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ABSTRACT

In this paper, we introduce a new family of univariate continuous distributions called the
Gamma Kumaraswamy-generated family of distributions. Most of its properties are stud-
ied in detail, including skewness, kurtosis, analytical comportments of the main functions,
moments, stochastic ordering and order statistics. The next part of the paper focuses on
a particular member of the family with four parameters, called the gamma Kumaraswamy
exponential distribution. Among its advantages, the following should be mentioned: the
corresponding probability density function can have symmetrical, left-skewed, right-skewed
and reversed-J shapes, while the corresponding hazard rate function can have (nearly) con-
stant, increasing, decreasing, upside-down bathtub, and bathtub shapes. Subsequently, the
inference on the gamma Kumaraswamy exponential model is performed. The method of
maximum likelihood is applied to estimate the model parameters. In order to demonstrate
the importance of the new model, analyses on two practical data sets were carried out. The
results proved more favourable for the studied model than for any of the other eight compet-
itive models.

Key words: Kumaraswamy distribution, gamma distribution, generalised family, moments,
stochastic ordering, maximum likelihood method, data analysis.

1. Introduction

In order to meet scientific requirements, modern experiments require high precision in data
analysis. Unfortunately, in most situations this requirement cannot be achieved through
the use of standard statistical models. For this reason, the creation of new flexible models,
well adapted to the context, remains a passionate challenge for the statisticians. From a
probabilistic point of view, attractive models can be derived from families of distributions
enjoying desirable properties. Such families can be defined by the use of effective tech-
niques introducing tuning parameters to well-established distributions. These families are
often characterized by sophisticated but flexible functions, which can be handled thanks to
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the computational and analytical facilities available in modern programming software (as R,
Maple, Mathematica. . . ). In particular, the use of this software can easily tackle the prob-
lems involved in computing eventual special functions. Among the high impacted families
of distributions, there are the beta-G family by Eugene et al. (2002) and Jones (2004), the
Kumaraswamy-G (Kw-G) family by Cordeiro and de Castro (2011) and Ramos (2014), the
Kumaraswamy Poisson-G (Kw-G) family by Ramos (2014), the McDonald-G (Mc-G) fam-
ily by Alexander et al. (2012), the gamma-G type 1 family by Zografos and Balakrishnan
(2009) and Amini et al. (2014), the gamma-G type 2 family by Ristic and Balakrishnan
(2012) and Amini et al. (2014), the odd-gamma-G type 3 family by Torabi and Montazari
(2012), the logistic-G family by Torabi and Montazari (2014), the odd exponentiated gen-
erated (odd exp-G) family by Cordeiro et al. (2013), the transformed-transformer (T-X)
(Weibull-X and gamma-X) family by Alzaatreh et al. (2013a), the exponentiated T-X fam-
ily by Alzaatreh et al. (2013b), the odd Weibull-G family by Bourguignon et al. (2014),
the exponentiated half-logistic by Cordeiro et al. (2014), the T-X{Y}-quantile based ap-
proach family by Aljarrah et al. (2014), the T-R{Y} family by Alzaatreh et al. (2014), the
odd Burr-III-G family by Jamal et al. (2017), the Kumaraswamy odd Burr-G family by
Nasir et al. (2018), the generalized odd gamma-G family by Hosseini et al. (2018), the
truncated Cauchy power-G family by Aldahlan et al. (2019) and the type II general inverse
exponential-G family by Jamal et al. (2020).

In this study, we introduce a new family of distributions derived to two important fam-
ilies: the Kumaraswamy-G and odd gamma-G families introduced by Cordeiro and de
Castro (2011) and Torabi and Montazari (2012), respectively. Before going further in the
motivation, let us briefly describe these two well-recognized families, beginning with the
Kumaraswamy-G family of distributions. Let a > 0, b > 0, G(x) be the cumulative distri-
bution function (cdf) of an univariate continuous distribution and g(x) be the corresponding
probability distribution function (pdf). Then, the Kumaraswamy-G family of distributions
is characterized by the cdf given by

H(x) = 1−{1−G(x)a}b , x ∈ R (1)

and the corresponding pdf can be expressed as

h(x) = abg(x)G(x)a−1 {1−G(x)a}b−1 , x ∈ R. (2)

Thus, the feature of the Kumaraswamy-G family is to add two shape parameters to the
former distribution characterized by the cdf G(x), increasing mechanically its flexible prop-
erties. This allows the construction of more flexible models to analyse a wide variety of
data sets, as developed in Cordeiro and de Castro (2011) for the normal, Weibull, gamma,
Gumbel and inverse Gaussian distributions. The Kumaraswamy-G family of distributions
is also known to be a simple alternative to the beta-G family of distribution established by
Eugene et al. (2002). The essentials of the standard Kumaraswamy distribution are detailed
in Jones (2008). Current developments and extensions of the Kumaraswamy-G family of
distributions can be found in, e.g. Paranaiba et al. (2012), de Pascoa et al. (2011), Ramos
(2014), Gomes et al. (2014), Rodrigues and Silva (2015) and Jamal et al. (2019).
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On the other side, Torabi and Montazari (2012) introduced the odd gamma-G family of
distributions, briefly described below. Let α > 0, H(x) be the cdf of an univariate contin-
uous distribution, H̄(x) = 1−H(x) and h(x) be the corresponding pdf. Let γ1(α,z) be the
regularized lower incomplete gamma function defined by γ1(α,z) = γ(α,z)/Γ(α), where
γ(α,z) =

∫ z
0 tα−1e−tdt and Γ(α) =

∫ +∞

0 tα−1e−tdt. Then, the odd gamma-G family of dis-
tributions ”with G = H” is characterized by the cdf given as

F(x) = γ1

(
α,

H(x)
H̄(x)

)
, x ∈ R (3)

and the corresponding pdf is specified by

f (x) =
1

Γ(α)

h(x)H(x)α−1

H̄(x)α+1 exp
(
−H(x)

H̄(x)

)
, x ∈ R. (4)

The odd-gamma-G family of distributions gives an alternative to the useful gamma-G type
1 family of distributions introduced by Zografos and Balakrishnan (2009) in the follow-
ing stochastic ordering sense: F(x) ≥ K(x), where K(x) = γ1 (α,− log[H̄(x)]) is the cdf
corresponding to the gamma-G type 1 family of distributions. Also, the merits of the odd-
gamma-G family have been highlighted in recent studies, including those of Torabi and
Montazari (2012), Hosseini et al. (2018), Oluyede et al. (2018) and Nasir et al. (2020), via
the exploration of various theoretical and practical aspects. In particular, it is shown that the
parental distribution characterized by the cdf H(x) can take the benefits of the considered
polynomial-exponential transformation with α as the tuning parameter, allowing the con-
struction of new flexible statistical models. In particular, for appropriated H(x), the analyses
of a wide broad range of real life data sets are favourable to the odd-gamma-G models in
comparison to well-recognized competitors.

In the light of the previous arguments, a promising direction of work becomes the com-
bination of the Kumaraswamy-G and odd gamma-G families via the composition technique
of the respective cdfs. Thus, we aim to create a new generalized family of distributions
benefiting of the respective qualities of these two families, aiming

• to skew any symmetrical distribution;

• to modulate the weight of the tails of any parental distribution;

• to increase the possible shapes of the (probabilistic or reliability) functions of the
parental distribution;

• to construct new statistical models with better (fits) properties than other competitive
models, or enlarging the horizon of fields of applications.

The proposed family is called the gamma Kumaraswamy-G (GKw-G) family of distribu-
tions. This study explores, in both theoretical and practical terms, the properties of the
GKw-G family. A special member defined with the exponential distribution as the parent,
called the GKw-E distribution, will serve as a statistical model. The complete analyses of
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two practical data sets are proposed, showing that the GKw-E model presents better fit to
eight notorious models in the field.

The rest of the article is organized as follows. In Section 2, we present the main func-
tions and properties of the GKw-G family of distributions. In Section 3, the GKw-E distri-
bution is introduced, as well as some of its structural properties. In Section 4, the GKw-E
model parameters are estimated by the maximum likelihood method and a simulation study
is performed to verify the convergence properties. Also, the usefulness of the GKw-E model
is illustrated by means of two practical data sets. Finally, Section 5 offers some concluding
remarks.

2. The gamma Kumaraswamy-G family of distributions

2.1. Presentation

We characterize the GKw-G family of distributions by the cdf of the odd gamma-H family
of distributions given by (3), defined with the cdf H(x) of the Kumaraswamy-G family of
distributions given as (1). Hence, by noticing that H(x)/H̄(x) = {1−G(x)a}−b− 1, the
corresponding cdf is defined by

F(x) = γ1

(
α,{1−G(x)a}−b−1

)
, x ∈ R. (5)

One can remark that, if b = 1, this cdf becomes the one of the generalized odd gamma-G
family introduced by Hosseini et al. (2018), that is F(x) = γ1 (α,G(x)a/[1−G(x)a]), x∈R.
In this sense, the GKw-G family of distributions can be viewed as a generalization of this
family. The parameter b plays an important role, as we shall see later. The corresponding
survival (sf) function is

S(x) = 1− γ1

(
α,{1−G(x)a}−b−1

)
, x ∈ R.

The pdf of the GKw-G family can be obtained by putting (1) and (2) into (4). More directly,
upon almost everywhere differentiation of F(x), it is obtained as

f (x) =
ab

Γ(α)
g(x)G(x)a−1 {1−G(x)a}−b−1

{
{1−G(x)a}−b−1

}α−1

× exp
[
1−{1−G(x)a}−b

]
. x ∈ R. (6)

The corresponding hazard rate function (hrf) is obtained as π(x) = f (x)/S(x), that is

π(x) =
ab

Γ(α)

g(x)G(x)a−1 {1−G(x)a}−b−1
{
{1−G(x)a}−b−1

}α−1
exp
[
1−{1−G(x)a}−b

]
1− γ1

(
α,{1−G(x)a}−b−1

) .

Some special members of the GKw-G family characterized by their cdfs are presented in
Table 1.
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Table 1: Some members of the GKw-G family of distributions characterized by their cdfs.

cdf G(x) Support GKw-G cdf F(x) Parameters

Uniform (0,θ) γ1

(
α,{1− (x/θ)a}−b−1

)
(α,a,b,θ)

Exponential (0,+∞) γ1

(
α,
{

1− [1− e−λx]a
}−b
−1
)

(α,a,b,λ )

Weibull (0,+∞) γ1

(
α,
{

1− [1− e−(λx)β

]a
}−b
−1
)

(α,a,b,λ )

Inverse Weibull (0,+∞) γ1

(
α,
{

1− e−a(λ/x)β
}−b
−1
)

(α,a,b,λ ,β )

Burr XII (0,+∞) γ1

(
α,
{

1−{1− [1+(x/s)c]−k}a}−b−1
)

(α,a,b,c,k,s)

Logistic R γ1

(
α,
{

1− [1+ e−(x−µ)/s]−a
}−b
−1
)

(α,a,b,µ,s)

Gumbel R γ1

(
α,
{

1− exp(−ae−(x−µ)/σ )
}−b
−1
)

(α,a,b,µ,σ)

Normal R γ1

(
α,{1−Φ((x−µ)/σ)a}−b−1

)
(α,a,b,µ,σ)

Cauchy R γ1

(
α,{1− [(1/π)arctan((x− x0)/θ)+1/2]a}−b−1

)
(α,a,b,x0,θ)

Thanks to its simplicity in the definition, the special member of the GKw-G family based
on the exponential distribution will be the object of all the attention in our applications.

Let QG(x) be the quantile function corresponding to G(x), that is, the function satisfying
the following equation: G(QG(p)) = QG(G(p)) = p for any p ∈ (0,1). Then, the quantile
function of the GKw-G family of distributions can be expressed as

Q(p) = QG

([
1−
{

1+ γ
−1
1 (α, p)

}−1/b
]1/a

)
, p ∈ (0,1), (7)

where γ
−1
1 (α, p) denotes the inverse function of γ1 (α, p), i.e., satisfying γ1

(
α,γ−1

1 (α, p)
)
=

γ
−1
1 (α,γ1 (α, p)) = p for any p ∈ (0,1). Further details on γ

−1
1 (α, p) can be found in

(Abramowitz and Stegun, 1965, Section 6.5). In particular, the median of the GKw-G fam-
ily is specified by M = Q(1/2). Also, the three quartiles are defined by Q1 = Q(1/4),
Q2 = M and Q3 = Q(3/4), and the seven octiles by O1 = Q(1/8), O2 = Q(2/8) = Q1,
O3 = Q(3/8), O4 = Q(4/8), O5 = Q(5/8), O6 = Q(6/8) = Q3 and O7 = Q(7/8).

The quantile function and its related values are useful to evaluate some properties of the
GKw-G family, such as the skewness and kurtosis, as described below.

2.2. Skewness and kurtosis

A measure of the skewness of the GKw-G family is given by

S =
Q3 +Q1−2Q2

Q3−Q1
. (8)

In full generality, for given G(x), α , a and b, when the corresponding GKw-G distribution
is symmetric, we have S = 0, when it is right skewed, we have S > 0 and when it is left
skewed, we have S < 0. See Kenney and Keeping (1962).
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Also, a measure of the kurtosis of the GKw-G family of distributions is proposed by

K =
O3−O1 +O7−O5

O6−O2
. (9)

For given G(x), α , a and b, as K increases, the tail of the corresponding GKw-G distribution
becomes heavier. We refer to Moors (1998).

The advantages of these measures are to be robust in presence of outliers and they always
exist (even if the distribution does not admit moments).

2.3. Properties

Diverse and important properties of the new family are now described.

2.3.1 Asymptotic properties

The two following propositions investigate the asymptotic properties of the cdf, sf, pdf and
hrf of the GKw-G family of distributions.

Proposition 2.1 The asymptotic equivalences of the cdf, pdf and hrf of the GKw-G family
when G(x)→ 0 are, respectively,

F(x)∼ bα

αΓ(α)
G(x)aα , f (x)∼ abα

Γ(α)
g(x)G(x)aα−1, h(x)∼ abα

Γ(α)
g(x)G(x)aα−1.

Proof 2.1 The proof follows from the following equivalences: when y→ 0, we have (1−
ya)−b ∼ 1+bya and γ1(α,y)∼ yα/(αΓ(α)).

Proposition 2.2 The asymptotic equivalences of the sf, pdf and hrf of the GKw-G family
when G(x)→ 1 are, respectively,

S(x)∼ a−b(α−1)

Γ(α)
{1−G(x)}−b(α−1)e1−a−b{1−G(x)}−b

,

f (x)∼ ba−αb

Γ(α)
g(x){1−G(x)}−αb−1 e1−a−b{1−G(x)}−b

and
h(x)∼ ba−bg(x){1−G(x)}−b−1 .

Proof 2.2 The proof follows from the following equivalences: when y → +∞, we have
γ1(α,y)∼ 1− yα−1e−y/Γ(α) and, when y→ 1, we have ya ∼ 1−a(1− y).

Propositions 2.1 and 2.2 are useful to understand the roles of G(x), g(x), α , a and b on the
asymptotic properties of the cdf, sf, pdf and hrf of the GKw-G family. In particular, we see
that b has a strong impact, mainly when G(x)→ 1.



STATISTICS IN TRANSITION new series, December 2020 23

2.3.2 Critical points

The analytical study of the pdf and hrf of the GKw-G family is crucial to understand their
complexity. The critical points are essential in this regard. As usual, they can be determined
by solving the following nonlinear equations ∂ log[ f (x)]/∂x = 0 and ∂ log[h(x)]/∂x = 0,
respectively, both obtained as

∂g(x)/∂x
g(x)

+(a−1)
g(x)
G(x)

+a(b+1)
g(x)G(x)a−1

1−G(x)a

+ab(α−1)
g(x)G(x)a−1{1−G(x)a}−b−1

{1−G(x)a}−b−1
−abg(x)G(x)a−1{1−G(x)a}−b−1 = 0 (10)

and

∂g(x)/∂x
g(x)

+(a−1)
g(x)
G(x)

+a(b+1)
g(x)G(x)a−1

1−G(x)a

+ab(α−1)
g(x)G(x)a−1{1−G(x)a}−b−1

{1−G(x)a}−b−1
−abg(x)G(x)a−1{1−G(x)a}−b−1

+
ab

Γ(α)

g(x)G(x)a−1 {1−G(x)a}−b−1
{
{1−G(x)a}−b−1

}α−1
exp
[
1−{1−G(x)a}−b

]
1− γ1

(
α,{1−G(x)a}−b−1

)
= 0. (11)

The nature of the obtained critical points can be determined by investigating the signs of
∂ 2 log[ f (x)]/∂x2 and ∂ 2 log[h(x)]/∂x2 taken at these points, respectively.

2.3.3 Some results in distribution

As usual, for any random variable U following the uniform distribution over (0,1), the
random variable X defined by X = Q(U) has the cdf F(x). For given G(x), α , a and b,
this characterization is useful to generate random values distributed according to the related
GKw-G distribution through the inverse transform sampling.

Now, we say that a random variable follows the gamma distribution Gam(1,α) if it has
the cdf given by K(x) = γ1(α,x), x > 0. If X is a random variable having the cdf of the
GKw-G family, then the random variable Y defined by Y = {1−G(X)a}−b−1 follows the
gamma distribution Gam(1,α).

Also, if Y is a random variable following the gamma distribution Gam(1,α), then the

random variable X defined by X = QG

([
1−{1+Y}−1/b

]1/a
)

has the cdf of the GKw-G

family.

2.3.4 Linear representations

This subsection is devoted to exploitable linear representations for the cdf and pdf of the
GKw-G family.
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Proposition 2.3 We have the following linear representations for the cdf and pdf of the
GKw-G family of distributions:

F(x) =
+∞

∑
i=0

wiG(x)ai, f (x) =
+∞

∑
i=1

wi
[
aig(x)G(x)ai−1] , (12)

where

wi =
+∞

∑
j,k=0

(−1)i+ j+k

Γ(α)k!(α + k)

(
α + k

j

)(
b( j−α− k)

i

)

and
(b

a

)
denotes the generalized binomial coefficient, i.e.

(b
a

)
= b(b−1) . . .(b−a+1)/a!.

Proof 2.3 By using the regularized lower incomplete gamma function series expansion, i.e.

γ1(α,y) =
+∞

∑
k=0

(−1)k yα+k

Γ(α)k!(α + k)
, y≥ 0,

and after some simplifications, we can express F(x) as

F(x) = γ1

(
α,

1−{1−G(x)a}b

{1−G(x)a}b

)

=
+∞

∑
k=0

(−1)k

Γ(α)k!(α + k)
{1−G(x)a}−b(α+k)

[
1−{1−G(x)a}b

]α+k

︸ ︷︷ ︸
A

.

By virtue of the generalized binomial series expansion, the term A can expressed as

A =
+∞

∑
j=0

(−1) j
(

α + k
j

)
{1−G(x)a}b j .

By putting the previous equalities together, we get

F(x) =
+∞

∑
j,k=0

(−1) j+k

Γ(α)k!(α + k)

(
α + k

j

)
{1−G(x)a}b( j−α−k)︸ ︷︷ ︸

B

.

By using again the generalized binomial series expansion, we get

B =
+∞

∑
i=0

(−1)i
(

b( j−α− k)
i

)
G(x)ai.

The desired linear representation of F(x) follows from the combination of all the equalities
above. Upon differentiation, we derive the linear representation of f (x). This completes the
proof of Proposition 2.3.

Since it depends on the well-known exp-G family of distributions (with parameter ai for any
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integer i), the linear representations presented in Proposition 2.3 are useful to derive related
analytical and numerical properties. Some of them are explored in the subsections below.

2.3.5 Moments and derivations

Here, we assume that all the presented integrals and sum exist (which is not necessarily the
case, depending on the definition of G(x), among others). Let r be an integer. Then, the r-th
ordinary moment of the GKw-G family is given as

µ
′
r =

∫ +∞

−∞

xr f (x)dx =
∫ +∞

−∞

xr ab
Γ(α)

g(x)G(x)a−1 {1−G(x)a}−b−1
{
{1−G(x)a}−b−1

}α−1

× exp
[
1−{1−G(x)a}−b

]
dx.

By using the quantile function in (7), with the change of variable x = Q(p), we can express
µ ′r as

µ
′
r =

∫ 1

0
Q(p)rd p =

∫ 1

0

[
QG

([
1−
{

1+ γ
−1
1 (α, p)

}−1/b
]1/a

)]r

d p.

For given G(x), r, α , a and b, this integral can be computed numerically via any mathemat-
ical software (R, Maple, Matlab, Mathematica. . . ). Also, a linear representation of µ ′r can
be deduced from Proposition 2.3. Indeed, owing to (12), we have

µ
′
r =

+∞

∑
i=1

wi

∫ +∞

−∞

xr [aig(x)G(x)ai−1]dx =
+∞

∑
i=1

wiai
∫ 1

0
pai−1QG(p)rd p.

Among others, one can deduce the mean defined by µ = µ ′1, the variance given by σ2 =

µ ′2− (µ ′1)
2, the r-th central moment given as

µr =
∫ +∞

−∞

(x−µ
′
1)

r f (x)dx =
r

∑
k=0

(
r
k

)
(−1)k(µ ′1)

k
µ
′
r−k, (13)

the coefficient of skewness given as CS = µ3/µ
3/2
2 , the coefficient of kurtosis obtained as

CK = µ4/µ2
2 and the moment generating function given by

M(t) =
∫ +∞

−∞

etx f (x)dx =
+∞

∑
r=0

tr

r!
µ
′
r.

Alternatively, we can use (12) to have a linear representation for M(t) without using mo-
ments. Indeed, we have

M(t) =
+∞

∑
i=1

wi

∫ +∞

−∞

etx [aig(x)G(x)ai−1]dx =
+∞

∑
i=1

wiai
∫ 1

0
pai−1etQG(p)d p.



26 R. M. I. Arshad et. al.: The Gamma Kumaraswamy-G family ...

Finally, let us mention that the incomplete moments can be expressed in a similar way,
giving expressions for the Bonferroni and Lorenz curves, mean residual-life, mean waiting-
time, mean deviation about the mean and mean deviation about the median. For similar
developments, we refer to the methodology of Hosseini et al. (2018).

2.3.6 Stochastic ordering

We now prove a result on the stochastic ordering involving the GKw-G family of distribu-
tions with a and b as common parameters. Further details on stochastic ordering can be
found in Shaked and Shanthikumar (1994).

Proposition 2.4 Let X be a random variable having the pdf f1(x) given by (6) with pa-
rameters α1, a and b and Y be a random variable having the pdf f2(x) given by (6) with
parameters α2, a and b. Then, if α1 ≤ α2, we have X ≤lr Y , i.e. f1(x)/ f2(x) is decreasing.

Proof 2.4 We have

f1(x)
f2(x)

=
Γ(α2)

Γ(α1)

{
{1−G(x)a}−b−1

}α1−α2
.

By differentiating with respect to x, since α1 ≤ α2, we have

∂

∂x
f1(x)
f2(x)

=

Γ(α2)

Γ(α1)
(α1−α2)

{
{1−G(x)a}−b−1

}α1−α2−1
abg(x)G(x)a−1 {1−G(x)a}−b−1 ≤ 0.

Hence, we have X ≤lr Y . This ends the proof of Proposition 2.4.

2.4. Order statistics

The order statistics naturally arise in many applications involving data relating to survival
testing studies. All the details can be found in the book of David and Nagaraja (2003). This
subsection is devoted to the order statistics of the GKw-G family. Let X1, . . . ,Xn be the
random sample from the GKw-G family and Xi:n be the i-th order statistic. Then, the pdf of
Xi:n is given by

fi:n(x) =
n!

(i−1)!(n− i)!
f (x)F(x)i−1 [1−F(x)]n−i , x ∈ R. (14)

Hence, by using (5) and (6), we have

fi:n(x) =
n!

(i−1)!(n− i)!
ab

Γ(α)
g(x)G(x)a−1 {1−G(x)a}−b−1

{
{1−G(x)a}−b−1

}α−1

exp
[
1−{1−G(x)a}−b

]
γ1

(
α,{1−G(x)a}−b−1

)i−1 [
1− γ1

(
α,{1−G(x)a}−b−1

)]n−i
.

In particular, the pdfs of X1:n = inf(X1, . . . ,Xn) and Xn:n = sup(X1, . . . ,Xn) are given by
f1:n(x) and fn:n(x), respectively.
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The proposition below presents a result characterizing fi:n(x).

Proposition 2.5 The pdf of Xi:n can be expressed as a linear combination of pdfs of the
exp-G family of distributions.

Proof 2.5 Let us consider the expression of fi:n(x) given by (14). It follows from the bino-
mial formula and (12) that

fi:n(x) =
n!

(i−1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1) j f (x)F(x) j+i−1

=
n!

(i−1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1) j

{
+∞

∑
`=1

w`

[
a`g(x)G(x)a`−1

]}[+∞

∑
k=0

wkG(x)ak

] j+i−1

.

By virtue of a result established by (Gradshteyn and Ryzhik, 2000, Section 0.314), we have[
+∞

∑
k=0

wkG(x)ak

] j+i−1

=
+∞

∑
m=0

d j+i−1,mG(x)am,

where d j+i−1,0 = w j+i−1
0 and, for any integer m≥ 1,

d j+i−1,m =
1

mw0

m

∑
k=1

(k( j+ i)−m)wkd j+i−1,m−k.

By putting the equalities above together, we obtain

fi:n(x) =
n!

(i−1)!(n− i)!

n−i

∑
j=0

+∞

∑
`=1

+∞

∑
m=0

(
n− i

j

)
(−1) jw`d j+i−1,m

`

`+m
q`,m(x), (15)

where q`,m(x) = a(`+m)g(x)G(x)a(`+m)−1. Since q`,m(x) is a pdf of the exp-G family with
parameter a(`+m), the proof of Proposition 2.5 is complete.

By using the existing results on the exp-G family, we can use Proposition 2.5 to derive
mathematical properties of the distribution of the i-th order statistics, as moments and all
the related quantities.

3. GKw-Exponential distribution

3.1. Definition

In this section, we focus our attention on the special member of the GKw-G family based
on the exponential distribution. Hence, by substituting the cdf G(x) = 1− e−λx, x > 0, into
(5), the cdf of this special distribution is given by

FGKw−E(x) = γ1

(
α,
{

1−
(

1− e−λx
)a}−b

−1
)
, x > 0. (16)
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The related distribution is called the GKw-Exponential (GKw-E) distribution. Naturally,
the corresponding sf is

SGKw−E(x) = 1− γ1

(
α,
{

1−
(

1− e−λx
)a}−b

−1
)
, x > 0.

The corresponding pdf is specified by

fGKw−E(x) =

abλ

Γ(α)
e−λx

(
1− e−λx

)a−1{
1−
(

1− e−λx
)a}−b−1

{{
1−
(

1− e−λx
)a}−b

−1
}α−1

× exp
[

1−
{

1−
(

1− e−λx
)a}−b

]
. x > 0, (17)

and the corresponding hrf is given as

πGKw−E(x) =

abλ

Γ(α)

e−λx
(
1− e−λx

)a−1
{

1−
(
1− e−λx

)a
}−b−1

{{
1−
(
1− e−λx

)a
}−b
−1
}α−1

1− γ1

(
α,
{

1−
(
1− e−λx

)a}−b−1
)

× exp
[

1−
{

1−
(

1− e−λx
)a}−b

]
, x > 0. (18)

Let us now investigate some asymptotic properties of FGKw−E(x), SGKw−E(x), fGKw−E(x)
and hGKw−E(x). When x→ 0, we have

FGKw−E(x)∼
bα λ aα

αΓ(α)
xaα , fGKw−E(x)∼

abα λ aα

Γ(α)
xaα−1, hGKw−E(x)∼

abα λ aα

Γ(α)
xaα−1.

The following limits follow. If aα < 1, we have fGKw−E(x)→ +∞, if aα = 1, we have
fGKw−E(x)→ ab1/aλ/Γ(α), and if aα > 1, we have fGKw−E(x)→ 0. Similarly, if aα < 1,
we have hGKw−E(x)→+∞, if aα = 1, we have hGKw−E(x)→ ab1/aλ/Γ(α), and if aα > 1,
we have hGKw−E(x)→ 0. When x→+∞, we have

SGKw−E(x)∼
a−b(α−1)

Γ(α)
eλb(α−1)xe1−a−beλbx

, fGKw−E(x)∼
λba−αb

Γ(α)
eλbαxe1−a−beλbx

and
hGKw−E(x)∼ λba−beλbx.

Hence, we have fGKw−E(x)→ 0 and hGKw−E(x)→+∞.

In order to give more concrete illustrations on their shapes, Figure 1 displays some plots
of the GKw-E pdf and hrf for specified parameters values. It indicates that the GKw-E
distribution can be right-skewed, left-skewed and reversed-J shaped, whereas the GKw-E
hrf can produce various shapes such as increasing, decreasing, bathtub and upside-down
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bathtub shapes.
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Figure 1: Plots of (a) GKw-E pdfs and (b) GKw-E hrfs for some parametric values with
fixed λ = 1.

Since QG(p) =−(1/λ ) log(1− p), based on (7), the GKw-E quantile function is given
by

QGKw−E(p) =− 1
λ

log
[

1−
[
1−
{

1+ γ
−1
1 (α, p)

}−1/b
]1/a

]
, p ∈ (0,1).

From this definition, the quartiles and octiles can be determined, as well as skewness and
kurtosis, and some results on distributions, as the useful one: for a random variable U
following the uniform distribution on (0,1), QGKw−E(U) follows the GKw-E distribution.

3.2. Linear representation with applications

A result on linear representations of FGKw−E(x) and fGKw−E(x) in terms of exponential
functions is presented below.

Proposition 3.1 We have the following linear representations for the cdf and pdf of the
GKw-E distribution:

FGKw−E(x) =
+∞

∑
m=0

w∗me−λmx, fGKw−E(x) =
+∞

∑
m=1

w∗∗m e−λmx, x > 0,

where

w∗m =
+∞

∑
i, j,k=0

(−1)i+ j+k+m

Γ(α)k!(α + k)

(
α + k

j

)(
b( j−α− k)

i

)(
αi
m

)
, w∗∗m =−λmw∗m.
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Proof 3.1 Let G(x) = 1−e−λx and g(x) = λe−λx. Then, owing to Proposition 2.3, we have

FGKw−E(x) =
+∞

∑
i=0

wiG(x)ai, fGKw−E(x) =
+∞

∑
i=1

wi
[
aig(x)G(x)ai−1] ,

where

wi =
+∞

∑
j,k=0

(−1)i+ j+k

Γ(α)k!(α + k)

(
α + k

j

)(
b( j−α− k)

i

)
.

Now, for any positive integer i, by virtue of the generalized binomial formula, we have

G(x)αi = (1− e−λx)αi =
+∞

∑
m=0

(
αi
m

)
(−1)me−λmx.

Therefore

FGKw−E(x) =
+∞

∑
i=0

wiG(x)ai =
+∞

∑
m=0

w∗me−λmx,

where w∗m =
+∞

∑
i=0

(
αi
m

)
(−1)mwi. The desired expansion for the pdf is obtained by differenti-

ating FGKw−E(x). This ends the proof of Proposition 3.1.

Thanks to Proposition 3.1, several structural properties of the GKw-E distribution can be
derived. Some of them are described below.

The r-th ordinary moment of the GKw-E distribution is defined by

µ
′
r =

+∞

∑
m=1

w∗∗m

∫ +∞

0
xre−λmxdx =

1
λ r+1 Γ(r+1)

+∞

∑
m=1

w∗∗m
1

mr+1 .

Then, we can easily deduce the mean, the variance, the r-th central moment, the coefficient
of skewness and the coefficient of kurtosis. The numerical values of these measures for
some chosen parameters are collected in Table 2.
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Table 2: First four moments, variance skewness and kurtosis of the GKw-E distribution for
some parameter values.
(α,a,b,λ ) µ ′1 µ ′2 µ ′3 µ ′4 σ2 CS CK
(0.5,0.5,0.5,0.5) 0.7273 1.6188 5.0408 18.9862 1.0898 2.0021 10.2919
(2,0.5,0.5,0.5) 2.8256 10.5036 45.5683 219.8988 2.5192 0.4129 11.6882
(4,0.5,0.5,0.5) 4.8084 25.4660 144.9078 872.9899 2.3447 -0.0260 77.1860
(0.5,2,0.5,0.5) 2.1594 7.7311 35.2336 186.3619 3.0678 0.9841 5.0394
(0.5,3,0.5,0.5) 2.7489 11.1864 56.3355 325.4536 3.6295 0.8140 4.6925
(0.5,4,0.5,0.5) 3.2045 14.2449 76.8333 471.4195 3.9758 0.7194 4.8590
(2,3,0.5,0.5) 6.0439 40.1030 285.8935 2158.8840 3.5734 0.0468 55.1839
(4,3,0.5,0.5) 8.2805 71.2060 632.6335 5784.2410 2.6379 -0.1592 355.3071
(2,2,1,0.5) 3.1275 10.8143 40.2792 159.0419 1.0327 -0.0030 136.0614
(2,2,1.5,0.5) 2.3533 6.0758 16.8069 49.0889 0.5375 -0.0555 237.7113
(2,2,1.5,0.1) 11.7668 151.8967 2100.8630 30680.5800 13.4387 -0.0583 0.1911

It is clear from Table 2 that the GKw-E distribution is numerically versatile in mean and
variance. Also, the values of CS reveal that it can be right-skewed, almost symmetrical,
and slightly left-skewed. The values of CK indicate that the GKw-E distribution can be
mesokurtic, leptokurtic (thin bell shape) and platykurtic (flat bell shape). All these charac-
teristics illustrate a certain flexibility of the GKw-E distribution, which remains attractive
for modelling purposes.

In addition, the r-th incomplete moment is obtained as, for t ≥ 0,

Ir(t) =
∫ t

−∞

xr fGKw−E(x)dx =
+∞

∑
m=1

w∗∗m

∫ t

0
xre−λmxdx =

1
λ r+1

+∞

∑
m=1

w∗∗m
1

mr+1 γ(r+1,λmt).

The incomplete moments are useful to determine other important mathematical quantities
such as the Bonferroni and Lorenz curves, mean residual-life, mean waiting-time, mean
deviation about the mean and mean deviation about the median.

4. Estimation and application

In this section, we adopt the GKw-E distribution as a model and consider the estimation of
the unknown parameters by the maximum likelihood method. In addition, the convergence
of the obtained estimates is investigated through a simulation study and applications are
given to two practical data sets.
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4.1. Method of estimation

The usefulness of the maximum likelihood estimates (MLEs) in statistical inference is due
to their theoretical and practical merits. The log-likelihood function for the vector of pa-
rameters Ω =

(
a,b,α,λ

)> is given by

`(Ω) = n log(a)+n log(b)−n log [Γ(α)]+n log(λ )−λ

n

∑
i=1

xi +(a−1)
n

∑
i=1

log
[
1− e−λxi

]
− (b+1)

n

∑
i=1

log
[
1−
(

1− e−λxi
)a]

+(α−1)
n

∑
i=1

log
[{

1−
(

1− e−λxi
)a}−b

−1
]
+n

−
n

∑
i=1

{
1−
(

1− e−λxi
)a}−b

.

The MLEs of the parameters are defined by Ω̂ =
(
â, b̂, α̂, λ̂

)> making maximum the log-
likelihood function `(Ω) with respect to Ω. Since they have no closed forms, one can use
standard statistical software to approximate them. Also, let us mention that the observed
Fisher information for the MLEs can be computed, allowing the construction of confidence
intervals for the parameters based on the limiting normal distribution. In particular, this is
useful to examine the probability coverage of these intervals through simulation.

4.2. A numerical study

Now, we assess the performance of the maximum likelihood method for estimating the
GKw-E parameters by using Monte Carlo simulations. The simulation study is repeated
5000 times each with sample sizes n = 50, 100, 200 and the following parameter scenarios
are followed: I: a = 0.5, b = 0.5, α = 0.5, and λ = 1, II: a = 0.3, b = 1.5, α = 0.7, and
λ = 2.5 and III: a = 1.7, b = 0.7, α = 0.2, and λ = 0.3, IV: a = 0.1, b = 2.5, α = 1.1,
and λ = 1.5,V: a = 2.5, b = 1.7, α = 2.5, and λ = 1, VI: a = 1.8, b = 1.7, α = 2.1, and
λ = 0.1. Under this setting, Table 3 gives the average biases (Bias) of the MLEs, mean
square errors (MSEs) and model-based coverage probabilities (CPs) for the parameters a,
b, α and λ . Based on these results, we conclude that the MLEs perform quite well in
estimating the parameters. In addition, the CPs of the confidence intervals are quite close to
the 95% nominal level. Therefore, the MLEs and their asymptotic results can be adopted to
estimate and construct efficiently confidence intervals for the model parameters.
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Table 3: Monte Carlo simulation results for the GKw-E distribution: Biases, MSEs and
CPs.

I II III

n Bias MSE CP Bias MSE CP Bias MSE CP

a 50 −0.015 0.051 0.98 −0.008 0.044 0.94 0.810 14.386 0.85
100 0.007 0.047 0.97 0.023 0.049 0.95 0.616 4.488 0.90
200 0.039 0.045 0.96 0.004 0.037 0.95 0.576 2.908 0.95

b 50 −0.140 0.162 0.97 −0.404 1.318 0.90 0.244 3.047 0.97
100 −0.125 0.127 0.97 −0.217 0.918 0.96 0.307 2.484 0.98
200 −0.113 0.104 0.95 −0.072 0.477 0.99 0.287 0.977 0.99

α 50 0.153 0.257 0.91 0.465 1.300 0.92 0.452 1.404 0.83
100 0.084 0.116 0.91 0.307 0.710 0.93 0.225 0.989 0.89
200 0.046 0.082 0.89 0.306 0.628 0.96 0.139 0.958 0.96

λ 50 1.807 6.527 0.95 2.601 2.726 0.92 0.752 1.324 1.00
100 1.461 4.742 0.94 1.136 1.129 0.93 0.555 1.002 1.00
200 1.180 3.136 0.95 0.202 0.847 0.97 0.364 0.743 0.97

IV V VI

n Bias MSE CP Bias MSE CP Bias MSE CP

a 50 −0.904 1.154 0.65 0.146 0.535 0.94 0.441 1.253 0.95
100 −0.665 0.461 0.92 0.164 0.309 0.95 0.194 0.579 0.96
200 −0.002 0.019 0.97 0.195 0.228 0.97 0.015 0.263 0.99

b 50 −0.032 0.349 0.98 0.172 0.241 1.00 0.018 0.893 0.95
100 0.014 0.333 0.98 0.053 0.065 0.96 0.072 0.633 0.96
200 −0.051 0.052 0.96 0.001 0.031 0.97 0.136 0.438 0.98

α 50 0.477 0.480 0.89 0.311 0.163 0.99 −0.158 0.112 0.97
100 0.270 0.163 0.96 0.271 0.132 0.95 −0.145 0.106 0.96
200 −0.051 0.052 0.98 0.222 0.100 0.96 −0.148 0.110 0.97

λ 50 0.337 0.601 0.99 −0.062 0.022 0.95 0.179 0.298 0.95
100 0.214 0.284 0.96 −0.059 0.017 0.96 0.204 0.323 0.96
200 0.243 0.814 0.98 −0.051 0.011 0.98 0.253 0.392 0.97

4.3. Application

Here, we compare the proposed GKw-E model with well-known models in the fitting of two
real data sets.

Application 1. The first data set is reported in Ristic and Balakrishnan (2012). The data
represent the annual maximum precipitation (inches) for one rain gauge in Fort Collins,
Colorado from 1900 through 1999. The data are as follows: 239, 232, 434, 85, 302, 174,
170, 121, 193, 168, 148, 116, 132, 132, 144, 183, 223, 96, 298, 97, 116, 146, 84, 230, 138,
170, 117, 115, 132, 125, 156, 124, 189, 193, 71, 176, 105, 93, 354, 60, 151, 160, 219, 142,
117, 87, 223, 215, 108, 354, 213, 306, 169, 184, 71, 98, 96, 218, 176, 121, 161, 321, 102,
269, 98, 271, 95, 212, 151, 136, 240, 162, 71, 110, 285, 215, 103, 443, 185, 199, 115, 134,
297, 187, 203, 146, 94, 129, 162, 112, 348, 95, 249, 103, 181, 152, 135, 463, 183, 241.

In the statistical literature, several models are appropriate to the analysis of such kinds
of data. The most commonly used are the lognormal, generalized logistic (GL), Gumbel,
gamma, Weibull and generalized binomial exponential 2 (GBE2) models. Several exten-
sions have also been introduced by this purpose. Here, in order to highlight the potentiality
of the GKw-E model, the comparison is made between the GKw-E model and eights noto-
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rious models: the Kumaraswamy Weibull (Kw-W) model studied by Cordeiro et al. (2010),
the Beta Weibull (BW) model elaborated by Lee et al. (2007), the exponentiated gener-
alized Weibull (EGW) model by Oguntunde et al. (2015), the generalized binomial expo-
nential 2 (GBE2) model introduced by Asgharzadeh et al. (2016), the generalized logistic
(GL) model, and some classic models, which are the Gumbel, gamma and Weibull models.
We estimate the unknown model parameters by the maximum likelihood method (as de-
scribed in Section 4 for the GKw-E model). For the comparison of the models, we consider
three well-known statistics: Akaike information criterion (AIC), Anderson-Darling (A∗),
Cramér–von Mises (W ∗) and Kolmogorov-Smirnov (K-S) measures, where lower values of
these statistics indicate good fits.

Table 4 lists the MLEs and standard errors for the considered models. Table 5 lists the
AIC, A∗, W ∗ and K-S for the considered models. The values of the statistics in Table 5
indicate that the GKw-E model shows small values of the statistics and thus provides the
best fit compared to the other models. Figure 2 shows the graphs of the estimated pdf of the
GKw-E model over the histogram of the data, along with the graphs of the pdfs of the top
four competitors.

Table 4: MLEs and their standard errors (in parentheses) for Precipitation data.

α β a b µ σ θ λ

GKw-E 0.2975 - 67.1975 0.1802 - - - 0.0261
(0.1594) - (24.7418) (0.0599) - - - (0.0072)

Kw-W 0.0228 1.3122 13.4486 0.2461 - - - -
(0.0053) (0.2462) (7.6120) (0.1229) - - - -

BW 0.0243 1.4375 12.6298 0.1734 - - - -
(0.0033) (0.0193) (5.5638) (0.0446) - - - -

EGW 0.3105 0.7061 0.2357 27.1942 - - - -
(0.0148) (0.0117) (0.0276) (7.6257) - - - -

GBE2 9.0774 - - - - - 0.0222 0.0165
(1.9764) - - - - - (0.3265) (0.0029)

GL 13.5845 0.0174 - - -8.5348 - - -
(6.8592) (0.0015) - - (35.1221) - - -

Gumbel - - - - 139.8754 57.8420 - -
- - - - (6.0596) (4.7356) - -

Gamma 33.2955 5.2761 - - - - - -
(4.7925) (0.7239) - - - - - -

Weibull 0.0051 2.2608 - - - - - -
(0.0002) (0.1628) - - - - - -
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Table 5: The statistics AIC, A∗, W ∗ and K-S for Precipitation data.

Distribution AIC A∗ W ∗ K-S

GKw-E 1137.2320 0.1664 0.0187 0.0421
Kw-W 1138.0280 0.1831 0.0212 0.0430
BW 1137.7220 0.1844 0.0210 0.0429
EGW 1138.7100 0.2045 0.0259 0.0481
GBE2 1138.9210 0.3655 0.0482 0.0573
GL 1143.1390 0.6335 0.0872 0.0565
Gumbel 1139.2900 0.4990 0.0675 0.0640
Gamma 1141.9400 0.7732 0.1088 0.0600
Weibull 1156.2860 1.8272 0.2927 0.0950
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Figure 2: Estimated pdfs of the top models for Precipitation data.

Application 2. The second data set was reported by professor Jim Irish and can be ob-
tained at http://www.statsci.org/data/oz/kiama.html. It is about the Kiama Blowhole erup-
tions. The data are as follows: 83, 51, 87, 60, 28, 95, 8, 27, 15, 10, 18, 16, 29, 54, 91, 8, 17,
55, 10, 35, 47, 77, 36, 17, 21, 36, 18, 40,10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69,
9, 37, 10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12.

Table 6 lists the MLEs and standard errors for the considered models. Table 7 lists the
AIC, A∗, W ∗ and K-S for the considered models. It is clear that the GKw-E model provides
a better fit than the other tested models, because it has the smallest value among AIC, A∗,
W ∗ and K-S. Figure 3 shows the graphs of the estimated pdf of the GKw-E model over the
histogram of the data, along with the graphs of the pdfs of the four main competitors.
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Table 6: MLEs and their standard errors (in parentheses) for the Kiama Blowhole eruptions
data.

α β a b µ σ θ λ

GKw-E 0.4154 - 17.7076 0.0481 - - - 0.2063
(0.0545) - (0.2513) (0.0072) - - - (0.0046)

Kw-W 0.3410 0.8685 10.4397 0.1396 - - - -
(0.0026) (0.0022) (0.0083) (0.0168) - - - -

BW 0.5484 0.7937 13.5819 0.1336 - - - -
(0.0025) (0.0025) (4.8229) (0.0177) - - - -

EGW 2.5406 0.3714 0.7506 26.1285 - - - -
(9.4366) (0.2260) (3.0932) (0.8858) - - - -

GBE2 1.7325 - - - - - 0.0048 0.0350
(0.3190) - - - - - (0.5680) (0.0111)

GL 21.5045 0.0473 - - -38.5692 - - -
(6.5526) (0.0048) - - (7.8114) - - -

Gumbel - - - - 25.6833 21.8407 - -
- - - - (2.8506) (2.3260) - -

Gamma 24.5722 1.6207 - - - - - -
(4.6509) (0.2623) - - - - - -

Weibull 0.0230 1.2701 - - - - - -
(0.0023) (0.1199) - - - - - -

Table 7: The statistics AIC, A∗, W ∗ and K-S for the Kiama Blowhole eruptions data.

Distribution AIC A∗ W ∗ K-S
GKw-E 589.2545 0.4614 0.0530 0.0708
Kw-W 591.0460 0.6231 0.0819 0.0954
BW 591.6412 0.6366 0.0840 0.1023
EGW 595.9134 0.8324 0.1134 0.0946
GBE2 597.3321 0.9009 0.1287 0.1227
GL 612.7799 1.5554 0.2440 0.1517
Gumbel 609.6039 1.5124 0.2361 0.1493
Gamma 595.7988 0.9220 0.1324 0.1215
Weibull 597.8029 1.0058 0.1467 0.1111
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Figure 3: Estimated pdfs of the top models for Kiama Blowhole eruptions data.

5. Concluding remarks

In this paper, we introduce the GKw-G family of distributions, with a focus on a special
model, the GKw-E model, defined with the exponential distribution as the parent. A com-
plete theoretical treatment is developed, with a focus on the skewness, kurtosis, analyti-
cal comportments of the main functions, moments, stochastic ordering and order statistics.
Then, the proposed family is considered from the statistical point of view. The maximum
likelihood method is employed for estimating the model parameters. We analyse two prac-
tical data sets to demonstrate the usefulness of the new family, with fair comparison to other
models. The results are strictly favourable to the GKw-E model. We hope that the pro-
posed family and its generated models will attract wider applications in various areas such
as engineering, survival and lifetime data, hydrology and economics.
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