8.5348 - - -
(6.8592) (0.0015) - - (35.1221) - - -

Gumbel - - - - 139.8754 57.8420 - -
- - - - (6.0596) (4.7356) - -

Gamma 33.2955 5.2761 - - - - - -
(4.7925) (0.7239) - - - - - -

Weibull 0.0051 2.2608 - - - - - -
(0.0002) (0.1628) - - - - - -
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Table 5: The statistics AIC, A∗, W ∗ and K-S for Precipitation data.

Distribution AIC A∗ W ∗ K-S

GKw-E 1137.2320 0.1664 0.0187 0.0421
Kw-W 1138.0280 0.1831 0.0212 0.0430
BW 1137.7220 0.1844 0.0210 0.0429
EGW 1138.7100 0.2045 0.0259 0.0481
GBE2 1138.9210 0.3655 0.0482 0.0573
GL 1143.1390 0.6335 0.0872 0.0565
Gumbel 1139.2900 0.4990 0.0675 0.0640
Gamma 1141.9400 0.7732 0.1088 0.0600
Weibull 1156.2860 1.8272 0.2927 0.0950
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Figure 2: Estimated pdfs of the top models for Precipitation data.

Application 2. The second data set was reported by professor Jim Irish and can be ob-
tained at http://www.statsci.org/data/oz/kiama.html. It is about the Kiama Blowhole erup-
tions. The data are as follows: 83, 51, 87, 60, 28, 95, 8, 27, 15, 10, 18, 16, 29, 54, 91, 8, 17,
55, 10, 35, 47, 77, 36, 17, 21, 36, 18, 40,10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69,
9, 37, 10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12.

Table 6 lists the MLEs and standard errors for the considered models. Table 7 lists the
AIC, A∗, W ∗ and K-S for the considered models. It is clear that the GKw-E model provides
a better fit than the other tested models, because it has the smallest value among AIC, A∗,
W ∗ and K-S. Figure 3 shows the graphs of the estimated pdf of the GKw-E model over the
histogram of the data, along with the graphs of the pdfs of the four main competitors.
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Table 6: MLEs and their standard errors (in parentheses) for the Kiama Blowhole eruptions
data.

α β a b µ σ θ λ

GKw-E 0.4154 - 17.7076 0.0481 - - - 0.2063
(0.0545) - (0.2513) (0.0072) - - - (0.0046)

Kw-W 0.3410 0.8685 10.4397 0.1396 - - - -
(0.0026) (0.0022) (0.0083) (0.0168) - - - -

BW 0.5484 0.7937 13.5819 0.1336 - - - -
(0.0025) (0.0025) (4.8229) (0.0177) - - - -

EGW 2.5406 0.3714 0.7506 26.1285 - - - -
(9.4366) (0.2260) (3.0932) (0.8858) - - - -

GBE2 1.7325 - - - - - 0.0048 0.0350
(0.3190) - - - - - (0.5680) (0.0111)

GL 21.5045 0.0473 - - -38.5692 - - -
(6.5526) (0.0048) - - (7.8114) - - -

Gumbel - - - - 25.6833 21.8407 - -
- - - - (2.8506) (2.3260) - -

Gamma 24.5722 1.6207 - - - - - -
(4.6509) (0.2623) - - - - - -

Weibull 0.0230 1.2701 - - - - - -
(0.0023) (0.1199) - - - - - -

Table 7: The statistics AIC, A∗, W ∗ and K-S for the Kiama Blowhole eruptions data.

Distribution AIC A∗ W ∗ K-S
GKw-E 589.2545 0.4614 0.0530 0.0708
Kw-W 591.0460 0.6231 0.0819 0.0954
BW 591.6412 0.6366 0.0840 0.1023
EGW 595.9134 0.8324 0.1134 0.0946
GBE2 597.3321 0.9009 0.1287 0.1227
GL 612.7799 1.5554 0.2440 0.1517
Gumbel 609.6039 1.5124 0.2361 0.1493
Gamma 595.7988 0.9220 0.1324 0.1215
Weibull 597.8029 1.0058 0.1467 0.1111
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Figure 3: Estimated pdfs of the top models for Kiama Blowhole eruptions data.

5. Concluding remarks

In this paper, we introduce the GKw-G family of distributions, with a focus on a special
model, the GKw-E model, defined with the exponential distribution as the parent. A com-
plete theoretical treatment is developed, with a focus on the skewness, kurtosis, analyti-
cal comportments of the main functions, moments, stochastic ordering and order statistics.
Then, the proposed family is considered from the statistical point of view. The maximum
likelihood method is employed for estimating the model parameters. We analyse two prac-
tical data sets to demonstrate the usefulness of the new family, with fair comparison to other
models. The results are strictly favourable to the GKw-E model. We hope that the pro-
posed family and its generated models will attract wider applications in various areas such
as engineering, survival and lifetime data, hydrology and economics.

Acknowledgments

The authors are very grateful to two reviewers for constructive comments, which have
helped to improve the final version of the paper.

Conflict of interest

This research did not receive any specific grant from funding agencies in the public, com-
mercial or not-for-profit sectors.



38 R. M. I. Arshad et. al.: The Gamma Kumaraswamy-G family ...

References

ABRAMOWITZ, M., STEGUN, I. A., (1965). Handbook of Mathematical Functions, Na-
tional Bureau of Standards, Applied Math. Series 55, Dover Publications.

ALDAHLAN, M. A., JAMAL, F., CHESNEAU, C., ELGARHY, M. and ELBATAL, I.,
(2019). The truncated Cauchy power family of distributions with inference and applica-
tions, Entropy, 22, p. 346.

ALEXANDER, C., CORDEIRO, G. M., ORTEGA, E. M. M. and SARABIA, J. M., (2012).
Generalized beta-generated distributions. Computational Statistics & Data Analysis, 56,
pp. 1880–1897.

ALJARRAH, M. A., LEE, C. and FAMOYE, F., (2014). On generating T-X family of dis-
tributions using quantile functions. Journal of Statistical Distributions and Applications,
1, Article No. 2.

ALZAATREH, A., FAMOYE, F. and LEE, C., (2014). T-normal family of distributions: A
new approach to generalize the normal distribution. Journal of Statistical Distributions
and Applications, 1, Article No. 16.

ALZAATREH, A., LEE, C. and FAMOYE, F., (2013a). A new method for generating fam-
ilies of distributions. Metron, 71, pp. 63–79.

ALZAGHAL, A., LEE, C. and FAMOYE, F., (2013b). Exponentiated T-X family of distri-
butions with some applications. International Journal of Probability and Statistics, 2, pp.
31–49.

AMINI, M., MIRMOSTAFAEE, S. M. T. K. and AHMADI, J., (2014). Log-gamma-
generated families of distributions. Statistics, 48, pp. 913–932.

ASGHARZADEH, A., BAKOUCH, H. S. and HABIBI, M., (2016). A generalized binomial
exponential 2 distribution: modeling and applications to hydrologic events. Journal of
Applied Statistics, 44, pp. 2368–2387.

BOURGUIGNON, M., SILVA, R. B. and CORDEIRO, G. M., (2014). The Weibull-G fam-
ily of probability distributions. Journal of Data Science, 12, pp. 53–68.

CORDEIRO, G. M., ALIZADEH, M. and ORTEGA, E. M. M., (2014). The exponentiated
half-logistic family of distributions: Properties and applications. Journal of Probability
and Statistics Article ID 864396, 21 pages.

CORDEIRO, G. M., DE CASTRO, M., (2011). A new family of generalized distributions.
Journal of Statistical Computation and Simulation, 81, pp. 883–893.

CORDEIRO, G. M., ORTEGA, E. M. M. and DA CUNHA, D. C. C., (2013). The exponen-
tiated generalized class of distributions. Journal of Data Science, 11, pp. 1–27.



STATISTICS IN TRANSITION new series, December 2020 39

CORDEIRO, G. M., ORTEGA, E. M. M. and NADARAJAH, S., (2010). The Ku-
maraswamy Weibull distribution with application to failure data. Journal of the Franklin
Institute, 347, pp. 1399–1429.

DAVID, H. A., NAGARAJA, H. N., (2003). Order Statistics. John Wiley and Sons, New
Jersey.

DE PASCOA, M. A. R., ORTEGA, E. M. M. and CORDEIRO, G. M., (2011). The Ku-
maraswamy Weibull distribution with application to failure data. Journal of Franklin In-
stitute, 347, pp. 1399–1429.

EUGENE, N., LEE, C. and FAMOYE, F., (2002). Beta-normal distribution and its applica-
tions. Communications in Statistics - Theory and Methods, 31, pp. 497–512.

GOMES, A. E., DA SILVA, C. Q., CORDEIRO, G. M. and ORTEGA, E. M. M., (2014).
A new lifetime model: The Kumaraswamy generalized Rayleigh distribution. Journal of
Statistical Computation and Simulation, 84, pp. 290–309.

GRADSHTEYN, I. S., RYZHIK, I. M., (2000). Table of Integrals, Series and Products.
Academic Press, New York.

HOSSEINI, B., AFSHARI, M. and ALIZADEH, M., (2018). The Generalized Odd Gamma-
G Family of Distributions: Properties and Applications. Austrian Journal of Statistics, 47,
pp. 69–89.

JAMAL, F., CHESNEAU, C. and ELGARHY, M., (2020). Type II general inverse expo-
nential family of distributions, Journal of Statistics and Management Systems 23, 3, pp.
617–641.

JAMAL, F., NASIR, M. A., OZEL, G., ELGARHY, M. and KHAN, N. M., (2019). Gener-
alized inverted Kumaraswamy generated family of distributions: theory and applications.
Journal of Applied Statistics, 46, pp. 2927–2944.

JAMAL, F., NASIR, M. A., TAHIR, M. H. and MONTAZERI, N. H., (2017). The odd
Burr-III family of distributions. Journal of Statistics Applications and Probability, 6, pp.
105–122.

JONES, M. C., (2004). Families of distributions arising from the distributions of order statis-
tics. Test, 13, pp. 1–43.

JONES, M. C., (2008). Kumaraswamy’s distribution: A beta-type distribution with some
tractability advantages. Statistical Methodology, 6, pp. 70–81.

KENNEY, J., KEEPING, E., (1962). Mathematics of Statistics. Vol. 1, 3rd edition, Prince-
ton:NJ, Van Nostrand.

LEE, C., FAMOYE, F. and OLUMOLADE, O., (2007). Beta-Weibull Distribution: Some
Properties and Applications to Censored Data. Journal of Modern Applied Statistical
Methods, 6, pp. 173–186.



40 R. M. I. Arshad et. al.: The Gamma Kumaraswamy-G family ...

MOORS, J. J. A., (1998). A quantile alternative for kurtosis. Statistician, 37, pp. 25–32.

NASIR, A., BAKOUCH, H. S. and JAMAL, F., (2018). Kumaraswamy Odd Burr G Family
of Distributions with Applications to Reliability Data. Studia Scientiarum Mathemati-
carum Hungarica, 55, pp. 1–21.

NASIR, M. A., TAHIR, M. H., CHESNEAU, C., JAMAL, F. and SHAH, M. A. A., (2020).
The odds generalized gamma-G family of distributions: Properties, regressions and ap-
plications. Statistica, 80, 1, pp. 3–38.

OGUNTUNDE, P. E., ODETUNMIBI, O. A. and ADEJUMO, A. O., (2015). On the Expo-
nentiated Generalized Weibull Distribution: A Generalization of the Weibull Distribution.
Indian Journal of Science and Technology, 8, pp. 1–7.

OLUYEDE, B. O., PU, S., MAKUBATE, B. and QIU, Y., (2018). The Gamma-Weibull-G
Family of Distributions with Applications. Austrian Journal of Statistics, 47, pp. 45–76.

PARANAIBA, P. F., ORTEGA, E. M. M., CORDEIRO, G. M. and de Pascoa, M. A. D.,
(2012). The Kumaraswamy Burr XII distribution: Theory and practice. Journal of Statis-
tical Computation and Simulation, 82, pp. 1–27.

RAMOS, M. W. A., (2014). Some new extended distributions: theory and applications, 88 f.
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Comparing particulate matter dispersion in Thailand using
the Bayesian Confidence Intervals for ratio of coefficients

of variation
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ABSTRACT

Recently, harmful levels of air pollution have been detected in many provinces of Thailand.
Particulate matter (PM) contains microscopic solids or liquid droplets that are so small that
they can be inhaled and cause serious health problems. A high dispersion of PM is measured
by a coefficient of variation of log-normal distribution. Since the log-normal distribution is
often used to analyse environmental data such as hazardous dust particle levels and daily
rainfall data. These data focus the statistical inference on the coefficient of variation. In
this paper, we develop confidence interval estimation for the ratio of coefficients of variation
of two log-normal distributions constructed using the Bayesian approach. These confidence
intervals were then compared with the existing approaches: method of variance estimates
recovery (MOVER), modified MOVER, and approximate fiducial approaches using their
coverage probabilities and average lengths via Monte Carlo simulation. The simulation re-
sults show that the Bayesian confidence interval performed better than the others in terms
of coverage probability and average length. The proposed approach and the existing ap-
proaches are illustrated using examples from data set PM10 level and PM2.5 level in the
northern Thailand.

Key words: Bayesian approach, coefficient of variation, confidence interval, log-normal
distribution, ratio.

1. Introduction

Nowadays, the problem of air pollution has received widespread attention in toxicol-
ogy and epidemiology studies because it is associated with increased incidences of human
disease and mortality rate (Xing et al., 2016). The effects on human health include the
cardiovascular system, resulting in heart attacks and heart failure, and the respiratory tract,
resulting in asthma and bronchitis. Smoke, dust, and smog create air pollution, which in-
cludes gaseous pollutants and particulate matter (PM): the gases include carbon monoxide,
sulphur dioxide, ozone, and nitrogen dioxide, while PM is defined by size, e.g. PM2.5
(≤ 2.5 µm) and PM10 (≤ 10 µm), and so on. People are at high risk when they live in
high PM levels. For PM2.5, both short-term and long-term exposure has been associated
with increased hospital admission and absenteeism from school, work, etc. Exposure to
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PM2.5 can also result in emergency room visits for asthma symptoms whereas exposure
to the PM10 can result in hospitalization of chronic lung disease and/or premature death.
Moreover, PM2.5 and PM10 can damage stone and culturally important objects such as
monuments and statues. Thailand is a country located in Southeast Asia. It covers a total
land area of approximately 513,000 km2 and is divided into six regions used in geographic
studies: north, northeast, central, east, west, and south. These are based on natural features
and human cultural patterns. Recently, Thailand has faced the PM problem resulting in
the deterioration of air quality. Harmful levels have been detected in the north region of
Thailand, in Chiang Mai, Chiang Rai, Lampang, Mae Hong Son, Nan, Phrae, and Phayao
provinces. The coefficient of variation can be used as a statistic to describe air quality and
thus can be used to measure and manage air pollution risk.

Meanwhile, several authors have discussed which parameter should be used in statistical
inference for a log-normal distribution (Lacey et al., 1997; Royston, 2001; Krishnamoorthy
and Mathew, 2003; Hannig et al., 2006; Tian and Wu, 2007; Sharma and Singh, 2010; Har-
vey and van der Merwe, 2012; Lin and Wang, 2013; Rao and D’Cunha, 2016; Thangjai et
al., 2016; Nam and Kwon, 2017; Hasan and Krishnamoorthy, 2017; Thangjai and Niwit-
pong, 2019). Furthermore, the coefficient of variation has been used in various applications
(Tsim et al., 1991; Faupel-Badger et al., 2010). In addition, the confidence intervals for the
coefficient of variation have received some attention recently (Niwitpong, 2013; Ng, 2014;
Thangjai et al., 2016; Nam and Kwon, 2017; Hasan and Krishnamoorthy, 2017). The in-
ference with the log-normal coefficient of variation is interesting. Nam and Kwon (2017)
proposed the method of variance estimate recovery (MOVER) approach for constructing
the confidence intervals for the ratio of coefficients of variation of log-normal distributions.
Meanwhile, Hasan and Krishnamoorthy (2017) improved the confidence intervals for the ra-
tio of coefficients of variation of log-normal distributions based on an alternative MOVER
approach and the fiducial approach.

Both these approaches have produced classical statistics, and while some problems are
best solved using these, others are best solved using the Bayesian approach. Therefore, in
this paper, we extend the research idea from Hasan and Krishnamoorthy (2017) to develop
the Bayesian approach for confidence interval estimation of the ratio of coefficients of vari-
ation of log-normal distributions. The Bayesian approach is a statistical method based on
Bayes’ theorem, which is used to update the probability. The method derives the posterior
probability that is the result of a prior probability and a likelihood function. This is advan-
tageous in the interpretation and construction of the Bayesian confidence interval, which
makes it more straightforward than the classical confidence interval approaches. However,
a disadvantage is that the Bayesian confidence interval requires more input than the classi-
cal approach (Casella and Berger, 2002). The Bayesian approach for parameter estimation
has been addressed in several research papers (Harvey and van der Merwe, 2012; Rao and
D’Cunha, 2016; Ma and Chen, 2018).

2. Methods

Suppose that random samples X1 and X2 follow two independent normal distributions
with means µ1 and µ2 and variances σ2

1 and σ2
2 , respectively. Also, suppose that Y1 and Y2
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are random samples of sizes n1 and n2 from two independent log-normal distributions with
parameters µ1, σ2

1 , µ2, and σ2
1 , respectively. The mean and variance of Y1 are

E(Y1) = exp(µ1 +σ
2
1 /2) and Var(Y1) = (exp(σ2

1 )−1)(exp(2µ1 +σ
2
1 )). (1)

The coefficient of variation of Y1 is

τ1 = E(Y1)/
√

Var(Y1) =
√

exp(σ2
1 )−1. (2)

Similarly, the mean and variance of Y2 are

E(Y2) = exp(µ2 +σ
2
2 /2) and Var(Y2) = (exp(σ2

2 )−1)(exp(2µ2 +σ
2
2 )). (3)

The coefficient of variation of Y2 is

τ2 = E(Y2)/
√

Var(Y2) =
√

exp(σ2
2 )−1. (4)

The ratio of two coefficients of variation is given by

θ =
τ1

τ2
=

√
exp(σ2

1 )−1
exp(σ2

2 )−1
. (5)

The estimator of θ is

θ̂ =
τ̂1

τ̂2
=

√
exp(S2

1)−1
exp(S2

2)−1
, (6)

where S2
1 and S2

2 are the variances of the log-transformed sample from a log-normal distri-
butions.

This section describes the three existing confidence intervals. One is the MOVER con-
fidence interval introduced by Nam and Kwon (2017). The modified MOVER and ap-
proximate fiducial confidence intervals are proposed by Hasan and Krishnamoorthy (2017).
Furthermore, the Bayesian confidence interval, which is a novel approach, is presented.

2.1. Classical confidence intervals for ratio of coefficients of variation

Three confidence intervals for the ratio of coefficients of variation of log-normal distri-
butions are presented.

2.1.1 MOVER confidence interval for ratio of coefficients of variation

Donner and Zou (2002) and Zou and Donner (2008) describe a theorem of MOVER.
The lower limit L and the upper limit U are used to derive the variance estimates for θ ,
which is ranging from L to θ̂ and from θ̂ to U . The variance estimate recovered from the
lower tail of θ is (θ̂ −L)2/z2, where z denotes the 100(α/2)-th percentile of the standard
normal distribution. Similarly, the variance estimate recovered from the upper tail of θ is



44 W. Thangjai, S. Niwitpong: Comparing particulate matter dispersion ...

(U − θ̂)2/z2. These variance estimates are used to construct the lower and upper limits of
the confidence interval for θ .

Nam and Kwon (2017) introduced the MOVER approach for constructing the confi-
dence interval for the ratio of coefficients of variation of two log-normal distributions. The
MOVER confidence interval can be obtained from the one for ln(θ) = ln(τ1)− ln(τ2). The
variances of ln(τ̂1) and ln(τ̂2) are given by

ˆVar(ln(τ̂1)) =
σ̂2

1 (1+ τ̂2
1 )

2

2n1τ̂4
1

(7)

and
ˆVar(ln(τ̂2)) =

σ̂2
2 (1+ τ̂2

2 )
2

2n2τ̂4
2

, (8)

where σ̂2
1 = (n1−1)S2

1/n1 and σ̂2
2 = (n2−1)S2

2/n2 are the maximum likelihood estimates
of σ2

1 and σ2
2 , respectively.

The confidence intervals of ln(τ1) and ln(τ2) are given by

[l
′
1,u

′
1] = [ln(τ̂1)− z1−α/2

√
ˆVar(ln(τ̂1)), ln(τ̂1)+ z1−α/2

√
ˆVar(ln(τ̂1))] (9)

and
[l
′
2,u

′
2] = [ln(τ̂2)− z1−α/2

√
ˆVar(ln(τ̂2)), ln(τ̂2)+ z1−α/2

√
ˆVar(ln(τ̂2))], (10)

where z1−α/2 is the 100(1− α/2)-th percentile of the standard normal distribution and
ˆVar(ln(τ̂1)) and ˆVar(ln(τ̂2)) are defined in Equation (7) and Equation (8).

The lower and upper limits of the confidence interval for ln(θ) = ln(τ1)− ln(τ2) based
on the MOVER approach are given by

Lθ .MOV ER = ln(τ̂1)− ln(τ̂2)−
√

(ln(τ̂1)− l ′1)
2 +(ln(τ̂2)−u′2)

2 (11)

and
Uθ .MOV ER = ln(τ̂1)− ln(τ̂2)+

√
(ln(τ̂1)−u′1)

2 +(ln(τ̂2)− l ′2)
2. (12)

Therefore, the 100(1−α)% MOVER confidence interval for ratio of coefficients of
variation θ is defined as

CIθ .MOV ER = [Lθ .MOV ER,Uθ .MOV ER] = [exp(Lθ .MOV ER),exp(Uθ .MOV ER)]. (13)

2.1.2 Modified MOVER confidence interval for ratio of coefficients of variation

Hasan and Krishnamoorthy (2017) extended the research paper from Nam and Kwon
(2017) to propose the new confidence interval for the ratio of coefficients of variation based
on the MOVER approach. The new confidence interval is called modified MOVER confi-
dence interval. Hasan and Krishnamoorthy (2017) used the exact confidence intervals for
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τ2
1 and τ2

2 given by

[l
′′
1 ,u

′′
1] = [exp

(
(n1−1)S2

1

χ2
n1−1,α/2

)
−1,exp

(
(n1−1)S2

1

χ2
n1−1,1−α/2

)
−1] (14)

and

[l
′′
2 ,u

′′
2] = [exp

(
(n2−1)S2

2

χ2
n2−1,α/2

)
−1,exp

(
(n2−1)S2

2

χ2
n2−1,1−α/2

)
−1], (15)

where χ2
ni−1,1−α/2 and χ2

ni−1,α/2 denote the 100(1−α/2)-th and 100(α/2)-th percentiles
of the chi-squared distribution with ni−1 degrees of freedom for i = 1,2.

The lower and upper limits of the modified MOVER confidence interval for ln(τ1/τ2)
2

are given by

LMMOV ER = ln(τ̂2
1 )− ln(τ̂2

2 )−
√
(ln(τ̂2

1 )− ln(l ′′1))2 +(ln(τ̂2
2 )− ln(u′′2))2 (16)

and
UMMOV ER = ln(τ̂2

1 )− ln(τ̂2
2 )+

√
(ln(τ̂2

1 )− ln(u′′1))2 +(ln(τ̂2
2 )− ln(l ′′2))2, (17)

where τ̂2
1 = exp(S2

1)−1 and τ̂2
2 = exp(S2

2)−1.
Therefore, the 100(1−α)% modified MOVER confidence interval for ratio of coeffi-

cients of variation θ is defined as

CIθ .MMOV ER = [Lθ .MMOV ER,Uθ .MMOV ER] = [
√

exp(LMMOV ER),
√

exp(UMMOV ER)]. (18)

2.1.3 Approximate fiducial confidence interval for ratio of coefficients of variation

The fiducial confidence interval is computed based on a fiducial quantity. The coeffi-
cient of variation of log-normal distribution is used the fiducial quantity for σ2 only. This
is because the coefficient of variation is the function of σ2 only. The percentiles of fiducial
generalized pivotal quantity for ratio of coefficients of variation is estimated using simu-
lation. To avoid using the simulation, Hasan and Krishnamoorthy (2017) used modified
normal based approximation to construct the approximate fiducial confidence interval. Let
s2

1 and s2
2 be observed values of S2

1 and S2
2, respectively.

The lower and upper limits of the approximate fiducial confidence interval for ln(τ1/τ2)
2

are given by

LAF = ln(T1;0.5)− ln(T2;0.5)−
√
(ln(T1;0.5)− ln(T1;α/2))2 +(ln(T2;0.5)− ln(T2;1−α/2))2

(19)
and

UAF = ln(T1;0.5)− ln(T2;0.5)+
√

(ln(T1;0.5)− ln(T1;1−α/2))2 +(ln(T2;0.5)− ln(T2;α/2))2,

(20)
where Ti;p = exp((ni−1)S2

i /χ2
ni−1,p)−1 and χ2

ni−1,p is the 100(p)-th percentile of the chi-
squared distribution with ni−1 degrees of freedom, respectively.
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Therefore, the 100(1−α)% approximate fiducial confidence interval for the ratio of
coefficients of variation θ is defined as

CIθ .AF = [Lθ .AF ,Uθ .AF ] = [
√

exp(LAF),
√

exp(UAF)]. (21)

2.2. Bayesian confidence interval for ratio of coefficients of variation

Bayesian confidence interval is constructed using the concept of Bayesian inference.
The Bayesian confidence interval uses a prior distribution. This distribution is based on the
experimenter’s belief and is updated with the sample information. The Bayesian confidence
interval derives a posterior probability as a consequence of a prior probability and a like-
lihood function. Posterior probability is computed by Bayes’ theorem. Let X1 = ln(Y1) be
the normal distribution with mean µ1 and variance σ2

1 . Also, let X2 = ln(Y2) be the normal
distribution with mean µ2 and variance σ2

2 .The likelihood function for µ1, µ2, σ2
1 and σ2

2 is

L(µ1,µ2,σ
2
1 ,σ

2
2 |data) ∝

(
1

σ2
1

)n1/2

exp
(
− (n1−1)s2

1 +n1(µ1− x̄1)
2

2σ2
1

)
×

(
1

σ2
2

)n2/2

exp
(
− (n2−1)s2

2 +n2(µ2− x̄2)
2

2σ2
2

)
, (22)

where i = 1,2 and x̄i and s2
i are the observed values of X̄i and S2

i , respectively.
Taking the logarithm of the likelihood function, the log-likelihood function is obtained

by

ln(L) = −n1

2
ln(σ2

1 )−
(n1−1)s2

1 +n1(µ1− x̄1)
2

2σ2
1

− n2

2
ln(σ2

2 )−
(n2−1)s2

2 +n2(µ2− x̄2)
2

2σ2
2

. (23)

The second derivatives of log-likelihood function with respect to each parameter are

∂ 2 ln(L)
∂ µ2

1
=− n1

σ2
1

and
∂ 2 ln(L)

∂ µ2
2

=− n2

σ2
2
, (24)

∂ 2 ln(L)
∂ µ1∂σ2

1
=

n1(µ1− x̄1)

(σ2
1 )

2 and
∂ 2 ln(L)
∂ µ2∂σ2

2
=

n2(µ2− x̄2)

(σ2
2 )

2 , (25)

∂ 2 ln(L)
(∂σ2

1 )
2 =

n1

2

(
1

σ2
1

)2

−
(

1
σ2

1

)3

((n1−1)s2
1 +n1(µ1− x̄1)

2), (26)

∂ 2 ln(L)
(∂σ2

2 )
2 =

n2

2

(
1

σ2
2

)2

−
(

1
σ2

2

)3

((n2−1)s2
2 +n2(µ2− x̄2)

2), (27)

and
∂ 2 ln(L)
∂σ2

1 ∂σ2
2
= 0 and

∂ 2 ln(L)
∂σ2

2 ∂σ2
1
= 0. (28)
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The Fisher information matrix is

F(µ1,µ2,σ
2
1 ,σ

2
2 ) =



n1
σ2

1
0 0 0

0 n2
σ2

2
0 0

0 0 n1
2

(
1

σ2
1

)2
0

0 0 0 n2
2

(
1

σ2
2

)2

 . (29)

The Bayesian confidence intervals can be construct based on different choices of prior
distributions. This paper is interested in the Jeffreys Independence prior. This prior follows
from the Fisher information matrix. According the Fisher information matrix, the Jeffreys
Independence prior is

p(µ1,µ2,σ
2
1 ,σ

2
2 ) = p(µ1,µ2)p(σ2

1 ,σ
2
2 ). (30)

The joint prior for the mean is

p(µ1,µ2) ∝

∣∣∣∣∣
n1
σ2

1
0

0 n2
σ2

2

∣∣∣∣∣
1/2

. (31)

The joint prior for the variance is

p(σ2
1 ,σ

2
2 ) ∝

∣∣∣∣∣∣∣
n1
2

(
1

σ2
1

)2
0

0 n2
2

(
1

σ2
2

)2

∣∣∣∣∣∣∣
1/2

. (32)

Therefore, the Jeffreys Independence prior is obtained by

p(µ1,µ2,σ
2
1 ,σ

2
2 ) ∝

1
σ2

1

(
1

σ2
2

)
. (33)

The conditional posterior distributions of µ1 and µ2 are normal distributions. The con-
ditional posterior distributions are given by

µ1|σ2
1 ,x1 ∼ N

(
µ̂1,

σ2
1

n1

)
(34)

and

µ2|σ2
2 ,x2 ∼ N

(
µ̂2,

σ2
2

n2

)
. (35)

For σ2
1 and σ2

2 , the posterior distributions are the inverse gamma distributions given by

σ
2
1 |x1 ∼ IG(

n1−1
2

,
(n1−1)s2

1
2

) (36)
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and

σ
2
2 |x2 ∼ IG(

n2−1
2

,
(n2−1)s2

2
2

). (37)

The posterior distribution of ln(τ1/τ2)
2 is given by

ln(θ)2 = ln
(

τ1

τ2

)2

= ln(exp(σ2
1 )−1)− ln(exp(σ2

2 )−1), (38)

where σ2
1 and σ2

2 are defined in Equation (36) and Equation (37), respectively.
Let LBS and UBS be the lower and upper limits of the shortest 100(1−α)% highest

posterior density interval of ln(θ)2, respectively. Therefore, the 100(1−α)% Bayesian
confidence interval for ratio of coefficients of variation θ is defined as

CIθ .BS = [Lθ .BS,Uθ .BS] = [
√

exp(LBS),
√

exp(UBS)]. (39)

Algorithm 1

Step 1: Generate σ2
i |xi ∼ IG( ni−1

2 ,
(ni−1)s2

i
2 ), where i = 1,2.

Step 2: Calculate the value of ln(θ)2 as given in Equation (38).
Step 3: Repeat the step 1 - step 2 for q times.
Step 4: Calculate LBS and UBS.
Step 5: Calculate Lθ .BS and Uθ .BS.

Algorithm 2

For a given n1, n2, µ1, µ2, σ1, σ2, and θ .
Step 1: Generate x1 from N(µ1,σ

2
1 ) and generate x2 from N(µ2,σ

2
2 ).

Step 2: Calculate x̄1, x̄2, s2
1 and s2

2.
Step 3: Construct CIθ .MOV ER(h) = [Lθ .MOV ER(h),Uθ .MOV ER(h)].
Step 4: Construct CIθ .MMOV ER(h) = [Lθ .MMOV ER(h),Uθ .MMOV ER(h)].
Step 5: Construct CIθ .AF(h) = [Lθ .AF(h),Uθ .AF(h)].
Step 6: Construct CIθ .BS(h) = [Lθ .BS(h),Uθ .BS(h)].
Step 7: If L(h) ≤ θ ≤U(h) set p(h) = 1, else p(h) = 0.
Step 8: Calculate U(h)−L(h).
Step 9: Repeat the step 1 - step 8 for a large number of times (say, M times) and calculate
coverage probability and average length.

3. Results

The MOVER, modified MOVER, approximate fiducial and Bayesian confidence in-
tervals for ratio of coefficients of variation were conducted to compare the performance.
The confidence intervals with the coverage probability greater than or equal to the nominal
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confidence level of 0.95 and the shortest average length were considered to be the best-
performing ones.

Since the log-normal coefficient of variation depends on parameter σ2 and does not
depend on parameter µ , the population means µ1 = µ2 = 1, the population standard devia-
tions (σ1,σ2) and sample sizes (n1,n2) were varied based on Hasan and Krishnamoorthy’s
(2017) approach. The coverage probabilities and average lengths were estimated for some
assumed values of parameters (σ1,σ2) and sample sizes varying from small to moderate.
10,000 random samples were generated using Algorithm 2 for each set of parameters. For
the Bayesian confidence interval, 2,500ln(θ)2’s were obtained by applying Algorithm 1 for
each of the random samples.

The coverage probabilities and average lengths of the four confidence intervals are given
in Tables 1 and 2. The MOVER confidence intervals attained coverage probabilities under
the nominal confidence level of 0.95 for all sample sizes. Meanwhile, the coverage proba-
bilities of the modified MOVER and approximate fiducial confidence intervals were close
to the nominal confidence level of 0.95, but their average lengths were not balanced. The
Bayesian confidence intervals provided the best coverage probabilities for all sample sizes
and the average lengths were shorter than those of the modified MOVER and approximate
fiducial confidence intervals. Overall, the Bayesian confidence intervals are preferable in
terms of coverage probability and average length.
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4. Empirical application

PM10 and PM2.5 from haze smog in Chiang Mai and Nan provinces, in the northern of
Thailand, have become serious problems with air pollution having serious effects on health
and visibility for transportation. The data in Tables 3 and 6 from the Pollution Control
Department show PM10 and PM2.5 levels in Chiang Mai and Nan provinces from 24 March
2019 to 17 April 2019. Moreover, PM2.5 levels in Bangkok and Chiang Rai provinces from
24 March 2019 to 17 April 2019 are presented in Table 9. The confidence intervals for the
ratio of coefficients of variation were constructed using these data.

4.1. Example 1

Using Table 3, the statistics of PM10 pollution are summarized in Table 4. In Table 5,
the Akaike Information Criterion values support that the two datasets follow log-normal
distributions. These two districts were compared with respect to the coefficient of variation.
The 95% two-sided confidence intervals were constructed based on the MOVER, modi-
fied MOVER, and approximate fiducial approaches, and then compared with the Bayesian
approach.

The ratio of the log-normal coefficients of variation for the Chiang Mai and Nan was
θ̂ = 0.9066. The confidence intervals based on the MOVER, modified MOVER, and ap-
proximate fiducial approaches were CIθ .MOV ER = [0.6009, 1.3676] with an interval length
of 0.7667, CIθ .MMOV ER = [0.5829, 1.3977] with an interval length of 0.8148, and CIθ .AF =

[0.5846, 1.3940] with an interval length of 0.8094. Meanwhile, the confidence interval
based on the Bayesian approach was CIθ .BS = [0.5972, 1.3604] with an interval length of
0.7632. These results indicate that all of the confidence intervals contained the true ratio
of the coefficients of variation. However, the Bayesian confidence interval provided the
shortest length.

4.2. Example 2

To assess the PM2.5 level in Chiang Mai and Nan provinces, we used the data in Ta-
ble 6 for the second analysis and summarized the statistics in Table 7. Using the Akaike
Information Criterion values in Table 8, we found that the two PM2.5 samples came from
log-normal populations.

The ratio of log-normal coefficients of variation for the Chiang Mai and Nan was θ̂ =

0.9654. The confidence intervals for the ratio based on MOVER, modified MOVER, and ap-
proximate fiducial approaches were CIθ .MOV ER = [0.6355, 1.4667], CIθ .MMOV ER = [0.6153,
1.5031], and CIθ .AF = [0.6171, 1.4988] with interval lengths of 0.8312, 0.8878, and 0.8817,
respectively. Meanwhile, the confidence interval for the Bayesian approach was CIθ .BS =

[0.6274, 1.4457] with an interval length of 0.8183. The interval length of the Bayesian
approach was shorter than the others, thus it more accurately estimated the coefficient of
variation ratio for these two log-normal populations.
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4.3. Example 3

The PM2.5 levels of Bangkok and Chiang Rai provinces in Table 9 were used to con-
struct the confidence intervals for the ratio of coefficients of variation for comparing the
dispersion of PM 2.5 with different levels. The statistics and the Akaike Information Crite-
rion values were presented in Table 10 and Table 11, respectively. The result showed that
the PM2.5 levels samples came from log-normal distributions.

The ratio of coefficients of variation of log-normal distributions for the Bangkok and
Chiang Rai was θ̂ = 0.5300. The confidence intervals for the ratio based on MOVER, mod-
ified MOVER, and approximate fiducial approaches wereCIθ .MOV ER = [0.3519,0.7984],
CIθ .MMOV ER = [0.3401,0.8130], and CIθ .AF = [0.3411,0.8111] with interval lengths of 0.4465,
0.4729, and 0.4700, respectively. Moreover, the confidence interval for the Bayesian ap-
proach was CIθ .BS = [0.3458,0.7901] with an interval length of 0.4443. The Bayesian con-
fidence interval had the shortest interval length.

5. Discussion

Nam and Kwon (2017) proposed the MOVER approach for constructing the confidence
intervals for the ratio of coefficients of variation of two log-normal distributions, while
Hasan and Krishnamoorthy (2017) constructed them based on modified MOVER and ap-
proximate fiducial approaches and compared them with the MOVER approach. In this
paper, we propose the Bayesian approach for the confidence interval estimation of the ratio
of coefficients of variation of log-normal distributions.

6. Conclusions

Using the data examples from data set PM10 level and PM2.5 level in the northern
Thailand, all approaches were illustrated with real data analysis. The performance of the
Bayesian approach was compared to three existing approaches. The performances of the
confidence intervals agreed with our simulation studies. Since the coverage probability
of the Bayesian confidence interval was better than those of the others, and its average
length was also shorter. Therefore, the Bayesian approach is recommended to construct
the confidence intervals for the ratio of coefficients of variation of log-normal distributions
when the dispersions of PM10 level and PM2.5 level are at the harmful level (≥ 50µg/m3).
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APPENDIX

Table 3: PM10 levels in Chiang Mai province and Nan province (µg/m3)

Chiang Mai Nan
227 170 164 105 128 224 134 138 148 190
156 262 167 112 103 145 232 136 144 127
138 146 166 123 94 114 199 100 155 116
125 191 142 139 96 107 176 90 178 126
113 184 117 138 98 80 130 126 254

Source: Pollution Control Department (http://aqmthai.com/aqi.php)

Table 4: Statistics of PM10 levels in Chiang Mai province and Nan province

Statistics Chiang Mai Nan
n 25 24
ȳ 144.1600 148.7083
sY 41.2580 44.9662
x̄ 4.9355 4.9603

sX 0.2665 0.2931
τ̂ 0.2656 0.2930

Table 5: The minimum Akaike Information Criterion values of PM10 level in Chiang Mai
province and Nan province

Distribution Chiang Mai Nan
Normal 259.9186 253.7713

Log-Normal 254.5765 250.2824
Gamma 255.8663 250.9095

Exponential 299.5462 289.0954
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Figure 1: Histogram plots of PM10 level in Chiang Mai province and Nan province

Figure 2: The normal QQ-plots of log-PM10 level in Chiang Mai province and Nan province

Table 6: PM2.5 levels in Chiang Mai province and Nan province (µg/m3)

Chiang Mai Nan
189 129 124 69 92 192 104 111 115 154
118 213 126 72 68 118 199 107 108 100
100 109 125 83 64 88 167 73 119 90
92 147 105 99 66 86 146 61 136 89
82 145 79 102 62 55 105 96 209

Source: Pollution Control Department (http://aqmthai.com/aqi.php)

Table 7: Statistics of PM2.5 levels in Chiang Mai province and Nan province

Statistics Chiang Mai Nan
n 25 24
ȳ 106.4000 117.8333
sY 38.1335 41.3718
x̄ 4.6120 4.7125

sX 0.3324 0.3440
τ̂ 0.3346 0.3465
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Table 8: The minimum Akaike Information Criterion values of PM2.5 level in Chiang Mai
province and Nan province

Distribution Chiang Mai Nan
Normal 255.9811 249.7724

Log-Normal 249.4643 246.0677
Gamma 250.9027 246.5411

Exponential 284.3603 277.9250

Figure 3: Histogram plots of PM2.5 level in Chiang Mai province and Nan province

Figure 4: The normal QQ-plots of log-PM2.5 level in Chiang Mai province and Nan
province

Table 9: PM2.5 levels in Bangkok province and Chiang Rai province (µg/m3)

Bangkok Chiang Rai
30 19 18 25 19 184 89 109 63 104
22 19 21 15 14 147 228 77 72 85
22 23 15 16 14 79 254 77 79 74
20 19 22 16 15 77 140 83 82 113
20 23 17 18 13 86 132 82 104 162

Source: Pollution Control Department (http://aqmthai.com/aqi.php)
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Table 10: Statistics of PM2.5 levels in Bangkok province and Chiang Rai province

Statistics Bangkok Chiang Rai
n 25 25
ȳ 19.0000 111.2800
sY 3.9791 49.8795
x̄ 2.9242 4.6361

sX 0.2043 0.3762
τ̂ 0.2022 0.3815

Table 11: The minimum Akaike Information Criterion values of PM2.5 level in Bangkok
province and Chiang Rai province

Distribution Bangkok Chiang Rai
Normal 142.9793 269.4068

Log-Normal 140.7307 256.8566
Gamma 141.1844 260.2494

Exponential 198.2219 286.6025

Figure 5: Histogram plots of PM2.5 level in Bangkok province and Chiang Rai province

Figure 6: The normal QQ-plots of log-PM2.5 level in Bangkok province and Chiang Rai
province
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A new generalization of the Pareto distribution  
and its applications 

Ehab M. Almetwally1, Hanan A. Haj Ahmad2 

ABSTRACT  

This paper introduces a new generalization of the Pareto distribution using the Marshall-
Olkin generator and the method of alpha power transformation. This new model has several 
desirable properties appropriate for modelling right skewed data. The Authors demonstrate 
how the hazard rate function and moments are obtained. Moreover, an estimation for the 
new model parameters is provided, through the application of the maximum likelihood and 
maximum product spacings methods, as well as the Bayesian estimation. Approximate 
confidence intervals are obtained by means of an asymptotic property of the maximum 
likelihood and maximum product spacings methods, while the Bayes credible intervals are 
found by using the Monte Carlo Markov Chain method under different loss functions. 
A simulation analysis is conducted to compare the estimation methods. Finally, the 
application of the proposed new distribution to three real-data examples is presented and its 
goodness-of-fit is demonstrated. In addition, comparisons to other models are made 
in order to prove the efficiency of the distribution in question. 
Key words: Marshall-Olkin distribution, alpha power transformation, maximum likelihood 
estimator, maximum product spacings, Bayes estimation, simulation. 

1. Introduction  

Marshall-Olkin (MO) is a well-known distribution, which was generated by 
Marshall and Olkin (1997). The basic idea in this generator is to add a parameter 
through which the new distribution will be more flexible and will have many good 
properties. Many authors used MO to generate new lifetime models, for example Jose 
and Alice (2001, 2005), Ghitany et al. (2005), Ghitany and Kotz (2007), Jose and Uma 
(2009), Haj Ahmad et al. (2017), Bdair and Haj Ahmad (2019) and Ahmad and 
Almetwally (2020). The method of alpha power transformation (APT) class is 
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a procedure which makes the lifetime distribution more applicable and rich towards 
real data analysis. It was first introduced by Mahdavi and Kundu (2017). A new 
generalization appeared in the literature by doing combination between MO and APT, 
this was first studied by Nassar et al. (2019), and the new family is called “G-family 
(MOAP-G). It was noticed that the MOAP-G family is analytically tractable and 
efficient for real data analysis.  
The cumulative distribution function (CDF) of MOAP-G random variable X is of the 
form 

        𝐹ெை஺௉ሺ𝑥; 𝛼, 𝜃ሻ ൌ ൝
ఈಸሺೣሻିଵ

ሺఈିଵሻሾఏାሺଵିఏሻሺఈିଵሻషభ൫ఈಸሺೣሻିଵ൯ሿ
, 𝛼 ൐ 0, 𝛼 ് 1

𝐺ሺ𝑥ሻ , 𝛼 ൌ 1
                  (1) 

The corresponding probability density function (pdf)  
  

        𝑓ெை஺௉ሺ𝑥; 𝛼, 𝜃ሻ ൌ ቐ
஘୪୭୥ሺఈሻఈಸሺೣሻ௚ሺ௫ሻ

ሺఈିଵሻሾఏାభషഇ
ഀషభ

൫ఈಸሺೣሻିଵ൯ሿమ
, 𝛼 ൐ 0, 𝛼 ് 1

𝑔ሺ𝑥ሻ , 𝛼 ൌ 1
                                 (2) 

where G(x) is the baseline distribution. 
In this paper we will consider Pareto distribution with shape parameter 𝜆 as a 

baseline distribution, where the pdf and cdf are respectively as follows: 
                                          𝑔ሺ𝑥ሻ ൌ

ఒ

௫ഊశభ , 𝑥 ൒ 1                                                           (3) 

                                          𝐺ሺ𝑥ሻ ൌ 1 െ
ଵ

௫ഊ ,   𝑥 ൒ 1                                                    (4) 
The new generated distribution, namely Marshall-Olkin Alpha Power Pareto 

(MOAPP), is a lifetime model with three parameters. This distribution has several 
desirable properties and acts well for modelling right skewed data, it has upside-down 
bathtub hazard rate and attractive time series representation by which many statistical 
computations can be easily handled. Real data examples show that MOAPP behaves 
better than many other generalized Pareto distributions. 

The main purpose of this paper is to introduce MOAPP distribution and study 
some of its statistical properties, which are useful in data modelling. We use statistical 
inference such as maximum likelihood, maximum product spacings and Bayes 
estimation methods to perform point estimation. We construct confidence intervals for 
the unknown parameter as well. A simulation study is conducted to check the 
performance of the different estimation methods applied in this work This is done by 
comparing the bias and the mean square error (MSE) for point estimation methods and 
by using interval length for interval estimation. Finally, we present numerical examples 
that illustrate the model efficiency. 

The rest of this paper is organized as follows: In Section 2 we introduce MOAPP 
distribution with some of its properties. Classical point estimation methods for the 
unknown parameters are discussed in Section 3, while in Section 4 the Bayesian 
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estimation method is considered. In Section 5 interval estimation methods are 
presented. In Section 6 a simulation study and real-life data analysis are conducted and 
finally conclusions are given in Section 7. 

2. Probability Density Function 

Let X be a continuous random variable with Marshall-Olkin Alpha Power Pareto 
distribution (MOAPP), then using Eqs. (1) and (2) and assuming that the baseline 
distribution G(x) is Pareto distribution given in Eqs. (3) and (4), we obtain the pdf and 
CDF of (MOAPP) respectively as  

       𝑓ெை஺௉௉ሺ𝑥; 𝛼, 𝜃, 𝜆ሻ ൌ  
ఏఒሺ௟௢௚ఈሻఈభషೣషഊ

ሺఈିଵሻ௫ഊశభሾఏାሺଵିఏሻሺఈିଵሻషభቀఈభషೣషഊିଵቁሿమ
,    𝑥 ൒ 1, 𝛼 ് 1      (5)  

   𝐹ெை஺௉௉ሺ𝑥; 𝛼, 𝜃, 𝜆ሻ ൌ  
ఈభషೣషഊ

ିଵ

ሺఈିଵሻሾఏାሺଵିఏሻሺఈିଵሻషభቀఈభషೣషഊିଵቁሿ
,  𝑥 ൒ 1, 𝛼 ് 1,                      (6) 

In the following subsection we investigate some important properties of MOAPP 
distribution such as: monotonicity, hazard rate function, series representation, 
moments and quantiles.   

2.1. Monotonicity of MOAPP Distribution 

The monotonicity of MOAPP distribution is necessary to be investigated for data 
modelling, many areas such as medical, industrial, engineering and reliability 
researches need data modelling for prediction of future values and estimation of some 
unknown or missing variables; hence, in this section we study the monotonicity of 
MOAPP distribution. We consider the pdf of MOAPP distribution in Eq. (5), and study 
the monotonicity of this pdf by using the logarithmic function of its pdf. The following 
lemma illustrates the behaviour of MOAPP distribution for different parameter values, 
and Figure (1) shows these cases. 

Lemma 1 
The pdf of MOAPP distribution is either decreasing when 0 ൏ 𝜃 ൏ 1, or upside-

down bathtub curve that attains its maximum at some point 𝑥଴ ∈ ሾ1, ∞ሻ when 𝜃 ൐ 1 
and 𝜆 ൐ 1 

Proof 
Consider the pdf of MOAPP density in Eq. (5), then the derivative of the 

logarithmic function of pdf with respect to x is  

                        ୢ୐୭୥ ୤ಾೀಲುುሺ୶;஑,஘,ఒሻ

ௗ௫
ൌ 𝜆𝐿𝑜𝑔ሺ𝛼ሻ𝑥ିఒିଵ െ

ఒାଵ

௫
െ 2

ఒ௅௢௚ሺఈሻሺభషഇሻ
ሺഀషభሻ

ఈభషೣషഊ
௫షഊషభ

ቂఏା
ሺభషഇሻ
ሺഀషభሻ

ቀఈభషೣషഊିଵቁቃ
 

                              ୢ୐୭୥ ୤ಾೀಲುುሺ୶;஑,஘,ఒሻ

ௗ௫
ൌ

ௌሺ௫ሻሺఒ௅௢௚ሺఈሻିሺఒାଵሻ௫ഊሻିଶఒ௅௢௚ሺఈሻ

௦ሺ௫ሻ௫ഊశభ                        (7) 
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where 𝑆ሺ𝑥ሻ ൌ ሾ
ሺఈିଵሻ

ሺଵିఏሻ
𝜃𝛼௫షഊିଵ ൅ ሺ1 െ 𝛼௫షഊିଵሻሿ. Equating (7) to zero, we obtain the 

cases: 
1- If 0 ൏ 𝜃 ൏ 1 then 𝑆ሺ𝑥ሻ is positive and since 𝜆𝐿𝑜𝑔ሺ𝛼ሻ ൏ ሺ𝜆 ൅ 1ሻ𝑥ఒ then the 

numerator of equation (7) is negative hence the derivative of the logarithmic 
function of MOAPP is negative, which indicates that the pdf of MOAPP is 
a decreasing function. 

2- If 𝜃 ൐ 1 and 𝜆 ൐ 1 then by using Bolzano theorem on the interval [1,∞) there 
exist a root 𝑥଴ ∈ ሾ1, ∞ሻ of Log fெை஺௉௉ hence fெை஺௉௉ attains its maximum at 𝑥଴. 

2.2. Hazard Rate Function 

The hazard rate function or failure rate is important in survival analysis and 
reliability theory. The hazard rate function for MOAPP distribution is of the form 

             hሺx; 𝛼, 𝜃, 𝜆ሻ ൌ  
ఒ୐୭୥ሺఈሻ௫షሺഊశభሻ

ሺఈೣషഊିଵሻሺఏାሺଵିఏሻሺఈିଵሻషభሺఈభషೣషഊିଵሻሻ
, 𝑥 ൒ 1                   (8) 

In order to determine the shape of h(x;α,θ, 𝜆) it is quite enough to determine the 
shape of           log h(x;α,θ, 𝜆), as shown in the following lemma. 

Lemma 2 
The hazard rate of MOAPP distribution is either decreasing or upside down curve 

where the curve is skewed to the right.  

Proof: 
We consider a logarithmic function of the hazard rate given in Eq. (8) and take the 

first derivative with respect to x so that: 
dlog hሺx; α, θ, 𝜆ሻ

𝑑𝑥

ൌ
െሺ 𝜆 ൅ 1ሻ ቀ𝛼௫ష ഊ

െ 1ቁ 𝑤ሺ𝑥ሻ ൅ 𝜆 logሺ𝛼ሻ 𝑥ି ఒሾ𝑤ሺ𝑥ሻ𝛼௫ష ഊ
െ ሺ1 െ 𝜃ሻ𝛼ሺ1 െ 𝛼ି௫ష ഊ

ሻሿ

𝑥൫𝛼௫ష ഊ െ 1൯𝑤ሺ𝑥ሻ
 

where 𝑤ሺ𝑥ሻ ൌ 𝛼 ቀ𝜃 ቀ1 െ 𝛼ି௫ష ഊ
ቁ ൅ 𝛼ି௫ష ഊ

ቁ െ 1. The hazard rate curve may take 
several shapes according to different parameter values, so we summarize these cases by: 

1- If 𝜃 ൐ 1 and 𝛼 ൐ 1 then 𝛼ି௫ష ഊ
൏ 1 and hence 𝑤ሺ𝑥ሻ ൏ 0, then log hሺx; α, θ, 𝜆ሻ 

attains its maximum at a certain point ℎ଴ ∈ ሺ1, ∞ሻ so the hazard rate function is 
increasing on the interval (1, ℎ଴) and is decreasing (ℎ଴, ∞). 

2- If 0 ൏ 𝜃 ൏ 1 and 0 ൏ 𝛼 ൏ 1  then 𝛼ି௫ష ഊ
൐ 1  hence 𝑤ሺ𝑥ሻ ൐ 0 and  

log hሺx; α, θ, 𝜆ሻ is decreasing for all values of x, which indicates a decreasing 
hazard rate where h(1)= 

ఒ୐୭୥ሺఈሻ

ሺ஑ିଵሻఏ
, and h(∞ሻ=0.                        
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Figure 2 illustrated the shape of the hazard rate function for some selected 
parameters’ values. 

     
Figure 1. pdf of MOAPP under different values of the parameters                                                 

   
Figure 2. Hazard rate function of MOAPP under different values of the parameters  

2.3. Moments 

In order to obtain the moments for MOAPP distribution we use series 
representation for the pdf that is given in Eq. (5). The generalized binomial expansion 
will be used for this purpose, hence the MOAPP density can be rewritten as: 

         𝑓ெை஺௉௉ሺ𝑥ሻ ൌ  ∑ 𝓅௠
ஶ
௠ୀ଴ Ω௠ାଵሺ𝑌௠ሻ                                       (9) 

where 𝓅௠ ൌ

ቐ
∑ ∑ ሺെ1ሻ௝ሺ𝑘 ൅ 1ሻ𝜃ሺ1 െ 𝜃ሻ௞ ቀ௞

௝ቁ 𝛼௞ି௝௞
௝ୀ଴

ஶ
௞ୀ଴

ሺ୪୭୥ ఈሻ೘శభሺ௝ାଵሻ೘

ሺఈିଵሻೖశభሺ௠ାଵሻ!
, 0 ൏ 𝜃 ൏ 1

∑ ∑ ሺെ1ሻ௝ሺ𝑘 ൅ 1ሻሺ1 െ 𝜃ିଵሻ௞ ቀ௞
௝ቁ௞

௝ୀ଴
ஶ
௞ୀ଴

ሺ୪୭୥ ఈሻ೘శభሺ௞ାଵି௝ሻ೘

ఏሺఈିଵሻೖశభሺ௠ାଵሻ!
𝜃 ൐ 1

, 

and Ω௠ାଵሺ𝑌௠ሻ ൌ
ఒ ሺ௠ାଵሻ

௬ഊశభ ሺ1 െ
ଵ

௬ഊሻ௠ , y൒1, which is the exponentiated-Pareto 
distribution with two shape parameters (m+1, 𝜆). 

Eq. (9) represents the MOAPP family density as a linear combination of 
exponentiated-Pareto density, hence some mathematical properties can be determined 
from this representation. 
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The 𝑟௧௛ moment MOAPP distribution can be computed from  

𝐸ሺ𝑋௥ሻ ൌ ෍ 𝓅௠

ஶ

௠ୀ଴

Eሺ𝑌௠
௥ሻ, 

where Eሺ𝑌௠
௥ሻ ൌ ׬ 𝑦௥ஶ

ଵ Ω௠ାଵሺ𝑦ሻ𝑑𝑦 ൌ ሺ𝑚 ൅ 1ሻ𝐵ሺ𝑚 ൅ 1,1 െ
௥

ఒ
ሻ, and 𝐵ሺ𝛼, 𝛽ሻ is beta 

function.  

2.4. Quantile function  

By inverting Equation (6), we have the quantile of MOAPP distribution as follows: 

𝑥௤ ൌ ቆ1 െ
1

lnሺ𝛼ሻ
ln ቆ1 ൅

𝜃𝑞ሺ𝛼 െ 1ሻ

1 െ 𝑞ሺ1 െ 𝜃ሻ
ቇቇ

ିଵ
ఒൗ

; 0 ൏ 𝑞 ൏ 1 
(10) 

 

3. Classical Point Estimation Methods 

In this section we discuss two different classical point estimation methods, namely 
maximum likelihood estimation and maximum product spacing. Simulation analysis 
will take place in Section 6 in order to compare between the efficiency of these two 
methods.  

3.1. Maximum Likelihood Estimation 

The maximum likelihood estimation (MLE) is used in inferential statistics since it 
has many attractive properties, such as invariance, consistency and normal 
approximation properties. It depends basically on maximizing the likelihood function 
of MOAPP distribution. Let X1,X2,...,Xn be a random sample from MOAPP distribution, 
then the log likelihood function for the vector of parameters γ=(α,θ, λ) can be expressed 
by 

  ℓሺγሻ ൌ  𝑛𝐿𝑜𝑔ሾ𝜃𝜆𝐿𝑜𝑔ሺ𝛼ሻሿ ൅ ൫𝑛 െ ∑ 𝑥௜
ିఒ௡

௜ୀଵ ൯𝐿𝑜𝑔ሺ𝛼ሻ െ 𝑛𝐿𝑜𝑔ሺ𝛼 െ 1ሻ െ

ሺ𝜆 ൅ 1ሻ ∑ 𝐿𝑜𝑔𝑥௜
௡
௜ୀଵ െ  2 ∑ 𝐿𝑜𝑔ሾ𝜃 ൅

ሺଵିఏሻ

ሺఈିଵሻ
ቀ𝛼ଵି௫೔

షഊ
െ 1ቁሿ௡

௜ୀଵ              (11)   

In order to obtain the MLE of the parameters α, θ and λ it is necessary to find the 
derivative of equation (11) with respect to α, θ and λ respectively. 

డℓሺఊሻ

డఈ
ൌ

௡ା௅௢௚ሺఈሻሺ௡ି∑ ௫೔
೙
೔సభ ሻ

ఈ௅௢௚ሺఈሻ
െ

௡

ఈିଵ
െ 2 ∑ ሺଵିఏሻఈషೣ೔

షഊ
ሾሺଵିఈሻ௫೔

షഊାఈೣ೔
షഊ

ିଵሿ

ሺఈିଵሻమሾఏା
ሺభషഇሻ
ሺഀషభሻ

ቀఈభషೣ೔
షഊ

ିଵቁሿ

௡
௜ୀଵ   

డℓሺఊሻ

డఏ
ൌ

௡

ఏ
െ 2 ∑ ଵିሺఈିଵሻషభሺఈభషೣ೔

షഊ
ିଵሻ

ሾఏା
ሺభషഇሻ
ሺഀషభሻ

ቀఈభషೣ೔
షഊ

ିଵቁሿ

௡
௜ୀଵ   

డℓሺఊሻ

డఒ
ൌ

௡

ఒ
൅ 2 ∑ ሺଵିఏሻሺఈିଵሻషభఈభషೣ೔

షഊ
௫೔

షഊ௅௢௚ሺ௫೔ሻ௅௢௚ሺఈሻ

ሾఏା
ሺభషഇሻ
ሺഀషభሻ

ቀఈభషೣ೔
షഊ

ିଵቁሿ

௡
௜ୀଵ   
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The solution for the above normal equations is not in an explicit form, hence the 
MLEs can be obtained numerically by using Newton or Newton-Raphson methods. 

3.2. Maximum Product Spacings 

The Maximum Product Spacings (MPS) method is a new point estimation method 
that is considered as an alternative to MLE, see Cheng and Amin (1983). This method 
was recently used by many authors, see, for example Singh et al. (2014), Singh et al. 
(2016), and Almetwally and Almongy (2019a, b). It was observed that MPS acts better 
than MLE in many cases. The MPS is defined as: 

𝑀 ൌ ሺ∏ 𝐷௜
௡ାଵ
௜ୀଵ ሻ

భ
೙శభ, 

where M is defined as the geometric mean of the product spacings function 𝐷௜ such 
that 

𝐷ଵ ൌ 𝐹ሺ𝑥ଵሻ 
𝐷௜ ൌ 𝐹ሺ𝑥௜ሻ െ 𝐹ሺ𝑥௜ିଵሻ; 𝑖 ൌ 2, … , 𝑛 

𝐷௡ାଵ ൌ 1 െ 𝐹ሺ𝑥௡ሻ 

It is easy to see that ∑ 𝐷௜
௡ାଵ
௜ୀଵ ൌ 1. The MPS method is based on the observed 

ordered sample x1<⋯<xn from MOAPP distribution, hence the product spacings 
function is 

𝑀ሺ𝛾ሻ ൌ ቊ
ఈభషೣభ

షഊ
ିଵ

ሺఈିଵሻ௨ሺ௫భሻ
൬1 െ

ఈభషೣ೙షഊ
ିଵ

ሺఈିଵሻ௨ሺ௫೙ሻ
൰ ∏ ቈ

ఈభషೣ೔
షഊ

ିଵ

ሺఈିଵሻ௨ሺ௫೔ሻ
െ

ఈభషೣ೔షభ
షഊ

ିଵ

ሺఈିଵሻ௨ሺ௫೔షభሻ
቉௡

௜ୀଶ ቋ

భ
೙శభ

 , 

where 𝑢ሺ𝑥௜ሻ ൌ 𝜃 ൅ ሺ1 െ 𝜃ሻሺ𝛼 െ 1ሻିଵ ቀ𝛼ଵି௫೔
షഊ

െ 1ቁ. 

The natural logarithm of the product spacings function is 

𝑙𝑛𝑀ሺ𝛾ሻ ൌ
ଵ

௡ାଵ
ቊ𝑙𝑛 ቀ𝛼ଵି௫భ

షഊ
െ 1ቁ െ ln൫ሺ𝛼 െ 1ሻ𝑢ሺ𝑥ଵሻ൯ ൅ ln ൬1 െ

ఈభషೣ೙షഊ
ିଵ

ሺఈିଵሻ௨ሺ௫೙ሻ
൰ ൅

                             ∑ 𝑙𝑛 ቈ
ఈభషೣ೔

షഊ
ିଵ

ሺఈିଵሻ௨ሺ௫೔ሻ
െ

ఈభషೣ೔షభ
షഊ

ିଵ

ሺఈିଵሻ௨ሺ௫೔షభሻ
቉௡

௜ୀଶ ቋ.                                (12) 

To obtain the normal equations for the unknown parameters, we differentiate Eq. 
(12) partially with respect to the vector parameter γ and equate them to zero.  

ௗ௟௡ெሺఊሻ

ௗఈ
ൌ

ଵ

௡ାଵ

⎩
⎪
⎨

⎪
⎧

ሺଵି௫భ
షഊሻఈషೣభ

షഊ

ఈభషೣభషഊିଵ
െ

௨ሺ௫భሻାሺఈିଵሻ௨ഀሺ௫భሻ

ሺఈିଵሻ௨ሺ௫భሻ
൅  

ሺఈିଵሻ௨ሺ௫೙ሻ൫ଵି௫೙
షഊ൯ఈషೣ೙షഊ

ିሺఈభషೣ೙షഊ
ିଵሻሾሺఈିଵሻ௨ഀሺ௫೙ሻା௨ሺ௫೙ሻሿ

൫ሺఈିଵሻ௨ሺ௫೙ሻ൯
మ
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               (13) 
where 𝑢ఈ, 𝑢ఏ  and 𝑢ఒ represent the partial derivative of  𝑢ሺ𝑥௜ሻ with respect to α, θ and 
λ  respectively. The estimators of γ can be obtained by solving the above system of 
nonlinear equations numerically, so the MPS of α, θ and λ are denoted by 𝛼ොெ௉, 𝜃෠ெ௉and 
𝜆መெ௉ respectively. 

4. Bayesian Estimation Method 

In this section we consider the non-classical method of estimation that is Bayes 
estimates for the unknown parameters α, θ and λ of MOAPP distribution. 
The quadratic loss and LINEX loss functions are the assumed loss functions. 

In Bayesian method, all parameters are random variables with a certain distribution 
called prior distribution. If prior information is not available which is usually the case, 
we need to select a prior distribution. Since the selection of prior distribution plays an 
important role in estimation of the parameters, our choice for the prior of α,θ and λ are 
the independent gamma distributions, which are G(a1, b1), G(a2, b2) and G(a3, b3) 
respectively. Thus, the suggested prior for α, θ and λ can be written as: 

𝜋ଵሺ𝛼ሻ ∝ 𝛼௔భିଵ𝑒ି௕భఈ, 𝜋ଶሺ𝜃ሻ ∝ 𝜃௔మିଵ𝑒ି௕మఏ, 𝜋ଷሺ𝜆ሻ ∝ 𝜆௔యିଵ𝑒ି௕యఒ, 

respectively, where a1, a2, a3, b1, b2 and b3 are the hyper parameters of prior 
distributions. 

The joint prior of α, θ and λ is 

𝑘ሺ𝛼, 𝜃, 𝜆ሻ ∝ 𝛼௔భିଵ𝜃௔మିଵ𝜆௔యିଵ𝑒ି௕భఈି௕మఏି௕యఒ, 𝛼, 𝜃, 𝜆, 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑏ଵ, 𝑏ଶ, 𝑏ଷ ൐ 0. 
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The joint posterior of α, θ and λ is given by 

𝑝ሺ𝛼, 𝜃, 𝜆/𝑥ሻ ∝ 𝐿ሺ𝑥/𝛼, 𝜃, 𝜆ሻ𝑘ሺ𝛼, 𝜃, 𝜆ሻ, 

where L(𝑥/α,θ, λ) is the likelihood function of MOAPP distribution. When substituting 
the likelihood function L(𝑥/α, θ, λ) and the joint prior 𝑘ሺ𝛼, 𝜃, 𝜆ሻin the above equation, 
the joint posterior will be: 

𝑝 ቆ𝛼, 𝜃,
𝜆
𝑥

ቇ ∝ 𝛼௡ି∑ ௫೔
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𝛼 െ 1
𝐿𝑜𝑔𝛼
𝑥௜
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ቀ𝛼ଵି௫೔
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െ 1ቁ൱

ିଶ௡

௜ୀଵ

 

𝑝ሺ𝛼, 𝜃, 𝜆/𝑥ሻ ∝ 𝐺ఈ\ఒሺ𝑛 െ ∑ 𝑥௜
ିఒ௡

௜ୀଵ ൅ 𝑎ଵ, 𝑏ଵሻ𝐺ఏሺ𝑛 ൅ 𝑎ଶ, 𝑏ଶሻ𝐺ఒሺ𝑛 ൅ 𝑎ଷ, 𝑏ଷሻ𝑒థሺ஑,஘,஛ሻ, 

 

where 𝜙ሺα, θ, λሻ ൌ ∑ 𝑙𝑛௡
௜ୀଵ

ଵ

ఈିଵ

௅௢௚ఈ
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ሺଵିఏሻ

ఈିଵ
ቀ𝛼ଵି௫೔

షഊ
െ 1ቁ൰ 

In the case of quadratic loss function, Bayes estimate is the posterior mean, the 
determination of posterior mean for the purpose of obtaining Bayes estimation of the 
parameters α, θ and λ, is not easy to obtain unless we use numerical approximation 
methods. 

In the literature, there are several approximation methods available to solve this 
kind of problem. Here, we consider Monte Carlo Markov Chain (MCMC) 
approximation method, see Karandikar (2006). This approximation method reduces 
the ratio of integrals into a whole and produces a single numerical result. 

A wide variety of MCMC schemes are available. An important sub-class of MCMC 
methods are Gibbs sampling and more general Metropolis within Gibbs samplers. 
Indeed, the MCMC samples may be used to completely summarize the posterior 
uncertainty about the parameters α, θ and λ, through a kernel estimate of the posterior 
distribution. This is also true of any function of the parameters. 

Therefore, to generate samples from MOAPP distribution, we use the Metropolis-
Hastings method (Metropolis et al. (1953) with normal proposal distribution). 
For details regarding the implementation of the Metropolis-Hasting algorithm, the 
readers may refer to Robert and Casella (2013) and Almetwally et al. (2018). The full 
conditional posterior densities of α, θ and λ and the data are given by:  

𝜋൫𝛼 𝜃,⁄ 𝜆; 𝑥൯ ∝ 𝐺ఈ\ఒ ൭𝑛 െ ෍ 𝑥௜
ିఒ

௡

௜ୀଵ

൅ 𝑎ଵ, 𝑏ଵ൱ 𝑒థሺ஑,஘,஛ሻ 

𝜋൫𝜃 𝛼,⁄ 𝜆, 𝑥൯ ൌ 𝐺ఏሺ𝑛 ൅ 𝑎ଶ, 𝑏ଶሻ𝑒
ିଶ୪୬ ቆఏା

ሺభషഇሻ
ഀషభ

ቀఈభషೣ೔
షഊ

ିଵቁቇ
                           (14) 

𝜋൫𝜆 𝛼,⁄ 𝜃, 𝑥൯ ൌ 𝐺ఒሺ𝑛 ൅ 𝑎ଷ, 𝑏ଷሻ𝑒థሺ஑,஘,஛ሻ 

To apply the Gibbs technique we need the following algorithm: 
(1) Start with initial values ሺ𝛼଴, 𝜃଴, 𝜆଴ሻ 
(2) Use M-H algorithm to generate posterior sample for α, θ and λ from Eq. (14) 
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(3) Repeat step 2 (T)-times and obtain (𝛼ଵ, 𝜃ଵ, 𝜆ଵ), 𝛼ଶ, 𝜃ଶ, 𝜆ଶ),…,( 𝛼், 𝜃், 𝜆்) 
(4) After obtaining the posterior sample, the Bayes estimates of α, θ and λ with respect 
to quadratic loss function are: 
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where 𝑇଴ is the burn-in-period of Markov Chain. 
The Bayes estimates of the unknown parameters α, θ and λ under the LINEX loss 

function can be calculated through the following equation: 

𝛾௝ ൌ
ିଵ

జ
𝑙𝑛 ൬∑ ௘షഔംሺ೔ሻ

௅
௅
௜ୀଵ ൰, 

where ν reflects the direction and degree of asymmetry,  L is number of periods in the 
MCMC. 

5. Interval Estimation Methods 

In this section we consider three methods of approximate confidence intervals for 
the parameters of MOAPP distribution. Numerical analysis via simulation is used for 
comparisons between these methods in Section 6. 

5.1. Asymptotic confidence Interval for (MLE) 

When the sample size is large enough, the normal approximation of the MLE can 
be used to construct asymptotic confidence intervals for the parameters α, θ and λ. The 

asymptotic normality of MLE can be stated as √𝑛ሺ𝛾ො െ 𝛾ሻ
ௗ
→ N3(0,I⁻¹(γ)), where 

γ=(α,θ, λ) is a vector of parameters, 
ௗ
→ denotes convergence in distribution and Iሺ𝛾ሻ is 

the Fisher information matrix 

Iሺ𝛾ሻ ൌ െ ቎
𝐸ሺℓఈఈሻ 𝐸ሺℓఈఏሻ 𝐸ሺℓఈఒሻ
𝐸ሺℓఏఈሻ 𝐸ሺℓఏఏሻ 𝐸ሺℓఏఒሻ
𝐸ሺℓఒఈሻ 𝐸ሺℓఒఏሻ 𝐸ሺℓఒఒሻ

቏ 

The expected values of the second derivatives can be found by using some 
integration techniques. Therefore, the (1- 𝜁) 100% approximate CIs for α, θ and λ are 

𝛼ො േ 𝑧അ
మ
√𝜐ଵଵ, 𝜃෠ േ 𝑧അ

మ
√𝜐ଶଶ , 𝜆መ േ 𝑧അ

మ
ඥ𝜐ଷଷ, 
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respectively, where 𝜐ଵଵ, 𝜐ଶଶ, 𝜐ଷଷ are the entries in the main diagonal of the Fisher matrix 
I⁻¹(γ), and 𝑧അ

మ
 is the ( ఍

ଶ
) 100% lower percentile of the standard normal distribution. 

5.2. Asymptotic Confidence Interval for (MPS) 

In this section, we propose the asymptotic confidence intervals using MPS method. 
As it was mentioned by Cheng and Amin [1979], Ghosh and Jammalamadaka [2001] 
and Anatolyev and Kosenok [2005], the MPS method also shows asymptotic properties 
like the maximum likelihood estimator and is asymptotically equivalent to MLE. 
Therefore, we may propose the asymptotic confidence intervals using MPS. The exact 
distribution of the MPS cannot be obtained explicitly. Therefore, the asymptotic 
properties of MPS similar to that of MLE can be used to construct the confidence 
intervals. 

Jሺ𝛾ሻ ൌ െ ቎
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𝐸ሺ𝑀ఒఈሻ 𝐸ሺ𝑀ఒఏሻ 𝐸ሺ𝑀ఒఒሻ

቏ 

The first derivatives of the product of spacing, i.e. the function M with respect to 
parameters α, θ and λ, are given by Equation (13), second derivative can be found 
numerically and hence one can obtain the (1- 𝜁) 100% asymptotic confidence intervals 
based on MPS as follows: 
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where 𝜔ଵଵ, 𝜔ଶଶ and 𝜔ଷଷ are the diagonal entries of the Fisher matrix Jିଵሺ𝛾ሻ. 

5.3. Credible intervals 

Using MCMC techniques in Section (4), the Bayes credible intervals of the 
parameter α, θ and λ can be obtained as follows: 

(1) Arrange αi, θi and λi; in ascending order as follow 𝛼ሾଵሿ, 𝛼ሾଶሿ, … , 𝛼ሾ்ሿ, 
𝜃ሾଵሿ, 𝜃ሾଶሿ, … , 𝜃ሾ்ሿ and 𝜆ሾଵሿ, 𝜆ሾଶሿ, … , 𝜆ሾ்ሿ 

(2) A two-sided (1- 𝜁) 100% credible intervals for the unknown parameters α, θ and 
λ are given by 

ሺ𝛼
ቈ்അ

మ
቉
, 𝛼

ቈ்
భష

അ
మ

቉
ሻ, ሺ𝜃

ቈ்അ
మ

቉
, 𝜃

ቈ்
భష

അ
మ

቉
ሻ, ሺ𝜆

ቈ்അ
మ

቉
, 𝜆

ቈ்
భష

അ
మ

቉
ሻ, 

respectively, where [x] denoted the largest integer less than or equal to x.  
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6. Simulation Study and Data Analysis 

6.1. Simulation Study 

In this section, we consider some experimental results that are produced to see the 
effectiveness of different point and interval estimation methods. We mainly compare 
different point estimates in terms of mean squared errors (MSE) and bias values. 
Efficiency of confidence intervals is compared in terms of average interval length (AIL). 
Based on the generated data, we compute MLE and MPS estimates using the Newton-
Raphson method. Further, we compute Bayes estimates using a Monte Carlo simulation 
and the MH algorithm under both squared error and LINEX loss functions with v=1.5  
by using R language. 

We start by building our model with generating all simulation controls. In this 
stage, we must do the following steps in sequence: 
Step 1: Suppose the following values for the parameter vector of MOAPP distribution 
γ=(α,θ, λ), case 1=(0.5, 0.5, 1.5), case 2=(1.5, 0.5, 1.5), case 3=(3,0.5,1.5), case 4=(0.5,1.5, 
1.5), case 5 =(1.5,1.5,1.5) and case 6=(3,1.5,1.5), case 7=(0.5,3,1.5), case 8=(1.5,3,1.5), 
case 9=(3,3,1.5). 
Step 2: Choose sample sizes n =30, 70 and 200. 
Step 3: Generate the sample random values of MOAPP distribution by using quantile 

function𝑋 ൌ ቀ1 െ
ଵ

୪୬ሺఈሻ
ln ቀ1 ൅

ఏ௎ሺఈିଵሻ

ଵି௎ሺଵିఏሻ
ቁቁ

ିଵ
ఒൗ

, where U is a uniform distribution (0, 1). 
Step 4: Solve differential equations for each estimation methods, to obtain the 
estimators of the parameters for MOAPP distribution, so we calculate α, θ, and λ. 
Step 5: Repeat this experiment (L-1) times. In each experiment use the same values of 
the parameters. It is certain that the values of generating random samples are varying 
from experiment to experiment even though the sample size (n) does not change. 
Finally, we have L-values of bias and MSE. We compute the average biases and average 
MSE's over 10,000 runs. This number of runs will give the accuracy in the order ±0.01 
(see Karian and Dudewicz (1998)). The bias of estimator is equal to 𝛾ො െ 𝛾, where 𝛾ො is 
the estimated value of γ, and the mean squared error (MSE) of the estimator is 
MSE=Mean (𝛾ො െ 𝛾)². 

The simulated results of point estimation methods are presented in Tables (1) to 
(3), where the MSE and the bias are given in each cell and it can be pointed out that the 
MPS and Bayesian methods for estimating the unknown parameters of MOAPP 
distribution are better than the MLE method, where the MSE value is considered for 
comparison. We summarize the cases as follows: 

1- For 0 ൏ 𝛼 ൏ 1, the best point estimation method for estimating 𝛼 is the Bayesian 
method under LINEX loss function, while for 𝛼 ൐ 1 the best estimation method is 
the MPS and Baysian under the SE loss function. 
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2- For 0 ൏ 𝜃 ൏ 1, the best point estimation method for 𝜃 is the Bayesian method 
under LINEX loss function, while for 𝜃 ൐ 1 the best estimation method is the MPS 
and Bayesian under the SE loss function. 

3- For all values of  𝜆 the Bayesian under the SE loss function is the best estimation 
method. 

4- The average bias and MSE decrease as the sample size increases. It verifies the 
consistency properties of all the estimators. 

5- The MLE overestimates α, θ and λ for almost all cases except for case 3, where the 
MLE underestimates α. It is also noticed that when the sample size n=200, the MLE 
underestimate α for cases 1, 3, 6 and underestimate θ for case 7, see Table (3).  

6- MPS and Bayesian estimation sometimes overestimate the parameters and 
sometimes underestimate them.    

Figure 3 shows the three dimension plots of MSE with different parameters values 

For confidence interval estimation of MOAPP parameters α, θ and λ, we observe 
the 95% confidence intervals (L,U) where L represents the lower bound and U is the 
upper bound of this interval. Three confidence intervals are considered in simulation 
analysis, i.e. asymptotic confidence intervals of MLE and MPS, also the credible 
intervals of Bayesian method under SE and LINEX loss functions. The comparison is 
conducted depending on the average interval length (AIL), hence the smaller the AIL 
is the better confidence estimate we observe. The results are reported in Tables (4) to 
(6) below.  

Table 1. Bias and MSE for 𝛼, 𝜃, 𝑎𝑛𝑑  𝜆, with n=30 

𝜆 𝜃 𝛼 n=30 
MLE MPS SE LINEX (𝜐 ൌ 1.5ሻ 

Bias MSE Bias MSE Bias MSE Bias MSE 

1.5 

0.5 

0.5 
𝛼 0.1072 0.1866 -0.0160 0.0818 0.1051 0.0994 0.0310 0.0661 
𝜃 0.3212 0.4946 0.0540 0.2012 0.0517 0.0536 0.0071 0.0395 
 𝜆 0.3134 0.9250 -0.2585 0.6378 -0.0858 0.1772 -0.1893 0.1832 

1.5 
𝛼 0.0975 0.4482 0.0092 0.0306 -0.2242 0.3509 -0.3552 0.4101 
𝜃 0.2341 0.3511 -0.0125 0.1299 0.1058 0.0816 0.0559 0.0549 
 𝜆 0.2786 0.6504 -0.1677 0.4781 -0.0966 0.1989 -0.1919 0.2103 

3 
𝛼 -0.0792 1.1131 -0.0032 0.0421 -0.3287 0.5870 -0.5214 0.8308 
𝜃 0.2925 0.4977 -0.0030 0.1425 0.1049 0.0894 0.0561 0.0620 
 𝜆 0.2350 0.4980 -0.1624 0.3824 -0.0554 0.1675 -0.1436 0.1748 

1.5 

0.5 
𝛼 0.3291 0.6917 0.0265 0.1905 0.1369 0.1079 0.0642 0.0693 
𝜃 0.2813 0.7987 -0.0524 0.3616 -0.1709 0.2413 -0.2738 0.2666 
 𝜆 0.1274 0.4280 -0.2490 0.4257 -0.1173 0.1662 -0.2064 0.1787 

1.5 
𝛼 0.4186 1.2902 -0.0008 0.1538 -0.1472 0.2932 -0.2716 0.3255 
𝜃 0.3391 1.1591 -0.0960 0.5198 -0.1357 0.2656 -0.2441 0.2761 
 𝜆 0.1351 0.2503 -0.1453 0.2163 -0.1746 0.1315 -0.2488 0.1643 

3 
𝛼 0.2624 2.2557 0.0121 0.1190 -0.2997 0.5282 -0.4753 0.7364 
𝜃 0.5562 1.8669 -0.0793 0.6735 -0.1658 0.2256 -0.2638 0.2538 
 𝜆 0.1207 0.2080 -0.1428 0.1813 -0.1191 0.0944 -0.1806 0.1122 
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Table 1. Bias and MSE for 𝛼, 𝜃, 𝑎𝑛𝑑  𝜆, with n=30  (cont.) 

𝜆 𝜃 𝛼 n=30 
MLE MPS SE LINEX (𝜐 ൌ 1.5ሻ 

Bias MSE Bias MSE Bias MSE Bias MSE 

1.5 3 

0.5 
𝛼 0.4689 1.2082 0.0355 0.2951 0.1449 0.1438 0.0665 0.0872 
𝜃 0.1613 0.9882 -0.0498 0.3326 -0.3164 0.4939 -0.4915 0.7154 
 𝜆 0.0897 0.2667 -0.2146 0.2902 -0.0869 0.0977 -0.1582 0.1124 

1.5 
𝛼 0.6631 3.0228 -0.1891 0.6353 -0.1309 0.3296 -0.2644 0.3409 
𝜃 0.4555 2.2871 -0.0747 0.5972 -0.3635 0.5986 -0.5534 0.8297 
 𝜆 0.0844 0.1606 -0.1612 0.1698 -0.1407 0.0853 -0.1967 0.1038 

 

Table 2. Bias and MSE for 𝛼, 𝜃, 𝑎𝑛𝑑  𝜆, with n=70 

𝜆 𝜃 𝛼 n=70 
MLE MPS SE LINEX (𝜐 ൌ 1.5ሻ 

Bias MSE Bias MSE Bias MSE Bias MSE 

1.5 

0.5 

0.5 
𝛼 0.0336 0.1130 -0.0739 0.0776 0.0250 0.0670 -0.0041 0.0572 
𝜃 0.2013 0.2553 0.0725 0.1261 0.0400 0.0359 0.0215 0.0304 
 𝜆 0.1153 0.3558 -0.2104 0.3237 -0.0639 0.1000 -0.0990 0.1095 

1.5 
𝛼 0.0623 0.2540 0.0138 0.0160 -0.0476 0.1202 -0.0944 0.1319 
𝜃 0.0885 0.0804 -0.0261 0.0491 0.0456 0.0296 0.0289 0.0255 
 𝜆 0.1287 0.2330 -0.1076 0.2087 -0.0293 0.0771 -0.0618 0.0782 

3 
𝛼 -0.0249 0.6191 0.0128 0.0235 -0.0472 0.1116 -0.0870 0.1191 
𝜃 0.1154 0.1198 -0.0197 0.0518 0.0161 0.0295 0.0005 0.0265 
𝜆 0.1113 0.1867 -0.0977 0.1677 -0.0338 0.0770 -0.0667 0.0822 

1.5 

0.5 
𝛼 0.1695 0.3175 -0.0285 0.1061 0.0281 0.0477 0.0027 0.0410 
𝜃 0.1438 0.3712 0.0043 0.1709 -0.0248 0.0884 -0.0606 0.0921 
 𝜆 0.0368 0.1866 -0.1745 0.2275 -0.0403 0.0616 -0.0687 0.0652 

1.5 
𝛼 0.2486 0.6849 -0.0010 0.0723 -0.0557 0.1385 -0.1022 0.1463 
𝜃 0.1372 0.4181 -0.0742 0.2391 -0.0262 0.0840 -0.0630 0.0839 
 𝜆 0.0646 0.1015 -0.0772 0.0965 -0.0315 0.0444 -0.0537 0.0460 

3 

𝛼 0.1262 1.3314 0.0191 0.0541 -0.0835 0.1412 -0.1363 0.1604 
𝜃 0.2561 0.6573 -0.0634 0.3260 -0.0548 0.0829 -0.0907 0.0905 
 𝜆 0.0609 0.0867 -0.0736 0.0816 -0.0377 0.0371 -0.0590 0.0397 
𝜃 0.2134 0.7791 -0.0560 0.2755 -0.0493 0.1043 -0.0916 0.1168 
 𝜆 0.0865 0.2809 -0.1488 0.2530 -0.0658 0.0681 -0.0989 0.0762 

 

Table 3. Bias and MSE for 𝛼, 𝜃, 𝑎𝑛𝑑  𝜆, with n=200 

𝜆 𝜃 𝛼 n=200 
MLE MPS SE LINEX (𝜐 ൌ 1.5ሻ 

Bias MSE Bias MSE Bias MSE Bias MSE 

1.5 0.5 

0.5 
𝛼 -0.0015 0.0775 -0.0905 0.0613 0.0009 0.0125 -0.0042 0.0124 
𝜃 0.1046 0.0836 0.0714 0.0588 0.0091 0.0066 0.0058 0.0064 
 𝜆 0.0222 0.1137 -0.1368 0.1294 -0.0161 0.0117 -0.0210 0.0119 

1.5 
𝛼 0.0142 0.0877 0.0118 0.0068 -0.0160 0.0178 -0.0224 0.0182 
𝜃 0.0353 0.0227 -0.0186 0.0152 -0.0021 0.0049 -0.0053 0.0049 
 𝜆 0.0528 0.0709 -0.0515 0.0683 -0.0041 0.0117 -0.0087 0.0119 

3 
𝛼 -0.0391 0.3088 0.0124 0.0111 -0.0136 0.0120 -0.0189 0.0124 
𝜃 0.0460 0.0303 -0.0153 0.0155 -0.0028 0.0054 -0.0058 0.0054 
 𝜆 0.0470 0.0581 -0.0453 0.0551 -0.0054 0.0120 -0.0103 0.0120 
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Table 3. Bias and MSE for 𝛼, 𝜃, 𝑎𝑛𝑑  𝜆, with n=200  (cont.) 

𝜆 𝜃 𝛼 n=200 
MLE MPS SE LINEX (𝜐 ൌ 1.5ሻ 

Bias MSE Bias MSE Bias MSE Bias MSE 

1.5 

1.5 

0.5 
𝛼 0.0811 0.1085 -0.0388 0.0462 -0.0007 0.0105 -0.0051 0.0104 
𝜃 0.1062 0.2893 0.0313 0.0781 -0.0098 0.0133 -0.0153 0.0133 
 𝜆 0.0015 0.0617 -0.0828 0.0750 -0.0065 0.0107 -0.0110 0.0110 

1.5 
𝛼 0.2053 0.7433 -0.0043 0.0249 -0.0106 0.0184 -0.0164 0.0189 
𝜃 0.0514 0.1709 -0.0382 0.0765 -0.0062 0.0175 -0.0120 0.0177 
 𝜆 0.0244 0.0320 -0.0322 0.0321 -0.0068 0.0093 -0.0111 0.0093 

3 
𝛼 -0.0239 1.1126 0.0035 0.0187 -0.0147 0.0171 -0.0205 0.0176 
𝜃 0.1709 0.3354 -0.0348 0.1077 -0.0227 0.0146 -0.0285 0.0151 
 𝜆 0.0272 0.0289 -0.0302 0.0276 -0.0167 0.0074 -0.0207 0.0077 

3 

0.5 
𝛼 0.0965 0.1246 -0.0138 0.0489 -0.0011 0.0108 -0.0056 0.0106 
𝜃 -0.0013 0.2440 0.0044 0.0374 -0.0133 0.0136 -0.0191 0.0139 
 𝜆 0.0164 0.0375 -0.0498 0.0434 -0.0005 0.0076 -0.0047 0.0076 

1.5 

𝛼 0.0865 0.2790 -0.0494 0.1157 -0.0120 0.0160 -0.0177 0.0163 
𝜃 0.0794 0.2092 -0.0320 0.1043 -0.0416 0.0195 -0.0484 0.0209 
 𝜆 0.0205 0.0219 -0.0281 0.0209 -0.0158 0.0063 -0.0195 0.0064 
𝜃 0.0329 0.5907 -0.0334 0.1001 -0.0094 0.0162 -0.0155 0.0166 
 𝜆 0.0312 0.0863 -0.0568 0.0813 -0.0111 0.0129 -0.0162 0.0131 

 
From Tables (4) to (6) we notice that the (AIL) of the credible intervals under SE 

and LINEX are smaller than the (AIL) of MLE and MPS in most cases except for some 
restricted ones. 

We can summarize the analysis of the confidence interval estimation in the 
following points: 

1. For 0 ൏ 𝛼 ൏ 1, the best interval estimate for 𝛼 is the Bayesian credible interval 
under SE and LINEX loss functions, while for 𝛼 ൐ 1 the best interval estimation 
is the asymptotic interval under the MPS method except for cases 8 and 11, where 
the Bayesian credible interval under LINEX has the smallest AIL. 

2. For 𝜃 ൏ 3, the best interval estimate for 𝜃 is the Bayesian credible interval under 
LINEX loss function, while for 𝜃 ൒ 3, the best interval estimation is the 
asymptotic interval under the MPS method and the Bayesian credible interval 
under the SE loss function.  

3. Bayesian credible interval under the LINEX loss function has the smallest AIL for 
estimating 𝜆 , and hence it can be considered as the best confidence interval of 𝜆. 
For the case 5, the Bayesian credible interval under the SE loss function is 
preferable to estimate 𝜆. 

4. AIC decreases as the sample size increases.  
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Table 4. 95% confidence intervals and Average Interval length for 𝛼, 𝜃, 𝑎𝑛𝑑  𝜆, with n=30 

𝜆 𝜃 𝛼 30 

MLE MPS SE LINEX(𝜐 ൌ 1.5ሻ 

L U AIL L U AIL L U AIL L U AIL 

1.5 

0.5 

0.5 

𝛼 -0.2133 1.4278 1.6411 -0.0759 1.0439 1.1198 0.0210 1.1892 1.1683 0.0294 1.0326 1.0033 

𝜃 -0.4056 2.0480 2.4536 -0.3191 1.4271 1.7462 0.1082 0.9952 0.8870 0.1169 0.8972 0.7803 

𝜆 0.0303 3.5965 3.5662 -0.2403 2.7233 2.9636 0.6044 2.2240 1.6196 0.5564 2.0650 1.5086 

1.5 

𝛼 0.2986 2.8963 2.5976 1.1668 1.8515 0.6847 0.1985 2.3531 2.1546 0.0978 2.1918 2.0940 

𝜃 -0.3332 1.8014 2.1346 -0.2188 1.1938 1.4126 0.0845 1.1270 1.0425 0.1088 1.0030 0.8942 

𝜆 0.2944 3.2627 2.9683 0.0168 2.6477 2.6309 0.5480 2.2588 1.7108 0.4897 2.1264 1.6367 

3 

𝛼 0.8578 4.9839 4.1260 2.5943 3.3992 0.8049 1.3115 4.0312 2.7196 1.0097 3.9475 2.9379 

𝜃 -0.4663 2.0514 2.5176 -0.2431 1.2372 1.4803 0.0549 1.1549 1.1000 0.0793 1.0329 0.9535 

𝜆 0.4303 3.0398 2.6095 0.1675 2.5076 2.3401 0.6478 2.2414 1.5936 0.5849 2.1280 1.5430 

1.5 

0.5 

𝛼 -0.6687 2.3269 2.9956 -0.3277 1.3808 1.7085 0.0501 1.2236 1.1735 0.0627 1.0658 1.0031 

𝜃 0.1178 3.4447 3.3268 0.2730 2.6223 2.3493 0.4241 2.2340 1.8099 0.3661 2.0863 1.7202 

𝜆 0.3690 2.8857 2.5167 0.0684 2.4337 2.3653 0.6155 2.1500 1.5345 0.5688 2.0184 1.4496 

1.5 

𝛼 -0.1520 3.9892 4.1412 0.7303 2.2682 1.5379 0.3290 2.3767 2.0476 0.2425 2.2143 1.9718 

𝜃 -0.1647 3.8429 4.0076 0.0028 2.8053 2.8025 0.3874 2.3412 1.9539 0.3417 2.1701 1.8284 

𝜆 0.6905 2.5797 1.8892 0.4884 2.2209 1.7325 0.7009 1.9499 1.2489 0.6224 1.8800 1.2576 

3 

𝛼 0.3625 6.1622 5.7997 2.3361 3.6882 1.3521 1.3994 4.0013 2.6020 1.1209 3.9286 2.8078 

𝜃 -0.3910 4.5035 4.8945 -0.1811 3.0224 3.2035 0.4596 2.2088 1.7492 0.3928 2.0797 1.6869 

𝜆 0.7583 2.4830 1.7247 0.5705 2.1440 1.5735 0.8245 1.9374 1.1129 0.7651 1.8737 1.1086 

3 

0.5 

𝛼 -0.9806 2.9184 3.8990 -0.5275 1.5985 2.1261 -0.0438 1.3336 1.3774 0.0013 1.1317 1.1304 

𝜃 1.2377 5.0848 3.8470 1.8234 4.0769 2.2535 1.4506 3.9167 2.4661 1.1560 3.8610 2.7050 

𝜆 0.5923 2.5870 1.9946 0.3165 2.2544 1.9379 0.8230 2.0032 1.1802 0.7610 1.9227 1.1617 

1.5 

𝛼 -0.9886 5.3148 6.3033 -0.2075 2.8293 3.0368 0.2708 2.4675 2.1967 0.2128 2.2585 2.0457 

𝜃 0.6277 6.2833 5.6557 1.4170 4.4336 3.0166 1.2945 3.9785 2.6840 1.0250 3.8681 2.8431 

𝜆 0.8161 2.3526 1.5364 0.5950 2.0826 1.4876 0.8565 1.8621 1.0056 0.8019 1.8046 1.0027 

3 

𝛼 0.2547 6.8300 6.5753 1.7246 4.0180 2.2933 1.3338 4.0549 2.7210 1.0840 3.9622 2.8781 

𝜃 -0.0412 7.4860 7.5271 0.4755 4.9025 4.4270 1.4397 3.8171 2.3774 1.1806 3.7464 2.5657 

𝜆 0.8854 2.2719 1.3865 0.7585 1.9615 1.2030 0.9602 1.8124 0.8522 0.9186 1.7663 0.8477 

3 

𝛼 -0.3982 7.9265 8.3247 1.7148 4.0117 2.2969 1.4737 4.0449 2.5712 1.2437 3.9261 2.6824 

𝜃 -0.4460 8.2602 8.7062 0.5164 4.8636 4.3472 1.4178 3.9410 2.5232 1.1647 3.8338 2.6690 

𝜆 1.7433 4.6034 2.8601 1.5358 3.9054 2.3696 1.9628 3.6126 1.6498 1.8242 3.5302 1.7061 

1.5 

𝛼 -1.4085 6.2428 7.6513 -0.1771 2.8018 2.9789 0.2497 2.5138 2.2641 0.2016 2.3069 2.1053 

𝜃 0.1217 6.8545 6.7328 1.4359 4.4034 2.9675 1.4646 3.7652 2.3006 1.2311 3.6803 2.4492 

𝜆 1.6064 4.7305 3.1241 1.2692 4.1083 2.8392 1.7903 3.6714 1.8810 1.6402 3.5800 1.9398 
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Table 5. 95% confidence intervals and Average Interval length for 𝛼, 𝜃, 𝑎𝑛𝑑  𝜆, with n=70 

𝜆 𝜃 𝛼 n=70 

MLE MPS SE LINEX (𝜐 ൌ 1.5ሻ 

L U AIL L U AIL L U AIL L U AIL 

1.5 

0.5 

0.5 

𝛼 -0.1221 1.1894 1.3115 -0.1005 0.9527 1.0532 0.0188 1.0311 1.0124 0.0262 0.9656 0.9394 

𝜃 -0.2076 1.6101 1.8178 -0.1093 1.2543 1.3636 0.1760 0.9040 0.7280 0.1817 0.8613 0.6796 

𝜆 0.4676 2.7630 2.2954 0.2531 2.3260 2.0729 0.8275 2.0448 1.2173 0.7805 2.0215 1.2410 

1.5 

𝛼 0.5817 2.5430 1.9613 1.2670 1.7606 0.4936 0.7775 2.1272 1.3497 0.7164 2.0948 1.3784 

𝜃 0.0601 1.1169 1.0568 0.0424 0.9054 0.8630 0.2195 0.8717 0.6522 0.2204 0.8373 0.6170 

𝜆 0.7164 2.5410 1.8245 0.5217 2.2631 1.7413 0.9281 2.0133 1.0852 0.9025 1.9740 1.0715 

3 

𝛼 1.4329 4.5173 3.0844 2.7130 3.3126 0.5996 2.3029 3.6027 1.2998 2.2568 3.5692 1.3124 

𝜃 -0.0246 1.2553 1.2798 0.0356 0.9250 0.8893 0.1800 0.8521 0.6721 0.1808 0.8201 0.6392 

𝜆 0.7925 2.4301 1.6376 0.6225 2.1821 1.5596 0.9249 2.0075 1.0826 0.8856 1.9810 1.0954 

1.5 

0.5 

𝛼 -0.3842 1.7232 2.1074 -0.1648 1.1079 1.2727 0.1026 0.9535 0.8509 0.1047 0.9007 0.7960 

𝜃 0.4829 2.8048 2.3218 0.6937 2.3150 1.6213 0.8930 2.0574 1.1644 0.8552 2.0236 1.1684 

𝜆 0.6928 2.3809 1.6882 0.4551 2.1960 1.7409 0.9784 1.9410 0.9626 0.9481 1.9144 0.9664 

1.5 

𝛼 0.2007 3.2964 3.0957 0.9716 2.0263 1.0547 0.7212 2.1673 1.4461 0.6736 2.1221 1.4485 

𝜃 0.3980 2.8763 2.4782 0.4780 2.3736 1.8957 0.9067 2.0409 1.1342 0.8816 1.9925 1.1109 

𝜆 0.9529 2.1763 1.2234 0.8326 2.0130 1.1804 1.0593 1.8778 0.8185 1.0385 1.8541 0.8156 

3 

𝛼 0.8771 5.3753 4.4982 2.5645 3.4737 0.9093 2.1967 3.6364 1.4397 2.1237 3.6038 1.4801 

𝜃 0.2477 3.2646 3.0169 0.3239 2.5493 2.2254 0.8900 2.0004 1.1105 0.8455 1.9730 1.1275 

𝜆 0.9959 2.1259 1.1300 0.8850 1.9677 1.0827 1.0909 1.8337 0.7428 1.0669 1.8151 0.7481 

3 

0.5 

𝛼 -0.3870 1.7949 2.1819 -0.2668 1.2531 1.5200 0.0700 1.0371 0.9671 0.0774 0.9710 0.8936 

𝜃 1.9630 4.1461 2.1831 2.3265 3.6698 1.3434 2.2411 3.5523 1.3113 2.1837 3.5206 1.3369 

𝜆 0.8594 2.2130 1.3536 0.6518 2.0811 1.4293 1.0213 1.9079 0.8866 0.9933 1.8881 0.8948 

1.5 

𝛼 -0.0243 3.5307 3.5550 0.2681 2.5019 2.2338 0.7207 2.0742 1.3535 0.6664 2.0365 1.3701 

𝜃 1.5904 4.7831 3.1927 1.9043 3.9939 2.0896 2.2433 3.6152 1.3719 2.1870 3.5810 1.3940 

𝜆 1.0468 2.0441 0.9973 0.9438 1.9072 0.9634 1.1532 1.7436 0.5904 1.1356 1.7237 0.5881 

𝜃 1.5340 4.8929 3.3589 1.9207 3.9674 2.0467 2.3237 3.5777 1.2540 2.2615 3.5554 1.2940 

𝜆 2.0612 4.1119 2.0507 1.9090 3.7934 1.8844 2.4380 3.4304 0.9924 2.3947 3.4075 1.0128 
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Table 6. 95% confidence intervals and Average Interval length for 𝛼, 𝜃, 𝑎𝑛𝑑  𝜆, with n=200 

𝜆 𝜃 𝛼 n=200 

MLE MPS SE LINEX (𝜐 ൌ 1.5ሻ 

L U AIL L U AIL L U AIL L U AIL 

1.5 

0.5 

0.5 

𝛼 -0.0474 1.0444 1.0918 -0.0423 0.8613 0.9036 0.2813 0.7205 0.4392 0.2773 0.7142 0.4369 

𝜃 0.0758 1.1333 1.0575 0.1171 1.0257 0.9086 0.3506 0.6677 0.3170 0.3491 0.6625 0.3134 

𝜆 0.8623 2.1822 1.3198 0.7108 2.0155 1.3046 1.2741 1.6937 0.4196 1.2683 1.6898 0.4216 

1.5 

𝛼 0.9343 2.0941 1.1598 1.3516 1.6720 0.3204 1.2235 1.7445 0.5210 1.2160 1.7392 0.5232 

𝜃 0.2482 0.8224 0.5742 0.2421 0.7207 0.4786 0.3602 0.6356 0.2754 0.3582 0.6313 0.2731 

𝜆 1.0410 2.0647 1.0237 0.9461 1.9510 1.0049 1.2832 1.7086 0.4254 1.2777 1.7049 0.4272 

3 

𝛼 1.8739 4.0479 2.1739 2.8074 3.2174 0.4099 2.7727 3.2001 0.4273 2.7659 3.1963 0.4304 

𝜃 0.2169 0.8750 0.6581 0.2425 0.7268 0.4843 0.3527 0.6417 0.2890 0.3508 0.6377 0.2869 

𝜆 1.0836 2.0104 0.9268 1.0031 1.9064 0.9032 1.2794 1.7098 0.4304 1.2751 1.7044 0.4293 

1.5 

0.5 

𝛼 -0.0451 1.2072 1.2524 0.0466 0.8758 0.8292 0.2982 0.7004 0.4022 0.2951 0.6946 0.3996 

𝜃 0.5721 2.6402 2.0681 0.9867 2.0760 1.0893 1.2644 1.7159 0.4516 1.2599 1.7095 0.4495 

𝜆 1.0143 1.9886 0.9742 0.9054 1.9290 1.0236 1.2903 1.6968 0.4065 1.2839 1.6940 0.4101 

1.5 

𝛼 0.0633 3.3473 3.2840 1.1863 1.8051 0.6189 1.2238 1.7549 0.5311 1.2157 1.7515 0.5358 

𝜃 0.7470 2.3557 1.6086 0.9246 1.9990 1.0744 1.2344 1.7532 0.5188 1.2278 1.7482 0.5204 

𝜆 1.1770 1.8718 0.6948 1.1222 1.8135 0.6913 1.3046 1.6819 0.3772 1.3006 1.6772 0.3767 

3 

𝛼 0.9082 5.0440 4.1358 2.7353 3.2717 0.5364 2.7297 3.2409 0.5112 2.7223 3.2367 0.5145 

𝜃 0.5858 2.7560 2.1702 0.8252 2.1053 1.2801 1.2441 1.7105 0.4665 1.2366 1.7064 0.4698 

𝜆 1.1981 1.8563 0.6581 1.1494 1.7902 0.6408 1.3176 1.6489 0.3313 1.3123 1.6464 0.3341 

3 

0.5 

𝛼 -0.0692 1.2622 1.3314 0.0536 0.9188 0.8651 0.2951 0.7027 0.4076 0.2927 0.6961 0.4034 

𝜃 2.0302 3.9673 1.9371 2.6254 3.3834 0.7580 2.7593 3.2140 0.4547 2.7524 3.2095 0.4571 

𝜆 1.1380 1.8949 0.7569 1.0534 1.8470 0.7936 1.3280 1.6709 0.3429 1.3247 1.6658 0.3410 

1.5 

𝛼 0.5647 2.6084 2.0437 0.7906 2.1106 1.3200 1.2407 1.7352 0.4946 1.2341 1.7304 0.4963 

𝜃 2.1961 3.9628 1.7668 2.3378 3.5981 1.2603 2.6968 3.2200 0.5232 2.6839 3.2194 0.5355 

𝜆 1.2333 1.8076 0.5743 1.1939 1.7498 0.5559 1.3316 1.6369 0.3053 1.3275 1.6334 0.3059 

𝜃 1.5271 4.5387 3.0116 2.3497 3.5835 1.2338 2.7410 3.2402 0.4993 2.7333 3.2356 0.5023 

𝜆 2.4584 3.6040 1.1456 2.3951 3.4913 1.0962 2.7670 3.2109 0.4439 2.7608 3.2069 0.4461 
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Figure 3. MSE for MLE, MPS and Bayes estimation under SE and LINEX Loss Functions for n= 120. 

6.2. Data Analysis 

In this section we take three different examples of real-life data set. The MLEs 
estimates of the parameters are reported in Tables (9), (10) and (11), then the MOAPP 
model is compared with other special case models like Pareto type 1, generalized Pareto 
(GP), and alpha power Pareto (APP). This comparison was conducted using 
Kolmogorov–Smirnov (KS) distance (D) between the fitted and the empirical 
distribution functions and the corresponding p-values. Also, Akaike information 
criterion (AIC) such that AIC=-2 L(γ)+2p, where p is the number of parameters in the 
model and L is the maximized value of the likelihood function for the model. Given 
a set of candidate models for the data, the preferred model is the one with the minimum 
AIC value. Bayesian information criterion (BIC) is also used for comparison between 
models, where BIC can be defined as: BIC=-2 L(γ)+p ln(n), where n is the sample size. 
As a model selection criterion, the researcher must choose the model with the 
minimum BIC value. The MLEs of 𝛼, 𝜃, 𝑎𝑛𝑑 𝜆  are computed numerically using the 
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function optimal in R statistical package. The values of the KS statistic with p-values, 
AIC and BIC are reported in Tables (7), (8) and (9).  

The first example is from Lawless (1982). The data set consists of failure times or 
censoring times for 36 appliances subjected to an automated life test. Failures are 
mainly classified into 18 different modes, although among 33 observed failures only 
7 modes are present and only model 6 and 9 appear more than once. We are mainly 
interested in the failure mode 9. The data are given below: 
Data 1: 1167, 1925, 1990, 2223, 2400, 2471, 2551, 2568, 2694, 3034, 3112, 3214, 3478, 
3504, 4329, 176976, 7846. 
 
Table 7. MLE estimation with KS, p-values and different model goodness of fit criterion for data 1 

 𝛼ොெ௅ா 𝜃෠ெ௅ா  𝜆መெ௅ா D P-value AIC BIC 

P - - 0.12231 0.57843 6.34E-06 385.4278 3.86E+02 

GP - 3341.032 0.609273 0.33089 0.03686 334.5826 336.2491 

APP 78.74852 - 0.257025 0.48467 0.00034 367.7567 3.69E+02 

MOAPP 9.00E+07 4.60E+07 2.57536 0.2088 0.3941 324.6243 327.124 

 
The second example represents survival times of guinea pigs injected with different 

amount of tubercle bacilli studied by Bjerkedal [1960]. Guinea pigs are subject to high 
susceptibility of human tuberculosis, which is one of the causes for choosing this 
species. 

 
Table 8. MLE estimation with KS, p-values and different model goodness of fit criterion for data 2 

 𝛼ොெ௅ா 𝜃෠ெ௅ா  𝜆መெ௅ா  D P-value AIC BIC 

P - - 0.199805 0.51093 2.2E-16 1098.51 1.10E+03 

GP - 237.9788 0.393478 0.23142 0.000895 879.3132 883.8665 

APP 152.982 - 0.446334 0.40147 1.67E-10 1009.978 1014.531 

MOAPP 112100 322998.1 3.011837 0.06837 0.8894 857.2212 864.0512 

 
The third example is from Almetwally et al. (2019). The data set consists of 

economic data of 31 observations subjected to a GDP growth of Egypt. The data are 
given below. 

Table 9. MLE estimation with KS, p-values and different model goodness of fit criterion for data 3 
 𝛼ොெ௅ா 𝜃෠ெ௅ா  𝜆መெ௅ா  D P-value AIC BIC 

P - - 0.6473 0.3956 0.0001 186.7626 188.1966 

GP - 6.8839 -0.6607 0.2910 0.0080 149.8744 152.7423 

APP 90.2664 - 1.3679 0.2501 0.0340 160.3021 163.1700 

MOAPP 8.5373 153.5946 3.7857 0.0726 0.9927 139.4962 143.7982 
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When comparing the values of KS statistics of MOAPP and other sub models like 
Pareto type 1, GP and APP for the two data examples above, we obtain the minimum 
KS for MOAPP with highest p-values. Also, it can be noticed that the values of AIC and 
BIC take their minimum values when the distribution is MOAPP. Therefore, this 
indicates that the MOAPP distribution fits the two sets of data very well and is better 
than other distributions. This also emphasizes the need of new distributions in 
managing real-life data. So, in general we can say that the new distribution is superior 
according to other sub models. 

7. Conclusions  

In this study we have considered MOAPP distribution which has three unknown 
parameters. This new distribution proved to be more flexible and more appropriate for 
monotone and right skewed lifetime data, also its hazard rate function can be either a 
decreasing or upside-down bathtub curve. We estimate the parameters of MOAPP 
using MLE, MPS and Bayesian method under SE and LINEX loss functions. It is not 
possible to compare different methods theoretically, so we have used some simulations 
to compare different estimators. We have compared different estimators mainly with 
respect to biases and mean squared errors. Confidence intervals are obtained and are 
compared numerically in terms of interval lengths.  The best method for estimating 𝛼 
and 𝜃 is the Bayesian method under the LINEX and SE loss functions depending on the 
values of  𝑎 and 𝜃, it is also noticed that the MPS method acts better for estimating 𝛼 
and 𝜃 than the MLE method. The Bayesian method under the SE loss function is the 
best appropriate method for estimating 𝜆. Confidence intervals under the MPS method 
and the Bayesian credible interval are preferable to confidence intervals under the MLE 
method. Therefore, we recommend the use of the MPS and Bayes estimation methods 
for practical purposes. The flexibility of this distribution was illustrated in some 
applications to real data sets, where the new model proves to better fit data than some 
other sub models. 
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Some linear regression type ratio exponential estimators
for estimating the population mean based on quartile

deviation and deciles

Shakti Prasad1

ABSTRACT

This paper deals some linear regression type ratio exponential estimators for estimating the
population mean using the known values of quartile deviation and deciles of an auxiliary
variable in survey sampling. The expressions of the bias and the mean square error of the
suggested estimators have been derived. It was compared with the usual mean, usual ratio
(Cochran (1977)), Kadilar and Cingi (2004, 2006) and Subzar et al. (2017) estimators. After
comparison, the condition which makes the suggested estimators more efficient than others
is found. To verify the theoretical results, numerical results are performed on two natural
population data sets.

Key words: Bias, Mean square error (MSE), Auxiliary variable, Relative Efficiency (%).

1. Introduction

Cochran (1977) considered a classical ratio type estimator for the estimation of finite
population mean by using auxiliary information when the coefficient of correlation between
auxiliary variable X and the estimated variable Y is positive. Sisodia and Dwivedi (1981)
utilized the coefficient of variation of the auxiliary variable in survey sampling. Upadhyaya
and Singh (1999) modified ratio type estimators using the coefficient of variation and the
coefficient of kurtosis of the auxiliary variable. Yan and Tian (2010), Subramani and Ku-
marapandian (2012 (a), 2012 (b), 2012 (c), 2012 (d)), Swain (2014) and Abid et al. (2016
(a), 2016 (b), 2016 (c)) etc, considered a large number of modified ratio estimators using the
known values of population parameters of auxiliary variable in survey sampling. Recently
Subzar et al. (2017) considered new ratio type estimators in simple random sampling by
using the conventional location parameters.

The paper is structured as follows. In Section 2, the existing and studied so far lin-
ear regression type ratio estimators are presented. In Section 3, newly proposed classes of
estimators are formally presented. The properties of the suggested estimators are discussed
in Section 4. The theoretical comparisons between the suggested estimators and the other
existing estimators are considered in Section 5. A numerical demonstration is conducted
in Section 6 to support and verify the theoretical results and some concluding remarks are
given in Section 7.

1Department of Basic and Applied Science, National Institute of Technology, Arunachal Pradesh, Yupia,
Papumpare-791112, India. E-mail: shakti.pd@gmail.com. ORCID: https://orcid.org/0000-0002-7867-7586.
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2. Brief Description of Some Existing Estimators

Let y and x be denoted by the positively correlated study variable and auxiliary vari-
able respectively. A simple random sample (without replacement) sn of n units is drawn
from a finite population U = (U1, U2, ..., UN) of N units to estimate population mean Ȳ ,
which uses the known values of population parameters of auxiliary variable such as quartile
deviation and deciles. The following notations have been approached in this work:
Ȳ , X̄ : The population means of the variables y and x respectively.
S2

x = (N−1)−1
∑

N
i=1(xi− X̄)2 : The population variance of the variable x.

S2
y : The population variance of the variable y.

Syx =
1

N−1 ∑
N
i=1(yi− Ȳ )(xi− X̄): The population covariance between the variables y and x.

Cy and Cx : The coefficients of variation of the variables y and x respectively.
β1(x) : The population coefficient of skewness of the variable x.
β2(x) : The population coefficient of kurtosis of the variable x.
ρ : The Pearson correlation coefficient between the variables y and x.
Di, i = 1,2, ...,10 : Population Deciles.
QD = Q3−Q1

2 : Population quartile deviation.
In this section, several ratio type estimators have been considered for estimating the popu-
lation mean in survey sampling:

2.1. Usual Mean Estimator

The estimator of sample mean ȳ is derived as ȳ = 1
n ∑

n
i=1 yi, which is known as the usual

unbiased estimator ȳ of population mean Ȳ . The variance of the sample mean ȳ, is given by
Var(ȳ) =

( 1
n −

1
N

)
Ȳ 2C2

y .

2.2. Usual Ratio (Cochran (1977)) Estimator

Cochran (1977) considered the ratio estimator of population mean Ȳ as ȳRatio = ȳ X̄
x̄ ,(x̄ 6=

0). The MSE of estimator ȳRatio, is given by
MSE(ȳRatio) =

( 1
n −

1
N

)
Ȳ 2
(
C2

y −2ρCyCx +C2
x
)
.

2.3. Kadilar and Cingi (2004) Estimators

Kadilar and Cingi (2004) considered the following ratio estimators for the population
mean of the study variable Ȳ by using auxiliary information in survey sampling:

TKC(1) =
ȳ+β̂ (X̄−x̄)

x̄ X̄ , TKC(2) =
ȳ+β̂ (X̄−x̄)

x̄+Cx
(X̄ +Cx),

TKC(3) =
ȳ+β̂ (X̄−x̄)

x̄+β2(x)
(X̄ +β2(x)), TKC(4) =

ȳ+β̂ (X̄−x̄)
x̄β2(x)+Cx

(X̄β2(x)+Cx),

TKC(5) =
ȳ+β̂ (X̄−x̄)
x̄Cx+β2(x)

(X̄Cx +β2(x)),

where β̂ =
syx
s2
x

, syx =
1

n−1 ∑
n
i=1(yi− ȳ)(xi− x̄), s2

x = (n−1)−1
∑

n
i=1(xi− x̄)2.

The MSEs of the estimators TKC(1), TKC(2), TKC(3), TKC(4) and TKC(5), are given by
MSE(TKC(i)) =

( 1
n −

1
N

)(
KC2

i C2
x +
(
1−ρ2

)
C2

y
)

Ȳ 2, where (i = 1,2, ...,5),

KC1 = 1, KC2 =
X̄

X̄+Cx
, KC3 =

X̄
X̄+β2(x)

, KC4 =
X̄β2(x)

X̄β2(x)+Cx
, KC5 =

CxX̄
CxX̄+β2(x)

.
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2.4. Kadilar and Cingi (2006) Estimators

Kadilar and Cingi (2006) considered the following ratio estimators for the population
mean of the study variable Ȳ by using the coefficient of correlation in survey sampling:

TKC(6) =
ȳ+β̂ (X̄−x̄)

x̄+ρ
(X̄ +ρ), TKC(7) =

ȳ+β̂ (X̄−x̄)
x̄Cx+ρ

(X̄Cx +ρ),

TKC(8) =
ȳ+β̂ (X̄−x̄)

x̄ρ+Cx
(X̄ρ +Cx), TKC(9) =

ȳ+β̂ (X̄−x̄)
x̄β2(x)+ρ

(X̄β2(x)+ρ),

TKC(10) =
ȳ+β̂ (X̄−x̄)
x̄ρ+β2(x)

(X̄ρ +β2(x)).
The MSEs of the estimators TKC(6), TKC(7), TKC(8), TKC(9) and TKC(10), are given by
MSE(TKC(i)) =

( 1
n −

1
N

)(
KC2

i C2
x +
(
1−ρ2

)
C2

y
)

Ȳ 2, where (i = 6,7, ...,10),

KC6 =
X̄

X̄+ρ
, KC7 =

X̄Cx
X̄Cx+ρ

, KC8 =
X̄ρ

X̄ρ+Cx
, KC9 =

X̄β2(x)
X̄β2(x)+ρ

, KC10 =
ρX̄

X̄ρ+β2(x)
.

2.5. Subzar et al. (2017) Estimators

Subzar et al. (2017) proposed a new ratio estimators for estimation of the population
mean Ȳ as

TSmrs(1) =
ȳ+β̂ (X̄−x̄)
x̄QD+D1

(X̄QD+D1), TSmrs(2) =
ȳ+β̂ (X̄−x̄)
x̄QD+D2

(X̄QD+D2),

TSmrs(3) =
ȳ+β̂ (X̄−x̄)
x̄QD+D3

(X̄QD+D3), TSmrs(4) =
ȳ+β̂ (X̄−x̄)
x̄QD+D4

(X̄QD+D4),

TSmrs(5) =
ȳ+β̂ (X̄−x̄)
x̄QD+D5

(X̄QD+D5), TSmrs(6) =
ȳ+β̂ (X̄−x̄)
x̄QD+D6

(X̄QD+D6),

TSmrs(7) =
ȳ+β̂ (X̄−x̄)
x̄QD+D7

(X̄QD+D7), TSmrs(8) =
ȳ+β̂ (X̄−x̄)
x̄QD+D8

(X̄QD+D8),

TSmrs(9) =
ȳ+β̂ (X̄−x̄)
x̄QD+D9

(X̄QD+D9), TSmrs(10) =
ȳ+β̂ (X̄−x̄)
x̄QD+D10

(X̄QD+D10),

TSmrs(11) =
ȳ+β̂ (X̄−x̄)
x̄D1+QD (X̄D1 +QD), TSmrs(12) =

ȳ+β̂ (X̄−x̄)
x̄D2+QD (X̄D2 +QD),

TSmrs(13) =
ȳ+β̂ (X̄−x̄)
x̄D3+QD (X̄D3 +QD), TSmrs(14) =

ȳ+β̂ (X̄−x̄)
x̄D4+QD (X̄D4 +QD),

TSmrs(15) =
ȳ+β̂ (X̄−x̄)
x̄D5+QD (X̄D5 +QD), TSmrs(16) =

ȳ+β̂ (X̄−x̄)
x̄D6+QD (X̄D6 +QD),

TSmrs(17) =
ȳ+β̂ (X̄−x̄)
x̄D7+QD (X̄D7 +QD), TSmrs(18) =

ȳ+β̂ (X̄−x̄)
x̄D8+QD (X̄D8 +QD),

TSmrs(19) =
ȳ+β̂ (X̄−x̄)
x̄D9+QD (X̄D9 +QD), TSmrs(20) =

ȳ+β̂ (X̄−x̄)
x̄D10+QD (X̄D10 +QD).

The MSEs of the estimators TSmrs(i) (i = 1,2, ...,20), are given by
MSE(TSmrs(i)) =

( 1
n −

1
N

)(
α2

i C2
x +
(
1−ρ2

)
C2

y
)

Ȳ 2, where (i = 1,2, ...,20),

α1 =
QDX̄

QDX̄+D1
, α2 =

QDX̄
QDX̄+D2

, α3 =
QDX̄

QDX̄+D3
, α4 =

QDX̄
QDX̄+D4

, α5 =
QDX̄

QDX̄+D5
, α6 =

QDX̄
QDX̄+D6

,

α7 =
QDX̄

QDX̄+D7
, α8 =

QDX̄
QDX̄+D8

, α9 =
QDX̄

QDX̄+D9
, α10 =

QDX̄
QDX̄+D10

, α11 =
D1X̄

D1X̄+QD , α12 =
D2X̄

D2X̄+QD ,

α13 = D3X̄
D3X̄+QD , α14 = D4X̄

D4X̄+QD , α15 = D5X̄
D5X̄+QD , α16 = D6X̄

D6X̄+QD , α17 = D7X̄
D7X̄+QD , α18 =

D8X̄
D8X̄+QD , α19 =

D9X̄
D9X̄+QD , α20 =

D10X̄
D10X̄+QD .

Motivated by the work of Subzar et al. (2017), we suggest some linear regression
type ratio exponential estimators for estimating population mean of the study variable Ȳ
using quartile deviation and deciles of auxiliary variable in survey sampling. We have also
formulated the condition which makes the suggested classes of estimators more efficient
than others and have shown that under this condition they are really more efficient than the
existing estimators on the basis of numerical results in this literature.
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3. Mathematical Formulation of Suggested Classes of Linear Regres-
sion Type Ratio Exponential Estimators

We suggest two classes (Class A and B) of efficient linear regression type ratio
exponential estimators for estimating the population mean Ȳ using the known population
values of quartile deviation and deciles of auxiliary variable.

3.1. The First Suggested Class of Linear Regression Type Ratio Exponential Estima-
tors (Class A)

The first suggested estimators TSP1( j)( j = 1,2, ...,10) considered the linear regression
type ratio exponential estimators for estimating population mean of the study variable Ȳ by
using the linear combination of known population values of quartile deviation (QD) and
deciles (D j( j = 1,2, ...,10)) of an auxiliary variable in survey sampling:

TSP1( j) =
[
ȳ+ β̂ (X̄− x̄)

]
exp

Φ j
1− x̄

X̄

1+ QDx̄+D j
QDX̄+D j

, (1)

where β̂ =
syx
s2
x

, syx = 1
n−1 ∑

n
i=1(yi − ȳ)(xi − x̄), s2

x = (n− 1)−1
∑

n
i=1(xi − x̄)2, and Φ j =

QDX̄
QDX̄+D j

,(j = 1, 2, ..., 10).

3.2. The Second Suggested Class of Linear Regression Type Ratio Exponential Esti-
mators (Class B)

The second suggested estimators TSP2( j)( j = 1,2, ...,10) considered the linear regression
type ratio exponential estimators for estimating population mean of the study variable Ȳ by
using the linear combination of known population values of deciles (D j( j = 1,2, ...,10))
and quartile deviation (QD) of an auxiliary variable in survey sampling:

TSP2( j) =
[
ȳ+ β̂ (X̄− x̄)

]
exp

Ψ j
1− x̄

X̄

1+ D j x̄+QD
D jX̄+QD

, (2)

where β̂ =
syx
s2
x

, syx = 1
n−1 ∑

n
i=1(yi − ȳ)(xi − x̄), s2

x = (n− 1)−1
∑

n
i=1(xi − x̄)2, and Ψ j =

D jX̄
D jX̄+QD , (j = 1, 2, ..., 10).
We get some members of the family of suggested estimators TSP1( j) and TSP2( j) in Table 1.

4. Behaviours of the suggested estimators TSP1( j) and TSP2( j) ( j = 1,2, ...,10)

To obtain the bias and mean square error (MSE) of the suggested estimators TSP1( j) and
TSP2( j), ( j = 1,2, ...,10) up-to the first order of large sample approximations are derived
under the following transformations:
ȳ = Ȳ (1+ e0), x̄ = X̄(1+ e1), syx = Syx(1+ e2), and s2

x = S2
x(1+ e3) such that E(e j) =
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0, |e j| < 1∀ j = 0,1,2,3., E(e2
0) = ( 1

n −
1
N )C

2
y , E(e2

1) = ( 1
n −

1
N )C

2
x , E(e2

2) = ( 1
n −

1
N )

µ22
S2

yx
,

E(e0e1) = ( 1
n −

1
N )ρyxCyCx, E(e1e2) = ( 1

n −
1
N )

µ12
X̄Syx

, E(e1e3) = ( 1
n −

1
N )

µ03
X̄S2

x
,

where µrs = E[(y− Ȳ )r(x− X̄)s], r and s being positive integers.
Under the above transformations, expressing the equations “(1) and (2)” in terms of e’s, we
have

TSP1( j) =

[
ȳ+

syx

s2
x
(X̄− x̄)

]
exp

Φ j
1− x̄

X̄

1+ QDx̄+D j
QDX̄+D j

,
= {Ȳ (1+ e0)− X̄βe1 (1+ e2)(1+ e3)

−1}exp

[
−1

2
Φ je1

(
1+

1
2

Φ je1

)−1
]
,(3)

TSP2( j) =

[
ȳ+

syx

s2
x
(X̄− x̄)

]
exp

Ψ j
1− x̄

X̄

1+ D j x̄+QD
D jX̄+QD

,
= {Ȳ (1+ e0)− X̄βe1 (1+ e2)(1+ e3)

−1}exp

[
−1

2
Ψ je1

(
1+

1
2

Ψ je1

)−1
]
,(4)

where β =
Syx
S2

x
.

Expanding the right side of “(3) and (4)”, multiplying and neglecting the terms of e′s having
power greater than two, we get

TSP1( j)
∼= Ȳ

[
1+ e0−

1
2

Φ je1 +
3
8

Φ
2
je

2
1−

1
2

Φ je0e1−
X̄β

Ȳ

(
e1−

1
2

Φ je2
1 + e1e2− e1e3

)]
. (5)

TSP2( j)
∼= Ȳ

[
1+ e0−

1
2

Ψ je1 +
3
8

Ψ
2
je

2
1−

1
2

Ψ je0e1−
X̄β

Ȳ

(
e1−

1
2

Ψ je2
1 + e1e2− e1e3

)]
. (6)

or

TSP1( j)−Ȳ ∼= Ȳ
[

e0−
1
2

Φ je1 +
3
8

Φ
2
je

2
1−

1
2

Φ je0e1−B
(

e1−
1
2

Φ je2
1 + e1e2− e1e3

)]
, (7)

TSP2( j)− Ȳ ∼= Ȳ
[

e0−
1
2

Ψ je1 +
3
8

Ψ
2
je

2
1−

1
2

Ψ je0e1−B
(

e1−
1
2

Ψ je2
1 + e1e2− e1e3

)]
,

(8)
where B = ρ

Cy
Cx
.

Taking expectation of both sides of equations “(7) and (8)”, we get the biases of the sug-
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gested estimators up-to first order of large approximations as

Bias[TSP1( j)] = E
[
TSP1( j)− Ȳ

]
,

= Ȳ E
[

e0−
1
2

Φ je1 +
3
8

Φ
2
je

2
1−

1
2

Φ je0e1−B
(

e1−
1
2

Φ je2
1 + e1e2− e1e3

)]
,

=

(
1
n
− 1

N

)
Ȳ
(

3
8

Φ
2
jC

2
x +

B
X̄2Cx

{ µ03

X̄Cx
− µ12

Ȳ ρCy
}
)
. (9)

Bias[TSP2( j)] = E
[
TSP2( j)− Ȳ

]
,

= Ȳ
[

e0−
1
2

Ψ je1 +
3
8

Ψ
2
je

2
1−

1
2

Ψ je0e1−B
(

e1−
1
2

Ψ je2
1 + e1e2− e1e3

)]
,

=

(
1
n
− 1

N

)
Ȳ
(

3
8

Ψ
2
jC

2
x +

B
X̄2Cx

{ µ03

X̄Cx
− µ12

Ȳ ρCy
}
)
. (10)

Now, after squaring of both sides of equations “(7) and (8)” and neglecting the terms of e′s
having power of more than two, we have

[
TSP1( j)− Ȳ

]2
= Ȳ 2

[
e2

0 + e2
1

(
1
2

Φ j +B
)2

−2e0e1

(
1
2

Φ j +B
)]

. (11)

[
TSP2( j)− Ȳ

]2
= Ȳ 2

[
e2

0 + e2
1

(
1
2

Ψ j +B
)2

−2e0e1

(
1
2

Ψ j +B
)]

. (12)

Taking expectation of both sides of equations “(11) and (12)”, we get the MSEs of the
suggested estimators TSP1( j) and TSP1( j) (where j = 1,2, ...,10) for the first order of large
approximations as

MSE[TSP1( j)] = E
[
TSP1( j)− Ȳ

]2
,

= Ȳ 2E

[
e2

0 + e2
1

(
1
2

Φ j +B
)2

−2e0e1

(
1
2

Φ j +B
)]

,

=

(
1
n
− 1

N

)
Ȳ 2
[

1
4

Φ
2
jC

2
x +
(
1−ρ

2)C2
y

]
. (13)

MSE[TSP2( j)] = E
[
TSP2( j)− Ȳ

]2
,

= Ȳ 2E

[
e2

0 + e2
1

(
1
2

Ψ j +B
)2

−2e0e1

(
1
2

Ψ j +B
)]

,

=

(
1
n
− 1

N

)
Ȳ 2
[

1
4

Ψ
2
jC

2
x +
(
1−ρ

2)C2
y

]
. (14)
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5. Efficiency Comparisons

In this section, the efficiency conditions for suggested estimators TSP1( j) and TSP2( j) ( j =
1,2, ...,10 ) have been derived algebraically according to the usual mean estimator, usual
ratio (Cochran (1977)) estimator, Kadilar and Cingi (2004, 2006) estimators and Subzar
et al. (2017) estimators.

5.1. Comparison with usual mean estimator

(i) Var(ȳ)−MSE(TSP1( j)) =
( 1

n −
1
N

)
Ȳ 2
[
ρ2C2

y − 1
4 Φ2

jC
2
x

]
> 0, if

ρCy

Cx
>

1
2

Φ j,( j = 1,2, ...,10). (15)

(ii) Var(ȳ)−MSE(TSP2( j)) =
( 1

n −
1
N

)
Ȳ 2
[
ρ2C2

y − 1
4 Ψ2

jC
2
x

]
> 0, if

ρCy

Cx
>

1
2

Ψ j,( j = 1,2, ...,10). (16)

5.2. Comparison with usual ratio estimator

(i) MSE(ȳRatio)−MSE(TSP1( j)) =
( 1

n −
1
N

)
Ȳ 2
[
(ρCy−Cx)

2− 1
4 Φ2

jC
2
x

]
> 0, if

(
ρCy

Cx
−1)>

1
2

Φ j,( j = 1,2, ...,10). (17)

(ii) MSE(ȳRatio)−MSE(TSP2( j)) =
( 1

n −
1
N

)
Ȳ 2
[
(ρCy−Cx)

2− 1
4 Ψ2

jC
2
x

]
> 0, if

(
ρCy

Cx
−1)>

1
2

Ψ j,( j = 1,2, ...,10). (18)

5.3. Comparison with Kadilar and Cingi (2004, 2006) estimators

(i) (MSE(TKC(i)))−MSE(TSP1( j)) =
( 1

n −
1
N

)
Ȳ 2
[
KC2

i − 1
4 Φ2

j

]
> 0, if

KCi >
1
2

Φ j,((i = 1,2, ...,10),( j = 1,2, ...,10)). (19)

(ii) MSE(TKC(i))−MSE(TSP2( j)) =
( 1

n −
1
N

)
Ȳ 2
[
KC2

i − 1
4 Ψ2

j

]
> 0, if

KCi >
1
2

Ψ j,((i = 1,2, ...,10),( j = 1,2, ...,10)). (20)
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5.4. Comparison with Subzar et al. (2017) estimators

(i) MSE(TSmrs(i))−MSE(TSP1( j)) =
( 1

n −
1
N

)
Ȳ 2
[
α2

i − 1
4 Φ2

j

]
> 0, if

αi >
1
2

Φ j,((i = 1,2, ...,20),( j = 1,2, ...,10)). (21)

(ii) MSE(TSmrs(i))−MSE(TSP2( j)) =
( 1

n −
1
N

)
Ȳ 2
[
α2

i − 1
4 Ψ2

j

]
> 0, if

αi >
1
2

Ψ j,((i = 1,2, ...,20),( j = 1,2, ...,10)). (22)

From the equations [(15)-(22)], the suggested classes of estimators TSP1( j) and TSP2( j) (where
j = 1,2, ...,10 ) are more efficient than the usual mean estimator, usual ratio (Cochran
(1977)) estimator, Kadilar and Cingi (2004, 2006) estimators and Subzar et al. (2017) esti-
mators as long as the conditions (15), (16), (17), (18), (19), (20), (21) and (22) are satisfied.

6. Numerical Demonstration

In this section, the suggested estimators are compared with respect to the some other ex-
isting estimators in this literature. The relative efficiencies (%) of the suggested estimators
TSP1( j) and TSP2( j) (where j = 1,2, ...,10) with respect to the usual mean estimator, usual ra-
tio (Cochran (1977)) estimator, Kadilar and Cingi (2004, 2006) estimators and Subzar et al.
(2017) estimators respectively, are computed as follows:

RE(ExistingEstimators,SuggestedEstimators) =
MSE(ExistingEstimators)

MSE(SuggestedEstimators)
×100.

The values of relative efficiencies (%) of the suggested estimators are shown in Tables [3-
8]. Two different types of natural population data sets from the books (Murty (1967), page
228) and (Singh and Chaudhary (1986), page 177) have been considered to analyse the
performance of the suggested estimators over other existing estimators.

7. Conclusions

In this paper, two natural population data sets have been considered for different pa-
rameters in Table 2. From Tables [3-8], it is found that our suggested classes of estimators
are more efficient than the usual mean estimator, usual ratio (Cochran (1977)) estimator,
Kadilar and Cingi (2004, 2006) estimators and Subzar et al. (2017) estimators. Hence, the
performances of the suggested classes of linear regression type ratio exponential estimators
are highly justified in numerical demonstration which are shown in Tables [3-8] that may be
recommended for further use.
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Table 1: Some members of the suggested class of linear regression ratio type exponen-
tial estimators of Class A (TSP1( j)( j = 1,2, ...,10)) and Class B ( TSP2( j)( j = 1,2, ...,10))
respectively.

The First Suggested Estimators (Class A) Φi

TSP1(1) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Φ1

(1−x̄/X̄)
1+((QDx̄+D1)/(QDX̄+D1))

]
Φ1 = QDX̄/(QDX̄ +D1)

TSP1(2) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Φ2

(1−x̄/X̄)
1+((QDx̄+D2)/(QDX̄+D2))

]
Φ2 = QDX̄/(QDX̄ +D2)

TSP1(3) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Φ3

(1−x̄/X̄)
1+((QDx̄+D3)/(QDX̄+D3))

]
Φ3 = QDX̄/(QDX̄ +D3)

TSP1(4) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Φ4

(1−x̄/X̄)
1+((QDx̄+D4)/(QDX̄+D4))

]
Φ4 = QDX̄/(QDX̄ +D4)

TSP1(5) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Φ5

(1−x̄/X̄)
1+((QDx̄+D5)/(QDX̄+D5))

]
Φ5 = QDX̄/(QDX̄ +D5)

TSP1(6) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Φ6

(1−x̄/X̄)
1+((QDx̄+D6)/(QDX̄+D6))

]
Φ6 = QDX̄/(QDX̄ +D6)

TSP1(7) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Φ7

(1−x̄/X̄)
1+((QDx̄+D7)/(QDX̄+D7))

]
Φ7 = QDX̄/(QDX̄ +D7)

TSP1(8) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Φ8

(1−x̄/X̄)
1+((QDx̄+D8)/(QDX̄+D8))

]
Φ8 = QDX̄/(QDX̄ +D8)

TSP1(9) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Φ9

(1−x̄/X̄)
1+((QDx̄+D9)/(QDX̄+D9))

]
Φ9 = QDX̄/(QDX̄ +D9)

TSP1(10) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Φ10

(1−x̄/X̄)
1+((QDx̄+D10)/(QDX̄+D10))

]
Φ10 = QDX̄/(QDX̄ +D10)

The Second Suggested Estimators (Class B) Ψi

TSP2(1) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Ψ1

(1−x̄/X̄)
1+((D1 x̄+QD)/(D1X̄+QD))

]
Ψ1 = D1X̄/(D1X̄ +QD)

TSP2(2) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Ψ2

(1−x̄/X̄)
1+((D2 x̄+QD)/(D2X̄+QD))

]
Ψ2 = D2X̄/(D2X̄ +QD)

TSP2(3) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Ψ3

(1−x̄/X̄)
1+((D3 x̄+QD)/(D3X̄+QD))

]
Ψ3 = D3X̄/(D3X̄ +QD)

TSP2(4) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Ψ4

(1−x̄/X̄)
1+((D4 x̄+QD)/(D4X̄+QD))

]
Ψ4 = D4X̄/(D4X̄ +QD)

TSP2(5) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Ψ5

(1−x̄/X̄)
1+((D5 x̄+QD)/(D5X̄+QD))

]
Ψ5 = D5X̄/(D5X̄ +QD)

TSP2(6) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Ψ6

(1−x̄/X̄)
1+((D6 x̄+QD)/(D6X̄+QD))

]
Ψ6 = D6X̄/(D6X̄ +QD)

TSP2(7) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Ψ7

(1−x̄/X̄)
1+((D7 x̄+QD)/(D7X̄+QD))

]
Ψ7 = D7X̄/(D7X̄ +QD)

TSP2(8) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Ψ8

(1−x̄/X̄)
1+((D8 x̄+QD)/(D8X̄+QD))

]
Ψ8 = D8X̄/(D8X̄ +QD)

TSP2(9) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Ψ9

(1−x̄/X̄)
1+((D9 x̄+QD)/(D9X̄+QD))

]
Ψ9 = D9X̄/(D9X̄ +QD)

TSP2(10) =
[
ȳ+ β̂ (X̄− x̄)

]
exp
[
Ψ10

(1−x̄/X̄)
1+((D10 x̄+QD)/(D10X̄+QD))

]
Ψ10 = D10X̄/(D10X̄ +QD)

Table 2: Parameters of two natural population data sets

Population A Population B
Murthy (1967), page 228 Singh and Chaudhary (1986), page 177

N = 80 n = 20 N = 34 n = 20
Ȳ = 5182.637 X̄ = 1126.463 Ȳ = 856.4117 X̄ = 199.4412

ρ = 0.941 Sy = 1835.659 ρ = 0.4453 Sy = 733.1407
Cy = 0.354 Sx = 845.610 Cy = 0.8561 Sx = 150.2150
Cx = 0.751 β2(x) =−0.063 Cx = 0.7531 β2(x) = 1.0445

β1(x) = 1.050 D1 = 360 β1(x) = 1.1823 D1 = 60.60
D2 = 460 D3 = 590 D2 = 83.00 D3 = 102.70
D4 = 670 D5 = 750 D4 = 111.20 D5 = 142.50
D6 = 850 D7 = 1480 D6 = 210.20 D7 = 264.50

D8 = 1810 D9 = 2500 D8 = 304.40 D9 = 373.20
D10 = 3480 QD = 588.125 D10 = 634.00 QD = 80.25
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Table 3: Relative efficiencies (%) of the suggested estimators TSP1( j) and TSP2( j) ( j =
1,2, ...,10) over the existing estimators TKC(1), TKC(2), TKC(3), TKC(4), TKC(5), TKC(6), TKC(7),
TKC(8), TKC(9) and TKC(10) respectively for Population A.

Estimators TKC(1) TKC(2) TKC(3) TKC(4) TKC(5) TKC(6) TKC(7) TKC(8) TKC(9) TKC(10)
The First Suggested Estimators (Class A)

TSP1(1) 372.654 372.170 372.694 380.469 372.708 372.047 371.847 372.139 382.486 372.697
TSP1(2) 372.756 372.272 372.797 380.573 372.810 372.149 371.949 372.241 382.591 372.799
TSP1(3) 372.889 372.404 372.929 380.709 372.943 372.282 372.081 372.374 382.727 372.932
TSP1(4) 372.970 372.486 373.011 380.792 373.024 372.363 372.162 372.455 382.811 373.013
TSP1(5) 373.052 372.567 373.093 380.875 373.106 372.445 372.244 372.537 382.895 373.095
TSP1(6) 373.154 372.669 373.195 380.980 373.208 372.547 372.346 372.639 383.000 373.197
TSP1(7) 373.797 373.312 373.838 381.637 373.852 373.189 372.988 373.281 383.660 373.841
TSP1(8) 374.134 373.648 374.175 381.981 374.189 373.526 373.324 373.618 384.006 374.178
TSP1(9) 374.840 374.353 374.881 382.701 374.894 374.230 374.028 374.322 384.730 374.883
TSP1(10) 375.842 375.354 375.883 383.724 375.897 375.231 375.028 375.323 385.759 375.886

The Second Suggested Estimators (Class B)
TSP2(1) 373.267 372.782 373.308 381.095 373.321 372.660 372.459 372.752 383.116 373.310
TSP2(2) 373.054 372.569 373.095 380.877 373.108 372.447 372.246 372.539 382.897 373.097
TSP2(3) 372.885 372.400 372.925 380.705 372.939 372.278 372.077 372.370 382.723 372.928
TSP2(4) 372.813 372.329 372.854 380.632 372.867 372.207 372.006 372.299 382.650 372.857
TSP2(5) 372.757 372.273 372.798 380.575 372.811 372.151 371.950 372.243 382.592 372.800
TSP2(6) 372.702 372.218 372.742 380.518 372.756 372.095 371.895 372.187 382.535 372.745
TSP2(7) 372.525 372.041 372.566 380.338 372.579 371.919 371.718 372.011 382.354 372.568
TSP2(8) 372.482 371.998 372.522 380.293 372.536 371.875 371.675 371.967 382.309 372.525
TSP2(9) 372.428 371.944 372.468 380.238 372.482 371.822 371.621 371.914 382.254 372.471
TSP2(10) 372.388 371.904 372.429 380.198 372.442 371.782 371.581 371.874 382.213 372.431

Table 4: Relative efficiencies (%) of the suggested estimators TSP1( j) and TSP2( j) ( j =
1,2, ...,10) over the existing estimators TSmrs(i) (i = 1,2, ...,10) respectively for Population
A.

Estimators TSmrs(1) TSmrs(2) TSmrs(3) TSmrs(4) TSmrs(5) TSmrs(6) TSmrs(7) TSmrs(8) TSmrs(9) TSmrs(10)
The First Suggested Estimators (Class A)

TSP1(1) 372.259 372.150 372.007 371.920 371.832 371.723 371.036 370.676 369.927 368.866
TSP1(2) 372.361 372.252 372.109 372.022 371.934 371.825 371.137 370.778 370.028 368.967
TSP1(3) 372.494 372.384 372.242 372.154 372.067 371.957 371.269 370.910 370.160 369.098
TSP1(4) 372.575 372.466 372.323 372.236 372.148 372.039 371.351 370.991 370.241 369.179
TSP1(5) 372.657 372.547 372.405 372.317 372.230 372.120 371.432 371.072 370.322 369.26
TSP1(6) 372.759 372.649 372.507 372.419 372.331 372.222 371.534 371.174 370.423 369.361
TSP1(7) 373.401 373.292 373.149 373.061 372.973 372.864 372.174 371.814 371.062 369.998
TSP1(8) 373.738 373.628 373.485 373.398 373.310 373.200 372.510 372.149 371.396 370.331
TSP1(9) 374.443 374.333 374.190 374.102 374.014 373.904 373.212 372.851 372.097 371.030
TSP1(10) 375.444 375.334 375.190 375.102 375.014 374.904 374.210 373.848 373.092 372.022

The Second Suggested Estimators (Class B)
TSP2(1) 372.872 372.762 372.620 372.532 372.444 372.335 371.646 371.286 370.535 369.473
TSP2(2) 372.659 372.549 372.407 372.319 372.232 372.122 371.434 371.074 370.324 369.262
TSP2(3) 372.490 372.380 372.238 372.150 372.063 371.953 371.265 370.906 370.156 369.094
TSP2(4) 372.419 372.309 372.167 372.079 371.992 371.882 371.194 370.835 370.085 369.024
TSP2(5) 372.362 372.253 372.111 372.023 371.935 371.826 371.138 370.779 370.029 368.968
TSP2(6) 372.307 372.198 372.055 371.968 371.880 371.771 371.083 370.724 369.974 368.913
TSP2(7) 372.130 372.021 371.879 371.791 371.704 371.595 370.907 370.548 369.799 368.738
TSP2(8) 372.087 371.978 371.835 371.748 371.660 371.551 370.864 370.505 369.756 368.695
TSP2(9) 372.033 371.924 371.782 371.694 371.607 371.498 370.810 370.451 369.702 368.642
TSP2(10) 371.994 371.884 371.742 371.655 371.567 371.458 370.771 370.412 369.663 368.603



STATISTICS IN TRANSITION new series, December 2020 97

Table 5: Relative efficiencies (%) of the suggested estimators TSP1( j) and TSP2( j) ( j =
1,2, ...,10) over the existing estimators TSmrs(i) (i = 11,12, ...,20) respectively for Popu-
lation A.

Estimators TSmrs(11) TSmrs(12) TSmrs(13) TSmrs(14) TSmrs(15) TSmrs(16) TSmrs(17) TSmrs(18) TSmrs(19) TSmrs(20)
The First Suggested Estimators (Class A)

TSP1(1) 371.602 371.830 372.012 372.088 372.148 372.208 372.398 372.444 372.502 372.545
TSP1(2) 371.704 371.932 372.113 372.190 372.250 372.310 372.500 372.546 372.604 372.647
TSP1(3) 371.836 372.065 372.246 372.323 372.383 372.442 372.632 372.679 372.737 372.779
TSP1(4) 371.918 372.146 372.327 372.404 372.464 372.524 372.714 372.760 372.818 372.861
TSP1(5) 371.999 372.227 372.409 372.486 372.546 372.605 372.795 372.842 372.900 372.943
TSP1(6) 372.101 372.329 372.511 372.587 372.648 372.707 372.897 372.944 373.002 373.045
TSP1(7) 372.742 372.971 373.153 373.230 373.290 373.350 373.540 373.587 373.645 373.688
TSP1(8) 373.078 373.308 373.490 373.567 373.627 373.687 373.877 373.924 373.982 374.025
TSP1(9) 373.782 374.011 374.194 374.271 374.331 374.391 374.582 374.629 374.687 374.730
TSP1(10) 374.781 375.012 375.194 375.272 375.332 375.392 375.584 375.631 375.689 375.732

The Second Suggested Estimators (Class B)
TSP2(1) 372.214 372.442 372.624 372.700 372.761 372.820 373.010 373.057 373.115 373.158
TSP2(2) 372.001 372.229 372.411 372.488 372.548 372.607 372.797 372.844 372.902 372.945
TSP2(3) 371.832 372.061 372.242 372.319 372.379 372.438 372.628 372.675 372.733 372.776
TSP2(4) 371.761 371.989 372.171 372.247 372.308 372.367 372.557 372.604 372.661 372.704
TSP2(5) 371.705 371.933 372.115 372.191 372.252 372.311 372.501 372.547 372.605 372.648
TSP2(6) 371.650 371.878 372.059 372.136 372.196 372.256 372.445 372.492 372.550 372.593
TSP2(7) 371.474 371.702 371.883 371.959 372.020 372.079 372.269 372.315 372.373 372.416
TSP2(8) 371.430 371.658 371.839 371.916 371.976 372.036 372.225 372.272 372.330 372.373
TSP2(9) 371.377 371.605 371.786 371.862 371.923 371.982 372.172 372.218 372.276 372.319
TSP2(10) 371.337 371.565 371.746 371.823 371.883 371.942 372.132 372.179 372.236 372.279

Table 6: Relative efficiencies (%) of the suggested estimators TSP1( j) and TSP2( j) ( j =
1,2, ...,10) over the existing estimators TKC(1), TKC(2), TKC(3), TKC(4), TKC(5), TKC(6), TKC(7),
TKC(8), TKC(9) and TKC(10) respectively for Population B.

Estimators TKC(1) TKC(2) TKC(3) TKC(4) TKC(5) TKC(6) TKC(7) TKC(8) TKC(9) TKC(10)
The First Suggested Estimators (Class A)

TSP1(1) 158.552 157.968 157.743 157.992 157.481 158.206 158.093 157.248 158.221 156.753
TSP1(2) 158.638 158.053 157.828 158.077 157.565 158.291 158.178 157.333 158.306 156.837
TSP1(3) 158.713 158.127 157.902 158.152 157.640 158.366 158.252 157.407 158.380 156.911
TSP1(4) 158.745 158.159 157.934 158.184 157.672 158.398 158.284 157.439 158.412 156.943
TSP1(5) 158.863 158.277 158.052 158.302 157.789 158.516 158.402 157.556 158.531 157.060
TSP1(6) 159.117 158.530 158.305 158.555 158.041 158.769 158.656 157.808 158.784 157.311
TSP1(7) 159.319 158.732 158.506 158.756 158.242 158.971 158.857 158.009 158.986 157.511
TSP1(8) 159.467 158.879 158.653 158.903 158.389 159.118 159.004 158.155 159.133 157.656
TSP1(9) 159.719 159.130 158.904 159.155 158.639 159.370 159.256 158.406 159.385 157.906
TSP1(10) 160.655 160.062 159.835 160.088 159.569 160.304 160.189 159.334 160.319 158.831

The Second Suggested Estimators (Class B)
TSP2(1) 158.726 158.141 157.916 158.165 157.653 158.379 158.266 157.421 158.394 156.924
TSP2(2) 158.617 158.032 157.808 158.057 157.545 158.270 158.157 157.313 158.285 156.817
TSP2(3) 158.560 157.976 157.751 158.000 157.489 158.214 158.101 157.256 158.229 156.760
TSP2(4) 158.542 157.957 157.733 157.982 157.470 158.196 158.083 157.238 158.210 156.742
TSP2(5) 158.494 157.909 157.685 157.934 157.422 158.147 158.034 157.190 158.162 156.694
TSP2(6) 158.438 157.854 157.629 157.878 157.367 158.092 157.979 157.135 158.106 156.639
TSP2(7) 158.414 157.830 157.605 157.854 157.343 158.068 157.955 157.111 158.082 156.615
TSP2(8) 158.402 157.817 157.593 157.842 157.331 158.055 157.942 157.099 158.070 156.603
TSP2(9) 158.387 157.802 157.578 157.827 157.316 158.040 157.927 157.084 158.055 156.589
TSP2(10) 158.359 157.775 157.551 157.800 157.289 158.013 157.900 157.057 158.028 156.562
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Table 7: Relative efficiencies (%) of the suggested estimators TSP1( j) and TSP2( j) ( j =
1,2, ...,10) over the existing estimators TSmrs(i) (i = 1,2, ...,10) respectively for Population
B.

Estimators TSmrs(1) TSmrs(2) TSmrs(3) TSmrs(4) TSmrs(5) TSmrs(6) TSmrs(7) TSmrs(8) TSmrs(9) TSmrs(10)
The First Suggested Estimators (Class A)

TSP1(1) 157.966 157.751 157.563 157.482 157.184 156.547 156.041 155.673 155.044 152.731
TSP1(2) 158.051 157.836 157.647 157.566 157.269 156.631 156.125 155.756 155.127 152.813
TSP1(3) 158.126 157.91 157.722 157.641 157.343 156.705 156.199 155.83 155.201 152.885
TSP1(4) 158.158 157.942 157.754 157.673 157.375 156.736 156.23 155.862 155.232 152.916
TSP1(5) 158.276 158.06 157.871 157.79 157.492 156.853 156.347 155.978 155.348 153.03
TSP1(6) 158.529 158.313 158.124 158.042 157.744 157.104 156.597 156.227 155.596 153.275
TSP1(7) 158.73 158.514 158.325 158.243 157.944 157.304 156.796 156.426 155.794 153.47
TSP1(8) 158.877 158.661 158.471 158.39 158.09 157.449 156.941 156.57 155.938 153.612
TSP1(9) 159.129 158.912 158.722 158.64 158.341 157.699 157.189 156.818 156.185 153.855
TSP1(10) 160.061 159.843 159.652 159.57 159.269 158.623 158.11 157.737 157.1 154.756

The Second Suggested Estimators (Class B)
TSP2(1) 158.139 157.924 157.735 157.654 157.356 156.718 156.212 155.843 155.214 152.898
TSP2(2) 158.031 157.815 157.627 157.546 157.248 156.61 156.105 155.736 155.107 152.793
TSP2(3) 157.974 157.759 157.571 157.489 157.192 156.554 156.049 155.681 155.052 152.739
TSP2(4) 157.956 157.741 157.552 157.471 157.174 156.536 156.031 155.663 155.034 152.721
TSP2(5) 157.907 157.692 157.504 157.423 157.126 156.488 155.983 155.615 154.986 152.674
TSP2(6) 157.852 157.637 157.449 157.368 157.071 156.434 155.928 155.56 154.932 152.621
TSP2(7) 157.828 157.613 157.425 157.344 157.047 156.41 155.905 155.537 154.908 152.598
TSP2(8) 157.816 157.601 157.413 157.332 157.035 156.398 155.893 155.525 154.896 152.586
TSP2(9) 157.801 157.586 157.398 157.317 157.02 156.383 155.878 155.51 154.882 152.571
TSP2(10) 157.774 157.559 157.371 157.29 156.993 156.356 155.851 155.483 154.855 152.545

Table 8: Relative efficiencies (%) of the suggested estimators TSP1( j) and TSP2( j) ( j =
1,2, ...,10) over the existing estimators TSmrs(i) (i = 11,12, ...,20), respectively for Popu-
lation B.

Estimators TSmrs(11) TSmrs(12) TSmrs(13) TSmrs(14) TSmrs(15) TSmrs(16) TSmrs(17) TSmrs(18) TSmrs(19) TSmrs(20)
The First Suggested Estimators (Class A)

TSP1(1) 157.529 157.803 157.946 157.992 158.115 158.255 158.316 158.347 158.385 158.454
TSP1(2) 157.613 157.888 158.031 158.077 158.2 158.34 158.401 158.432 158.47 158.539
TSP1(3) 157.688 157.962 158.105 158.151 158.274 158.415 158.476 158.507 158.545 158.614
TSP1(4) 157.72 157.994 158.137 158.184 158.306 158.447 158.508 158.539 158.577 158.646
TSP1(5) 157.837 158.112 158.255 158.301 158.424 158.565 158.626 158.657 158.695 158.764
TSP1(6) 158.09 158.365 158.508 158.555 158.678 158.819 158.88 158.911 158.949 159.018
TSP1(7) 158.29 158.566 158.71 158.756 158.879 159.02 159.082 159.113 159.151 159.220
TSP1(8) 158.437 158.713 158.857 158.903 159.026 159.168 159.229 159.26 159.298 159.367
TSP1(9) 158.688 158.964 159.108 159.155 159.278 159.42 159.481 159.512 159.55 159.620
TSP1(10) 159.618 159.896 160.04 160.087 160.211 160.354 160.416 160.447 160.485 160.555

The Second Suggested Estimators (Class B)
TSP2(1) 157.701 157.976 158.119 158.165 158.288 158.428 158.489 158.52 158.558 158.627
TSP2(2) 157.593 157.867 158.01 158.056 158.179 158.32 158.381 158.412 158.449 158.518
TSP2(3) 157.536 157.811 157.954 158 158.123 158.263 158.324 158.355 158.393 158.462
TSP2(4) 157.518 157.793 157.936 157.982 158.104 158.245 158.306 158.337 158.375 158.443
TSP2(5) 157.47 157.744 157.887 157.933 158.056 158.196 158.257 158.288 158.326 158.395
TSP2(6) 157.415 157.689 157.832 157.878 158 158.141 158.202 158.233 158.27 158.339
TSP2(7) 157.391 157.665 157.808 157.854 157.976 158.117 158.178 158.209 158.246 158.315
TSP2(8) 157.379 157.653 157.796 157.842 157.964 158.105 158.165 158.196 158.234 158.303
TSP2(9) 157.364 157.638 157.781 157.827 157.949 158.09 158.151 158.181 158.219 158.288
TSP2(10) 157.337 157.611 157.753 157.8 157.922 158.062 158.123 158.154 158.192 158.261
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Modelling bid-ask spread conditional distributions using
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ABSTRACT

While we would like to predict exact values, the information available, being incomplete,
is rarely sufficient - usually allowing only conditional probability distributions to be pre-
dicted. This article discusses hierarchical correlation reconstruction (HCR) methodology
for such a prediction using the example of bid-ask spreads (usually unavailable), but here
predicted from more accessible data like closing price, volume, high/low price and returns.
Using HCR methodology, as in copula theory, we first normalized marginal distributions
so that they were nearly uniform. Then we modelled joint densities as linear combinations
of orthonormal polynomials, obtaining their decomposition into mixed moments. Then we
modelled each moment of the predicted variable separately as a linear combination of mixed
moments of known variables using least squares linear regression. By combining these pre-
dicted moments, we obtained the predicted density as a polynomial, for which we can e.g.
calculate the expected value, but also the variance to determine the uncertainty of the pre-
diction, or we can use the entire distribution for, e.g. more accurate further calculations or
generating random values. 10-fold cross-validation log-likelihood tests were conducted for
22 DAX companies, leading to very accurate predictions, especially when individual models
were used for each company, as significant differences were found between their behaviours.
An additional advantage of using this methodology is that it is computationally inexpensive;
estimating and evaluating a model with hundreds of parameters and thousands of data points
by means of this methodology takes only a second on a computer.

Key words: machine learning, conditional distribution, bid-ask spread, liquidity.
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1. Introduction

Liquidity is one of the key measures of financial market quality. The notion liquidity de-
notes a desirable function that should reflect a well-organized financial market. By liquid
market we understand a market for which there exists a prompt and secure channel between
the supply and demand of assets accompanied by low transaction costs. Providing a rigor-
ous scientific definition of market liquidity happens to be a challenging aim. Liquidity is the
main index of the health of a given stock market and the condition of the associated invest-
ment industry, using funds from this stock market. It is clear that more active trading leads
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to lower trading costs, more intensive flows of information and more activity concerning the
relevant stocks displayed by potential investors. It is worth mentioning the role of specula-
tors who can significantly increase the liquidity of the market, but may not necessarily have
a positive impact on it.

In some recent contributions the definitions of market liquidity are based on the bid-
ask spread and an estimation of its components. However, the difference between bid and
ask quotes for an asset provides a liquidity measure with respect to a dealer market. Not
to a broker market. Nevertheless, it is possible to compute approximations that replicate
the difference between bid and ask quotes even in broker markets. Therefore, intradaily
measures of liquidity can describe the main feature of a market, such as the arrival of new
information in the hands of market participants. There are several definitions of liquidity. In
each study on liquidity the initial goal is to formulate a definition of liquidity and justify it.
The notion liquidity is related on the one hand to the transaction time - i.e. the duration of
transactions, and on the other to transaction costs, understood as the price paid by investors
for the supply of liquidity.

The common definition widely used by both researchers and market participants states
that an asset is liquid if it can be sold quickly at a minimal cost. This definition of liquidity
for a particular asset can be generalized for the whole market. A similar definition can also
be applied to the stock market as a whole. In this sense, a market is liquid if it is possible
to buy and sell assets at a minimal cost without a significant delay from the placement of
the order. When assessing the liquidity of the stock market, in relation to incurring the
lowest transaction costs, it is also important to take into consideration other elements than
the size of the spread, which affect the cost of concluding buy/sell transactions, such as
commissions and exchange fees; or taxation on capital gains; market volatility. However, in
this contribution we focus on the spread which reflects to some extent the listed factors.

In the literature different measures of asset liquidity are known. These measures of
liquidity take into account various alternative elements of the measurement approach. Some
measures focus on the trading volume while other indices are based on the execution-cost
relation of liquidity. The measures related to volume information reflect the price impact
of transactions. After combining them into scalar measures they denote the liquidity on the
whole market. However, the indices based on execution costs enable the properties of an
asset to be evaluated. This is possible by analyzing the cost paid to the market maker (dealer
or specialist) for matching the supply and demand.

The value added of this study is twofold. First of all, in order to find the characteristics
of the future bid-ask spread we use a new methodology that has not been used for a financial
time series before. Secondly, on the basis of empirical data from the German stock index
DAX we have confirmed the advantages of this approach.

The most important conclusions concerning liquidity are based on the bid-ask spread
and its variations. We aim to use our hierarchical correlation reconstruction (HCR) method-
ology in spread bid-ask description and forecasting. A more detailed outline of the advan-
tages of this new methodology is at the end of the next Section. The content of the paper
is organized as follows. In the next Section, the literature overview is presented. The third
Section includes data and methodology. In the fourth Section, the empirical results are
presented. The last Section provides conclusions.
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2. Literature review

The pioneer in estimation of bid-ask spread, most often used measure of liquidity, was Roll
Roll (1984). The model derived by Roll has been very useful tool of bid-ask description
since the mid-eighties. The followers tried to improve and extend this approach. In Roll’s
model the spread is approximated based on return autocovariance.

According to Butler et al. (2005), lower liquidity implies higher transaction costs if the
share capital increases. Moreover, a higher return on equity, or cost of equity, is expected.

Lesmond et al. (1999) belong to the first researchers who tested the quality of mea-
sures of stock liquidity. The contributors compared them based on different stocks. Bid-ask
spread was used as a benchmark measure. Armitage et al. (2014) in contribution based
on empirical data for Ukraine (2005-2006) found that the proportion of nontrading days,
the proportion of zero-return days, stock volatility, and measure of Amihud (2002) exhibit
high correlations with this spread. In conclusion the contributors stated that these indicators
are good enough to measure liquidity for Ukraine. The findings of Armitage et al. (2014)
regarding turnover are in line with those of Lesmond et al. (1999) for other emerging mar-
kets. In addition, they found that the proportion of zero-return days is a better measure for
emerging markets than for developed markets.

In their studies of the determinants of the cost of trading, Armitage et al. (2014), Stoll
(2000), Naik and Yadav (2003) and Gajewski and Gresse (2007) proved that the effective
bid-ask spreads mentioned above depend on stock liquidity. Stock liquidity was measured
by the number of non-trading days per year and the average number of trades per day. It
turned out that higher liquidity stocks had narrower bid-ask spreads, as assumed. In the
opinion of these and other scholars these effective spreads are related to the risk of the
stock. The last is measured by return volatility. The more risky stocks exhibit usually
wider bid-ask spreads. However, the opposite relationship between cost and trade size was
observed for dealership markets like the London Stock Exchange (LSE) and NASDAQ.
Some results are not consistent, e.g. on the basis of the data for the LSE, Reiss and Werner
(1996) demonstrated that larger trades (but not to large) receive better prices. However, for
unusually large orders this empirical observation is not true. Hansch et al. (1999) reported
that on the LSE the price rise in relation to this spread is smallest for small trades, larger for
medium-sized trades and largest for large ones. Huang and Stoll (1996) calculated that the
mean spread for small trades amounts to almost 20 cents but for large trades it is smaller
approximately by 30-35 percent. They discovered an asymmetry in the cost of trading
between buyer- and seller-initiated trades. In addition, the authors analysing the company
spreads on NYSE and NASDAQ in their paper, found out that spreads on NASDAQ are
higher than on NYSE.

Chan and Lakonishok (1993) claim that in a portfolio for sale the number of stocks is
limited. They try to convince the readers that the decision to sell must not convey negative
information. On the contrary, according to the authors purchases are usually implied by firm
specific information which is available.

Stoll (2000) conjectured that the spread depends on some factors related to a stock’s
liquidity and risk. On the basis of data from the USA, he performed a panel regression of
this spread using five determinants as explanatory variables, namely trading volume, the
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number of trades per day, free float, return variance and stock price. The models fit the data
well since all explanatory variables are significant and the determination coefficient is over
0.6.

Naik and Yadav (2003) conducted similar research and obtained interesting results for
the London Stock Exchange. Unfortunately, their results are not in line with later findings
reported in Gajewski and Gresse (2007), who used data from Euronext Paris and the Lon-
don Stock Exchange. As a new explanatory variable they included the imbalance between
purchase and sale orders. They established that trading volume, return variance, and or-
der imbalance were significant and exhibited the expected signs. However, free float, stock
price, and the number of trades per day turned out not to be significant.

In some research the bid-ask spread is used as a measure of stock market liquidity em-
ployed in market microstructure studies. In Christie and Schultz (1994); Huang and Stoll
(1996); Bessembinder (2003) the bid-ask spread is used to conduct inter-market compar-
isons of trading costs. The efficiency of rules and regulations aimed at reducing the cost of
trading can be proven by checking the rules and regulations and their impact on the bid-ask
spread.

In a more recent study Chen et al. (2017) proposed a non-parametric method to estimate
the spread on the basis of the Roll (1984)) model. A further development can be found in
Abdi and Ranaldo (2017), who incorporate the Corwin and Schultz (2012) model into the
Roll model to derive a new estimator.

In the next part of this paper we shall focus on scarce bid-ask spreads, predicted on
the basis of data which is more accessible, such as closing price, volume, high/low price,
returns. Very preliminary results of this paper are in unpublished working paper by Duda
et al. (2019).

In our calculations, we use hierarchical correlation reconstruction (HCR) methodology:
each moment of the predicted variable is independently modelled as a linear combination
of mixed moments of the variables used, then they are finally combined into the predicted
(conditional) probability distribution. A basic use of predicting the entire distribution is to
predict a value, e.g. as its expected value, additionally also estimating the uncertainty from
its variance. Another use may be to handle more sophisticated situations such as a binomial
distribution with two (or more) separate maxima: when predicting the expected value might
not be a good choice (it may have a much lower density), a better prediction might be, e.g.
one of the maxima, or may be both: providing a prediction as an alternative of two (or more)
possibilities.

We can also use the entire predicted density, e.g. for a more accurate additional calcu-
lation, estimating the quantiles, or generating random values. HCR methodology combines
the advantages of classical statistics and machine learning. While the former allows for
well controlled and interpretable but relatively small (rough) models/descriptions, machine
learning allows for very accurate descriptions using huge models, but usually lacks unique-
ness of solution, control and interpretability of coefficients, and often is computationally
costly. HCR allows one to work on huge models obtained from (unique) least-squares opti-
mization, using well interpretable coefficients: as mixed moments of variables, starting, e.g.
with moments of single variables and the correlation coefficients. The results for 22 DAX
companies seem to be promising, especially using individual models for each company. An
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additional advantage of this methodology is that it is computationally inexpensive; such
complex models for these data can be estimated and evaluated in a second.

3. Data set and basic concepts

This Section discusses the data set and reminds one of the standard concepts, to be used for
describing the methodology used in the next Section.

3.1. Data set and variables

Daily data for DAX companies from the 1999-2013 period were used (source in Acknowl-
edgment); they were selected as they have at least 2000 data points: Deutsche Telekom AG
(DTE), Daimler AG (DAI), SAP SE (SAP), Siemens AG (SIE), Deutsche Post AG (DPW),
Allianz SE (ALV), BMW AG St (BMW), Infineon Technologies AG (IFX), Volkswagen
AG Vz (VOW3), Fresenius SE & Co. KGaA (FRE), Henkel AG & Co. KGaA Vz (HNK3),
Continental (CON), Merck KGaA (MRK), Münchener Rück AG (MUV2), Deutsche Börse
AG (DB1), Deutsche Lufthansa AG (LHA), Fresenius Medical Care AG & Co. KGaA St
(FME), Deutsche Bank AG (DBK), Fresenius Medical Care AG & Co. KGaA St (HEI),
RWE AG St (RWE), Beiersdorf Aktiengesellschaft (BEI), Thyssenkrupp AG (TKA).

The basic set of variables is P - closing price, V - volume, R - return, H,L - high/low
price. However, it turned out that trying to exploit dependence on R and L alone did improve
evaluation, hence finally the basic model considered: ’123’ uses only P as ’1’-st variable,
V as ’2’-nd variable and normalized (H−L)/P as ’3’-rd variable. It might be worth noting
that the paper presents average spreads on the German stock market in question. This type
of data is also applied in the cited references.

3.2. Bid-ask spread and some of its standard predictors

Bid-ask spread is the difference between the lowest asking price (ask, offered by a seller)
and the highest bid price (bid, offered by a buyer). While this value is important because it
is a main measure of market quality (Mestel et al. (2018); Gurgul and Machno (2017)), this
information is usually publicly unavailable. Therefore, there is an interest in being able to
predict this value on the basis of other, more accessible data.

At this point, one can present an important account that the smaller the spread, the more
efficiently the market operates, and its liquidity understood by the volume of trading in
securities also increases indirectly (Roll (1984)).

We consider bid-ask spread as a standard measure of liquidity. More specifically, we
work on relative quoted spread, which is normalized by dividing by midpoint (ask+bid)/2:
S = ask−bid

(ask+bid)/2 .
Simple examples of its predictors based on the 5 basic variables are AMI (Amihud

(2002); Fong et al. (2017)), HLR (Bȩdowska-Sójka and Echaust (2019); Gurgul and Syrek
(2019)):

AMI = ln
(

1+
|R|

P ·V

)
HLR = 2

H−L
H +L

(1)
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They are intended for a simpler task than that discussed: to predict values, while here
we want to predict entire conditional probability distributions. We can reduce the predicted
probability distributions into predicted values, e.g. as the expected value, median, or po-
sitions of maxima (especially for multimodal distributions). Fig. 1 presents comparisons
using such predictions reduced with the expected value.

However, in practice such a prediction is often further processed through several func-
tions, generally E( f (X)) 6= f (E(X)) for nonlinear, hence it is more accurate to process
the probability distribution (e.g. on a lattice) through the functions before, e.g. taking the
expected value.

3.3. Normalization to nearly uniform marginal distributions

Like in copula theory, in HCR methodology it is convenient to initially normalize all vari-
ables to nearly uniform marginal distributions in [0,1], hence below we shall only work
on such normalized variables, which beside usually better prediction also allows for better
presentation of evaluation: e.g. density without prediction is 1, log-likelihood is 0.

This standard normalization requires estimation of the cumulative distribution function
(CDF), individually for each variable, and this CDF function to be applied to the original
values. Finally, having a prediction we can go back to the original variable using CDF−1,
for example as in the original Duda and Szulc (2018) article, although for simplicity we
omit this step here - working only on normalized variables. Also, AMI,HLR predictions
underwent such normalization for the purpose of Fig. 1 visual performance comparison -
which means that a perfect predictor would give a diagonal plot.

The empirical distribution function (EDF) was used for this normalization here: for each
variable its n observed values are sorted, then i-th value in such an order obtains (i−0.5)/n
normalized value. Hence, values become their estimated quantiles this way, a difference of
two normalized values describes the percentage of population between these two values.

Having predicted density for normalized variable, we can transform it to the original
variable, e.g. by discretizing this density to probability distribution on a {(i−0.5)/n}i=1,...,n

lattice, and assigning probability of its i-th position to i-th ordered original value. For sim-
plicity it is omitted in this article.

3.4. Evaluation: log-likelihood with 10-fold cross-validation

The most standard evaluation of probability distributions is log-likelihood as in ML esti-
mation: the average (natural) logarithm of the (predicted) density in the actually observed
value. Hence, we will use this evaluation here.

Working on variables normalized to ρ ≈ 1 marginal distributions, without prediction
they would have practically zero log-likelihood. This allows to imagine the gains from
predictions as an averaged improvement over this ρ ≈ 1, as in Fig. 2. For example, the best
observed log-likelihood ≈ 1 corresponds to ≈ exp(1) ≈ 2.7 density: 2.7 times as good as
without the prediction, the same as if we could squeeze a [0,1] range 2.7 times to a 0.37
wide range. Sorting the predicted densities into the actually observed values, we can obtain
additional information regarding the distribution of prediction, as presented in this Figure.
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Here, we predict the conditional density - denoted as ρ(Y = y|X = x) for the density of
Y predicted on the basis of the known value of X . Hence its evaluation can be seen as an
estimation of EXY (ln(ρ(Y |X)), which is minus conditional entropy −H(Y |X). While it is
unknown here, random variables have some concrete value of conditional entropy - we can

Figure 1: Comparison of spread predictors on data set for visual evaluation: a perfect pre-
dictor would give a diagonal scatter plot, a completely useless one would give a uniform dis-
tribution. All variables are normalized to nearly uniform marginal distributions, including
outcomes of standard methods: AMI, HLR. The following 3 columns use the expected val-
ues of predicted densities from the discussed ’123’ model (using P,V,(H−L)/P variables,
8 · 53 = 424 coefficients). The ”1 common” column uses one model for all, ”2 common”
groups companies into two subsets and uses one of two models (as in Fig. 7, using models
comL, comR from Fig. 6). The last column uses models individually optimized for each
company.
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Figure 2: Top: examples of predicted conditional densities. Bottom: evaluation of such a
prediction. While log-likelihood only provides averaged ln(ρ(yi|xi)), sorted ρ(yi|xi) values
are presented here, allowing to additionally see, e.g. how frequently such prediction is
below ρ = 1 threshold of using no prediction. Colours denote one of 10 rounds of 10-fold
cross-validation, visualizing dependence of randomly splitting into the training and test set.

hopefully try to approach it with better and better models.
Here, we are focusing on large models that use hundreds of coefficients, estimated from

thousands of data points. Hence we need to be careful not to overfit: represent only be-
haviour which indeed generalizes - is not just a statistical artefact of the training set. Ma-
chine learning also builds large models, usually evaluating them using cross-validation: a
randomly split data set into a training and test set, the training set is used to build the model,
then the test (or validation) set is used to evaluate this model.

However, this evaluation depends on the random splitting into the training and test set.
Standard 10-fold cross-validation is used here to weaken this random effect: the data set is
randomly split into 10 nearly equal size subsets, the evaluation is an average from 10 cross-
validations: using successive subsets as the test set and the remaining ones as the training
set. However, a scale ≈ 0.01 randomness of such an evaluation is still observed, hence for
log-likelihoods only two digits after the comma are presented.

4. The HCR-based methodology used

This Section discusses the methodology used, which is an expansion of the one used in
Duda and Szulc (2018). To predict conditional distribution ρ(Y |X) we decompose X and Y
variables into mixed moments and model separately each moment of Y using least-squares
linear regression of moments of X , then combine them into the predicted conditional prob-
ability distribution of Y .

4.1. Decomposing joint distribution into mixed moments

After normalizing the marginal distributions of all variables to nearly uniform on [0,1], for
d variables their joint distribution on [0,1]d would also be nearly uniform if they were sta-
tistically independent. Distortion from uniform joint distribution corresponds to statistical
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Figure 3: General concept, some first functions of the 1 and 2 dimensional basis of or-
thornormal polynomials used ( f j1 j2(x) = f j1(x1) f j2(x2)), and application example. For
simplicity we assume working on variables normalized to nearly uniform marginal densities
on [0,1]. We would like to model distortion from this uniform distribution for the predicted
variable Y on the basis of the context X : as a linear combination, e.g. of orthornormal poly-
nomials here, for which coefficients have similar interpretation as moments/cumulants: a1
shifts right/left like the expected value, a2 increases/decreases the probability of extreme
values as variance, etc.

dependencies between these variables - we would like to model and exploit it.

In HCR we model it as just a linear combination using an orthornormal basis, e.g. of
polynomials, which gives the coefficients a similar interpretation as moments and mixed
moments: the dependencies between moments for multiple variables. In Fig. 3 the general
concept of the HCR methodology is presented.

The first orthonormal (
∫ 1

0 fi(x) f j(x)dx = δi j) polynomials (rescaled Legendre) for [0,1]
are f0 = 1 and f1, f2, f3, f4 correspondingly (plotted in Fig. 3):
√

3(2x−1),
√

5(6x2−6x+1),
√

7(20x3−30x2+12x−1),3(70x4−140x3+90x2−20x+1)

We could alternatively use, e.g. 1,
√

2cos(πxk) for k ≥ 1 orthonormal basis. However,
experimentally this usually leads to inferior evaluation.

Decomposing density ρ(x) = ∑ j a j f j(x), we need a0 = 1 normalization to integrate to
1. Due to orthogonality,

∫ 1
0 f j(x)dx = 0 for j > 0, hence the following coefficients do not

affect normalization. As we can see in their plots in Fig. 3, positive a1 shifts density toward
right - acting analogously as the expected value. Positive a2 increases the probability of
extreme values at the cost of central values - analogously as variance. Skewness-like higher
order asymmetry is brought by a3 and so on - we can intuitively interpret these coefficients
as moments (cumulants). This is only an approximation, but useful for interpreting these
models.
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In multiple dimensions we can use the product basis:

f j(x) = f j1(x1) · . . . · f jd (xd) for j = ( j1, . . . , jd) (2)

leading to a model of joint distribution:

ρ(x) = ∑
j∈B

f j(x) = ∑
j∈B

a j f j1(x1) · . . . · f jd (xd) (3)

where B ⊂ Nd is the basis of the mixed moments we are using for our modelling. It is
required that it contains (0, . . . ,0) for normalization. Besides, there is freedom in choosing
this basis, which allows one to hierarchically decompose the statistical dependencies of
multiple variables into mixed moments: describing marginal distribution first, then pairwise
dependencies, and so on for dependencies of growing numbers of variables.

Fig. 3 contains the first 5 functions of such a product basis for d = 2 variables: f00

corresponds to normalization and requires a00 = 1. The coefficients of f10, f20 describe the
expected value and the variance of the first variable, f01 and f02 analogously of the second.
Then we can start including moment dependencies, starting with a11, which determines the
decrease/increase in the expected value of one variable with the growth in the expected
value of the second variable - analogously to the correlation coefficient. We also have
dependencies between higher moments, such as asymmetric a12, which relates the expected
value of the first variable and the variance of the second.

And analogously for more variables, e.g. a010010 describes the correlation between the
2nd and 5th out of 6 variables. Finally, we can hierarchically decompose the statistical de-
pendencies between multiple variables into their mixed moments. However, to completely
describe the general joint distribution, we would need B =Nd infinite number of mixed mo-
ments for complete expansion - for practical modelling we need to choose the finite basis B
of moments to focus on.

4.2. Estimation using least squares linear regression

Having a data sample X , we would like to estimate such mixed moments as coefficients
for the linear combination of an orthonomal basis of functions, e.g. polynomials. Smooth-
ing the sample using kernel density estimation, finding a linear combination which mini-
mizes the square distance to such a smoothed sample, and performing limit to zero width
of the kernel used, we obtain a convenient and inexpensive MSE estimation Duda (2018):
independently for each coefficient j as just the average over the data set of value of the
corresponding function:

a j =
1
|X | ∑

x∈X
f j(x) (4)

We could use this model for predicting conditional distribution: substitute the known vari-
ables to the modelled joint distribution, after normalization obtaining the (conditional) den-
sity of the unknown variables.

However, for the bid-ask spread prediction problem, a slightly better evaluation was ob-
tained using the generalizing alternative approach of Duda and Szulc (2018), which allows
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one to additionally exploit subtle variable dependencies, hence we will focus on this.
Specifically, to model ρ(Y = y|X = x), let us use separate bases of (mixed) moments:

BX for X , BY for Y , and model relations between them. While more sophisticated models
could be considered for such relations including neural networks, for simplicity and inter-
pretability we focus on linear models here, treating f j(x) as interpretable features:

ρ(y|x) = ∑
j∈BY

f j(y)a j(x) for a j(x) = ∑
k∈BX

β jk fk(x) (5)

hence the model is defined by the |BY |× |BX | matrix β .
It allows for good interpretability: β jk coefficient is linear contribution of k-th mixed

moment of X to j-th (mixed) moment of Y . We focus on one-dimensional Y , but the for-
malism allows one to analogously predict density for multidimensional Y .

To find the β we use least-squares optimization here - it is very inexpensive, can be used
independently for each j ∈ BY thanks to the use of an orthonormal basis, and intuitively it is
a proper heuristic: least-squares optimization estimates the mean - exactly as we would like
for coefficient estimation (4). However, this is not necessarily the optimal choice - it might
also be worth exploring more sophisticated ways.

This least-squares optimization has to be performed separately for each j ∈ BY . Denot-
ing β j· = (β jk)k∈BX as a coefficient vector for j-th moment and Z = {(yi,xi)}i=1..n as (e.g.
training) data set of (y,x) pairs:

β j· = argminv ∑
(y,x)∈Z

(
∑

k∈BX

fk(x)vk− f j(y)

)2

= argminv
∥∥Mv−b j∥∥2

for M = [ fk(xi)]i=1..n,k∈BX , b j = ( f j(yi))i=1..n

matrix M and vector b j for j ∈ BY . This least-squares optimization has a unique solution:

β j· = (MT M)−1MT b j (6)

Separately calculated for each j ∈ BY , leading to the entire model as β matrix with β j· rows.

4.3. Applying the model, enforcing nonnegativity

We can apply the found model β to (e.g. test) data points as in (5), obtaining the predicted
conditional density for y on [0,1] as a polynomial. However, sometimes it can drop below
0, so let us refer to it as ρ̃ and then enforce the non-negativity required for densities:

ρ̃(y|x) = ∑
j∈BY

f j(y) ∑
k∈BX

β jk fk(x) (7)

This polynomial always integrates to 1. However, it can occasionally be below zero, which
should be interpreted as corresponding to a low positive density. This interpretation to non-
negative density ρ is referred to as calibration, and can be optimized on the basis of the data
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set. For simplicity only the following was used:

ρ(y|x) = max(ρ̃(y|x),0.03)/N (8)

where N normalization factor is chosen to integrate to 1: N =
∫ 1

0 max(ρ̃(y|x),0.03)dy. The
0.03 threshold was experimentally chosen as a compromise for the data set used, its tuning
can slightly improve evaluation.

4.4. Basic basis selection

The optimal choice of the basis is a difficult open question. As the basic choice the combi-
natorial family was used:

B((m1, . . . ,md),s,r) :=

{
j ∈ Nd : ∀i ji ≤ mi,

d

∑
i=1

ji ≤ s,
d

∑
i=1

sgn( ji)≤ r

}
(9)

where mi chooses how many first moments to use for i-th variable, s bounds the sum of used
moments (and formally the degree of the corresponding polynomial), r bounds the number
of nonzero ji: to include the dependencies of up to r variables.

For example the ’123’ model infers 8 moments BY =B((8),8,1) from 3 variables using
a compromise: BX = B((4,4,4),5,3) of size |BX | = 53 basis, directly written, e.g. in Fig.
6.

4.5. ’123’ model using basic variables

The initial plan for this article was to improve prediction from standard models: AMI,HLR,
trying to predict the conditional distribution of spread from their values using the method-
ology under discussion. However, the results were disappointing, especially for AMI, as we
can see in Fig. 1.

Therefore, we decided to use the original variables (P,V,L,H,R) instead, which turned
out to lead to essentially better predictions. A search for parameters using B basic basis
selection (9) was performed manually to maximize the averaged log-likelihood in 10-fold
cross-validation. This search finally leads to BX = B((4,4,4),5,3) basis for only 3 vari-
ables: P,V,(H−L)/P to predict up to the 8-th moment of Y . Surprisingly, adding depen-
dence on R and L alone worsened the evaluation - their dependence did not generalize from
training to test sets, hence they are not used in the final model.

The top of Fig. 2 contains examples of conditional densities predicted. The predicted
ρ̃(y|xi)=∑ j f j(y)∑k β jk fk(xi) polynomial for i-th data point undergoes ρ =max(ρ̃,0.03)/N
to remove negative densities, and normalization to integrate to 1 =

∫ 1
0 ρ(y|x)dy. Each di-

agram contains 10 example predictions, vertical lines show the actual values (yi,ρ(yi|xi)):
the higher the better prediction, without prediction all would have height 1. Companies were
chosen to present prediction examples of various evaluation levels. The best ones predict
mainly narrow unimodal distributions in line with the actual values, although weaker ones
can usually only predict wide often multimodal distributions. We can see rapid growths
at the ends - they are likely artefacts of using polynomials, their additional removal might



STATISTICS IN TRANSITION new series, December 2020 111

improve prediction. The bottom part presents their sorted predicted densities in the actual
values {ρ(yi|xi)}i, with marked gray ρ = 1 line of using no prediction and green exp(log-
likelihood) line corresponding to average improvement over no prediction. The points are
of different colours denoting one of 10 rounds of 10-fold cross-validation.

Integration required for normalization is relatively costly to compute, especially in higher
dimensions, hence for efficient calculation the predicted polynomial ρ̃ was discretized here
into 100 values on a ((i− 0.5)/100)i=1,...,100 lattice, which corresponds to approximating
the density with a piecewise constant function on length 1/100 subranges. Then max(·,0.03)
was applied, and division by the sum for normalization. Finally, the density in discretized
d100yie/100 position was used as ρ(yi|xi) in the log-likelihood evaluation.

In Figure 4 the results of cross-validation are presented. Model ’123’ denotes using
the three basic variables: where ’1’ denotes the closing price (P), ’2’ volume (V ), and ’3’
the difference between high and low price normalized by dividing by the closing price:
(H−L)/P. The last column presents the averaged evaluation for using common model for
all data. We can also see that there are large differences between companies, hence we will
mostly focus on building individual models for each company. The three lowest dots cor-
respond to predicting from single variable, then evaluation grows when adding information
from succeeding variables.

Copulas are a general, well-established method of modelling multivariate distribution.
In higher dimensions r-vines are a flexible class of mulivariate distributions. This type
of copulas allows for flexible modelling of asymmetric and nonlinear dependence patterns
Gurgul and Machno (2016). For comparison purposes we estimated such models and it
turns out that on average log-likelihoods for individual model from copulas were smaller
than from HCR. In Figure 4 points denoted by ”123vc” correspond to results from r-vines.
On average, log-likelihood for individual HCR models was 0.603, while for vine-copulas it
was 0.366, getting better representation of complex behaviour thanks of allowing for high
parametric models. HCR also has much less expensive estimation (least squares regression
of moments), and interpretation of the found parameters as moment dependencies.

While the optimal choice of the basis seems a difficult open problem, an exhaustive
search over all subsets is rather impractically costly, Figure 5 presents some heuristic ap-
proaches. The B family seems generally a good start, e.g. to successively modify some
its parameter by one as long as improvement is observed. In this Figure we can see a large
improvement while the number of predicted moments rises up to ≈ 7, which suggests that
the complexity of the conditional distributions for this problem requires this degree of poly-
nomial in order to be described properly. This Figure also contains trials of using different
orders of some first mixed moments. The selective removal, which is presented there, seems
a reasonable optimization: for each mixed moment from BX calculate the evaluation when
it is removed, finally remove the one that leads to the best evaluation, and so on as long as
the evaluation improves.

Examples of β matrix are visualized in Fig. 6 for |BX |= 53, |BY |= 1+8. Trying to split
all companies into subsets of similar behaviour, as visualized in tree Fig. 7, splitting into
two subsets we obtain the comL and comR models - correspondingly for the left (DPW,
BEI, HNK3, FME, SAP, DB1, RWE, FRE, HEI, DTE, IFX) and right (DAI, SIE, TKA,
CON, MRC, LHA, VOW3, MUV2, ALV, BMW, DBK) subtree of this tree. Then individual
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Figure 4: Log-likelihoods from 10-fold cross-validation for individual models for compa-
nies using various types of information. We can see individual behaviour of companies
and growth of prediction evaluation while adding information from succeeding variables.
The ”123vc” points correspond to vine copulas using the same evaluation: for HCR aver-
age log-likelihood for individual models was 0.603, while for vine-copulas it was 0.366,
additionally requiring ≈ 100× more computational time.

models for 5 selected companies were presented. The rows correspond to the predicted
moments of Y , as linear combinations of mixed moments of X corresponding to columns.
Row zero has always only 000 nonzero coefficient equal to 1 for normalization. The next
row describes the prediction of the expected value, the next one of variance and so on. In the
top model, common for all companies, we can, e.g. see large positive 001→ 1 coefficient:
the spread increases with the growth of H − L, negative 010→ 1: the spread decreases
with growth of V , and negative 011→ 2: variance of spread decreases for correlated V and
H −L. Blue 100→ 3 for FRE denotes a reduction in skewness of spread with growth of
price. Generally, we can see rather individual behaviour for different companies, starting
with 100→ 1 analogous to the price-spread correlation, which seems the main dividing
factor between comL and comR companies.

4.6. Individual vs common models, universality

A natural question is how helpful for prediction a given variable is - Fig. 4 presents some
answers by calculating the log-likelihood also for models using only some of the variables.
We can see different companies can have very different behaviour here, e.g. for some V is
helpful (volume and spread are correlated), for some it is not. Fig. 6 shows that they can
even display the opposite behaviour: e.g. for 100→ 1 dependence on price.

It is a general lesson that while we would like predictors to be nice simple formulas,
the reality might be much more complicated - the models found here are the results of the
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Figure 5: Left: Optimizing the basis and model size using the example of the company
FRE and BX = B((4,4,4),5,3) size 53 basis of mixed moments from ’123’ model. Log-
likelihoods for predicting the first 1 . . .10 moments (denoted by colours) using some first of
mixed moments (sorted lexicographically) of 3 X variables: P,V,(H −L)/P. We can see
that we should predict≈ 8 moments, higher moments are necessary to represent more com-
plex distributions. Top right: selective removal of successive mixed moments to maximize
log-likelihood - we can see that we can slightly improve evaluation this way, additionally
reducing the model size. However, it requires individual optimization for each company.
Bottom right: analogously as top, but using size 181 larger BX = B((5,5,5),10,3), also
trying different orders of mixed moments: accordingly to ∑i( ji)p. While using all such
mixed moments clearly leads to overfitting, selectively using some of the first ones can lead
to slightly improved evaluation.

Figure 6: Visualized coefficients of ’123’ models (9 × 53 matrix β for ρ(y|x) =

∑ j f j(y)∑k β jk fk(x)) for (P,V,H − L) variables, the numbers above the names are log-
likelihoods. The ’common’ is the model built for all the data combined - it presents general
trends. The ’comL’ and ’comR’ models are for the left (DPW, BEI, HNK3, FME, SAP,
DB1, RWE, FRE, HEI, DTE, IFX) and right (DAI, SIE, TKA, CON, MRC, LHA, VOW3,
MUV2, ALV, BMW, DBK) subtree in Fig. 7 - we can see that these subsets of companies
mainly differ by 100→ 1 coefficient corresponding to correlation between price and spread.

cultures of traders of the stocks of individual companies, which can essentially vary between
companies.

Therefore, to obtain the most accurate predictions we should build individual models
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for each company. Furthermore, a specific behaviour of a given company can additionally
evolve in time - which could be exploited, e.g. by building separate models for shorter time
periods, or using adaptive least-squares linear regression Duda (2019), and this is planned
for future investigation.

However, building such models requires training data, which in the case of variables
like bid-ask spread might be difficult to access. Hence, it is also important to search for
universality - e.g. try to guess a model for a company for which we lack such data, on the
basis of the available information for other companies. This generally seems a very difficult
problem, Fig. 7 shows that even having all the data, using the common model for multiple
companies we should expect a large evaluation drop. For example, we can see that the
behaviour of DTE completely disagrees with the common model for all.

As we can see in this tree Figure, the use of common model situation improves if we can
cluster companies into groups of similar behaviour - results are also presented for splitting
companies into just two groups with separate models (comL, comR in Fig. 6), also visually
leading to slightly better predictions as we can see comparing the 3rd and 4th column in
Fig. 1. The heights of the names show the evaluation of using an individual model for
a given company, orange dots show the successive reduction of log-likelihood for a given
company while using common models for subsets that grow according to this tree. The
lowest dots correspond to the use of one common model for all (common in Fig. 6) we can
see that it is worse than zero only for DTE (we get zero when using no prediction at all).
Splitting companies into a left and right subtree and using separate two models for them
(comL and comR in Fig. 6), we essentially obtain a better prediction (one dot up). The
tree structure was calculated by combining subsets to maximize (log-likelihood of common
model / average log-likelihood of individual models) - grouping companies into pairs and
then further, up to a single common model for all. The positions of lines represent such
grouped companies: a light-gray line their averaged log-likelihoods of individual models,
dark-gray line their log-likelihood for a common model. The difference between these two
lines represent a loss while using the common model. The common models are fixed hence
there is no cross-validation (CV) used, which artificially improves performance, for example
for the first dot of FME corresponding to the common model with HNK - making it above
CV individual model, generally suggesting large time inhomogeneities - to be included in
future adaptive models.

5. Conclusions and further work

A general methodology has been presented for extracting and exploiting complex statistical
dependencies between multiple variables in an inexpensive and interpretable way for pre-
dicting conditional probability distributions, using the example of the difficult problem of
predicting bid-ask spreads from more accessible information. This expands the approach of
Duda and Szulc (2018) by inferring from mixed moments, and searching for a basis in large
spaces of possibilities.

Figure 1 presents a comparison between it and standard methods when using only the
expected value from such predicted conditional density. A perfect predictor would lead to
diagonal scatter plot, standard methods provide rather a noise instead, while the predictions
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Figure 7: Visualization of optimized hierarchical grouping and evaluation loss while using
common models for multiple companies, the height denotes log-likelihoods. It was con-
structed by starting with individual models, then successively joining subsets of companies
leading to lowest loss of evaluation while using a common model for them.

from the approaches discussed indeed often resemble diagonal plot, especially when using
individual models. The predicted conditional probability density provides much more in-
formation than the value alone: e.g. it allows one to additionally estimate the uncertainty
of such a prediction as value, or provide prediction for multimodal densities, or it allows
random values to be generated, e.g. for Monte-Carlo simulations, or just provides the en-
tire density for accurate considerations especially if transforming such random variables
through some further nonlinear functions.

There are many directions for further development of this relatively new general method-
ology, for example:

• Optimal choice of the basis is a difficult problem, which should be automatized es-
pecially for a larger number of variables - selecting from the basis of orthonormal
polynomials discussed, or maybe automatically optimizing a completely different ba-
sis on the basis of a data set.

• Large differences between the behaviours of individual companies have been ob-
served - raising difficult questions regarding how to optimize for common behaviour,
optimize models on the basis of an incomplete information, etc. Additionally, such
behaviour has probably also time inhomogeneity - the models should evolve in time,
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requiring adaptive models to improve performance, where the problem of data avail-
ability becomes even more crucial.

• These models rapidly grow with the number of variables, which requires some mod-
ifications for exploiting high dimensional information - like extracting features from
these variables, e.g. as averages, dimensionality reduction like PCA, etc.

• We have predicted the conditional distributions for one-dimensional variables, but the
methodology was introduced to be more general: predicting for multidimensional Y
should be just a matter of using proper BY , which is planned to be tested in the future.

• The densities predicted as polynomials often have rapid growths at the ends of [0,1] -
their removal might improve performance.

• A linear relation was assumed between moments with least-squares optimization,
which is inexpensive and has good interpretability, but is not necessarily optimal -
one could consider, e.g. using neural networks instead, and optimizing criteria closer
to the log-likelihood of final predictions.

• In the light of the Epps effect we can see the dependence of stock return cross-
correlations on the data sampling frequency, i.e. for high-resolution data the cross-
correlations are significantly smaller than their asymptotic value as observed for daily
data. One should check the performance of HCR with respect to the data sampling
frequency.

• The share of algorithmic trading in the market is growing. The HCR method may be
helpful in the forecast of quoted and effective bid-ask spread regressed on the share
of algorithmic trading in the market.

• A comparison of the results of bid-ask spread modelling and forecasting using HCR
methodology with respect to the microstructure of stock markets in particular coun-
tries, their size and the level of development.
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Unbiased estimator modeling in unrelated dichotomous 
randomized response 

Adetola Adedamola Adediran1, Femi Barnabas Adebola2,  
Olusegun Sunday Ewemooje3 

ABSTRACT  

The unrelated design has been shown to improve the efficiency of a randomized response 
method and reduces respondents’ suspicion. In the light of this, the paper proposes a new 
Unrelated Randomized Response Model constructed by incorporating an unrelated 
question into the alternative unbiased estimator in the dichotomous randomized response 
model proposed by Ewemooje in 2019. An unbiased estimate and variance of the model are 
thus obtained. The variance of the proposed model decreases as the proportion of the 
sensitive attribute π_A and the unrelated attribute π_U increases, in contrast to the earlier 
Ewemooje model, whose variance increases as the proportion of the sensitive attribute 
increases. The relative efficiency  of the proposed model over the earlier Ewemooje model  
decreases as π_U increases when 0.1≤π_A≤ 0.3 and increases as π_U increases when 
0.35≤π_A≤ 0.45. Application of the proposed model also revealed its efficiency over the 
direct method in estimating the prevalence of examination malpractices among university 
students;the direct method gave an estimate of 19.0%, compared to the proposed method’s 
estimate of 23.0%. Hence, the proposed model is more efficient than the direct method and 
the earlier Ewemooje model as the proportion of people belonging to the sensitive attribute 
increases. 
Key words: dichotomous, relative efficiency, sensitive attribute.  

1.  Introduction 

One of the problems in a survey is non-response; this is referred to as failure of 
getting the required information from a respondent. Non-response reduces the sample 
size as some respondents do not give the needed information and thereby making the 

                                                           
1  Department of Statistics, Federal University of Technology Akure, Nigeria. E-mail: aaadediran@futa.edu.ng. 

ORCID: https://orcid.org/0000-0003-3176-7872. 
2  Department of Statistics, Federal University of Technology Akure, Nigeria. E-mail: fbadebola@futa.edu.ng. 

ORCID: https://orcid.org/0000-0001-7790-1331. 
3 Department of Statistics, Federal University of Technology Akure, Nigeria. E-mail: osewemooje@futa.edu.ng. 

ORCID: https://orcid.org/0000-0003-3236-6018. 



120                                                                          A. A. Adediran et al.: Unbiased estimator modeling … 

 

 

accuracy of the estimate to be compromised. Obtaining information about sensitive 
attributes lead to non-response or false response as participants in the sample may give 
false response or decide not to give an answer for diverse reasons. In order to reduce 
error due to this non-response bias, Warner in 1965 developed the Randomized 
Response Model (RRM) for estimating the proportion of people that belong to a 
sensitive attribute. 

Quite a number of authors have reviewed and expanded the work of Warner, 
including Horvitz et al. (1967) Unrelated Question Design, Greenberg et al. (1969) 
Unrelated Question Design with known distribution, Mangat and Singh (1990) 
Randomized Response Model (RRM), Hussain-Shabbir (2007) Dichotomous 
Randomized Response Model (DRRM), Adebola and Adepetun (2011), Tripartite 
Randomized Response Model (TRRM), Ewemooje (2017) Equal Probabilities of 
Protection, Adebola et al. (2017) Hybrid Tripartite Randomized Response Technique, 
Ewemooje et al. (2019a) Dichotomous Randomized Response Technique, Ewemooje et 
al. (2018) Stratified Hybrid Tripartite Randomized Response Technique. Also, Yu et al. 
(2008) worked on the Crosswise Model (CM) and Triangular Model (TM) while Fox et 
al. (2019) proposed Generalized Linear Mixed Models for Randomized Responses 
(GLMRR), among others. 

To test the applicability of the RRM; Jann et al. (2012) applied a modified RRM 
(Crosswise Model by Yu et al., 2008) to elicit information on plagiarism among German 
and Swiss students. They found out that RRM elicited more socially undesirable 
answers than direct questioning. Ewemooje et al., (2017) also used Improved 
Randomized Response Technique for two sensitive attributes (IRRT2) to show that 
RRM performs better that Direct Method of questioning (DM) by estimating 
prevalence of induced abortion and multiple sexual partners. Cobo et al., (2016) used 
RRM to investigate cannabis use by Spanish University students and then compared 
the result with DM. Their results revealed that RRM increases the response rate for 
cannabis use and that it is an efficient method. Furthermore, Ewemooje et al., (2019b) 
measured substance use disorder prevalence using RRM and DM; their findings 
showed that RRM estimated the disorder better with lower error than DM. Conversely, 
Hoglinger and Jann (2018) evaluated the variability of several variants of RRM and the 
crosswise model by comparing the respondents’ self-reports on cheating in dice games 
to actual cheating behaviour; their result showed that the RRM fails to reduce the level 
of misinterpreting compared to DM and none of the RRMs evaluated outperformed the 
conventional DM. 

Therefore, in this work we consider dichotomous randomized response design in 
the presence of unrelated questions; the estimator and variance are obtained and 
compared with the Dichotomous Randomized Response Model by Ewemooje et al., 
(2019a) using relative efficiency. Also, to verify more-is-better assumption, the 
proposed method and Direct Method (DM) were applied to the same subpopulation 
in a survey. 
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2. Dichotomous Randomized Response Model by Ewemooje et al., (2019a) 

In their model, respondents were asked sensitive question directly, if he/she 
responds “yes” then he/she is not allowed to use the randomized device while if “no”, 
he/she is required to use the randomized device. Two randomized devices were used 
each consisting of two questions with different selection probabilities. A simple random 
sample with replacement sampling was adopted in their selection of the sample of size, 
n with α and β as any two positive real numbers such that q = ஑

஑ାஒ
 is the probability of 

using the first randomized device and 1- q = ஒ

஑ାஒ
 is the probability of using the second 

randomized device. 
If all respond truthfully, their population proportion of “yes” answers is given by: 

𝑃ሺ𝑦𝑒𝑠ሻ ൌ 𝛳ଵ ൌ π ൅
஑

஑ାஒ
(1െPଵሻሺ1 െ πሻ ൅

஑

஑ାஒ
ሺ1 െ Pଶሻሺ1 െ πሻ    (1) 

where Pଵ is the probability of the sensitive attribute in randomized devices Rଵ and Pଶ is 
the probability of the sensitive attribute in randomized devices Rଶ.  

This yielded an unbiased estimate of the population proportion as: 

 𝜋ො ൌ
 𝛉෡భሺ஑ାஒሻି ୔మ஑ି୔భஒ

୔భ஑ା୔మஒ
        (2) 

The variance of their estimate was given as 

  𝑉ሺ𝜋ොሻ ൌ
஠ሺଵି஠ሻ

୬
൅

ሺଵି஠ሻሺ୔మ஑ା୔భஒሻ

௡ሺ୔భ஑ା୔మஒሻమ        (3) 

3. Proposed Model 

In sampling a finite population, the simple random sample with replacement was 
used to obtain the sample size of respondents who respond to sensitive questions using 
Randomized Response Model. Sensitive question was asked directly from the 
respondents. If “yes” answer is obtained, he/she does not need to use the randomized 
device but if he/she answers “no”, then he/she uses the randomized device. The two 
randomized devices Rଵ and Rଶ  consists of two unrelated questions (the sensitive 
question A in which the interviewer is interested in with probability P, and non-
sensitive attribute question B that is unrelated to the sensitive question A with 
probability, 1-P) each. Say: 

Sensitive question: “do you belong to a sensitive attribute A?” 
Non-sensitive question: “do you love soccer?” 
Two responses were considered for each of the two unrelated questions: “yes” and 

“no”, where α  and  β are positive real numbers such that q ൌ
஑

஑ାஒ
, α ് β is the 
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probability of using Rଵ and 1 െ q ൌ
ஒ

஑ାஒ
, α ് β is the probability of using Rଶ with 

preset probabilities Pଵ and Pଶ respectively for each of the devices. 
Let 𝜋஺ be the true proportion of people that belongs to the sensitive attribute 

and 𝜋௨, the proportion of people that belongs to the unrelated non-sensitive attribute. 
If all respond truthfully as the devices provide protection for respondents, the 
population proportion of “yes” answers is given by: 

𝑃ሺ𝑦𝑒𝑠ሻ ൌ 𝛳 ൌ  𝜋஺ ൅  
஑

஑ାஒ
ሾPଵ𝜋஺ ൅ ሺ1 െ Pଵሻ𝜋௎ሿ ൅

ஒ

஑ାஒ
ሾPଶ𝜋஺ ൅ ሺ1 െ Pଶሻ𝜋௎ሿ   (4) 

where Pଵ is the probability of the sensitive attribute in randomized devices Rଵ while Pଶ 
is the probability of the sensitive attribute in randomized devices Rଶ. 

Solving equation (4) further yield the estimate of the population proportion of the 
sensitive attribute 

𝜋ො஺ ൌ
஘෡ሺఈାఉ ሻ  ି గೆሺሺఈାఉሻ ିఈ௉భିஒ௉మሻ

ሺఈାఉ ା ఈ௉భାஒ௉మሻ 
      (5) 

where  𝜃෠ ൌ 𝑛଴ 𝑛ൗ , 𝑛଴ is the number of respondents that answered "yes" to sensitive 
question while 𝑛 is the sample size. 

The proposed estimator, 𝜋ො஺, is an unbiased estimator of the population parameter 
𝜋஺. 

3.1. Variance Estimation 

The variance of the model is obtained as follows: 

vሺ𝜋ො஺ሻ ൌ vሺ
θ෠ሺ𝛼 ൅ 𝛽 ሻ   െ  𝜋௎ሺሺ𝛼 ൅ 𝛽ሻ  െ 𝛼𝑃ଵ െ β𝑃ଶሻ

ሺ𝛼 ൅ 𝛽 ൅  𝛼𝑃ଵ ൅ β𝑃ଶሻ 
 ሻ 

vሺ𝜋ො஺ሻ ൌ
ሺఈାఉ ሻమ ୴ሺ஘෡ሻ

ሺఈାఉ ା ఈ௉భାஒ௉మሻమ 
             (6) 

where v൫θ෠൯ ൌ  
௾ ሺଵି ௾ሻ

௡
 

recall that 𝛳 ൌ ሺ 
ఈగಲ ା ஒగಲାఈ௉భ గಲ ାஒ௉మ గಲା ఈሺଵି௉భሻగೆ ାஒሺଵି௉మሻ గೆ

ఈାఉ
 ሻ, substituting this in 

equation (6), the variance of the proposed unbiased estimator is given as: 

vሺ𝜋ො஺ሻ ൌ
గಲሼሺ ఈାఉሻିగಲሺఈାఉ ା ఈ௉భାஒ௉మሻሽ

௡ሺఈାఉ ା ఈ௉భାஒ௉మሻ
 ൅  

గೆሺఈାఉ ିఈ௉భିஒ௉మሻሺఈାఉିଶగಲሺఈାఉ ା ఈ௉భାஒ௉మሻሻ

௡ሺఈାఉ ା ఈ௉భାஒ௉మሻమ 
 

 (7) 

Therefore, the variance of the proposed unbiased estimator can be estimated using: 

vොሺ𝜋ො஺ሻ ൌ
గෝಲሼሺ ఈାఉሻିగෝಲሺఈାఉ ା ఈ௉భାஒ௉మሻሽ

ሺ௡ିଵሻሺఈାఉ ା ఈ௉భାஒ௉మሻ
 ൅  

గೆሺఈାఉ ିఈ௉భିஒ௉మሻሺఈାఉିଶగෝಲሺఈାఉ ା ఈ௉భାஒ௉మሻሻ

ሺ௡ିଵሻሺఈାఉ ା ఈ௉భାஒ௉మሻమ 
 

 (8) 
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4. Efficiency Comparison 

The proposed model will be more efficient than the conventional one if the 
condition for the relative efficiency holds: 

RE = ୴ୟ୰୧ୟ୬ୡୣ ୭୤ ୡ୭୬୴ୣ୬୲୧୭୬ୟ୪ ୫୭ୢୣ୪

୴ୟ୰୧ୟ୬ୡୣ ୭୤ ୮୰୭୮୭ୱୣୢ ୫୭ୢୣ୪
൐ 1 

The relative efficiency of the proposed model over the conventional model were 
gotten for varying sample sizes (n), varying probabilities Pଵ and Pଶ  of using the 
randomized devices at different values of  𝜋஺ and 𝜋௎ . 

The comparison between the proposed estimator and Ewemooje et al. (2019a) 
estimator at different sample sizes in Table 1 shows that the proposed estimator is 
approximately ten (10) times more efficient than that due to Ewemooje et al. (2019a). 
As the sample size increases from 50 to 500, the variances due to Ewemooje et al. 
(2019a) estimator reduces from 0.0053 to 0.0005 while the proposed estimator reduces 
from 0.0005 to 0.0001. Therefore, as the sample sizes increases the variability reduces, 
this implies consistency of the two models. 

Considering a constant sample size at varying probabilities of selecting the 
randomized device, the variances due to Ewemooje et al. (2019a) estimator increases 
from 0.00131 to 0.00138, the proposed estimator increases from 0.00018 to 0.00022 
while the relative efficiency reduces from 7.089 to 6.227 as shown in Table 2. 

Table 1.  Relative efficiency comparison between the proposed model and Ewemooje et al. (2019a) 
model when π୅ = 0.5; π୙= 0.5; Pଵ= 0.5; Pଶ= 0.5; α= 25; β= 35 for varying sample sizes (n). 

n 𝝅𝑨 𝝅𝑼 𝐏𝟏 𝐏𝟐 α β 𝐯ሺ𝝅ෝሻ 𝐯ሺ𝝅ෝ𝑨ሻ RE 

50 0.5 0.5 0.5 0.5 25 35 0.005333   0.000537 9.931034 

100 0.5 0.5 0.5 0.5 25 35 0.002667   0.000269 9.931034 

150 0.5 0.5 0.5 0.5 25 35 0.001778   0.000179 9.931034 

200 0.5 0.5 0.5 0.5 25 35 0.001333   0.000134 9.931034 

250 0.5 0.5 0.5 0.5 25 35 0.001067   0.000107 9.931034 

300 0.5 0.5 0.5 0.5 25 35 0.000889 0.0000895 9.931034 

350 0.5 0.5 0.5 0.5 25 35 0.000762 0.0000767 9.931034 

400 0.5 0.5 0.5 0.5 25 35 0.000667 0.0000671 9.931034 

450 0.5 0.5 0.5 0.5 25 35 0.000593 0.0000597 9.931034 

500 0.5 0.5 0.5 0.5 25 35 0.000533 0.0000537 9.931034 
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Table 2. Relative efficiency comparison between the proposed model and Ewemooje et al. (2019a) 
model when π୅ = 0.5; π୙= 0.5; α= 25; β= 35; n=200 for varying Pଵ and Pଶ 

n 𝝅𝑨 𝝅𝑼 𝐏𝟏 𝐏𝟐 α β 𝐯ሺ𝝅ෝሻ 𝐯ሺ𝝅ෝ𝑨ሻ RE 

200 0.5 0.5 0.1 0.9 25 35 0.001306 0.000184 7.089034 

200 0.5 0.5 0.2 0.8 25 35 0.001312 0.000188 6.966797 

200 0.5 0.5 0.3 0.7 25 35 0.001318 0.000193 6.848074 

200 0.5 0.5 0.4 0.6 25 35 0.001325 0.000197 6.733115 

200 0.5 0.5 0.5 0.5 25 35 0.001333 0.000201 6.622212 

200 0.5 0.5 0.6 0.4 25 35 0.001342 0.000206 6.515705 

200 0.5 0.5 0.7 0.3 25 35 0.001352 0.000211 6.413994 

200 0.5 0.5 0.8 0.2 25 35 0.001363 0.000216 6.317551 

200 0.5 0.5 0.9 0.1 25 35 0.001376 0.000221 6.226937 

Table 3 shows that for varying π୅ and π୙, Pଵ= 0.3; Pଶ= 0.7, the variance of the 
Ewemooje et al. (2019a) model increases at all values of π୅  while the variance of the 
proposed model increases as π୙ increases when 0.1 ൑  𝜋஺  ൑  0.3 and decreases as πU 
increases when 0.35 ൑  𝜋஺  ൑  0.45. The relative efficiency of the proposed model over 
Ewemooje et al. (2019a) reduces as π୙ increases when 0.1 ൑ 𝜋஺ ൑  0.3 and increases 
as π୙ increases when 0.35 ൑ 𝜋஺ ൑  0.45. However, as the sensitive character, 𝜋஺ 
increases, the relative efficiency increases with the values ranging from 1.0135 to 
21.4409. The relative efficiency (RE) is greater than 1 for 𝜋஺ ൌ 0.1 when 0.1 ൑  𝜋௎ ൑
 0.4, RE greater than 1 for 𝜋஺ ൌ 0.15 when 0.1 ൑  𝜋௎ ൑  0.7 and RE greater than 1 
when 0.2 ൑  𝜋஺  ൑  0.45 at all values of π୙. This shows that the proposed model is more 
efficient than the Ewemooje et al. (2019a) model as the proportion of people belonging 
to the sensitive attribute increases. 

In Table 4, the probability of selecting the sensitive attribute was increased to 0.4 
i.e. Pଵ= 0.4 while Pଶ= 0.6. The relative efficiency of the proposed model over Ewemooje 
et al. (2019a) also reduces as π୙ increases when 0.1 ൑ 𝜋஺ ൑  0.3 and increases as π୙ 
increases when 0.35 ൑ 𝜋஺ ൑  0.45. The relative efficiencies range between 1. 0284 and 
18.8538. This shows that there is increase in efficiency as Pଵ increases. 
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Table 3.  Relative efficiency comparison between the proposed model and Ewemooje et al. (2019a) 
model when Pଵ= 0.3; Pଶ= 0.7; α= 25; β= 35; n=200 for varying π୅ and π୙. 

𝝅𝑨 𝝅𝑼 𝐯ሺ𝝅ෝሻ 𝐯ሺ𝝅ෝ𝑨ሻ RE 𝝅𝑨 𝝅𝑼 𝐯ሺ𝝅ෝሻ 𝐯ሺ𝝅ෝ𝑨ሻ RE 
 0.1 0.000573 0.000345 1.662303 0.1 0.001146 0.000536 2.137366 
 0.2 0.000573 0.000413 1.387377 0.2 0.001146 0.000543 2.108094 
 0.3 0.000573 0.000481 1.191302 0.3 0.001146 0.000551 2.080862 
 0.4 0.000573 0.000549 1.044416 0.4 0.001146 0.000557 2.055543 
0.1 0.5 0.000573 0.000616 0.930275 0.3 0.5 0.001146 0.000564 2.032025  

0.6 0.000573 0.000683 0.839031 0.6 0.001146 0.00057 2.010205  
0.7 0.000573 0.00075 0.764424 0.7 0.001146 0.000576 1.989992  
0.8 0.000573 0.000816 0.702286 0.8 0.001146 0.000581 1.971302  
0.9 0.000573 0.000882 0.649735 0.9 0.001146 0.000586 1.954063 

  1 0.000573 0.000948 0.604711   1 0.001146 0.000591 1.938206 
 0.1 0.000754 0.00043 1.752585 0.1 0.001226 0.000521 2.352242 
 0.2 0.000754 0.000483 1.559987 0.2 0.001226 0.000514 2.387847 
 0.3 0.000754 0.000536 1.406395 0.3 0.001226 0.000505 2.426134 
 0.4 0.000754 0.000588 1.281057 0.4 0.001226 0.000497 2.46731 
0.15 0.5 0.000754 0.00064 1.176839 0.35 0.5 0.001226 0.000488 2.511608 

0.6 0.000754 0.000692 1.088822 0.6 0.001226 0.000479 2.559291 
0.7 0.000754 0.000744 1.013506 0.7 0.001226 0.00047 2.610657 
0.8 0.000754 0.000795 0.948329 0.8 0.001226 0.00046 2.666043 
0.9 0.000754 0.000846 0.891377 0.9 0.001226 0.00045 2.725833 

  1 0.000754 0.000896 0.841189   1 0.001226 0.000439 2.790465 
 0.1 0.000909 0.00049 1.854419 0.1 0.001282 0.000482 2.661543 
 0.2 0.000909 0.000528 1.721451 0.2 0.001282 0.000459 2.79495 
 0.3 0.000909 0.000566 1.607214 0.3 0.001282 0.000435 2.944671 
 0.4 0.000909 0.000603 1.508023 0.4 0.001282 0.000412 3.113841 
0.2 0.5 0.000909 0.00064 1.421098 0.4 0.5 0.001282 0.000388 3.306451 

0.6 0.000909 0.000676 1.344305 0.6 0.001282 0.000363 3.52767 
0.7 0.000909 0.000713 1.275977 0.7 0.001282 0.000339 3.784304 
0.8 0.000909 0.000749 1.214796 0.8 0.001282 0.000314 4.085509 
0.9 0.000909 0.000784 1.159703 0.9 0.001282 0.000288 4.443899 

  1 0.000909 0.000819 1.109838   1 0.001282 0.000263 4.877343 
 0.1 0.00104 0.000526 1.978355 0.1 0.001313 0.000417 3.147851 
 0.2 0.00104 0.000548 1.896602 0.2 0.001313 0.000379 3.465365 
 0.3 0.00104 0.000571 1.822394 0.3 0.001313 0.00034 3.857866 
 0.4 0.00104 0.000593 1.754752 0.4 0.001313 0.000301 4.355411 
0.25 0.5 0.00104 0.000614 1.692864 0.45 0.5 0.001313 0.000262 5.006603 

0.6 0.00104 0.000636 1.636043 0.6 0.001313 0.000223 5.895497 
0.7 0.00104 0.000657 1.583709 0.7 0.001313 0.000183 7.181136 
0.8 0.00104 0.000677 1.53537 0.8 0.001313 0.000143 9.205181 
0.9 0.00104 0.000698 1.490601 0.9 0.001313 0.000102 12.85955 

  1 0.00104 0.000718 1.449035   1 0.001313 0.0000612 21.44086 
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Table 4.  Relative efficiency comparison between the proposed model and Ewemooje et al. (2019a) 
model when Pଵ= 0.4; Pଶ= 0.6; α= 25; β= 35; n=200 for varying π୅ and π୙ 

𝝅𝑨 𝝅𝑼 𝐯ሺ𝝅ෝሻ 𝐯ሺ𝝅ෝ𝑨ሻ RE 𝝅𝑨 𝝅𝑼 𝐯ሺ𝝅ෝሻ 𝐯ሺ𝝅ෝ𝑨ሻ RE 
 0.1 0.000586 0.000353 1.660952 0.1 0.001156 0.000548 2.107674 
 0.2 0.000586 0.000425 1.377199 0.2 0.001156 0.000557 2.073896 
 0.3 0.000586 0.000498 1.177079 0.3 0.001156 0.000566 2.042447 
 0.4 0.000586 0.00057 1.02837 0.4 0.001156 0.000574 2.013165 

0.1 0.5 0.000586 0.000641 0.913521 0.3 0.5 0.001156 0.000582 1.985906  
0.6 0.000586 0.000713 0.822151 0.6 0.001156 0.000589 1.960538  
0.7 0.000586 0.000783 0.747731 0.7 0.001156 0.000597 1.936947  
0.8 0.000586 0.000854 0.685946 0.8 0.001156 0.000603 1.915028  
0.9 0.000586 0.000924 0.633833 0.9 0.001156 0.00061 1.894686 

  1 0.000586 0.000994 0.589287   1 0.001156 0.000616 1.875838 
 0.1 0.000766 0.000439 1.74396 0.1 0.001236 0.000535 2.310815 
 0.2 0.000766 0.000496 1.544414 0.2 0.001236 0.000528 2.341486 
 0.3 0.000766 0.000552 1.386723 0.3 0.001236 0.00052 2.37458 
 0.4 0.000766 0.000608 1.258975 0.4 0.001236 0.000513 2.410267 

0.15 0.5 0.000766 0.000664 1.153387 0.35 0.5 0.001236 0.000505 2.448743 
0.6 0.000766 0.000719 1.064657 0.6 0.001236 0.000496 2.490223 
0.7 0.000766 0.000774 0.989051 0.7 0.001236 0.000487 2.534952 
0.8 0.000766 0.000829 0.923862 0.8 0.001236 0.000478 2.583208 
0.9 0.000766 0.000883 0.867078 0.9 0.001236 0.000469 2.635303 

  1 0.000766 0.000937 0.817176   1 0.001236 0.000459 2.691595 
 0.1 0.000921 0.0005 1.839616 0.1 0.001291 0.000496 2.601386 
 0.2 0.000921 0.000541 1.700959 0.2 0.001291 0.000473 2.727499 
 0.3 0.000921 0.000582 1.582692 0.3 0.001291 0.00045 2.868693 
 0.4 0.000921 0.000622 1.480635 0.4 0.001291 0.000426 3.027789 

0.2 0.5 0.000921 0.000662 1.391678 0.4 0.5 0.001291 0.000402 3.208359 
0.6 0.000921 0.000701 1.313461 0.6 0.001291 0.000378 3.414995 
0.7 0.000921 0.00074 1.244157 0.7 0.001291 0.000353 3.653698 
0.8 0.000921 0.000779 1.182331 0.8 0.001291 0.000328 3.932472 
0.9 0.000921 0.000817 1.126842 0.9 0.001291 0.000303 4.262223 

  1 0.000921 0.000855 1.076768   1 0.001291 0.000277 4.658218 
 0.1 0.001051 0.000537 1.956943 0.1 0.00132 0.000432 3.053186 
 0.2 0.001051 0.000562 1.870325 0.2 0.00132 0.000394 3.354703 
 0.3 0.001051 0.000586 1.79212 0.3 0.00132 0.000354 3.725976 
 0.4 0.001051 0.00061 1.72118 0.4 0.00132 0.000315 4.194316 

0.25 0.5 0.001051 0.000634 1.656556 0.45 0.5 0.00132 0.000275 4.80343 
0.6 0.001051 0.000658 1.59746 0.6 0.00132 0.000235 5.627905 
0.7 0.001051 0.000681 1.543228 0.7 0.00132 0.000194 6.80632 
0.8 0.001051 0.000704 1.4933 0.8 0.00132 0.000153 8.628625 
0.9 0.001051 0.000726 1.447199 0.9 0.00132 0.000112 11.82045 

  1 0.001051 0.000748 1.404517   1 0.00132 0.00007 18.85377 

Table 5 shows that as Pଵ ൌ Pଶ ൌ 0.5, the variance of the Ewemooje et al. (2019a) 
model increases at all values of π୅  from 0.00040 to 0.00133 while the variance of the 
proposed model decreases as π୅ increases with values ranging from 0.00108 to 0.00008. 
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The relative efficiency of the proposed model over Ewemooje et al. (2019a) also reduces 
as π୙ increases when 0.1 ൑ 𝜋஺ ൑  0.3 and increases as π୙ increases when 0.35 ൑ 𝜋஺ ൑
 0.45. However, as the sensitive character 𝜋஺ increases, an appreciable increase is 
noticed in the values of the relative efficiency ranging from 1.0144 to 16.5954. 

Table 5.  Relative efficiency comparison between the proposed model and Ewemooje et al. (2019a) 
model when Pଵ= 0.5; Pଶ= 0.5; α= 25; β= 35; n=200 for varying π୅ and π୙ 

π_A π_U v(π ̂ ) v(π ̂_A ) RE π_A π_U v(π ̂ ) v(π ̂_A ) RE 
 0.1 0.0006 0.000361 1.662391 0.1 0.001167 0.000561 2.079894 
 0.2 0.0006 0.000438 1.3694 0.2 0.001167 0.000571 2.041478 
 0.3 0.0006 0.000515 1.165049 0.3 0.001167 0.000582 2.005731 
 0.4 0.0006 0.000591 1.014402 0.4 0.001167 0.000591 1.972448 

0.1 0.5 0.0006 0.000668 0.898752 0.3 0.5 0.001167 0.000601 1.941448  
0.6 0.0006 0.000743 0.807175 0.6 0.001167 0.00061 1.912568  
0.7 0.0006 0.000819 0.732866 0.7 0.001167 0.000619 1.885663 
0.8 0.0006 0.000894 0.671363 0.8 0.001167 0.000627 1.860602 
0.9 0.0006 0.000968 0.619621 0.9 0.001167 0.000635 1.83727 

  1 0.0006 0.001043 0.575488 1 0.001167 0.000643 1.815562 
 0.1 0.000779 0.000448 1.737559 0.1 0.001246 0.000548 2.271653 
 0.2 0.000779 0.000509 1.530835 0.2 0.001246 0.000542 2.297251 
 0.3 0.000779 0.000569 1.36896 0.3 0.001246 0.000536 2.325039 
 0.4 0.000779 0.000629 1.238775 0.4 0.001246 0.000529 2.355155 

0.15 0.5 0.000779 0.000688 1.131809 0.35 0.5 0.001246 0.000522 2.387755 
0.6 0.000779 0.000748 1.042363 0.6 0.001246 0.000514 2.423015 
0.7 0.000779 0.000806 0.966464 0.7 0.001246 0.000506 2.46113 
0.8 0.000779 0.000865 0.901253 0.8 0.001246 0.000498 2.502325 
0.9 0.000779 0.000923 0.844625 0.9 0.001246 0.000489 2.546848 

  1 0.000779 0.00098 0.794993 1 0.001246 0.00048 2.594986 
 0.1 0.000933 0.000511 1.826749 0.1 0.0013 0.000511 2.5444 
 0.2 0.000933 0.000555 1.682243 0.2 0.0013 0.000488 2.663126 
 0.3 0.000933 0.000598 1.559889 0.3 0.0013 0.000465 2.795699 
 0.4 0.000933 0.000641 1.454965 0.4 0.0013 0.000441 2.944631 

0.2 0.5 0.000933 0.000684 1.364005 0.4 0.5 0.0013 0.000418 3.113082 
0.6 0.000933 0.000727 1.284404 0.6 0.0013 0.000393 3.305085 
0.7 0.000933 0.000769 1.214165 0.7 0.0013 0.000369 3.525866 
0.8 0.000933 0.00081 1.151737 0.8 0.0013 0.000344 3.782328 
0.9 0.000933 0.000852 1.09589 0.9 0.0013 0.000318 4.08377 

  1 0.000933 0.000893 1.045643 1 0.0013 0.000293 4.443038 
 0.1 0.001063 0.000548 1.937363 0.1 0.001329 0.000448 2.964072 
 0.2 0.001063 0.000576 1.845746 0.2 0.001329 0.000409 3.249943 
 0.3 0.001063 0.000603 1.763485 0.3 0.001329 0.000369 3.600451 
 0.4 0.001063 0.000629 1.689239 0.4 0.001329 0.000329 4.040248 

0.25 0.5 0.001063 0.000655 1.621908 0.45 0.5 0.001329 0.000288 4.608347 
0.6 0.001063 0.000681 1.560588 0.6 0.001329 0.000248 5.37037 
0.7 0.001063 0.000706 1.504523 0.7 0.001329 0.000206 6.445891 
0.8 0.001063 0.000731 1.453083 0.8 0.001329 0.000165 8.078222 
0.9 0.001063 0.000756 1.405733 0.9 0.001329 0.000123 10.85034 

  1 0.001063 0.00078 1.362018 1 0.001329 0.00008 16.59538 

As the probability of selecting the sensitive attribute was increased to Pଵ= 0.6 and 
Pଶ= 0.4. The relative efficiency of the proposed model over Ewemooje et al. (2019a) 
increases with each value of π୙ as 𝜋஺ increases when 0.1 ൑ 𝜋஺ ൑  0.3 and decreases 
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when 0.35 ൑ 𝜋஺ ൑  0.45. The variance of the Ewemooje et al. (2019a) model increases 
at all values of π୅  from 0.00041 to 0.00134, the variance of the proposed model 
decreases as π୅ increases with values ranging from 0.00104 to 0.00009 while the relative 
efficiencies range between 1.0026 and 14.6381 (see Table 6). 

Table 6.  Relative efficiency comparison between the proposed model and Ewemooje et al. (2019a) 
model when Pଵ= 0.6; Pଶ= 0.4; α= 25; β= 35; n=200 for varying π୅ and π୙. 

𝝅𝑨 𝝅𝑼 𝐯ሺ𝝅ෝሻ 𝐯ሺ𝝅ෝ𝑨ሻ RE 𝝅𝑨 𝝅𝑼 𝐯ሺ𝝅ෝሻ 𝐯ሺ𝝅ෝ𝑨ሻ RE 
 0.1 0.000616 0.000369 1.666953 0.1 0.001179 0.000574 2.05419 
 0.2 0.000616 0.000451 1.364207 0.2 0.001179 0.000586 2.010996 
 0.3 0.000616 0.000533 1.155374 0.3 0.001179 0.000598 1.970869 
 0.4 0.000616 0.000614 1.002628 0.4 0.001179 0.00061 1.933553 

0.1 0.5 0.000616 0.000695 0.886052 0.3 0.5 0.001179 0.000621 1.898819  
0.6 0.000616 0.000776 0.794162 0.6 0.001179 0.000632 1.866467  
0.7 0.000616 0.000856 0.719869 0.7 0.001179 0.000642 1.836318 
0.8 0.000616 0.000935 0.658563 0.8 0.001179 0.000652 1.808212 
0.9 0.000616 0.001014 0.607113 0.9 0.001179 0.000662 1.782007 

  1 0.000616 0.001093 0.563322 1 0.001179 0.000671 1.757575 
 0.1 0.000794 0.000458 1.733651 0.1 0.001257 0.000563 2.234883 
 0.2 0.000794 0.000523 1.519457 0.2 0.001257 0.000557 2.255279 
 0.3 0.000794 0.000587 1.353272 0.3 0.001257 0.000552 2.277664 
 0.4 0.000794 0.000651 1.220588 0.4 0.001257 0.000546 2.302146 

0.15 0.5 0.000794 0.000714 1.112209 0.35 0.5 0.001257 0.00054 2.328848 
0.6 0.000794 0.000777 1.022022 0.6 0.001257 0.000533 2.357906 
0.7 0.000794 0.00084 0.945804 0.7 0.001257 0.000526 2.389473 
0.8 0.000794 0.000902 0.880547 0.8 0.001257 0.000519 2.423725 
0.9 0.000794 0.000964 0.824049 0.9 0.001257 0.000511 2.460857 

  1 0.000794 0.001025 0.774659 1 0.001257 0.000503 2.501089 
 0.1 0.000947 0.000522 1.816041 0.1 0.001311 0.000526 2.490643 
 0.2 0.000947 0.000569 1.66549 0.2 0.001311 0.000504 2.601916 
 0.3 0.000947 0.000616 1.538968 0.3 0.001311 0.000481 2.725814 
 0.4 0.000947 0.000662 1.431157 0.4 0.001311 0.000458 2.864549 

0.2 0.5 0.000947 0.000708 1.338201 0.4 0.5 0.001311 0.000434 3.020886 
0.6 0.000947 0.000754 1.257237 0.6 0.001311 0.00041 3.198326 
0.7 0.000947 0.000799 1.186092 0.7 0.001311 0.000385 3.401361 
0.8 0.000947 0.000844 1.123088 0.8 0.001311 0.00036 3.635866 
0.9 0.000947 0.000888 1.06691 0.9 0.001311 0.000335 3.90966 

  1 0.000947 0.000932 1.016511 1 0.001311 0.00031 4.233393 
 0.1 0.001076 0.00056 1.919806 0.1 0.001339 0.000465 2.880362 
 0.2 0.001076 0.00059 1.823035 0.2 0.001339 0.000425 3.150967 
 0.3 0.001076 0.000619 1.736648 0.3 0.001339 0.000385 3.481228 
 0.4 0.001076 0.000648 1.659079 0.4 0.001339 0.000344 3.893252 

0.25 0.5 0.001076 0.000677 1.589061 0.45 0.5 0.001339 0.000303 4.421607 
0.6 0.001076 0.000705 1.52556 0.6 0.001339 0.000261 5.123548 
0.7 0.001076 0.000733 1.467722 0.7 0.001339 0.000219 6.10128 
0.8 0.001076 0.00076 1.414838 0.8 0.001339 0.000177 7.556836 
0.9 0.001076 0.000787 1.366311 0.9 0.001339 0.000135 9.953349 

  1 0.001076 0.000814 1.321637 1 0.001339 0.0000915 14.63817 
 

Table 7 shows that for varying π୅ and π୙, Pଵ= 0.7; Pଶ= 0.3, the variance of the 
Ewemooje et al. (2019a) model increases at all values of π୅   from 0.00043 to 0.00135 
while the variance of the proposed model also increases as π୙ increases when 0.1 ൑
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 𝜋஺  ൑  0.3 and decreases as πU increases when 0.35 ൑  𝜋஺  ൑  0.45. The relative 
efficiency of the proposed model over Ewemooje et al. (2019a) shows that as the 
sensitive character 𝜋஺ increases, the relative efficiency increases with the values ranging 
from 1.0037 to 12.9490.  

Table 7.  Relative efficiency comparison between the proposed model and Ewemooje et al. (2019a) 
model when Pଵ= 0.7; Pଶ= 0.3; α= 25; β= 35; n=200 for varying π୅ and π୙. 

𝝅𝑨 𝝅𝑼 𝐯ሺ𝝅ෝሻ 𝐯ሺ𝝅ෝ𝑨ሻ RE 𝝅𝑨 𝝅𝑼 𝐯ሺ𝝅ෝሻ 𝐯ሺ𝝅ෝ𝑨ሻ RE 
 0.1 0.000634 0.000378 1.67503 0.1 0.001193 0.000587 2.030752 
 0.2 0.000634 0.000465 1.361891 0.2 0.001193 0.000602 1.982633 
 0.3 0.000634 0.000552 1.148251 0.3 0.001193 0.000615 1.938042 
 0.4 0.000634 0.000638 0.993193 0.4 0.001193 0.000629 1.896659 

0.1 0.5 0.000634 0.000724 0.875529 0.3 0.5 0.001193 0.000642 1.8582  
0.6 0.000634 0.000809 0.783192 0.6 0.001193 0.000655 1.822421 
0.7 0.000634 0.000894 0.7088 0.7 0.001193 0.000667 1.789101 
0.8 0.000634 0.000979 0.647589 0.8 0.001193 0.000679 1.758048 
0.9 0.000634 0.001063 0.596341 0.9 0.001193 0.00069 1.729089 

  1 0.000634 0.001146 0.552808   1 0.001193 0.000701 1.702072 
 0.1 0.000811 0.000468 1.73255 0.1 0.00127 0.000577 2.200659 
 0.2 0.000811 0.000537 1.510522 0.2 0.00127 0.000573 2.215729 
 0.3 0.000811 0.000605 1.33985 0.3 0.00127 0.000569 2.232628 
 0.4 0.000811 0.000673 1.20457 0.4 0.00127 0.000564 2.251434 

0.15 0.5 0.000811 0.000741 1.094713 0.35 0.5 0.00127 0.000559 2.272238 
0.6 0.000811 0.000808 1.003731 0.6 0.00127 0.000553 2.295143 
0.7 0.000811 0.000875 0.927151 0.7 0.00127 0.000547 2.320265 
0.8 0.000811 0.000941 0.861805 0.8 0.00127 0.000541 2.347734 
0.9 0.000811 0.001007 0.805395 0.9 0.00127 0.000534 2.377699 

  1 0.000811 0.001072 0.756207   1 0.00127 0.000527 2.410328 
 0.1 0.000963 0.000533 1.807757 0.1 0.001322 0.000542 2.440203 
 0.2 0.000963 0.000583 1.650922 0.2 0.001322 0.00052 2.54398 
 0.3 0.000963 0.000634 1.520119 0.3 0.001322 0.000497 2.659183 
 0.4 0.000963 0.000683 1.409372 0.4 0.001322 0.000474 2.787741 

0.2 0.5 0.000963 0.000733 1.314408 0.4 0.5 0.001322 0.000451 2.932044  
0.6 0.000963 0.000782 1.232084 0.6 0.001322 0.000427 3.095093  
0.7 0.000963 0.00083 1.160041 0.7 0.001322 0.000403 3.280704  
0.8 0.000963 0.000879 1.096473 0.8 0.001322 0.000379 3.493806 
0.9 0.000963 0.000926 1.039974 0.9 0.001322 0.000354 3.740884 

  1 0.000963 0.000974 0.989432   1 0.001322 0.000328 4.030638 
 0.1 0.001091 0.000573 1.904498 0.1 0.00135 0.000482 2.801958 
 0.2 0.001091 0.000605 1.802396 0.2 0.00135 0.000441 3.057695 
 0.3 0.001091 0.000637 1.711794 0.3 0.00135 0.000401 3.368273 
 0.4 0.001091 0.000669 1.630872 0.4 0.00135 0.00036 3.753384 

0.25 0.5 0.001091 0.0007 1.558175 0.45 0.5 0.00135 0.000318 4.243433 
0.6 0.001091 0.000731 1.492525 0.6 0.00135 0.000276 4.887965 
0.7 0.001091 0.000761 1.432962 0.7 0.00135 0.000234 5.773544 
0.8 0.001091 0.000791 1.37869 0.8 0.00135 0.000191 7.066269 
0.9 0.001091 0.000821 1.329049 0.9 0.00135 0.000148 9.13035 

  1 0.001091 0.00085 1.283481   1 0.00135 0.000104 12.94899 
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5. Application of the Proposed Model 

The proposed method and direct method (DM) were used in collecting information 
on examination malpractices prevalence among students at a Nigerian university. Two 
hundred (200) instruments were administered using two decks of cards consisting of 
the sensitive question “have you ever been involved in examination malpractices?” and 
unrelated question “do you love soccer?” as the randomized devices. The respondents 
were given proper education on how to use the randomized devices with appropriate 
demonstration. They were also assured of confidentiality by ensuring that responses 
given cannot be traced to respondents; hence, they willingly participated in the survey. 
The respondents were directly (DM) asked the sensitive question “have you ever been 
involved in examination malpractices?”. If “yes” answer is obtained, he/she does not use 
the randomized device but if he/she answers “no”, then he/she is instructed to choose 
one of the two decks of cards at random and then respond accordingly without 
revealing question answered to the interviewer. The two randomized devices 
Rଵ and Rଶ  consist of two unrelated questions (the sensitive question with probability 
P1 = 0.7, and unrelated question with probability 1-P1 = 0.3 for R1 while P2 = 0.3 and P2 
= 0.7 for R2).   

The age distribution of the sampled respondents ranges between 16 and 29 years 
with the age group 20–24 years having the higher percentage of 58.0% and about three-
quarters of them are male (74.0%). The true proportion of respondents who answered 
“yes” to the unrelated question (π୙) “do you love soccer?” is 0.45. The estimate of 
examination malpractices prevalence and their associated coefficient of variation (CV) 
are presented in Table 8. The DM estimate prevalence of examination malpractices at 
19.0% compared to 23.0% for the proposed method. The standard error associated with 
DM is 0.028 (CV = 14.6%) while the proposed model is 0.026 (CV = 11.5%).  

However, contrary to what was reported by Jann et al., (2012) where Crosswise 
Model (CM) produced higher estimate with higher standard error, the proposed 
method produced higher estimate with lower standard error as against the DM. Hence, 
the proposed model performs better than the DM in line with earlier works of Jann et 
al. (2012), Ewemooje et al., (2017), Cobo et al., (2016) and Ewemooje et al., (2019b). 

Table 8. Comparative analysis of the proposed model versus the direct method 

Method 𝝅𝑨 𝐕ሺ𝝅ෝ𝑨ሻ 𝐒. 𝐄ሺ𝝅ෝ𝑨ሻ 𝐂. 𝐕ሺ𝝅ෝ𝑨ሻ 

Direct Method 0.19 0.00077 0.028 14.6% 
Proposed Model 0.23 0.00070 0.026 11.5% 
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6. Conclusion 

The unrelated design has been shown to improve efficiency of a randomized 
response method and to reduce distrust of the respondents; hence, we proposed a new 
Randomized Response Model (RRM) which consists of the unrelated questions in 
dichotomous randomized response model. To ensure better efficiency, the proportion 
of the sensitive attribute must be at least 0.2 and not greater than 0.5. The variance of 
the proposed model decreases as the proportion of the sensitive attribute 𝜋஺ and 
unrelated attribute π୙ increases as against the Ewemooje et al. (2019a) model, which 
increases as the proportion of the sensitive attribute increases. The relative efficiency of 
the proposed model over Ewemooje et al. (2019a) reduces as π୙ increases when 0.05 ൑
𝜋஺ ൑  0.3 and increases as π୙ increases when 0.35 ൑ 𝜋஺ ൑  0.45. Also, as the sample 
size increases from 50 to 500, the relative efficiency of the proposed model stood at 9.93 
while as Pଵ increases and Pଶ  decreases, the relative efficiency reduces from 7.09 to 6.23. 
Application of the proposed model also revealed it efficiency over the direct method in 
estimating the prevalence of examination malpractices among university students. The 
direct method estimated the prevalence of examination malpractices among university 
students at 19.0% while the proposed method estimated it at 23.0%. Hence, the 
proposed model is shown to be more efficient than the direct method and Ewemooje et 
al. (2019a) model as the proportion of people belonging to the sensitive attribute 
increases.  
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A Bayesian analysis of complete multiple breaks in a panel 
autoregressive (CMB-PAR(1)) time series model 
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ABSTRACT  

Most economic time series, such as GDP, real exchange rate and banking series are irregular 
by nature as they may be affected by a variety of discrepancies, including political changes, 
policy reforms, import-export market instability, etc. When such changes entail serious 
consequences for time series modelling, various researchers manage this problem by 
applying a structural break. Thus, the aim of this paper is to develop a generalised structural 
break time series model. The paper discusses a panel autoregressive model with multiple 
breaks present in all parameters, i.e. in the autoregressive coefficient and mean and error 
variance, which is a generalisation of various sub-models. The Bayesian approach is applied 
to estimate the model parameters and to obtain the highest posterior density interval. Strong 
evidence is observed to support the Bayes estimator and then it is compared with the 
maximum likelihood estimator. A simulation experiment is conducted and an empirical 
application on the SARRC association’s GDP per capita time series is used to illustrate the 
performance of the proposed model. This model is also extended to a temporary shift model. 
Key words: panel autoregressive model, structural break, MCMC, posterior probability.  

1.  Introduction 

When modelling any time series, one may identify characteristics of series such as 
stationarity, seasonality, outliers, linear trend, structural breaks, etc., and then produce 
a good forecast for making a better conclusion. If there is an unexpected shift in time 
series, then this may occur due to outlier(s) or structural break(s). In the structural 
break, mainly any or all model parameters are affected for a particular time interval, 
which may have different inferences. These break points may split time series into two 
or multiple parts. If at multiple time points, which are identified in terms of change on 
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model parameters, the series changes temporarily or permanently, then the model must 
be analysed in such a way that it gives better explanation and prediction. Handling of 
such time series received importance by several researchers, who made inference about 
the break and show its impact in real applications. The problem of estimation and 
testing of change points in the linear model was proposed by Bai and Perron (1998) and 
then extended into multiple breaks in a multiple regression model. Altissimo and 
Corradi (2003) considered a nonlinear process which has dependent and 
heterogeneous observations and contained a break in the mean component. 
They proposed an estimator for the detection and estimation of the number of breaks 
and applied for weekly Eurodollar interest rate. Jin et al. (2013) addressed the problem 
of multiple breaks in piecewise stationary AR process and detected the breaks by the 
penalized model selection approach. Topal et al. (2016) compared various detection 
techniques of multiple break points in artificially modified time series and applied to 
vine sprout length data as well as mercury injection capillary pressure curve. Jibrin et 
al. (2015) modelled an AR fractionally integrated moving average process and used 
Bayes information criterion to study the structural breaks in crude oil prices of Brent 
and WTI series.  

The consequences of the structural break under Bayesian approach is studied by 
several researchers, see Albert and Chib (1993), Bai (2010), Kumar et al. (2012), 
Eo (2012) and Maheu and Song (2018). Further on, Chin et al. (2016) combined both 
robust-jump volatility estimator and a structural break heterogeneous autoregressive 
(HAR) model to battle the structural break in stock market volatility modelling and 
added the empirical literature of high-frequency volatility analysis by using modified 
HAR models and robust-jump volatility estimators. Yamamoto (2016) considered 
a simple modification in EM confidence set proposed by Elliott and Muller (2007) in a 
linear regression model having a single structural break and achieved a shorter 
confidence set than the EM method. Baltagi et al. (2016) considered both cross sectional 
dependence and a structural break in Pesaran (2006) heterogeneous panels and applied 
least square and common correlated effects estimators to estimate the change points. 
Pestova and Pesta (2017) constructed an estimator for a break in panel mean without 
a boundary condition, which was also consistent in no break situation and 
demonstrated in non-life insurance application. Meligkotsiduo et al. (2017) suggested 
a Bayesian approach to detect stationarity from AR(p) model with multiple breaks in 
mean, variance and autoregressive coefficients. To determine the marginal likelihood 
and posterior probability for comparing models, filtering recursions algorithm is used 
in the structural break model. Hwang and Shin (2017) proposed a sequential test for 
detecting mean breaks that allow long memory errors. The proposed test is consistent 
with asymptotic normal distribution and produced an unbiased break estimate as 
compared with Bai and Perron (1998) biased estimates.  
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Many studies have also been carried out on a structural break in the panel data 
model in reference to testing for unit root hypothesis, break point detection, estimation, 
etc. Karavias and Tzavalis (2017) studied the asymptotic properties of least squares 
based fixed-T panel unit root tests of panel AR(1) model considering a structural break 
in the deterministic components and obtained the limiting distribution which is 
dependent on the break date and time. Chen and Huang (2018) considered a non-
parametric method to analyse the consistence of changing parameters and developed 
two types of consistent tests to check the stability of model parameter in time varying 
interaction panel model. Okui and Wang (2018) established a new model which allows 
a common structural change in the coefficients, while the number of breaks, break 
points, and the size of breaks are different across groups. They also obtained a hybrid 
estimation procedure under grouped fixed effects and an adaptive group, fused in panel 
data model with heterogeneous structural breaks. Bardwell et al. (2019) developed an 
approach to detect the change point in panel data model that pools the information 
across time series and come up with the most recent break points in multiple series at 
the same time point. 

This paper is an extension of Agiwal et al. (2018), which discussed the panel 
autoregressive time series model of order one (PAR(1)) with a break in mean and error 
variance. This model does not allow a change on autoregressive parameter. However, 
it may also have multiple breaks so a PAR(1) time series model with multiple breaks is 
explored in the present study that considers a break in autoregressive coefficient also. 
As this allows breaks on all parameters of the model including coefficients, mean and 
error variance. Therefore, this is termed as a complete multiple breaks panel 
autoregressive time series model of order one (CMB-PAR(1)). A Bayesian analysis of 
the proposed model has been carried out to estimate the parameters under both 
symmetric and asymmetric loss functions and then compared with MLE through both 
simulation and empirical study. This paper has also discussed the temporary shift 
model, where a change occurs in the parameter for a short time interval, then it comes 
to the original structure. This model is a particular form of CMB-PAR(1) model with 
two break points. 

2. Model and Assumptions 

Let {yit} be a PAR(1) time series model having multiple structural breaks and break 
points in each panel that are assumed to be same and known. Due to multiple breaks, 
the structure of PAR(1) model may be shifted temporarily or permanently depending 
on the situation. If all parameters are instable permanently for assumed time intervals, 
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at that time structure of the series also shifted permanently. Let there be B break points, 
then permanently shifted PAR(1) model (PS-PAR(1)) is 
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There are several practical situations where a change occurs on a model for 
a temporary period, i.e. a change in the series only for a particular time interval and 
later on it comes back to the original model/process. Such a model is called a temporary 
shift (TS) model. So, this type of series contains only two breaks to observe the short 
term changes in the model parameters. In that situation, temporary shift PAR(1) model 
(TS-PAR(1)) is expressed as  
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where {yit , t=1,2,…,T; i=1,2…,n}  is a sequence of observations which contains n cross-
sectional units recorded at T time period between T0=0 to TB+1=T . The error term it is 
a sequence of an independently distributed normal random variable with mean zero 
and variance 2

j  for jth break point. Models (1) and (2) are complete multiple structural 
breaks PAR(1) models (CMB-PAR(1)), which contain breaks in autoregressive 
coefficient, mean as well as error variance. The likelihood function for the observed 
data under model (1) is 
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where   Bjnijjij ,...,2,1;,...,2,1,,, 2   . 

Similarly for model (2), the likelihood function is 

        

  


















 


 




n

i

T

Tt
itiit

n

i

T

Tt
itiit

TTnTTTn
nT

ii

yy

yyyL

1 1

2
221,22

2

1 1

2
111,12

1
21221

2
2

2
121

2

1

2

1

1221

1
2

1

1
2

1
exp2)|,,,,,(









 (4) 



STATISTICS IN TRANSITION new series, December 2020 

 

137

3. Bayesian Analysis 

In Bayesian inference, the current sample information is incorporated within the 
available prior information because the prior distribution gives additional information 
about the unknown parameters that are useful to improve further inference. 
For Bayesian estimation, prior distribution is required to obtain the estimator for 
unknown parameters. If enough information about the parameter is available then it is 
better to incorporate the informative prior, otherwise non-informative prior is 
considered. In general, normal and inverse gamma distributions are the most often 
used conjugate priors for intercept (ij) and error variance ( 2

j ) parameters in various 
time series model (see Meligkotsidou et al. (2017)). For autoregressive coefficient, non-
informative prior as a uniform distribution is considered that provides little 
information related to the proposed model. Therefore, we assume ij parameter is 
conditionally independent and other parameters are mutually independent, having the 
form as  
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Then, the joint prior distribution for   Bjnijjij ,...,2,1;,...,2,1,,, 2   is 
given as 
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Without loss of generality, one may know that prior distributions accurately 
describe the nature of the parameter and assist correctly to find the best estimator. 
The joint posterior distribution of PS-PAR(1) model obtained from the likelihood 
function given in equation (3) with incorporating the joint prior distribution given 
in equation (5) is expressed as 
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where KP is the normalizing constant. Using equation (6), the Bayesian estimator is 
obtained but due to complexity in expression under different loss functions, 
a numerical technique is used to solve the posterior distribution. So, we use MCMC 
sampler technique to generate posterior samples. For this, we obtain the form of 
conditional posterior distributions for PS-PAR(1) model as given by (see Gilks et al. 
(1995), page 75−76) 
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A temporary shifted model contains only two break points so that joint prior 

distribution has parameters   niii ,...,2,1,,,,,, 21
2
2

2
121   . Then, posterior 

distribution for the given likelihood function is obtained as 
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where KT is the normalizing constant. For computing the conditional posterior 
distribution, one may integrate equation (10) with respect to other parameters and get 
the expression. The expressions of conditional posterior distribution for various 
parameters are (see Gilks et al. (1995), page 75-76) 
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For getting better estimator form the conditional posterior distribution, a suitable 
loss function is generally adopted. The commonly used loss function is squared error 
(symmetric) loss function (SELF) that takes equal magnitude due to over and under-
estimation and another one is entropy (asymmetric) loss function (ELF). The Bayes 
estimator and its posterior risk for both loss functions are described below: 

Loss Function 
Bayes 

Estimator Posterior Risk 
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It is obvious that the form of the posterior distribution will not be tractable and the 

computation of its respective Bayes estimator under different loss functions will not be 
analytically obtained. Consequently, one can choose stochastic simulation procedures, 
namely, the Gibbs and Metropolis samplers (Gilks et al., 1995) to generate samples from 
the posterior distributions. Then, compute Bayes estimates of the parameters and their 
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corresponding interval. This study utilizes the following steps to obtain the posterior 
samples using Gibbs sampling algorithm: 

1. Starting with initial values   )0(2)0( ,,
)0(

jijj   and set k=1 

2. Generate )(k
ij from conditional posterior density   y

k

j
kk

ij ,,|
)1(2)1()(   . 

3. Generate   )(2 k

j from conditional posterior density   yk
ij

kk

j ,,| )1()1()(2   . 

4. Generate )(k
j from conditional posterior density   





  y

k

j
k

ij
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j ,,|
)1(2)1()(  . 

5. Set k=k+1 
6. Repeat steps 3-6, P times and record the sequence of observations of parameters. 
7. Obtained Bayes estimate under different loss functions. 

4. Simulation Study 

To investigate and compare the performance of the various proposed estimators, 
a simulation study is conducted to observe the behaviour of the proposed models for 
various values of true parameters. For generating a series of sample size 1000, consider 
the following series size T =200 with different break points combination {(T/4, T/2); 
(T/2, 3T/4); (T/4, 3T/4)} for a set of true value:    60,40,20,, 302010 yyy ; 
   9.0,85.0,8.0,, 321  ;    ;4,3,2,, 2

3
2
2

2
1      65,35,10,, 131211  ; 

   70,40,15,, 232221   and    75,45,20,, 333231  . For numerical purpose, 
hyper parameters are to be known in normal and inverse gamma prior. We have taken 
cj = 0.01, dj = 1 for all break points and normal prior mean is equal to average of the 
generated series at (Tj−1, Tj) break interval with parallel variance given in disturbances 
term. For simulation experiment, each pair of break point series is generated based on 
10,000 replications. The generated samples are obtained using an iterative procedure of 
Gibbs sampling algorithm and get the estimates. We mainly compare the performances 
of the Bayes estimator with the maximum likelihood estimator (MLE) by calculating 
average absolute biases (AB) and mean squared error (MSE). A confidence interval (CI) 
of MLE and highest posterior density (HPD) interval of the Bayes estimator are also 
computed.  Tables 1-6 report the MSE, AB and confidence/HPD interval of all 
parameters present in both permanent and temporary shifted models. 
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Table-1.  MSE, AB and CI/HPD of μ parameter under PS-PAR(1) model 

TB Estimator 

μ11 μ12 μ13 

MSE AB CI/HPD MSE AB CI/HPD MSE AB CI/HPD 

(T/4,T/2) 

MLE 1.0097 0.7992 (8.3520,11.6731) 2.8189 1.3439 (32.1162,37.6330) 4.1938 1.6321 (61.4577,68.2851) 

SELF 0.4467 0.5310 (8.8963,11.1026) 0.7323 0.6838 (33.5560,36.3717) 1.0261 0.8037 (63.2851,66.6140) 

ELF 0.4587 0.5385 (8.8201,11.0390) 0.7386 0.6865 (33.5144,36.3355) 1.0315 0.8057 (63.2497,66.5852) 

(T/4,3T/4) 

MLE 1.0214 0.8077 (8.3261,11.6969) 1.3548 0.9268 (33.0093,36.8435) 6.2002 2.4134 (59.7821,69.6432) 

SELF 0.4480 0.5349 (8.8875,11.1057) 0.6333 0.6338 (34.6719,36.3143) 0.9074 0.7529 (63.3898,66.4942) 

ELF 0.4619 0.5440 (8.8113,11.0439) 0.6345 0.6340 (34.6440,36.2917) 0.9193 0.7584 (63.3398,66.4532) 

(T/2, 3T/4) 

MLE 0.5090 0.5702 (8.7913,11.1464) 2.8941 1.3561 (32.0412,.37.5400) 6.0916 2.4069 (59.7758,69.7308) 

SELF 0.3249 0.4553 (9.0410,10.9053) 0.7501 0.6878 (33.5291,36.3639) 0.8998 0.7517 (63.4293,66.5347) 

ELF 0.3303 0.4589 (8.9923,10.8737) 0.7589 0.6916 (33.4820,36.3237) 0.9088 0.7561 (63.3835,66.4915) 

TB Estimator 
μ21 μ22 μ23 

MSE AB CI/HPD MSE AB CI/HPD MSE AB CI/HPD 

(T/4,T/2) 

MLE 1.0579 0.8203 (13.3809,16.7410) 2.9550 1.3646 (37.0322,42.7015) 4.2959 1.6558 (66.4581,73.2309) 

SELF 0.4524 0.5361 (13.9168,16.1238) 0.7642 0.6949 (38.5207,41.3918) 1.0474 0.8145 (68.2761,71.6419) 

ELF 0.4560 0.5387 (13.8672,16.0811) 0.7689 0.6967 (38.4815,41.3583) 1.0519 0.8162 (68.2468,71.6148) 

(T/4,3T/4) 

MLE 1.0466 0.8161 (13.3834,16.7071) 1.4273 0.9550 (37.9952,41.9061) 6.1377 2.4031 (64.7961,74.6504) 

SELF 0.4472 0.5327 (13.9129,16.1081) 0.6651 0.6507 (38.6354,41.3231) 0.8987 0.7514 (68.3781,71.5061) 

ELF 0.4525 0.5356 (13.8627,16.0628) 0.6670 0.6517 (38.6153,41.2989) 0.9076 0.7550 (68.3328,71.4683) 

(T/2, 3T/4) 

MLE 0.5177 0.5759 (13.8422,16.2097) 2.8491 1.3429 (37.0584,42.6770) 9.3331 2.4443 (64.6742,74.5916) 

SELF 0.3274 0.4569 (14.0637,15.9513) 0.7371 0.6835 (38.5278,41.3831) 0.9208 0.7632 (68.3538,71.4903) 

ELF 0.3291 0.4575 (14.0380,15.9231) 0.7416 0.6849 (38.4910,41.3515) 0.9317 0.7677 (68.3074,71.4531) 

TB Estimator 
μ31 μ32 μ33 

MSE AB CI/HPD MSE AB CI/HPD MSE AB CI/HPD 

(T/4,T/2) 

MLE 1.1202 0.8484 (18.3352,21.8126) 2.8274 1.3391 (42.1176,47.5853) 4.1250 1.6185 (71.4899,78.1837) 

SELF 0.4531 0.5383 (18.9068,21.1262) 0.7377 0.6808 (43.5558,46.3537) 1.0014 0.7949 (73.2988,76.5888) 

ELF 0.4555 0.5395 (18.8665,21.0915) 0.7431 0.6831 (43.5204,46.3205) 1.0052 0.7963 (73.2724,76.5637) 

(T/4,3T/4) 

MLE 1.1247 0.8477 (18.3371,21.8030) 1.4071 0.9446 (43.0046,46.8866) 9.4117 2.4297 (69.6114,79.7753) 

SELF 0.4522 0.5374 (18.9187,21.1211) 0.6536 0.6443 (43.6595,46.3211) 0.9259 0.7596 (73.3484,76.5294) 

ELF 0.4546 0.5394 (18.8757,21.0888) 0.6544 0.6443 (43.6383,46.2961) 0.9353 0.7637 (73.3094,76.4956) 

(T/2, 3T/4) 

MLE 0.5293 0.5790 (18.8400,21.2299) 2.8747 1.3513 (42.0962,47.6055) 9.0290 2.3882 (69.6876,79.5348) 

SELF 0.3290 0.4569 (19.0554,20.9419) 0.7446 0.6863 (43.5311,46.5311) 0.8870 0.7422 (73.3785,76.4407) 

ELF 0.3310 0.4585 (19.0332,20.9224) 0.7500 0.6889 (43.4978,46.3552) 0.8973 0.7468 (73.3380,76.4061) 
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Table-2.  MSE, AB and CI/HPD of ρ parameter under PS-PAR(1) model 

TB Estimator 
ρ1 ρ2 ρ3 

MSE AB CI/HPD MSE AB CI/HPD MSE AB CI/HPD 

(T/4,T/2) 
MLE 3.86E-04 0.0155 (0.7617,0.8231) 6.05E-04 0.0191 (0.8009,0.8735) 3.45E-04 0.0144 (0.8623,0.9156) 
SELF 3.08E-04 0.0140 (0.7775, 0.8152) 3.85E-04 0.0156 (0.8226,0.8665) 2.37E-04 0.0120 (0.8897,0.9088) 
ELF 3.11E-04 0.0141 (0.7710,0.8149) 3.91E-04 0.0157 (0.8220,0.8662) 2.40E-04 0.0121 (0.8893,0.9086) 

(T/4,3T/4) 
MLE 3.70E-04 0.0153 (0.7635,0.8238) 4.40E-04 0.0165 (0.8018,0.8718) 5.46E-04 0.0183 (0.8537,0.9293) 
SELF 3.01E-04 0.0139 (0.7786,0.8159) 3.42E-04 0.0147 (0.8250,0.8653) 2.72E-04 0.0130 (0.8776,0.9099) 
ELF 3.04E-04 0.0140 (0.7782,0.8156) 3.46E-04 0.0147 (0.8245,0.8650) 2.76E-04 0.0131 (0.8772,0.9097) 

(T/2, 3T/4) 
MLE 3.12E-04 0.0140 (0.7660,0.8211) 6.39E-04 0.0197 (0.8000,0.8741) 5.55E-04 0.0182 (0.8527,0.9188) 
SELF 2.75E-04 0.0132 (0.7801,0.8139) 4.06E-04 0.0160 (0.8221,0.8669) 2.73E-04 0.0129 (0.8775,0.9198) 
ELF 2.77E-04 0.0133 (0.7796,0.8136) 4.12E-04 0.0162 (0.8215,0.8665) 2.77E-04 0.0130 (0.8771,0.9196) 

Table-3.  MSE, AB and CI/HPD of σ2 parameter under PS-PAR(1) model 

TB Estimator 

2
1  2

2  2
3  

MSE AB CI/HPD MSE AB CI/HPD MSE AB CI/HPD 

(T/4,T/2) 
MLE 0.0553 0.1871 (1.6443,2.4148) 0.1313 0.2881 (2.4492,3.6385) 0.1075 0.2624 (3.4804,4.5571) 
SELF 0.0526 0.1829 (1.8313,2.2798) 0.1257 0.2830 (2.6303,3.3918) 0.1052 0.2598 (3.7656,4.3302) 
ELF 0.0524 0.1824 (1.9096,2.2477) 0.1249 0.2825 (2.6976,3.3445) 0.1052 0.2600 (3.7420,4.3005) 

(T/4,3T/4) 
MLE 0.0561 0.1885 (1.6373,2.4258) 0.0623 0.2001 (2.6040,3.4266) 0.2228 0.3725 (3.2728,4.8284) 
SELF 0.0534 0.1846 (1.7258,2.2931) 0.0609 0.1982 (2.7886,3.3007) 0.2150 0.3676 (3.4610,4.6897) 
ELF 0.0530 0.1848 (1.7034,2.2607) 0.0612 0.1988 (2.7713,3.2783) 0.2125 0.3677 (3.4182,4.6233) 

(T/2, 3T/4) 
MLE 0.0278 0.1317 (1.7418,2.2914) 0.1246 0.2800 (2.4502,3.6277) 0.2198 0.3721 (3.2543,4.7904) 
SELF 0.0269 0.1299 (1.8322,2.1748) 0.1190 0.2738 (2.6383,3.3839) 0.2114 0.3654 (3.5519,4.5576) 
ELF 0.0269 0.1300 (1.8209,2.1597) 0.1182 0.2739 (2.6046,3.3360) 0.2098 0.3652 (3.5085,4.4927) 

Table-4.  MSE, AB and CI/HPD of μ parameter under TS-PAR(1) model 

TB Estimator 
μ11 μ12 

MSE AB CI/HPD MSE AB CI/HPD 

(T
/4

,T
/2

) MLE 0.3484 0.4701 (9.0470,10.9694) 9.6882 2.4927 (59.7725,70.0058) 
SELF 0.2544 0.4018 (9.1776,10.6238) 0.8789 0.7509 (63.4696,66.5473) 
ELF 0.2569 0.4041 (9.1451,10.7981) 0.8860 0.7538 (63.4210,66.5083) 

(T
/4

,3
T/

4) /.MLE 0.5264 0.5769 (8.8041,11.1993) 4.3461 1.6701 (61.4640,68.2793) 
SELF 0.3320 0.4578 (9.0383,10.9339) 1.0267 0.8107 (63.2910,66.6277) 
ELF 0.3380 0.4618 (8.9952,10.9010) 1.0311 0.8126 (63.2588,66.6000) 

(T
/2

, 3
T/

4) MLE 0.3564 0.4763 (9.0041,10.9704) 9.5505 2.4672 (59.5605,69.8348) 
SELF 0.2601 0.4070 (9.1457,10.8226) 0.8662 0.7403 (63.3814,66.5010) 
ELF 0.2627 0.4092 (9.1124,10.7953) 0.8746 0.7442 (63.3389,66.4576) 

TB Estimator 
μ21 μ22 

MSE AB CI/HPD MSE AB CI/HPD 

(T
/4

,T
/2

) MLE 0.3389 0.4640 (14.0701,15.9820) 9.0765 2.4004 (64.7812,74.5734) 
SELF 0.2460 0.3951 (14.2963,15.6310) 0.8259 0.7231 (68.4579,71.4092) 
ELF 0.2470 0.3958 (14.2751,15.6134) 0.8342 0.7265 (68.4169,71.3705) 

(T
/4

,3
T/

4) MLE 0.5396 0.5827 (13.8021,16.2317) 4.2236 1.6387 (66.5093,73.2619) 
SELF 0.3371 0.4609 (14.0440,15.9567) 1.0094 0.7992 (68.2958,71.6303) 
ELF 0.3397 0.4627 (14.0114,15.9304) 1.0123 0.8003 (68.2650,71.5994) 

(T
/2

, 3
T/

4) MLE 0.3463 0.4674 (14.0265,15.9676) 8.9987 2.3973 (64.9211,74.7977) 
SELF 0.2516 0.3983 (14.1652,15.8195) 0.8139 0.7184 (68.5092,71.4686) 
ELF 0.2528 0.3989 (14.1437,15.8033) 0.8190 0.7211 (68.4693,71.4312) 

TB Estimator 
μ31 μ32 

MSE AB CI/HPD MSE AB CI/HPD 

(T
/4

,T
/2

) MLE 0.3410 0.4622 (19.0455,20.9890) 9.1295 2.4025 (69.7670,79.6721) 
SELF 0.2465 0.3930 (19.1830,20.7309) 0.8263 0.7213 (73.4572,76.4584) 
ELF 0.2470 0.3934 (19.1673,20.7180) 0.8335 0.7245 (73.4118,76.4259) 

(T
/4

,3
T/

4) MLE 0.5579 0.5957 (18.7864,21.2446) 4.1963 1.6336 (71.5202,78.2553) 
SELF 0.3452 0.4683 (19.0392,20.9707) 0.9911 0.7936 (73.3388,76.6031) 
ELF 0.3464 0.4691 (19.0184,20.9520) 0.9944 0.7948 (73.3101,76.5762) 

(T
/2

, 3
T/

4) MLE 0.3559 0.4773 (19.0131,20.9763) 9.7078 2.4736 (69.6701,79.8414) 
SELF 0.2579 0.4063 (19.1466,20.8161) 0.8784 0.7447 (73.4009,76.4541) 
ELF 0.2590 0.4071 (19.1316,20.8015) 0.8865 0.7481 (73.3617,76.4218) 
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Table-5.  MSE, AB and CI/HPD of ρ parameter under TS-PAR(1) model 

TB Estimator 
ρ1 ρ2 

MSE AB CI/HPD MSE AB CI/HPD 

(T
/4

,T
/2

) MLE 6.84E-05 0.0066 (0.7852,0.8120) 1.44E-04 0.0095 (0.8765,0.9140) 
SELF 6.50E-05 0.0064 (0.7863,0.8127) 8.61E-05 0.0074 (0.8828,0.9031) 
ELF 6.51E-05 0.0064 (0.7863,0.8126) 8.66E-05 0.0074 (0.8827,0.9030) 

(T
/4

,3
T/

4) MLE 7.53E-05 0.0068 (0.7842,0.8125) 1.06E-04 0.0081 (0.8795,0.9115) 
SELF 6.94E-05 0.0066 (0.7865,0.8109) 8.22E-05 0.0072 (0.8828,0.9109) 
ELF 6.96E-05 0.0066 (0.7864.0.8108) 8.27E-05 0.0072 (0.8827,0.9100) 

(T
/2

, 3
T/

4) MLE 6.78E-05 0.0065 (0.7851,0.8122) 1.46E-04 0.0094 (0.8758,0.9138) 
SELF 6.48E-05 0.0064 (0.7861,0.8130) 8.51E-05 0.0072 (0.8831,0.9128) 
ELF 6.49E-05 0.0064 (0.7860,0.8129) 8.56E-05 0.0072 (0.8830,0.9128) 

 

Table-6.  MSE, AB and CI/HPD of σ2 parameter under TS-PAR(1) model 

TB Estimator 
2

1  2
2  

MSE AB CI/HPD MSE AB CI/HPD 

(T
/4

,T
/2

) MLE 0.0179 0.1060 (1.7948,2.2324) 0.2226 0.3779 (3.2909,4.8390) 
SELF 0.0113 0.0810 (1.8216,2.1787) 0.1358 0.2834 (3.5064,4.5448) 
ELF 0.0113 0.0811 (1.9124,2.1674) 0.1355 0.2842 (4.5515,4.4714) 

(T
/4

,3
T/

4) MLE 0.0266 0.1292 (1.7484,2.2860) 0.1069 0.2602 (3.4820,4.5781) 
SELF 0.0163 0.0978 (1.8903,2.2176) 0.0673 0.1976 (3.6646,4.3453) 
ELF 0.0165 0.0987 (1.8756,2.1985) 0.0678 0.1988 (3.6351,4.3069) 

(T
/2

, 3
T/

4) MLE 0.0174 0.1051 (1.7963,2.2275) 0.2146 0.3666 (3.2875,4.8103) 
SELF 0.0111 0.0804 (1.8269,2.1748) 0.1319 0.2756 (3.4099,4.6227) 
ELF 0.0112 0.0809 (1.8176,2.1635) 0.1330 0.2794 (3.3519,4.5439) 

 
For the simulation study, we observed that both PS-PAR(1) and TS-PAR(1) models 

are having minimum AB and average MSE when estimated through the Bayesian 
estimator as compared to MLE. It is also observed that there is a considerable difference 
in AB and MSE in respective sets of break points on both models with complete and 
temporary shifts. We observe the same performance of the Bayes estimates under both 
symmetric and asymmetric loss functions and approximately same magnitude in terms 
of their MSE and AB.  

5. Real Data Analysis  

An empirical application is the way of analysis of real data to get the applicability 
of the proposed model. There are sufficient studies that show a change on economic 
series due to a change on economic policy, trade strategy, market fluctuation, etc. For 
example, present scenario of India is making several policies specially demonetization, 
good and service tax (GST), which may be improving the economic condition in the 
future. For analysis purpose, we have taken annual series of gross domestic product 
(GDP) per capita of South Asian Association for Regional Cooperation (SAARC) 
countries over the period from 1981 to 2016. Due to restrictions in data availability, 
it was not possible to include the economy series of Afghanistan as it is available since 



STATISTICS IN TRANSITION new series, December 2020 

 

145

2002. GDP per capita determines the growth of the economy of a country and compares 
it with its trading participant countries as well as applies it in better economic analysis 
and policy-making in the future. Over the world, SAARC association has a common 
cultural background and shared political experience and decides five areas namely 
agriculture, rural development, telecommunications, meteorology, health and 
population activities, where economic prosperity is the best achieved. The purpose is to 
investigate whether the presence of break point(s) in GDP per capita series may be 
varying due to a change in all model parameters or not and then find the estimates of 
the parameter for the best fitted model. For better understanding, we require a strongly 
balanced panel that has multiple breaks at the same time point. For this, it is natural to 
determine the number and location of structural breaks, which is developed by Zeileis 
et al. (2002). The most preferred break point(s) and its location for GDP per capita 
series for all countries are summarized in Table 7. 

Table-7.  Number of breaks and its location for GDP series of SAARC countries 

Country Number of Breaks T1 T2 
Bangladesh 1 2008 - 
Bhutan 2 1997 2008 
India 2 1997 2008 
Maldives 2 1997 2008 
Nepal 1 2008 - 
Pakistan 2 1992 2008 
Sri Lanka 2 1994 2008 

 
Results reported in Table 7 indicate that the break arises mostly in 1997 and 2008. 

These break points occur when Asian financial crisis and Global financial crisis 
happened. These financial crises were analysed by various researchers from both 
theoretical and application point of view. To study the PS-PAR(1) model, assembly 
Bhutan, India and Maldives as a panel, which has similar break points TB = (1997, 2008) 
and compute the estimated values of the proposed model. To check the validity of the 
proposed PS-PAR(1) model to the other change point models which have a break in 
lesser number of parameter(s), i.e. incomplete multiple breaks PAR(1) models. For 
GDP per capita series, we verify the applicability of PS-PAR(1) model using Akaike 
information criterion (AIC) and Bayesian information criterion (BIC). The AIC and 
BIC values are based on the likelihood function, which needs to be determined by 
Bayesian estimators. The mathematical formula for the calculation of AIC and BIC is 

  KyLAIC 2|ˆlog2   

   nTKyLBIC log|ˆlog2   

where  yL |̂  is the likelihood of the PS-PAR(1) model given the data when it is 
evaluated at the Bayesian estimator of Θ for 1000 iterations and K is the number of 
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estimated parameters in the proposed model. The results are obtained by taking the 
average of all values of AIC and BIC.  

Table 8 records the AIC and BIC values for each model as per the break presence 
in the parameters. From Table 8, one can observe that the PS-PAR(1) model with 
a break present in autoregressive coefficient, mean and error variance having minimum 
AIC and BIC value with other permanent shifted models at breaks (1997, 2008). Hence, 
the PS-PAR(1) model is well fitted for the GDP series. We also verify the result based 
on the Bayes factor. The Bayes factor is the ratio of posterior probability under null and 
alternative hypothesis. Higher values of the Bayes factor lead to rejection of null 
hypothesis. This shows that series is well fitted from the alternative model, i.e. proposed 
model. Hence, Table 9 records the value of Bayes factor (BF) to take decision about the 
best fitted model. This table shows that there is a strong evidence to support the 
presence of breaks in all parameters as Bayes factor is so much high to reject the null 
hypothesis. Overall, we conclude that PS-PAR(1) model is well fitted for the GDP series 
at breaks (1997, 2008). 

Table-8.  Selection the parameter(s) shifting in PS-PAR(1) model using information criterion 

Model Break in Parameter(s) -logL AIC BIC 

PAR(j, μij, σj) AR coefficient, mean & error variance  205.8028 441.6056 481.8375 

PAR(j, μij, σ) AR coefficient & mean 250.9187 527.8375 562.7052 

PAR(j, μi, σj) AR coefficient & error variance 221.6518 461.3035 485.4427 

PAR(, μij, σj) Mean & error variance 471.7729 969.5459 1004.414 

PAR(j, μi, σ) AR coefficient 232.5329 479.0658 497.8407 

PAR(, μij, σ) Mean  8.35E+28 1.67E+29 1.67E+29 

PAR(, μi, σj) Error variance 2.15E+30 4.30E+30 4.30E+30 

PAR(, μi, σ) - 7.19E+30 1.44E+31 1.44E+31 

 

Table-9.  Model selection using Bayes factor when alternative hypothesis (H1) considers multiple 
breaks in all parameters 

Model Null hypothesis (H0 ) consider breaks in BF Evidence against 
H0 

PAR(j, μij, σ) AR coefficient & mean 1.13E+34 Very Strong 

PAR(j, μi, σj) AR coefficient & error variance 6.26E+13 Very Strong 

PAR(, μij, σj) Mean & error variance 1.20E+11 Very Strong 

PAR(j, μi, σ) AR coefficient 1.00E+38 Very Strong 

PAR(, μij, σ) Mean 9.69E+29 Very Strong 

PAR(, μi, σj) Error variance 3.09E+20 Very Strong 

PAR(, μi, σ) - 4.60E+30 Very Strong 
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After identifying the best suitable model, the estimated value of the maximum 
likelihood and Bayesian estimators of PS-PAR(1) model parameters are summarized in 
Table 10. 

Table-10.  MLE and Bayes estimates based on GDP series using PS-PAR(1) model 

Parameter MLE SELF ELF 

1 9.54E-01 9.97E-01 9.97E-01 

2 9.61E-01 9.66E-01 9.66E-01 

3 9.78E-01 9.29E-01 9.29E-01 

μ11 3.15E+02 4.65E+02 4.38E+02 

μ21 2.80E+02 3.41E+02 2.85E+02 

μ31 2.97E+02 1.17E+03 1.16E+03 

μ12 5.54E+02 1.01E+03 1.80E+03 

μ22 2.94E+02 6.33E+02 4.98E+02 

μ32 1.93E+03 3.84E+03 3.81E+03 

μ13 8.07E+03 2.34E+03 2.27E+03 

μ23 4.72E+03 1.50E+03 1.33E+03 

μ33 3.80E+04 9.70E+03 1.00E+04 

2
1  2.45E+03 7.42E+04 7.84E+04 

2
2  1.03E+04 1.24E+05 2.21E+05 

2
3  9.95E+03 1.16E+05 1.78E+05 

6. Conclusion 

There is a sufficient literature on the time series model with a structural break, 
which allows a break on mean and variance, but the present paper has extended the 
frontier of knowledge in a PAR(1) model, which allows a break on all parameters of the 
model at multiple time points, and carried out the Bayesian analysis. Sometimes, 
changes on parameters are temporary, so the model with a temporary shift is also 
discussed. It recorded better results in a simulation study. An empirical application on 
GDP per capita time series of SARRC association is applied to PS-PAR(1) model and it 
is observed that both Asian and World financial crises have affected the GDP series of 
SAARC countries due to a break in all parameters permanently and the same may be 
applied in other areas like insurance, agriculture, administrative, crime, etc. The result 
may be extended for other structural break models with non-normal error and time 
trend. 
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Comparison of selected tests for univariate normality
based on measures of moments

Czesław Domański1, Piotr Szczepocki2

ABSTRACT

Univariate normality tests are typically classified into tests based on empirical distribution,
moments, regression and correlation, and other. In this paper, power comparisons of nine
normality tests based on measures of moments via the Monte Carlo simulations is exten-
sively examined. The effects on power of the sample size, significance level, and on a
number of alternative distributions are investigated. None of the considered tests proved
uniformly most powerful for all types of alternative distributions. However, the most pow-
erful tests for different shape departures from normality (symmetric short-tailed, symmetric
long-tailed or asymmetric) are indicated.

Key words: normality tests, Monte Carlo simulation, power of test.

1. Introduction

The normality of the data assumption is one of the most commonly found in statistical stud-
ies, especially in econometric models and generally in research on applied economics. It is
well known that departures from normality may lead to substantial inaccuracy of estimation
procedures and incorrect inference. Popular graphical methods (Q–Q plot, histogram or box
plot) are unable to provide formal conclusive evidence that the normal assumption holds.
Therefore, formal statistical tests are required to conclude the normality of the data.

The problem of testing normality has gained considerable importance and has led to the
development of a large number of goodness-of-fit tests to detect departures from normality.
Comprehensive descriptions and power comparisons of such tests have been the focus of
attention of many previous works (for the newest research see: Thadewald and Büning,
2007, Romão, Delgado and Costa, 2010, Yap and Sim, 2011, Wijekularathna, Manage and
Scariano, 2019). Although the referred comparison studies have been appearing over the
years, there are fewer works that compare only normality tests based on the measures of
the moments. The more recent ones, Domański (2010) and Domański and Jędrzejczak
(2016), do not include several interesting and more recently developed tests. This class
of tests is very broad, and among other encompasses one of the most popular econometric
normality test (the Jarque–Bera test) and a number of new tests based on robust estimates
of the moments. Furthermore, these tests offer also clear interpretation of results, which
may be very useful for users: when normality is rejected, one also obtains information on
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the sample: the distribution may be skewed to the left/right and/or long (or short) tailed. A
further comparison of such normality tests can, therefore, be considered to be of foremost
interest.

In Section 2, we present the procedures for normality tests considered in this study. The
Monte Carlo simulation methodology for comparisons of the power of the normality tests
and results are discussed in Section 3. Finally, a conclusion is given in Section 4.

2. Tests for Normality

In this article, we assume that we have a random sample X1,X2, ...,Xn of independently
and identically distributed random variables from a continuous univariate distribution with
an unknown probability density function f (x,θ), where θ = (θ1,θ2, ...,θk) is a vector of
real-valued parameters. We test normality of this sample by verifying a composite null
hypothesis:

H0 : f (x;θ) ∈ N (x; µ,σ)

against the alternative:
H1 : f (x;θ) /∈ N (x; µ,σ)

where N (x; µ,σ) is a class of normal distributions with mean µ standard deviation σ , and
probability density function given by

g(x; µ,σ) =
1

σ
√

2π
exp
[
− (x−µ)2

2σ2

]
.

Let a random variable X be distributed with mean µ and standard deviation σ . Then,
the third (skewness) and fourth (kurtosis) standardized moment central moments (provided
they exist) are respectively given by:

√
β1 =

E (X−µ)3[
E (X−µ)2

]3/2 =
E (X−µ)3

σ3 (1)

and

β2 =
E (X−µ)4[
E (X−µ)2

]2 =
E (X−µ)3

σ4 . (2)

These measures of probabilistic distribution are sometimes referred to as Pearson’s moment
coefficient of skewness and kurtosis.

Skewness is a measure of symmetry about the mean of a probability density. Kurtosis
is a measure of the peakness of a probability density. For the normal distribution

√
β1 = 0

and β2 = 3. However, there are also non-normal distributions that are symmetric (e.g. t-
Student) or have kurtosis equal to three (e.g. the Tukey distribution with parameter λ =

0.135). Furthermore, testing only skewness, when kurtosis is uncontrolled, may lead to
incorrect conclusions. This is often the case of testing skewness in financial returns, for
which kurtosis is significantly higher than in the case of normal distribution (Piontek, 2007).
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Therefore, usually for the normality testing both skewness and kurtosis are involved. Such
normality tests are often referred to as ‘omnibus’, because they are able to detect deviations
from normality due to either skewness or kurtosis. In this study we only compare omnibus
tests due to their convenience for practitioners: clear interpretation of results.

Empirical counterparts of the skewness and kurtosis are respectively given by

√
b1 =

1
n

n

∑
i=1

(
Xi− X̄

S

)3

, (3)

and

b2 =
1
n

n

∑
i=1

(
Xi− X̄

S

)4

, (4)

where X̄ = 1/n∑
n
i=1 Xi is mean and S =

√
1/n∑

n
i=1 (Xi− X̄)

2 is standard devation. A num-
ber of transformations and alternative measures of skewness and kurtosis are the basis for
the considered univariate normality tests presented below.

2.1. The D’Agostino–Pearson K2 test

D’Agostino and Pearson (1973) proposed the test statistic K2 that combines normalizing
transformations of sample skewness and kurtosis.

The transformation of sample skewness
√

b1 is based on Johnson’s SU transformation
(Johanson, 1949) and is given by

Z(
√

b1) =
ln
(

Y/c+
√
(Y/c+)2 +1

)
√

ln(w)
, (5)

where

Y =
√

b1

√
(n+1)(n+3)

6(n−2)
, w2 =−1+

√
2γ2−1,

γ2 =
3(n2 +27n−70)(n+1)(n+3)
(n−2)(n+5)(n+7)(n+9)

, c =

√
2

(w2−1)
.

D’Agostino and Pearson (1973) gave only percentage points of the distribution of trans-
formation of b2 under normal distribution. Anscombe and Glynn (1983) proposed similar
transformation for sample kurtosis b2 by fitting a linear function of the reciprocal of a chi-
squared variable and then using the Wilson-Hilferty transformation (Wilson and Hilferty,
1931). The transformed sample kurtosis from Anscombe and Glynn (1983) is given by

Z(
√

b2) =

[(
1− 2

9A

)
−
√

1−2/A

1+ y
√

2/(A−4)

]√
9A
2
, (6)
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where

y =
b2−3(n−1)/(n+1)

24n(n−2)(n−3)/ [(n+1)2(n+3)(n+5)]
,

A = 6+
8
√

γ1

(
2
√

γ1
+

√
1+

4
γ1

)
,

√
γ1 =

6(n2−5n+2)
(n+7)(n+9)

√
6(n+3)(n+5)
n(n−2)(n−3)

.

The test statistic K2 =
[
Z(
√

b1)
]2
+[Z(b2)]

2 that combines D’Agostino and Pearson’s trans-
formation of sample skewness (5) and Anscombe and Glynn’s transformation of sample
kurtosis (6) follows approximately chi-squared distributed with two degrees of freedom as
the sum of squares of two asymptotically independent standardized normals (D’Agostino,
Belanger and D’Agostino, 1990).

2.2. The Jarque–Bera test

The Jarque–Bera test is one of the most popular goodness-of-fit test in the field of econo-
metrics. Although it was first proposed by Bowman and Shenton (1975), it is mostly known
from the work of Jarque and Bera (1987). The test Statistic JB is based on sample skewness
and kurtosis and is defined as

JB = n

(
(b1/2

1 )2

6
+

(b2−3)2

24

)
. (7)

This test statistic is derived from the fact that, under normality, the asymptotic means of
b1/2

1 and b2 are 0 and 3, and the asymptotic variances are 6/n and 24/n, and finally the
asymptotic covariance is zero. Thus, JB statistic is the sum of squares of two asymptotically
independent standardized normals and has approximately chi-squared distribution with two
degrees of freedom. However, the statistics b1/2

1 and b2 are not independently distributed
and the sample kurtosis approaches normality very slowly. Thus, asymptotic critical values
are strongly not recommended.

Jarque and Bera (1987) also proved that if the alternative distributions are in the Pearson
family, JB statistic is the corresponding Lagrange multiplier test (also known as Rao’s score
test) for normality.

2.3. The Urzùa test

Urzùa (1996) proposed a modification of the Jarque–Bera test called the adjusted Lagrange
multiplier test by standardizing the sample skewness and kurtosis in the formula of JB
statistics in the following way

ALM = n

(
(b1/2

1 )2

c1
+

(b2− c2)
2

c3

)
, (8)
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where

c1 =
6(n−2)

(n+1)(n+3)
, c2 =

3(n−1)
(n+1)

, c3 =
24n(n−2)(n−3)

(n+1)2(n+3)(n+5)
.

The idea of this modification is to use, instead of the asymptotic means and variances of
the standardized third and fourth moments, their exact counterparts. On the basis of Fisher
(1930) k−statistics, Urzùa showed that under normality, the exact mean and variance of b1/2

1
are 0 and c1, and the exact mean and variance of b2 are c2 and c3.

On the basis of asymptotical distributions of ALM statistic, the hypothesis of normality
is rejected at some significance level if the value of statistic exceeds critical value of a chi-
squared distribution with two degrees of freedom. This modification of JB statistic behaves
much better for small- and medium-size samples, than the original statistic when one uses
asymptotical tables of critical values (Urzùa, 1996). However, in the case of Monte Carlo
simulated critical values, Thadewald and Büning (2007) reported no improvement of power
to the classical JB test.

2.4. The Doornik–Hansen test

Doornik and Hansen (2008) introduced another modification of the Jarque–Bera test for
which the transformation creates statistics that are much closer to standard normal than in
original JB statistic. Statistic of Doornik-Hansen test is given by

DH =
[
Z(
√

b1)
]2

+[z2]
2 , (9)

in which they proposed to use the transformed sample skewness Z(
√

b1) according to equa-
tion (5) and sample kurtosis is transformed to a chi-squared distribution with non-integer
degrees of freedom, which is then translated into standard normal using the Wilson–Hilferty
transformation

z2 =

[(
ξ

2a

) 1
3
−1+

1
9a

]
√

9a, (10)

where

ξ = (b2−1−b1)2k, k =
(n+5)(n+7)(n3 +37n2 +11n−313)

12(n−3)(n+1)(n2 +15n−4)
,

a =
(n+5)(n+7)

[
(n2 +27n−70)+b1(n−7)(n2 +2n−5)

]
6(n−3)(n+1)(n2 +15n−4)

.

The formulae (10) break down for n6 7. The DH statistic is also approximately chi-squared
distribution with two degrees of freedom. However, because of its fast coverage, DH statis-
tic does not require simulated quantiles of distribution under null hypothesis (Doornik and
Hansen, 2008).
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2.5. The Gel–Gastwirth test

Gel and Gastwirth (2008) proposed a modification of JB that uses a robust estimate of the
dispersion, the average absolute deviation from the sample median (MAAD), instead of the
second order central moment m2. MAAD is defined by

MAAD =

√
π/2
n

n

∑
i=1
|Xi−medF | , (11)

where medF is the sample median. Robust dispersion measure is used, due to the fact that
sample moments are known to be sensitive to outliers, and the sample variance is even more
affected by outliers than the mean (Gel and Gastwirth, 2008). Thus, RJB statistic performs
better than JB statistics in the case of long-tailed distributions (Gel and Gastwirth, 2008).
However, in the case of short-tailed distribution robust measures of the dispersion may not
be necessary.

The test statistic is given by

RJB =
n
6

(
m3

MAAD3

)2

+
n
64

(
m4

MAAD4 −3
)2

. (12)

Gel and Gastwirth (2008) also proved that under the null hypothesis of normality, the RJB
test statistic asymptotically follows the chi-square distribution with two degrees of free-
dom. However, similarly to JB, for small and moderate samples the Monte Carlo simulated
critical values are more preferable than asymptotic chi-squared distribution values.

2.6. The Bontemps-Meddahi tests

Bontemps and Meddahi (2005) proposed a family of normality tests developed on the basis
of generalized method of moments approach and Hermite polynomials. The family of test
statistics is given by

BM3−ρ =
ρ

∑
k=3

(
1√
n

n

∑
i=1

Hk

(
xi− x̄

s

))2

, (13)

where Hk is the k−th order normalized Hermite polynomial. The considered moment con-
ditions in the Bontemps-Meddahi tests are based on the Stein equation (Stein, 1972). The
important property of the Stein equation is that, the expectation of the considered function
is zero by construction. Bontemps and Meddahi (2005) showed that special examples of
this equation correspond to the zero mean of any Hermite polynomial. The family of the
Bontemps-Meddahi tests asymptotically follows the chi-square distribution with ρ − 2 de-
grees of freedom. The JB statistic almost coincides with BM3−4. The only difference is that
in JB test, the variance is estimated by S = 1/n∑

n
i=1(Xi− X̄)2 while in the Hermite case it is

estimated by 1/(n−1)∑
n
i=1(Xi− X̄)2. In the presented study we use the Bontemps-Meddahi

test termed BM3−6, because tests based on Hermite polynomials of degree at least seven do
not provide gain in power (Bontemps and Meddahi, 2005).
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2.7. The Hosking test

Hosking (1990) proposed to use L-moments, linear combinations of the order statistics,
instead of classic central moments in order to obtain more powerful test in case of long-
tailed distributions. L-moments are less affected by sample variability, and thus more robust
to outliers.

Based on the second, third and fourth sample L-moments, which correspond to the
second, third and fourth central moments, Hosking (1990) introduced new measures of
skewness and kurtosis, termed L-skewness τ3 and L-kurtosis τ4 defined as

τ3 =
l3
l2
, τ4 =

l4
l2

(14)

where lr are order sample L-moment that can be estimated by

lr =
r−1

∑
k=0

p∗r−1,kbk, (15)

where

p∗r−1,k = (−1)r−k
(

r
k

)(
r+ k

k

)
, bk =

1
n

n

∑
i=1

(i−1)(i−2) · · ·(i− k)
(n−1)(n−2) · · ·(n− k)

.

Hosking (1990) proposed to test normality by the following statistic

TLmom =
τ3−µτ3

var(τ3)
+

τ4−µτ4

var(τ4)
, (16)

where values of means (µτ3 , µτ4 ) and variances (var(τ3), var(τ4)) of L-skewness τ3 and
L-kurtosis τ4 may be obtained by simulation. The TLmom is approximately chi-squared dis-
tribution with two degrees of freedom.

2.8. The Brys-Hubert-Struyf & Bonett-Seier test

The Brys-Hubert-Struyf & Bonett-Seier test TMC−LR − Tw is omnibus test for normality
proposed in (Romão, Delgado and Costa, 2010) as combination of two tests: the Bonett-
Seier test (Bonett and Seier, 2002) and the Brys–Hubert–Struyf MC˘LR test (Brys, Hubert
and Struyf, 2007). The former is a kurtosis associated test, the latter is a skewness-based
test. The statistic of the Bonett-Seier test is defined as

Tw =
(ω̂−3)

√
n+2

3.54
, (17)

where

ω̂ = 13.29

[
ln
√

m2− ln

(
1
n

n

∑
i=1
|Xi− X̄ |

)]
,
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in which m2 is a sample second central moment. Statistics Tw approximately follows a stan-
dard normal distribution, and consequently null hypothesis is rejected for both small and
large values of Tw. The Bonett-Seier statistic is a simple transformation of Geary’s measure
of kurtosis (Geary, 1936) , which is defined as τ/σ , where τ = E(|X − µ|). After trans-
formation (17), like its Pearson’s counterpart (given by equation (4)), Geary’s measure of
kurtosis equals 3 under normality and increases without bound with increasing leptokurto-
sis.

The Brys–Hubert–Struyf MC–LR TMC−LR test is given by

TMC−LR = n(v−v)′V−1(v−v), (18)

where v is the vector of robust measures of skewness [MC,LMC,RMC]′, and ν , V are esti-
mates based on the distribution under null hypothesis. In the case of normal distribution ν ,
V are given by

ν = [0,0.199,0.199]′ , V =

 1.25 0.323 −0.323
0.323 2.62 −0.0123
−0.323 −0.0123 2.62

 .
TMC−LR statistic approximately follows the chi-square distribution with three degrees of
freedom.

The first element of vector of v is medcouple, proposed in Brys et al. (2004), defined as

MC = med
X(i)≤medF≤X( j)

h
(
X(i),X( j)

)
, (19)

where med is the median, h is the kernel function given by

h
(
X(i),X( j)

)
=

(
X( j)−medF

)
−
(
medF−X(i)

)
X(i)−X( j).

Medcouple is a robust skewness measure bounded by [−1,1].
The two other elements of vector v are the left medcouple (LMC) and the right medcou-

ple (RMC), the left and right tail weight measure, proposed in Brys et al. (2006). LMC and
RMC are respectively defined as

LMC =−MC(x < medF), RMC = MC(x > medF). (20)

Like medcouple, they are robust against outlying values. These three measures have great
advantage that can be computed at any distribution, even when finite moments do not exist
(Brys, Hubert and Struyf, 2007).

The joint test TMC−LR−Tw proposed by Romão, Delgado and Costa (2010) is based on
the assumption that individual tests can be considered independent. This assumption was
positively verified in simulation study of 200,000 samples of size 100 drawn from a standard
normal distribution. In order to control the overall type I error at the nominal level α , the
normality hypothesis of the data is rejected for the joint test when rejection is obtained for
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either one of the two individual tests for a significance level of α/2 (Romão, Delgado and
Costa, 2010).

2.9. Desgagnéa and Lafaye de Micheaux test

Desgagnéa and Lafaye de Micheaux (2018) has recently proposed new alternatives to the
classical Pearson’s measures of skewness and kurtosis, which they termed 2nd-power skew-
ness and kurtosis. They used them to build two tests of normality. First test Xa

APD can be
derived as the Lagrange multiplier test on the asymmetric power distribution (APD) class,
introduced by Komunjer (2007). This class of distribution is a generalization of the gener-
alized power distribution (GPD) (also known as the generalized error distribution (GED)),
which is symmetric, to a broader class that includes asymmetric distributions. The APD
class encompasses all GPD distributions (i.e. the Laplace distribution, normal distribution)
and asymmetric distributions (i.e. asymmetric Laplace distribution, split normal distribu-
tion).

The basis of this test are 2nd-power skewness B2 and 2nd-power kurtosis K2, which are
defined as

B2 =
1
n

n

∑
i=1

Z2
i sign(Zi), and K2 =

1
n

n

∑
i=1

Z2
i ln(|Zi|), (21)

where Zi = (Xi− X̄)/S. This sample statistics are analogous to 2nd-power skewness and
kurtosis for a random variable X, which are defined as E(Z2sign(Z)) and E(Z2 ln(Z)), re-
spectively.

The Xa
APD statistics is defined as

Xa
APD =

nB2
2

3−8/π
+

n(K2− (2− ln2− γ)/2)2

(3π2−28)/8
, (22)

where γ is the Euler–Mascheroni constant. The Xa
APD is approximately chi-squared distribu-

tion with two degrees of freedom as a sum of squares of two independent standard normals.
However, Xa

APD has rather poor small sample properties (just as JB statistic). Thus, Desgag-
néa and Lafaye de Micheaux (2018) proposed the second statistic XAPD defined as

XAPD = Z2(B2)+Z2(K2−B2), (23)

where

Z(B2) =

√
nB2

2
(3−8/π)(1−1.9/n)

is transformed 2nd-power skewness, and

Z(K2−B2) =

√
n
[
(K2−B2

2)
1/3− ((2− ln2− γ)/2)1/3(1−1.026/n)

]√
((2− ln2− γ)/2)−4/3(3π2−28)(1−2.25/n0.8)/72

is transformed 2nd-power net kurtosis. Under the null hypothesis XAPD is, with high nu-
merical precision, approximately distributed as chi-squared distribution with two degrees of
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freedom, for all sample sizes with at least 10 observations. This is a rare and desirable char-
acteristic for normality test statistic based on measures of the moments. In the simulation
study we use only XAPD statistics.

3. Simulation study

In our simulation study we considered three levels of significance: α = 0.01, 0.05 and 0.10,
and five different sample sizes: n = 10, 20, 50, 100, 500. First, appropriate critical values
were obtained for each test based on 100,000 simulated samples from a standard normal
distribution. We decided to use empirical rather than approximated limit distributions, be-
cause many preavious studies emphasized that in the case of Jarque-Berra test and their
modifications chi-squared distribution approximation of the limit distribution did not work
well, even for large sample sizes (Thadewald and Büning, 2007 and Romão, Delgado and
Costa, 2010).

In order to investigate the power of the various tests a total of 10,000 samples of the
appropriate size were drawn from each of 15 different non-normal distributions. These dis-
tributions are categorized as symmetric short-tailed, symmetric long-tailed and asymmetric
in shape (the same categories were considered by Farrell and Rogers-Stewart, 2006). The
choice of shape category is based on the values of Pearson’s measures of the skewness
and kurtosis of the distribution given by the formulas (1) and (2). Specifically, asymmetric
distributions have

√
β1 6= 0, symmetric short-tailed

√
β1 = 0 and β2 < 3 and symmetric

long-tailed
√

β1 = 0 and β2 > 3.
Tables 1, 2, 3 presents results for the first category of alternative distributions, namely

symmetrical short-tailed distributions, respectively for three levels of significance: α = 0.01,
0.05 and 0.10. Distributions are ordered from the distribution with the lowest kurtosis (the
most distinct from normal), to the distribution with the highest kurtosis (the closest to nor-
mal). The average power across all short-tailed distributions is presented in Table 4. Firstly,
power of normality test for this group of distributions is not sufficient. Especially, at sig-
nificance level α = 0.01 and small samples sizes (below 50), all considered tests perform
very poorly. When the significance level and/or sample size increase tests become more
powerful. For the smallest sample sizes XAPD statistics seems to perform best for most
alternative distributions. For moderate and big samples K2 achieves good power for alterna-
tive distributions with low kurtosis, but for distributions with kurtosis more close to normal
TMC−LR−Tw statistics performs even better. On the basis of average results, TLmom tests per-
form fairly well for moderate and big samples, too. The results show that for symmetrical
short-tailed distributions the popular JB statistic performs poorly. From modifications of
this statistics DH seems to be the best. It performs quite well for all sample sizes.
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Results for the second category of alternative distributions, symmetrical long-tailed dis-
tributions, are presented in Tables 5, 6, 7. Distributions are ordered from the distributions
with the highest kurtosis (the most distinct from normal), to the distribution with the lowest
kurtosis (the closest to normal). The average power across all long-tailed distributions is pre-
sented in Table 8. For this group of distribution, normality tests perform better than for the
short-tailed distributions, but for small sample size results are still not very impressive. On
the basis of average results, the RJB statistic outperforms other tests for almost all sample
sizes. It is not surprisingly, bearing in mind that this test is based on the robust estimate of
the dispersion. However, when one takes a closer look at particular alternative distributions,
one may see that for the distribution with kurtosis closer to three also D’Agostino–Pearson
K2 test performs well. Contrary to the short-tailed distribution, JB statistic has quite good
power properties, even better than its modifications (apart from RJB).
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The results for the last category of alternative distributions, asymmetric distributions, are
presented in Tables 9, 10, 11. First three distributions are skewed to the right (ordered from
the highest skewness to the most close to zero), and the rest two distributions are left-skewed
(one with low skewness and one with close to zero). The average results power across all
asymmetric distributions is presented in Table 12. For asymmetric distributions normality
tests have much more power than in case of symmetric distributions. The results do not
show one particular test that outperforms the rest. The results vary widely depending on the
type of asymmetry, sample size and significance level. For lognormal distribution (strongly
right-skewed) BM3−6 and TLmom perform the best. From modifications of JB statistic, DH
also performs well. However, for big sample sizes (100 and 500) almost all statistics have
100% power. For distributions with weaker right asymmetry BM3−6 and DH are the most
powerful tests. As far as distributions skewed to the left are concerned, TLmom, XAPD and
BM3−6 perform the best. Contrary to the left asymmetry, DH test is not better than the
standard JB test.
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4. Conclusions

In this study, we performed a comprehensive investigation of nine tests for normality based
on measures of the moments. In a simulation study we focused on a different forms of
shape departure from normality such as symmetric short-tailed, symmetric long-tailed, or
asymmetric. None of the tests considered in this study is uniformly most powerful for all
types of alternative distributions, sample sizes and significance levels considered. If the
distribution is symmetric and short-tailed two test are the most powerful, Desgagnéa and
Lafaye de Micheaux’s XAPD test and D’Agostino and Pearson’s K2 . Gel and Gastwirth’s
RJB test is one of the most powerful tests for normality based on measures of the moments
across a wide array of symmetrical and long-tailed alternative distributions. For the last
category of alternative distributions, asymmetric distributions, it is difficult to distinguish
one test. Bontemps-Meddahi’s BM3−6 for right-skewed distributions and Hosking’s TLmom

for left-skewed perform fairly well.
The JB test performs well for symmetric distributions with long tails and for slightly

skewed distributions with long tails. However, the power of the JB test is very poor for
distributions with short tails. As Thadewald and Büning (2007) reported the Urzùa test
has no improvement of power to the classical JB test in the case of Monte Carlo simulated
critical values. Gel and Gastwirth modification of JB that uses a robust estimate of the
dispersion seems to be the best modification in the case distributions with long tails and
Doornik–Hansen modification in the case of short-tailed distributions.

Finally, the authors would like to indicate two tests that have quite reasonable power for
all alternative distributions and have advantage of being very closely approximated by chi-
squared distribution with two degrees of freedom. These two test are the Doornik–Hansen
test and the Desgagnéa and Lafaye de Micheaux test. As a concluding remark, practitioners
should carefully act when graphical techniques such as histogram or moment statistics sug-
gest that the sample comes from symmetric distribution. In this case, normality tests do not
perform well for small sample sizes (below 50), especially when symmetry is accompanied
by short tail of distribution.
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Predicting Polish transport industry equilibrium characteristics as 
an inverse problem: An Entropy Econometrics Model 

Second Bwanakare1, Marek Cierpiał-Wolan2 

ABSTRACT  

The business environment dynamics is governed by a high degree of uncertainty and risk; 
consequently, in a majority of cases investors face serious difficulties when making business 
decisions. Additionally, when detailed statistical information relating to industry is missing, 
any decisions may become a matter of highly risky conjectures.  
The present article proposes a simultaneous equation model based on the entropy 
econometrics estimator for recovering some key industrial subsector  long-term equilibrium 
characteristics in the situation where only sparse, insufficient statistical information is 
available (e.g. only aggregated data on the whole industry).  
The model is applied to the transportation equipment manufacturing industry in Poland, 
which is composed of eight sub-sectors. As a result of the above procedure, an observation 
has been made that all firms from different sub-sectors  have to increase their steady-state 
concentration ratios, while the highest concentration corresponds to the lowest increase 
in profitability. The model outputs conform to the market tendency in this sector and should 
lead to further applications of the NCEE methodology in business activity on a worldwide 
scale. 

Key words: transport industry, inverse problem, econometrics, non-extensive entropy 
econometrics.  

1.  Introduction 

One of the most important areas of services is transport, which largely affects the 
economic development of each country. Not only is it an instrument for the exchange 
of goods and services but also an important factor in GDP growth and it also influences 
the development of other sectors of the national economy. It is worth emphasizing that 
the production of transport equipment is an extremely important determinant of 
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transport development3. In the European Union, three groups of countries can be 
distinguished in this respect. The first group includes countries where the average share 
of the production of transport equipment in the global production in 2012−2018 
ranged from 7 to about 12 percent (Slovakia, the Czech Republic, Hungary and 
Germany). The second group, which includes Romania, Sweden, Poland, Slovenia and 
Spain, covers countries where this share amounts to around 4 percent, and the 
remaining countries do not exceed the 3 percent share. 

In Poland, in the entities included in the production of transport equipment, after 
the decline in dynamics in 2012, a successive increase was observed in subsequent years, 
including the highest in 2015 (by 11.1%). In the last two years of the analysed period, 
the growth rate of global production slightly slowed down and was lower than the total. 
Both the pace and the volatility of dynamics in production entities for transport was 
shaped mainly by the results achieved by entities producing motor vehicles, trailers and 
semi-trailers, excluding motorcycles. The share of this division's revenues accounts for 
approximately 90% of production revenues for transport. The remaining production 
showed significant fluctuations in dynamics. After a period of growth in 2012−2015, 
in the next two years, global production in this division decreased, while the last year 
of the analysed period brought a significant increase (by 19.9%). 

What is also interesting is the fact that the global production in Poland calculated 
for entities employing more than 10 people in the years 2012−2016 brought a stable 
growth (in the range of 1.5% -3.4%). Both 2017 and 2018 saw acceleration in the growth 
rate of global production. 

 

 

Figure 1. Dynamics of global production 

                                                           
3  Production of transport equipment consists of two divisions: production of motor vehicles, trailers and semi-

trailers, excluding motorcycles (29) and production of other transport equipment (30). 
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The present paper applies the power-law (PL)-related cross-entropy econometrics 
(PL-CEE) methodology for recovering the main optimal equilibrium characteristics of 
the Polish transport industry sub-sectors. In this paper, we will reply to the business 
question concerning, among others, the optimal number of subsector firms of the 
transport manufacturing industry consistent with steady-state industry configuration 
given industry initial characteristic conditions.  

In this kind of the problem, we are dealing with ill-behaved inverse problems, 
suggesting that we want to recover a larger number of model parameters than there are 
associated data point observations known with uncertainty in this study. 
As documented in recent publications, the Tsallis power-law (PL)-based non-extensive 
cross-entropy econometrics (NCEE) approach better deals, conceptually, with such 
complex non-linear inverse problems. NCEE is based upon the q-generalized Kullback-
Leibler (K-L) information divergence criterion function under constraining 
information characterized by the Bayesian information processing optimal rule. Thus, 
we consider PL-related non-extensive entropy will remain valuable even in the case of 
low-frequency series since the outputs provided by Gaussian law correspond to the 
limiting case of the Tsallis entropy when the Tsallis q-parameter equals unity. 

2. Modelling the Polish Industry of Transport 

For decades, statistical and mathematical tools to handle ill-posed inverse problem 
systems have been sought in diverse fields−model parameter estimation, medical 
imaging, modelling in the life sciences, oil and mineral deposit exploration, shape 
optimization, etc. For more about inverse problems, see, e.g. Tikhonov regularization 
theory, Gibbs-Shannon-Jaynes. Interestingly enough, a non-particular hypothesis is 
required while applying the PL-CEE model in contrast with the traditional 
econometrics techniques, which generally impose a large number of not always realistic 
hypotheses on the model.  

Contrary to many other fields, the management or economics science, in general, 
have neglected the link between phenomena and power-law (Gabaix X., September 
2008) characterizing complex systems within the class of Levy’s processes. In light of 
recent literature, the amplitude and frequency of socio-economic fluctuations are not 
considered to substantially diverge from many other extreme events, natural or human-
related, once they are explained at the same time (or space) scale. Y. Ikeda and 
W. Souma (2008) have worked on an international comparison of labour productivity 
distribution for manufacturing and non-manufacturing firms. A power-law 
distribution in terms of firms and sector productivity has been found in the US and 
Japan data. Testing Gibrat's law of proportionate effect, Fujiwara et al. (2004) have 
found, among other things, that the upper-tail of the distribution of the firm size can 
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be fitted with a power-law (Pareto–Zipf law). According to many studies 
(e.g. Bottazzi G. et al., 2007; Champernowne D. G., June 1953), a large array of 
economic laws take the form of PL, in particular, macroeconomic scaling laws, 
distribution of income, wealth, the size of cities and firms, and the distribution of 
financial variables such as returns and trading volume. In a recent monograph 
publication (2019), the author has proposed a theorem linking low-frequency time 
series socio-economic phenomena−and thus input-output one period systems−with PL 
distribution. The above citations are not exhaustive.  

The PL-CEE is a precious device for econometric modelling even in the case of low-
frequency series since outputs provided by the Gibbs-Shannon entropy approach 
correspond to the Tsallis entropy limiting case of Tsallis q-parameter equal unity. What 
is more, many complex phenomena involve the long-range correlations which can 
continuously be seen when data are time (space) scale-aggregated. This could be 
because of the interaction between the functional relationships describing the 
phenomena involved and the inheritance properties of power-law (PL). Thus, 
delimiting the threshold values for a PL (Levy's stable process) transition plausibly 
towards the Gaussian structure as a function of data frequency level is difficult since 
each phenomenon may display its rate of convergence towards the central theorem 
limit attractor. Consequently, a systematic application of the Shannon-Gibbs entropy 
approach, even based on annual data, could lead to unstable and misleading results. 
Inversely, since non-extensive Tsallis entropy generalizes the exponential family of 
laws, it should fit well with high or low-frequency series. In particular, Mantegna R. N. 
and Stanley H. E. (1999) have studied the dynamics of a general system composed of 
interacting units each with a complex internal structure comprising many subunits, 
where they grow in a multiplicative way over 20 years. They found a system following 
a PL distribution. This is similar to the present case study, where we deal with an 
industrial sector composed of sub-sectors within which a large number of economic 
agents provide complex business activities for a given period.   

Following the above reasoning, the present study based on non-extensive entropy 
econometrics extends Shannon-Gibbs maximum entropy econometrics to non-ergodic 
systems. As in statistical physics, socio-economic random events should display two 
types of stochastic behaviour: ergodic and non-ergodic. Whenever isolated in a closed 
space, ergodic systems dynamically visit with equal probability all the allowed micro-
states (Tsallis, 2009). This is the case for Gibbs-Shannon entropy. Next, since all events 
are independent or quasi-independent (locally dependent) and equally probable, this 
means that the above entropy is a linear, positive function of the number of possible 
states – thus of new data, and then is extensive. In reverse, as a consequence of possible 
multi-level correlation between system microstates, non-ergodic systems are 
characterized by entropy which is no longer a linear, positive function of the number 
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of possible states, and then non-extensive. An important fact to be noticed here is the 
connection between information theory and a Gaussian variable. This connection 
results from the fact that a Gaussian variable displays the largest entropy among all 
random variables of equal variance. 

Q-generalized Cross-entropy for Inverse Problem Solution 

As already said above, the model to be estimated displays more unknown 
parameters than observed data point observations. In this section, we recall the 
definition of an ill-posed inverse problem and present a PL-related cross-entropy 
model in the context of the proposed model. In essence, the canonical ill-posed inverse 
problem as the one we deal with in this paper can be formally presented as follows:  

)(),()()(  bdYYhYgX
D

 
        (1) 

X : means the observed matrix of updated priors, e.g. the prior data matrix in Table 1, 

Y : designates the unknown matrix of the Polish optimal, long-run subsector transport 
industry configuration to be later estimated, 

D: defines the Hilbert support space of the model, 
g : is the transformation kernel linking measures X  and Y, 

b :  explains random errors. 

This is a basic model which consists in solving an integral equation of the first kind. 
As said in (Bwanakare, 2014), inverse problem recovery finds application in various 
fields of science, particularly in the context of Optimal Control Theory. Among 
different techniques proposed for solving this type of problems, the Tikhonov related 
regularization theory remains the most applied besides the Gibbs-Shannon-Jaynes 
maximum (cross) entropy principle and the ill-posed stationary first-order Markov 
process, in which the operator g can be seen as a generalized transition matrix while 
X and Y  as the Markov states. The contribution of this paper consists in extending 

the application of the non-extensive cross entropy formalism to search for global 
regularity—consistent with the maximum (non-extensive) entropy principle—while 
yielding the smoothest reconstructions of the Polish optimal subsector transport 
industry configuration, given initial conditions to be presented in the next paragraphs, 
according to the Jaynes approach. 
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Next, we follow recent works applying the non-extensive entropy econometrics and 
define a q-Tsallis-Kullback-Leibler dual entropy criterion function for forecasting the 
Polish optimal subsector transport industry configuration, as follows: 

𝑀𝑖𝑛  0// ppHq ≡ 𝜆 ∑ 𝑝௞௝௠

ቈ
೛ೖೕ೘
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 (2) 
Subject to 

1 j jP  with           (3) 

1
2

  
S

Ss sj
           (4) 

Ω(Nj,Xj,Yj)= Cij           (5) 

where: 

jX  : transport industry subsector average costs,  

𝑌௝  : transport industry subsector average production,  
𝑁௝ : number of entreprises in a given subsector, 
𝑝௜௞௠ : probability distribution on the support space point m defining the  parameter 

k in the equation i  

sj  is the random error probability on subsector accounts defined on a support 
space s,  

𝜆: weight on parameters in the criterion function. 

The system of equations explained in the equation 5 will be explained later in the 
next section.  Nevertheless, the main fact to underscore is that the system stands for an 
inverse problem, suggesting that the model presents more parameters to estimate than 
the observation points. 

There exist a few types of constraining forms defining expectations in Tsallis 
statistics. In the above model we apply the normalized Tsallis-Mendes-Plastino (TMP) 
constraints (also known as q-averages or an escort distribution) to the reparametrized 
parameters; see, e.g. Golan (1996) of the system of equations (equ. 5).  

The form of the TMP is as follows:  

i
i

i

q
i

q
i

q y
p

p
y 



         (6) 
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The real q stands for the Tsallis parameter, whose value varies between 1 and 5/3, 
suggesting the case of phenomena evolving within the Gaussian basin of attraction. 
If the q-Tsallis parameter recovers the value 1, we get the PL limiting Gaussian case 
already alluded to in the Introduction section.  

Above,  0// ppHq  is nonlinear and measures the relative (cross-entropy) 

entropy in the model. The symbol //  is a “distance metric4” of divergence information. 

We need to find the minimum divergence between the prior 0p  and the posterior p
(equ. 2) while the imposed restrictions (equ. 3−5) must be fulfilled. For more 
information about cross-entropy interpretation; see, e.g. Golan (1996), Bwanakare 
(2014). As far as the parameter confidence area is concerned, we send interested 
readers, e.g. to the work (Bwanakare, 2019). Finally, it would be worthwhile to 
summarize below the main steps to be followed while applying the proposed cross-
entropy approach: 

a)  fixing the phenomenon to be modelled, its explicative variables, plus its 
mathematical form, 

b)  collecting sample data, 
c)  setting up parameter support space points for each parameter and for the random 

component. The support space points are defined over the potential existence area 
of the parameters, 

d)  setting up the initial values for each parameter. These values should reflect the 
highest knowledge about each parameter,  

e)  building a program code linking all the information provided in Steps a through 
d. The main part of this program is of the optimization formulated as follows. 

Minimizing the weighted divergence between unknown posterior and prior 
probabilistic of a non-extensive Tsallis entropy functional subject to the next Bayesian5 
restrictions: 

- Moment formulation in the form of econometric model equations according to 
Steps c and d above.  

- The random component is formulated according to Step c. 
- The regular conditions must sum the probability space points of each parameter 

up to unity. 

                                                           
4  However, note that K-L divergence is not a true metric since it is not symmetric and does not satisfy the triangle 

inequality.  
5  For the relationship between the Bayesian and maximum entropy parameter parameterization; see, e.g.  

(Golan A., 1996). 
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3.  The proposed business model and input data 

The system of equations Ω(Nj,Xj,Yj) in equ. (5) relates to the below econometric 
model (equ. 7−11), which stands for the main constraining component of the cross-
entropy system (equ. 2−5). 

The econometric model is as follows: 
𝑁௝௧ ൌ 𝛼଴௝ ൅ λଵ௝𝑁௝௧ିଵ  െ 𝛼ଶ௝𝑉௝௧+ 𝜀ଵ௝       (7) 
𝑋௝௧ ൌ 𝛽଴௝ ൅ λଶ௝𝑋௝௧ିଵ ൅ 𝛽ଶ௝𝑌௝௧+ 𝜀ଶ௝       (8) 
𝑌௝௧ ൌ 𝛿଴௝ ൅ λଷ௝𝑌௝௧ିଵ  െ 𝛿ଶ௝𝑋௝௧+ 𝜀ଷ௝       (9) 

  𝑉௝௧ ൌ 𝑋௝௧/𝑌௝௧       (10) 

  𝑋௝௧/𝑌௝௧ ൑ 1       (11) 

N୨୲: number of firms of the j subsector of the Polish transport industry for the period t, 
X୨୲:  inputs of firms in the subsector j of the Polish transport industry for the period t, 
Y୨୲: outputs of firms  in the subsector j of the Polish transport industry for the period t, 
V୨୲: level of technology of firms in the subsector j of the Polish transport industry for the 

period t, 
 ε୨: common random term in the j subsectors of the transport Polish industry. 

In the above model, we deal with four interconnected simultaneous dynamic 
equations of which one equation forms a deterministic relation. Reasoning trough 
traditional econometrics, we may set the assumption of a component random error 
reflecting individual behaviour of each of the 8 subsectors and a correlated random 
error affecting the whole sector. Thus, each of the three first equations accounts for 
18 unknown parameters to be estimated, suggesting 54 parameters for the whole model 
based on data from one period of time (2018). This expectation model describes 
a partial adjustment of each of the three equations N୨୲, X୨୲, Y୨୲ of which the expected 
values Nୣ୶

୨, Xୣ୶
୨, Yୣ୶

୨ have to be determined through the estimated parameters of the 
above equation system. The expected number Nୣ୶

୨ ሺin the steady stateሻ of firms 
in the different 8 subsectors of the Polish transport industry will depend on the present 
technological coefficient V୨, which explains the relation between  input and output. 
The Xୣ୶

୨ is a response of the present level of output while producers base their  future 
output on the present level of input. Let us recall below basic aspects of a partial 
adjustment model. Formally, let 𝑦௧ ∗  be the unknown, targeted level of 𝑦௧: 

𝑦௧ ∗ ൌ 𝛼 ൅ 𝛽௜𝑥௜௧+𝜀௧, t=1..T, i=1..K        (12) 

And a progressive adjustment equation:  

𝑦௧ െ 𝑦௧ିଵ=(1- 𝜆)(𝑦௧ ∗  െ𝑦௧ିଵ, 𝑤𝑖𝑡ℎ(0<𝜆<-1)     (13) 
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Solving the second equation for 𝑦௧ and inserting the first expression for 𝑦௧, we 
finally obtain the next equation (Koyck, 1954): 

𝑦௧ ൌ 𝛼ᇱ ൅ 𝛽′௜𝑥௜௧ ൅ 𝜆𝑦௧ିଵ+𝜀′௧        (14) 

Since this form is linear in parameters and disturbance non-auto correlated  
(Greene  , 2011), the LS estimator  will generate consistent and efficient estimates.   

Estimated parameters 𝛼ᇱ and β′௜  are the short-run multipliers. To obtain the long-
run effect, one transforms 𝛼 ൌ 𝛼ᇱ/ሺ1 െ 𝜆) and β௜ ൌ β′௜/ሺ1 െ 𝜆). The long-run 
disturbance estimates become  𝜀௧ ൌ 𝜀′௧/ሺ1 െ 𝜆). We then retrieve estimates of equation 
(12) explaining the targeted value of 𝑦௧

∗. Next, for 𝜆 equal to zero, we may have to deal 
with a pragmatic agent who prefers to pay the whole attention on the present 
environment, thereby ignoring information of the past. In the present study, the short-
run and long-run effects are estimated and presented below in Tables 2 and 3. 

On the epistemological side, the particular advantage of the model is to link the 
generalized maximum entropy principle with the Bayes optimal information 
processing rule trough an econometric model embedded in the system as a constraining 
structure explained as model moments. Finally, Table 1 presents the priors and data 
used to estimate the model. 

Table 1. Some key parameters of the Polish current transport industry Subsectors in 2018 

Transport industry Subsectors 
(Manufacture of) 

number of 
firms(𝑁௝) 

Average gross 
output/(1000*𝑁௝)

Average 
intermediary 

Input/1000*𝑁௝ 

Ratio input-
output (V) 

Manufacture of motor vehicles 35 2002 1402 0.7 

Manufacture of bodies (coachwork) 
for motor vehicles; manufacture of 
trailers and semi-trailers 96 77 50 0.649 

Manufacture of parts and 
accessories for motor vehicles 323 301 213 0.708 

Building of ships and boats 61 68 48 0.702 

Manufacture of railway 
locomotives and rolling stock 25 322 222 0.,692 

Manufacture of air and spacecraft 
and related machinery 41 241 149 0.619 

Manufacture of military fighting 
vehicles 4 238 101 0.422 

Manufacture of transport 
equipment n.e.c. 38 64 38 0.599 

Source: Own based on Statistics Poland data. 
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4.  Outputs and discussion 

This section presents the outputs of the proposed model. The computations of the 
NCEE model were carried out with the GAMS (General Algebraic Modelling System) 
code. Table 2 presents the new post-entropy outputs of the industry subsector steady 
state optimal configuration resulting from the NCEE model. Given priors presented in 
Table 1 and the formal model explained in equ. 2-11, we note a long-run potential 
increase of about 99% of the total number of firms. The new structure represents the 
expected  steady-state configuration of the Polish transport industry Subsectors. 
Changes between the present (Table 1) and the expected structure is displayed in Table 
2. Precisely, this table  provides information on the subsector percent changes of the 
number of firms,  inputs and outputs  between initial data (inputs) and model outputs 
(posteriors) explaining future equilibrium firm activity. One can observe the highest 
number increase rate in the sub-sector  of military fighting vehicles (775%) and a slight 
decrease in the sub-sector of motor vehicles (-3%). 

Next, the same table displays the ratio of input-output change (%). It reveals the 
long-run equilibrium subsector average profitability change rate (%) (or subsector 
value added change rate), given the initial conditions and the model formulation 
presented in equ. 2−11. This ratio is obtained as a difference between the output change 
(%) and the input change (%) for a given subsector. We notice that this ratio seems to 
decrease in the long-run and this decrease to be globally proportional to sub-sectorial 
firm concentration, as shown through column 1 and 2 of Table 2. 

As far as the model interval confidence is concerned (see Table 2), we observe 
a global cross-entropy norm I(m) of around 0.368. This index compounds the 
parameter cross-entropy norm of around 0.391 and the error term index of around 
0.125. These two values will depend on the value level of the weight 𝜆 in the criterion 
function (equ. 2). The higher value of this parameter tends to increase the parameter 
precision while worsening the prediction level of the model through the error 
component. Finally, as the cross-entropy index varies between zero and one, its higher 
value suggests weaker discrimination of the model (data) against the prior. Its value 
closer to zero, in the contrary, reveals a higher significance of the model in terms of 
discriminating against the prior. Table 3 presents  estimate values of the model and 
model parameter inference index value I(m). For instance, based on the global cross-
entropy norm displayed in Table 3, one can say that the model has discriminated in 
favour of the posterior (the proposed model outputs) for approximately 63.2%  
(1- Global cross entropy norm I(m)). Readers interested in information theory 
statistical inference can find details on the subject, e.g. in Golan et al. (1996), or for the 
non-extensive entropy, e.g. in Bwanakare (2014). 
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Finally, as presented in Table 2, we notice that all the transport subsectors but one 
have increased their firm concentration ratio, while the highest increase corresponds to 
the lowest increase in profitability.  

Table 2.  The post-entropy expected  steady-state configuration of the Polish transport industry 
Subsectors 

Sub-sectors of the Polish transport industry 
Change of 
number of 
firms in % 

Ratio 
input 

output 
change 

(%) 

Change of 
inputs 
in % 

Change of 
outputs  

in % 

Motor vehicles  -3.0  2.398 10 13 

Bodies (coachwork) for motor vehicles;  trailers and semi-
trailers 

96.0 -20.646 45 20 

Parts and accessories for motor vehicles  85.0 -3.123 4 1 

Building of ships and boats 115.0 -29.814 6 -18 

Railway locomotives and rolling stock 168  1.279 21 23 

Air and spacecraft and related machinery 134 -16.139 27 9 

Military fighting vehicles 775 -80.679 37 -24 

Transport equipment n.e.c. 137 -51.218 26 -17 

Total number of enterprises  of all subsectors 1239
  

Average input 2536
  

Average output 3606
  

q-Tsallis parameter  1.000
  

Global cross-entropy norm 0.368
  

Parameter cross-entropy norm   0.391
  

Source: Own work. 

 

Table 3. Model parameter estimates and statistical inference 

     
    

 

Estimate values 0.879 0.835 -0.067 -0.882  0.449 -0.899 -0.708  0.099  0.696 

Normed index I(p) 0.349 0.418 0.900  0.353 0.867  0.295 0.637  0.872 0.626 

Source: Own work. 
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Table 3 presents  model system parameter estimates and their normalized statistical 
precision I(p). As already explained, I(p) close to unity means that prior and posterior 
parameters are identical, which suggests that the model (new data, in Bayesian 
interpretation) is no pertinent. In terms of entropic formalism, no entropy reduction  
is reached through the incorporated econometric model system (equ. 2−11). If we adopt 
the rule of thumb presented in Golan et al. (1996), all parameters are more or less 
significant as all precision indices I(p) are lower than 0.99. 

5.  Concluding remarks 

The proposed model aimed at predicting the subsector's most plausible, long-run 
financial configuration of firms consistent with current information on their inputs, 
outputs and structure through a generalized maximum entropy principle. It consisted 
of minimizing information divergence between unknown posteriors related to industry 
subsector main characteristics  and corresponding priors and model initial data. This 
model proposed NCEE as a recent approach for solving complex inverse problems. 
As revealed through the model outputs, the long-run change of different profitability 
ratios is diversified while the highest increase in firm concentration corresponds to the 
lowest increase in profitability. The model could be developed to take into account 
recent theoretical developments in management and economics. Based on the above 
outputs, we can now expect a further dynamic development of the transport industry 
in Poland evidenced by sub sector firm concentration. This phenomenon significantly 
leads to the increase in firm competition while negatively impacting on different ratios 
of profitability as reported in this paper. 
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Flow management system for maximising business revenue  
and profitability 

Piotr Zawada1, Włodzimierz Okrasa2, Jack Warchalowski3 

ABSTRACT  

Most for-profit organisations must constantly improve their business strategies and 
approaches to remain competitive. Many of them choose to embark on Lean or Six Sigma 
journeys with the intention of maximising productivity and increasing sales. Despite 
a significant progress in the development of the Big 3 Improvement Methodologies  
(Lean, Six Sigma, Theory of Constraints – TOC), many manufacturers are still involved 
in ineffective operations, resulting in longer-than-desired lead times, late deliveries, high 
inventories and considerable operational costs. All of these business errors seriously 
challenge the company’s competitiveness. The aim of the paper is to demonstrate the 
importance of effective analysis of maintaining the appropriate level of inventory in gaining 
a competitive advantage of the company using the company's key resources in the 
competitive struggle on the market while conducting continuous reporting of reasons for 
not achieving the assumed business goals, and using the principles of the economy of 
bandwidth in order to maximize the profitability. 
Key words: inventory, improvement of profitability, economy, management.  

1.  Introduction 

In order to stay competitive and to maximize productivity while increasing sales, 
many organizations need to continuously improve using innovative approaches, such 
as Lean or Six Sigma journeys (Mason et al., 2015; de Freitas J., 2017). Sometimes their 
efforts do not bring the expected results and consume a lot of time and money 
(Babiceanu and Seker, 2016). Moreover, according to a recent survey, 74% of 
companies claim to be adopting Lean Thinking Methodology but only 24% claim any 
kind of positive results. Proponents of this approach believe that one of the most 
effective way to improve manufacturing business revenue and profitability is to 
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implement a Flow Management System (FMS) approach. This approach utilizes all 
3 improvement methodologies focused by TOC.  

The FMS consists of four key components: 
1) define inventory position and levels and create a pull-based replenishment 

signal, 
2) identify production streams in the plant, schedule only key resources and 

reinforce schedule attainment as the primary measure, 
3) drive plant-wide continuous improvement process based on the main reasons 

the schedule is not achieved, 
4) base key market and product profitability decisions on the Throughput 

Economics approach. 

Each of the constitutive elements of this approach is discussed in the following 
sections, together with an indication of its suitability to the problem stated in the title. 
That is, how it might work for maximizing business revenue and profitability. 
The structure of the article is as follows. The next section characterizes the first 
component, devoted to the issue of assuring a balance between sales goals, production 
plans and the storage time of components taking into account the customer needs. 
The specification of main positive consequences of the FSM implementation in this 
context concludes this section. The third section discusses strategic aspects of the 
production streams and key resources within the schedule attainment reinforcement as 
the primary measure, along with the issue of adequacy and compatibility of the 
activities undertaken in the area of production and the required competences of human 
capital. Drum-Buffer-Rope (DBR) approach – a production planning and execution 
methodology – which is an integral part of FMS, makes it possible to implement 
a Continuous Improvement process in the plant. The next section continues the above 
issues based on a supposition that the main reasons the objectives of DDR have not 
been achieved can be identified – a Continuous Improvement process that uses Pareto 
Diagrams comprises reasons hindering the flow through the plant. In the fifth section, 
the cost-per-unit – the most popular analysis process and paradigm of traditional 
business decision making - which allows managers to use the concept of gross margin 
to evaluate business opportunities is put under critical review due to its potential 
distortions and shortcomings. Therefore, the use of a Throughput Economics (TE) 
based approach, as a part of the FMS approach, taking into account relative product 
and market profitability, is being recommended along with empirical evidence for its 
support. The last section summarizes positive effects of using the four-component FMS 
approach, with focus on the improvement in operational and financial performance of 
the organizations implementing it.   
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Define inventory positions and levels and create a pull-based replenishment signal 

Stable production systems must, in their assumptions, answer the questions of how 
to build a balance between sales goals, production plans and the storage time of 
components necessary for implementation, in many cases very unstable customer 
orders. This purpose is served by the described system of a competitive advantage use, 
based on the identification of customer needs and matching production processes with 
the highest degree of security in the implementation of serial production. FMS focuses 
first on defining all inventory requirements, utilizing a TOC-based Demand Driven 
Replenishment (DDR) sizing algorithm, to set up targets for key Finished Goods, Raw 
Materials and Sub-Assembly items. These inventory buffers break supply chain 
dependence between unreliable supplier deliveries, variable customer demand and the 
plant, providing significant stability for the manufacturing operation. Once inventory 
buffers are in place, a pull-based replenishment signal, in combination with other 
customer demand, creates the basis for generating the plant load.  More stable plant 
load creates larger production butch for key resources, minimizes their set up 
requirements, increases overall plant throughput and often reduces manpower. 
In addition, improved ability to more often make to stock vs. to variable customer 
demand increase finished goods availability, improves customer service levels and leads 
to increase in sales. Overall, DDR results in a significant positive impact on business 
profitability by often reducing operational expenses and driving sales increase at the 
same time.  In addition, DDR, most of the time, results in lower overall inventory levels 
and / or increased inventory turns. For many years, make-to-order (MTO) has been the 
preferred approach for manufacturers to use to determine when and in what quantity 
to make their products. In addition, to help manufacturers buy their required raw 
materials, they relied on Materials Requirement Planning (MRP) systems.   

While the appeal of MTO seems obvious, only make the required quantity of 
a product once the customer has ordered, the negative side effects are numerous. First, 
in many manufacturing environments, the customers’ order is often their best guess of 
what they need (their own forecast). Too often customers change either the quantity or 
the due date of the order. These order changes often force manufacturers to expedite 
and / or create excess finished goods inventory. Most MTO manufacturers store higher 
than desired levels of MTO inventory. Second, following an MTO approach often 
results in periods of high demand (in excess of capacity) and low demand, making 
it challenging to properly utilize the plant workforce. Both of these issues lead to 
increased costs through excessive overtime, expediting and even quality mistakes.  
Finally, following an MTO strategy extends lead time as the product needs to be 
manufactured after the order is received. This lead time is extended even more when 
the manufacturer has a backlog of orders. And of course, longer lead times lead to more 
order changes – a self-reinforcing negative loop. 
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The appeal of MRP system support is also easy to understand.  Explode the 
customer orders through the Bill of Materials (BOM) and buy only the amount needed 
to make the customer orders. The allure of minimal inventory and high raw material 
availability makes the idea of MRP very compelling. However, reality is often very 
different. Many manufacturers buy items with lead times greater than the lead time they 
must offer their customers. This issue forces manufactures to feed their MRP systems 
with forecasted orders. Since it is impossible to accurately forecast at the individual SKU 
level, the demand changes inflicted on the plant, as the actual orders vary from the 
forecasted orders, leads to material shortages, expediting, “stealing” and overstock.   

MRP is not only trying to help buyers bring in the precise quantity of material, it is 
also trying to do that at just the right time – not too early or too late. As a result, MRP 
limits a manufacturer’s flexibility. If the customer order changes or a supplier is late 
with delivering raw materials, manufacturers are often unable to pivot and build 
something else – as the materials needed to change the schedule are also not available 
yet. Quality problems in the plant only magnify these issues. While it is true that MRP 
systems often provide functionality for safety stock and/or min/max inventory level 
management, these levels are rarely maintained frequently enough to reflect the current 
often highly variable environment – leading to too much safety stock of some items and 
not enough of others. 

The primary reason that using MTO and MRP leads to all sorts of problems is that 
manufacturing environments are characterized by high amounts of variability.  
Variability in the sales orders (dates and quantities), supplier performance (dates, 
quantities and quality), bill of material and inventory accuracy, and production 
performance (dates, quantities and quality). MTO and MRP assume low levels of 
variability and increase a manufacturer’s dependence on good, stable performance. As 
most manufacturers’ environments are far from being stable, MTO and MRP too often fail. 

FMS, utilizing a DDR approach, minimizes system dependence by positioning 
inventory in key supply chain points (i.e. Raw Materials, Finished Goods, customer 
locations, etc.), provides better protection from on-going disturbances, monitors 
sources of system variability and allows the entire system function at a higher 
performance level. 

2. Identify production streams in the plant, schedule only key resources 
and reinforce schedule attainment as the primary measure 

At the beginning of this part of the study, it is worth considering how necessary it 
is to ask the following question: "Is it worth to use the strategy to limit your resources 
to the level which is the most difficult or the most expensive to obtain?". Perhaps, the 
most important thing is to answer the question "Are the activities undertaken in the 
area of production accompanied by the required competences to our human capital?" 
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In the further part of the study, these analyses will be accompanied by the presentation 
of a solution that minimizes the effects of incorrect production planning. Every plant 
can be divided into production flow streams. Drum-Buffer-Rope (DBR), a TOC 
production planning and execution methodology, is used to schedule each production 
flow stream within the plant and ensures timely production execution. Then, while 
measuring schedule attainment of each critical resource in a production stream, the 
reasons and plant locations that most often hinder the flow are tracked and recorded. 
 

 

Figure 1. Drum-Buffer-Rope System 
Source: Own work. 

The Drum is usually the Constraint – for every flow stream in the plant 

The drum/constraint is usually the machine restraining your overall throughput. 
Most of the operations have one constraint (machine or department) for every flow 
stream in the plant, but sometimes in some plants the drum can follow the product mix 
changes.  In more of a continuous flow operation the constraint is usually located in one 
place and does not move often with a product mix. 

By definition, a constraint can be any resource with customer demand larger than its 
effective capacity. For every hour lost on this constraint we lose an hour for the entire 
operation. By the same token, gaining an hour of output at the constraint, increases 
output for the entire plant. It is also important to realize that every time we elevate the 
output of the constraint above the capacity level of another resource the constraint/drum 
will be moved to another plant location.  Usually, this is not a preferable direction since it 
creates an immediate need to redesign the entire production planning and scheduling 
process as well as manpower management in the plant. 

The constraint is called a Drum because it creates the pace for a given flow stream.  
The speed of the flow stream or its production rate is equal to the throughput of its 
drum resource. The book “The Goal” by Eli Goldratt was the first one describing this 
concept. The production schedule is normally set for the drum resource and made 
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visible to the rest of the flow stream. Schedule attainment is closely monitored and 
evaluated on the shift by shift basis. 

From the continuous improvement perspective, improvements of non-bottlenecks 
have no effect on the overall plant output. Attempts to utilize non-bottlenecks to 
a 100% capacity (and often above 80%) drive WIP (Work in Process) up, reduce overall 
system throughput, make the entire system unstable and cause constraint to move from 
place to place – a wondering bottleneck phenomenon. 

The wondering bottleneck phenomenon can be observed most often in the plants 
with balanced capacity. Balanced capacity means that available effective capacity at 
every production resource in a flow stream is closely matched to a market demand and 
each other.  The DBR diagram shown in Figure 1 above would show balanced capacity 
if all work centres from 1 to 6 had the capacity of 3 units.  In some plants, with highly 
variable product mix, balanced production line decreases potential throughput and 
increases costs – contrary to its original intent. 

One of the most strategic question, for any manufacturing operation, that needs to 
be answered is – where should we strategically position our constraint resource?  
Sometimes, before resolving this dilemma, it helps to define where we do not want the 
drum/constraint to be positioned. By definition, non-bottlenecks must have excess 
capacity. Normally, we will need at least 20% excess capacity at non-constraints to keep 
the system stable. This is called a PROTECTIVE capacity. Anything above is Excess, 
and often should be eliminated (good use of Lean Manufacturing techniques to deal 
with “Muda”). 

Market availability of resources to acquire, their price, strategic fit are some of the 
factors that may help you answer the question where and where not to locate your 
constraint or non-constraint. You certainly do not want your protective capacity to be 
difficult to find or expensive to buy. Therefore, most probably you want the drum 
resource to be the more expensive one to get or the hardest to find.  You quickly realize 
that it is the resource that represents your core competence or the reason why you built 
your business. 

Unlike a commonplace definition of inventory buffer, the DBR system Buffer is 
articulated in the units of time.  DBR system buffer is the amount of work expressed 
in time (hours, days, etc.) before the constraint work centre. The rope mechanism 
controls the amount of work released to the flow stream by choking its introduction 
according to the buffer size.  By collecting a buffer of work to in front of the constraint 
machine, we can guarantee the constraint does not starve and never stops. In any given 
flow stream, the drum is the only machine where maximized (100%) utilization is 
desirable and beneficial to the system performance. 

Buffer’s main objective is to mitigate variability of the system. In a traditional Drum 
Buffer Rope system there are 2 buffers – one protecting the constraint and one for the 
entire system (flow stream). The role of constraint buffer (before the constraint) is to 
protect the constraint itself while the system buffer protects the shipping/due date. 
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All buffers (time and inventory) are divided into three main zones. Colours red, 
yellow and green designate main buffer sections. In the FMS system two more colours 
indicate a stock out (black) and too much inventory (blue) - above and beyond its target 
size indicated by top of the green zone.  

Mentioned earlier, the target 20% protective capacity is just a starting point. 
In order to define what is the optimum level of protective capacity, you need to collect 
time buffer statistics data. When the buffer’s red zone gets penetrated more than 5% to 
10% of the time, you will need to create additional protective capacity at least at one if 
not more non-constraint resources. In case you do not experience any red zone 
penetrations, your level of protective capacity is most probably excessive, and you can 
successfully reduce the buffer size (its duration) generating new improvement 
opportunities. In general, the more variability in the system, the more protective 
capacity you need.  Applying Six Sigma and Lean Manufacturing (Raj and Attri, 2010) 
techniques can greatly help create process stability within the DBR framework 
(Mithun et al., 20202; Albliwi , 2014; Alhuraish, 2017).  

Figure 1 above shows the first buffer (constraint time buffer) buffering the 
Drum/Constraint  from the variability of upstream resources. Generating this buffer 
statistics will help size capacity requirements of resources 1 and 2.  Recording daily 
reasons for buffer penetration into red will enable you to determine which machine will 
need additional protective capacity. 

The second buffer (system buffer) is buffering the shipping schedule 
(due date).  The main reason for the system buffer is to absorb the overall system 
variability – especially after the drum resource. Any order commit date is always an 
estimate and often wrong because of embedded system variability. Therefore, we need 
a mechanism that will allow us to mitigate variability impact and provide ability to 
determine capacity requirements for all flow stream resources. The system buffer allows 
us to accomplish these objectives. 

Accomplishing the above objectives is critical especially from the perspective of 
ensuring protective capacity and avoiding the wondering bottleneck phenomenon. 
Not being able to successfully manage this sometimes delicate balance will lower your 
system overall Throughput. 

Required protective capacity could be gained by applying lean manufacturing tools 
like set-up reduction techniques, using Statistical Process Control (SPC) to control 
process variability, staggering lunch and other breaks, creating cross functional/trained 
production teams or by simply buying more capacity if necessary. However, in order to 
maximize business profitability, creating protective capacity where needed and 
increasing effective drum capacity without spending money is preferred. 

DBR approach is an integral part of FMS and is a prerequisite to enable 
a Continuous Improvement process in the plant. 
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3. Drive continuous improvement process based on the main reasons the 
Drum schedule is not achieved 

One of the main assumptions made in this study is that there is a need to develop a 
universal method thanks to which it would be possible to design production processes 
in such a way that they are carried out in the most effective manner taking into account 
the high profitability rate of the type of conducted activity. FMS creates a Continuous 
Improvement process that uses Pareto Diagrams comprised of reasons hindering the 
flow through the plant. It prioritizes plant-wide improvement opportunities and 
reduces system variability in a quick and systematic way (Figure 2 below). The Flow 
Issue Reporting (FIR) Pareto contains all reported reasons why the schedule attainment 
was not possible on every scheduled shift.  The issues may include mechanical 
breakdowns, but also shortages, quality, longer than expected set-ups, absenteeism, 
material handling, etc. It is critical that FIR process is clearly communicated, enforced 
and reviewed at the end of every shift across the plant. 

 

 

 

 

 

 

Figure 2.  Flow Issue Reporting Process 
Source: Own work. 

Once the FIR process is in place and improvement opportunities are known, Lean 
Thinking and Six Sigma principles and tools are used to remove obstacles and create 
operational improvements (Antony and Banuelas, 2002; Costa et al., 2017). Continuous 
Improvement team (Kaizen team) meets on a regular basis (often weekly) and decides 
when and where Lean Thinking and 6 Sigma tools are applied based on the Pareto 
information. Based on FIR driven priorities, plant performance drastically improves, 
throughput goes up, service levels increase, and productivity and revenue are 
maximized. 

Once plant performance is stabilized, by breaking dependence (inventory buffers) 
and having FIR based continuous improvement process in place to reduce process and 
flow variability, the business is in a much better position to turn its improvement focus 
towards increasing business profitability through changing product profitability 
decisions. 
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4. Base key market, customer and product profitability decisions on the 
Throughput Economics approach 

Cost-per-unit, the world’s most popular analysis process, is a devastating and 
flawed paradigm of traditional business decision-making. Regardless, many 
organizations still attempt to align their understanding of profitable markets/products 
with their manufacturing operation’s performance using this approach. The cost-per-
unit approach supports a simple process for decision-making as it allows managers to 
use the concept of gross margin or contribution margin to evaluate business 
opportunities. That is what makes it very popular. However, many managers are aware 
of the potential distortions and shortcomings of the cost-per-unit approach. 

As an example of product profitability decisions consider a company that produces 
only 2 products: A and B (shown below – Figure 3).  It is a 24hr operation, with a labour 
cost of $10/hr and Operating Expenses of $5,000 per week.   
 Product A is produced from Raw Materials costing $14 per unit.  This product 

must be processed on Machine 1, Machine 3 and a Final Assembly operation at 
the rates specified below. Product A is sold at a price of $50 each and its demand 
is 100 units per week. 

 Product B is produced from Raw Materials costing $12 per unit and requires 
Machine 1, Machine 2 and the Final Assembly at the rates also specified below. 
Product B is sold for $60 each and its demand is 50 units per week. 

 

 

 

 7 x 24 hr Operation 
 Labour Cost - $10 / hr 
 Operating Expenses - $5,000 / week 

 

 

 

 

 

 

Figure 3.  Product Profitability Example 
Source: Own work 

A ($50) 
100/wk 

Assembly  
1 hr 

M 3 
1.5 hr 

M 1 
1 hr 

Raw Mat.  
($14) 

B ($60) 
50/wk 

Assembly 
0.5 hr

M 2 
1 hr 

M 1 
2 hr 

Raw Mat.  
($12) 
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Table 1. Profit Margin Analysis 

 
Source: Own work. 

Which product makes more money for the company?  Profit Margin (Sales less 
Material Costs less Labour) Analysis shown in Table 1 above clearly demonstrates that 
Product B with a profit margin of $13/unit is the most profitable product (overhead 
allocations were omitted to simplify the discussion).  

However, in order to judge how to maximize profitability of this company, we first 
have to decide which product to prioritize in production, since we do not have enough 
machine capacity to satisfy the market demand for both products (168 hours available 
per week in a 7x24 operation vs. 200 hours of M 1 required to produce both A and B – 
see Table 2 below).   

Table 2. Machine Capacity Analysis 

 
Source: Own work. 

The business logic suggests that in order to maximize business profitability we 
should first produce the product with the highest Profit Margin (Product B) and then 
use the remaining capacity for the other product (Product A). In order to demonstrate 
the profit impact on the company overall, we need to calculate the net profit associated 
with producing all B and some A. Since the demand for B is 50 units per week, we need 
100 hours (50 x 2 hours) of production capacity for B, leaving only 68 hours open for 
Product A.  This scenario leads to the company generating $4,848 of Material Margin 
($ Throughput) every week as demonstrated in the Table 3 below. 

Table 3. Material Margin Analysis (prioritize B) 

 
Source: Own work. 

A B

Price ($) 50.0            60.0           

Material ($) 14.0            12.0           

Production Time (hr) 3.5              3.5             

Labour Cost / hr 10.0            10.0           

Material Margin ($) 36.0            48.0           

Production Cost ($) 35.0            35.0           

Profit Margin ($) 1.0              13.0           

Demand 

(pcs)

M 1  

(hr)

M 2  

(hr)

M 3  

(hr)

Assembly 

(hr)

Total (hr)

A 100 100 150 100 350

B 50 100 50 25 175

Total 200 50 150 125 525

Demand 

(pcs)

M 1  

(hr)

M 2  

(hr)

M 3  

(hr)

Assembly 

(hr)

Price/pc 

($)

Revenue 

($)

Material 

($)

Throughput 

($)

A 68 68 102 68 50.0        3,400.0    952.0     2,448.0      

B 50 100 50 25 60.0        3,000.0    600.0     2,400.0      

Total 168 50 102 93 6,400.0    1,552.0  4,848.0      
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Considering that Operating Expenses for the company are $5,000 per week the 
resulting business Net Profit is negative $152.  This means that maximizing production 
of the highest Profit Margin Product (B) and satisfying its full demand of 50 units per 
week will lead to a weekly profit loss of $152. 

Another interesting question in front of us is to find out what the business 
profitability would look like if we decided to prioritize product A – the product with 
a substantially lower profit margin. Under this scenario we can satisfy the entire 
demand for product A (100 pcs) and dedicate the rest of M1 capacity to product B 
production. Based on 68 hrs. available we can only produce 34 pcs of product B 
(2hrs per piece on M1). This scenario leads to the company generating $5,232 of 
Material Margin every week as demonstrated in the Table 4 below. 

Table 4. Material Margin Analysis (prioritize A) 

 
Source: Own work. 

 
Considering that Operating Expenses for the company are $5,000 per week the 

resulting business Net Profit is positive $232.  This means that maximizing production 
of the lowest Profit Margin Product (A) and satisfying its full demand of 100 units per 
week will lead to a weekly profit gain of $232. 

How is this possible? Did not the decision to focus on the product with a lower 
profit / contribution margin just lead to the company generating more net profit?  What 
is going on here? In this example, we have decided to challenge the widely held belief 
that contribution margin of a product is the best indication of a company’s profitability. 
In most situations it is not. In fact, Contribution and/or Profit Margin is a totally 
arbitrary and completely misleading indicator. 

 
This conclusion has very large implications on several important sales and 

marketing decisions, such as: which markets to focus on, which business to accept, how 
to develop new products that maximize profit, and with which customers to further 
develop long term relationships.   

The profitability of a product, and its associated impact on the net profit of 
a business, cannot and should not be measured using profit margin. Therefore, what is 
an acceptable substitute? 

Demand 

(pcs)

M 1  

(hr)

M 2  

(hr)

M 3  

(hr)

Assembly 

(hr)

Price/pc 

($)

Revenue 

($)

Material 

($)

Throughput 

($)

A 100 100 150 100 50 zł 5,000 zł 1,400 zł 3,600 zł

B 34 68 34 17 60 zł 2,040 zł 408 zł 1,632 zł

Total 168 34 150 117 7,040 zł 1,808 zł 5,232 zł
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FMS uses an alternative approach to understand relative product and market 
profitability – a Throughput Economics (TE) based approach. Using the same example, 
we can clearly establish that Machine 1 sets the pace for the entire operation and should 
be considered a critical resource/drum (i.e. it has the least capacity).  Profitability is best 
determined by calculating the rate of dollar contribution of each product on this critical 
resource as explained in the DBR section. This is measured by taking the difference 
between a product’s sales price and its totally variable cost (mainly raw materials) and 
dividing it by the production rate on the critical resource – Table 5 below. 

Table 5. Throughput Velocity 

 
Source: Own work. 

 
In all instances, this measurement of product profitability is perfectly aligned with 

a business’ net profit – higher TV for Product A and higher net profit impact.   
The TE-based approach with its Throughput Velocity (TV) indicator, 

has significant implications on plant performance, market focus, pricing evaluation and 
new product development strategies. Manufacturing businesses need to understand 
their products’ Throughput Velocity (TV) if they are to maximize profit in these 
challenging times.  Using profit margin analysis to accept or reject new business will 
unavoidably lead to too many wrong decisions – allowing your competitors to take 
more of your business.   

Some of the strategic questions the new process answers include: 
 Which market segments are the most profitable? 
 Which products make the company the most profit? 
 Is it truly possible for some products to lose money? 
 How should investment and make vs. buy decisions be analysed? 
 At what price should we accept an order? 
 How to align your operating costs and plant capacity with market demand? 
 On what products to focus its R&D effort? 

 
 

A B

Price ($) 50.0            60.0           

Material ($) 14.0            12.0           

Throughout ($) 36.0            48.0           

Drum production time (hr) 1.0              2.0             

Throughout Velocity ($/hr) 36.0            24.0           

Profit Margin ($) 1.0              13.0           
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5. Summary and conclusions 

The presented arguments and examples of comparing the results achievable under 
‘new’ and ‘old’ approaches, prove the sense of replacing the classic profit margin-based 
strategy by an approach to profitability based on calculating the rate of dollar 
contribution of each product on this critical resource, as it was explained in the DBR 
section. Since Contribution and/or Profit Margin is a totally arbitrary and completely 
misleading indicator, the new approach which takes into account the difference 
between a product's sales price and its totally variable cost (and dividing it by the 
production rate on the critical resource) seems to provide a tool needed to deal with 
several problems concerning plant performance, market focus, pricing evaluation and 
new product development strategies. 

 
Using the four key components of FMS, organizations can significantly improve 

operational and financial performance. Most companies that successfully implement 
FMS obtain the following benefits: 
 Improved flow and reduced operating costs because of their new 

TOC/Constraints’ Management scheduling tools. 
 Increased sales from pricing decisions driven by 80/20 TE-based methodology. 
 Released working capital by improved inventory turns as a result of DDR. 
 Maximized throughput from a stable plant protected from system variability by 

the DBR-based operations management approach. 
 Increased shareholder value. 

 
In addition, financial benefits often include: 
 Throughput/Sales increase of 20%-30%. 
 Inventory reduction of up to 50%. 
 Lead time reduction of approximately 50%. 
 On time delivery improvement up to 99%. 
 EBITDA percent of sales increase by approximately 10%. 

 
The application of the discussed solution is not free from the costs incurred by the 

entrepreneur in the initial period of implementation. Nevertheless, the financial effects 
related to the implementation of the assumptions of the production management 
system referred to in the article are disproportionately high compared to the 
expenditure incurred, which has been repeatedly checked in implementation 
in business in Poland, Canada and many other countries around the world.  

 



206                                                                    P. Zawada et al.: Flow management system for maximising… 

 

 

References 

ANTONY, J., BANUELAS, R., (2002). Key ingredients for the effective implementation 
of Six Sigma program, Measuring Business Excellence, 6(4). 

ALBLIWI, S., ANTONY, J., LIM, S., VAN DER WIELE, T., (2014). Critical failure 
factors of lean Six Sigma: A systematic literature review, International Journal of 
Quality and Reliability Management, 31(9). 

ALHURAISH, I., ROBLEDO, CH., KOBI, A., (2017). A comparative exploration of lean 
manufacturing and six sigma in terms of their critical success factors, Journal of 
Cleaner Production 164/2017. 

BABICEANU, R., SEKER, R., (2016). Big Data and virtualization for manufacturing 
cyberphysical systems: a survey of the current status and future outlook, Computers 
in Industry 81/2016. 

COSTA, T., SILVA, F. J. G., PINTO FERREIRA, L., (2017). Improve the extrusion 
process in tire production using Six Sigma methodology, Procedia Manufacturing 
13/2017. 

DE FREITAS, J., COSTA, H., FERRAZ, F., (2017). Impacts of Lean Six Sigma over 
organizational sustainability: A survey study, Journal of Cleaner Production 
156/2017. 

MASON, S., NICOLAY, C., DARZI, A., (2015). The use of Lean and Six Sigma 
methodologies in surgery: A systematic review, The Surgeon 13/2015, 

MITHUN ALI, S., HOSSEN, A., MAHTAB, Z., KABIR, G., KUMAR, S., ADNAN, Z., 
(2020). Barriers to lean six sigma implementation in the supply chain: An ISM 
model, Computers & Industrial Engineering 149/2020. 

RAJ, T., ATTRI, R., (2010). Quantifying barriers to implementing Total Quality 
Management (TQM), European Journal of Industrial Engineering 4(3)/2010. 



STATISTICS IN TRANSITION new series, December 2020 
Vol. 21, No. 5, pp. 207–211, 
 

About the Authors 

Adebola Femi Barnabas, PhD, is a Fellow at Royal Statistical Society (RSS), UK. He is 
currently an Associate Professor of Statistics at the Department of Statistics, Federal 
University of Technology, Akure, where he served as the pioneer Postgraduate 
Coordinator and later Head of Department. His major research interest includes 
sample survey design and its applications, population and health studies. He has 
graduated many Masters’ degree and PhD students. He has over 30 articles published 
both at national and international peer-review journals and conferences to his credit. 
He is currently the Head of Sample Survey and its Applications Research Team. 
Adediran Adetola Adedamola is an assistant lecturer at the Department of Statistics, 
Federal University of Technology, Akure, Nigeria. Her research interest lies in survey 
sampling techniques, design and analysis of experiments. She is an emerging scholar, 
who has published both in national and international peer-review journals and 
conferences. 
Agiwal Varun is working as a statistician and lecturer in the Department of 
Community Medicine, Jawaharlal Medical College, Ajmer, India. He has published 
15 research papers in national and international peer-reviewed journals. His main area 
of interest includes linear and non-linear time series, distribution theory and Bayesian 
inference. 
Almetwally Ehab M. is an assistant lecturer at the Faculty of Business Administration, 
Delta University for Science and Technology. He is a PhD student at the faculty of 
graduate studies for statistical research, Cairo University, Egypt. He earned an MSc 
degree in Statistics in 2019 from the faculty of graduate studies for statistical research − 
Cairo University. He got a bachelor of statistics in 2016 from the faculty of commerce 
at Zagazig University. He has published over 40 research papers in international/national 
journals and conferences. His research interests are in the areas of distributions, 
Bayesian statistics, statistical inference, bivariate distributions, censoring samples, 
ranked set samples and R statistical package. 
Arshad Rana Muhammad Imran is currently an Assistant Professor in the 
Department of Statistics, Govt. S.E College Bahawalpur, Pakistan. He has recently 
received a PhD from IUB under the supervision of Dr. M. H. Tahir. He has eight 
publications in his credit. 



208                                                                                                                                     About the Authors 

 

 

Bwanakare Second is an Associate Professor at the faculty of Management of the 
University of Information Technology and Management in Rzeszow, Poland. He is an 
associate researcher at the RIME lab (University of Lille) and a consultant 
in methodology and analysis at the Statistical Office in Rzeszow. He has belonged to the 
Corpus of international experts at the Polish Accreditation Committee since 2013. He 
is also a member of ISI and FENS (Poland). His research interests focus on 
econometrics and statistics and, in particular, the non-extensive entropy econometrics 
approach and its generalization to non-linear complex systems. He is the author of two 
monographs and many articles in international journals.   
Chesneau Christophe is currently an Assistant Professor in the Department of 
Mathematics, LMNO, University of Caen Normandie, France. He received PhD in the 
field of applied mathematics with a speciality in statistics, at LPMA, University Paris 6, 
France. He is working in the areas of statistical inference, nonparametric statistics, 
integer-valued time series and data analysis. He has over one hundred publications 
in his credit. 
Cierpiał-Wolan Marek is an Assistant Professor at the Department of Quantitative 
Methods, Institute of Economics and Finance, University of Rzeszow. Moreover, he is 
the Director of the Statistical Office in Rzeszow. Editor-in-Chief of the scientific journal 
The Polish Statistician. Author of about 90 national and international publications 
including journals and monographs. Manager and expert in international research 
projects. Organizer and active participant of numerous scientific conferences. 
Domański Czesław is a Full Professor at the Department of Statistical Methods, Faculty 
of Economics and Sociology, University of Lodz. His research interests are: tests based 
on runs theory and order statistics, (multivariate) normality tests and non-classical 
methods of statistical inference. Currently, he is a member of the Scientific Statistical 
Council of the President of Statistics Poland, main council of the Polish Statistical 
Association and Committee on Statistics and Econometrics at the Polish Academy of 
Sciences. 
Duda Jarosław is an Assistant Professor at the Institute of Computer Science, Faculty 
of Mathematics and Computer Science, Jagiellonian University in Cracow. He has 
education in computer science (PhD), physics (PhD) and mathematics (MSc). He is 
known from introducing Asymmetric Numeral Systems, which are used in products of 
e.g. Apple, Facebook and Google. His main areas of interest include information theory, 
statistical modelling and machine learning. 
Ewemooje Olusegun Sunday, PhD, is a lecturer at the Department of Statistics, Federal 
University of Technology, Akure, Nigeria, and also a Graduate Statistician at Royal 
Statistical Society (RSS), UK. He is currently a Statistical Consultant; Project and Client 
Manager with Statistics Without Borders (SWB). He was a Postdoctoral Research 



STATISTICS IN TRANSITION new series, December 2020  

 

209

Fellow at the Population and Health Research Entity, North-West University 
(Mafikeng Campus), South Africa. His research interest includes sample survey designs 
and applications, health and population studies, demography and environmental 
statistics. He has published many articles both in national and international peer-review 
journals and conferences.  
Gurgul Henryk is a Professor at the AGH University of Science and Technology 
in Krakow. His research is focused on financial econometrics, economic growth, 
macroeconomics and multisectoral input-output models. He has been a visiting 
professor or lecturer at universities in Austria, Finland, Germany, Italy, Spain and 
Slovenia. He is an active member of editorial boards of international journals: Central 
European Journal of Operations Research, Managing Global Transiotion and 
international scientific societies, including the International Statistical Institute 
(Elected Member). Professor Gurgul is a scientific secretary of the Economic 
Commission of the Kraków Branch of the Polish Academy of Arts and Sciences (PAU) 
and a member of the Presidium of Commission for Economics and Statistics of the 
Krakow Branch of the Polish Academy of Sciences (PAN).  
Haj Ahmad Hanan A. received her PhD degree in 2009 from University of Jordan, 
in Mathematical Statistics. She worked as an Assistant Professor in the Mathematics 
Department in Hail University in Saudi Arabia from 2009 until 2019. Now, she works 
in King Faisal University in Basic science department (Saudi Arabia). Her research 
interests are in the distribution theory, goodness of fit, statistical inference and 
censoring samples. She did several research papers and participated in virtual 
conferences and recently has been acting as a visiting professor at the Diponegoro 
University in Indonesia. 
Jamal Farrukh is currently an Assistant Professor in the Department of Statistics, the 
Islamia University of Bahawalpur (IUB), Punjab. He worked as a lecturer 
in Government S.A. postgraduate College in 2012 to 2020, and a statistical officer in the 
Agriculture Department from 2007 to 2012. He received MSc and MPhil degrees 
in Statistics from the Islamia University of Bahawalpur (IU), Pakistan in 2003 and 2006. 
He received a PhD from IUB under the supervision of Dr. M. H. Tahir. He has 
118 publications in his credit. 
Kumar Jitendra is working as an Associate Professor in the Department of Statistics, 
Central University of Rajasthan, Bandersindri, Ajmer, India. Before joining Central 
University of Rajasthan, involved in CUB, Patna, IDRBT, Hyderabad and SHIAU, 
Allahabad. His area of interest is time series, outliers, crime statistics, policy process 
reengineering and big data. 
Niwitpong Suparat is an Associate Professor at the Department of Applied Statistics, 
Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, 



210                                                                                                                                     About the Authors 

 

 

Thailand. Her main areas of interest include: confidence interval, Bayesian method and 
prediction interval of parameter of interest. 
Okrasa Włodzimierz is a Professor and a Head of the Research Methods and 
Evaluation Unit at the Institute of Sociology, Cardinal Stefan Wyszynski University 
(UKSW). He serves as an Advisor to the President of Statistics Poland and an  
Editor-in-Chief of the Statistics in Transition new series. He was teaching and 
researching in Polish and American universities and was an ASA Senior Research 
Fellow at the US Bureau of Labor Statistics (1990−1991), a Program Director in the 
Social Science Research Council, NY (1991−1993), and then worked for the World 
Bank in Washington, DC (1994−2000), analysing poverty and implementing new 
household surveys in several ‘countries in transition’. He next headed the Social 
Sciences Unit at the European Science Foundation (2000−2003, in Strasbourg). Elected 
member of the International Statistical Institute. Author of numerous publications, 
including books and articles in reputed international journals. 
Prasad Shakti is an Assistant Professor at the Department of Basic and Applied Science 
(Maths) in National Institute of Technology, Arunachal Pradesh, India. His research 
interests are sample surveys, statistical inference and missing data analysis. He has 
published over twenty research papers in the reputed international/national journals 
and conferences. 
Shangodoyin Dahud Kehinde, is a Professor at the Department of Statistics, University 
of Botswan. His area of interest is data mining in health, population, education and 
agriculture, econometrics, Bayesian modelling, multivariate analysis and time series 
analysis. 
Syrek Robert (PhD) is an Assistant Professor at the Institute of Economics, Finance 
and Management, Faculty of Management and Social Communication at the 
Jagiellonian University in Cracow. His main areas of interest include: time series 
analysis and forecasting, financial econometrics and modelling the dependence 
structures of financial time series (especially using copula functions).   
Szczepocki Piotr is an Assistant Professor at the Department of Statistical Methods, 
Faculty of Economics and Sociology, University of Lodz. His main areas of interest 
include Sequential Monte Carlo methods and volatility modelling. 
Tahir Muhammad Hussain is currently a Professor of Statistics at the Islamia 
University of Bahawalpur (IUB), Pakistan. He received MSc and PhD in Statistics in 
1990 and 2010 from IUB. He has been teaching in the Department of Statistics (IUB) 
since 1992. His current research interests include generalized classes of distributions 
and their special models, compounded and cure rate models. Dr. Tahir has supervised 
over 60 MPhil students, supervising five PhD students and has over 70 international 
publications in his credit. 



STATISTICS IN TRANSITION new series, December 2020  

 

211

Thangjai Warisa is a lecturer at the Department of Statistics, Faculty of Science, 
Ramkhamhaeng University, Thailand. She is working on confidence intervals for 
parameter of interest. 
Warchalowski Jack is the CEO of CMS Montera, a North American technology 
company, helping manufacturers improve operations and inventory by providing TOC 
software and contract services. Prior to CMS, he was the head of operations for a high-
tech manufacturer, Ernst & Young management consultant, and a project engineer 
with Babcock & Wilcox. He holds an MBA degree from the Wilfrid Laurier University, 
Canada and a Bachelor of Applied Science in Mechanical Engineering from the 
University of Waterloo, Canada.  He is an active member and a frequent speaker in 
many industry associations. 
Wywiał Janusz L. is a Full Professor of Economics with a specialization in Statistics and 
Econometrics. He is the head of the Department of Statistics, Econometrics and 
Mathematics in University of Economics in Katowice. Professor Wywiał’s interests are 
focused on survey sampling, sampling designs and schemes, testing statistical 
hypotheses, applications of statistics in financial auditing and econometric prediction. 
Professor Wywiał has published over 110 research papers in national and international 
journals. He has also published eight monographs and nine textbooks. He is a member 
of scientific professional bodies. 
Zawada Piotr is a University Professor of Sociology. His research interests are social 
economy, innovation management, organizational sociology, human resource 
management. Professor Zawada has published 68 research papers in international/national 
journals and conferences. He has also published five books/monographs. Professor 
Zawada is an active member of cluster organizations. He is also a PARP . He is 
professionally associated with the Rzeszów Regional Development Agency, where he 
carries out international and social economy projects 



 



STATISTICS IN TRANSITION new series, December 2020 
Vol. 21, No. 5, pp. 213–216, 
 

Acknowledgements to Reviewers 

The Editor and Editorial Board of the Statistics in Transition new series wish to thank 
the following persons who served from 1 December 2019 to 30 November 2020 as peer-
reviewers of manuscripts for the Statistics in Transition new series – Volume 21, 
Numbers 1–5, including the Special Issue Number 4; the authors` work has benefited 
from their feedback. 
 
Abdullah Norli Anida, University of Malaya, Malaysia 
Adegoke Nurudeen, Federal University of Technology Akure, Nigeria 
Alkasadi Najla, University of Aden, Yemen 
Almongy Hisham Mohamed, Mansoura University, Egypt,  
Andrzejczak Karol, Poznan University of Technology, Poland 
Bayoud Husam, Fahad Bin Sultan University–Tabuk, Saudi Arabia 
Beaumont Jean-François, Statistics Canada, Canada 
Beck Krzysztof, Lazarski University, Poland 
Bhoughal Sunil, University of Jammu, India  
Bouza Carlos, Universidad de La Habana, Cuba  
Böhning Dankmar, Southampton Statistical Sciences Research Institute, University of 

Southampton, United Kingdom 
Chaudhuri Arijit, Indian Statistical Institute, Kolkata, India 
Chaudhuri Sanjay, National University of Singapore, Singapore 
Chesneau Christophe, University of Caen, France 
Chudziak Jacek, University of Rzeszów, Poland 
de Waal Ton, Tilburg University, The Netherlands 
Dehnel Grażyna, University of Economics and Business, Poland 
Dihidar Kajal, Indian Statistical Institute, Kolkata, India 
Domański Czesław, University of Lodz, Poland 
Donehower Gretchen, University of California at Berkeley, the USA 
Drechsler Jörg, Institute for Employment Research in Nürnberg, Germany 



214                                                                                                              Acknowledgements to Reviewers 

 

 

Echaust Krzysztof, Poznań University of Economics and Business, Poland 
Eftekharian Abbas, University of Hormozgan, Iran 
Ercan İlker, Uludag University, Turkey 
Filip Dariusz, University of Cardinal Stefan Wyszyński in Warsaw, Poland 
Gadde Srinivasa Rao, School of Mathematical Sciences, The University of Dodoma, 

Tanzania 
Giusti Catherina, University of Pisa, Italy 
Ganczarek-Gamrot Alicja, University of Economics in Katowice, Poland 
Gerasymenko Sergiy, University in Poznań & WSB University in Chorzów, Poland 
Gurgul Henryk, AGH University of Science and Technology, Poland 
Hadaś-Dyduch Monika, University of Economics in Katowice, Poland 
Hall Michael, University of New Zealand, New Zealand 
Hušková Marie, Charles University in Prague, Czech Republic 
Jajuga Krzysztof, University of Economics, Wroclaw, Poland 
Jamal Farrukh, Govt. S.A Postgraduate College Dera Nawab Sahib, Pakistan 
Jankiewicz Jacek, Poznan University of Economics and Bussines, Poland 
Jibrin Sanusi Alhaji, Kano University of Science and Technology, Nigeria 
Jurek Witold, University of Technology, Poland 
Kalton Graham, Westat, USA 
Khan Jahangir Sabbir, Aligarh Muslim University, India 
Klein Ingo, Friedrich-Alexander-University of Erlangen-Nürnberg, Germany 
Koç Haydar, Çankırı Karatekin University, Turkey 
Kogut-Jaworska Małgorzata, University of Szczecin, Poland 
Komornicki Tomasz, Polish Academy of Sciences, Poland 
Kończak Grzegorz, University of Economics in Katowice, Poland 
Kordalska Aleksandra, Gdansk University of Technology, Poland 
Kovtun Natalia, Taras Shevchenko National University of Kyiv, Ukraine 
Kowalczyk Barbara, Warsaw School of Economics, Poland 
Kozłowski Arkadiusz, University of Gdansk, Poland 
Krzyśko Mirosław, The President Stanisław Wojciechowski State University 

of Applied Sciences in Kalisz, Poland 
Kubacki Jan, Statistical Office in Łódź, Poland 



STATISTICS IN TRANSITION new series, December 2020  

 

215

Kumar Dubey Manoj, Central University of Haryana, India 
Kurkiewicz Jolanta, Cracow University of Economics, Poland 
Lahiri Partha, Maryland Population Research Center, University of Maryland, USA 
Larsen Michael D., Saint Michael’s College, USA 
Lehtonen Risto, University of Helsinki, Finland 
Little Roderick J. A., University of Michigan, USA 
Longford Nicholas, Imperial College London, United Kingdom 
Majsterek Michał, University of Lodz, Poland 
Markowicz Iwona, University of Szczecin, Poland 
Mas Ivars Matilde, Universitat de València, Spain 
Młodak Andrzej, The President Stanisław Wojciechowski State University of Applied 

Sciences in Kalisz, Poland 
Münnich Ralf, Trier University, Germany 
Najman Krzysztof, University of Gdansk, Poland 
Oguz-Alper Melike, Statistics Norway, Norway 
Ozel Gamze, Department of Statistics, Hacettepe University, Ankara, Turkey,  
Okrasa Włodzimierz, University of Cardinal Stefan Wyszyński in Warsaw & Statistics 

Poland, Poland 
Pazienza Pasquale, University of Foggia, Italy  
Pekasiewicz Dorota, University of Lodz, Poland 
Prášková Zuzana, Department of Probability and Mathematical Statistics, Czech 

Republic 
Ranalli Maria Giovanna, University of Perugia, Italy 
Rossa Agnieszka, University of Lodz, Poland 
Rozkrut Dominik, President of Statistics Poland, Poland 
Sachlas Athanasios, University of Piraeus & National and Kapodistrian University of 

Athens, Greece 
Shanker Rama, Assam University, Silchar, India 
Sharma Dinesh K., University of Maryland Eastern Shore, USA 
Sharma Prayas, University of Petroleum & Energy Studies | UPES, India 
Shukla Kamlesh Kumar, Mainefhi College of Science, Asmara, Eritrea 
Singh Lakhan, HNBG University, India 



216                                                                                                              Acknowledgements to Reviewers 

 

 

Souza Luciano, Universidade Federal Rural de Pernambuco, Brazil 
Spreeuw Jaap, Cass Business School, City, University of London, United Kingdom 
Szreder Mirosław, University of Gdansk, Poland 
Szymkowiak Marcin, Poznań University of Economics and Business, Poland  
Tahir Muhammad Hussain, The Islamia University of Bahawalpur, Pakistan 
Tarczyński Waldemar, University of Szczecin, Poland 
Traat Imbi, University of Tartu, Estonia,  
Vance Eric, University of Colorado Boulder, USA  
Veen Duco, Utrecht University, The Netherlands 
Voskoboynikov Ilya B., National Research University Higher School of Economics, 

Russia 
Wywiał Janusz, University of Economics in Katowice, Poland 
Yousof Haitham, Benha University, Egyp 
Zamanezade Ehsan, University of  Isahan, Iran 
Zeghdoudi Halim, Badji-Mokhtar University, Algieria 
Zeman Kryštof, Austrian Academy of Sciences, Austria 
 
 



STATISTICS IN TRANSITION new series, December 2020 
Vol. 21, No. 5, pp. 217–222, 
 

Index of Authors, Volume 21, 2020 

Abd Elghaffar A.M, see under Hassan A. S. 

Abdollahnezhad K., see under Marganpoor S. H. 

Abu Bakar M.A., see under Alhyasat K.  

Abuzaid Ali H., Detection of outliers in univariate circular data by means 
of the Outlier Local Factor  

Adebola F. B., see under Adediran A. A. 

Adediran A. A., Unbiased estimator modelling in unrelated dichotomous randomized 
response 

Adepoju A. A., Change Point Detection in CO2 Emission-Energy Consumption Nexus 
using Recursive Bayesian Algorithm 

Agiwal V., A Bayesian Analysis of complete multiple breaks in panel autoregressive 
(CMB-PAR(1)) Time Series Model 

Alabid A., see under Hurairah A. 

Alam M. J., Applying data synthesis for longitudinal business data across three 
countries 

Alhyasat K., Power size biased two-parameter Akash distribution and its application 
to glass of the aircraft windows 

Alizadeh M., see under Marganpoor S. H. 

Almetwally E. M., A New Generalization of the Pareto Distribution and its 
Applications 

Al-Jararha J., Horvitz-Thompson estimator based on the auxiliary variable 

Al-Omari A., see under Alhyasat K. 

Arshad R. M. I., The Gamma Kumaraswamy-G family of distributions: 
Theory, Inference and Applications 

Assar S. M., see under Hassan A. S. 

Awe O. O., see under Adepoju A. A.  



218                                                                                                                                     Index of Authors 

 

 

Balgobin Nandram, see under Yin J. 

Bera S., High dimensional, robust, unsupervised record linkage 

Błażej M., see under Kotlewski D. 

Bondaruk T., see under Osaulenko O. 

Bonnery D., An evaluation of design-based properties of different composite estimators 

Burgard J. P., A generic business process model for conducting microsimulation studies 

Bwanakare S., Predicting Polish Transport Industry Equilibrium Characteristics as an 
Inverse Problem: An Entropy Econometrics Model 

Cai S., Effective transformation-based variable selection under two-fold subarea models 
in small area estimation 

Chatrchi G., see under Cai S.  

Chatterjee S., see under Bera S. 

Chaudhuri A., see under Pal S.  

Cheng Y., see under Bonnery D.  

Chesneau Ch., see under Arshad R. M. I.  

Chwila A., On the choice of the number of Monte Carlo iterations and bootstrap 
replicates in empirical best prediction 

Cierpiał-Wolan M., see under Bwanakare S. 

Dehnel G., Robust estimation of wages of small enterprises: the application to Poland’s 
districts 

Di Consiglio L., A comparison of area level and unit level small area models in the 
presence of linkage errors 

Dieckmann H., see under Burgard J. P. 

Domański Cz., Comparison of some tests for unvariate normality based on measures 
of the moments 

Dostie B., see under Alam M. J. 

Drechsler J., see under Alam M. J.  

Duda J., Modelling Bid-Ask spread conditional distributions using hierarchical 
correlation reconstruction 



STATISTICS IN TRANSITION new series, December 2020  

 

219

Dumitrescu L., see under Cai S.  

Eideh A., Parametric Prediction of Finite Population Total under Informative 
Sampling and Nonignorable Nonresponse 

Ewemooje O.S., see under Adediran A. A.  

Gershunskaya J., Discussion  

Ghosh M., Small area estimation: its evolution in five decades; & Rejoinder 

Gurgul H., see under Duda J. 

Haj Ahmad H. A., see under Almetwally E. M. 

Han Y., Discussion 

Hassan A. S, Statistical Properties And Estimation Of Power Transmuted Inverse 
Rayleigh Distribution 

Hurairah A., Beta transmuted Lomax distribution with applications 

Ibrahim K., see under Alhyasat K. 

Jamal F., see under Arshad R. M. I. 

Jan T.R., see under Para B. A. 

Just M., see under Łuczak A. 

Kedem B., see under Zhang X. 

Kotlewski D., Development of KLEMS accounting implemented in Poland 

Krause J., see under Burgard J. P. 

Krzyśko M., Measurig and testing mutual dependence of multivariate functional data 

Kumar J., see under Agiwal J. 

Lahiri P., Preface & A general Bayesian approach to meet different inferential goals 
in poverty research for small areas & see under Bonnery D. 

Leśkow J., see under Urbański S.  

Li Y., Discussion  

Łuczak A., Positional MEF-TOPSIS method in the assessment of the development level 
of complex economic phenomena for territorial units 

Marganpoor S. H., Generalized odd Frechet family of distributions: properties 
and applications 



220                                                                                                                                     Index of Authors 

 

 

Marszałek M., The unobserved economy - invisible production in households. 
The household production satellite account and the national time transfer accounts  

Merkle H., see under Burgard J. P. 

Molina I., Discussion  

Momotiuk L., see under Osaulenko O. 

Motoryn R.,  Asymmetry of foreign trade turnover in Ukraine and Poland 

Moura F. A. S., see under Neves A. F. A.  

Münnich R., see under Burgard J.P. 

Neufang K. M., see under Burgard J.P. 

Neves A. F. A., Skew normal small area time models for the Brazilian annual service 
sector survey 

Newhouse D., Discussion  

Niwitpong Suparat, see under Thangjai W. 

Okrasa W., see under Zawada P. 

Osaulenko O., Ukraine’s State Regulation of the Economic Development of Territories 
in the Context of Budgetary Decentralization 

Pal S., How privacy may be protected in optional randomized response surveys 

Palma A., see under Rossa A. 

Para B.A., Poisson weighted Ishita distribution: model for analysis of over-dispersed 
medical count data 

Patra D., see under Pal S. 

Pfeffermann D., Discussion  

Prasad Sh., Some linear regression type ratio exponential estimators for estimating 
the population mean based on quartile deviation and deciles 

Prykhodko K., see under Motoryn R. 

Pyne S., see under Zhang X. 

Rai P. K., Alternative approach for moments of order statistics from weibull 
distribution 

Ranjbar V., see under Marganpoor S. H. 



STATISTICS IN TRANSITION new series, December 2020  

 

221

Rao J. N. K., Discussion; see under Cai S. 

Rossa A., Predicting parity progression ratios for young women by the end of their 
childbearing life 

Saegusa T., Confidence bands for a distribution function with merged data from 
multiple sources 

Schmaus S., see under Burgard J. P. 

Silva D. B. N., see under Neves A. F. A. 

Singh S. K., see under Yadav A. S. 

Singh U., see under Yadav A. S. 

Sirohi A., see under Rai P. K. 

Shangodoyin D. K., see under Agiwal V.  

Shanker R., A new quasi Sujatha distribution 

Shukla K. K., see under Shanker R. 

Smaga Ł., see under Krzyśko M. 

Sulaiman M., see under Al-Jararha J. 

Suntornchost J., see under Lahiri P. 

Syrek R., see under Duda J. 

Szczepocki P., Application of iterated filtering to stochastic volatility models based 
on non-Gaussian Ornstein-Uhlenbeck process & see under Domański Cz. 

Ślusarczyk B., see under Motoryn R. 

Tahir M. H., see under Arshad R. M. I. 

Tailor R., see under Yaday R. 

Thangjai Warisa,  Comparing Particulate Matter Dispersion in Thailand using 
the Bayesian Confidence Intervals for Ratio of Coefficients of Variation 

Tharshan R., A comparison study on a new five-parameter generalized Lindley 
distribution with its sub-models 

Tuoto T., see under Di Consiglio L. 

Urbański S., Using the ICAPM to estimate the capital cost of stock portfolios: empirical 
evidence on the Warsaw stock exchange   



222                                                                                                                                     Index of Authors 

 

 

Vilhuber L., see under Alam M. J. 

Warchalowski J., see under Zawada P. 

Wawrowski Ł., see under Dehnel G. 

Wijekoon P., A comparison study on a new five-parameter generalized Lindley 
distribution with its sub-models 

Wójcik S., With a random route to goal: theoretical background and application 
in tourism survey in Poland 

Wywiał J. L., Estimating the Population Mean using a continuous Sampling Design 
Dependent on an Auxiliary Variable 

Yadav A. S., Statistical properties and different estimation methods for weighted 
inverted Rayleigh distribution 

Yaday R., Estimation of Finite Population Mean using two auxiliary variables under 
stratified Random Sampling 

Yin J., A Bayesian Small Area Model with Dirichlet processes on the responses 

Safari-Katesari H., Count copula regression model using generalized beta distribution 
of the second kind 

Zaman T., New family of exponential estimators for the finite population mean 

Zaroudi S., see under Safari-Katesari H. 

Zawada P., Flow management system for maximising business revenue 
and profitability 

Zhang X., Model selection in radon data fusion 

Żądło T., see under Chwila A. 

 



 

GUIDELINES  FOR  AUTHORS 
 

We will consider only original work for publication in the Journal, i.e. a submitted paper must 
not have been published before or be under consideration for publication elsewhere. Authors should 
consistently follow all specifications below when preparing their manuscripts.  

Manuscript preparation and formatting 
The Authors are asked to use A Simple Manuscript Template (Word or LaTeX) for the Statistics 

in Transition Journal (published on our web page: http://stat.gov.pl/en/sit-en/editorial-sit/).  

 Title and Author(s). The title should appear at the beginning of the paper, followed by each 
author’s name, institutional affiliation and email address. Centre the title in BOLD CAPITALS. 
Centre the author(s)’s name(s). The authors’ affiliation(s) and email address(es) should be given 
in a footnote.  

 Abstract. After the authors’ details, leave a blank line and centre the word Abstract (in bold), leave 
a blank line and include an abstract (i.e. a summary of the paper) of no more than  
1,600 characters (including spaces). It is advisable to make the abstract informative, accurate, non-
evaluative, and coherent, as most researchers read the abstract either in their search for the main 
result or as a basis for deciding whether or not to read the paper itself. The abstract should be self-
contained, i.e. bibliographic citations and mathematical expressions should be avoided.  

 Key words. After the abstract, Key words (in bold) should be followed by three to four key words 
or brief phrases, preferably other than used in the title of the paper. 

 Sectioning. The paper should be divided into sections, and into subsections and smaller divisions 
as needed. Section titles should be in bold and left-justified, and numbered  
with 1., 2., 3., etc.  

 Figures and tables. In general, use only tables or figures (charts, graphs) that are essential. Tables 
and figures should be included within the body of the paper, not at the end. Among other things, 
this style dictates that the title for a table is placed above the table, while the title for a figure is 
placed below the graph or chart. If you do use tables, charts or graphs, choose a format that is 
economical in space. If needed, modify charts and graphs so that they use colours and patterns 
that are contrasting or distinct enough to be discernible in shades of grey when printed without 
colour. 

 References. Each listed reference item should be cited in the text, and each text citation should be 
listed in the References. Referencing should be formatted after the Harvard Chicago System – see 
http://www.libweb.anglia.ac.uk/referencing/harvard.htm. When creating the list of bibliographic 
items, list all items in alphabetical order. References in the text should be cited with authors’ name 
and the year of publication. If part of a reference is cited, indicate this after the reference, e.g. 
(Novak, 2003, p.125). 


	
	Introduction
	Tests for Normality
	The D'Agostino–Pearson K2 test
	The Jarque–Bera test
	The Urzùa test
	The Doornik–Hansen test
	The Gel–Gastwirth test
	The Bontemps-Meddahi tests
	The Hosking test
	The Brys-Hubert-Struyf & Bonett-Seier test
	Desgagnéa and Lafaye de Micheaux test

	Simulation study
	Conclusions


