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Estimating the population mean using a continuous
sampling design dependent on an auxiliary variable

Janusz L. Wywiał 1

ABSTRACT

Continuous distribution of variables under study and auxiliary variables are considered. The
purpose of the paper is to estimate the mean of the variable under study using a sampling
design which is dependent on the observation of a continuous auxiliary variable in the whole
population. Auxiliary variable values observed in this population allow to estimate the in-
clusion density function of the sampling design. The variance of the continuous version of
the Horvitz-Thompson estimator under the proposed sampling design is compared with the
variance of the mean of a simple random sample. The accuracy of the estimation strategies
is analysed by means of simulation experiments.

Key words: continuous sampling design, Horvits-Thompson estimator, inclusion density,
sampling scheme, bivariate gamma distribution, ratio estimator.

1. Introduction

Survey sampling theory is well developed for inference based on a finite and fixed popu-
lation, where the variable under study as well as auxiliary variables are non-random (see,
e.g. Särndal, Swenson, Wretman (1992) and Tillé (2006)). The estimation of population
parameters is based on a sampling design defined as functions of auxiliary variable values
observed in the whole population.

In this paper, the auxiliary variable is also treated as random. We assume that the con-
tinuous distribution function of the variable under study and the auxiliary variable (denoted
by X and Y respectively) is known, or can be estimated. Values of X and Y are observed
on the whole population of size N and in the sample respectively. For instance, the joint
distribution of these two variables can be suggested by economic theory. Tax registers are
an example of auxiliary variable observation in the whole population.

Another example deals with application of statistics in auditing. Book values of account-
ing documents are inspected (audited) in order to assess the true values of the documents.
Calculating the mean of the true values is one of the purposes of auditing. We can consider
joint continuous distribution of the book values and the true values of the documents. The
book values can be treated as observations of X throughout the population of the documents,
while values of Y are observations of the variable under study. Our aim is to estimate the
mean of Y based on a sample selected according to a sampling design dependent on X . For
example, Frost and Tamura (1986) and Wywiał (2018) considered gamma distribution for
modelling book values in statistical auditing.
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Benhenni and Cambanis (1992) and Thompson (1997) considered continuous sampling
for Monte Carlo integration. Some continuous sampling designs were studied in Ba̧k (2014,
2018), Wilhelm, Tillé and Qualité (2017), and Wywiał (2016). The efficiency of estima-
tion of parameters based on stratified and systematic samples was studied by, e.g. Cressie
(1993) and Zubrzycki (1958). A sampling design dependent on the positively valued contin-
uous auxiliary variable proposed by Cox and Snell (1979) was applied to financial auditing.
The continuous sampling designs and inclusion density functions were defined by Cordy
(1993), who also adapted the well-known Horvitz-Thompson (1952) estimator to estimate
parameters. This paper draws on these two sources. In Section 2.1, the properties of the
Horvitz-Thompson statistic for the continuous sampling design are presented. Next, in Sec-
tion 2.2, these properties are generalized to the joint distribution of Y and X . A continuous
sampling design with inclusion function proportional to the density function of the auxil-
iary variable is considered in the third chapter. In the fourth chapter, the main results of the
paper are used to construct the estimation strategies under the assumption that the sample
was drawn from the continuous population defined by bivariate gamma distribution. The
accuracy of these strategies is studied using simulation analysis. In the last chapter, the
main conclusions are formulated.

2. Horvitz-Thompson statistic from sample selected according to con-
tinuous sampling design

2.1. Basic results

This section has been prepared according to Cordy (1993) results. Let the population
U ⊂ Rq, q = 1,2, .... To simplify our analysis we assume that q = 1. The sample space,
denoted by Sn = Un, is the set of ordered samples denoted by y = (y1, ...,yn), yk ∈ U ,
k = 1, ...,n, where yi is the outcome of the variable observed in the first draw. Let y
be a value of the n-dimensional random variable Y = (Y1, ...,Yn) with density function
f (y) = f (y1, ...,yn). Let fi(y) and fi, j(y,y′), y ∈U , y′ ∈U , be marginal density functions of
Yi and (Yi,Yj) respectively, j > i = 1, ...,n. The inclusion functions of the first order and the
second order are defined respectively as follows:

π(y) =
n

∑
i=1

fi(y), π(y,y′) =
n

∑
i=1

n

∑
j=1, j 6=i

fi, j(y,y′), y ∈U,y′ ∈U (1)

and
∫

U π(y)dy = n,
∫

U
∫

U π(y,y′)dydy′ = n(n−1).

Let f (yi|yi−1,yi−2, ...,y1), i = 1, ...,n−1 be the conditional density function of the ran-
domly selected yi value in the i-th draw (provided that the values (yi−1,yi−2, ...,y1) were
drawn earlier). Therefore, the density function of the sampling design can be written as
follows:

f (yn, ...,yi,yi−1, ...,y1) = f (y1)
n

∏
i=2

f (yi|yi−1,yi−2, ...,y1) (2)
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Let g(y) be an integrable function g : U → R. We estimate the following parameter:

θ =
∫

U
g(y)dy. (3)

The continuous version of the well-known Horvitz and Thompson (1952) estimator is:

TY =
n

∑
i=1

g(Yi)

π(Yi)
(4)

T heorem 2.1. [Cordy (1993)] The statistic TY is an unbiased estimator for θ , if the
function g(y) is either bounded or non-negative, and π(y)> 0 for each y ∈U .

T heorem 2.2 [Cordy (1993)] If the function g(y) is bounded, π(y) > 0 for each y ∈U ,
and

∫
U (1/π(y))dy < ∞, then

V (TY) =
∫

U

g2(y)
π(y)

dy+
∫

U

∫
U

g(y)g(y′)
π(y,y′)−π(y)π(y′)

π(y)π(y′)
dydy′ =

=
∫

U

g2(y)
π(y)

dy+
∫

U

∫
U

g(y)g(y′)
π(y,y′)

π(y)π(y′)
dydy′−θ

2. (5)

When, in addition, π(yi,y j) > 0 for all yi,y j ∈U , i 6= j = 1, ...,n, an unbiased estimator of
the variance in (5) is:

V̂ (TY) =
n

∑
i=1

g2(Yi)

π2(Yi)
+

n

∑
i=1

n

∑
j=1,i6= j

g(Yi)g(Yj)
π(Yi,Yj)−π(Yi)π(Yj)

π(Yi,Yj)π(Yi)π(Yj)

In particular, when h(y) is a density function and g(y) = η(y)h(y), then θ = E(η(Y )). Of
course if η(y) = y, then θ = E(Y ).

When Y1, . . . ,Yn is a random sample from a distribution with density f (y), then the
density function of the sampling design defined by (2) and its inclusion functions become
as follows:

f (y1, ...,yn) =
n

∏
i=1

f (yi), π(y) = n f (y), π(y,y′) = n(n−1) f (y) f (y′). (6)

This allows us to transform expressions (4) and (5) as follows:

TY =
1
n

n

∑
i=1

η(Yi)h(Yi)

f (Yi)
, E(TY) = θ , (7)

V (TY) =
1
n

(∫
U

η2(y)h2(y)
f (y)

dy−θ
2
)
=

=
1
n

(
E
(

η2(Y )h2(Y )
f 2(Y )

)
−E2

(
η(Y )h(Y )

f (Y )

))
=

1
n

V
(

η(Y )h(Y )
f (Y )

)
. (8)
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Sampling design f (yn, ...,y1), given by (6) provides what is known as the importance sample
considered, e.g. by Bucklew (2004) and Ripley (1987). When the importance sample is
drawn from density h(y), then it becomes the well-known simple random sample defined
as the sequence of independent and identically distributed random variable (see e.g. Wilks
(1962)) and θ = E(Y ) = µy is estimated by means of the following statistic:

TY = Ȳ =
1
n

n

∑
i=1

Yi, V (TY ) =V (Ȳ ) =
1
n

V (Y ) (9)

where V (Y ) =
∫

∞

−∞
(y−E(Y ))2 f (y)dy.

2.2. Estimation using auxiliary variable

Let h(x,y), (x,y) ∈ U ⊆ R2, be the density function. The marginal densities are: h1(x)
and h2(y). h(y|x) = h(x,y)/h1(x) is the conditional density. Moreover, µy = E(Y ) =∫ −∞

−∞
yh2(y)dy, µx = E(X) =

∫ −∞

−∞
xh1(x)dx, E(Y |x) =

∫ −∞

−∞
yh(y|x)dy, V (Y |x) =

∫ −∞

−∞
(y−

E(Y |x))2h(y|x)dy. Our purpose is estimation of parameter θ , given by (3) where

g(x) = E(η(Y )|x)h1(x) = h1(x)
∫

∞

−∞

η(y)h(y|x)dy.

We set η(y) = y. Therefore:

g(x) = E(Y |x)h1(x) = h1(x)
∫

∞

−∞

yh(y|x)dy. (10)

In this case:

θ = µy =
∫

∞

−∞

E(Y |x)h1(x)dx =
∫

∞

−∞

∫
∞

−∞

yh(y|x)h1(x)dxdy. (11)

Parameter µy is estimated by means of the following statistic:

TX,Y =
n

∑
i=1

Yih1(Xi)

π(Xi)
(12)

where {Xi, i = 1, ..,n} is the sample drawn according to sampling design defined by expres-
sion (2) and yi should be replaced by xi. Let us assume that:

h(y|x) = h(y1, ...,yn|x1, ...,xn) =
n

∏
i=1

h(yi|xi) (13)

T heorem 2.3 If E(Y ) < ∞ and π(x) > 0 for all (x,y) ∈U and assumption (13) holds,
then Ef(X)Eh(Y/X) (TX,Y) = µy.

Proof: When in (4) we replace g(Yi) with g(Xi), given by (10), then Theorem 2.1 let us
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write

Ef(X)

(
n

∑
i=1

g(Xi)

π(Xi)

)
= Ef(X)

(
n

∑
i=1

Eh(Y/X)(Yi)h1(Xi)

π(Xi)

)
= Ef(X)Eh(Y/X) (TX,Y) .

This derivation shows that Theorem 2.3 is a special case of Theorem 2.1.

T heorem 2.4 If the function E(Y ) is bounded, π(y)> 0 for each (x,y) ∈U ,
and

∫
U (1/π(y))dy < ∞, then

V (TX,Y) =
∫

U

V (Y |x)h2
1(x)

π(x)
dx+

∫
U

E2(Y |x)h2
1(x)

π(x)
dx+A (14)

where

A =
∫

U

∫
U

E(Y |x)h1(x)E(Y |x′)h1(x′)
π(x,x′)−π(x)π(x′)

π(x)π(x′)
dxdx′

or

A =
∫

U

∫
U

E(Y |x)h1(x)E(Y |x′)h1(x′)
π(x,x′)

π(x)π(x′)
dxdx′−E2(Y ).

Proof: Adding Eh(Y/X)(TX,Y) to E f (X)Eh(Y/X)(TX,Y−µy)
2 we have:

V (TX,Y) = E f (X)Eh(Y/X)((TX,Y−Eh(Y/X)(TX,Y))+(Eh(Y/X)(TX,Y)−E(Y )))2 =

= E f (X)Eh(Y/X)

((
n

∑
i=1

Yi−Eh(Y/X)(Yi)h1(Xi)

π(Xi)

)
+(Eh(Y/X)(TX,Y)−µy)

)2

=

= E f (X)

(
n

∑
i=1

Vh(Y/X)(Yi)h2
1(Xi)

π2(Xi)

)
+E f (X)

(
n

∑
i=1

Eh(Y/X)(Yi)h1(Xi)

π(Xi)
−µy

)2

,

because Eh(Y/X)(Yi−Eh(Y/X)(Yi)) = 0 and Eh(Y/X)(Yi−Eh(Y/X)(Yi))
2 =VY/X(Yi). Continuing

the derivation we have:

V (TX,Y) =

= E f (X)

(
n

∑
i=1

V (Yi|Xi)h2
1(Xi)

π2(Xi)

)
+E f (X)

(
n

∑
i=1

E(Yi|Xi)h1(Xi)

π(Xi)
−µy

)2

. (15)

By setting V (Yi|Xi)h2
1(Xi)

π(Xi)
= g(Xi) Theorem 2.1 allows us to write the following:

E f (X)

(
n

∑
i=1

V (Yi|Xi)h2
1(Xi)

π2(Xi)

)
=
∫

U

V (Y |x)h2
1(x)

π(x)
dx. (16)
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Similarly, by setting E(Yi|Xi)h1(Xi) = g(Xi), the second term in (15) becomes:

E f (X)

(
n

∑
i=1

g(Xi)

π(Xi)
−µy

)2

=

= E f (X)

(
n

∑
i=1

g(Xi)

π(Xi)
−E f (X)

(
n

∑
i=1

g(Xi)

π(Xi)

))2

=Vf (X)

(
n

∑
i=1

g(Xi)

π(Xi)

)
. (17)

This, expression (16) and Theorem 2.2 lead straightforward to the conclusion of Theorem
2.4.

Similarly to expression (6) let us assume that

f (x1, ...,xn) =
n

∏
i=1

f (xi), π(x) = n f (x), π(x,x′) = n(n−1) f (x) f (x′). (18)

This, expression (17) and Theorem 2.4 lead to the following:

V (TX,Y) =
1
n

(∫
U

V (Y |x)h2
1(x)

f (x)
dx+

∫
U

E2(Y |x)h2
1(x)

f (x)
dx−E2(Y )

)
=

=
1
n

(
E f (X)

(
V (Y |X)h2

1(X)

f 2(X)

)
+Vf (X)

(
E(Y |X)h1(X)

f (X)

))
(19)

We estimate µy with the following sampling design:

f (x1, ...,xn) =
n

∏
i=1

h1(xi). (20)

Under additional assumption that E(Y |x) = ax where a = ρ

√
V (Y )
V (X) and ρ is the correlation

coefficient between X and Y then expressions (12) and (19) lead to the following:

TX,Y = Ȳ =
1
n

n

∑
i=1

Yi, E(Ȳ ) = µy, V (Ȳ ) =
V (Y )

n
(1+ρ

2) (21)

Hence, when ρ 6= 0, estimator TX,Y of the mean based on sampling design, given by (20) is
less accurate than the simple random sample mean.
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3. Inclusion function of sampling design proportional to values of aux-
iliary variable

3.1. Density function of the auxiliary variable is known

After Cox and Snell (1979), let us consider the following sampling design:

f (x1, ...,xn) =
n

∏
i=1

f (xi), f (xi) =
xih1(xi)

µx
. (22)

where µx = E(X) = E(Xi) for all i = 1, ...,n. In this case, according to (18) the inclusion
function is proportional to the value of the auxiliary variable because π(x) = nxh1(x)

µx
. Ex-

pression (12), (19), Theorems 2.3 and Theorem 2.4 lead to the following:

TX,Y = ŶR =
µx

n

n

∑
i=1

Yi

Xi
, E(ŶR) = µy, (23)

V (TX,Y) =
1
n

(
µx

∫
U

V (Y |x)h1(x)
x

dx+µx

∫
U

E2(Y |x)h1(x)
x

dx−µ
2
y

)
=

=
µx

n

∫
U

V (Y |x)h1(x)
x

dx+
µx

n
V
(

E(Y |x)
x

)
. (24)

Statistic ŶR is an unbiased ratio-type estimator of µy.
When parameter µx and other parameters of the auxiliary variable density function are

known, the sample can be select. The following sections address selection when these
parameters are estimated.

3.2. Estimated parameters of the auxiliary variable density function

The values x1, ...,xN of the auxiliary variable observed in whole population are regarded
as a random sample from a distribution with density h1(x,θ1, ...,θr). Let θ̂1...θ̂r and µ̂x be
consistent estimators of parameters θ1, ...,θr and µx respectively. According to expression
(22) we have the following density function of sampling design:

f̂ (x1, ...,xn) = f (x1, ...,xn, θ̂1...θ̂r) =
n

∏
i=1

f̂ (xi), f̂ (x) =
xh1(θ̂1...θ̂r)

µ̂x
. (25)

Estimation of parameters could be based on data observed, e.g. in the previous round of a
regularly conducted survey.

By replacing µx in eq. (23) with µ̂x we obtain the following estimator:

TX,Y = ỸR =
µ̂x

n

n

∑
i=1

Yi

Xi
. (26)
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where X1, ...,Xn is the sample drawn according to sampling design based on density f (x1, ...,xn,

θ̂1...θ̂r). The variance of ỸR could be estimated by means of the well-known parametric or
non-parametric method of bootstrap.

3.3. Kernel estimator of the auxiliary variable density function

Density function h1(x) can be estimated by means of the following well-known kernel-type
estimator on the basis of all observations of auxiliary variable in the population:

h̃1(x) =
1
N

N

∑
i=1

k(x,xi,∆),
∫

∞

−∞

k(x,xi,∆)dx = 1 (27)

where ∆ > 0 is the bandwidth parameter. This leads to the following estimator of f (x):

f̃ (x) =
xh̃1(x)

µ̃x
=

∑
N
i=1 xk(x,xi,∆)

Nµ̃x
(28)

where:
µ̃x =

∫
∞

−∞

xh̃1(x)dx (29)

is the estimator of µx.

Let us consider the following simple kernel function based on the uniform distribution:

k(x,xi,∆) =

{
1

2∆
, x ∈ [xi−∆;xi +∆],

0, x /∈ [xi−∆;xi +∆].
(30)

For this kernel function we have:∫
∞

−∞

xk(x,xi,∆)dx = xi for i = 1, ...N, and µ̃x = x̄ =
1
N

N

∑
i=1

xi. (31)

Expression (28) leads to the following:

f̃ (x) =
1

Nx̄

N

∑
i=1

xk(x,xi,∆) =
1

Nx̄

N

∑
i=1

xi f̃i(x,xi,∆) =
N

∑
i=1

wi f̃i(x,xi,∆) (32)

where: wi =
xi
Nx̄ , for i = 1, ...,N and

f̃i(x,xi,∆) =

{
x

2xi∆
, x ∈ [xi−∆;xi +∆],

0, x /∈ [xi−∆;xi +∆]
(33)

where f̃i(x,xi,∆) is the trapezoid density function of the probability distribution on interval
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[xi−∆;xi +∆]. After simplifications we have:

f̃ (x) =
1

2∆Nx̄

N

∑
i=1

xI(x,xi,∆) (34)

where:

I(x,xi,∆) =

{
1, x ∈ [xi−∆;xi +∆],

0, x /∈ [xi−∆;xi +∆].
(35)

Expressions (32) and (33) allows us to derive the following distribution function esti-
mator:

F̃(x) =
∫ x

−∞

f̃ (t)dt =
N

∑
i=1

wiF̃i(x,xi,∆) (36)

where: wi =
xi
Nx̄ , for i = 1, ...,N and

F̃i(x,xi,∆) =


0, x ∈ (−∞;xi−∆],
x2−(xi−∆)2

4xi∆
, x ∈ (xi−∆;xi +∆],

1, x ∈ [xi +∆;∞).

(37)

The inverse function to F̃i(x) (the quantile function), i = 1, ..,N, is as follows:

x = F̃−1
i (u) =

√
4xi∆u+(xi−∆)2, z ∈ [0;1] (38)

where u has uniform distribution on interval [0;1]. This allows us to easily generate the
pseudovalues of the trapezoid distribution on interval [xi−∆;xi +∆].

3.4. Sampling schemes

Let us assume that observations of x = [x1, ...,xk, ...,xN ] are known book values or they
are gathered from a census or surveys made on a previous occasion. Function h1(x) is
also known. Our purpose is to select sample xs = [x1, ...,xk, ...,xn] as the sub-vector of x
according to the sampling design defined by expression (22). In order to do this, values of
vector x′s = [x′1, ...,x

′
n] are generated by means of the quantile functions x′ = F−1(u), where

u is the value of the uniformly distributed variable on interval [0;1], F(x) =
∫ x
−∞

f (t)dt and
f (t) are given by (22). Elements of xs are selected from x according to

xk = arg min
j=1,...,N

|x j− x′k|. (39)

This algorithm could lead to a repetition of the elements in xs. If the algorithm yields a
sample with duplicate elements, the sample is rejected and the algorithm repeated until a
sample with no duplicates is obtained.

The next algorithm, which leads to drawing xs without repetition, is explained by ex-
pression:

xs = arg min
xs∈Xs

(xs−x′s)(xs−x′s)
T (40)
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where Xs consists of all n-element combinations selected without replacement from x. The
complete data d = [(x1,y1), ...,(xn,yn)] are evaluated after observation values y j, j = 1, ...,n
(observations of the variable under study) are attached to the appropriate elements of vector
xs. This algorithm becomes simpler when elements of x′s and x are ordered from the lowest
to highest.

The next variant of the sampling design is as follows. Let us note that the kernel density
function f̃ (x), defined by expression (32), could be treated as a mixture of density functions
f̃i(x), i = 1, ...,N given by (33). Therefore, the k-th element of vector x′s could be generated
as follows. Firstly, the value of index i is randomly (with probability wi) selected from the
sequence 1, ...,N. Next, the values x′k (k=1,...,n) are generated by means of the quantile
function, given by (36)-(38). Finally, the elements of vector xs could be selected according
to expression (39) or (40).

The complete data d = [(x1,y1)...(xn,yn)] are evaluated after observation values y j, j =
1, ...,n are attached to appropriate elements of vector x.

4. Estimation in the case of McKay’s bivariate gamma distribution

Suppose the random variables Ui have distributions with gamma densities

li(ui) = li(ui,θi,c) =
cθi

Γ(θi)
uθi−1

i e−cui (41)

where: ui > 0, c > 0, θi > 0, E(Ui) =
θi
c , V (Ui) =

θi
c2 , i = 0,1,01, θ01 = θ0 +θ1 and U01 =

U0 +U1 provided U0 and U1 are independent. θ and c are called the shape parameter and
the scale parameter respectively.

The McKay’s (1934) density function of joint probability distribution of X = U01 and
Y =U0 takes the following form (see also Ghirtis (1967) and Kotz et al. (2000)):

l(x,y) =
cθ01

Γ(θ0)Γ(θ1)
yθ0−1(x− y)θ1−1e−cx, x > y > 0. (42)

This could be useful with valuation of damage supported by declared observed data as
values of X . In this case µy is mean of the true valuation of damage.

According to expression (22), the sampling design density function is defined as follows:

f (x) =
x
µx

l01(x) (43)

where f (x) is also density function of gamma distribution with shape and scale parameters
equal to θ01 +1 and c respectively.

The conditional density function is:

l(y|x) = Γ(θ01)

Γ(θ0)Γ(θ1)
x−θ0yθ0−1

(
1− y

x

)θ1−1
, x > y.
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Its first two moments are:{
E(Y |x) = xE(U) = θ0x

θ01
,

V (Y |x) = E(Y 2|x)−E2(Y |x) = x2V (U) = θ0θ1x2

(θ01)2(θ01+1)

(44)

where U has the beta probability distribution with parameters θ0 and θ1.
Expressions (24) and (44) lead to the following:

V (ŶR) =
θ0

nc

((
θ1

θ01(θ01 +1)
+

θ0

θ01

)
E(X)− θ0

c

)
.

By substituting the expression θ01
c for E(X) we obtain:

V (ŶR) =
θ0θ1

nc2(θ01 +1)
=

1
n

µy(µx−µy)
γ2

x

1+ γ2
x
, γx =

σx

µx
.

Finally, we have:

V (ŶR) =
θ1

θ01 +1
V (Ȳ )<V (Ȳ ) =

θ0

nc2 . (45)

The variation coefficient of the estimator is as follows:

γ(ŶR) = 100%

√
V (ŶR)

µy
. (46)

The relative efficiency coefficient takes the following form:

de f f (ŶR) = 100%
V (ŶR)

V (Ȳ )
=

100%θ1

θ01 +1
< 100%. (47)

Hence, the estimator ŶR is more precise than Ȳ .
Parameters θ0 and c of the auxiliary variable can be estimated based on the observed data

x = [x1, ...,xN ]. The method of moments yields the following estimates of the parameters:

θ̂01 =
x̄2

v̂x
= γ̂

−2
x , θ̂0 = ỸR

x̄
v̂x
, θ̂1 =

(x̄− ỸR)x̄
v̂x

, ĉ =
x̄
v̂x

(48)

where

v̂x =
1

N−1

N

∑
k=1

(xk− x̄)2, x̄ =
1
N

N

∑
k=1

xk, γ̂x =
v̂x

x̄2 .

We estimate the density f (x) by

f̂ (x) =
x
x̄

l̂01(x, θ̂01, ĉ) (49)

which is the gamma density with parameters θ̂01+1 = x̄ĉ+1 and ĉ. The expectation µy can
be estimated using the statistic ỸR, given by (26).
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Owing to (45), the variance V (ŶR) can be estimated by means of the following statistic:

Ṽ (ỸR, f̂ (x)) =
1
n

ỸR(x̄− ỸR)
γ̂2

x

1+ γ̂2
x
. (50)

The variance could be estimated by means of the following non-parametric bootstrap
method. Firstly, the value of the estimator ŶR is evaluated based on the data observed in
the original sample D = [(Yj,X j) , j = 1, ...,n]. Bootstrap samples will be denoted by D(k) =[(

Y (k)
j ,X (k)

j

)
, j = 1, ...,n

]
, k = 1, ...,B which are independently drawn with replacement

from sample D. This leads to the following bootstrap-type estimators of variance:

V̂
(
ỸR
)
=

1
B−1

B

∑
k=1

(
Ỹ (k)

R − ỸR

)2
, Ỹ (k)

R =
x̄
n

n

∑
k=1

Y (k)
i

X (k)
i

(51)

or

V̂ ′
(
ỸR
)
=

1
B−1

B

∑
k=1

(
Ỹ (k)

R − ¯̃YR

)2
, ¯̃YR =

1
B

B

∑
k=1

Ỹ (k)
R . (52)

We set that B = 1000.

Example

Let us suppose that the population data are generated according to bivariate gamma distri-
bution defined by density l(x,y), given by (42). We estimate µy by two methods denoted
by (ỸR, f̃ (x)) and (ỸR, f̂ (x)), explained by expressions (32) and (49) respectively. They are
implemented in ”R” language.

First, the program draws random samples Di =
[
(Yj,X j)i , j = 1, ...,3000

]
, i = 1, ...,T

from McKay distribution. Next, the parameters of the inclusion density function are esti-
mated. This allows us to draw the samples D1i =

[
(Yj,X j)i , j = 1, ...,n

]
from Di and eval-

uate the values of Ỹ (i)
R of µy, i = 1, ...,T . This is replicated T = 1000-times. Results for

some alternative sample sizes and the gamma density function parameters are in columns
1-6 of Table 1. Under the assumed parameters of gamma distribution, the true values of
the variation coefficient and deff coefficient (given by expression (46) and (47) respectively)
have been calculated. They are presented in columns 7 and 8 respectively. In columns 10
and 12 there are values of the relative bias coefficients of the variance estimation, given by
the following expressions:

b2 = 100
Ṽ (ỸR, f̂ (x))
V̌ (ỸR, f̂ (x))

, b′2 = 100
¯̂V (ỸR, f̃ (x))
V̌ (ỸR, f̃ (x))

, ¯̂V (ỸR, f̃ (x)) =
1
T

T

∑
i=1

V̂i(ỸR, f̃ (x)) (53)

where V̂i(ỸR, f̃ (x)) explains the right side of equation (51) for the bootstrap samples: D(k)
1i =[(

Y (k)
j ,X (k)

j

)
i
, j = 1, ...,n

]
, k = 1, ...,B drawn from D1i, i = 1, ...T . In columns 9, 11 and
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13, there are the following estimated relative efficiency coefficients:

d = 100
V̌ (ỸR, f̂ (x))

V̌ (Ȳ )
, d′ = 100

V̌ (ỸR, f̃ (x))
V̌ (Ȳ )

, e = 100
V̌ (ỸR, f̃ (x))
V̌ (ỸR, f̂ (x))

(54)

where ỹR is given by (26) and:

V̌ (ỸR, .) =
1

T −1

T

∑
i=1

(
Ỹ (i)

R − ¯̃YR

)2
, ¯̃YR =

1
T −1

T

∑
i=1

Ỹ (i)
R (55)

are evaluated based on samples D1i, i = 1, ...T .

Table 1. Relative efficiency and bias of the estimation methods.
(ỸR, f̂ (x)) (ỸR, f̃ (x))

n θ1 θ0 c µy µx γ(ŶR) deff d b2 d′ b′2 e
1 2 3 4 5 6 7 8 9 10 11 12 13
30 1 10 1 10 11 1.7 8.3 8.3 93.7 9.0 82.8 97.1
60 1 10 1 10 11 1.2 8.3 9.4 89.0 10.5 72.5 102.3
150 1 10 1 10 11 0.8 8.3 11.5 65.9 13.4 59.2 109.6
60 1 10 0.01 1000 1100 1.2 8.3 8.3 90.1 10.8 74.7 110.1
60 3 10 0.01 1000 1300 1.9 21.4 24.0 99.9 22.1 94.0 85.9
60 10 3 0.01 300 1300 6.3 71.4 65.2 105.6 75.1 91.7 99.9

Source: Own calculations.

Statistic V̌ (Ȳ ) is evaluated by replacing ỸR with the sample mean in equation (55). The
relative efficiency coefficients in columns 9 and 10 deal with the case when the sample
is selected according to the inclusion density function defined by expression (49). The
coefficients from columns 11-12 are calculated based on the data from the sample drawn
according to the inclusion density function defined by expressions (32) and (33), where we
assumed that the bandwidth parameter ∆ =

√
v̂x. Moreover, in this case variance of ỸR is

estimated by means of the bootstrap method based on expression (51). In column 13, there
are values of the relative efficiency coefficient of the estimation methods (ỸR, f̂ (x)) and
(ỸR, f̃ (x)) denoted by e. This is evaluated based on expressions (54).

The simulation analysis allows us to calculate values of the relative bias coefficient of
the mean estimation defined by b1 = 100 ¯̃yR/µy. Its values for both considered estimation
methods oscillate between 98% and 101%. This confirms that both methods give unbiased
estimates of the expected value of the variable under study. Therefore, the values of the
coefficient b1 are not presented in Table 1.

Column 7 shows that in the case when θ1 > θ0, a value of the variation coefficient of ŶR

is larger then its value for θ1 < θ0. Column 8 allows us to conclude that the variance of the
estimator under the continuous sampling design equal to the modified density function of
the auxiliary variable has a lower value than the variance of the simple random sample mean.
Column 9 gives the relative efficiency coefficient value evaluated under the assumption that
the parameters of the inclusion density function are estimated. Values of this coefficient
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differ from appropriate values of deff by no more than 4.2%. This is the effect of variability
of the parameter estimators. Similarly (see column 11), the kernel-type estimator of the
inclusion density function leads to the higher (but not by more than 4.3%) values of d′ than
the appropriate values of deff.

The proposed estimators of the variances are quite significantly biased. Usually, they
underestimate the variances (see columns 10 and 12). The bias depends on the parameter
values of gamma distribution, and its level is not more than 11% of the true variance.

Efficiency of the two estimators is compared in the last column of Table 1. The relative
efficiency coefficient, given in expression (54), oscillates between 85.9% and 110.1%. The
estimators of the expected value have comparable accuracy. Both estimation methods are
unbiased. Their variances differ from each other by not more than 14.1%. However, the
method based on a kernel-type estimator of the inclusion density function is preferable
because it does not entail the assumption of bivariate gamma distribution.

5. Conclusion

This paper contributes to research on estimating of the mean value of the variable under
study using continuous sampling designs. The well-known properties of the conditional
distribution of the variable under study under an assumed value of the auxiliary variable
and results from Cordy (1993) allow us to construct the estimator of the mean of the vari-
able under study. It has been shown that this estimator is unbiased. The theorems presented
in this paper also deal with estimating parameters other than the mean. These results al-
low us to consider a particular (inspired by Cox and Snell (1979)) sampling design with
inclusion function dependent on the auxiliary variable. This provides a ratio-type estimator
of the mean value. Estimation of the inclusion density function by means of a kernel-type
estimator is also proposed. It does not need additional assumptions about density functions.
From the results of a simulation study, we conclude that the expected value can be estimated
more efficiently than by the sample mean.

Perhaps, additional studies could show, if the considered estimation method can be use-
ful in statistical applications like auditing, insurance problems, and analysis of joint distribu-
tions of income and expenditures. There are many possibilities for modifying the sampling
designs represented by continuous inclusion functions and their estimators. For instance,
other kernels can be applied. We could apply classical statistical inference procedures for
large sample sizes. All the considered estimators could be shown as sums of independent
identically distributed random variables. Therefore, the well-known asymptotic methods
of statistical inference could be used to constructions of confidence intervals and statistical
tests. Moreover, there are possibilities for applying well-known bootstrap techniques to test
statistical hypotheses or confidence interval estimation.
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