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On the generalisation of Quatember’s bootstrap 

Tomasz Żądło1 

ABSTRACT 

The problem of the estimation of the design-variance and the design-MSE of different 
estimators and predictors is considered. Bootstrap algorithms applicable to complex 
sampling designs are used. A generalisation of the bootstrap procedure studied by 
Quatember (2014) is proposed. In most of the cases considered in our simulation study it 
leads to more accurate estimates (or to very similar ones in remaining cases) of the design-
MSE and the design-variance compared with the original algorithm and its other 
counteparts. 

Key words: bootstrap for complex sampling designs, variance estimation, MSE estimation.  

1. Introduction 

Let the population of size N  be denoted by  . The population is divided into D 
disjoint subpopulations (domains) d , each of size dN , where 1,2,...,d D . Let the 
sample be denoted by s  and its size by n . The set of sampled elements of dth domain 
is denoted by ds  and its size by dn . Let the values of the variable of interest observed 
in the sample be denoted by ky  ( 1,2,..., )k n . We additionally assume that vectors of 
auxiliary variables  lx  ( 1,2,..., )l N  are known for all population elements. First and 
second order inclusion probabilities are denoted by k  and kl , respectively. We 
consider the problem of estimation of the population (subpopulation) parameter  
 ( d ) using estimator ̂ ( d̂ ). The key issue is the estimation of the design-variance 
and the design-MSE of ̂ ( d̂ ). In official statistics, the design-based accuracy is of 
primary interest and hence model-based methods, where the prediction accuracy is 
assessed, are not widely used. What is more, the comparison of the accuracy of methods 
based on different approaches (e.g. design-based and model-based under different 
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superpopulation models) is not appropriate if MSE is estimated under different 
approaches too. Hence, the aim of the paper is to present: 

− a proposal of a generalisation of Quatember (2014) bootstrap valid for complex 
sampling designs, which can be used to estimate the design-precision and the 
design-accuracy of any estimator or predictor, 

− a simulation study of properties of our proposals and other bootstrap estimators 
of the design-variance and the design-MSE not only in the case of estimation of 
population parameters but also in the case of estimation and prediction of 
subpopulations characteristics.  

2. Bootstrap methods for complex sampling designs  

The classic Efron’s bootstrap (Efron, 1979) procedure, where simple random 
samples are drawn with replacement from the original sample, is correct under 
independence of random variables. In the case of complex sampling designs 
appropriate modifications must be used.  

According to Ranalli and Mecatti (2012), majority of bootstrap methods for 
complex sampling designs can be classified into one out of two approaches. The first 
one is called an ad-hoc approach and is usually based on iid resampling and rescaling 
sample data.  They classify, inter alia, the rescaling bootstrap (Rao and Wu, 1988), the 
mirror-match bootstrap (Sitter, 1992) and the generalised weighted bootstrap 
(Beaumont and Patak, 2012) as methods belonging to this approach. Proposals 
presented by Antal and Tillé (2011, 2014) are also taken into account in this approach. 
The Authors use mixtures of several sampling designs for resampling to meet two 
conditions – firstly, the expectation over the bootstrap distribution of the Horvitz-
Thompson (1952) (HT) estimator must be equal to the value of the HT estimator 
computed based on the original sample; secondly, the variance over the bootstrap 
distribution of HT estimator must be equal (or approximately equal) to the HT variance 
estimator (Horvitz and Thompson, 1952) or Sen-Yates-Grundy variance estimator (Sen 
1953, Yates and Grundy 1953). The second approach is the plug-in approach. It is based 
on the concept of pseudopopulation, although in some methods the pseudopopulation 
is not physically generated. The basic idea is as follows: 

1) We built a pseudopopulation * *{1,2,..., ,..., }pseudok N  , where pseudoelements 
are replications of elements observed in the original sample. The element k  
observed in the original sample is replicated kw -times. 

2) A bootstrap sample *s  of size n  (original sample size) is drawn from *  
mimicking the original sampling design. 
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3) The value of estimator ̂  is computed based on *s  and it is denoted by *̂ . 
4) Steps b) and c) are iterated B  times providing *ˆ ,b  where 1,  2,  ...,b B .  

Bootstrap estimators of the design-variance and the design-bias are defined as 
follows (e.g. Rao and Wu 1988): 

2

2 * *

1 1

1 1ˆ ˆ ˆˆ ( )
1

B B

boot b b
b b
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B B

  
 

 
    

  ,                                        (1) 
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where ̂  is the value of the considered estimator based on the original sample. 
The algorithm presented above allows for different definitions of weights 𝑤. One 

of the first proposals was presented by Holmberg (1998), who defined it as follows: 
𝑤 ൌ උ𝜋

ିଵඏ  𝜖, where උ𝜋ିଵඏ is rounded down value of 𝜋ିଵ, 𝜖 is generated from 
Bernoulli distribution with probability 𝜋

ିଵ െ උ𝜋
ିଵඏ. 

Other solutions include Barbiero and Mecatti (2010) 0.5 bootstrap, where inverses 
of inclusion probabilities are rounded to the nearest integer. Barbiero and Mecatti 
(2010) consider two x-balanced methods, where inverses of first order inclusion 
probabilities are rounded down and additional pseudoelements are included in the 
pseudopopulation to reach the minimum absolute difference between total values of an 
auxiliary variable in the real population and the pseudopopulation. Barbiero, Manzi 
and Mecatti (2015) define kw  as calibration weights rounded to the nearest integer. 

There are two possible limitations of the above algorithms. Firstly, we require 
generation of the pseudopopulation of size (approximately) equal to the original 
population size, which may be problematic in the case of large real populations. 
Secondly, the number of replications kw  must be integer.  The first problem is solved 
by Ranalli and Mecatti (2012) by directly re-sampling from the sample using 
appropriate sampling designs where n out of n elements are drawn at random, 
mimicking the original sample design, where N out of n elements are selected. The 
Quatember (2014) bootstrap omits both of the limitations but it is proposed only for 
simple random sampling without replacement and for probability proportional to size 
sampling.  

Let us present the idea of the Quatember (2014) bootstrap. Although the 
pseudopopulation is not created, the process of sampling from the pseudopopulation is 
mimicked in the procedure of selecting a bootstrap sample of size n  out of n  elements 
observed in the original sample with appropriate probabilities by modification of the 
original sampling scheme. Firstly, let us present the algorithm of drawing bth  
( 1,2,...b B ) bootstrap sample of size n  for simple random sampling without 
replacement. Quatember (2014) assumes that the number of replications of sample 
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element k  in the pseudopopulation, which is not physically created, equals its 
(possibly non-integer) design-weight - the inverse of the first order probability: 1Nn . 
After draw 1j   the number of remaining replications of element k  in the 
pseudopopulation equals: 1

, 1,k jNn h
  where , 1k jh   is the number of replications of 

element k  selected in the bootstrap procedure in the first 1j   draws. What is more, 
the probability of selecting a population element from the pseudopopulation of size N  
in the j th draw equals 1( 1)N j   . Finally, element k  is drawn from the original 
sample in the j th draw ( 1,2,..., )j n  of the bootstrap algorithm with probability: 

  1 1
, 1 ( 1)k jNn h N j 
    .             (3) 

Secondly, we present the algorithm of drawing bth ( 1,2,...b B ) bootstrap sample 
of size n  for probability proportional to size sampling. Quatember (2014) assumes that 
the number of replications of sample element k  in the pseudopopulation, which is not 
physically created,  equals its (possibly non-integer) design-weight given by: 1( )x kt x n  , 
where x i

i

t x


 . After draw 1j   the number of remaining replications of element k  

in the pseudopopulation equals: 1
1

,( )x k k jt x n h
 , where , 1k jh   is the number of 

replications of element k  selected in the bootstrap procedure in the first 1j   draws. 
What is more, Quatember (2014) assumes the following probability of selecting an 
population element from the pseudopopulation of size N  in the jth draw in his 

algorithm: 
1

1

,
bj

k x i
i s

x t x






 
  

 
  where 1bjs   is the subset of bth bootstrap sample after 

draw 1j  . The drawback of the Quatember (2014) bootstrap is that the assumed 
probability does not lead to the first order inclusion probabilities proportional to the 
values of the auxiliary variable (as they should be for probability proportional to size 
sampling). Finally, element k  is drawn from the original sample in the jth draw 
( 1,2,..., )j n  of the bootstrap algorithm with probability: 

  
1

1
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1
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i s
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 .                (4) 

3.  The proposed bootstrap method 

The idea of the proposed bootstrap results from motivating simulations studies 
where we usually observed properties of the design-variance estimators based on the 
original Quatember (2014) bootstrap better than that of competitors, but problems with 
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estimation of the design-MSE of some estimators and predictors using auxiliary 
information. To improve the method we propose to change the number of replications 
of sampled elements assumed by Quatember (2014) to be equal inverses of first order 
inclusion probabilities. Although these weights seem to be a natural choice, the choice 
is not the only and the best one – similarly to the choice between the Horvitz-
Thompson estimator (using these weights to estimate the population total) and other 
estimators or predictors using different weighting systems, which usually lead to more 
accurate estimates than the Horvitz-Thompson estimator. Hence, below we propose to 
replace inverses of first order inclusion probabilities in the algorithm presented by 
Quatember (2014) by some calibration weights summing up to the population size, 
but other weighting systems are also possible. 

To clarify considerations presented below, let us introduce the idea of the 
calibration estimator of the population total. It is given by (Deville, Särndal 1992): 

 ˆCAL
k k

k s

w y


 ,                  (5) 

where weights kw  are solutions of:  

 

1( , , ) mins k k k

k k l
k s l

f w q
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 x x
,           (6) 

where 1( , , )s k k kf w q   is some distance measure between weights of the calibration 
estimator kw  and the inverses of the first order inclusion probabilities 1

k
  , where for 

more generality additional known weights kq  can be included. The minimization 
in (6) leads to the approximate design-unbiasedness of the calibration estimator. 
The equality in (6) is the condition of model-unbiasedness of the estimator (5) under 
the linear model. If in (6) we additionally assume that:  

 
 21

1
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 ,               (7) 

then the resulting calibration estimator is called a generalised regression estimator 
(GREG) (Deville, Särndal 1992; Särndal, Swensson, Wretman 1992, p. 232; Rao, Molina 
2015, p. 13). Deville and Särndal (1992) prove under some conditions that calibration 
estimators and the generalised regression estimator of the population total are 
asymptotically equivalent. But their values are very similar even for small sample sizes, 
as shown by Singh and Mohl (1996) and Stukel, Hidiroglou and Särndal (1996).  

Our proposal of the bootstrap algorithm for simple random sampling without 
replacement is as follows. In the b th bootstrap sample ( 1, 2,...,b B  ) element k  is 
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drawn from the original sample in the j th draw ( 1,2,..., )j n  with probability 
(compare with (3)): 

   1
, 1 ( 1) ,k k jw h N j 
                        (8) 

where kw ’s are some calibration weights such that k
i

w N


  (e.g. calibration weights 

considered by Deville and Särndal (1992)). 
Our proposal of the bootstrap algorithm for probability proportional to size 

sampling is as follows. In the b th bootstrap sample ( 1, 2,...,b B  ) element k  is drawn 
from the original sample in the j th draw ( 1,2,..., )j n  with probability (compare 
with (3)): 
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where kw ’s are some calibration weights such that k
i

w N


  (e.g. calibration weights 

considered by Deville and Särndal (1992)). 
Of course, the choice of kw ’s in the proposed algorithms is ambiguous (similarly to 

the choice of weights used in estimation). In the simulation studies, presented in the 
next section, we will consider four arbitrary chosen cases - calibration weights which 
fulfil four systems of calibration equations presented below. Firstly, we will consider 
weights 1kw  ( 1, 2,...,k n ) such that (Deville and Särndal (1992)): 

 1 1 1k l k k k k
k s

k
s l k

w w N L w U
  

       x x ,         (10) 

where in simulation studies, to avoid negative and extremely large calibration weights, 
we will assume that 0k kL   and 110k k kU    . Secondly, we will consider weights 

2kw  ( 1,2,..., )k n  defined similarly to (10) but for domains: 

 2 2 2

d d d

d k l d k d k k k
s l k s

k
k

w w N L w U
  

        x x ,    (11) 

where kL  and kU  are defined as in (10). Thirdly, we will consider weights 3kw  
( 1,2,..., )k n , which leads to quantile calibration (similarly to Barbiero, Manzi and 
Mecatti 2015): 

 3 3 3( ) kkk p k k k
k s k s

w I Np w N L w U
 

       x x ,    (12) 
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where px  denotes the vector of population quantiles of auxiliary variables of order 

{0.25,0.5,0.75}p  , kL  and kU  are defined as in (10). Fourthly, we will consider 
weights 4kw  ( 1,2,..., )k n  defined similarly to (12) but for domains: 

 4 4 4( )
d d

d k dp d d k d k k k
k

k
k s s

w I N p w N L w U
 

        x x ,      (13) 

where dpx  denotes the vector of domain quantiles of auxiliary variables of order 
{0.25,0.5,0.75}p  , kL  and kU  are defined as in (10). 
In cases (10) and (12) calibration equations are solved based on the whole sample, 

which may be a good solution in the case of estimation of population parameters. 
We hope that taking into account information on auxiliary variables in building 
pseudopopulation will give better properties of the design-variance and the design-
MSE bootstrap estimators than in case of the algorithm proposed by Quatember (2014). 
What is more, in cases (11) and (13) calibration equations are solved based on samples 
in domains, taking into account domain-specific information on auxiliary variables, 
which should additionally lead to better results in the case of estimation of domain 
parameters.  

4.  Simulation study 

We present results of a design-based simulation study conducted in R 
(R Development Core Team 2019). We use real data on 281N   Swedish 
municipalities (Särndal, Swensson and Wretman 1992). We assume a relatively large 
sample size 0.15n N  to show clearly differences between properties of different 
variance and MSE estimators. Revenues from 1985 municipal taxation (in millions of 
kronor) are the variable of interest, 1975 population (in thousands) – the auxiliary 
variable.  We consider two subpopulations – the first one of size 1 104N  , which 
consists of municipalities belonging to regions 1, 2 and 3; and the second of size 

2 177N  , which consists of municipalities belonging to regions 4-8. Large domains 
sizes will allow us to compare properties of estimators of design-variances and design-
MSEs of direct and indirect estimators and predictors of domain totals. We consider 
probability proportional to size sampling using Brewer sampling scheme (Brewer 1975, 
Brewer and Hanif 1983). It is known to be a fast algorithm that does not cause problems 
in the case of asymmetry of the auxiliary variable as it can happen in the case of Rao-
Sampford sampling scheme. However, in this sampling scheme there is a problem with 
computation of joint inclusion probabilities – a recursive formula is required and it 
implies a complete exploration of the splitting tree (Tillé 2006, p. 113). 
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In the simulation study we consider the problem of estimation of design-variances 
and design-MSEs of the following estimators and predictors: 

− the Horvitz-Thompson (1952) estimator of the population total (which will be 
denoted by: HT) and of domains totals (HTd1, HTd2), 

− the generalised regression estimator (e.g. Deville and Särndal 1992) of the 
population total (GREG) and of domains totals (GREGd1, GREGd2), 

− the modified generalised regression estimator (e.g. Särndal 1981) of domains totals 
(MGREGd1, MGREGd2), 

− the best linear unbiased predictor (e.g. Royall 1976) of domains totals (BLUPd1, 
BLUPd2) under the following model 𝑌 ൌ 𝛽ଵ𝑥  𝛽ଵ  𝜉, where 𝜉~ 𝑖𝑖𝑑ሺ 0, 𝜎ଶሻ.  

We consider the following estimators of design-variances and design-MSEs of the 
above listed estimators and predictors: 

− based on the Holmberg (1998) bootstrap (which will be denoted by H), 
− based on the Antal and Tillé (2011) bootstrap (AT), 
− based on the Quatember (2014) bootstrap (Q), 
− the proposed generalised Quatember (2014) bootstrap with weights fulfilling 

calibration equations (10) (GQ1),  
− the proposed generalised Quatember (2014) bootstrap with weights fulfilling 

calibration equations (11) (GQ2),  
− the proposed generalised Quatember (2014) bootstrap with weights fulfilling 

calibration equations (12) (GQ3),  
− the proposed generalised Quatember (2014) bootstrap with weights fulfilling 

calibration equations (13) (GQ4).  

In the case of all bootstrap methods the number of bootstrap iterations equals 
1000B  . Additionally, we consider classic design-variance estimators of the Horvitz-

Thompson estimator and the GREG estimator (in both cases denoted by cl), where only 
first order inclusion probabilities are used. It results from the problems with 
computations of second order inclusion probabilities in Brewer sampling scheme 
described above. We use the following design-variance estimator of the Horvitz-
Thompson estimator of the population total (Antal and Tillé 2011, p. 536): 

 
21

2 1 1

1 1 1

ˆˆ ,( )H
k k
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k k k k k

n n
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            (14) 

where we use 1(1 )(n 1)k kc n      proposed by Hájek (1981), which gives efficient 
and only slightly biased design-variance estimator (Antal and Tillé 2014, p. 1348). 



STATISTICS IN TRANSITION new series, March 2021 

 

171

To estimate the design-variance of the GREG estimator we use the following one based 
on the Deville’s method (Deville 1993): 

  
1

22 2 1

1 1

ˆˆ ,( ) 1 (1 ) k

n n

k k

GREG
k k kD a e A  




 

 
    
 

    (15) 

where 
1

1

(1 ) (1 ) , 
n

k k
k

ka  



 



 


  1

1

n

k
k

k kA a e  



  , k k
T
ke y  x B ,  kg  - g-weights 

of GREG (see Deville and Särndal 1992),    11 1

1 1

.
n

k k k k k k k

n
T

k
k k

g g y 
 

 

  B x x x  In the 

case of (14) and (15) replacing ky  with dk ka y , where 1dka   if dk s  and 0 otherwise, 
gives estimators of design-variances of estimators of domain totals.  

In the simulation study we compute: 
− the relative biases of the estimators of the design-variance of different 

estimators as  

   1

1

1 ˆ100%
R

r
r

V V V
B





  ,  (16) 

− the relative biases of the estimators of the design-MSE of different estimators 
as  

   1

1

1 ˆ100%
R

r
r

MSE MSE MSE
B





  ,   (17) 

− the relative RMSEs of the estimators of the design-variance of different 
estimators as  

   2
1

1

1 ˆ100%
R

r
r
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  ,  (18) 

− the relative biases of the estimators of the design-MSE of different estimators 
as  

  2
1

1
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R

r
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  ,  (19) 

where r̂V  and ˆ
rMSE  are estimators of the design-variance and the design-MSE, 

respectively, obtained in the rth Monte Carlo iteration 1, 2,...,r R , whereas V  is the 

simulation design-variance given by 
2

1 1
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  , MSE  is the 

simulation design-MSE given by   
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  , ˆr
d  is the value of the 

estimator of the subpopulation total (or its special case – the estimator of the population 
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total denoted by ˆr ) computed in the rth iteration, d  is the value of the subpopulation 
total (or its special case – the population total denoted by  ), the number of samples 
drawn in the Monte Carlo simulation study equals 1000R  . 

Firstly, we would like to present design-based properties of the considered 
estimators and predictors. The Horvitz-Thompson estimator is design-unbiased and 
hence we will consider only its design-variance estimators. GREG is asymptotically 
design-unbiased estimator (Deville and Särndal 1992), MGREG is approximately p-
unbiased if the overall sample size increases even if the domain sample size is small 
(Molina and Rao 2015, p. 22) – for these estimators usually only design-variance is 
estimated. Although their relative design-biases obtained in the simulation study are 
small (see Table A1 in Appendix) we also analyze properties of estimators of their 
design-MSEs. We also consider best linear unbiased predictors for which prediction-
MSEs (not design-MSEs) are usually estimated. Although in our simulation study, their 
design-biases and design-MSEs are not large (see Table A1 in Appendix), including 
them will allows us to check properties of the proposed design-MSE estimators not only 
for design-unbiased or approximately design-unbiased statistics. 

Secondly, we present main results of the simulation study. RRMSEs of estimators 
of design-variances and design-MSEs are presented in Tables 1-3 below, their design-
biases in Tables A2-A4 in Appendix. If we compare relative design-biases (see Table A2 
and Table A3 in Appendix) and RRMSEs (Table 1 and Table 2) of our proposals of 
design-variance estimators with bootstrap competitors, we see that usually the best 
results are obtained for one of the proposed methods or the results for our method are 
very close to the best one (except results for the HT estimator). Among four proposals 
(GQ1-GQ4) the GQ1 method is the best choice in most of the cases. If we compare 
RRMSEs (see Table 3) of our proposals of design-MSE estimators with bootstrap 
competitors, we obtain similar conclusions – results for GQ1 are usually the best or 
close to the best. 

Table 1. RRMSEs in % of bootstrap estimators of design-variances – part 1 

Method HT HTd1 HTd2 GREG GREGd1 GREGd2 

cl 27.6 9.8 7.6 26.7 13.7 12.5 

H 27.6 10.7 9.0 38.4 17.7 16.8 

AT 28.1 10.9 8.6 46.8 22.4 21.9 

Q 29.6 11.9 9.6 32.0 11.7 10.7 

GQ1 31.3 12.5 10.2 27.5 10.5 9.3 

GQ2 31.8 13.5 9.7 28.2 12.2 10.6 

GQ3 32.8 12.6 10.1 28.4 10.8 9.7 

GQ4 34.4 14.1 10.1 30.1 13.7 12.9 
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Table 2. RRMSEs in % of bootstrap estimators of design-variances – part 2 

Method MGREGd1 MGREGd2 BLUPd1 BLUPd2 

H 40.4 33.9 43.6 36.9 

AT 44.1 39.9 45.0 37.4 

Q 41.5 30.7 38.7 32.0 

GQ1 43.2 29.2 36.0 25.6 

GQ2 44.9 29.8 36.9 25.7 

GQ3 42.5 30.1 35.7 23.0 

GQ4 46.4 31.4 38.6 25.9 

 

Table 3. RRMSEs in % of bootstrap estimators of design-MSEs 

Method GREG GREGd1 GREGd2 MGREGd1 MGREGd2 BLUPd1 BLUPd2 

cl 26.4* 13.8* 12.6* - ** - ** - *** - *** 

H 39.0 17.6 16.9 40.6 34.8 64.7 38.1 

AT 47.2 22.8 22.6 44.2 40.5 64.5 35.3 

Q 31.9 11.9 11.0 41.5 30.8 67.0 30.9 

GQ1 27.4 10.6 9.3 44.7 32.8 67.3 34.6 

GQ2 67.2 176.0 177.5 95.2 45.3 65.3 83.5 

GQ3 77.0 42.7 42.5 75.2 112.6 65.4 60.6 

GQ4 123.4 183.9 179.6 166.2 113.0 66.1 113.8 

    *  -  design-variance estimator (15) is used to estimate design-MSE 
  ** -  classic design-MSE estimator not available due to the lack of second order inclusion  
  probabilities 
*** -  design-MSE estimator not available (prediction-MSE is usually estimated) 

5.  Conclusions 

We present a generalisation of the bootstrap algorithm for complex sampling 
designs proposed by Quatember (2014), used to estimate the design-variance and the 
design-MSE. We study its properties in the case of estimation of population total using 
the HT and GREG estimators and in the case of estimation of subpopulation total using 
the HT, GREG, MGREG estimators and the BLUP. In the simulation study based on 
real data we show that our proposal gives more accurate design-MSE and design-
variance estimators in most of cases (or of similar accuracy in other cases) for 
estimators and predictors which use auxiliary information compared with the original 
algorithm and other bootstrap methods considered in the paper. 
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APPENDIX 
 

Table A1. Relative design-biases and design-RRMSEs in % of considered estimators and predictors 

estimator/predictor relative bias (in %) RRMSE (in %) 

HT -0.079 1.836 
HTd1 -0.215 14.654 
HTd2 0.037 11.498 
GREG -0.172 1.790 
GREGd1 -0.799 15.592 
GREGd2 0.359 12.232 
MGREGd1 -0.208 2.804 
MGREGd2 -0.148 2.190 
BLUPd1 -3.100 3.809 
BLUPd2 0.544 2.935 

 

Table A2. Relative biases in % of bootstrap estimators of design-variances – part 1 

Method HT HTd1 HTd2 GREG GREGd1 GREGd2 

Cl 9.5 0.6 -1.1 1.6 -6.8 -8.0 
H 8.1 -1.4 -2.9 9.1 -0.8 -1.5 
AT 9.6 0.6 -1.0 16.8 4.1 3.3 
Q 13.5 5.6 3.5 6.2 0.6 0.2 
GQ1 14.6 5.8 3.6 3.4 -2.5 -3.1 
GQ2 14.8 8.8 6.3 3.8 3.3 3.2 
GQ3 14.9 5.5 3.3 3.2 -2.9 -3.7 
GQ4 15.2 9.4 7.0 3.8 1.7 1.7 

 

Table A3. Relative biases in % of bootstrap estimators of design-variances – part 2 

Method MGREGd1 MGREGd2 BLUPd1 BLUPd2 

H 3.2 1.8 7.8 9.3 
AT 9.2 10.3 10.3 10.8 
Q 7.6 -1.1 1.0 1.4 
GQ1 8.6 -3.8 -1.7 -3.8 
GQ2 11.4 -3.2 -1.7 -5.7 
GQ3 7.0 -4.5 -1.8 -3.8 
GQ4 10.2 -2.9 -2.5 -7.0 
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Table A4. Relative biases in % of bootstrap estimators of design-MSEs 

Method GREG GREGd1 GREGd2 MGREGd1 MGREGd2 BLUPd1 BLUPd2 

cl 0,6* -7.1* -8.1* - ** - ** - *** - *** 
H 10.1 2.3 2.0 4.5 3.8 -63.0 9.6 
AT 16.4 4.3 3.7 9.1 10.4 -62.8 7.1 
Q 5.8 0.9 0.7 8.0 -1.0 -65.8 0.5 
GQ1 2.9 -2.5 -2.9 10.3 -1.8 -66.1 2.6 
GQ2 20.8 102.3 104.4 27.3 7.7 -60.9 18.1 
GQ3 22.7 15.8 14.2 20.7 19.9 -63.1 11.2 
GQ4 48.8 102.8 102.9 57.0 36.2 -51.5 43.5 

   *  -  design-variance estimator (15) is used to estimate design-MSE 
 **  -  classic design-MSE estimator not available due to the lack of second order inclusion  

   probabilities 
***  -  design-MSE estimator not available (prediction-MSE is usually estimated) 

 


