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Robust Bayesian insurance premium in a collective risk model 
with distorted priors under the generalised Bregman loss 

Agata Boratyńska1 

ABSTRACT 

The article presents a collective risk model for the insurance claims. The objective is to 
estimate a premium, which is defined as a functional specified up to unknown parameters. 
For this purpose, the Bayesian methodology, which combines the prior knowledge about 
certain  unknown parameters with the knowledge in the form of a random sample, has been 
adopted. The generalised Bregman loss function is considered. In effect, the results can be 
applied to numerous loss functions, including the square-error, LINEX, weighted square-
error, Brown, entropy loss. Some uncertainty about a prior is assumed by a distorted band 
class of priors. The range of collective and Bayes premiums is calculated and posterior regret 
Γ-minimax premium as a robust procedure has been implemented. Two examples are 
provided to illustrate the issues considered - the first one with an unknown parameter of the 
Poisson distribution, and the second one with unknown parameters of distributions of the 
number and severity of claims. 

Key words: classes of priors, posterior regret, distortion function, Bregman loss, insurance 
premium 

1. Introduction 

We consider a Bayesian collective risk model. Our objective is to estimate 
a premium, which is defined as a functional 𝐻 that assigns to any risk 𝑆 a real number 
𝐻ሺ𝑆ሻ, the premium for taking the risk 𝑆. In practical situations the premium 𝐻ሺ𝑆ሻ can 
be calculated if the distribution of the risk 𝑆 is known. We shall consider the case 
in which the distribution of 𝑆 or the premium 𝐻ሺ𝑆ሻ is specified up to an unknown 
parameter 𝜃, thus the risk premium will be denoted by 𝐻ሺ𝜃ሻ. The premium 𝐻ሺ𝜃ሻ can 
be calculated according to different principles, from the simplest net premium to more 
sophisticated ones (see Kaas et al. (2009), Furman and Zitikis (2008)). Next we ought 
to estimate 𝐻ሺ𝜃ሻ. We will use the Bayesian methodology, which combines the prior 
knowledge about a parameter 𝜃 (defined by a prior distribution 𝜋) with the knowledge 
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in the form of a random sample 𝑋 ൌ ሺ𝑋ଵ, 𝑋ଶ, … , 𝑋௡ሻ, where the distribution of this 
random variable depends on 𝜃. The quality of an estimator is measured by the expected 
value of a loss function. There are a lot of different loss functions considered in the 
literature (see Heilmann (1989), Gómez-Déniz (2008), Boratyńska (2008) and 
Karimnezhad and Parsian (2018) for more references). Its choice depends on the 
severity of the error related to overestimation or underestimation. The most popular 
square-error loss equally penalizes over- and under-estimation of the same magnitude, 
the LINEX loss with 𝑐 ൏ 0 gives a greater error for underestimation than for 
overestimation, under the generalized entropy loss an error depends on the ratio 
between the estimated function and a considered action (for definitions of losses see 
Table 1). Again under- and over-estimation are not penalized equally. We will use the 
generalized Bregman loss (GB loss) function introduced by Karimnezhad and Parsian 
(2018) (for definition see Section 2). The class of GB loss functions contains different 
losses (weighted, symmetric, asymmetric, precautionary). All the loss functions 
mentioned above belong to that class. Thus, a practitioner has the great family of loss 
functions and he can choose one that expresses the severity of the estimation error very 
well.  

Now, having some prior information about a parameter 𝜃 ∈ Θ, described by a prior 
distribution 𝜋 (we will use the same notation for a probability distribution and its 
density (p.d.f.) with respect to the chosen measure on a probability space Θ), and a loss 
function 𝐿ሺ𝐻ሺ𝜃ሻ, 𝑎ሻ (measuring an error between the estimated parameter 𝐻ሺ𝜃ሻ and 
our estimate 𝑎) we can calculate the collective premium 𝐻෡గ

஼ , which minimizes the 
expected loss  

𝐸గ𝐿ሺ𝐻ሺ𝜃ሻ, 𝑎ሻ ൌ න
஀

𝐿ሺ𝐻ሺ𝜃ሻ, 𝑎ሻ𝜋ሺ𝑑𝜃ሻ 

in a class of actions 𝑎 ∈ 𝑅.  
If, additionally, we have a random sample 𝑋 ൌ ሺ𝑋ଵ, 𝑋ଶ, … , 𝑋௡ሻ and 𝑋 has a p.d.f. 

depended on a parameter 𝜃, then for every value 𝑥 of a random variable 𝑋 we can 
calculate a Bayes premium 𝐻෡గ

஻ሺ𝑥ሻ, which minimizes the posterior risk equal the 
expected value of the loss function, if 𝜃 has the posterior distribution, thus  

𝑅௫ሺ𝜋, 𝑎ሻ ൌ 𝐸గሺ𝐿ሺ𝐻ሺ𝜃ሻ, 𝑎ሻ|𝑥ሻ ൌ න
஀

𝐿ሺ𝐻ሺ𝜃ሻ, 𝑎ሻ𝜋ሺ𝑑𝜃|𝑥ሻ, 

where 𝜋ሺ⋅ |𝑥ሻ denotes the posterior p.d.f. and 𝑎 denotes a chosen action. Two 
premiums (defined above) express two situations. For example, the first premium is 
a premium in a class of risk. The prior expresses the population behaviour of an 
unknown parameter 𝜃. The second premium combines knowledge about the 
population and about one considered risk (a policy).  

The collective and Bayes premiums depend on a choice of a prior. The elicitation 
of a prior is difficult and can be uncertain. To model uncertainty of the prior 
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information the robust Bayesian inference uses a class Γ of priors. In literature there are 
a lot of different classes Γ of priors: parametric classes of priors, 𝜀-contamination 
classes, density and distribution band classes, quantile classes. For general references 
see Berger (1994), Ríos Insua and Ruggeri (2000). In insurance the robust Bayesian 
analysis was considered in many papers, for example: Young (2000), Chan et al. (2008), 
Gómez-Déniz (2009), Karimnezhad and Parsian (2014), Boratyńska (2017). Most of 
them present parametric or 𝜀-contamination classes. We will use a class of priors based 
on distortion functions defined by Arias-Nicolás et al. (2016) (for definition see Section 
3). The class is easily elicited and interpretable. It is connected with the stochastic and 
likelihood ratio orders. It quantifies a prior uncertainty in terms of distortion of 
a cumulative distribution function (c.d.f.). A parametric class of priors very often has 
a fixed shape of a c.d.f. During elicitation of a prior a practitioner has only approximate 
knowledge about a prior and narrowing down to a certain parametric family may be 
unjustified. The family considered in the paper can be an alternative. In insurance this 
class was considered by Sánchez-Sánchez et al. (2019). The concept of distortion 
functions has been used in actuarial science to model risk measure (see, for example, 
Balbas et al. (2009)). 

Having a class Γ of priors we choose a measure of robustness of a statistical 
procedure and some concept of optimality. As a measure of robustness the range of 
posterior quantity, like the Bayes estimator, can be considered. If the range is small, 
then one may used the Bayes estimator as the robust procedure with respect to 
misspecifications of the prior (see Berger (1994),  Ríos Insua and Ruggeri (2000) and 
Arias-Nicolás et al. (2016), among others). On the other hand, if conclusions differ 
widely, we should aim at eliciting additional information about the prior. However, the 
expert may not be willing to provide more information, and the practitioner is 
interested in choosing a single action from the set of actions provided by a global 
procedure. In this moment we can choose several concepts of an optimal procedure: 
the stable procedure, conditional Γ-minimax procedure or posterior regret Γ-minimax 
(PRGM) procedure (see Sivaganesan and Berger (1989), Ríos Insua et al. (1995), 
Boratyńska (1997, 2002), Ríos Insua and Ruggeri (2000), among others). We will use 
the last concept. Given the imprecision in elicitation of a prior, we try to make 
a decision, and this decision cannot be a Bayes action for every prior in the class Γ. Thus, 
we choose an action (in our problem an estimator of a premium), which minimizes the 
maximum loss of optimality in the class Γ and the largest possible increase in risk, 
resulting from making the wrong choice of a prior distribution, is kept as small as 
possible. The PRGM estimator depends on bands of the Bayes estimator when a prior 
runs over the class Γ. Thus, computing a PRGM estimator is simple provided that we 
have procedures to compute the range of Bayes estimators. 
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The article is organized as follows. Section 2 presents a guide for collective, Bayes 
and PRGM premiums under the GB loss. Section 3 reviews the structure of the class of 
priors based on distortion functions. Considering the GB loss function we find the 
bands of the Bayes estimator for a distorted band class of priors, thus we can compute 
the PRGM estimators. We note that for every value of a random sample X the optimal 
PRGM premium is the Bayes premium with respect to one prior from the considered 
class of priors. Section 4 contains PRGM estimators of a premium in some actuarial 
models with the GB loss function. We present some generalization for the case in which 
an unknown parameter is bidimensional (it is a case where a parameter of a probability 
distribution of a number of claims and a parameter of a probability distribution of 
a severity of claims are unknown and some prior information about them is known). 
Section 5 contains some concluding remarks. 

2. Collective, Bayes and PRGM premiums under the GB loss function 

Generally, let 𝑋 be an observed random variable with a p.d.f. 𝑓ሺ⋅ |𝜃ሻ indexed by 
a real unknown parameter 𝜃. Suppose 𝜃 has a prior distribution 𝜋. Let 𝐿ሺ𝐻ሺ𝜃ሻ, 𝑎ሻ be 
the generalized Bregman loss function (GB loss), measuring the penalty of incorrect 
estimation of a premium 𝐻ሺ𝜃ሻ by a real decision action 𝑎, defined as follows:  

𝐿ሺ𝐻ሺ𝜃ሻ, 𝑎ሻ ൌ 𝑤ሺ𝐻ሺ𝜃ሻሻ ቂ𝜙ሺ𝑔ሺ𝑎ሻሻ െ 𝜙 ቀ𝑔൫𝐻ሺ𝜃ሻ൯ቁ െ ቀ𝑔ሺ𝑎ሻ െ 𝑔൫𝐻ሺ𝜃ሻ൯ቁ 𝜙′ ቀ𝑔൫𝐻ሺ𝜃ሻ൯ቁቃ, 

where real functions 𝑤, 𝑔 and 𝜙 are fixed and 𝑤ሺ𝐻ሺ𝜃ሻሻ ൐ 0 for every value 𝐻ሺ𝜃ሻ, 𝑔ሺ⋅ሻ 
is a monotone function and 𝜙ሺ⋅ሻ is a convex, differentiable function and 𝜙′ሺ𝑔ሺ𝜃ሻሻ ൌ
ௗ

ௗ௭
𝜙ሺ𝑧ሻ|௭ୀ௚ሺఏሻ. The shape of the GB loss depends of the choice of functions 𝑤, 𝑔 and 

𝜙, for example, taking 𝑤ሺ𝑧ሻ ൌ 𝑒ି௖௭, 𝑔ሺ𝑧ሻ ൌ 𝑧 and 𝜙ሺ𝑧ሻ ൌ 𝑒௖௭ (𝑐 ് 0) we obtain the 
LINEX loss function introduced by Varian (1974), taking 𝑤ሺ𝑧ሻ ൌ 1, 𝑔ሺ𝑧ሻ ൌ 𝑧 and 
𝜙ሺ𝑧ሻ ൌ 𝑧ଶ we have the square-error loss.  Table 1 presents some examples of the GB 
loss. The following theorem is the corollary of Theorem 3.1. in Karimnezhad and 
Parsian (2018). 

Theorem 1. Let 𝑋 ൌ 𝑥. Then, under the GB loss function and a prior 𝜋, the collective 𝐻෡గ
஼  

and Bayes 𝐻෡గ
஻ሺ𝑥ሻ premiums satisfy the following equations:  

𝜙′ሺ𝑔ሺ𝐻෡గ
஼ሻሻ ൌ

ாഏሺ௪ሺுሺఏሻሻథᇱሺ௚ሺுሺఏሻሻሻሻ

ாഏሺ௪ሺுሺఏሻሻሻ
, 

                                          𝜙′ሺ𝑔ሺ𝐻෡గ
஻ሺ𝑥ሻሻሻ ൌ

ாഏሺ௪ሺுሺఏሻሻథᇱሺ௚ሺுሺఏሻሻሻ|௫ሻ

ாഏሺ௪ሺுሺఏሻሻ|௫ሻ
.                                   
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Now, suppose that our knowledge about a prior is described by a family Γ of priors. 
Let 𝑟஼ሺΓሻ and 𝑟஻ሺΓ, 𝑥ሻ denote the range of a collective and a Bayes premium when 
priors run the class Γ, respectively, thus if 𝑋 ൌ 𝑥, then  

𝑟஼ሺΓሻ ൌ sup
గ∈୻

𝐻෡గ
஼ െ inf

గ∈୻
𝐻෡గ

஼        and        𝑟஻ሺΓ, 𝑥ሻ ൌ sup
గ∈୻

𝐻෡గ
஻ሺ𝑥ሻ െ inf

గ∈୻
𝐻෡గ

஻ሺ𝑥ሻ. 

Consider the posterior regret of an action 𝑎 given by 

𝑟௫ሺ𝜋, 𝑎ሻ ൌ 𝑅௫ሺ𝜋, 𝑎ሻ െ 𝑅௫ሺ𝜋, 𝐻෡గ
஻ሺ𝑥ሻሻ. 

In a sense, for 𝑋 ൌ 𝑥, it measures the loss of optimality due to choosing 𝑎 instead 
of the optimal Bayes estimate. The estimator 𝐻෡୻

௉ோ  is the posterior regret Γ-minimax 
premium (PRGM premium) if for every value 𝑥 of 𝑋  

inf
௔∈ோ

sup
గ∈୻

 𝑟௫ሺ𝜋, 𝑎ሻ ൌ sup
గ∈୻

 𝑟௫ሺ𝜋, 𝐻෡௉ோሺ𝑥ሻሻ. 

We will use the following theorem to calculate the PRGM premium. 

Theorem 2.  (Karimnezhad and Parsian (2018)) In estimating 𝐻ሺ𝜃ሻ under the GB loss 
function, let 𝑋 ൌ 𝑥, 𝛤 be a class of prior distributions and let 𝐻 ൌ 𝐻ሺ𝑥ሻ ൌ inf

గ∈୻
 𝐻෡గ

஻ሺ𝑥ሻ, 

𝐻 ൌ 𝐻ሺ𝑥ሻ ൌ sup
గ∈୻

 𝐻෡గ
஻ሺ𝑥ሻ and 𝐻 ൏ 𝐻. 

If 𝑤ሺ𝐻ሻ ൌ 𝑐𝑜𝑛𝑠𝑡, then 

𝑔ሺ𝐻෡௉ோሺ𝑥ሻሻ ൌ
థሺ௚ሺுሻሻିథሺ௚ሺுሻሻି൫௚ሺுሻథᇱሺ௚ሺுሻሻି௚ሺுሻథᇱሺ௚ሺுሻሻ൯

థᇱሺ௚ሺுሻሻିథᇱሺ௚ሺுሻሻ
. 

If there exists a constant 𝑘 such that 𝐸గሺ𝑤ሺ𝐻ሺ𝜃ሻሻ|𝑥ሻ ൌ
௞

థᇱሺ௚ሺு෡ഏ
ಳሺ௫ሻሻሻ

, then 

థሺ௚ሺு෡ುೃሺ௫ሻሻሻିథሺ௚ሺுሻሻିథᇱሺ௚ሺுሻሻሺ௚ሺு෡ುೃሺ௫ሻሻି௚ሺுሻሻ

థሺ௚ሺு෡ುೃሺ௫ሻሻሻିథሺ௚ሺுሻሻିథᇱሺ௚ሺுሻሻሺ௚ሺு෡ುೃሺ௫ሻሻି௚ሺுሻሻ
ൌ

థᇱሺ௚ሺுሻሻ

థᇱሺ௚ሺுሻሻ
.                 

Directly from the proof of Theorem 2 we have the following corollaries.  

Corollary 1. Under the assumptions of Theorem 2 for every 𝑥 of  X  

𝐻ሺ𝑥ሻ ൑ 𝐻෡௉ோሺ𝑥ሻ ൑ 𝐻ሺ𝑥ሻ. 

Corollary 2. Under the assumptions of Theorem 2, if for every value 𝑥 of 𝑋 the set 
ሼ𝐻෡గ

஻ሺ𝑥ሻ: 𝜋 ∈ 𝛤ሽ is a connected set, then for every 𝑥 there exists 𝜋 ∈ 𝛤 such that 
𝐻෡௉ோሺ𝑥ሻ ൌ 𝐻෡గ

஻ሺ𝑥ሻ.     

Table 1 presents collective, Bayes and PRGM premiums for different loss functions 
belonging to the class of GB loss functions.  
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Table 1.  Examples of GB loss functions and collective, Bayes and PRGM premiums (for more 
 examples and details see Karimnezhad and Parsian (2018)) 

𝐿ሺ𝐻, 𝑎ሻ  𝐻෡గ
஼  𝐻෡గ

஻  𝐻෡௉ோ 

square-error loss ሺ𝐻 െ 𝑎ሻଶ  𝐸గ𝐻 𝐸గሺ𝐻|𝑥ሻ 0.5ሺ𝐻 ൅ 𝐻ሻ 
LINEX loss 

𝑒௖ሺ௔ିுሻ െ 𝑐ሺ𝑎 െ 𝐻ሻ െ 1 െ1
𝑐

ln𝐸గ𝑒ି௖ு െ1
𝑐

ln𝐸గሺ𝑒ି௖ு|𝑥ሻ 𝐻 ൅
1
𝑐

ln ቆ
𝑐ሺ𝐻 െ 𝐻ሻ

expሺ𝑐ሺ𝐻 െ 𝐻ሻሻ െ 1
ቇ 

weighted squared loss (1) 
ଵ

ு
ሺ𝑎 െ 𝐻ሻଶ  ൬𝐸గ

1
𝐻

൰
ିଵ

 ൬𝐸గ
1
𝐻

|𝑥൰
ିଵ

 ට𝐻𝐻 

weighted squared loss (2)  
ଵ

ுమ ሺ𝑎 െ 𝐻ሻଶ  
 

ாഏ
భ
ಹ

ாഏ
భ

ಹమ
  

ாഏሺ
భ
ಹ

|௫ሻ

ாഏሺ
భ

ಹమ|௫ሻ
 Th.2 is not applicable 

Brown loss ሺln𝑎 െ ln𝐻ሻଶ 𝑒ாഏ୪୬ு 𝑒ாഏሺ୪୬ு|௫ሻ ට𝐻𝐻 

precautionary loss 
ு

௔
൅

௔

ு
െ 2  

 ට
ாഏு

ாഏ
భ
ಹ

   ට
ாഏሺு|௫ሻ

ாഏሺ
భ
ಹ

|௫ሻ
  Th.2 is not applicable 

generalized entropy loss 

ቀ
𝑎
𝐻

ቁ
௤

െ 𝑞ln
𝑎
𝐻

െ 1 ቆ𝐸గ ൬
1

𝐻௤൰ቇ

షభ
೜

 
ቆ𝐸గ ൬

1
𝐻௤ |𝑥൰ቇ

షభ
೜

 

 

 ൬୪୬ு೜ି୪୬ு
೜

ு
ష೜

ିுష೜
൰

భ
೜
 

3.  Distorted band class of priors 

We start with recalling the definition of the stochastic and likelihood ratio orders 
and a distortion function. 

Let 𝜋ଵ and 𝜋ଶ be two probability distributions on the space Θ and 𝐹గభ
 and 𝐹గమ

 their 
cumulative distribution functions. We say that 𝜋ଵ is smaller than 𝜋ଶ in the stochastic 
order (denoted by 𝜋ଵ ⪯ 𝜋ଶ) if and only if  for every 𝑡 ∈ 𝑅 we have 𝐹గభ

ሺ𝑡ሻ ൒ 𝐹గమ
ሺ𝑡ሻ. 

We say that 𝜋ଵ is smaller than 𝜋ଶ in the likelihood ratio order (denoted by 𝜋ଵ ⪯௟௥ 𝜋ଶ) 
if and only if the ratio of their densities గమሺఏሻ

గభሺఏሻ
 increases over the union of the supports 

of 𝜋ଵ and 𝜋ଶ (here 𝑎/0 is taken to be equal to ൅∞ whenever 𝑎 ൐ 0 and a support of 
a p.d.f. 𝜋 is a closure of a set ሼ𝜃 ∈ Θ: 𝜋ሺ𝜃ሻ ൐ 0ሽ). 

Let 𝑉 and 𝑊 be two random variables such that 𝑉 ∼ 𝜋ଵ and 𝑊 ∼ 𝜋ଶ. It is well 
known that  

𝜋ଵ ⪯௟௥ 𝜋ଶ     ⟹     𝜋ଵ ⪯ 𝜋ଶ 
and  
                                              𝜋ଵ ⪯ 𝜋ଶ     ⟺     𝐸𝜓ሺ𝑉ሻ ൑ 𝐸𝜓ሺ𝑊ሻ,                               ሺ∗ሻ 
for all increasing functions 𝜓 for which the expectations exist. For more details about 
stochastic orders see Shaked and Shanthikumar (2007), for the stochastic ordering of 
posterior distributions, marginal distributions of data and predictive distributions see 
Męczarski (2015). 
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Let ℎ: ሾ0,1ሿ ⟶ ሾ0,1ሿ be a nondecreasing, continuous function such that ℎሺ0ሻ ൌ 0 
and ℎሺ1ሻ ൌ 1. Then ℎ is called a distortion function. Let 𝜋 be a probability distribution 
on Θ, then a probability distribution 𝜋௛, with a c.d.f. of the form 𝐹గ೓

ൌ ℎሺ𝐹గሻ, is called 
the distorted distribution with the distortion function ℎ. 

Suppose that the prior distribution is not exactly specified and consider the 
following class of priors. 

Definition (Arias-Nicolás et al. (2016)). Let 𝜋ത be a specific prior belief. The distorted 
band class 𝛤గഥ,௛భ,௛మ

 associated with 𝜋ത, based on ℎଵ and ℎଶ, a concave and convex distortion 
functions, respectively, is defined as  

Γగഥ,௛భ,௛మ
ൌ ሼ𝜋:  𝜋ത௛భ

⪯௟௥ 𝜋 ⪯௟௥ 𝜋ത௛మ
ሽ. 

The following properties are very useful (for details see Arias-Nicolás et al. (2016)):   
    • easy elicitation and structure,  
    • Γగഥ,௛భ,௛మ

⊆ ሼ𝜋:  𝜋ത௛భ
⪯ 𝜋 ⪯ 𝜋ത௛మ

ሽ,  
    • if 𝜋ଵ, 𝜋ଶ ∈ Γగഥ,௛భ,௛మ

, then for every 𝜀 ∈ ሾ0,1ሿ and 𝜋ఌ ൌ ሺ1 െ 𝜀ሻ𝜋ଵ ൅ 𝜀𝜋ଶ we     
have 𝜋ఌ ∈ Γగഥ,௛భ,௛మ

,  
    • for every 𝜋 ∈ Γగഥ,௛భ,௛మ

 and every 𝑥 the posterior distribution satisfies  
𝜋ത௛భ

ሺ⋅ |𝑥ሻ ⪯௟௥ 𝜋ሺ⋅ |𝑥ሻ ⪯௟௥ 𝜋ത௛మ
ሺ⋅ |𝑥ሻ. 

Example 1. Let 𝜋ത be a fixed prior on the space Θ. Consider a class  
Γଵ ൌ ሼ𝜋:  𝜋ത௛భ,೎భ

⪯௟௥ 𝜋 ⪯௟௥ 𝜋ത௛మ,೎మ
ሽ, 

where ℎଵ,௖భ
, ℎଶ,௖మ

 are two distortion functions such that  
ℎଵ,௖భ

ሺ𝑧ሻ ൌ 1 െ ሺ1 െ 𝑧ሻ௖భ,    ℎଶ,௖మ
ሺ𝑧ሻ ൌ 𝑧௖మ, 

𝜋ത௛భ,೎భ
ሺ𝜃ሻ ൌ

𝑑
𝑑𝜃

ሺ1 െ ሺ1 െ 𝐹గഥሺ𝜃ሻሻ௖భሻ,   𝜋ത௛మ,೎మ
ሺ𝜃ሻ ൌ

𝑑
𝑑𝜃

ሺሺ𝐹గഥሺ𝜃ሻሻ௖మሻ, 

and 𝑐ଵ ൐ 1, 𝑐ଶ ൐ 1 are fixed numbers. Thus, if 𝑐ଵ and 𝑐ଶ are integers, then the bounds 
distributions are the distributions of the first and the last order statistics. The following 
properties describe the dependence on parameters 𝑐ଵ and 𝑐ଶ. 

    • If 𝑐′ଵ ൐ 𝑐ଵ, then 𝜋ത௛భ,೎ᇲభ
⪯௟௥ 𝜋ത௛భ,೎భ

.  
    • If 𝑐′ଶ ൐ 𝑐ଶ, then 𝜋ത௛మ,೎మ

⪯௟௥ 𝜋ത௛మ,೎ᇲమ
.  

    • Similar order is for posterior distributions.  
    • The Kolmogorov distance (see Arias-Nicolas et al. (2016))  

𝑑𝐾 ቀ𝜋ത, 𝜋ത௛భ,೎భ
ቁ ൌ ሺ𝑐ଵ െ 1ሻ𝑐ଵ

ష೎భ
೎భషభ  ,      𝑑𝐾ሺ𝜋ത, 𝜋ത௛మ,೎మ

ሻ ൌ ሺ𝑐ଶ െ 1ሻ𝑐ଶ

ష೎మ
೎మషభ. 

We will use that class for elicitation priors in Section 4.  
Now, considering the GB loss we would like to find bounds of a set of Bayes 

estimators of the premium. The following lemma presents the preservation of order of 
the collective and Bayes premiums computed under the GB loss function when prior 
distributions are in the likelihood ratio order.  
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Lemma 1. Let 𝐻 be an increasing function of 𝜃. Let 𝜋ଵ and 𝜋ଶ be two priors such that 
𝜋ଵ ⪯௟௥ 𝜋ଶ and 𝐻෡గ೔

஼ , 𝐻෡గ೔
஻  be the collective and Bayes premium under the GB loss and the 

prior 𝜋௜, for 𝑖 ൌ 1, 2. Then for every 𝑥 of 𝑋 

𝐻෡గభ
஼ ൑ 𝐻෡గమ

஼    𝑎𝑛𝑑   𝐻෡గభ
஻ ሺ𝑥ሻ ൑ 𝐻෡గమ

஻ ሺ𝑥ሻ. 

If 𝐻 is decreasing, then in the above inequalities there is the sign change.  

Proof. Assume 𝐻 is increasing (if 𝐻 is decreasing, then the proof is similar, only we 
have opposite inequalities in ሺ∗∗ሻ).  

Having a probability distribution 𝜋 and a positive integrable function 𝑤, define the 
probability distribution 𝜋௪ with the p.d.f. equal 𝜋௪ሺ𝜃ሻ ൌ

௪ሺுሺఏሻሻగሺఏሻ

౸׬ ௪ሺுሺఏሻሻగሺௗఏሻ
. If 𝜋ଵ ⪯௟௥ 𝜋ଶ, 

then గమ
ೢሺఏሻ

గభ
ೢሺఏሻ

ൌ
౸׬ ௪ሺுሺఏሻሻగభሺௗఏሻ

౸׬ ௪ሺுሺఏሻሻగమሺௗఏሻ
∙

గమሺఏሻ

గభሺఏሻ
 is an increasing function of 𝜃, hence 𝜋ଵ

௪ ⪯௟௥ 𝜋ଶ
௪   

and  𝜋ଵ
௪ ⪯ 𝜋ଶ

௪. 
Note that 𝜙′ሺ𝑔ሺ𝐻෡గ೔

஼ ሻሻ (see the formula in Theorem 1) is the expected value of the 
function 𝜙′ሺ𝑔ሺ𝐻ሺ𝜃ሻሻሻ if 𝜃 has the probability distribution 𝜋௜

௪, 𝑖 ൌ 1,2.  Now, applying 
the property (∗) of the stochastic order, if 𝑔 is increasing, we have  

 𝜙ᇱ ቀ𝑔൫𝐻෡గభ
஼ ൯ቁ ൑ 𝜙ᇱ ቀ𝑔൫𝐻෡గమ

஼ ൯ቁ                                                 ሺ∗∗ሻ 

(if 𝑔 is decreasing we have opposite inequalities) and obtain the assertion for the 
collective premium. The proof for the Bayes premium is similar, we only put a posterior 
distribution 𝜋ሺ∙ |𝑥ሻ in the place of 𝜋.                                                                 

The following theorem presents the bounds of a set of Bayes estimators and it is 
a conclusion from Lemma 1.  

Theorem 3. Under the GB loss function and the distorted band class 𝛤గഥ,௛భ,௛మ
 of priors, if 

𝐻 is an increasing function of 𝜃 and for every 𝜋 ∈ 𝛤గഥ,௛భ,௛మ
 and every 𝑥 of 𝑋 there exist 𝐻෡గ

஼  
and 𝐻෡గ

஻ሺ𝑥ሻ, then  
inf

గ∈୻ഏഥ,೓భ,೓మ

𝐻෡గ
஼ ൌ 𝐻෡గഥ೓భ

஼ ,        sup
గ∈୻ഏഥ,೓భ,೓మ

𝐻෡గ
஼ ൌ 𝐻෡గഥ೓మ

஼ , 

inf
గ∈୻ഏഥ,೓భ,೓మ

𝐻෡గ
஻ ൌ 𝐻෡గഥ೓భ

஻ ,        sup
గ∈୻ഏഥ,೓భ,೓మ

𝐻෡గ
஻ ൌ 𝐻෡గഥ೓మ

஻ . 

If 𝐻 is decreasing, then 𝑖𝑛𝑓 and 𝑠𝑢𝑝 change places. 

Having the upper and lower bounds for the set of Bayes premiums and applying 
Theorem 2, we can calculate the PRGM premium if the class of priors is equal Γగഥ,௛భ,௛మ

.  

Remarks  

1. Arias-Nicolás et al. (2016) define the class of submodular loss functions and obtain 
the bounds of the set of Bayes actions under priors belonging to 𝛤గഥ,௛భ,௛మ

 , if a loss 
function is convex in a and submodular. If 𝑤ሺ𝜃ሻ ൌ 𝑐𝑜𝑛𝑠𝑡 then the GB loss is 
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submodular ቀడమ௅ሺఏ,௔ሻ

డఏడ௔
ൌ െ𝑔ᇱሺ𝑎ሻ𝑔′ሺ𝜃ሻ𝜑′′ሺ𝑔ሺ𝜃ሻሻ ൑ 0ቁ, but if 𝑤ሺ𝜃ሻ ് 𝑐𝑜𝑛𝑠𝑡, then 

a GB loss may not have the submodularity property. As an example consider 
𝐿ሺ𝜃, 𝑎ሻ ൌ

ଵ

ఏమ ሺ𝑎 െ 𝜃ሻଶ.  
2. Applying Remark 8 in Sánchez-Sánchez et al. (2019) and Corollaries 1 and 2 we 

obtain that  for every 𝑥 there exists 𝜋଴ ∈ Γగഥ,௛భ,௛మ
 such that 𝐻෡௉ோሺ𝑥ሻ is equal to the 

Bayes estimator with respect to the prior 𝜋଴.  

Example 2. In that example we present the exact formula for the PRGM estimator for 
some GB losses and a certain class Γగഥ,௛భ,௛మ

 of priors. 
Let 𝑋 be an observed random variable with the negative binomial distribution, 

𝑏𝑖𝑛ିሺ𝑟, 𝜃ሻ, where 𝜃 ∈ ሺ0,1ሻ is unknown and 𝑟 ൐ 0 is known, with the p.d.f. given by  
𝑓ሺ𝑥|𝜃ሻ ൌ

୻ሺ௥ା௫ሻ

୻ሺ௥ሻ௫!
𝜃௥ሺ1 െ 𝜃ሻ௫ , if  𝑥 ൌ 0,1,2, …. 

Let 𝜋ത be a prior of 𝜃 with the p.d.f. equal 𝜋തሺ𝜃ሻ ൌ 2𝜃  if 𝜃 ∈ ሺ0,1ሻ. We are interested 
in estimating a function 𝐻ሺ𝜃ሻ ൌ

ଵିఏ

ఏ
. Note that 𝐸ሺ𝑋|𝜃ሻ ൌ 𝑟𝐻ሺ𝜃ሻ. Hence, if 𝑋 describes 

the number of claims, then we are interested in estimating the expected value of the 
number of claims. Consider ℎଵሺ𝑧ሻ ൌ 𝑧଴.଻ହ and ℎଶሺ𝑧ሻ ൌ 𝑧ଶ and a class Γగഥ,௛భ,௛మ

 of priors. 
Then 𝐹గഥሺ𝜃ሻ ൌ 𝜃ଶ,    𝐹గഥ೓భ

ሺ𝜃ሻ ൌ 𝜃ଵ.ହ,    𝐹గഥ೓మ
ሺ𝜃ሻ ൌ 𝜃ସ for 𝜃 ∈ ሺ0,1ሻ. If 𝑋 ൌ 𝑥, then 

posterior distributions for priors 𝜋ത, 𝜋ത௛భ
 and 𝜋ത௛మ

 are beta distributions 𝐵𝑒𝑡𝑎ሺ𝑟 ൅ 2, 𝑥 ൅ 1ሻ, 
𝐵𝑒𝑡𝑎ሺ𝑟 ൅ 0.5, 𝑥 ൅ 1ሻ and 𝐵𝑒𝑡𝑎ሺ𝑟 ൅ 4, 𝑥 ൅ 1ሻ, where a beta distribution with 
parameters 𝛼 ൐ 0 and 𝛽 ൐ 0, 𝐵𝑒𝑡𝑎ሺ𝛼, 𝛽ሻ, has the p.d.f. given by  𝜋ሺ𝜃ሻ ൌ
୻ሺఈାఉሻ

୻ሺఈሻ୻ሺఉሻ
𝜃ఈିଵሺ1 െ 𝜃ሻఉିଵ , if  𝜃 ∈ ሺ0,1ሻ. 

Table 2.  Bayes and PRGM estimators and the oscillation 𝑟஻ሺΓగഥ,௛భ,௛మ
, 𝑥ሻ under some losses, notation: 

 𝐴 ൌ
୻ሺ௥ାଵ.ହሻ

୻ሺ௥ାଵ.ହା௤ሻ
 and 𝐵 ൌ

୻ሺ௥ାସሻ

୻ሺ௥ାସା௤ሻ
.  

Loss function   ሺ𝐻 െ 𝑎ሻଶ   ଵ

ு
ሺ𝐻 െ 𝑎ሻଶ   ቀ௔

ு
ቁ

௤
െ 𝑞ln

௔

ு
െ 1  

𝐻෡గഥ
஻ሺ𝑥ሻ 

𝑥 ൅ 1
𝑟 ൅ 1

 
𝑥

𝑟 ൅ 2
 ൬

Γሺ𝑟 ൅ 2ሻ𝑥!
Γሺ𝑟 ൅ 2 ൅ 𝑞ሻΓሺ𝑥 െ 𝑞 ൅ 1ሻ

൰

భ
೜

 

𝐻෡గഥ೓భ

஻ ሺ𝑥ሻ 𝑥 ൅ 1
𝑟 ൅ 0.5

 
𝑥

𝑟 ൅ 1.5
 ൬

Γሺ𝑟 ൅ 1.5ሻ𝑥!
Γሺ𝑟 ൅ 1.5 ൅ 𝑞ሻΓሺ𝑥 െ 𝑞 ൅ 1ሻ

൰

భ
೜

 

𝐻෡గഥ೓మ

஻ ሺ𝑥ሻ 𝑥 ൅ 1
𝑟 ൅ 3

 
𝑥

𝑟 ൅ 4
 ൬

Γሺ𝑟 ൅ 4ሻ𝑥!
Γሺ𝑟 ൅ 4 ൅ 𝑞ሻΓሺ𝑥 െ 𝑞 ൅ 1ሻ

൰

భ
೜

 

𝑟஻ሺΓగഥ,௛భ,௛మ
, 𝑥ሻ  ଶ.ହሺ௫ାଵሻ

ሺ௥ା଴.ହሻሺ௥ାଷሻ
 2.5𝑥

ሺ𝑟 ൅ 1.5ሻሺ𝑟 ൅ 4ሻ
  ቀ ௫!

୻ሺ௫ି௤ାଵሻ
ቁ

భ
೜ ൬𝐴

భ
೜ െ 𝐵

భ
೜൰ 

𝐻෡௉ோሺ𝑥ሻ  ሺ௫ାଵሻ

ଶ
ቀ

ଵ

௥ା଴.ହ
൅

ଵ

௥ାଷ
ቁ 𝑥

ඥሺ𝑟 ൅ 4ሻሺ𝑟 ൅ 1.5ሻ
  ቀ ௫!

୻ሺ௫ି௤ାଵሻ
∙

୪୬ሺ஻/஺ሻ

ଵ/஺ିଵ/஻
ቁ

భ
೜ 

Now, applying formulas from Table 1 we can calculate Bayes and PRGM estimators 
under selected loss functions. Table 2 presents results. 

In the above example the interesting prior and posterior distributions are easy to 
compute. In practice, it is not easy to compute the exact distributions and interesting 
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posterior quantities (for example the expected value). In the next section we apply the 
acceptance-rejection method. The algorithm applying this method for simulation 
a random sample from prior and posterior distributions 𝜋௛ and 𝜋௛ሺ⋅ |𝑥ሻ, knowing 
distributions 𝜋 and 𝜋ሺ⋅ |𝑥ሻ, is presented in Arias-Nicolás et al. (2016).  

4.  The collective risk models and premium calculations, examples 

Let 𝑁, 𝑌ଵ, 𝑌ଶ, … be independent random variables, where 𝑁 describes the number 
of claims and 𝑌ଵ, 𝑌ଶ, … are identically distributed random variables describing severity 
of claims. We consider two models. 

4.1.  Unknown parameter  𝜽  in the Poisson model 

Assume that 𝑁 has the Poisson distribution with an unknown parameter 𝜃 ൐ 0 and 
a distribution of 𝑌ଵ is known. The parameter 𝜃 can represent a driver’s propensity to 
make a claim and the prior indicates how that propensity is distributed throughout the 
population of insured drivers (see Lemaire (1979), Gómes-Déniz (2009)). Consider the 
premium 𝐻ሺ𝜃ሻ which is a linaer function of 𝜃, thus 𝐻ሺ𝜃ሻ ൌ 𝑡𝜃 (the net premium, the 
variance principle premium, the Esscher premium, the exponential premium are 
examples, see Boratyńska (2008)). Now, let 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ be observed i.i.d. random 
variables with the Poisson distribution 𝑃𝑜𝑖𝑠𝑠ሺ𝜃ሻ and consider following GB loss 
functions (for shape see Figure 1):   

    • the square-error loss 𝐿௦ሺ𝑎, 𝜃ሻ ൌ ሺ𝜃 െ 𝑎ሻଶ, 
    • the LINEX loss 𝐿௟ሺ𝑎, 𝜃ሻ ൌ 𝑒ି଴,ହሺ௔ିఏሻ ൅ 0,5ሺ𝑎 െ 𝜃ሻ െ 1, 
    • the Brown loss 𝐿஻ሺ𝑎, 𝜃ሻ ൌ ሺln𝜃 െ ln𝑎ሻଶ, 
    • the generalized entropy losses with q equal 2, 1 and -1: 

𝐿ଶሺ𝑎, 𝜃ሻ ൌ ቀ
௔

ఏ
ቁ

ଶ
െ 2ln

௔

ఏ
െ 1,  𝐿ଵሺ𝑎, 𝜃ሻ ൌ

௔

ఏ
െ ln

௔

ఏ
െ 1, 𝐿ሺିଵሻሺ𝑎, 𝜃ሻ ൌ

ఏ

௔
൅ ln

௔

ఏ
െ 1. 

For all these loss functions it is enough to find the collective, Bayes and PRGM 
estimators of 𝜃, because if 𝐻ሺ𝜃ሻ ൌ 𝑡𝜃, then  

𝐻෡గ
஼ ൌ 𝑡𝜃෠గ

஼,        𝐻෡గ
஻ ൌ 𝑡𝜃෠గ

஻,        𝐻෡௉ோ ൌ 𝑡𝜃෠௉ோ, 

for the square-error, Brown and generalized entropy losses. For the LINEX loss 
𝐿௟ሺ𝑎, 𝜃ሻ ൌ 𝑒௖ሺ௔ିఏሻ ൅ 𝑐ሺ𝑎 െ 𝜃ሻ െ 1, with a constant 𝑐, we have  

𝐻෡గ
஼ ൌ 𝑡𝜃෠గ,௧௖

஼   ,      𝐻෡గ
஻ ൌ 𝑡𝜃෠గ,௧௖

஻  ,       𝐻෡௉ோ ൌ 𝑡𝜃෠௧௖
௉ோ, 

where 𝜃෠గ,௧௖
஼ , 𝜃෠గ,௧௖

஻ , 𝜃෠௧௖
௉ோ are estimators for the LINEX loss with a constant 𝑡𝑐 

(see Boratyńska (2008)). 
Note that the collective and the Bayes estimator of 𝜃 for loss functions 𝐿௦ and 𝐿ሺିଵሻ are 
equal, but PRGM estimators are different (see Table 1). 
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Figure 1.  The graphs of loss functions 

We assume that the actuary is unable to specify a simple prior distribution of the 
expected number of claims. Thus, let 𝜋ത ൌ 𝐺𝑎𝑚𝑚𝑎ሺ3, 15ሻ be the fixed prior distribution 
of 𝜃 with a p.d.f. 𝜋തሺ𝜃ሻ ൌ

ଵହయ

ଶ
𝜃ଶexp ሺെ15𝜃ሻ for 𝜃 ൐ 0, and  

Γ ൌ ሼ𝜋:  𝜋ത௛భ
⪯௟௥ 𝜋 ⪯௟௥ 𝜋ത௛మ

ሽ 

be the family of priors, where  

𝜋ത௛భ
ሺ𝜃ሻ ൌ

𝑑
𝑑𝜃

ሺ1 െ ሺ1 െ 𝐹గഥሺ𝜃ሻሻ௖భሻ,        𝜋ത௛మ
ሺ𝜃ሻ ൌ

𝑑
𝑑𝜃

ሺሺ𝐹గഥሺ𝜃ሻሻ௖మሻ 

and 𝑐ଵ ൌ 𝑐ଶ ൌ 1.5. Then 𝑑𝐾ሺ𝜋ത, 𝜋ത௛భ
ሻ ൌ 𝑑𝐾ሺ𝜋ത, 𝜋ത௛మ

ሻ ൌ 0.148. The class Γ expresses the 
inaccuracy in determining the cumulative distribution function of 𝜋ത. The parameters 
𝑐ଵ, 𝑐ଶ provides the degree of distortion and can be elicited by fixing a reasonable 
distance in terms of Kolmogorov metric. 

 

Figure 2.  Oscillation 𝑟஻ሺΓ, 𝑥ሻ of Bayes estimators for different loss functions, 𝑛 ൌ 5 (left) and 
 𝑛 ൌ 10 (right) 
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Figure 2 presents the oscillation of the Bayes estimators for 𝑛 ൌ 5 and 𝑛 ൌ 10 and 
different values of  𝑥 ൌ ∑ 𝑋௜

௡
௜ୀଵ . Table 3 shows the oscillation of the collective estimator 

for different losses. We see that the oscillation for Bayes estimators is an increasing 
function of 𝑥 (except the generalized entropy loss with 𝑞 ൌ 2) and it is smaller than the 
oscillation for the collective estimators for ௫

௡
൏ 0.5. The greatest oscillation is for the 

LINEX loss. 

Table 1. Oscillation of the collective estimator of  𝜃 

Loss square LINEX Brown Generalized entropy loss 
𝑞 ൌ 2 𝑞 ൌ 1  𝑞 ൌ െ1 

𝑟஼ሺΓሻ   0.076   0.078   0.073   0.071   0.071   0.076 
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Figure 3.  Values of collective, Bayes and PRGM estimators and minimum and maximum of Bayes 
 estimators for different loss functions and 𝑛 ൌ 5 
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Figures 3 and 4 show values of minimum and maximum of Bayes estimators, 
collective estimators and Bayes estimators for the prior 𝜋ത ൌ 𝐺𝑎𝑚𝑚𝑎ሺ3,15ሻ and PRGM 
estimators for two values of 𝑛 and different 𝑥 ൌ ∑௡

௜ୀଵ 𝑋௜. The oscillation of Bayes 
estimators is the smallest if ௫

௡
 is closed to the expected value 𝐸గഥ𝜃 ൌ 0.2. 

 

 
Generalized entropy losses 

 
Figure 4.  Values of collective, Bayes and PRGM estimators and minimum and maximum of Bayes 
 estimators for different loss functions and 𝑛 ൌ 10 

We use 𝑛 and 𝑥 small, because 𝑛 is interpreted as the number of periods (years) we 
observe, for example, a driver, and 𝑥 is the number of claims during the 𝑛 periods. The 
prior represents the population behaviour of the parameter 𝜃. Our results (Bayesian 
and PRGM premiums) have similar interpretation as the rules in the credibility theory. 
They combine knowledge about a single driver with knowledge about the entire 
population. Similar models with a parametric class of priors or an 𝜀-contamination 
class of priors and the square-error loss or LINEX loss were considered in Boratyńska 
(2008) and Gómez-Déniz (2009). 
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4.2.  Unknown parameters 𝜽 and 𝝀 of distributions of the number and severity of 
 claims 

Assume that random variable 𝑁 has a distribution 𝑓ଵሺ⋅ |𝜃ሻ depending on an 
unknown parameter 𝜃 ∈ Θ, and a random variable 𝑌ଵ has a distribution 𝑓ଶሺ⋅ |𝜆ሻ 
depending on an unknown parameter 𝜆 ∈ Λ. Consider the premium of the form  

𝐻ሺ𝜃, 𝜆ሻ ൌ 𝐻ଵሺ𝜃ሻ𝐻ଶሺ𝜆ሻ, 

where 𝐻ଵ and 𝐻ଶ are increasing and continuous functions of 𝜃 and 𝜆, respectively. 
Let 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ be observed i.i.d. random variables with a p.d.f. 𝑓ଵሺ⋅ |𝜃ሻ and 

𝑍ଵ, 𝑍ଶ, … , 𝑍௠ be observed i.i.d. random variables with a p.d.f. 𝑓ଶሺ⋅ |𝜆ሻ, all variables are 
conditionally independent, knowing parameters 𝜃 and 𝜆. Assume that 𝜃 and 𝜆 are 
independent, and 𝜃 ∼ 𝜇 and 𝜆 ∼ 𝜐. Denote 𝑋 ൌ ሺ𝑋ଵ, 𝑋ଶ, … , 𝑋௡ሻ and 𝑍 ൌ
ሺ𝑍ଵ, 𝑍ଶ, … , 𝑍௠ሻ. Let 𝑥 and 𝑧 be observed values of random variables 𝑋 and 𝑍. It can be 
seen directly that the posterior distributions 𝜇ሺ⋅ |𝑥ሻ and 𝜐ሺ⋅ |𝑧ሻ are independent. 
Consider the following GB loss functions: square-error loss, Brown loss, generalized 
entropy loss (see Table 1). Then, the collective and Bayes premiums are equal  

𝐻෡ఓ,జ
஼ ൌ 𝐻෡ଵ,ఓ

஼ 𝐻෡ଶ,జ
஼ ,   𝐻෡ఓ,జ

஻ ሺ𝑥, 𝑧ሻ ൌ 𝐻෡ଵ,ఓ
஻ ሺ𝑥ሻ𝐻෡ଶ,జ

஻ ሺ𝑧ሻ. 

Let Γ∗ be a family of priors on the space Θ ൈ Λ with a p.d.f. given by  

𝜋ሺ𝜆, 𝜃ሻ ൌ 𝜇ሺ𝜃ሻ𝜐ሺ𝜆ሻ, 
where  

𝜇 ∈ ሼ𝜇:  𝜇̅௛భ
⪯௟௥ 𝜇 ⪯௟௥ 𝜇̅௛మ

ሽ,  𝜐 ∈ ሼ𝜐:  𝜐̅௛య
⪯௟௥ 𝜐 ⪯௟௥ 𝜐̅௛ర

ሽ, 

𝜇̅ and 𝜐̅ are fixed priors on the spaces Θ and Λ, respectively, and ℎଵ, ℎଶ, ℎଷ, ℎସ are fixed 
distortion functions (ℎଵ, ℎଷ are concave and ℎଶ, ℎସ are convex). Assume that for every 
𝜋 ∈ Γ∗ and every 𝑥 and 𝑧 the Bayes premium exists. Then (applying Theorem 4) the 
minimum and maximum of Bayes estimators of the premium 𝐻 are given by  

inf
గ∈୻∗

𝐻෡గ
஻ሺ𝑥, 𝑧ሻ ൌ 𝐻෡ଵ,ఓഥ೓భ

஻ ሺ𝑥ሻ𝐻෡ଶ,జഥ೓య

஻ ሺ𝑧ሻ,        sup
గ∈୻∗

𝐻෡గ
஻ሺ𝑥, 𝑧ሻ ൌ 𝐻෡ଵ,ఓഥ೓మ

஻ ሺ𝑥ሻ𝐻෡ଶ,జഥ೓ర

஻ ሺ𝑧ሻ, 

and using Theorem 2 we have the PRGM estimator of 𝐻. 

Example 3. Assume that 𝑁 ∼ 𝑃𝑜𝑖𝑠𝑠ሺ𝜃ሻ and 𝑌ଵ has an exponential distribution with 
a density given by 𝑓ଶሺ𝑦|𝜆ሻ ൌ

ଵ

ఒ
expሺെ

௬

ఒ
ሻ for 𝑦 ൐ 0, depended on an unknown 

parameter 𝜆 ൐ 0. Consider the net premium  

𝐻ሺ𝜃, 𝜆ሻ ൌ 𝐻ଵሺ𝜃ሻ𝐻ଶሺ𝜆ሻ ൌ 𝜃𝜆. 

Assume that 𝜃 has the prior distribution 𝜇̅ ൌ 𝐺𝑎𝑚𝑚𝑎ሺ𝛼, 𝛽ሻ and 𝜆 has the prior 
distribution 𝜐̅ ൌ 𝐼𝐺𝑎𝑚𝑚𝑎ሺ𝑎, 𝑏ሻ with a density function  

𝜐̅ሺ𝜆ሻ ൌ
𝑏௔

Γሺ𝑎ሻ
𝜆ି௔ିଵexp ൬െ

𝑏
𝜆

൰    for  𝜆 ൐ 0 , 

where 𝛼, 𝛽, 𝑎,𝑏 are fixed positive parameters and 𝛼 ൐ 2 and 𝑎 ൐ 1.  
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If 𝑋 ൌ 𝑥 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௡ሻ and 𝑍 ൌ 𝑧 ൌ ሺ𝑧ଵ, 𝑧ଶ, … , 𝑧௠ሻ, then the posterior distributions 
are 𝜇̅ሺ⋅ |𝑥ሻ ൌ 𝐺𝑎𝑚𝑚𝑎ሺ𝛼 ൅ ∑௡

௜ୀଵ 𝑥௜, 𝛽 ൅ 𝑛ሻ and 𝜐̅ሺ⋅ |𝑧ሻ ൌ 𝐼𝐺𝑎𝑚𝑚𝑎ሺ𝑎 ൅ 𝑚, 𝑏 ൅ ∑௠
௜ୀଵ 𝑧௜ሻ. We 

obtain the following collective and Bayes premiums: 

    • under the square-error loss and the generalized entropy loss for 𝑞 ൌ െ1  

𝐻෡ఓഥ,జഥ
஼ ൌ

𝛼𝑏
𝛽ሺ𝑎 െ 1ሻ

,        𝐻෡ఓഥ,జഥ
஻ ሺ𝑥, 𝑧ሻ ൌ

ሺ𝛼 ൅ ∑௡
௜ୀଵ 𝑥௜ሻሺ𝑏 ൅ ∑௠

௜ୀଵ 𝑧௜ሻ
ሺ𝛽 ൅ 𝑛ሻሺ𝑎 ൅ 𝑚 െ 1ሻ

, 

    • under the Brown loss  

𝐻෡ఓഥ,జഥ
஼ ൌ expሺ𝜓ሺ𝛼, 𝛽ሻ െ 𝜓ሺ𝑎, 𝑏ሻሻ, 

𝐻෡ఓഥ,జഥ
஻ ሺ𝑥, 𝑧ሻ ൌ exp ൭𝜓ሺ𝛼 ൅ 𝑛, 𝛽 ൅ ෍

௡

௜ୀଵ

𝑥௜ሻ െ 𝜓ሺ𝑎 ൅ 𝑚, 𝑏 ൅ ෍

௠

௜ୀଵ

𝑧௜ሻ൱, 

where 𝜓ሺ𝑠, 𝑡ሻ ൌ ׬
ାஶ

଴ ln𝑦
௧ೞ

୻ሺ௦ሻ
𝑦௦ିଵ𝑒ି௧௬𝑑𝑦,  

    • under the generalized entropy loss for 𝑞 ൌ 1  

𝐻෡ఓഥ,జഥ
஼ ൌ

ሺ𝛼 െ 1ሻ𝑏
𝛽𝑎

,        𝐻෡ఓഥ,జഥ
஻ ሺ𝑥, 𝑧ሻ ൌ

ሺ𝛼 ൅ ∑௡
௜ୀଵ 𝑥௜ െ 1ሻሺ𝑏 ൅ ∑௠

௜ୀଵ 𝑧௜ሻ
ሺ𝛽 ൅ 𝑛ሻሺ𝑎 ൅ 𝑚ሻ

, 

    • under the generalized entropy loss for 𝑞 ൌ 2  

𝐻෡ఓഥ,జഥ
஼ ൌ

௕ඥሺఈିଶሻሺఈିଵሻ

ఉඥ௔ሺ௔ାଵሻ
,    𝐻෡ఓഥ,జഥ

஻ ሺ𝑥, 𝑧ሻ ൌ
ටሺఈା∑೙

೔సభ ௫೔ିଶሻሺఈା∑೙
೔సభ ௫೔ିଵሻሺ௕ା∑೘

೔సభ ௭೔ሻ

ሺఉା௡ሻඥሺ௔ା௠ାଵሻሺ௔ା௠ሻ
. 

For 𝑖 ൌ 1,3 and 𝑗 ൌ 2,4 define fixed numbers 𝑐௜ ൐ 1, 𝑐௝ ൐ 1 and the distortion 
functions  

ℎ௜ሺ𝑧ሻ ൌ 1 െ ሺ1 െ 𝑧ሻ௖೔ ,        ℎ௝ሺ𝑧ሻ ൌ 𝑧௖ೕ. 

Now, using the class Γ∗ of priors and simmulation methods for calculation of 
posterior expected values (similarly as in Section 4.1), we obtain the minimum and 
maximum of collective and Bayes premiums and the PRGM premium. 

5. Conclusions 

The analysis proposed in this article was used to provide the optimal estimators of 
the risk premium in Bayesian models with the distorted band class of priors expressing 
some uncertainty in elicitation of a prior. It is an alternative to the parametric classes of 
priors used by practitioners. It expresses the uncertainty in determining a prior c.d.f., 
and that uncertainty is more realistic. The range of Bayes estimators and optimal PRGM 
estimators is obtained under the large family of GB loss functions, thus the practitioner 
can find the loss function expressing the severity of under- and over-estimation. 
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The numerical example presents the difference among the estimators of frequency of 
claims in the collective risk model under different loss functions. The last example 
presents the situation where we can apply results for one-dimensional parameter to the 
bidimensional parameter, thus we can estimate the net premium with unknown 
frequency and expected severity of claims. Ruggeri et al. (2021) consider the 
generalization of the distorted band class to the multivariate case. Applying their 
models we can try to describe a dependence structure between random variables 𝜃 and 
𝜆 connected with frequency and severity of claims. The author believes that this topic 
could be expanded in the future.  
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