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ABSTRACT

While we would like to predict exact values, the information available, being incomplete,
is rarely sufficient - usually allowing only conditional probability distributions to be pre-
dicted. This article discusses hierarchical correlation reconstruction (HCR) methodology
for such a prediction using the example of bid-ask spreads (usually unavailable), but here
predicted from more accessible data like closing price, volume, high/low price and returns.
Using HCR methodology, as in copula theory, we first normalized marginal distributions
so that they were nearly uniform. Then we modelled joint densities as linear combinations
of orthonormal polynomials, obtaining their decomposition into mixed moments. Then we
modelled each moment of the predicted variable separately as a linear combination of mixed
moments of known variables using least squares linear regression. By combining these pre-
dicted moments, we obtained the predicted density as a polynomial, for which we can e.g.
calculate the expected value, but also the variance to determine the uncertainty of the pre-
diction, or we can use the entire distribution for, e.g. more accurate further calculations or
generating random values. 10-fold cross-validation log-likelihood tests were conducted for
22 DAX companies, leading to very accurate predictions, especially when individual models
were used for each company, as significant differences were found between their behaviours.
An additional advantage of using this methodology is that it is computationally inexpensive;
estimating and evaluating a model with hundreds of parameters and thousands of data points
by means of this methodology takes only a second on a computer.
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1. Introduction

Liquidity is one of the key measures of financial market quality. The notion liquidity de-
notes a desirable function that should reflect a well-organized financial market. By liquid
market we understand a market for which there exists a prompt and secure channel between
the supply and demand of assets accompanied by low transaction costs. Providing a rigor-
ous scientific definition of market liquidity happens to be a challenging aim. Liquidity is the
main index of the health of a given stock market and the condition of the associated invest-
ment industry, using funds from this stock market. It is clear that more active trading leads
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to lower trading costs, more intensive flows of information and more activity concerning the
relevant stocks displayed by potential investors. It is worth mentioning the role of specula-
tors who can significantly increase the liquidity of the market, but may not necessarily have
a positive impact on it.

In some recent contributions the definitions of market liquidity are based on the bid-
ask spread and an estimation of its components. However, the difference between bid and
ask quotes for an asset provides a liquidity measure with respect to a dealer market. Not
to a broker market. Nevertheless, it is possible to compute approximations that replicate
the difference between bid and ask quotes even in broker markets. Therefore, intradaily
measures of liquidity can describe the main feature of a market, such as the arrival of new
information in the hands of market participants. There are several definitions of liquidity. In
each study on liquidity the initial goal is to formulate a definition of liquidity and justify it.
The notion liquidity is related on the one hand to the transaction time - i.e. the duration of
transactions, and on the other to transaction costs, understood as the price paid by investors
for the supply of liquidity.

The common definition widely used by both researchers and market participants states
that an asset is liquid if it can be sold quickly at a minimal cost. This definition of liquidity
for a particular asset can be generalized for the whole market. A similar definition can also
be applied to the stock market as a whole. In this sense, a market is liquid if it is possible
to buy and sell assets at a minimal cost without a significant delay from the placement of
the order. When assessing the liquidity of the stock market, in relation to incurring the
lowest transaction costs, it is also important to take into consideration other elements than
the size of the spread, which affect the cost of concluding buy/sell transactions, such as
commissions and exchange fees; or taxation on capital gains; market volatility. However, in
this contribution we focus on the spread which reflects to some extent the listed factors.

In the literature different measures of asset liquidity are known. These measures of
liquidity take into account various alternative elements of the measurement approach. Some
measures focus on the trading volume while other indices are based on the execution-cost
relation of liquidity. The measures related to volume information reflect the price impact
of transactions. After combining them into scalar measures they denote the liquidity on the
whole market. However, the indices based on execution costs enable the properties of an
asset to be evaluated. This is possible by analyzing the cost paid to the market maker (dealer
or specialist) for matching the supply and demand.

The value added of this study is twofold. First of all, in order to find the characteristics
of the future bid-ask spread we use a new methodology that has not been used for a financial
time series before. Secondly, on the basis of empirical data from the German stock index
DAX we have confirmed the advantages of this approach.

The most important conclusions concerning liquidity are based on the bid-ask spread
and its variations. We aim to use our hierarchical correlation reconstruction (HCR) method-
ology in spread bid-ask description and forecasting. A more detailed outline of the advan-
tages of this new methodology is at the end of the next Section. The content of the paper
is organized as follows. In the next Section, the literature overview is presented. The third
Section includes data and methodology. In the fourth Section, the empirical results are
presented. The last Section provides conclusions.
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2. Literature review

The pioneer in estimation of bid-ask spread, most often used measure of liquidity, was Roll
Roll (1984). The model derived by Roll has been very useful tool of bid-ask description
since the mid-eighties. The followers tried to improve and extend this approach. In Roll’s
model the spread is approximated based on return autocovariance.

According to Butler et al. (2005), lower liquidity implies higher transaction costs if the
share capital increases. Moreover, a higher return on equity, or cost of equity, is expected.

Lesmond et al. (1999) belong to the first researchers who tested the quality of mea-
sures of stock liquidity. The contributors compared them based on different stocks. Bid-ask
spread was used as a benchmark measure. Armitage et al. (2014) in contribution based
on empirical data for Ukraine (2005-2006) found that the proportion of nontrading days,
the proportion of zero-return days, stock volatility, and measure of Amihud (2002) exhibit
high correlations with this spread. In conclusion the contributors stated that these indicators
are good enough to measure liquidity for Ukraine. The findings of Armitage et al. (2014)
regarding turnover are in line with those of Lesmond et al. (1999) for other emerging mar-
kets. In addition, they found that the proportion of zero-return days is a better measure for
emerging markets than for developed markets.

In their studies of the determinants of the cost of trading, Armitage et al. (2014), Stoll
(2000), Naik and Yadav (2003) and Gajewski and Gresse (2007) proved that the effective
bid-ask spreads mentioned above depend on stock liquidity. Stock liquidity was measured
by the number of non-trading days per year and the average number of trades per day. It
turned out that higher liquidity stocks had narrower bid-ask spreads, as assumed. In the
opinion of these and other scholars these effective spreads are related to the risk of the
stock. The last is measured by return volatility. The more risky stocks exhibit usually
wider bid-ask spreads. However, the opposite relationship between cost and trade size was
observed for dealership markets like the London Stock Exchange (LSE) and NASDAQ.
Some results are not consistent, e.g. on the basis of the data for the LSE, Reiss and Werner
(1996) demonstrated that larger trades (but not to large) receive better prices. However, for
unusually large orders this empirical observation is not true. Hansch et al. (1999) reported
that on the LSE the price rise in relation to this spread is smallest for small trades, larger for
medium-sized trades and largest for large ones. Huang and Stoll (1996) calculated that the
mean spread for small trades amounts to almost 20 cents but for large trades it is smaller
approximately by 30-35 percent. They discovered an asymmetry in the cost of trading
between buyer- and seller-initiated trades. In addition, the authors analysing the company
spreads on NYSE and NASDAQ in their paper, found out that spreads on NASDAQ are
higher than on NYSE.

Chan and Lakonishok (1993) claim that in a portfolio for sale the number of stocks is
limited. They try to convince the readers that the decision to sell must not convey negative
information. On the contrary, according to the authors purchases are usually implied by firm
specific information which is available.

Stoll (2000) conjectured that the spread depends on some factors related to a stock’s
liquidity and risk. On the basis of data from the USA, he performed a panel regression of
this spread using five determinants as explanatory variables, namely trading volume, the
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number of trades per day, free float, return variance and stock price. The models fit the data
well since all explanatory variables are significant and the determination coefficient is over
0.6.

Naik and Yadav (2003) conducted similar research and obtained interesting results for
the London Stock Exchange. Unfortunately, their results are not in line with later findings
reported in Gajewski and Gresse (2007), who used data from Euronext Paris and the Lon-
don Stock Exchange. As a new explanatory variable they included the imbalance between
purchase and sale orders. They established that trading volume, return variance, and or-
der imbalance were significant and exhibited the expected signs. However, free float, stock
price, and the number of trades per day turned out not to be significant.

In some research the bid-ask spread is used as a measure of stock market liquidity em-
ployed in market microstructure studies. In Christie and Schultz (1994); Huang and Stoll
(1996); Bessembinder (2003) the bid-ask spread is used to conduct inter-market compar-
isons of trading costs. The efficiency of rules and regulations aimed at reducing the cost of
trading can be proven by checking the rules and regulations and their impact on the bid-ask
spread.

In a more recent study Chen et al. (2017) proposed a non-parametric method to estimate
the spread on the basis of the Roll (1984)) model. A further development can be found in
Abdi and Ranaldo (2017), who incorporate the Corwin and Schultz (2012) model into the
Roll model to derive a new estimator.

In the next part of this paper we shall focus on scarce bid-ask spreads, predicted on
the basis of data which is more accessible, such as closing price, volume, high/low price,
returns. Very preliminary results of this paper are in unpublished working paper by Duda
et al. (2019).

In our calculations, we use hierarchical correlation reconstruction (HCR) methodology:
each moment of the predicted variable is independently modelled as a linear combination
of mixed moments of the variables used, then they are finally combined into the predicted
(conditional) probability distribution. A basic use of predicting the entire distribution is to
predict a value, e.g. as its expected value, additionally also estimating the uncertainty from
its variance. Another use may be to handle more sophisticated situations such as a binomial
distribution with two (or more) separate maxima: when predicting the expected value might
not be a good choice (it may have a much lower density), a better prediction might be, e.g.
one of the maxima, or may be both: providing a prediction as an alternative of two (or more)
possibilities.

We can also use the entire predicted density, e.g. for a more accurate additional calcu-
lation, estimating the quantiles, or generating random values. HCR methodology combines
the advantages of classical statistics and machine learning. While the former allows for
well controlled and interpretable but relatively small (rough) models/descriptions, machine
learning allows for very accurate descriptions using huge models, but usually lacks unique-
ness of solution, control and interpretability of coefficients, and often is computationally
costly. HCR allows one to work on huge models obtained from (unique) least-squares opti-
mization, using well interpretable coefficients: as mixed moments of variables, starting, e.g.
with moments of single variables and the correlation coefficients. The results for 22 DAX
companies seem to be promising, especially using individual models for each company. An
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additional advantage of this methodology is that it is computationally inexpensive; such
complex models for these data can be estimated and evaluated in a second.

3. Data set and basic concepts

This Section discusses the data set and reminds one of the standard concepts, to be used for
describing the methodology used in the next Section.

3.1. Data set and variables

Daily data for DAX companies from the 1999-2013 period were used (source in Acknowl-
edgment); they were selected as they have at least 2000 data points: Deutsche Telekom AG
(DTE), Daimler AG (DAI), SAP SE (SAP), Siemens AG (SIE), Deutsche Post AG (DPW),
Allianz SE (ALV), BMW AG St (BMW), Infineon Technologies AG (IFX), Volkswagen
AG Vz (VOW3), Fresenius SE & Co. KGaA (FRE), Henkel AG & Co. KGaA Vz (HNK3),
Continental (CON), Merck KGaA (MRK), Münchener Rück AG (MUV2), Deutsche Börse
AG (DB1), Deutsche Lufthansa AG (LHA), Fresenius Medical Care AG & Co. KGaA St
(FME), Deutsche Bank AG (DBK), Fresenius Medical Care AG & Co. KGaA St (HEI),
RWE AG St (RWE), Beiersdorf Aktiengesellschaft (BEI), Thyssenkrupp AG (TKA).

The basic set of variables is P - closing price, V - volume, R - return, H,L - high/low
price. However, it turned out that trying to exploit dependence on R and L alone did improve
evaluation, hence finally the basic model considered: ’123’ uses only P as ’1’-st variable,
V as ’2’-nd variable and normalized (H−L)/P as ’3’-rd variable. It might be worth noting
that the paper presents average spreads on the German stock market in question. This type
of data is also applied in the cited references.

3.2. Bid-ask spread and some of its standard predictors

Bid-ask spread is the difference between the lowest asking price (ask, offered by a seller)
and the highest bid price (bid, offered by a buyer). While this value is important because it
is a main measure of market quality (Mestel et al. (2018); Gurgul and Machno (2017)), this
information is usually publicly unavailable. Therefore, there is an interest in being able to
predict this value on the basis of other, more accessible data.

At this point, one can present an important account that the smaller the spread, the more
efficiently the market operates, and its liquidity understood by the volume of trading in
securities also increases indirectly (Roll (1984)).

We consider bid-ask spread as a standard measure of liquidity. More specifically, we
work on relative quoted spread, which is normalized by dividing by midpoint (ask+bid)/2:
S = ask−bid

(ask+bid)/2 .
Simple examples of its predictors based on the 5 basic variables are AMI (Amihud

(2002); Fong et al. (2017)), HLR (Bȩdowska-Sójka and Echaust (2019); Gurgul and Syrek
(2019)):

AMI = ln
(

1+
|R|

P ·V

)
HLR = 2

H−L
H +L

(1)
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They are intended for a simpler task than that discussed: to predict values, while here
we want to predict entire conditional probability distributions. We can reduce the predicted
probability distributions into predicted values, e.g. as the expected value, median, or po-
sitions of maxima (especially for multimodal distributions). Fig. 1 presents comparisons
using such predictions reduced with the expected value.

However, in practice such a prediction is often further processed through several func-
tions, generally E( f (X)) 6= f (E(X)) for nonlinear, hence it is more accurate to process
the probability distribution (e.g. on a lattice) through the functions before, e.g. taking the
expected value.

3.3. Normalization to nearly uniform marginal distributions

Like in copula theory, in HCR methodology it is convenient to initially normalize all vari-
ables to nearly uniform marginal distributions in [0,1], hence below we shall only work
on such normalized variables, which beside usually better prediction also allows for better
presentation of evaluation: e.g. density without prediction is 1, log-likelihood is 0.

This standard normalization requires estimation of the cumulative distribution function
(CDF), individually for each variable, and this CDF function to be applied to the original
values. Finally, having a prediction we can go back to the original variable using CDF−1,
for example as in the original Duda and Szulc (2018) article, although for simplicity we
omit this step here - working only on normalized variables. Also, AMI,HLR predictions
underwent such normalization for the purpose of Fig. 1 visual performance comparison -
which means that a perfect predictor would give a diagonal plot.

The empirical distribution function (EDF) was used for this normalization here: for each
variable its n observed values are sorted, then i-th value in such an order obtains (i−0.5)/n
normalized value. Hence, values become their estimated quantiles this way, a difference of
two normalized values describes the percentage of population between these two values.

Having predicted density for normalized variable, we can transform it to the original
variable, e.g. by discretizing this density to probability distribution on a {(i−0.5)/n}i=1,...,n

lattice, and assigning probability of its i-th position to i-th ordered original value. For sim-
plicity it is omitted in this article.

3.4. Evaluation: log-likelihood with 10-fold cross-validation

The most standard evaluation of probability distributions is log-likelihood as in ML esti-
mation: the average (natural) logarithm of the (predicted) density in the actually observed
value. Hence, we will use this evaluation here.

Working on variables normalized to ρ ≈ 1 marginal distributions, without prediction
they would have practically zero log-likelihood. This allows to imagine the gains from
predictions as an averaged improvement over this ρ ≈ 1, as in Fig. 2. For example, the best
observed log-likelihood ≈ 1 corresponds to ≈ exp(1) ≈ 2.7 density: 2.7 times as good as
without the prediction, the same as if we could squeeze a [0,1] range 2.7 times to a 0.37
wide range. Sorting the predicted densities into the actually observed values, we can obtain
additional information regarding the distribution of prediction, as presented in this Figure.
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Here, we predict the conditional density - denoted as ρ(Y = y|X = x) for the density of
Y predicted on the basis of the known value of X . Hence its evaluation can be seen as an
estimation of EXY (ln(ρ(Y |X)), which is minus conditional entropy −H(Y |X). While it is
unknown here, random variables have some concrete value of conditional entropy - we can

Figure 1: Comparison of spread predictors on data set for visual evaluation: a perfect pre-
dictor would give a diagonal scatter plot, a completely useless one would give a uniform dis-
tribution. All variables are normalized to nearly uniform marginal distributions, including
outcomes of standard methods: AMI, HLR. The following 3 columns use the expected val-
ues of predicted densities from the discussed ’123’ model (using P,V,(H−L)/P variables,
8 · 53 = 424 coefficients). The ”1 common” column uses one model for all, ”2 common”
groups companies into two subsets and uses one of two models (as in Fig. 7, using models
comL, comR from Fig. 6). The last column uses models individually optimized for each
company.
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Figure 2: Top: examples of predicted conditional densities. Bottom: evaluation of such a
prediction. While log-likelihood only provides averaged ln(ρ(yi|xi)), sorted ρ(yi|xi) values
are presented here, allowing to additionally see, e.g. how frequently such prediction is
below ρ = 1 threshold of using no prediction. Colours denote one of 10 rounds of 10-fold
cross-validation, visualizing dependence of randomly splitting into the training and test set.

hopefully try to approach it with better and better models.
Here, we are focusing on large models that use hundreds of coefficients, estimated from

thousands of data points. Hence we need to be careful not to overfit: represent only be-
haviour which indeed generalizes - is not just a statistical artefact of the training set. Ma-
chine learning also builds large models, usually evaluating them using cross-validation: a
randomly split data set into a training and test set, the training set is used to build the model,
then the test (or validation) set is used to evaluate this model.

However, this evaluation depends on the random splitting into the training and test set.
Standard 10-fold cross-validation is used here to weaken this random effect: the data set is
randomly split into 10 nearly equal size subsets, the evaluation is an average from 10 cross-
validations: using successive subsets as the test set and the remaining ones as the training
set. However, a scale ≈ 0.01 randomness of such an evaluation is still observed, hence for
log-likelihoods only two digits after the comma are presented.

4. The HCR-based methodology used

This Section discusses the methodology used, which is an expansion of the one used in
Duda and Szulc (2018). To predict conditional distribution ρ(Y |X) we decompose X and Y
variables into mixed moments and model separately each moment of Y using least-squares
linear regression of moments of X , then combine them into the predicted conditional prob-
ability distribution of Y .

4.1. Decomposing joint distribution into mixed moments

After normalizing the marginal distributions of all variables to nearly uniform on [0,1], for
d variables their joint distribution on [0,1]d would also be nearly uniform if they were sta-
tistically independent. Distortion from uniform joint distribution corresponds to statistical
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Figure 3: General concept, some first functions of the 1 and 2 dimensional basis of or-
thornormal polynomials used ( f j1 j2(x) = f j1(x1) f j2(x2)), and application example. For
simplicity we assume working on variables normalized to nearly uniform marginal densities
on [0,1]. We would like to model distortion from this uniform distribution for the predicted
variable Y on the basis of the context X : as a linear combination, e.g. of orthornormal poly-
nomials here, for which coefficients have similar interpretation as moments/cumulants: a1
shifts right/left like the expected value, a2 increases/decreases the probability of extreme
values as variance, etc.

dependencies between these variables - we would like to model and exploit it.

In HCR we model it as just a linear combination using an orthornormal basis, e.g. of
polynomials, which gives the coefficients a similar interpretation as moments and mixed
moments: the dependencies between moments for multiple variables. In Fig. 3 the general
concept of the HCR methodology is presented.

The first orthonormal (
∫ 1

0 fi(x) f j(x)dx = δi j) polynomials (rescaled Legendre) for [0,1]
are f0 = 1 and f1, f2, f3, f4 correspondingly (plotted in Fig. 3):
√

3(2x−1),
√

5(6x2−6x+1),
√

7(20x3−30x2+12x−1),3(70x4−140x3+90x2−20x+1)

We could alternatively use, e.g. 1,
√

2cos(πxk) for k ≥ 1 orthonormal basis. However,
experimentally this usually leads to inferior evaluation.

Decomposing density ρ(x) = ∑ j a j f j(x), we need a0 = 1 normalization to integrate to
1. Due to orthogonality,

∫ 1
0 f j(x)dx = 0 for j > 0, hence the following coefficients do not

affect normalization. As we can see in their plots in Fig. 3, positive a1 shifts density toward
right - acting analogously as the expected value. Positive a2 increases the probability of
extreme values at the cost of central values - analogously as variance. Skewness-like higher
order asymmetry is brought by a3 and so on - we can intuitively interpret these coefficients
as moments (cumulants). This is only an approximation, but useful for interpreting these
models.
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In multiple dimensions we can use the product basis:

f j(x) = f j1(x1) · . . . · f jd (xd) for j = ( j1, . . . , jd) (2)

leading to a model of joint distribution:

ρ(x) = ∑
j∈B

f j(x) = ∑
j∈B

a j f j1(x1) · . . . · f jd (xd) (3)

where B ⊂ Nd is the basis of the mixed moments we are using for our modelling. It is
required that it contains (0, . . . ,0) for normalization. Besides, there is freedom in choosing
this basis, which allows one to hierarchically decompose the statistical dependencies of
multiple variables into mixed moments: describing marginal distribution first, then pairwise
dependencies, and so on for dependencies of growing numbers of variables.

Fig. 3 contains the first 5 functions of such a product basis for d = 2 variables: f00

corresponds to normalization and requires a00 = 1. The coefficients of f10, f20 describe the
expected value and the variance of the first variable, f01 and f02 analogously of the second.
Then we can start including moment dependencies, starting with a11, which determines the
decrease/increase in the expected value of one variable with the growth in the expected
value of the second variable - analogously to the correlation coefficient. We also have
dependencies between higher moments, such as asymmetric a12, which relates the expected
value of the first variable and the variance of the second.

And analogously for more variables, e.g. a010010 describes the correlation between the
2nd and 5th out of 6 variables. Finally, we can hierarchically decompose the statistical de-
pendencies between multiple variables into their mixed moments. However, to completely
describe the general joint distribution, we would need B =Nd infinite number of mixed mo-
ments for complete expansion - for practical modelling we need to choose the finite basis B
of moments to focus on.

4.2. Estimation using least squares linear regression

Having a data sample X , we would like to estimate such mixed moments as coefficients
for the linear combination of an orthonomal basis of functions, e.g. polynomials. Smooth-
ing the sample using kernel density estimation, finding a linear combination which mini-
mizes the square distance to such a smoothed sample, and performing limit to zero width
of the kernel used, we obtain a convenient and inexpensive MSE estimation Duda (2018):
independently for each coefficient j as just the average over the data set of value of the
corresponding function:

a j =
1
|X | ∑

x∈X
f j(x) (4)

We could use this model for predicting conditional distribution: substitute the known vari-
ables to the modelled joint distribution, after normalization obtaining the (conditional) den-
sity of the unknown variables.

However, for the bid-ask spread prediction problem, a slightly better evaluation was ob-
tained using the generalizing alternative approach of Duda and Szulc (2018), which allows
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one to additionally exploit subtle variable dependencies, hence we will focus on this.
Specifically, to model ρ(Y = y|X = x), let us use separate bases of (mixed) moments:

BX for X , BY for Y , and model relations between them. While more sophisticated models
could be considered for such relations including neural networks, for simplicity and inter-
pretability we focus on linear models here, treating f j(x) as interpretable features:

ρ(y|x) = ∑
j∈BY

f j(y)a j(x) for a j(x) = ∑
k∈BX

β jk fk(x) (5)

hence the model is defined by the |BY |× |BX | matrix β .
It allows for good interpretability: β jk coefficient is linear contribution of k-th mixed

moment of X to j-th (mixed) moment of Y . We focus on one-dimensional Y , but the for-
malism allows one to analogously predict density for multidimensional Y .

To find the β we use least-squares optimization here - it is very inexpensive, can be used
independently for each j ∈ BY thanks to the use of an orthonormal basis, and intuitively it is
a proper heuristic: least-squares optimization estimates the mean - exactly as we would like
for coefficient estimation (4). However, this is not necessarily the optimal choice - it might
also be worth exploring more sophisticated ways.

This least-squares optimization has to be performed separately for each j ∈ BY . Denot-
ing β j· = (β jk)k∈BX as a coefficient vector for j-th moment and Z = {(yi,xi)}i=1..n as (e.g.
training) data set of (y,x) pairs:

β j· = argminv ∑
(y,x)∈Z

(
∑

k∈BX

fk(x)vk− f j(y)

)2

= argminv
∥∥Mv−b j∥∥2

for M = [ fk(xi)]i=1..n,k∈BX , b j = ( f j(yi))i=1..n

matrix M and vector b j for j ∈ BY . This least-squares optimization has a unique solution:

β j· = (MT M)−1MT b j (6)

Separately calculated for each j ∈ BY , leading to the entire model as β matrix with β j· rows.

4.3. Applying the model, enforcing nonnegativity

We can apply the found model β to (e.g. test) data points as in (5), obtaining the predicted
conditional density for y on [0,1] as a polynomial. However, sometimes it can drop below
0, so let us refer to it as ρ̃ and then enforce the non-negativity required for densities:

ρ̃(y|x) = ∑
j∈BY

f j(y) ∑
k∈BX

β jk fk(x) (7)

This polynomial always integrates to 1. However, it can occasionally be below zero, which
should be interpreted as corresponding to a low positive density. This interpretation to non-
negative density ρ is referred to as calibration, and can be optimized on the basis of the data
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set. For simplicity only the following was used:

ρ(y|x) = max(ρ̃(y|x),0.03)/N (8)

where N normalization factor is chosen to integrate to 1: N =
∫ 1

0 max(ρ̃(y|x),0.03)dy. The
0.03 threshold was experimentally chosen as a compromise for the data set used, its tuning
can slightly improve evaluation.

4.4. Basic basis selection

The optimal choice of the basis is a difficult open question. As the basic choice the combi-
natorial family was used:

B((m1, . . . ,md),s,r) :=

{
j ∈ Nd : ∀i ji ≤ mi,

d

∑
i=1

ji ≤ s,
d

∑
i=1

sgn( ji)≤ r

}
(9)

where mi chooses how many first moments to use for i-th variable, s bounds the sum of used
moments (and formally the degree of the corresponding polynomial), r bounds the number
of nonzero ji: to include the dependencies of up to r variables.

For example the ’123’ model infers 8 moments BY =B((8),8,1) from 3 variables using
a compromise: BX = B((4,4,4),5,3) of size |BX | = 53 basis, directly written, e.g. in Fig.
6.

4.5. ’123’ model using basic variables

The initial plan for this article was to improve prediction from standard models: AMI,HLR,
trying to predict the conditional distribution of spread from their values using the method-
ology under discussion. However, the results were disappointing, especially for AMI, as we
can see in Fig. 1.

Therefore, we decided to use the original variables (P,V,L,H,R) instead, which turned
out to lead to essentially better predictions. A search for parameters using B basic basis
selection (9) was performed manually to maximize the averaged log-likelihood in 10-fold
cross-validation. This search finally leads to BX = B((4,4,4),5,3) basis for only 3 vari-
ables: P,V,(H−L)/P to predict up to the 8-th moment of Y . Surprisingly, adding depen-
dence on R and L alone worsened the evaluation - their dependence did not generalize from
training to test sets, hence they are not used in the final model.

The top of Fig. 2 contains examples of conditional densities predicted. The predicted
ρ̃(y|xi)=∑ j f j(y)∑k β jk fk(xi) polynomial for i-th data point undergoes ρ =max(ρ̃,0.03)/N
to remove negative densities, and normalization to integrate to 1 =

∫ 1
0 ρ(y|x)dy. Each di-

agram contains 10 example predictions, vertical lines show the actual values (yi,ρ(yi|xi)):
the higher the better prediction, without prediction all would have height 1. Companies were
chosen to present prediction examples of various evaluation levels. The best ones predict
mainly narrow unimodal distributions in line with the actual values, although weaker ones
can usually only predict wide often multimodal distributions. We can see rapid growths
at the ends - they are likely artefacts of using polynomials, their additional removal might
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improve prediction. The bottom part presents their sorted predicted densities in the actual
values {ρ(yi|xi)}i, with marked gray ρ = 1 line of using no prediction and green exp(log-
likelihood) line corresponding to average improvement over no prediction. The points are
of different colours denoting one of 10 rounds of 10-fold cross-validation.

Integration required for normalization is relatively costly to compute, especially in higher
dimensions, hence for efficient calculation the predicted polynomial ρ̃ was discretized here
into 100 values on a ((i− 0.5)/100)i=1,...,100 lattice, which corresponds to approximating
the density with a piecewise constant function on length 1/100 subranges. Then max(·,0.03)
was applied, and division by the sum for normalization. Finally, the density in discretized
d100yie/100 position was used as ρ(yi|xi) in the log-likelihood evaluation.

In Figure 4 the results of cross-validation are presented. Model ’123’ denotes using
the three basic variables: where ’1’ denotes the closing price (P), ’2’ volume (V ), and ’3’
the difference between high and low price normalized by dividing by the closing price:
(H−L)/P. The last column presents the averaged evaluation for using common model for
all data. We can also see that there are large differences between companies, hence we will
mostly focus on building individual models for each company. The three lowest dots cor-
respond to predicting from single variable, then evaluation grows when adding information
from succeeding variables.

Copulas are a general, well-established method of modelling multivariate distribution.
In higher dimensions r-vines are a flexible class of mulivariate distributions. This type
of copulas allows for flexible modelling of asymmetric and nonlinear dependence patterns
Gurgul and Machno (2016). For comparison purposes we estimated such models and it
turns out that on average log-likelihoods for individual model from copulas were smaller
than from HCR. In Figure 4 points denoted by ”123vc” correspond to results from r-vines.
On average, log-likelihood for individual HCR models was 0.603, while for vine-copulas it
was 0.366, getting better representation of complex behaviour thanks of allowing for high
parametric models. HCR also has much less expensive estimation (least squares regression
of moments), and interpretation of the found parameters as moment dependencies.

While the optimal choice of the basis seems a difficult open problem, an exhaustive
search over all subsets is rather impractically costly, Figure 5 presents some heuristic ap-
proaches. The B family seems generally a good start, e.g. to successively modify some
its parameter by one as long as improvement is observed. In this Figure we can see a large
improvement while the number of predicted moments rises up to ≈ 7, which suggests that
the complexity of the conditional distributions for this problem requires this degree of poly-
nomial in order to be described properly. This Figure also contains trials of using different
orders of some first mixed moments. The selective removal, which is presented there, seems
a reasonable optimization: for each mixed moment from BX calculate the evaluation when
it is removed, finally remove the one that leads to the best evaluation, and so on as long as
the evaluation improves.

Examples of β matrix are visualized in Fig. 6 for |BX |= 53, |BY |= 1+8. Trying to split
all companies into subsets of similar behaviour, as visualized in tree Fig. 7, splitting into
two subsets we obtain the comL and comR models - correspondingly for the left (DPW,
BEI, HNK3, FME, SAP, DB1, RWE, FRE, HEI, DTE, IFX) and right (DAI, SIE, TKA,
CON, MRC, LHA, VOW3, MUV2, ALV, BMW, DBK) subtree of this tree. Then individual
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Figure 4: Log-likelihoods from 10-fold cross-validation for individual models for compa-
nies using various types of information. We can see individual behaviour of companies
and growth of prediction evaluation while adding information from succeeding variables.
The ”123vc” points correspond to vine copulas using the same evaluation: for HCR aver-
age log-likelihood for individual models was 0.603, while for vine-copulas it was 0.366,
additionally requiring ≈ 100× more computational time.

models for 5 selected companies were presented. The rows correspond to the predicted
moments of Y , as linear combinations of mixed moments of X corresponding to columns.
Row zero has always only 000 nonzero coefficient equal to 1 for normalization. The next
row describes the prediction of the expected value, the next one of variance and so on. In the
top model, common for all companies, we can, e.g. see large positive 001→ 1 coefficient:
the spread increases with the growth of H − L, negative 010→ 1: the spread decreases
with growth of V , and negative 011→ 2: variance of spread decreases for correlated V and
H −L. Blue 100→ 3 for FRE denotes a reduction in skewness of spread with growth of
price. Generally, we can see rather individual behaviour for different companies, starting
with 100→ 1 analogous to the price-spread correlation, which seems the main dividing
factor between comL and comR companies.

4.6. Individual vs common models, universality

A natural question is how helpful for prediction a given variable is - Fig. 4 presents some
answers by calculating the log-likelihood also for models using only some of the variables.
We can see different companies can have very different behaviour here, e.g. for some V is
helpful (volume and spread are correlated), for some it is not. Fig. 6 shows that they can
even display the opposite behaviour: e.g. for 100→ 1 dependence on price.

It is a general lesson that while we would like predictors to be nice simple formulas,
the reality might be much more complicated - the models found here are the results of the
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Figure 5: Left: Optimizing the basis and model size using the example of the company
FRE and BX = B((4,4,4),5,3) size 53 basis of mixed moments from ’123’ model. Log-
likelihoods for predicting the first 1 . . .10 moments (denoted by colours) using some first of
mixed moments (sorted lexicographically) of 3 X variables: P,V,(H −L)/P. We can see
that we should predict≈ 8 moments, higher moments are necessary to represent more com-
plex distributions. Top right: selective removal of successive mixed moments to maximize
log-likelihood - we can see that we can slightly improve evaluation this way, additionally
reducing the model size. However, it requires individual optimization for each company.
Bottom right: analogously as top, but using size 181 larger BX = B((5,5,5),10,3), also
trying different orders of mixed moments: accordingly to ∑i( ji)p. While using all such
mixed moments clearly leads to overfitting, selectively using some of the first ones can lead
to slightly improved evaluation.

Figure 6: Visualized coefficients of ’123’ models (9 × 53 matrix β for ρ(y|x) =

∑ j f j(y)∑k β jk fk(x)) for (P,V,H − L) variables, the numbers above the names are log-
likelihoods. The ’common’ is the model built for all the data combined - it presents general
trends. The ’comL’ and ’comR’ models are for the left (DPW, BEI, HNK3, FME, SAP,
DB1, RWE, FRE, HEI, DTE, IFX) and right (DAI, SIE, TKA, CON, MRC, LHA, VOW3,
MUV2, ALV, BMW, DBK) subtree in Fig. 7 - we can see that these subsets of companies
mainly differ by 100→ 1 coefficient corresponding to correlation between price and spread.

cultures of traders of the stocks of individual companies, which can essentially vary between
companies.

Therefore, to obtain the most accurate predictions we should build individual models
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for each company. Furthermore, a specific behaviour of a given company can additionally
evolve in time - which could be exploited, e.g. by building separate models for shorter time
periods, or using adaptive least-squares linear regression Duda (2019), and this is planned
for future investigation.

However, building such models requires training data, which in the case of variables
like bid-ask spread might be difficult to access. Hence, it is also important to search for
universality - e.g. try to guess a model for a company for which we lack such data, on the
basis of the available information for other companies. This generally seems a very difficult
problem, Fig. 7 shows that even having all the data, using the common model for multiple
companies we should expect a large evaluation drop. For example, we can see that the
behaviour of DTE completely disagrees with the common model for all.

As we can see in this tree Figure, the use of common model situation improves if we can
cluster companies into groups of similar behaviour - results are also presented for splitting
companies into just two groups with separate models (comL, comR in Fig. 6), also visually
leading to slightly better predictions as we can see comparing the 3rd and 4th column in
Fig. 1. The heights of the names show the evaluation of using an individual model for
a given company, orange dots show the successive reduction of log-likelihood for a given
company while using common models for subsets that grow according to this tree. The
lowest dots correspond to the use of one common model for all (common in Fig. 6) we can
see that it is worse than zero only for DTE (we get zero when using no prediction at all).
Splitting companies into a left and right subtree and using separate two models for them
(comL and comR in Fig. 6), we essentially obtain a better prediction (one dot up). The
tree structure was calculated by combining subsets to maximize (log-likelihood of common
model / average log-likelihood of individual models) - grouping companies into pairs and
then further, up to a single common model for all. The positions of lines represent such
grouped companies: a light-gray line their averaged log-likelihoods of individual models,
dark-gray line their log-likelihood for a common model. The difference between these two
lines represent a loss while using the common model. The common models are fixed hence
there is no cross-validation (CV) used, which artificially improves performance, for example
for the first dot of FME corresponding to the common model with HNK - making it above
CV individual model, generally suggesting large time inhomogeneities - to be included in
future adaptive models.

5. Conclusions and further work

A general methodology has been presented for extracting and exploiting complex statistical
dependencies between multiple variables in an inexpensive and interpretable way for pre-
dicting conditional probability distributions, using the example of the difficult problem of
predicting bid-ask spreads from more accessible information. This expands the approach of
Duda and Szulc (2018) by inferring from mixed moments, and searching for a basis in large
spaces of possibilities.

Figure 1 presents a comparison between it and standard methods when using only the
expected value from such predicted conditional density. A perfect predictor would lead to
diagonal scatter plot, standard methods provide rather a noise instead, while the predictions
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Figure 7: Visualization of optimized hierarchical grouping and evaluation loss while using
common models for multiple companies, the height denotes log-likelihoods. It was con-
structed by starting with individual models, then successively joining subsets of companies
leading to lowest loss of evaluation while using a common model for them.

from the approaches discussed indeed often resemble diagonal plot, especially when using
individual models. The predicted conditional probability density provides much more in-
formation than the value alone: e.g. it allows one to additionally estimate the uncertainty
of such a prediction as value, or provide prediction for multimodal densities, or it allows
random values to be generated, e.g. for Monte-Carlo simulations, or just provides the en-
tire density for accurate considerations especially if transforming such random variables
through some further nonlinear functions.

There are many directions for further development of this relatively new general method-
ology, for example:

• Optimal choice of the basis is a difficult problem, which should be automatized es-
pecially for a larger number of variables - selecting from the basis of orthonormal
polynomials discussed, or maybe automatically optimizing a completely different ba-
sis on the basis of a data set.

• Large differences between the behaviours of individual companies have been ob-
served - raising difficult questions regarding how to optimize for common behaviour,
optimize models on the basis of an incomplete information, etc. Additionally, such
behaviour has probably also time inhomogeneity - the models should evolve in time,
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requiring adaptive models to improve performance, where the problem of data avail-
ability becomes even more crucial.

• These models rapidly grow with the number of variables, which requires some mod-
ifications for exploiting high dimensional information - like extracting features from
these variables, e.g. as averages, dimensionality reduction like PCA, etc.

• We have predicted the conditional distributions for one-dimensional variables, but the
methodology was introduced to be more general: predicting for multidimensional Y
should be just a matter of using proper BY , which is planned to be tested in the future.

• The densities predicted as polynomials often have rapid growths at the ends of [0,1] -
their removal might improve performance.

• A linear relation was assumed between moments with least-squares optimization,
which is inexpensive and has good interpretability, but is not necessarily optimal -
one could consider, e.g. using neural networks instead, and optimizing criteria closer
to the log-likelihood of final predictions.

• In the light of the Epps effect we can see the dependence of stock return cross-
correlations on the data sampling frequency, i.e. for high-resolution data the cross-
correlations are significantly smaller than their asymptotic value as observed for daily
data. One should check the performance of HCR with respect to the data sampling
frequency.

• The share of algorithmic trading in the market is growing. The HCR method may be
helpful in the forecast of quoted and effective bid-ask spread regressed on the share
of algorithmic trading in the market.

• A comparison of the results of bid-ask spread modelling and forecasting using HCR
methodology with respect to the microstructure of stock markets in particular coun-
tries, their size and the level of development.
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