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Robust Bayesian insurance premium in a collective risk model 
with distorted priors under the generalised Bregman loss 

Agata Boratyńska1 

ABSTRACT 

The article presents a collective risk model for the insurance claims. The objective is to 
estimate a premium, which is defined as a functional specified up to unknown parameters. 
For this purpose, the Bayesian methodology, which combines the prior knowledge about 
certain  unknown parameters with the knowledge in the form of a random sample, has been 
adopted. The generalised Bregman loss function is considered. In effect, the results can be 
applied to numerous loss functions, including the square-error, LINEX, weighted square-
error, Brown, entropy loss. Some uncertainty about a prior is assumed by a distorted band 
class of priors. The range of collective and Bayes premiums is calculated and posterior regret 
Γ-minimax premium as a robust procedure has been implemented. Two examples are 
provided to illustrate the issues considered - the first one with an unknown parameter of the 
Poisson distribution, and the second one with unknown parameters of distributions of the 
number and severity of claims. 

Key words: classes of priors, posterior regret, distortion function, Bregman loss, insurance 
premium 

1. Introduction 

We consider a Bayesian collective risk model. Our objective is to estimate 
a premium, which is defined as a functional 𝐻 that assigns to any risk 𝑆 a real number 
𝐻 𝑆 , the premium for taking the risk 𝑆. In practical situations the premium 𝐻 𝑆  can 
be calculated if the distribution of the risk 𝑆 is known. We shall consider the case 
in which the distribution of 𝑆 or the premium 𝐻 𝑆  is specified up to an unknown 
parameter 𝜃, thus the risk premium will be denoted by 𝐻 𝜃 . The premium 𝐻 𝜃  can 
be calculated according to different principles, from the simplest net premium to more 
sophisticated ones (see Kaas et al. (2009), Furman and Zitikis (2008)). Next we ought 
to estimate 𝐻 𝜃 . We will use the Bayesian methodology, which combines the prior 
knowledge about a parameter 𝜃 (defined by a prior distribution 𝜋) with the knowledge 
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in the form of a random sample 𝑋 𝑋 , 𝑋 , … , 𝑋 , where the distribution of this 
random variable depends on 𝜃. The quality of an estimator is measured by the expected 
value of a loss function. There are a lot of different loss functions considered in the 
literature (see Heilmann (1989), Gómez-Déniz (2008), Boratyńska (2008) and 
Karimnezhad and Parsian (2018) for more references). Its choice depends on the 
severity of the error related to overestimation or underestimation. The most popular 
square-error loss equally penalizes over- and under-estimation of the same magnitude, 
the LINEX loss with 𝑐 0 gives a greater error for underestimation than for 
overestimation, under the generalized entropy loss an error depends on the ratio 
between the estimated function and a considered action (for definitions of losses see 
Table 1). Again under- and over-estimation are not penalized equally. We will use the 
generalized Bregman loss (GB loss) function introduced by Karimnezhad and Parsian 
(2018) (for definition see Section 2). The class of GB loss functions contains different 
losses (weighted, symmetric, asymmetric, precautionary). All the loss functions 
mentioned above belong to that class. Thus, a practitioner has the great family of loss 
functions and he can choose one that expresses the severity of the estimation error very 
well.  

Now, having some prior information about a parameter 𝜃 ∈ Θ, described by a prior 
distribution 𝜋 (we will use the same notation for a probability distribution and its 
density (p.d.f.) with respect to the chosen measure on a probability space Θ), and a loss 
function 𝐿 𝐻 𝜃 , 𝑎  (measuring an error between the estimated parameter 𝐻 𝜃  and 
our estimate 𝑎) we can calculate the collective premium 𝐻 , which minimizes the 
expected loss  

𝐸 𝐿 𝐻 𝜃 , 𝑎 𝐿 𝐻 𝜃 , 𝑎 𝜋 𝑑𝜃  

in a class of actions 𝑎 ∈ 𝑅.  
If, additionally, we have a random sample 𝑋 𝑋 , 𝑋 , … , 𝑋  and 𝑋 has a p.d.f. 

depended on a parameter 𝜃, then for every value 𝑥 of a random variable 𝑋 we can 
calculate a Bayes premium 𝐻 𝑥 , which minimizes the posterior risk equal the 
expected value of the loss function, if 𝜃 has the posterior distribution, thus  

𝑅 𝜋, 𝑎 𝐸 𝐿 𝐻 𝜃 , 𝑎 |𝑥 𝐿 𝐻 𝜃 , 𝑎 𝜋 𝑑𝜃|𝑥 , 

where 𝜋 ⋅ |𝑥  denotes the posterior p.d.f. and 𝑎 denotes a chosen action. Two 
premiums (defined above) express two situations. For example, the first premium is 
a premium in a class of risk. The prior expresses the population behaviour of an 
unknown parameter 𝜃. The second premium combines knowledge about the 
population and about one considered risk (a policy).  

The collective and Bayes premiums depend on a choice of a prior. The elicitation 
of a prior is difficult and can be uncertain. To model uncertainty of the prior 
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information the robust Bayesian inference uses a class Γ of priors. In literature there are 
a lot of different classes Γ of priors: parametric classes of priors, 𝜀-contamination 
classes, density and distribution band classes, quantile classes. For general references 
see Berger (1994), Ríos Insua and Ruggeri (2000). In insurance the robust Bayesian 
analysis was considered in many papers, for example: Young (2000), Chan et al. (2008), 
Gómez-Déniz (2009), Karimnezhad and Parsian (2014), Boratyńska (2017). Most of 
them present parametric or 𝜀-contamination classes. We will use a class of priors based 
on distortion functions defined by Arias-Nicolás et al. (2016) (for definition see Section 
3). The class is easily elicited and interpretable. It is connected with the stochastic and 
likelihood ratio orders. It quantifies a prior uncertainty in terms of distortion of 
a cumulative distribution function (c.d.f.). A parametric class of priors very often has 
a fixed shape of a c.d.f. During elicitation of a prior a practitioner has only approximate 
knowledge about a prior and narrowing down to a certain parametric family may be 
unjustified. The family considered in the paper can be an alternative. In insurance this 
class was considered by Sánchez-Sánchez et al. (2019). The concept of distortion 
functions has been used in actuarial science to model risk measure (see, for example, 
Balbas et al. (2009)). 

Having a class Γ of priors we choose a measure of robustness of a statistical 
procedure and some concept of optimality. As a measure of robustness the range of 
posterior quantity, like the Bayes estimator, can be considered. If the range is small, 
then one may used the Bayes estimator as the robust procedure with respect to 
misspecifications of the prior (see Berger (1994),  Ríos Insua and Ruggeri (2000) and 
Arias-Nicolás et al. (2016), among others). On the other hand, if conclusions differ 
widely, we should aim at eliciting additional information about the prior. However, the 
expert may not be willing to provide more information, and the practitioner is 
interested in choosing a single action from the set of actions provided by a global 
procedure. In this moment we can choose several concepts of an optimal procedure: 
the stable procedure, conditional Γ-minimax procedure or posterior regret Γ-minimax 
(PRGM) procedure (see Sivaganesan and Berger (1989), Ríos Insua et al. (1995), 
Boratyńska (1997, 2002), Ríos Insua and Ruggeri (2000), among others). We will use 
the last concept. Given the imprecision in elicitation of a prior, we try to make 
a decision, and this decision cannot be a Bayes action for every prior in the class Γ. Thus, 
we choose an action (in our problem an estimator of a premium), which minimizes the 
maximum loss of optimality in the class Γ and the largest possible increase in risk, 
resulting from making the wrong choice of a prior distribution, is kept as small as 
possible. The PRGM estimator depends on bands of the Bayes estimator when a prior 
runs over the class Γ. Thus, computing a PRGM estimator is simple provided that we 
have procedures to compute the range of Bayes estimators. 
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The article is organized as follows. Section 2 presents a guide for collective, Bayes 
and PRGM premiums under the GB loss. Section 3 reviews the structure of the class of 
priors based on distortion functions. Considering the GB loss function we find the 
bands of the Bayes estimator for a distorted band class of priors, thus we can compute 
the PRGM estimators. We note that for every value of a random sample X the optimal 
PRGM premium is the Bayes premium with respect to one prior from the considered 
class of priors. Section 4 contains PRGM estimators of a premium in some actuarial 
models with the GB loss function. We present some generalization for the case in which 
an unknown parameter is bidimensional (it is a case where a parameter of a probability 
distribution of a number of claims and a parameter of a probability distribution of 
a severity of claims are unknown and some prior information about them is known). 
Section 5 contains some concluding remarks. 

2. Collective, Bayes and PRGM premiums under the GB loss function 

Generally, let 𝑋 be an observed random variable with a p.d.f. 𝑓 ⋅ |𝜃  indexed by 
a real unknown parameter 𝜃. Suppose 𝜃 has a prior distribution 𝜋. Let 𝐿 𝐻 𝜃 , 𝑎  be 
the generalized Bregman loss function (GB loss), measuring the penalty of incorrect 
estimation of a premium 𝐻 𝜃  by a real decision action 𝑎, defined as follows:  

𝐿 𝐻 𝜃 , 𝑎 𝑤 𝐻 𝜃 𝜙 𝑔 𝑎 𝜙 𝑔 𝐻 𝜃 𝑔 𝑎 𝑔 𝐻 𝜃 𝜙′ 𝑔 𝐻 𝜃 , 

where real functions 𝑤, 𝑔 and 𝜙 are fixed and 𝑤 𝐻 𝜃 0 for every value 𝐻 𝜃 , 𝑔 ⋅  
is a monotone function and 𝜙 ⋅  is a convex, differentiable function and 𝜙′ 𝑔 𝜃

𝜙 𝑧 | . The shape of the GB loss depends of the choice of functions 𝑤, 𝑔 and 
𝜙, for example, taking 𝑤 𝑧 𝑒 , 𝑔 𝑧 𝑧 and 𝜙 𝑧 𝑒  (𝑐 0) we obtain the 
LINEX loss function introduced by Varian (1974), taking 𝑤 𝑧 1, 𝑔 𝑧 𝑧 and 
𝜙 𝑧 𝑧  we have the square-error loss.  Table 1 presents some examples of the GB 
loss. The following theorem is the corollary of Theorem 3.1. in Karimnezhad and 
Parsian (2018). 

Theorem 1. Let 𝑋 𝑥. Then, under the GB loss function and a prior 𝜋, the collective 𝐻  
and Bayes 𝐻 𝑥  premiums satisfy the following equations:  

𝜙′ 𝑔 𝐻 , 

                                          𝜙′ 𝑔 𝐻 𝑥
|

|
.                                   
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Now, suppose that our knowledge about a prior is described by a family Γ of priors. 
Let 𝑟 Γ  and 𝑟 Γ, 𝑥  denote the range of a collective and a Bayes premium when 
priors run the class Γ, respectively, thus if 𝑋 𝑥, then  

𝑟 Γ sup
∈

𝐻 inf
∈

𝐻         and        𝑟 Γ, 𝑥 sup
∈

𝐻 𝑥 inf
∈

𝐻 𝑥 . 

Consider the posterior regret of an action 𝑎 given by 

𝑟 𝜋, 𝑎 𝑅 𝜋, 𝑎 𝑅 𝜋, 𝐻 𝑥 . 

In a sense, for 𝑋 𝑥, it measures the loss of optimality due to choosing 𝑎 instead 
of the optimal Bayes estimate. The estimator 𝐻  is the posterior regret Γ-minimax 
premium (PRGM premium) if for every value 𝑥 of 𝑋  

inf
∈

sup
∈

 𝑟 𝜋, 𝑎 sup
∈

 𝑟 𝜋, 𝐻 𝑥 . 

We will use the following theorem to calculate the PRGM premium. 

Theorem 2.  (Karimnezhad and Parsian (2018)) In estimating 𝐻 𝜃  under the GB loss 
function, let 𝑋 𝑥, 𝛤 be a class of prior distributions and let 𝐻 𝐻 𝑥 inf

∈
 𝐻 𝑥 , 

𝐻 𝐻 𝑥 sup
∈

 𝐻 𝑥  and 𝐻 𝐻. 

If 𝑤 𝐻 𝑐𝑜𝑛𝑠𝑡, then 

𝑔 𝐻 𝑥 . 

If there exists a constant 𝑘 such that 𝐸 𝑤 𝐻 𝜃 |𝑥 , then 

.                 

Directly from the proof of Theorem 2 we have the following corollaries.  

Corollary 1. Under the assumptions of Theorem 2 for every 𝑥 of  X  

𝐻 𝑥 𝐻 𝑥 𝐻 𝑥 . 

Corollary 2. Under the assumptions of Theorem 2, if for every value 𝑥 of 𝑋 the set 
𝐻 𝑥 : 𝜋 ∈ 𝛤  is a connected set, then for every 𝑥 there exists 𝜋 ∈ 𝛤 such that 

𝐻 𝑥 𝐻 𝑥 .     

Table 1 presents collective, Bayes and PRGM premiums for different loss functions 
belonging to the class of GB loss functions.  
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Table 1.  Examples of GB loss functions and collective, Bayes and PRGM premiums (for more 
 examples and details see Karimnezhad and Parsian (2018)) 

𝐿 𝐻, 𝑎   𝐻  𝐻   𝐻  

square-error loss 𝐻 𝑎   𝐸 𝐻 𝐸 𝐻|𝑥  0.5 𝐻 𝐻  
LINEX loss 

𝑒 𝑐 𝑎 𝐻 1 1
𝑐

ln𝐸 𝑒
1

𝑐
ln𝐸 𝑒 |𝑥 𝐻

1
𝑐

ln
𝑐 𝐻 𝐻

exp 𝑐 𝐻 𝐻 1
 

weighted squared loss (1) 
𝑎 𝐻   𝐸

1
𝐻

 𝐸
1
𝐻

|𝑥  𝐻𝐻 

weighted squared loss (2)  
𝑎 𝐻   

   
|

|
 Th.2 is not applicable 

Brown loss ln𝑎 ln𝐻  𝑒  𝑒 |  𝐻𝐻 

precautionary loss 
2  

    |

|
  Th.2 is not applicable 

generalized entropy loss 
𝑎
𝐻

𝑞ln
𝑎
𝐻

1 𝐸
1

𝐻
 

𝐸
1

𝐻
|𝑥  

 

  

3.  Distorted band class of priors 

We start with recalling the definition of the stochastic and likelihood ratio orders 
and a distortion function. 

Let 𝜋  and 𝜋  be two probability distributions on the space Θ and 𝐹  and 𝐹  their 
cumulative distribution functions. We say that 𝜋  is smaller than 𝜋  in the stochastic 
order (denoted by 𝜋 ⪯ 𝜋 ) if and only if  for every 𝑡 ∈ 𝑅 we have 𝐹 𝑡 𝐹 𝑡 . 
We say that 𝜋  is smaller than 𝜋  in the likelihood ratio order (denoted by 𝜋 ⪯ 𝜋 ) 
if and only if the ratio of their densities  increases over the union of the supports 
of 𝜋  and 𝜋  (here 𝑎/0 is taken to be equal to ∞ whenever 𝑎 0 and a support of 
a p.d.f. 𝜋 is a closure of a set 𝜃 ∈ Θ: 𝜋 𝜃 0 ). 

Let 𝑉 and 𝑊 be two random variables such that 𝑉 ∼ 𝜋  and 𝑊 ∼ 𝜋 . It is well 
known that  

𝜋 ⪯ 𝜋     ⟹     𝜋 ⪯ 𝜋  
and  
                                              𝜋 ⪯ 𝜋     ⟺     𝐸𝜓 𝑉 𝐸𝜓 𝑊 ,                               ∗  
for all increasing functions 𝜓 for which the expectations exist. For more details about 
stochastic orders see Shaked and Shanthikumar (2007), for the stochastic ordering of 
posterior distributions, marginal distributions of data and predictive distributions see 
Męczarski (2015). 
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Let ℎ: 0,1 ⟶ 0,1  be a nondecreasing, continuous function such that ℎ 0 0 
and ℎ 1 1. Then ℎ is called a distortion function. Let 𝜋 be a probability distribution 
on Θ, then a probability distribution 𝜋 , with a c.d.f. of the form 𝐹 ℎ 𝐹 , is called 
the distorted distribution with the distortion function ℎ. 

Suppose that the prior distribution is not exactly specified and consider the 
following class of priors. 

Definition (Arias-Nicolás et al. (2016)). Let 𝜋 be a specific prior belief. The distorted 
band class 𝛤 , ,  associated with 𝜋, based on ℎ  and ℎ , a concave and convex distortion 
functions, respectively, is defined as  

Γ , , 𝜋:  𝜋 ⪯ 𝜋 ⪯ 𝜋 . 

The following properties are very useful (for details see Arias-Nicolás et al. (2016)):   
    • easy elicitation and structure,  
    • Γ , , ⊆ 𝜋:  𝜋 ⪯ 𝜋 ⪯ 𝜋 ,  
    • if 𝜋 , 𝜋 ∈ Γ , , , then for every 𝜀 ∈ 0,1  and 𝜋 1 𝜀 𝜋 𝜀𝜋  we     

have 𝜋 ∈ Γ , , ,  
    • for every 𝜋 ∈ Γ , ,  and every 𝑥 the posterior distribution satisfies  

𝜋 ⋅ |𝑥 ⪯ 𝜋 ⋅ |𝑥 ⪯ 𝜋 ⋅ |𝑥 . 

Example 1. Let 𝜋 be a fixed prior on the space Θ. Consider a class  
Γ 𝜋:  𝜋

,
⪯ 𝜋 ⪯ 𝜋

,
, 

where ℎ , , ℎ ,  are two distortion functions such that  
ℎ , 𝑧 1 1 𝑧 ,    ℎ , 𝑧 𝑧 , 

𝜋
,

𝜃
𝑑

𝑑𝜃
1 1 𝐹 𝜃 ,   𝜋

,
𝜃

𝑑
𝑑𝜃

𝐹 𝜃 , 

and 𝑐 1, 𝑐 1 are fixed numbers. Thus, if 𝑐  and 𝑐  are integers, then the bounds 
distributions are the distributions of the first and the last order statistics. The following 
properties describe the dependence on parameters 𝑐  and 𝑐 . 

    • If 𝑐′ 𝑐 , then 𝜋
,

⪯ 𝜋
,

.  
    • If 𝑐′ 𝑐 , then 𝜋

,
⪯ 𝜋

,
.  

    • Similar order is for posterior distributions.  
    • The Kolmogorov distance (see Arias-Nicolas et al. (2016))  

𝑑𝐾 𝜋, 𝜋
,

𝑐 1 𝑐   ,      𝑑𝐾 𝜋, 𝜋
,

𝑐 1 𝑐 . 

We will use that class for elicitation priors in Section 4.  
Now, considering the GB loss we would like to find bounds of a set of Bayes 

estimators of the premium. The following lemma presents the preservation of order of 
the collective and Bayes premiums computed under the GB loss function when prior 
distributions are in the likelihood ratio order.  
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Lemma 1. Let 𝐻 be an increasing function of 𝜃. Let 𝜋  and 𝜋  be two priors such that 
𝜋 ⪯ 𝜋  and 𝐻 , 𝐻  be the collective and Bayes premium under the GB loss and the 
prior 𝜋 , for 𝑖 1, 2. Then for every 𝑥 of 𝑋 

𝐻 𝐻    𝑎𝑛𝑑   𝐻 𝑥 𝐻 𝑥 . 

If 𝐻 is decreasing, then in the above inequalities there is the sign change.  

Proof. Assume 𝐻 is increasing (if 𝐻 is decreasing, then the proof is similar, only we 
have opposite inequalities in ∗∗ ).  

Having a probability distribution 𝜋 and a positive integrable function 𝑤, define the 
probability distribution 𝜋  with the p.d.f. equal 𝜋 𝜃 . If 𝜋 ⪯ 𝜋 , 

then ∙  is an increasing function of 𝜃, hence 𝜋 ⪯ 𝜋    

and  𝜋 ⪯ 𝜋 . 
Note that 𝜙′ 𝑔 𝐻  (see the formula in Theorem 1) is the expected value of the 

function 𝜙′ 𝑔 𝐻 𝜃  if 𝜃 has the probability distribution 𝜋 , 𝑖 1,2.  Now, applying 
the property (∗) of the stochastic order, if 𝑔 is increasing, we have  

 𝜙 𝑔 𝐻 𝜙 𝑔 𝐻                                                  ∗∗  

(if 𝑔 is decreasing we have opposite inequalities) and obtain the assertion for the 
collective premium. The proof for the Bayes premium is similar, we only put a posterior 
distribution 𝜋 ∙ |𝑥  in the place of 𝜋.                                                                 

The following theorem presents the bounds of a set of Bayes estimators and it is 
a conclusion from Lemma 1.  

Theorem 3. Under the GB loss function and the distorted band class 𝛤 , ,  of priors, if 
𝐻 is an increasing function of 𝜃 and for every 𝜋 ∈ 𝛤 , ,  and every 𝑥 of 𝑋 there exist 𝐻  
and 𝐻 𝑥 , then  

inf
∈ , ,

𝐻 𝐻 ,        sup
∈ , ,

𝐻 𝐻 , 

inf
∈ , ,

𝐻 𝐻 ,        sup
∈ , ,

𝐻 𝐻 . 

If 𝐻 is decreasing, then 𝑖𝑛𝑓 and 𝑠𝑢𝑝 change places. 

Having the upper and lower bounds for the set of Bayes premiums and applying 
Theorem 2, we can calculate the PRGM premium if the class of priors is equal Γ , , .  

Remarks  

1. Arias-Nicolás et al. (2016) define the class of submodular loss functions and obtain 
the bounds of the set of Bayes actions under priors belonging to 𝛤 , ,  , if a loss 
function is convex in a and submodular. If 𝑤 𝜃 𝑐𝑜𝑛𝑠𝑡 then the GB loss is 
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submodular ,
𝑔 𝑎 𝑔′ 𝜃 𝜑′′ 𝑔 𝜃 0 , but if 𝑤 𝜃 𝑐𝑜𝑛𝑠𝑡, then 

a GB loss may not have the submodularity property. As an example consider 
𝐿 𝜃, 𝑎 𝑎 𝜃 .  

2. Applying Remark 8 in Sánchez-Sánchez et al. (2019) and Corollaries 1 and 2 we 
obtain that  for every 𝑥 there exists 𝜋 ∈ Γ , ,  such that 𝐻 𝑥  is equal to the 
Bayes estimator with respect to the prior 𝜋 .  

Example 2. In that example we present the exact formula for the PRGM estimator for 
some GB losses and a certain class Γ , ,  of priors. 

Let 𝑋 be an observed random variable with the negative binomial distribution, 
𝑏𝑖𝑛 𝑟, 𝜃 , where 𝜃 ∈ 0,1  is unknown and 𝑟 0 is known, with the p.d.f. given by  
𝑓 𝑥|𝜃

!
𝜃 1 𝜃  , if  𝑥 0,1,2, …. 

Let 𝜋 be a prior of 𝜃 with the p.d.f. equal 𝜋 𝜃 2𝜃  if 𝜃 ∈ 0,1 . We are interested 
in estimating a function 𝐻 𝜃 . Note that 𝐸 𝑋|𝜃 𝑟𝐻 𝜃 . Hence, if 𝑋 describes 
the number of claims, then we are interested in estimating the expected value of the 
number of claims. Consider ℎ 𝑧 𝑧 .  and ℎ 𝑧 𝑧  and a class Γ , ,  of priors. 
Then 𝐹 𝜃 𝜃 ,    𝐹 𝜃 𝜃 . ,    𝐹 𝜃 𝜃  for 𝜃 ∈ 0,1 . If 𝑋 𝑥, then 
posterior distributions for priors 𝜋, 𝜋  and 𝜋  are beta distributions 𝐵𝑒𝑡𝑎 𝑟 2, 𝑥 1 , 
𝐵𝑒𝑡𝑎 𝑟 0.5, 𝑥 1  and 𝐵𝑒𝑡𝑎 𝑟 4, 𝑥 1 , where a beta distribution with 
parameters 𝛼 0 and 𝛽 0, 𝐵𝑒𝑡𝑎 𝛼, 𝛽 , has the p.d.f. given by  𝜋 𝜃

𝜃 1 𝜃  , if  𝜃 ∈ 0,1 . 

Table 2.  Bayes and PRGM estimators and the oscillation 𝑟 Γ , , , 𝑥  under some losses, notation: 
 𝐴

.

.
 and 𝐵 .  

Loss function   𝐻 𝑎    𝐻 𝑎    𝑞ln 1  

𝐻 𝑥  
𝑥 1
𝑟 1

 
𝑥

𝑟 2
 Γ 𝑟 2 𝑥!

Γ 𝑟 2 𝑞 Γ 𝑥 𝑞 1
 

𝐻 𝑥  𝑥 1
𝑟 0.5

 
𝑥

𝑟 1.5
 Γ 𝑟 1.5 𝑥!

Γ 𝑟 1.5 𝑞 Γ 𝑥 𝑞 1
 

𝐻 𝑥  𝑥 1
𝑟 3

 
𝑥

𝑟 4
 Γ 𝑟 4 𝑥!

Γ 𝑟 4 𝑞 Γ 𝑥 𝑞 1
 

𝑟 Γ , , , 𝑥   .

.
 2.5𝑥

𝑟 1.5 𝑟 4
  !

𝐴 𝐵  

𝐻 𝑥   
.

 𝑥

𝑟 4 𝑟 1.5
  !

∙
/

/ /
 

Now, applying formulas from Table 1 we can calculate Bayes and PRGM estimators 
under selected loss functions. Table 2 presents results. 

In the above example the interesting prior and posterior distributions are easy to 
compute. In practice, it is not easy to compute the exact distributions and interesting 
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posterior quantities (for example the expected value). In the next section we apply the 
acceptance-rejection method. The algorithm applying this method for simulation 
a random sample from prior and posterior distributions 𝜋  and 𝜋 ⋅ |𝑥 , knowing 
distributions 𝜋 and 𝜋 ⋅ |𝑥 , is presented in Arias-Nicolás et al. (2016).  

4.  The collective risk models and premium calculations, examples 

Let 𝑁, 𝑌 , 𝑌 , … be independent random variables, where 𝑁 describes the number 
of claims and 𝑌 , 𝑌 , … are identically distributed random variables describing severity 
of claims. We consider two models. 

4.1.  Unknown parameter  𝜽  in the Poisson model 

Assume that 𝑁 has the Poisson distribution with an unknown parameter 𝜃 0 and 
a distribution of 𝑌  is known. The parameter 𝜃 can represent a driver’s propensity to 
make a claim and the prior indicates how that propensity is distributed throughout the 
population of insured drivers (see Lemaire (1979), Gómes-Déniz (2009)). Consider the 
premium 𝐻 𝜃  which is a linaer function of 𝜃, thus 𝐻 𝜃 𝑡𝜃 (the net premium, the 
variance principle premium, the Esscher premium, the exponential premium are 
examples, see Boratyńska (2008)). Now, let 𝑋 , 𝑋 , … , 𝑋  be observed i.i.d. random 
variables with the Poisson distribution 𝑃𝑜𝑖𝑠𝑠 𝜃  and consider following GB loss 
functions (for shape see Figure 1):   

    • the square-error loss 𝐿 𝑎, 𝜃 𝜃 𝑎 , 
    • the LINEX loss 𝐿 𝑎, 𝜃 𝑒 , 0,5 𝑎 𝜃 1, 
    • the Brown loss 𝐿 𝑎, 𝜃 ln𝜃 ln𝑎 , 
    • the generalized entropy losses with q equal 2, 1 and -1: 

𝐿 𝑎, 𝜃 2ln 1,  𝐿 𝑎, 𝜃 ln 1, 𝐿 𝑎, 𝜃 ln 1. 

For all these loss functions it is enough to find the collective, Bayes and PRGM 
estimators of 𝜃, because if 𝐻 𝜃 𝑡𝜃, then  

𝐻 𝑡𝜃 ,        𝐻 𝑡𝜃 ,        𝐻 𝑡𝜃 , 

for the square-error, Brown and generalized entropy losses. For the LINEX loss 
𝐿 𝑎, 𝜃 𝑒 𝑐 𝑎 𝜃 1, with a constant 𝑐, we have  

𝐻 𝑡𝜃 ,   ,      𝐻 𝑡𝜃 ,  ,       𝐻 𝑡𝜃 , 

where 𝜃 , , 𝜃 , , 𝜃  are estimators for the LINEX loss with a constant 𝑡𝑐 
(see Boratyńska (2008)). 
Note that the collective and the Bayes estimator of 𝜃 for loss functions 𝐿  and 𝐿  are 
equal, but PRGM estimators are different (see Table 1). 
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Figure 1.  The graphs of loss functions 

We assume that the actuary is unable to specify a simple prior distribution of the 
expected number of claims. Thus, let 𝜋 𝐺𝑎𝑚𝑚𝑎 3, 15  be the fixed prior distribution 
of 𝜃 with a p.d.f. 𝜋 𝜃 𝜃 exp 15𝜃  for 𝜃 0, and  

Γ 𝜋:  𝜋 ⪯ 𝜋 ⪯ 𝜋  

be the family of priors, where  

𝜋 𝜃
𝑑

𝑑𝜃
1 1 𝐹 𝜃 ,        𝜋 𝜃

𝑑
𝑑𝜃

𝐹 𝜃  

and 𝑐 𝑐 1.5. Then 𝑑𝐾 𝜋, 𝜋 𝑑𝐾 𝜋, 𝜋 0.148. The class Γ expresses the 
inaccuracy in determining the cumulative distribution function of 𝜋. The parameters 
𝑐 , 𝑐  provides the degree of distortion and can be elicited by fixing a reasonable 
distance in terms of Kolmogorov metric. 

 

Figure 2.  Oscillation 𝑟 Γ, 𝑥  of Bayes estimators for different loss functions, 𝑛 5 (left) and 
 𝑛 10 (right) 
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Figure 2 presents the oscillation of the Bayes estimators for 𝑛 5 and 𝑛 10 and 
different values of  𝑥 ∑ 𝑋 . Table 3 shows the oscillation of the collective estimator 
for different losses. We see that the oscillation for Bayes estimators is an increasing 
function of 𝑥 (except the generalized entropy loss with 𝑞 2) and it is smaller than the 
oscillation for the collective estimators for 0.5. The greatest oscillation is for the 
LINEX loss. 

Table 1. Oscillation of the collective estimator of  𝜃 

Loss square LINEX Brown Generalized entropy loss 
𝑞 2 𝑞 1  𝑞 1 

𝑟 Γ    0.076   0.078   0.073   0.071   0.071   0.076 
 

Generalized entropy losses 

 
Figure 3.  Values of collective, Bayes and PRGM estimators and minimum and maximum of Bayes 
 estimators for different loss functions and 𝑛 5 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 1 2 3 4 5x

q=2

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 1 2 3 4 5
x

q=1 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 1 2 3 4 5x

q=‐1 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 1 2 3 4 5
x

Brown loss

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 1 2 3 4 5

x

linex loss

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 1 2 3 4 5x

square loss

Collective Bayes

supBayes infBayes

PRGM



STATISTICS IN TRANSITION new series, September 2021 

 

135

Figures 3 and 4 show values of minimum and maximum of Bayes estimators, 
collective estimators and Bayes estimators for the prior 𝜋 𝐺𝑎𝑚𝑚𝑎 3,15  and PRGM 
estimators for two values of 𝑛 and different 𝑥 ∑ 𝑋 . The oscillation of Bayes 
estimators is the smallest if  is closed to the expected value 𝐸 𝜃 0.2. 

 

 
Generalized entropy losses 

 
Figure 4.  Values of collective, Bayes and PRGM estimators and minimum and maximum of Bayes 
 estimators for different loss functions and 𝑛 10 

We use 𝑛 and 𝑥 small, because 𝑛 is interpreted as the number of periods (years) we 
observe, for example, a driver, and 𝑥 is the number of claims during the 𝑛 periods. The 
prior represents the population behaviour of the parameter 𝜃. Our results (Bayesian 
and PRGM premiums) have similar interpretation as the rules in the credibility theory. 
They combine knowledge about a single driver with knowledge about the entire 
population. Similar models with a parametric class of priors or an 𝜀-contamination 
class of priors and the square-error loss or LINEX loss were considered in Boratyńska 
(2008) and Gómez-Déniz (2009). 
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4.2.  Unknown parameters 𝜽 and 𝝀 of distributions of the number and severity of 
 claims 

Assume that random variable 𝑁 has a distribution 𝑓 ⋅ |𝜃  depending on an 
unknown parameter 𝜃 ∈ Θ, and a random variable 𝑌  has a distribution 𝑓 ⋅ |𝜆  
depending on an unknown parameter 𝜆 ∈ Λ. Consider the premium of the form  

𝐻 𝜃, 𝜆 𝐻 𝜃 𝐻 𝜆 , 

where 𝐻  and 𝐻  are increasing and continuous functions of 𝜃 and 𝜆, respectively. 
Let 𝑋 , 𝑋 , … , 𝑋  be observed i.i.d. random variables with a p.d.f. 𝑓 ⋅ |𝜃  and 

𝑍 , 𝑍 , … , 𝑍  be observed i.i.d. random variables with a p.d.f. 𝑓 ⋅ |𝜆 , all variables are 
conditionally independent, knowing parameters 𝜃 and 𝜆. Assume that 𝜃 and 𝜆 are 
independent, and 𝜃 ∼ 𝜇 and 𝜆 ∼ 𝜐. Denote 𝑋 𝑋 , 𝑋 , … , 𝑋  and 𝑍
𝑍 , 𝑍 , … , 𝑍 . Let 𝑥 and 𝑧 be observed values of random variables 𝑋 and 𝑍. It can be 

seen directly that the posterior distributions 𝜇 ⋅ |𝑥  and 𝜐 ⋅ |𝑧  are independent. 
Consider the following GB loss functions: square-error loss, Brown loss, generalized 
entropy loss (see Table 1). Then, the collective and Bayes premiums are equal  

𝐻 , 𝐻 , 𝐻 , ,   𝐻 , 𝑥, 𝑧 𝐻 , 𝑥 𝐻 , 𝑧 . 

Let Γ∗ be a family of priors on the space Θ Λ with a p.d.f. given by  

𝜋 𝜆, 𝜃 𝜇 𝜃 𝜐 𝜆 , 
where  

𝜇 ∈ 𝜇:  �̅� ⪯ 𝜇 ⪯ �̅� ,  𝜐 ∈ 𝜐:  �̅� ⪯ 𝜐 ⪯ �̅� , 

�̅� and �̅� are fixed priors on the spaces Θ and Λ, respectively, and ℎ , ℎ , ℎ , ℎ  are fixed 
distortion functions (ℎ , ℎ  are concave and ℎ , ℎ  are convex). Assume that for every 
𝜋 ∈ Γ∗ and every 𝑥 and 𝑧 the Bayes premium exists. Then (applying Theorem 4) the 
minimum and maximum of Bayes estimators of the premium 𝐻 are given by  

inf
∈ ∗

𝐻 𝑥, 𝑧 𝐻 , 𝑥 𝐻 , 𝑧 ,        sup
∈ ∗

𝐻 𝑥, 𝑧 𝐻 , 𝑥 𝐻 , 𝑧 , 

and using Theorem 2 we have the PRGM estimator of 𝐻. 

Example 3. Assume that 𝑁 ∼ 𝑃𝑜𝑖𝑠𝑠 𝜃  and 𝑌  has an exponential distribution with 
a density given by 𝑓 𝑦|𝜆 exp  for 𝑦 0, depended on an unknown 
parameter 𝜆 0. Consider the net premium  

𝐻 𝜃, 𝜆 𝐻 𝜃 𝐻 𝜆 𝜃𝜆. 

Assume that 𝜃 has the prior distribution �̅� 𝐺𝑎𝑚𝑚𝑎 𝛼, 𝛽  and 𝜆 has the prior 
distribution �̅� 𝐼𝐺𝑎𝑚𝑚𝑎 𝑎, 𝑏  with a density function  

�̅� 𝜆
𝑏

Γ 𝑎
𝜆 exp

𝑏
𝜆

   for  𝜆 0 , 

where 𝛼, 𝛽, 𝑎,𝑏 are fixed positive parameters and 𝛼 2 and 𝑎 1.  
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If 𝑋 𝑥 𝑥 , 𝑥 , … , 𝑥  and 𝑍 𝑧 𝑧 , 𝑧 , … , 𝑧 , then the posterior distributions 
are �̅� ⋅ |𝑥 𝐺𝑎𝑚𝑚𝑎 𝛼 ∑ 𝑥 , 𝛽 𝑛  and �̅� ⋅ |𝑧 𝐼𝐺𝑎𝑚𝑚𝑎 𝑎 𝑚, 𝑏 ∑ 𝑧 . We 
obtain the following collective and Bayes premiums: 

    • under the square-error loss and the generalized entropy loss for 𝑞 1  

𝐻 ,
𝛼𝑏

𝛽 𝑎 1
,        𝐻 , 𝑥, 𝑧

𝛼 ∑ 𝑥 𝑏 ∑ 𝑧
𝛽 𝑛 𝑎 𝑚 1

, 

    • under the Brown loss  

𝐻 , exp 𝜓 𝛼, 𝛽 𝜓 𝑎, 𝑏 , 

𝐻 , 𝑥, 𝑧 exp 𝜓 𝛼 𝑛, 𝛽 𝑥 𝜓 𝑎 𝑚, 𝑏 𝑧 , 

where 𝜓 𝑠, 𝑡 ln𝑦 𝑦 𝑒 𝑑𝑦,  

    • under the generalized entropy loss for 𝑞 1  

𝐻 ,
𝛼 1 𝑏

𝛽𝑎
,        𝐻 , 𝑥, 𝑧

𝛼 ∑ 𝑥 1 𝑏 ∑ 𝑧
𝛽 𝑛 𝑎 𝑚

, 

    • under the generalized entropy loss for 𝑞 2  

𝐻 , ,    𝐻 , 𝑥, 𝑧
∑ ∑ ∑

. 

For 𝑖 1,3 and 𝑗 2,4 define fixed numbers 𝑐 1, 𝑐 1 and the distortion 
functions  

ℎ 𝑧 1 1 𝑧 ,        ℎ 𝑧 𝑧 . 

Now, using the class Γ∗ of priors and simmulation methods for calculation of 
posterior expected values (similarly as in Section 4.1), we obtain the minimum and 
maximum of collective and Bayes premiums and the PRGM premium. 

5. Conclusions 

The analysis proposed in this article was used to provide the optimal estimators of 
the risk premium in Bayesian models with the distorted band class of priors expressing 
some uncertainty in elicitation of a prior. It is an alternative to the parametric classes of 
priors used by practitioners. It expresses the uncertainty in determining a prior c.d.f., 
and that uncertainty is more realistic. The range of Bayes estimators and optimal PRGM 
estimators is obtained under the large family of GB loss functions, thus the practitioner 
can find the loss function expressing the severity of under- and over-estimation. 
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The numerical example presents the difference among the estimators of frequency of 
claims in the collective risk model under different loss functions. The last example 
presents the situation where we can apply results for one-dimensional parameter to the 
bidimensional parameter, thus we can estimate the net premium with unknown 
frequency and expected severity of claims. Ruggeri et al. (2021) consider the 
generalization of the distorted band class to the multivariate case. Applying their 
models we can try to describe a dependence structure between random variables 𝜃 and 
𝜆 connected with frequency and severity of claims. The author believes that this topic 
could be expanded in the future.  
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