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Robust Bayesian insurance premium in a collective risk model
with distorted priors under the generalised Bregman loss

Agata Boratynska'

ABSTRACT

The article presents a collective risk model for the insurance claims. The objective is to
estimate a premium, which is defined as a functional specified up to unknown parameters.
For this purpose, the Bayesian methodology, which combines the prior knowledge about
certain unknown parameters with the knowledge in the form of a random sample, has been
adopted. The generalised Bregman loss function is considered. In effect, the results can be
applied to numerous loss functions, including the square-error, LINEX, weighted square-
error, Brown, entropy loss. Some uncertainty about a prior is assumed by a distorted band
class of priors. The range of collective and Bayes premiums is calculated and posterior regret
I-minimax premium as a robust procedure has been implemented. Two examples are
provided to illustrate the issues considered - the first one with an unknown parameter of the
Poisson distribution, and the second one with unknown parameters of distributions of the
number and severity of claims.

Key words: classes of priors, posterior regret, distortion function, Bregman loss, insurance
premium

1. Introduction

We consider a Bayesian collective risk model. Our objective is to estimate
a premium, which is defined as a functional H that assigns to any risk S a real number
H(S), the premium for taking the risk S. In practical situations the premium H(S) can
be calculated if the distribution of the risk S is known. We shall consider the case
in which the distribution of S or the premium H(S) is specified up to an unknown
parameter 8, thus the risk premium will be denoted by H(8). The premium H(6) can
be calculated according to different principles, from the simplest net premium to more
sophisticated ones (see Kaas et al. (2009), Furman and Zitikis (2008)). Next we ought
to estimate H(8). We will use the Bayesian methodology, which combines the prior
knowledge about a parameter 6 (defined by a prior distribution ) with the knowledge
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in the form of a random sample X = (Xy, X,, ..., X,), where the distribution of this
random variable depends on 8. The quality of an estimator is measured by the expected
value of a loss function. There are a lot of different loss functions considered in the
literature (see Heilmann (1989), Gomez-Déniz (2008), Boratynska (2008) and
Karimnezhad and Parsian (2018) for more references). Its choice depends on the
severity of the error related to overestimation or underestimation. The most popular
square-error loss equally penalizes over- and under-estimation of the same magnitude,
the LINEX loss with ¢ <0 gives a greater error for underestimation than for
overestimation, under the generalized entropy loss an error depends on the ratio
between the estimated function and a considered action (for definitions of losses see
Table 1). Again under- and over-estimation are not penalized equally. We will use the
generalized Bregman loss (GB loss) function introduced by Karimnezhad and Parsian
(2018) (for definition see Section 2). The class of GB loss functions contains different
losses (weighted, symmetric, asymmetric, precautionary). All the loss functions
mentioned above belong to that class. Thus, a practitioner has the great family of loss
functions and he can choose one that expresses the severity of the estimation error very
well.

Now, having some prior information about a parameter 6 € 0, described by a prior
distribution m (we will use the same notation for a probability distribution and its
density (p.d.f.) with respect to the chosen measure on a probability space ©), and a loss
function L(H(8), a) (measuring an error between the estimated parameter H(6) and
our estimate a) we can calculate the collective premium HS, which minimizes the
expected loss

E,L(H(6),a) = f@ L(H(6), a)m(d6)

in a class of actions a € R.

If, additionally, we have a random sample X = (X;, X5, ..., X;;) and X has a p.d.f.
depended on a parameter 6, then for every value x of a random variable X we can
calculate a Bayes premium HZ (x), which minimizes the posterior risk equal the
expected value of the loss function, if 8 has the posterior distribution, thus

Ry (m,a) = Er(L(H(6), a)|x) = LL(H(Q).a)ﬂ(dHIX).

where m(-|x) denotes the posterior p.d.f. and a denotes a chosen action. Two
premiums (defined above) express two situations. For example, the first premium is
apremium in a class of risk. The prior expresses the population behaviour of an
unknown parameter 6. The second premium combines knowledge about the
population and about one considered risk (a policy).

The collective and Bayes premiums depend on a choice of a prior. The elicitation
of a prior is difficult and can be uncertain. To model uncertainty of the prior
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information the robust Bayesian inference uses a class I of priors. In literature there are
a lot of different classes I' of priors: parametric classes of priors, -contamination
classes, density and distribution band classes, quantile classes. For general references
see Berger (1994), Rios Insua and Ruggeri (2000). In insurance the robust Bayesian
analysis was considered in many papers, for example: Young (2000), Chan et al. (2008),
Goémez-Déniz (2009), Karimnezhad and Parsian (2014), Boratynska (2017). Most of
them present parametric or -contamination classes. We will use a class of priors based
on distortion functions defined by Arias-Nicolés et al. (2016) (for definition see Section
3). The class is easily elicited and interpretable. It is connected with the stochastic and
likelihood ratio orders. It quantifies a prior uncertainty in terms of distortion of
a cumulative distribution function (c.d.f.). A parametric class of priors very often has
a fixed shape of a c.d.f. During elicitation of a prior a practitioner has only approximate
knowledge about a prior and narrowing down to a certain parametric family may be
unjustified. The family considered in the paper can be an alternative. In insurance this
class was considered by Sanchez-Sanchez et al. (2019). The concept of distortion
functions has been used in actuarial science to model risk measure (see, for example,
Balbas et al. (2009)).

Having a class T' of priors we choose a measure of robustness of a statistical
procedure and some concept of optimality. As a measure of robustness the range of
posterior quantity, like the Bayes estimator, can be considered. If the range is small,
then one may used the Bayes estimator as the robust procedure with respect to
misspecifications of the prior (see Berger (1994), Rios Insua and Ruggeri (2000) and
Arias-Nicolas et al. (2016), among others). On the other hand, if conclusions differ
widely, we should aim at eliciting additional information about the prior. However, the
expert may not be willing to provide more information, and the practitioner is
interested in choosing a single action from the set of actions provided by a global
procedure. In this moment we can choose several concepts of an optimal procedure:
the stable procedure, conditional I'-minimax procedure or posterior regret [-minimax
(PRGM) procedure (see Sivaganesan and Berger (1989), Rios Insua et al. (1995),
Boratynska (1997, 2002), Rios Insua and Ruggeri (2000), among others). We will use
the last concept. Given the imprecision in elicitation of a prior, we try to make
a decision, and this decision cannot be a Bayes action for every prior in the class I'. Thus,
we choose an action (in our problem an estimator of a premium), which minimizes the
maximum loss of optimality in the class I and the largest possible increase in risk,
resulting from making the wrong choice of a prior distribution, is kept as small as
possible. The PRGM estimator depends on bands of the Bayes estimator when a prior
runs over the class I'. Thus, computing a PRGM estimator is simple provided that we
have procedures to compute the range of Bayes estimators.
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The article is organized as follows. Section 2 presents a guide for collective, Bayes
and PRGM premiums under the GB loss. Section 3 reviews the structure of the class of
priors based on distortion functions. Considering the GB loss function we find the
bands of the Bayes estimator for a distorted band class of priors, thus we can compute
the PRGM estimators. We note that for every value of a random sample X the optimal
PRGM premium is the Bayes premium with respect to one prior from the considered
class of priors. Section 4 contains PRGM estimators of a premium in some actuarial
models with the GB loss function. We present some generalization for the case in which
an unknown parameter is bidimensional (it is a case where a parameter of a probability
distribution of a number of claims and a parameter of a probability distribution of
a severity of claims are unknown and some prior information about them is known).
Section 5 contains some concluding remarks.

2. Collective, Bayes and PRGM premiums under the GB loss function

Generally, let X be an observed random variable with a p.d.f. f(- |6) indexed by
a real unknown parameter 6. Suppose 8 has a prior distribution . Let L(H (), a) be
the generalized Bregman loss function (GB loss), measuring the penalty of incorrect
estimation of a premium H (6) by a real decision action a, defined as follows:

LEH (), @) = w(H () [#(9(a)) - ¢ (9(H(6))) - (9(a) — 9 (H())) ¢’ (9(H(®)))],

where real functions w, g and ¢ are fixed and w(H (60)) > 0 for every value H(6), g(-)
is a monotone function and ¢(+) is a convex, differentiable function and ¢'(g(0)) =
% ®(2)|;=g(6)- The shape of the GB loss depends of the choice of functions w, g and
¢, for example, taking w(z) = e~%, g(z) = z and ¢(z) = e (¢ # 0) we obtain the
LINEX loss function introduced by Varian (1974), taking w(z) = 1, g(z) = z and
¢(2) = z? we have the square-error loss. Table 1 presents some examples of the GB
loss. The following theorem is the corollary of Theorem 3.1. in Karimnezhad and
Parsian (2018).

Theorem 1. Let X = x. Then, under the GB loss function and a prior T, the collective HS
and Bayes HE (x) premiums satisfy the following equations:

1o (FCYY = EnW(H@) b1 (g(H©))
o' (9H) == ey
"o (OB _ Ex(w(H©)¢/(g(H@))])
¢'(9(Hrx (D) == o
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Now, suppose that our knowledge about a prior is described by a family I of priors.
Let 7¢(T") and r2(T, x) denote the range of a collective and a Bayes premium when
priors run the class I, respectively, thus if X = x, then

r¢(T) = supHS — infAS  and  rB(T,x) = supHE (x) — infHE (x).
er mer el welr
Consider the posterior regret of an action a given by
1 (T, @) = Ry(m, @) — Ry (1, A (x)).

In a sense, for X = x, it measures the loss of optimality due to choosing a instead
of the optimal Bayes estimate. The estimator HER is the posterior regret I'-minimax
premium (PRGM premium) if for every value x of X

infsup 7, (1, a) = sup r,. (7T, AR (x)).
Q€ER ger ner

We will use the following theorem to calculate the PRGM premium.

Theorem 2. (Karimnezhad and Parsian (2018)) In estimating H(6) under the GB loss
function, let X = x, I' be a class of prior distributions and let H = H(x) = 12£ HE (x),

Vs
H=H(x) =sup HZ(x) and H < H.

mer
Ifw(H) = const, then

¢ (g(H)) - (g ()~ (g(H)P'(gH)-g(H)P/(g(H)))

PR _ 1)
g(H™ (X)) /(g (H))~p1(g ()

k

——— th
brg@E)y T

If there exists a constant k such that E;(w(H(6))|x) =

PGEPR) -0 (gH)-¢1(gENGEHR)-g(H) _ ¢1(g(H)
PHPRO)-P(g(H))-¢ (g (GHPR()-g(H)  ¢r(g(H))

Directly from the proof of Theorem 2 we have the following corollaries.
Corollary 1. Under the assumptions of Theorem 2 for every x of X
H(x) < HPR(x) < H(x).

Corollary 2. Under the assumptions of Theorem 2, if for every value x of X the set
(HE(x):m €T} is a connected set, then for every x there exists mw € I such that
HPR(x) = H (x).

Table 1 presents collective, Bayes and PRGM premiums for different loss functions
belonging to the class of GB loss functions.
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Table 1. Examples of GB loss functions and collective, Bayes and PRGM premiums (for more
examples and details see Karimnezhad and Parsian (2018))

L(H,a) HE HE AR
square-error loss (H — a)? E.H E.(H|x) 0.5(H + H)
LINEX loss

- 1 H-H
ecla-H) _ cla-H)—1 —llnEne_CH _1111E7T(9_CH|X) H+ —1n< c(H _) )
c c ¢ \exp(c(H—-H))—-1

weighted squared loss (1)

T )| () i

weighted squared loss (2) Ené En(%pc)
1 . .
—(a- H)? Enr En(51%) Th.2 is not applicable
Brown loss (Ina — InH)? gEnInH eEn(InH|x) ’ﬂﬁ
precautionary loss EnH Ex(H|x)
Hia_, Eng Er(5]2) Th.2 is not applicable
a H
gener:liqzed ent;opy loss . = (E ( 1 lx))_?l (ln ﬂq—lnﬁq)%
() —amg-1 (E" (m)> e T

3. Distorted band class of priors

We start with recalling the definition of the stochastic and likelihood ratio orders
and a distortion function.

Let 7; and 7, be two probability distributions on the space © and F, and Fy, their
cumulative distribution functions. We say that m; is smaller than 7, in the stochastic
order (denoted by 71; < 7,) if and only if for every t € R we have F; (t) = F,(t).

We say that mr; is smaller than m, in the likelihood ratio order (denoted by m; < ;)
m2(6)
Ty

of my and m, (here a/0 is taken to be equal to +0c0 whenever a > 0 and a support of

ap.d.f. wisa closure of a set {6 € ©: w(8) > 0}).
Let V and W be two random variables such that V ~ m; and W ~ m,. It is well
known that

if and only if the ratio of their densities increases over the union of the supports

Ty Xy My = Ty =T
and
T 2n, < EPW) < EYW), (*)
for all increasing functions 1 for which the expectations exist. For more details about
stochastic orders see Shaked and Shanthikumar (2007), for the stochastic ordering of
posterior distributions, marginal distributions of data and predictive distributions see
Meczarski (2015).
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Let h:[0,1] — [0,1] be a nondecreasing, continuous function such that h(0) = 0
and h(1) = 1. Then h is called a distortion function. Let 7 be a probability distribution
on O, then a probability distribution 7, with a c.d.f. of the form F;, = h(Fy), is called
the distorted distribution with the distortion function h.

Suppose that the prior distribution is not exactly specified and consider the
following class of priors.

Definition (Arias-Nicolas et al. (2016)). Let T be a specific prior belief. The distorted
band class I p, , associated with 7T, based on hy and h,, a concave and convex distortion
functions, respectively, is defined as
g n, = {0 Ty, Sy T2y T, 3
The following properties are very useful (for details see Arias-Nicolas et al. (2016)):
« easy elicitation and structure,
e Tanon, S {0 Ty, <L)
o if 71,75 € Iz, n,> then for every € € [0,1] and 1, = (1 — &)y + €7, we
have 7, € Iz, p,»
o for every w € I 1, 1, and every x the posterior distribution satisfies
T, (%) 2y T(C %) 2 Ty, (- [X).
Example 1. Let T be a fixed prior on the space 0. Consider a class
O ={m: @y, i T =24y Tpy, b
where hy ¢ , h; ., are two distortion functions such that
hie,(2) =1= (1 =29, hy,(2) = 2%

d d
T, (0) = 55 (1= (1= Fa(0))%), Ty, . (6) = 25 (Fa(0))),

and ¢; > 1, ¢, > 1 are fixed numbers. Thus, if ¢; and ¢, are integers, then the bounds
distributions are the distributions of the first and the last order statistics. The following
properties describe the dependence on parameters ¢; and c,.

o If ¢’y > ¢y, then Thy e, Sir Ty, -

«If¢', > cy, then Thye, Sir Thy g,

o Similar order is for posterior distributions.

» The Kolmogorov distance (see Arias-Nicolas et al. (2016))

-C1 —C2

dK (ﬁ, ,—rhul) = (= Ve, dK(@ Ty, ) = (ca — Dey?

We will use that class for elicitation priors in Section 4.

Now, considering the GB loss we would like to find bounds of a set of Bayes
estimators of the premium. The following lemma presents the preservation of order of
the collective and Bayes premiums computed under the GB loss function when prior
distributions are in the likelihood ratio order.
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Lemma 1. Let H be an increasing function of 0. Let w1 and m, be two priors such that
My Xy Ty and ﬁgi, ﬁf; be the collective and Bayes premium under the GB loss and the
prior m;, fori = 1,2. Then for every x of X

HS < HE, and HE (x) < HE (x).
If H is decreasing, then in the above inequalities there is the sign change.

Proof. Assume H is increasing (if H is decreasing, then the proof is similar, only we
have opposite inequalities in (**)).

Having a probability distribution 7 and a positive integrable function w, define the
w(H(6))m(6)

probability distribution 7% with the p.d.f. equal 7% (8) = W@ @)n(ad)’
(€]

Ifmy 2y 1y,
mz(0) _ JowH(E)T1(d0) m,(6)
¥ (0)  fow(H(ODT(dE) 7. (6)
and my’ X Y.

Note that ¢'(g (ﬁ,%)) (see the formula in Theorem 1) is the expected value of the
function ¢'(g(H(0))) if 6 has the probability distribution 7}, i = 1,2. Now, applying
the property (*) of the stochastic order, if g is increasing, we have

o' (9(A5,)) < ¢’ (9(AS,)) (+%)

(if g is decreasing we have opposite inequalities) and obtain the assertion for the

then

is an increasing function of 6, hence " <, Y’

collective premium. The proof for the Bayes premium is similar, we only put a posterior
distribution 7 (- [x) in the place of 7.

The following theorem presents the bounds of a set of Bayes estimators and it is
a conclusion from Lemma 1.

Theorem 3. Under the GB loss function and the distorted band class Iz p, p, of priors, if
H is an increasing function of € and for every m € Iz n, and every x of X there exist aE
and HE (x), then

; gc — fjc gc _ fc

inf Hy= Hﬁhl, sup Hp = Hﬁhz,
TEl 7 Ry hy T€l7 by by

; ijB — [jB B _ OB

inf Hp = H,—,hl, sup Hy = Hﬁhz'
TEL R hy ,hy T€l7 by by

IfH is decreasing, then inf and sup change places.

Having the upper and lower bounds for the set of Bayes premiums and applying
Theorem 2, we can calculate the PRGM premium if the class of priors is equal I 5, 5,

Remarks

1. Arias-Nicolas et al. (2016) define the class of submodular loss functions and obtain
the bounds of the set of Bayes actions under priors belonging to Iz, p, > if a loss
function is convex in a and submodular. If w(8) = const then the GB loss is
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submodular (22 = —g'(a) g'(6)¢" (9(6)) < 0), but if w(6) # const, then

a GB loss may not have the submodularity property. As an example consider
1

L(6,a) =;(a— 0)2.

2. Applying Remark 8 in Sanchez-Sanchez et al. (2019) and Corollaries 1 and 2 we
obtain that for every x there exists g € I, , such that HPR(x) is equal to the

Bayes estimator with respect to the prior 7.

Example 2. In that example we present the exact formula for the PRGM estimator for
some GB losses and a certain class [ j,, p, of priors.
Let X be an observed random variable with the negative binomial distribution,

bin~(r,8), where 8 € (0,1) is unknown and r > 0 is known, with the p.d.f. given by
I'(r+x)

f(x|8) = WGr(l —-0)*, if x=0,1,2, ...

Let 7T be a prior of 8 with the p.d.f. equal T (8) = 20 if 6 € (0,1). We are interested
in estimating a function H(0) = %. Note that E(X|0) = rH(6). Hence, if X describes
the number of claims, then we are interested in estimating the expected value of the
number of claims. Consider h (z) = z%7 and h,(2z) = z® and aclass I, , of priors.
Then F(6) = 62, Fr, (0) = 015, Fr, (0) = 0* for 6 € (0,1). If X = x, then
posterior distributions for priors 7T, T, and T, are beta distributions Beta(r + 2, x + 1),
Beta(r + 0.5,x+ 1) and Beta(r +4,x+ 1), where a beta distribution with

parameters @ >0 and S >0, Beta(a,f), has the p.df given by n(6)=
I‘((x+,8) -1 -1
6*~1(1—-6)F1,if 0 € (0,1).
r(a)rp) ( ) O
Table 2. Bayes and PRGM estimators and the oscillation 7 (I , hy» %) under some losses, notation:
_ T(@r+15) dB = I'(r+4)
T I(r+1.5+q) an T r(r+4+q)
Loss functi H—a)? 1 —q)2 a\4 a
oss function H-a) ~(H—a) (;) —qn;—1
~ x+1 X I(r+ 2)x! i
HE(x
n (@) r+1 T+ 2 (F(r+2+q)F(x—q+1))1
AE (x) x+1 x ( I(r+ 1.5)x! q
f r+ 0.5 r+15 T(r+15+ T (x—q+ 1))1
A () x+1 X ( I'(r + 4)x! )a
"2 r+3 r+4 Ir+4+l(x—q+1)
2.5(x+1) 2.5x 1 1
B (- X - _x \a 7 _ R3
7% (T nynyr X) (r+0.5)(r+3) B (F(x—q+1)) (Aq Bq)
(x+1) 1 1 X 1
. +-L x_ In(B/A)\a
H™ () z (”0'5 T+3) Ja+ 4 +1.5) (l"(x—q+1) 1/A—1/B)

Now, applying formulas from Table 1 we can calculate Bayes and PRGM estimators
under selected loss functions. Table 2 presents results.

In the above example the interesting prior and posterior distributions are easy to
compute. In practice, it is not easy to compute the exact distributions and interesting
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posterior quantities (for example the expected value). In the next section we apply the
acceptance-rejection method. The algorithm applying this method for simulation
arandom sample from prior and posterior distributions m, and m, (- |x), knowing
distributions 7 and 7 (- |x), is presented in Arias-Nicolds et al. (2016).

4. The collective risk models and premium calculations, examples

Let N, Y;,Y,, ... be independent random variables, where N describes the number
of claims and Y3, Y5, ... are identically distributed random variables describing severity
of claims. We consider two models.

4.1. Unknown parameter 8 in the Poisson model

Assume that N has the Poisson distribution with an unknown parameter 8 > 0 and
a distribution of ¥; is known. The parameter 8 can represent a driver’s propensity to
make a claim and the prior indicates how that propensity is distributed throughout the
population of insured drivers (see Lemaire (1979), Gomes-Déniz (2009)). Consider the
premium H () which is a linaer function of 8, thus H(6) = t6 (the net premium, the
variance principle premium, the Esscher premium, the exponential premium are
examples, see Boratyniska (2008)). Now, let X1, X, ..., X;, be observed ii.d. random
variables with the Poisson distribution Poiss(6) and consider following GB loss
functions (for shape see Figure 1):

« the square-error loss Lg(a, 8) = (0 — a)?,

« the LINEX loss L;(a, 8) = e~ %5(@=9) + 0,5(a — 6) — 1,

« the Brown loss Lg(a, ) = (Inf — Ina)?,

« the generalized entropy losses with g equal 2, 1 and -1:

2
Ly(a,6) = (5) —2n5—1, Li(a,0) =5 —In5—1,L;)(@,6) =2 +Ins— 1.

For all these loss functions it is enough to find the collective, Bayes and PRGM

estimators of 0, because if H(6) = t0, then
BS =tBE, HE =tBE, HPR =tk
for the square-error, Brown and generalized entropy losses. For the LINEX loss
Li(a,0) = e@9 4 c(a — @) — 1, with a constant ¢, we have
AS =t8E,., HE=1t0F,., HPR=tOFR,

where 8., 8Z,., OFF are estimators for the LINEX loss with a constant tc
(see Boratynska (2008)).

Note that the collective and the Bayes estimator of 8 for loss functions Ls and L(_y) are
equal, but PRGM estimators are different (see Table 1).
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Figure 1. The graphs of loss functions

We assume that the actuary is unable to specify a simple prior distribution of the
expected number of claims. Thus, let 7 = Gamma(3, 15) be the fixed prior distribution
of 8 with a p.d.f. 7(6) = 12i392exp(—159) for 8 > 0, and

I'={m: Tp, 2y T =y T, }

be the family of priors, where

T, (0) = :—9(1 = (A= Fz(0)%), 7,(0) = %((Fﬁ(G))Cz)
and ¢; = ¢, = 1.5. Then dK(7,7,,) = dK(7T,7p,) = 0.148. The class I' expresses the
inaccuracy in determining the cumulative distribution function of 7. The parameters
1, ¢; provides the degree of distortion and can be elicited by fixing a reasonable
distance in terms of Kolmogorov metric.

0,1 0,1 /
square, q=-1 square, g=-1 /
e e | INEX o e | INEX
0,09 / 0,09 / .
Brown Brown /
Ry
0,08 £
0,08 S/
0,07 0,07
0,06 0,06
0,05 0,05
0,04 0,04
0 1 2 3 4 5 0 2 4 6 8 10

Figure 2. Oscillation 75 (T, x) of Bayes estimators for different loss functions, n =5 (left) and
n = 10 (right)
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Figure 2 presents the oscillation of the Bayes estimators forn = 5 and n = 10 and
different values of x = )i, X;. Table 3 shows the oscillation of the collective estimator
for different losses. We see that the oscillation for Bayes estimators is an increasing
function of x (except the generalized entropy loss with ¢ = 2) and it is smaller than the
oscillation for the collective estimators for % < 0.5. The greatest oscillation is for the
LINEX loss.

Table 1. Oscillation of the collective estimator of &

Generalized entropy loss
Loss square LINEX Brown Py
q=2 q=1 q=-1
r¢() 0.076 0.078 0.073 0.071 0.071 0.076
0,45 045
0,4 square loss 2 (045 linex loss ' Brown loss
0,4
0,35 0,4 7 g
0,3 0,35 © 035 v .
0,25 0,3 0,3
0,2 0,25 0,25
0,15 0 0.2
0,1 ’ !
0,05 0,15 0,15
0 0,1 0,1
0 1 2x 3 4 5 g0 0,05
= . = (ollective == == == Bayes 0 0
supBayes infBayes 0o 1 2 3 4 5 0 1 2 3 4 5
......... PRGM X X
Generalized entropy losses
04 04 0,45
0,35 g=1 5 | 04
7
. 0,35
0,3 /...-
4 0,3
0,25
0,25
0,2
0,2
0,15
0,15
7
0.1 0,1
0,05 0,05
0 0 0
0 1 2 3 4 5
0 1 243 4 5 X 0o 1 2.3 4 5

Figure 3. Values of collective, Bayes and PRGM estimators and minimum and maximum of Bayes
estimators for different loss functions and n = 5
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Figures 3 and 4 show values of minimum and maximum of Bayes estimators,
collective estimators and Bayes estimators for the prior 7 = Gamma(3,15) and PRGM
estimators for two values of n and different x =¥}, X;. The oscillation of Bayes
estimators is the smallest if % is closed to the expected value E;6 = 0.2.
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Figure 4. Values of collective, Bayes and PRGM estimators and minimum and maximum of Bayes
estimators for different loss functions and n = 10

We use n and x small, because n is interpreted as the number of periods (years) we
observe, for example, a driver, and x is the number of claims during the n periods. The
prior represents the population behaviour of the parameter 6. Our results (Bayesian
and PRGM premiums) have similar interpretation as the rules in the credibility theory.
They combine knowledge about a single driver with knowledge about the entire
population. Similar models with a parametric class of priors or an &-contamination
class of priors and the square-error loss or LINEX loss were considered in Boratynska
(2008) and Gomez-Déniz (2009).
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4.2. Unknown parameters 0 and A of distributions of the number and severity of
claims

Assume that random variable N has a distribution f;(- |0) depending on an
unknown parameter 6 € 0, and a random variable Y; has a distribution f,(-|4)
depending on an unknown parameter 1 € A. Consider the premium of the form

H(6,4) = H,(0)H, (4),
where H; and H, are increasing and continuous functions of 6 and 4, respectively.

Let Xy, X5, ..., X, be observed ii.d. random variables with a p.d.f. f;(: |0) and
Z1,Z3, ..., Zy be observed i.i.d. random variables with a p.d.f. f, (- |4), all variables are
conditionally independent, knowing parameters 8 and A. Assume that 6 and A are
independent, and 6 ~u and A ~wv. Denote X = (Xy,X,, .., X,) and Z =
(Z1,Z5, ..., Z ). Let x and z be observed values of random variables X and Z. It can be
seen directly that the posterior distributions pu(- |x) and v(-|z) are independent.
Consider the following GB loss functions: square-error loss, Brown loss, generalized
entropy loss (see Table 1). Then, the collective and Bayes premiums are equal

HS, = Hf HS,, HE,(x,2) = HE,(x)HS,(2).
Let I'* be a family of priors on the space ©® X A with a p.d.f. given by

(4,0) = n(@v(d),
where

BE U fin, i M=y finy} U € {Ur Upy Sy U 2y Up, ),

i and ¥ are fixed priors on the spaces © and A, respectively, and hq, h,, hs, hy are fixed
distortion functions (h4, h3 are concave and h,, h, are convex). Assume that for every
m € I'" and every x and z the Bayes premium exists. Then (applying Theorem 4) the
minimum and maximum of Bayes estimators of the premium H are given by

inf HE (x,2) = Hig, (OHz5, (2), ggﬁHﬁ(x: z) = Hiy, (0OHZy, (2),
and using Theorem 2 we have the PRGM estimator of H.

Example 3. Assume that N ~ Poiss(0) and Y; has an exponential distribution with
adensity given by f,(y|1) = %exp(— %) for y > 0, depended on an unknown
parameter 1 > 0. Consider the net premium
H(6,1) = H,(8)Hy (1) = 6A.
Assume that 0 has the prior distribution i = Gamma(a, ) and A has the prior

distribution v = IGamma(a, b) with a density function

ba
(1) = 0)

where a, 8, a,b are fixed positive parameters and ¢ > 2 and a > 1.

a1y (0
A exp 7 for A>0,
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If X =x = (%1, %3 ..., %) and Z = z = (24, 73, ..., Zn), then the posterior distributions
are (- |x) = Gamma(a + Y, x;,f +n) and o(: |z) = IGamma(a +m,b+Y¥", 7). We
obtain the following collective and Bayes premiums:

« under the square-error loss and the generalized entropy loss for ¢ = —1
sc . ab =B _(a+ Yic1 %) (b + X2y z;)
By D T e m—1

« under the Brown loss

His = exp(Y(a, B) — Y (a, b)),
AE;(x,2) = exp <1p(a +n,B8+ ) x)—yYla+mb+ zi)>,
: 2 2
+00 t° g1 -
where Y (s, t) = [ lnyﬁy le~tygy,
« under the generalized entropy loss forg = 1

gS¢ = w AE_(x,2z) = (@+ X % — Db+ XL, z)
U Ba S B +n)(a+m) ’

« under the generalized entropy loss for g = 2

H,

c by (a=2)(a—1)
no

BJa(a+1) ’

. J@ S x 2 @B, D043, 2
Hpp(x,z) =

(B+n)y/(a+m+1)(a+m)

For i = 1,3 and j = 2,4 define fixed numbers ¢; > 1, ¢; > 1 and the distortion
functions
hi(z)=1-(1-2)%  hj(z) =2z%.
Now, using the class I'* of priors and simmulation methods for calculation of
posterior expected values (similarly as in Section 4.1), we obtain the minimum and
maximum of collective and Bayes premiums and the PRGM premium.

5. Conclusions

The analysis proposed in this article was used to provide the optimal estimators of
the risk premium in Bayesian models with the distorted band class of priors expressing
some uncertainty in elicitation of a prior. It is an alternative to the parametric classes of
priors used by practitioners. It expresses the uncertainty in determining a prior c.d.f,
and that uncertainty is more realistic. The range of Bayes estimators and optimal PRGM
estimators is obtained under the large family of GB loss functions, thus the practitioner
can find the loss function expressing the severity of under- and over-estimation.
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The numerical example presents the difference among the estimators of frequency of
claims in the collective risk model under different loss functions. The last example
presents the situation where we can apply results for one-dimensional parameter to the
bidimensional parameter, thus we can estimate the net premium with unknown
frequency and expected severity of claims. Ruggeri et al. (2021) consider the
generalization of the distorted band class to the multivariate case. Applying their
models we can try to describe a dependence structure between random variables 8 and
A connected with frequency and severity of claims. The author believes that this topic
could be expanded in the future.
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