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Testing for a serial correlation in VaR failures through the 
exponential autoregressive conditional duration model 

Marta Małecka1 

ABSTRACT  

Although regulatory standards, currently developed by the Basel Committee on Banking 
Supervision, anticipate a shift from VaR to ES, the evaluation of risk models currently 
remains based on the VaR measure. Motivated by the Basel regulations, we address the issue 
of VaR backtesting and contribute to the debate by exploring statistical properties of the 
exponential autoregressive conditional duration (EACD) VaR test. We show that, under the 
null, the tested parameter lies at the boundary of the parameter space, which can profoundly 
affect the accuracy of this test. To compensate for this deficiency, a mixture of chi-square 
distributions is applied. The resulting accuracy improvement allows for the omission of the 
Monte Carlo simulations used to implement the EACD VaR test in earlier studies, which 
dramatically improves the computational efficiency of the procedure. We demonstrate that 
the EACD approach to testing VaR has the potential to enhance statistical inference in most 
problematic cases – for small samples and for those close to the null. 
Key words: VaR backtesting, exponential autoregressive conditional duration, boundary of 
the parameter space, test size, test power.  

1.  Introduction 

Value-at-Risk (VaR) and Expected Shortfall (ES) are two measures of market risk 
that dominate contemporary banking regulation. Since its original inception 
in business (JP Morgan, 1994) and incorporation to regulatory standards (Basel 
Committee on Banking Supervision, 1996), VaR has become an industry standard 
in market risk management. Its constantly widening range of applications include new 
types of risk and new markets. Despite its widespread use, however, it has several flows. 
It does not take account of losses beyond a designated threshold as well as lacks 
subadditivity, which means that diversification does not, necessarily, imply reduction 
of risk. Therefore, ES, which remedies this problems, seems to be emerging as a new 
standard. In the light of the major reform of global supervisory standards, pursued 
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by the Basel Committee since 2012 (Basel Committee on Banking Supervision, 2012-
2017), ES is recommended for reporting exposures to market risk. Nevertheless, ES fails 
to satisfy a different mathematical principle – elicitability. Although this criterion has 
been shown to be erroneously deemed essential to backtesting (Gneiting, 2011), 
the question about ES-based statistical tests remains open (Acerbi and Szekely, 2014, 
Chen, 2014, Fissler and Ziegel, 2015, Fissler et al., 2016). No consensus on relevant 
procedures has yet been reached, either in academic studies or in business practice. 
Therefore, evaluation of risk models still relies on VaR. In an attempt to include most 
extreme losses, the regulator has recommended testing VaR on two low coverage levels 
– 1% and 2.5%. These Basel regulations motivate academics to review, develop and 
enhance statistical methods of backtesting VaR. 

VaR backtesting procedures commonly refer to two criteria: the postulate of 
unconditional coverage, which treats the overall fraction of VaR violations, and the 
postulate of conditional coverage, which addresses their serial dependence. Perhaps of 
greater practical importance is detecting serial correlation of VaR failures, for their 
clustering may result in a series of catastrophic losses occurring one by one. This, 
in turn, seriously increases the risk of bankruptcy of a financial institution. The Markov 
test, which embeds the iid Bernoulli hypothesis within a binary first-order Markov 
chain and utilizes the likelihood ratio framework, has become the industry standard for 
testing the conditional coverage property (Christoffersen, 1998). This standard test, 
however, has been shown to exhibit unsatisfactory power (Lopez, 1999, Christoffersen 
and Pelletier, 2004, Berkowitz et al., 2011, Pajhede, 2017), which boosted the debate on 
other possibilities of testing VaR conditional coverage. Among other directions, like 
spectral tests (Berkowitz et al., 2011, Gordy and McNeil, 2018) or multi-level tests 
(Berkowitz, 2001, Hurlin and Tokpavi, 2007, Colletaz et al., 2013, Leccadito, Boffelli 
and Urga, 2014, Wied, Wei and Ziggel, 2016, Kratz et al. 2018), the duration-based 
approach attracted much attention in the scientific community (Christoffersen and 
Pelletier, 2004, Candelon et al. 2011, Pelletier and Wei, 2016). In the duration-based 
framework the sequence of VaR violations is transformed into the duration series. The 
idea behind this approach follows from the observation that the time that has passed 
since a VaR violation (hit) should not contain any information about further duration 
of the no-hit sequence. This implies the memory-free property of the duration series. 
Within discrete distributions, this property characterizes the geometric distribution 
(Berkowitz et al., 2011), while the only memory-free continuous distribution is the 
exponential distribution. To test VaR by means of the exponential distribution it has 
been proposed to nest the memory free null in the exponential autoregressive 
conditional model (EACD model, Engle and Russel, 1998). The EACD VaR test has 
been shown to compare favourably, in terms of its power, to other duration-based tests 
like the Weibull of the gamma test, especially for small sample sizes (Christoffersen and 
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Pelletier, 2004, Małecka, 2018). This test, however, suffers from significant size 
distortions, which means that the asymptotic distribution does not guarantee the 
correct test level. To make up for this deficiency it has been proposed to use the Monte 
Carlo method to simulate the null distribution of the test statistic (Christoffersen and 
Pelletier, 2004). The Monte Carlo approach, however, while ensuring the correct test 
level, impedes practical implementation of the procedure. 

Our work addresses applicability of the exponential autoregressive conditional 
model to testing for serial correlation in VaR failure series. The goals of the paper are 
twofold: firstly, we seek to handle the problem of EACD test size distortions without 
resorting to the use of Monte Carlo simulations and secondly we investigate its power 
in relation to the standard VaR backtesting procedure. To avoid p-value computation 
through simulations, we study the asymptotic properties of the test statistic. Exploiting 
the fact that, in the VaR testing framework, the null value of the parameter vector lies 
exactly at the boundary of the parameter space, we show that the test statistic does not 
converge to the standard likelihood ratio (LR) limiting distribution. Using results on 
asymptotic LR properties under non-regular conditions (Self and Liang, 1987), 
we suggest p-value computation from the mixture of two chi-square distributions. We 
experimentally demonstrate the size improvement obtained by the proposed approach. 

Given improved accuracy of the EACD VaR test, we investigate its power 
properties. To mimic a typical VaR failure correlation scheme, we adopt a GARCH 
model. The comparative evaluation of the EACD test power is conducted in relation to 
the Markov procedure, which has, so far, won widest recognition in the industry. We 
indicate cases where the EACD approach allows for power gains, which gives guidance 
as to practical application of the examined procedures. 

Our study is based on earlier works by Christoffersen and Pelletier (2004) and 
Małecka (2018). The results of Christoffersen and Pelletier are improved by using 
asymptotic LR properties under non-regular conditions and implementing the EACD 
VaR test with the limiting mixture distribution. Since this replaces Monte Carlo 
simulations, our approach improves computational effectiveness of the procedure and 
facilitates its practical implementation. The results of Christoffersen and Pelletier are 
also improved by replacing the historical simulation model in the power study with the 
GARCH-model-based experiment. In this way we obtain the realistic setting, which 
mimics the volatility clustering of real financial data. In this experiment the serial 
correlation of VaR failures, as in reality, results from the volatility clustering of the 
portfolio returns. The volatility clustering is measured by the correlation coefficient of 
the squared returns, which, in the model we use, can be calculated analytically. 
Therefore, we are able to study the power of the test as a function of a controlled 
parameter of the return distribution, which is not attainable with the historical 
simulation experiment. 
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We extend the study by Małecka (2018) with respect to the contemporary 
international regulations in banking supervision. In addition to the typical 5% VaR, 
we include evaluation of test properties for two lower VaR coverage levels, indicated 
in the Basel rules. We discuss test accuracy in the context of the coverage level. We also 
extend the earlier study by depicting powers of the test as a function of volatility 
clustering. The shapes of the functions, compared to the power function of the standard 
Markov test, indicate cases where the EACD approach allows for more effective 
detection of incorrect risk models. 

The paper proceeds as follows. Section 2 introduces the notation and presents the 
duration-based approach to VaR backtesting in relation to the standard Markov 
procedure. It shows the applicability of the EACD model to testing VaR and discusses 
the asymptotic distribution of the test statistic. Section 3 provides the study of test 
properties. Firstly, it details the design of the Monte Carlo experiment, showing a way 
to control volatility clustering. Secondly, it addresses test accuracy and presents 
improvements obtained by the use of the asymptotic mixture distribution. Finally, 
it gives comparative evaluation of test power in relation to the Markov test. The final 
section summarizes and concludes. 

2.  Testing VaR Conditional Coverage: EACD vs. Markov-Chain Approach 

Let  tR  be the asset or portfolio return process, for which VaR at time t , at the 
level of tolerance p , is defined as the p  quantile of the relevant return distribution: 

  ሺ ሻ ,   1,..., .t tP R VaR p p t T     (1) 

Then, the VaR evaluation framework is based on the stochastic process of VaR 
failures: 
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whose realization is referred to as a hit sequence. 
The standard Christoffersen’s (1998) Markov test of VaR failure independence uses 

the framework of the binary Markov chain with the transition matrix: 
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,   (3) 

where ij  denotes the probability of a single-step transition from state i  to state ,j  

, ሼ0,1ሽi j  . The null hypothesis of equal transition probabilities 0 01 11:H    implies 
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the iid Bernoulli process with probability of VaR violence 1 01 11    . To verify the 
above parameter restriction it has been proposed to use the likelihood ratio statistics: 
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   and ijt   the number of transitions form state i  to state j . 

The construction of the Markov test implies that it only allows for detecting cases 
where the hit sequence follows a simple first-order Markov chain. A duration-based 
approach was proposed as means to capture more general forms of dependence. The 
duration-based tests use the transformation of the underlying ሼ ሽtI  process into the 
duration series ሼ ሽiV  defined as: 

 1 ,i i iV t t     (5) 

where it  denotes the time of the -thi VaR violation. The independence of the ሼ ሽtI  
process implies that the time that has passed since a VaR violation (hit) should not 
contain any information about the further duration of the no-hit sequence. 
This memory-free property of the duration series motivates the use of the exponential 
distribution. In the exponential autoregressive conditional test the memory free null is 
tested against the alternative of the exponential process with a conditional mean. 
Exploiting the fact that the serially dependent hit sequence is likely to produce an 
excessive number of relatively short no-hit durations and relatively long no-hit 
durations, the test checks the autoregression coefficient of the conditional mean of the 
duration. The EACD approach utilizes the regression of the form: 

 1 1ሺ ሻi i iE V a bV     (6) 

(Engle and Russel, 1998). It assumes the exponential distribution, which gives the 
following conditional pdf function of the duration iV : 
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Under the null hypothesis 0 : 0H b   the conditional distribution becomes the 
exponential distribution with a constant mean.  
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By using the regression of the durations on their past values this test incorporates 
the information about the ordering of VaR failures. This offers potential power gains 
over other duration based procedures like the Weibull test or the gamma test, 
that simply nest the exponential distribution in wider distribution families and verify 
relevant restrictions. 

The EACD-based VaR test verifies the parameter restriction through the likelihood 
ratio statistic, which requires computation of the loglikelihood function for the 
unrestricted and restricted case. Taking account of possible presence of censored 
durations at the beginning and at the end of the series, the loglikelihood takes the form: 
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where iC  is 1 if the duration iV  is censored and 0 otherwise, S  is the survival function 
of  the variable iV , N  is the number of VaR failures and   is the vector of parameters 
(Christoffersen and Pelletier, 2004). 

Assuming parameter values in the interior of the parameter space, the likelihood 
ratio statistic for one parameter restriction has the chi-square distribution with one 
degree of freedom 2

1 . However, if the tested parameter value lies at or near the 
boundary of the parameter space, the asymptotic convergence to the chi-square 
distribution ceases to hold true. This is the case with the EACD VaR test since the null 
hypothesis imposes the zero value of the autoregression coefficient, and, at the same 
time, the coefficient satisfies the nonnegativity condition. This means that the vector of 
ECAD model parameters ሾ , ሿa b   belongs to the space ሺ0, ሻ ሾ0, ሻ,     which, 
under the null, reduces to 0 ሺ0, ሻ ሼ0ሽ    . In such a case statistical inference based 

on the asymptotic 2
1  may be inaccurate. To overcome the problem of potential size 

distortions, the EACD VaR test has been originally implemented with the use of the 
Monte Carlo simulated p-values. Instead, using asymptotic results on the likelihood 
ratio distribution under non-standard conditions (Self and Liang, 1987), we propose to 
compute the p-values from the 50:50 mixture of chi-square distributions, with zero and 
one degrees of freedom: 

  
𝐿𝑅ா஺஼஽~𝑎𝑠0.5𝜒଴

ଶ ൅ 0.5𝜒ଵ
ଶ.                                                     (9) 

Using the fact that the chi-square distribution with zero degrees of freedom reduces 
to the distribution with all its mass cumulated at zero, we get that the value of the test 
with 50% probability takes the value of 0 and with 50% probability is drawn from the 
chi-square distribution with one degree of freedom 2

1 .  
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3. Monte Carlo Study of Test Properties 

The tests described in Section 2 verify the conditional coverage property of VaR 
failures referring to the Markov chain framework or, after the transformation of the hit 
sequence into durations, to the exponential autoregressive conditional duration model. 
Since the two tests exploit different approaches and make use of different variables, they 
are likely to differ in power properties. Moreover, as they rely on asymptotic 
distributions, their finite sample properties are unknown. In the present section, using 
a finite sample setting, we evaluate and compare the statistical properties of the two 
tests through the Monte Carlo study. The comparative analysis includes their size and 
power. We discuss practical implications of the power properties, presenting 
conclusions as to when to prefer which of the two tests and indicating cases when the 
two approaches may complement each other. 

The finite-sample statistical properties of the tests are evaluated for sample sizes 
chosen to be realistic for applications in finance: 250,  500,...,  1500.T   Such samples 
roughly correspond to daily data covering periods from one year to six years. The size 
and the power of the tests are approximated by rejection frequencies under the null and 
under the alternative, respectively. The size study includes significance levels 0.01, 0.05 
and 0.1. For powers of the tests, only rejection rates at 0.05 significance level are reported. 
The size and the power estimates are computed over 10000 Monte Carlo trials. 

The size study examines test rejection probabilities when the risk model is correct. 
We refer to a test as accurate if, under the correct model, the rejection probability 
corresponds to the assumed level of significance (nominal test size). Therefore, the size 
study requires generating ሼ ሽtI  series under the correct model, i.e. under the 
assumptions of the true failure probability and independence of VaR violations. To this 
end we use the Bernoulli distribution with the probability of success ,p  equal to the 
assumed level of VaR tolerance.  

The size estimates obtained from the Bernoulli experiment (Tables 1-3) show the 
accuracy improvement of the EACD test gained by replacing the 2

1  distribution by the 
mixture of distributions 2 2

0 10.5 0.5 .   In the case of the 2
1  the procedure is very 

conservative with the true test level leaning towards zero. This size distortion indicates 
that practical application of this test should not be based on the asymptotic 2

1  
distribution. Employment of the mixture 2 2

0 10.5 0.5   has the effect that the true test 
level approaches the nominal size. The test still tends to underreject the null, however 
the discrepancies between the simulated and the nominal size markedly decrease and 
the simulated rejection frequencies seem to converge to the desired level with 
lengthening the sample. The improvement in the accuracy of the test is demonstrated 
through the fit of the asymptotic and the empirical distribution function, based on 
a 1500 observation sample (Figure 1). 
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Table 1.  Size estimates for Markov and EACD 1% VaR tests* 

Test 

Significance level 0.01   

Series length 

250 500 750 1000 1250 1500 

IndLR  0.0111 0.0122 0.0116 0.0124 0.0128 0.0128 
 Chi square

EACDLR  0.0000 0.0000 0.0009 0.0010 0.0018 0.0019 
Mixture
EACDLR  0.0000 0.0008 0.0024 0.0034 0.0051 0.0047 

Test 

Significance level 0.05   

Series length 

250 500 750 1000 1250 1500 

IndLR  0.0234 0.0248 0.0293 0.0269 0.0209 0.0210 
 Chi square

EACDLR  0.0002 0.0016 0.0085 0.0110 0.0131 0.0146 
Mixture
EACDLR  0.0013 0.0077 0.0203 0.0248 0.0298 0.0358 

Test 

Significance level 0.1   

Series length 

250 500 750 1000 1250 1500 

IndLR  0.0294 0.0418 0.0474 0.0480 0.0425 0.0453 
 Chi square

EACDLR  0.0013 0.0077 0.0203 0.0248 0.0298 0.0358 
Mixture
EACDLR  0.0080 0.0280 0.0487 0.0616 0.0683 0.0796 

*  Chi square
EACDLR  denotes the cases when the EACDLR  test size was estimated under the 2

1  distribution, while 
Mixture
EACDLR  – the cases when the size was estimated under the mixture distribution 2 2

0 10.5 0.5  . 

Source: Own work. 

Table 2.  Size estimates for Markov and EACD 2.5% VaR tests* 

Test 
Significance level 0.01   

Series length 
250 500 750 1000 1250 1500 

IndLR  0.0265 0.0293 0.0310 0.0284 0.0274 0.0274 
 Chi square

EACDLR  0.0002 0.0007 0.0011 0.0009 0.0019 0.0022 
Mixture
EACDLR  0.0008 0.0016 0.0024 0.0030 0.0042 0.0047 

Test 
Significance level 0.05   

Series length 
250 500 750 1000 1250 1500 

IndLR  0.0393 0.0447 0.0443 0.0448 0.0424 0.0430 
 Chi square

EACDLR  0.0032 0.0052 0.0079 0.0097 0.0104 0.0119 
Mixture
EACDLR  0.0077 0.0126 0.0189 0.0234 0.0241 0.0253 
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Table 2. Size estimates for Markov and EACD 2.5% VaR tests* (cont.) 

Test 

Significance level 0.1   

Series length 

250 500 750 1000 1250 1500 

IndLR  0.0526 0.0635 0.0640 0.0685 0.0784 0.0951 
 Chi square

EACDLR  0.0077 0.0126 0.0189 0.0234 0.0241 0.0253 
Mixture
EACDLR  0.0203 0.0329 0.0429 0.0526 0.0557 0.0552 

*  Chi square
EACDLR  denotes the cases when the EACDLR  test size was estimated under the 2

1  distribution, while 
Mixture
EACDLR  – the cases when the size was estimated under the mixture distribution 2 2

0 10.5 0.5  . 

Source: Own work. 

 

Table 3.  Size estimates for Markov and EACD 5% VaR tests* 

Test 

Significance level 0.01   

Series length 

250 500 750 1000 1250 1500 

IndLR  0.0194 0.0293 0.0281 0.0340 0.0368 0.0400 
 Chi square

EACDLR  0.0006 0.0008 0.0013 0.0014 0.0026 0.0017 
Mixture
EACDLR  0.0016 0.0036 0.0038 0.0046 0.0055 0.0061 

Test 

Significance level 0.05   

Series length 

250 500 750 1000 1250 1500 

IndLR  0.0707 0.094 0.1199 0.1276 0.1233 0.1147 
 Chi square

EACDLR  0.0054 0.0068 0.0105 0.0108 0.0139 0.0142 
Mixture
EACDLR  0.0115 0.0196 0.0258 0.0279 0.0301 0.0308 

Test 

Significance level 0.1   

Series length 

250 500 750 1000 1250 1500 

IndLR  0.1012 0.1797 0.2033 0.1792 0.1656 0.1654 
 Chi square

EACDLR  0.0114 0.0197 0.0209 0.0265 0.0298 0.0289 
Mixture
EACDLR  0.0321 0.0483 0.058 0.062 0.0646 0.0675 

*  Chi square
EACDLR  denotes the cases when the EACDLR  test size was estimated under the 2

1  distribution, while 
Mixture
EACDLR  – the cases when the size was estimated under the mixture distribution 2 2

0 10.5 0.5  . 

Source: Own work. 
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(a) Empirical cdf versus 2
1  

 
(b) Empirical cdf versus 2 2

0 10.5 0.5   

Figure 1.  Empirical cdf of the EACDLR test statistic, based on 1,500 observations, versus 2
1

and 2 2
0 10.5 0.5  asymptotic distributions. 

Source: Own work. 

Comparative evaluation of the size results in relation to the relevant outcomes for 
the benchmark Markov procedure shows that the EACD Mixture

EACDLR  rejection frequencies 
tend to be closer to the nominal test size. The EACD test seems also more reliable as the 
relation of the estimated size to the chosen significance level is remarkably stable across 
significance levels and VaR coverage levels, especially for large samples. For the Markov 

IndLR  this relation changes rapidly with both: chosen significance and VaR coverage. 

Contrary to the systematically undervalued but apparently convergent Mixture
EACDLR  

rejection frequencies, the IndLR  test changes from being undersized to being oversized. 
Its rejection frequencies are much overvalued for 5% VaR, while for lower coverage 
levels they shift from being overvalued in tails to undervalued closer to the central area 
of the distribution. The differences between the estimated and the nominal size of IndLR  
range from minor – for 1% VaR and 0.01 significance – to large – for 5% VaR and 0.01 
significance. In the last case the estimated size overvalues the nominal significance four 
times. Therefore, in the light of the results for all considered significance and coverage 
levels, the EACD approach to testing VaR offers accuracy improvement in comparison 
to the standard Markov-chain-based VaR test. 

The size improvement attainable with the proposed method confirms that the 
asymptotic mixture distribution works well for the EACD test. However, this method 
does not solve the problem of the inaccurate size for small samples. Our results show 
that this problem cannot be handled by any of the considered approaches. In particular, 
none of the asymptotic approximations, including both standard likelihood ratio 
distribution and the non-standard mixture distribution, is relevant for daily data 
covering a one-year period. Therefore, if the sample size is limited, it seems 
recommendable to resort to the Monte-Carlo-based methods. 

The comparison of the size results across 1%, 2.5% and 5% coverage levels shows 
that the EACD Mixture

EACDLR  test performs best for 5% VaR. In this case, the observed size 
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distortions are lowest and convergence to the desired levels is fastest. This is particularly 
visible for popular significance levels 0.01 and 0.05. The recommended VaR coverage, 
for EACD-based VaR backtesting, is thus not in line with contemporary trends 
in banking supervision. The lower coverage levels, suggested by the Basel rules, lead to 

Mixture
EACDLR  accuracy loss.    
The power study investigates test performance under the assumption of an 

incorrect risk model. The test is regarded as more effective if its rejection frequencies, 
under the incorrect model, are higher. Since the considered procedures are aimed at 
checking the conditional coverage property, we study their ability to reject clustered 
VaR violations. Therefore, the simulation experiment in the power study is designed to 
reflect the volatility clustering of return data. The volatility clustering, in turn, implies 
the undesired serial correlation of VaR violations.  

The ሼ ሽtI  series under the incorrect model is computed as the hit sequence from the 
GARCH(1,1) return process and the constant VaR level. The VaR level is set to the 
value of the unconditional p  quantile of the returns. This produces VaR failures with 
the tendency to correlate in time and, at the same time, guarantees the correct overall 
VaR failure rate.  Through employment of the GARCH process we obtain the realistic 
setting, which mimics the volatility clustering of real financial data. The volatility 
clustering is measured by the correlation coefficient of the squared returns, which, 
under the specification we use, can be calculated analytically. This enables us to study 
the power of the test as a function of a controlled parameter of the return distribution. 
In order to calculate analytically the correlation coefficient of the squared returns, 
we use the GARCH model of the form: 

 
2

1 1

ൌ ,   ሺ0,1ሻ,

.
t t t t

t t t

R h Z Z N

h h     

:
  (10) 

Under specification (10) the correlation of the squared returns   is given by 

 
2

2
.

1 2
  

  
   (11) 

This is, however, subject to the restriction 
 2 2 1ሺ ሻ 2       (12) 
If condition (12) does not hold, the correlations of the GARCH model are time-

varying. In such a case, they have been shown to behave approximately as: 

 .
3

     (13) 

We choose the GARCH parameters on realistic levels 0.01  , 0.85   and the 
correlation coefficient   to vary from 0.05 to 0.5. The   parameter is set to levels that 
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guarantee the desired value of .  Under the above parameter values the restriction (12) 
holds for correlations not higher than 0.4, thus a range of values from 0.05 to 0.4 is used.  

Due to observed size distortions, in the power exercise we adopt the Monte Carlo 
test technique, which provides exact tests by replacing theoretical null distributions of 
test statistics by their sample analogues [6]. Through ensuring a correct test level we 
obtain comparability of the power results. Since estimating EACD model parameters 
requires at least three durations, which corresponds to at least two VaR violations, there 
are cases when the test is not feasible. Rejecting these cases constitutes a non-random 
sample selection rule. Therefore, we present effective power rates, which correspond to 
multiplying raw power by the rate of valid test runs. Referring to the results of the size 
study, in the power exercise we rely on 5% VaR. We report rejection frequencies for 
0.05 significance level. 

The power of the EACD EACDLR  test is evaluated in relation to rejection frequencies 

of the Markov IndLR  test (Table 4). The results show superiority of the EACD procedure 
at short distances from the null. In the case of volatility clustering corresponding to 
0.05 and 0.1 correlation of the squared returns, the EACD procedure exhibits higher 
power than the benchmark for all series lengths. Subsequent experiments show that this 
comparative advantage tends to vanish for a stronger correlation. However, it is 
observed relatively long for small samples. 

Table 4. Power estimates for 5% VaR Markov and EACD tests on 0.05 significance level 

Test Volatility 
clustering* 

Series Length 

250 500 750 1000 1250 1500 

IndLR  

0.05 0.068** 0.083** 0.095** 0.101** 0.102** 0.104** 
0.10 0.102** 0.160** 0.201** 0.239** 0.281** 0.316** 
0.15 0.141** 0.244** 0.337** 0.415** 0.487** 0.546** 
0.20 0.181** 0.322** 0.445** 0.557** 0.633** 0.708** 
0.25 0.208** 0.384** 0.531** 0.637** 0.722** 0.803** 
0.30 0.228** 0.414** 0.573** 0.691** 0.775** 0.836** 
0.35 0.239** 0.447** 0.600** 0.705** 0.787** 0.859** 
0.40 0.240** 0.449** 0.619** 0.730** 0.807** 0.866** 

EACDLR  

0.05 0.107** 0.121** 0.128** 0.132** 0.137** 0.155** 
0.10 0.156** 0.215** 0.238** 0.269** 0.287** 0.321** 
0.15 0.206** 0.295** 0.353* 0.392** 0.439** 0.477** 
0.20 0.228** 0.355** 0.420* 0.490** 0.523** 0.583** 
0.25 0.223** 0.374** 0.463** 0.527** 0.582** 0.635** 
0.30 0.220** 0.392** 0.487** 0.555** 0.618** 0.657** 
0.35 0.221** 0.384** 0.482** 0.555** 0.615** 0.668** 
0.40 0.201** 0.375** 0.482** 0.548** 0.614** 0.662** 

*The volatility clustering in the simulated process is measured by the correlation coefficient of the 
squared returns  . 
**Cases when the estimated power of EACDLR  exceeds that of IndLR  are marked with double asterix. 



STATISTICS IN TRANSITION new series, March 2021 

 

157

(a) Significance level 0.01   

(b) Significance level 0.05   

(c) Significance level 0.1   

Figure 2. Power function estimates against volatility clustering for VaR tests, T=250,…,1000. 

Source: Own work. 

The relative performance of the tests is depicted by the power functions plotted 
against the strength of volatility clustering (Figure 2). The figures extend the power 
study, illustrating estimated powers for three significance levels: 0.01, 0.05 and 0.1. 
The sample sizes range from 250 to 1000, as for longer series the test performance is 
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relatively stable and follows the trends observed for 1000 sample. All plots confirm that 
the EACD power tends to grow faster than the Markov test power close to the null. 
Thus, this test is likely to outperform the benchmark procedure in detecting low-scale 
correlations. Its advantage in power against low-scale correlations is especially large for 
small samples. This suggests that the EACD approach has the potential to improve 
testing efficiency in cases when statistical inference is particularly troublesome – for 
small samples and close to the null. 

The power functions illustrate also the downswing in the EACD test performance 
for largest correlations. This suggests that after exceeding some critical value of the 
correlation of the squared returns, the test power starts to deteriorate. Large correlation 
in squared returns is likely to produce VaR violations occurring one by one in turbulent 
periods, followed by long calm periods without any violation. This translates into 
a typical setup of a duration sequence with series of very short durations from turbulent 
time, interrupted by one long duration, corresponding to the calm period. The single 
outstanding duration replaces series of long durations. In such a setting the 
autoregressive model of durations tends to be insignificant. Thus, the excessive 
correlation of the squared returns works against the power of the test. This supports the 
practical conclusion that the EACD approach to testing VaR is particularly 
recommendable for detecting low-scale distortions from the null. 

Combining the size and the power results, the EACD procedure seems 
complementary to the standard Markov test, as their relative performance depends on 
the distance from the null. At the null, the EACD test outperforms the benchmark 
procedure. This means that it is less likely to overreject the correct risk model. 
Of practical importance is the fact that its performance at the null is remarkably stable 
across significance levels and VaR coverage levels. Thus, its accuracy is only slightly 
influenced by the user’s parameter choices. Close to the null, the EACD power grows 
quickly, which makes the test more sensitive to low-scale correlations. In practice it 
means that it is more likely to detect incorrect risk models when clustering of VaR 
failures is relatively small. On the other hand, the Markov test performs better at 
detecting a large correlation of VaR violations. Thus, in the light of their statistical 
properties, it is advisable that the procedures be employed simultaneously in testing 
conditional coverage property. Another practical guideline from our results is that the 
contrary decisions of the two tests may occur due to low-scale correlation rather than 
the type one error. Therefore, such an outcome of the backtesting procedure signals 
that the risk model should be recognized as incorrect. 
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4. Conclusion 

The paper tackled the issue of evaluating risk models with respect to the 
contemporary changes in international banking regulation. In accordance with the 
Basel recommendations, we inquired into ways of assessing risk models based on the 
VaR measure. In this context we studied applicability of the EACD model. 
We considered the EACD test as means of testing conditional coverage property of VaR 
violations. We addressed the construction, asymptotic distribution as well as the finite 
sample size and power properties of the test.  

With reference to the accuracy of backtesting, we sought to handle the problem of 
EACD test size distortions without resorting to the use of Monte Carlo simulations. 
Based on the observation that the conditional coverage property implies the parameter 
restriction that lies at the boundary of the parameter space, we suggested p-value 
computation from the mixture of chi-square distributions. In this way we obtained the 
procedure which is both accurate and computationally effective as it replaces the 
originally proposed Monte Carlo method. Since its construction is based on the 
duration series instead of the hit sequence, it also has the potential to exhibit power 
against more general forms of dependence than the standard VaR test, which operates 
within the framework of the first order Markov chain. 

Via simulations we showed improvement in the test accuracy owned to replacing 
the asymptotic likelihood ratio distribution with a mixture of chi-square distributions. 
We confirmed the convergence of the true test level to the nominal size of the test. With 
the use of the GARCH model we designed the experiment, which enabled us to study 
the power of the tests against various levels of volatility clustering in return data. 
The estimated power functions showed that the EACD test outperforms the benchmark 
Markov procedure at the null and its power grows faster close to the null. Thus, this 
procedure may be useful to detect low-scale correlations and in this sense it may 
complement the standard Markov test. This comparative advantage of the EACD test 
turned out to be particularly large for shortest examined series lengths. Therefore, our 
results suggested that the EACD approach to VaR testing may aid statistical inference 
in most troublesome cases – for small samples and close to the null. 
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