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Comparing particulate matter dispersion in Thailand using
the Bayesian Confidence Intervals for ratio of coefficients

of variation
Warisa Thangjai1, Suparat Niwitpong2

ABSTRACT

Recently, harmful levels of air pollution have been detected in many provinces of Thailand.
Particulate matter (PM) contains microscopic solids or liquid droplets that are so small that
they can be inhaled and cause serious health problems. A high dispersion of PM is measured
by a coefficient of variation of log-normal distribution. Since the log-normal distribution is
often used to analyse environmental data such as hazardous dust particle levels and daily
rainfall data. These data focus the statistical inference on the coefficient of variation. In
this paper, we develop confidence interval estimation for the ratio of coefficients of variation
of two log-normal distributions constructed using the Bayesian approach. These confidence
intervals were then compared with the existing approaches: method of variance estimates
recovery (MOVER), modified MOVER, and approximate fiducial approaches using their
coverage probabilities and average lengths via Monte Carlo simulation. The simulation re-
sults show that the Bayesian confidence interval performed better than the others in terms
of coverage probability and average length. The proposed approach and the existing ap-
proaches are illustrated using examples from data set PM10 level and PM2.5 level in the
northern Thailand.

Key words: Bayesian approach, coefficient of variation, confidence interval, log-normal
distribution, ratio.

1. Introduction

Nowadays, the problem of air pollution has received widespread attention in toxicol-
ogy and epidemiology studies because it is associated with increased incidences of human
disease and mortality rate (Xing et al., 2016). The effects on human health include the
cardiovascular system, resulting in heart attacks and heart failure, and the respiratory tract,
resulting in asthma and bronchitis. Smoke, dust, and smog create air pollution, which in-
cludes gaseous pollutants and particulate matter (PM): the gases include carbon monoxide,
sulphur dioxide, ozone, and nitrogen dioxide, while PM is defined by size, e.g. PM2.5
(≤ 2.5 µm) and PM10 (≤ 10 µm), and so on. People are at high risk when they live in
high PM levels. For PM2.5, both short-term and long-term exposure has been associated
with increased hospital admission and absenteeism from school, work, etc. Exposure to
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PM2.5 can also result in emergency room visits for asthma symptoms whereas exposure
to the PM10 can result in hospitalization of chronic lung disease and/or premature death.
Moreover, PM2.5 and PM10 can damage stone and culturally important objects such as
monuments and statues. Thailand is a country located in Southeast Asia. It covers a total
land area of approximately 513,000 km2 and is divided into six regions used in geographic
studies: north, northeast, central, east, west, and south. These are based on natural features
and human cultural patterns. Recently, Thailand has faced the PM problem resulting in
the deterioration of air quality. Harmful levels have been detected in the north region of
Thailand, in Chiang Mai, Chiang Rai, Lampang, Mae Hong Son, Nan, Phrae, and Phayao
provinces. The coefficient of variation can be used as a statistic to describe air quality and
thus can be used to measure and manage air pollution risk.

Meanwhile, several authors have discussed which parameter should be used in statistical
inference for a log-normal distribution (Lacey et al., 1997; Royston, 2001; Krishnamoorthy
and Mathew, 2003; Hannig et al., 2006; Tian and Wu, 2007; Sharma and Singh, 2010; Har-
vey and van der Merwe, 2012; Lin and Wang, 2013; Rao and D’Cunha, 2016; Thangjai et
al., 2016; Nam and Kwon, 2017; Hasan and Krishnamoorthy, 2017; Thangjai and Niwit-
pong, 2019). Furthermore, the coefficient of variation has been used in various applications
(Tsim et al., 1991; Faupel-Badger et al., 2010). In addition, the confidence intervals for the
coefficient of variation have received some attention recently (Niwitpong, 2013; Ng, 2014;
Thangjai et al., 2016; Nam and Kwon, 2017; Hasan and Krishnamoorthy, 2017). The in-
ference with the log-normal coefficient of variation is interesting. Nam and Kwon (2017)
proposed the method of variance estimate recovery (MOVER) approach for constructing
the confidence intervals for the ratio of coefficients of variation of log-normal distributions.
Meanwhile, Hasan and Krishnamoorthy (2017) improved the confidence intervals for the ra-
tio of coefficients of variation of log-normal distributions based on an alternative MOVER
approach and the fiducial approach.

Both these approaches have produced classical statistics, and while some problems are
best solved using these, others are best solved using the Bayesian approach. Therefore, in
this paper, we extend the research idea from Hasan and Krishnamoorthy (2017) to develop
the Bayesian approach for confidence interval estimation of the ratio of coefficients of vari-
ation of log-normal distributions. The Bayesian approach is a statistical method based on
Bayes’ theorem, which is used to update the probability. The method derives the posterior
probability that is the result of a prior probability and a likelihood function. This is advan-
tageous in the interpretation and construction of the Bayesian confidence interval, which
makes it more straightforward than the classical confidence interval approaches. However,
a disadvantage is that the Bayesian confidence interval requires more input than the classi-
cal approach (Casella and Berger, 2002). The Bayesian approach for parameter estimation
has been addressed in several research papers (Harvey and van der Merwe, 2012; Rao and
D’Cunha, 2016; Ma and Chen, 2018).

2. Methods

Suppose that random samples X1 and X2 follow two independent normal distributions
with means µ1 and µ2 and variances σ2

1 and σ2
2 , respectively. Also, suppose that Y1 and Y2
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are random samples of sizes n1 and n2 from two independent log-normal distributions with
parameters µ1, σ2

1 , µ2, and σ2
1 , respectively. The mean and variance of Y1 are

E(Y1) = exp(µ1 +σ
2
1 /2) and Var(Y1) = (exp(σ2

1 )−1)(exp(2µ1 +σ
2
1 )). (1)

The coefficient of variation of Y1 is

τ1 = E(Y1)/
√

Var(Y1) =
√

exp(σ2
1 )−1. (2)

Similarly, the mean and variance of Y2 are

E(Y2) = exp(µ2 +σ
2
2 /2) and Var(Y2) = (exp(σ2

2 )−1)(exp(2µ2 +σ
2
2 )). (3)

The coefficient of variation of Y2 is

τ2 = E(Y2)/
√

Var(Y2) =
√

exp(σ2
2 )−1. (4)

The ratio of two coefficients of variation is given by

θ =
τ1

τ2
=

√
exp(σ2

1 )−1
exp(σ2

2 )−1
. (5)

The estimator of θ is

θ̂ =
τ̂1

τ̂2
=

√
exp(S2

1)−1
exp(S2

2)−1
, (6)

where S2
1 and S2

2 are the variances of the log-transformed sample from a log-normal distri-
butions.

This section describes the three existing confidence intervals. One is the MOVER con-
fidence interval introduced by Nam and Kwon (2017). The modified MOVER and ap-
proximate fiducial confidence intervals are proposed by Hasan and Krishnamoorthy (2017).
Furthermore, the Bayesian confidence interval, which is a novel approach, is presented.

2.1. Classical confidence intervals for ratio of coefficients of variation

Three confidence intervals for the ratio of coefficients of variation of log-normal distri-
butions are presented.

2.1.1 MOVER confidence interval for ratio of coefficients of variation

Donner and Zou (2002) and Zou and Donner (2008) describe a theorem of MOVER.
The lower limit L and the upper limit U are used to derive the variance estimates for θ ,
which is ranging from L to θ̂ and from θ̂ to U . The variance estimate recovered from the
lower tail of θ is (θ̂ −L)2/z2, where z denotes the 100(α/2)-th percentile of the standard
normal distribution. Similarly, the variance estimate recovered from the upper tail of θ is
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(U − θ̂)2/z2. These variance estimates are used to construct the lower and upper limits of
the confidence interval for θ .

Nam and Kwon (2017) introduced the MOVER approach for constructing the confi-
dence interval for the ratio of coefficients of variation of two log-normal distributions. The
MOVER confidence interval can be obtained from the one for ln(θ) = ln(τ1)− ln(τ2). The
variances of ln(τ̂1) and ln(τ̂2) are given by

ˆVar(ln(τ̂1)) =
σ̂2

1 (1+ τ̂2
1 )

2

2n1τ̂4
1

(7)

and
ˆVar(ln(τ̂2)) =

σ̂2
2 (1+ τ̂2

2 )
2

2n2τ̂4
2

, (8)

where σ̂2
1 = (n1−1)S2

1/n1 and σ̂2
2 = (n2−1)S2

2/n2 are the maximum likelihood estimates
of σ2

1 and σ2
2 , respectively.

The confidence intervals of ln(τ1) and ln(τ2) are given by

[l
′
1,u

′
1] = [ln(τ̂1)− z1−α/2

√
ˆVar(ln(τ̂1)), ln(τ̂1)+ z1−α/2

√
ˆVar(ln(τ̂1))] (9)

and
[l
′
2,u

′
2] = [ln(τ̂2)− z1−α/2

√
ˆVar(ln(τ̂2)), ln(τ̂2)+ z1−α/2

√
ˆVar(ln(τ̂2))], (10)

where z1−α/2 is the 100(1− α/2)-th percentile of the standard normal distribution and
ˆVar(ln(τ̂1)) and ˆVar(ln(τ̂2)) are defined in Equation (7) and Equation (8).

The lower and upper limits of the confidence interval for ln(θ) = ln(τ1)− ln(τ2) based
on the MOVER approach are given by

Lθ .MOV ER = ln(τ̂1)− ln(τ̂2)−
√

(ln(τ̂1)− l ′1)
2 +(ln(τ̂2)−u′2)

2 (11)

and
Uθ .MOV ER = ln(τ̂1)− ln(τ̂2)+

√
(ln(τ̂1)−u′1)

2 +(ln(τ̂2)− l ′2)
2. (12)

Therefore, the 100(1−α)% MOVER confidence interval for ratio of coefficients of
variation θ is defined as

CIθ .MOV ER = [Lθ .MOV ER,Uθ .MOV ER] = [exp(Lθ .MOV ER),exp(Uθ .MOV ER)]. (13)

2.1.2 Modified MOVER confidence interval for ratio of coefficients of variation

Hasan and Krishnamoorthy (2017) extended the research paper from Nam and Kwon
(2017) to propose the new confidence interval for the ratio of coefficients of variation based
on the MOVER approach. The new confidence interval is called modified MOVER confi-
dence interval. Hasan and Krishnamoorthy (2017) used the exact confidence intervals for
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τ2
1 and τ2

2 given by

[l
′′
1 ,u

′′
1] = [exp

(
(n1−1)S2

1

χ2
n1−1,α/2

)
−1,exp

(
(n1−1)S2

1

χ2
n1−1,1−α/2

)
−1] (14)

and

[l
′′
2 ,u

′′
2] = [exp

(
(n2−1)S2

2

χ2
n2−1,α/2

)
−1,exp

(
(n2−1)S2

2

χ2
n2−1,1−α/2

)
−1], (15)

where χ2
ni−1,1−α/2 and χ2

ni−1,α/2 denote the 100(1−α/2)-th and 100(α/2)-th percentiles
of the chi-squared distribution with ni−1 degrees of freedom for i = 1,2.

The lower and upper limits of the modified MOVER confidence interval for ln(τ1/τ2)
2

are given by

LMMOV ER = ln(τ̂2
1 )− ln(τ̂2

2 )−
√
(ln(τ̂2

1 )− ln(l ′′1))2 +(ln(τ̂2
2 )− ln(u′′2))2 (16)

and
UMMOV ER = ln(τ̂2

1 )− ln(τ̂2
2 )+

√
(ln(τ̂2

1 )− ln(u′′1))2 +(ln(τ̂2
2 )− ln(l ′′2))2, (17)

where τ̂2
1 = exp(S2

1)−1 and τ̂2
2 = exp(S2

2)−1.
Therefore, the 100(1−α)% modified MOVER confidence interval for ratio of coeffi-

cients of variation θ is defined as

CIθ .MMOV ER = [Lθ .MMOV ER,Uθ .MMOV ER] = [
√

exp(LMMOV ER),
√

exp(UMMOV ER)]. (18)

2.1.3 Approximate fiducial confidence interval for ratio of coefficients of variation

The fiducial confidence interval is computed based on a fiducial quantity. The coeffi-
cient of variation of log-normal distribution is used the fiducial quantity for σ2 only. This
is because the coefficient of variation is the function of σ2 only. The percentiles of fiducial
generalized pivotal quantity for ratio of coefficients of variation is estimated using simu-
lation. To avoid using the simulation, Hasan and Krishnamoorthy (2017) used modified
normal based approximation to construct the approximate fiducial confidence interval. Let
s2

1 and s2
2 be observed values of S2

1 and S2
2, respectively.

The lower and upper limits of the approximate fiducial confidence interval for ln(τ1/τ2)
2

are given by

LAF = ln(T1;0.5)− ln(T2;0.5)−
√
(ln(T1;0.5)− ln(T1;α/2))2 +(ln(T2;0.5)− ln(T2;1−α/2))2

(19)
and

UAF = ln(T1;0.5)− ln(T2;0.5)+
√

(ln(T1;0.5)− ln(T1;1−α/2))2 +(ln(T2;0.5)− ln(T2;α/2))2,

(20)
where Ti;p = exp((ni−1)S2

i /χ2
ni−1,p)−1 and χ2

ni−1,p is the 100(p)-th percentile of the chi-
squared distribution with ni−1 degrees of freedom, respectively.
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Therefore, the 100(1−α)% approximate fiducial confidence interval for the ratio of
coefficients of variation θ is defined as

CIθ .AF = [Lθ .AF ,Uθ .AF ] = [
√

exp(LAF),
√

exp(UAF)]. (21)

2.2. Bayesian confidence interval for ratio of coefficients of variation

Bayesian confidence interval is constructed using the concept of Bayesian inference.
The Bayesian confidence interval uses a prior distribution. This distribution is based on the
experimenter’s belief and is updated with the sample information. The Bayesian confidence
interval derives a posterior probability as a consequence of a prior probability and a like-
lihood function. Posterior probability is computed by Bayes’ theorem. Let X1 = ln(Y1) be
the normal distribution with mean µ1 and variance σ2

1 . Also, let X2 = ln(Y2) be the normal
distribution with mean µ2 and variance σ2

2 .The likelihood function for µ1, µ2, σ2
1 and σ2

2 is

L(µ1,µ2,σ
2
1 ,σ

2
2 |data) ∝

(
1

σ2
1

)n1/2

exp
(
− (n1−1)s2

1 +n1(µ1− x̄1)
2

2σ2
1

)
×

(
1

σ2
2

)n2/2

exp
(
− (n2−1)s2

2 +n2(µ2− x̄2)
2

2σ2
2

)
, (22)

where i = 1,2 and x̄i and s2
i are the observed values of X̄i and S2

i , respectively.
Taking the logarithm of the likelihood function, the log-likelihood function is obtained

by

ln(L) = −n1

2
ln(σ2

1 )−
(n1−1)s2

1 +n1(µ1− x̄1)
2

2σ2
1

− n2

2
ln(σ2

2 )−
(n2−1)s2

2 +n2(µ2− x̄2)
2

2σ2
2

. (23)

The second derivatives of log-likelihood function with respect to each parameter are

∂ 2 ln(L)
∂ µ2

1
=− n1

σ2
1

and
∂ 2 ln(L)

∂ µ2
2

=− n2

σ2
2
, (24)

∂ 2 ln(L)
∂ µ1∂σ2

1
=

n1(µ1− x̄1)

(σ2
1 )

2 and
∂ 2 ln(L)
∂ µ2∂σ2

2
=

n2(µ2− x̄2)

(σ2
2 )

2 , (25)

∂ 2 ln(L)
(∂σ2

1 )
2 =

n1

2

(
1

σ2
1

)2

−
(

1
σ2

1

)3

((n1−1)s2
1 +n1(µ1− x̄1)

2), (26)

∂ 2 ln(L)
(∂σ2

2 )
2 =

n2

2

(
1

σ2
2

)2

−
(

1
σ2

2

)3

((n2−1)s2
2 +n2(µ2− x̄2)

2), (27)

and
∂ 2 ln(L)
∂σ2

1 ∂σ2
2
= 0 and

∂ 2 ln(L)
∂σ2

2 ∂σ2
1
= 0. (28)
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The Fisher information matrix is

F(µ1,µ2,σ
2
1 ,σ

2
2 ) =



n1
σ2

1
0 0 0

0 n2
σ2

2
0 0

0 0 n1
2

(
1

σ2
1

)2
0

0 0 0 n2
2

(
1

σ2
2

)2

 . (29)

The Bayesian confidence intervals can be construct based on different choices of prior
distributions. This paper is interested in the Jeffreys Independence prior. This prior follows
from the Fisher information matrix. According the Fisher information matrix, the Jeffreys
Independence prior is

p(µ1,µ2,σ
2
1 ,σ

2
2 ) = p(µ1,µ2)p(σ2

1 ,σ
2
2 ). (30)

The joint prior for the mean is

p(µ1,µ2) ∝

∣∣∣∣∣
n1
σ2

1
0

0 n2
σ2

2

∣∣∣∣∣
1/2

. (31)

The joint prior for the variance is

p(σ2
1 ,σ

2
2 ) ∝

∣∣∣∣∣∣∣
n1
2

(
1

σ2
1

)2
0

0 n2
2

(
1

σ2
2

)2

∣∣∣∣∣∣∣
1/2

. (32)

Therefore, the Jeffreys Independence prior is obtained by

p(µ1,µ2,σ
2
1 ,σ

2
2 ) ∝

1
σ2

1

(
1

σ2
2

)
. (33)

The conditional posterior distributions of µ1 and µ2 are normal distributions. The con-
ditional posterior distributions are given by

µ1|σ2
1 ,x1 ∼ N

(
µ̂1,

σ2
1

n1

)
(34)

and

µ2|σ2
2 ,x2 ∼ N

(
µ̂2,

σ2
2

n2

)
. (35)

For σ2
1 and σ2

2 , the posterior distributions are the inverse gamma distributions given by

σ
2
1 |x1 ∼ IG(

n1−1
2

,
(n1−1)s2

1
2

) (36)
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and

σ
2
2 |x2 ∼ IG(

n2−1
2

,
(n2−1)s2

2
2

). (37)

The posterior distribution of ln(τ1/τ2)
2 is given by

ln(θ)2 = ln
(

τ1

τ2

)2

= ln(exp(σ2
1 )−1)− ln(exp(σ2

2 )−1), (38)

where σ2
1 and σ2

2 are defined in Equation (36) and Equation (37), respectively.
Let LBS and UBS be the lower and upper limits of the shortest 100(1−α)% highest

posterior density interval of ln(θ)2, respectively. Therefore, the 100(1−α)% Bayesian
confidence interval for ratio of coefficients of variation θ is defined as

CIθ .BS = [Lθ .BS,Uθ .BS] = [
√

exp(LBS),
√

exp(UBS)]. (39)

Algorithm 1

Step 1: Generate σ2
i |xi ∼ IG( ni−1

2 ,
(ni−1)s2

i
2 ), where i = 1,2.

Step 2: Calculate the value of ln(θ)2 as given in Equation (38).
Step 3: Repeat the step 1 - step 2 for q times.
Step 4: Calculate LBS and UBS.
Step 5: Calculate Lθ .BS and Uθ .BS.

Algorithm 2

For a given n1, n2, µ1, µ2, σ1, σ2, and θ .
Step 1: Generate x1 from N(µ1,σ

2
1 ) and generate x2 from N(µ2,σ

2
2 ).

Step 2: Calculate x̄1, x̄2, s2
1 and s2

2.
Step 3: Construct CIθ .MOV ER(h) = [Lθ .MOV ER(h),Uθ .MOV ER(h)].
Step 4: Construct CIθ .MMOV ER(h) = [Lθ .MMOV ER(h),Uθ .MMOV ER(h)].
Step 5: Construct CIθ .AF(h) = [Lθ .AF(h),Uθ .AF(h)].
Step 6: Construct CIθ .BS(h) = [Lθ .BS(h),Uθ .BS(h)].
Step 7: If L(h) ≤ θ ≤U(h) set p(h) = 1, else p(h) = 0.
Step 8: Calculate U(h)−L(h).
Step 9: Repeat the step 1 - step 8 for a large number of times (say, M times) and calculate
coverage probability and average length.

3. Results

The MOVER, modified MOVER, approximate fiducial and Bayesian confidence in-
tervals for ratio of coefficients of variation were conducted to compare the performance.
The confidence intervals with the coverage probability greater than or equal to the nominal
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confidence level of 0.95 and the shortest average length were considered to be the best-
performing ones.

Since the log-normal coefficient of variation depends on parameter σ2 and does not
depend on parameter µ , the population means µ1 = µ2 = 1, the population standard devia-
tions (σ1,σ2) and sample sizes (n1,n2) were varied based on Hasan and Krishnamoorthy’s
(2017) approach. The coverage probabilities and average lengths were estimated for some
assumed values of parameters (σ1,σ2) and sample sizes varying from small to moderate.
10,000 random samples were generated using Algorithm 2 for each set of parameters. For
the Bayesian confidence interval, 2,500ln(θ)2’s were obtained by applying Algorithm 1 for
each of the random samples.

The coverage probabilities and average lengths of the four confidence intervals are given
in Tables 1 and 2. The MOVER confidence intervals attained coverage probabilities under
the nominal confidence level of 0.95 for all sample sizes. Meanwhile, the coverage proba-
bilities of the modified MOVER and approximate fiducial confidence intervals were close
to the nominal confidence level of 0.95, but their average lengths were not balanced. The
Bayesian confidence intervals provided the best coverage probabilities for all sample sizes
and the average lengths were shorter than those of the modified MOVER and approximate
fiducial confidence intervals. Overall, the Bayesian confidence intervals are preferable in
terms of coverage probability and average length.
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4. Empirical application

PM10 and PM2.5 from haze smog in Chiang Mai and Nan provinces, in the northern of
Thailand, have become serious problems with air pollution having serious effects on health
and visibility for transportation. The data in Tables 3 and 6 from the Pollution Control
Department show PM10 and PM2.5 levels in Chiang Mai and Nan provinces from 24 March
2019 to 17 April 2019. Moreover, PM2.5 levels in Bangkok and Chiang Rai provinces from
24 March 2019 to 17 April 2019 are presented in Table 9. The confidence intervals for the
ratio of coefficients of variation were constructed using these data.

4.1. Example 1

Using Table 3, the statistics of PM10 pollution are summarized in Table 4. In Table 5,
the Akaike Information Criterion values support that the two datasets follow log-normal
distributions. These two districts were compared with respect to the coefficient of variation.
The 95% two-sided confidence intervals were constructed based on the MOVER, modi-
fied MOVER, and approximate fiducial approaches, and then compared with the Bayesian
approach.

The ratio of the log-normal coefficients of variation for the Chiang Mai and Nan was
θ̂ = 0.9066. The confidence intervals based on the MOVER, modified MOVER, and ap-
proximate fiducial approaches were CIθ .MOV ER = [0.6009, 1.3676] with an interval length
of 0.7667, CIθ .MMOV ER = [0.5829, 1.3977] with an interval length of 0.8148, and CIθ .AF =

[0.5846, 1.3940] with an interval length of 0.8094. Meanwhile, the confidence interval
based on the Bayesian approach was CIθ .BS = [0.5972, 1.3604] with an interval length of
0.7632. These results indicate that all of the confidence intervals contained the true ratio
of the coefficients of variation. However, the Bayesian confidence interval provided the
shortest length.

4.2. Example 2

To assess the PM2.5 level in Chiang Mai and Nan provinces, we used the data in Ta-
ble 6 for the second analysis and summarized the statistics in Table 7. Using the Akaike
Information Criterion values in Table 8, we found that the two PM2.5 samples came from
log-normal populations.

The ratio of log-normal coefficients of variation for the Chiang Mai and Nan was θ̂ =

0.9654. The confidence intervals for the ratio based on MOVER, modified MOVER, and ap-
proximate fiducial approaches were CIθ .MOV ER = [0.6355, 1.4667], CIθ .MMOV ER = [0.6153,
1.5031], and CIθ .AF = [0.6171, 1.4988] with interval lengths of 0.8312, 0.8878, and 0.8817,
respectively. Meanwhile, the confidence interval for the Bayesian approach was CIθ .BS =

[0.6274, 1.4457] with an interval length of 0.8183. The interval length of the Bayesian
approach was shorter than the others, thus it more accurately estimated the coefficient of
variation ratio for these two log-normal populations.
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4.3. Example 3

The PM2.5 levels of Bangkok and Chiang Rai provinces in Table 9 were used to con-
struct the confidence intervals for the ratio of coefficients of variation for comparing the
dispersion of PM 2.5 with different levels. The statistics and the Akaike Information Crite-
rion values were presented in Table 10 and Table 11, respectively. The result showed that
the PM2.5 levels samples came from log-normal distributions.

The ratio of coefficients of variation of log-normal distributions for the Bangkok and
Chiang Rai was θ̂ = 0.5300. The confidence intervals for the ratio based on MOVER, mod-
ified MOVER, and approximate fiducial approaches wereCIθ .MOV ER = [0.3519,0.7984],
CIθ .MMOV ER = [0.3401,0.8130], and CIθ .AF = [0.3411,0.8111] with interval lengths of 0.4465,
0.4729, and 0.4700, respectively. Moreover, the confidence interval for the Bayesian ap-
proach was CIθ .BS = [0.3458,0.7901] with an interval length of 0.4443. The Bayesian con-
fidence interval had the shortest interval length.

5. Discussion

Nam and Kwon (2017) proposed the MOVER approach for constructing the confidence
intervals for the ratio of coefficients of variation of two log-normal distributions, while
Hasan and Krishnamoorthy (2017) constructed them based on modified MOVER and ap-
proximate fiducial approaches and compared them with the MOVER approach. In this
paper, we propose the Bayesian approach for the confidence interval estimation of the ratio
of coefficients of variation of log-normal distributions.

6. Conclusions

Using the data examples from data set PM10 level and PM2.5 level in the northern
Thailand, all approaches were illustrated with real data analysis. The performance of the
Bayesian approach was compared to three existing approaches. The performances of the
confidence intervals agreed with our simulation studies. Since the coverage probability
of the Bayesian confidence interval was better than those of the others, and its average
length was also shorter. Therefore, the Bayesian approach is recommended to construct
the confidence intervals for the ratio of coefficients of variation of log-normal distributions
when the dispersions of PM10 level and PM2.5 level are at the harmful level (≥ 50µg/m3).
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APPENDIX

Table 3: PM10 levels in Chiang Mai province and Nan province (µg/m3)

Chiang Mai Nan
227 170 164 105 128 224 134 138 148 190
156 262 167 112 103 145 232 136 144 127
138 146 166 123 94 114 199 100 155 116
125 191 142 139 96 107 176 90 178 126
113 184 117 138 98 80 130 126 254

Source: Pollution Control Department (http://aqmthai.com/aqi.php)

Table 4: Statistics of PM10 levels in Chiang Mai province and Nan province

Statistics Chiang Mai Nan
n 25 24
ȳ 144.1600 148.7083
sY 41.2580 44.9662
x̄ 4.9355 4.9603

sX 0.2665 0.2931
τ̂ 0.2656 0.2930

Table 5: The minimum Akaike Information Criterion values of PM10 level in Chiang Mai
province and Nan province

Distribution Chiang Mai Nan
Normal 259.9186 253.7713

Log-Normal 254.5765 250.2824
Gamma 255.8663 250.9095

Exponential 299.5462 289.0954
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Figure 1: Histogram plots of PM10 level in Chiang Mai province and Nan province

Figure 2: The normal QQ-plots of log-PM10 level in Chiang Mai province and Nan province

Table 6: PM2.5 levels in Chiang Mai province and Nan province (µg/m3)

Chiang Mai Nan
189 129 124 69 92 192 104 111 115 154
118 213 126 72 68 118 199 107 108 100
100 109 125 83 64 88 167 73 119 90
92 147 105 99 66 86 146 61 136 89
82 145 79 102 62 55 105 96 209

Source: Pollution Control Department (http://aqmthai.com/aqi.php)

Table 7: Statistics of PM2.5 levels in Chiang Mai province and Nan province

Statistics Chiang Mai Nan
n 25 24
ȳ 106.4000 117.8333
sY 38.1335 41.3718
x̄ 4.6120 4.7125

sX 0.3324 0.3440
τ̂ 0.3346 0.3465
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Table 8: The minimum Akaike Information Criterion values of PM2.5 level in Chiang Mai
province and Nan province

Distribution Chiang Mai Nan
Normal 255.9811 249.7724

Log-Normal 249.4643 246.0677
Gamma 250.9027 246.5411

Exponential 284.3603 277.9250

Figure 3: Histogram plots of PM2.5 level in Chiang Mai province and Nan province

Figure 4: The normal QQ-plots of log-PM2.5 level in Chiang Mai province and Nan
province

Table 9: PM2.5 levels in Bangkok province and Chiang Rai province (µg/m3)

Bangkok Chiang Rai
30 19 18 25 19 184 89 109 63 104
22 19 21 15 14 147 228 77 72 85
22 23 15 16 14 79 254 77 79 74
20 19 22 16 15 77 140 83 82 113
20 23 17 18 13 86 132 82 104 162

Source: Pollution Control Department (http://aqmthai.com/aqi.php)
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Table 10: Statistics of PM2.5 levels in Bangkok province and Chiang Rai province

Statistics Bangkok Chiang Rai
n 25 25
ȳ 19.0000 111.2800
sY 3.9791 49.8795
x̄ 2.9242 4.6361

sX 0.2043 0.3762
τ̂ 0.2022 0.3815

Table 11: The minimum Akaike Information Criterion values of PM2.5 level in Bangkok
province and Chiang Rai province

Distribution Bangkok Chiang Rai
Normal 142.9793 269.4068

Log-Normal 140.7307 256.8566
Gamma 141.1844 260.2494

Exponential 198.2219 286.6025

Figure 5: Histogram plots of PM2.5 level in Bangkok province and Chiang Rai province

Figure 6: The normal QQ-plots of log-PM2.5 level in Bangkok province and Chiang Rai
province


