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A new reciprocal Rayleigh extension: properties, copulas, different 
methods of estimation and a modified right-censored 

 test for validation 

Haitham M. Yousof1, M. Masoom Ali2, Hafida Goual3, Mohamed Ibrahim4 

ABSTRACT 

In this article, a new reciprocal Rayleigh extension called the Xgamma reciprocal Rayleigh 
model is defined and studied. The relevant statistical properties are derived, and the useful 
results related to the convexity and concavity are addressed. We discussed the estimation of 
the parameters using different estimation methods such as the maximum likelihood 
estimation method, the ordinary least squares estimation method, the weighted least squares 
estimation method, the Cramer-Von-Mises estimation method, and the bootstrapping 
method. A simulation study was conducted to assess the performances of the proposed 
estimation methods are investigated through a simulation study. Many bivariate and 
multivariate type model have also been derived based on Farlie-Gumbel-Morgenstern 
copula, the Clayton copula, Renyi’s entropy copula and the Ali-Mikhail-Haq copula. 
A modified Nikulin-Rao-Robson test for right-censored validation is applied to a censored 
real data set. 

Key words: Xgamma model, reciprocal Rayleigh model, simulations, bootstrapping, Farlie 
Gumbel Morgenstern copula, least squares, Cramer-Von-Mises, bootstrapping, Ali-Mikhail-
Haq copula, convexity, concavity. 

1.  Introduction 

The probability density function (PDF) and cumulative distribution function 
(CDF) of the reciprocal Rayleigh (RR) distribution are given, respectively, by 

𝑔 𝑦 2𝜃 𝑦 𝑒 | ∈ℝ , 
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and 

𝐺 𝑦 𝑒 | ∈ℝ , 

where 𝜃 0 refers to the scale parameter. The RR model is a special case from the 
well-known inverse Weibull distribution. The RR model was originally proposed by 
Fréchet (1927). It has many applications in accelerated life testing, earthquakes, floods, 
wind speed, horse racing, rainfall, queues in supermarkets, and sea waves. Gusmao et 
al. (2011) defined and studied the generalized reciprocal Rayleigh (GRR) distribution. 
Krishna et al. (2013) proposed some applications of the Marshall-Olkin reciprocal 
Rayleigh (MORR) distribution. Mahmoud and Mandouh (2013) proposed and studied 
the transmuted reciprocal Rayleigh (TRR) distribution. Haq et al. (2017) presented 
a new four-prarameter reciprocal Rayleigh version for modeling extreme values. 
Korkmaz et al. (2017) studied some theoretical and computational aspects of the odd 
Lindley reciprocal Rayleigh (OLRR) distribution. Yousof et al. (2018d) defined a new 
family called the odd reciprocal Rayleigh G (ORR-G) family of distributions. Yousof et 
al. (2019) defined a new compound version of the reciprocal Rayleigh (OBRR) 
distribution. Salah et al. (2020) defined and studied a new version of RR model called 
the odd Burr RR model with different copula, different estimation methods, 
applications and validation testing. Recently, Cordeiro (2020) proposed and studied the 
Xgamma-G (Xg-G) family of distribution with CDF and PDF (for 𝜃 0) given by  

 

𝐹 ,𝛏 𝑦 1
1 𝜃 𝜃 log 1 𝐺𝛏 𝑦 𝜃 log 1 𝐺𝛏 𝑦

1 𝜃
1 𝐺𝛏 𝑦 | ∈ℝ, 

(1) 

and  

𝑓 ,𝛏 𝑦
𝜃

1 𝜃
𝑔𝛏 𝑦 1 𝐺𝛏 𝑦 𝜃

1
2

𝜃 log 1 𝐺𝛏 𝑦 | ∈ℝ, 

 

 
(2) 

respectively, where 𝑔𝛏 𝑦  and 𝐺𝛏 𝑦  are the baseline PDF and CDF respectively with a 
parameter vector 𝛏. To this end, we define the CDF of the Xgamma reciprocal Rayleigh 
(XgRR) model. Using (1), the CDF of the XgRR can be written as  

𝐹 , 𝑦 1
1

1 𝜃
1 𝑒

⎝

⎜
⎛

1 𝜃 𝜃 log 1 𝑒

1
2

𝜃 log 1 𝑒
⎠

⎟
⎞

| ∈ℝ . 

 
 

(3) 

The PDF corresponding to (3) reduces to  

𝑓 , 𝑦 2𝜃
𝜃 𝑦 𝑒

1 𝜃
1 𝑒 𝜃

1
2

𝜃 log 1 𝑒 | ∈ℝ . 
 
(4) 
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The XgRR family density in (4) can be expressed as 

𝑓 , 𝑦
2𝜃 𝜃
1 𝜃

𝑦 𝑒 1 𝑒

⎝

⎜
⎜
⎛ 𝜃

2 1 𝜃
2𝜃 𝑦 𝑒 1 𝑒 log 1 𝑒

; ⎠

⎟
⎟
⎞

| ∈ℝ . 

 
 
 
 
 
 
(5) 

 
Consider  

log 1
𝑎
𝑎

1
𝑖 1

𝑎
𝑎

|
 

, 
 

(6) 

and the power series raised to a positive integer  𝑛  (see Gradshteyn and Ryzhik (2002))  

𝑎 𝑢 𝑐 , 𝑢 , 
 

(7) 

where the coefficients  𝑐 ,   (for  𝑗 1,2, … ) can be easily determined from the 
recurrence equation  

𝑐 , 𝑗𝑎 𝑚 𝑛 1 𝑗 𝑎 𝑐 ,  and 𝑐 , 𝑎 . 

The coefficient  𝑐 ,   can be calculated from 𝑐 , , … , 𝑐 ,  and hence from the 
quantities 𝑎 , … , 𝑎  . For  1 and 𝑎 0, the power series holds  

1
𝑎
𝑎

𝛤 1 𝑎
𝑗! 𝛤 𝑎 𝑗 1

𝑎
𝑎

. 
 

(8) 

 
Applying (6) to the quantity 𝐴 𝑦; 𝜃  in the PDF in (5), the PDF can be expressed as 

𝑓 , 𝑦
𝜃

1 𝜃
2𝜃 𝑦 𝑒 1 𝑒  

⎝

⎜
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Expanding the quantity 𝐵 𝑦; 𝜃  using (7), the 𝑓 , 𝑦  can be written as 

𝑓 , 𝑦
𝜃

1 𝜃
 2𝜃 𝑦 𝑒 1 𝑒

; ,

 

⎩
⎪
⎨

⎪
⎧

𝜃
2 1 𝜃

2𝜃 𝑦 𝑒 𝑐 , 𝑒   1 𝑒

; ,

⎭
⎪
⎬

⎪
⎫

, 

where 𝑐 ,   1/ 𝑖 1 . Applying the power series (8) to the quantity 𝐶 𝑦; 𝜃 , 𝜃  , we 
obtain  

𝑓 𝑦 𝛻 𝜋 𝑦 𝛻 , 𝜋 𝑦 , 
 
(9) 

where  

𝛻
1 𝜃 𝛤 𝜃

1 𝑗 1 𝜃 𝛤 𝜃 𝑗
,  𝛻 ,

1 𝜃 𝛤 𝜃  𝑐 ,

2 1 𝜃 3 𝑖 𝑗 𝑗! 𝛤 𝜃 𝑗
, 

and 𝜋 𝑦  is the RR density with scale parameter  𝜃 𝜍   and shape parameter 2. So, 
the density of  𝑌  is a linear combination of RR densities. The CDF of 𝑌 follows by 
integrating (8) as 

𝐹 , 𝑦 𝛻 𝐻 𝑦 𝛻 , 𝐻 𝑦 , 
 
(10) 

where 𝐻 𝑦  is the RR density with scale parameter 𝜃 𝜍   and shape parameter 2. 
Equations (9) and (10) are the main results of this section. We provide some plots of 
the PDF and hazard rate function (HRF) of the XgRR model to show its flexibility. 
Figure 1 displays some plots of the XgRR density for selected parameter values. These 
plots reveal that the new density can be right skewed with different flexible shapes. 
The HRF plots of the XgRR distribution can be upside down or increasing. Many other 
useful real data sets can be found in Aryal and Yousof (2017), Merovci et al. (2017 and 
2020), Korkmaz et al. (2017), Hamedani et al. (2017), Brito et al. (2017), Alizadeh et al. 
(2018), Korkmaz et al. (2018), Yousof  et al. (2018a-d), Hamedani et al. (2018), Cordeiro 
et al. (2018), Hamedani et al. (2019), Ibrahim (2019), Nascimento et al. (2017, 2018 and 
2019), Ibrahim et al. (2019), Goual and Yousof (2019), Korkmaz et al. (2019), Alizadeh 
et al. (2019) and Goual et al. (2020), Ibrahim (2020 a and b) and Yadav et al. (2020).  

After studying the mathematical properties of the XgRR model, we discussed the 
estimation of the parameters using different estimation methods such as maximum 
likelihood estimation method, ordinary least squares estimation method, weighted 
least-squares estimation method, Cramer-Von-Mises estimation method and 
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bootstrapping method. Then, the Nikulin-Rao-Robson (N.R.R) statistic and modified 
N.R.R are discussed. In particular, the modified chi-squared test for composite 
hypothesis for complete samples was first considered by Nikulin (1973a, 1973b and 
1973c), Rao and Robson (1974), among others. On the other hand, several goodness-
of-fit tests have been suggested by the statisticians for censored data. 

2. Properties 

2.1.  Moments 

Let  𝑌   be a rv having density  𝜋 𝑦 . The 𝑟  ordinary moment of 𝑌, say 𝜇 , , 
follows from (9) as  

𝜇 , 𝐸 𝑌 𝛻  𝐸 𝑌 𝛻 ,  𝐸 𝑌 . 

Therefore, 

𝜇 , 𝜃 𝛤 1
𝑟
2

𝛻 , 𝛻,
,   | , 

 
(11) 

where 
𝛻 , 𝑏  1 𝑗    and   ∇ ,

, 𝑏 ,  3 𝑖 𝑗 , 
and  

𝛤 1 𝜏 | ∈ 𝜏! 𝜏 𝑤 𝑦 𝑒𝑦𝑝 𝑦 𝑑𝑦. 

Setting 𝑟 1 in (11) gives the mean of 𝑌  

𝐸 𝑌 𝜃 𝛤 1
1
2

𝛻  1 𝑗 𝛻 ,  3 𝑖 𝑗 . 

2.2.  Incomplete moments 

The 𝑟  incomplete moment of 𝑌 is defined by  

𝑚 , 𝑡 𝑦 𝑓 𝑦 𝑑𝑦. 

We can write from (9)  

𝑚 , 𝑡 𝛻  𝑚 , , 𝑦 𝛻 ,  𝑚 , , 𝑦 . 

Therefore, 
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where 

𝛾 𝜏, 𝑞 𝑡 𝑒 𝑑𝑡
𝑞
𝜏

𝐹 : 𝜏; 𝜏𝜃 1; 𝑞
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𝛤 𝜏, 𝑞 | 𝑡 𝑒𝑦𝑝 𝑡 𝑑𝑡, 

and 𝐹 : ⋅,⋅,⋅  is a confluent hypergeometric function (see Johnson et al. (2005)). 
Setting 𝑟 1 in (12) gives the first incomplete moment 
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Two important applications of the 𝑚 , 𝑡  are related to the mean deviation about 
the mean (𝑆 ) and median and to the Bonferroni and Lorenz curves. The mean 
deviation about the mean  

𝑆 , 𝐸 |𝑌 𝐸 𝑌 | 2𝜇 , 𝐹 𝐸 𝑌 2𝑚 , 𝐸 𝑌  

and about the median  
𝑆 , 𝐸 |𝑌 𝑀| 𝐸 𝑌 2𝑚 , 𝑀  

where  𝐸 𝑌 , 𝑀 𝑄 𝑢 𝐹 𝑢  is the median of 𝑌, 𝐹 𝜇 ,  is easily calculated.  

2.3.  Moment generating function 

The moment generating function (MGF) of 𝑌, say  𝑀 𝑡 𝐸 𝑒 , is obtained 
from (9) as  

𝑀 𝑡 𝛻  𝑀 , 𝑡 𝛻 ,  𝑀 , 𝑡 . 

Therefore, 

𝑀 𝑡 ∑
𝛻 𝑡𝜃 /𝑟! 1 𝑗 𝛤 1

∑ 𝛻 ,  𝑡𝜃 /𝑟! 3 𝑖 𝑗 𝛤 1
,   | . 

2.4.  Convexity and concavity 

Convex densities play an important role in several areas of mathematics. They are 
important in studying the “problems of optimization” where they are distinguished by 
several convenient characteristics. In mathematical analysis, a certain density defined 
on a certain 𝑛-dimensional interval is called “convex density” if the line between any 
two points on the graph of the density lies above the graph between the two points. 
The PDF in (5) is said to be “concave density” if for any 𝑌 ∼ XgRR 𝜃 , 𝜃  and  𝑌 ∼
XgRR 𝑐 , 𝑐  the PDF satisfies 

𝑓 𝐛y  �̅�𝑦 𝐛𝑓 , 𝑦 �̅�𝑓 , 𝑦 | 𝐛 �̅� 𝐛. 
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If the function 𝑓 𝐛𝑦  �̅�𝑦  is twice differentiable, then if 𝑓// 𝐛𝑦  �̅�𝑦
0, ∀ 𝑦 ∈ ℝ  , 𝑓 𝐛𝑦  �̅�𝑦  is “strictly convex density”. If 𝑓// 𝐛𝑦  �̅�𝑦
0, ∀ 𝑦 ∈ ℝ  , then 𝑓 𝐛𝑦  �̅�𝑦  is “convex”. The density in (5) is said to be “convex 
density” if for any 𝑌 ∼ XgRR 𝜃 , 𝜃  and  𝑌 ∼ XgRR 𝑐 , 𝑐  the density satisfies 

𝑓 𝐛𝑦  �̅�𝑦 𝐛𝑓 , 𝑦 �̅�𝑓 , 𝑦 | 𝐛 �̅� 𝐛. 

If the function 𝑓 𝐛𝑦  �̅�𝑦  is twice differentiable, then if 𝑓// 𝐛𝑦  �̅�𝑦
0, ∀ 𝑦 ∈ ℝ  , 𝑓 𝐛𝑦  �̅�𝑦  is “strictly convex density”. If 𝑓// 𝐛𝑦  �̅�𝑦
0, ∀ 𝑦 ∈ ℝ , then 𝑓 𝐛𝑦  �̅�𝑦  is “convex”. If 𝑓 𝐛𝑦  �̅�𝑦  is “convex” and 𝑐 is a 
constant, then the function 𝑐𝑓 𝐛𝑦  �̅�𝑦  is “convex”. If 𝑓 b𝑦  �̅�𝑦  is “convex 
density”, then 𝑐𝑓 𝐛𝑦  �̅�𝑦  is convex for every 𝑐 0. If 𝑓 𝐛𝑦  �̅�𝑦  and 
𝑔 𝐛𝑦  �̅�𝑦  are “convex density”, then 𝑓 𝐛𝑦  �̅�𝑦 𝑔 𝐛𝑦  �̅�𝑦  is also 
“convex density”. If 𝑓 𝐛𝑦  �̅�𝑦  and 𝑔 𝐛𝑦  �̅�𝑦  are “convex density”, then 
𝑓 𝐛𝑦  �̅�𝑦 . 𝑔 𝐛𝑦  �̅�𝑦  is also “convex density”. If the function 𝑓 𝐛𝑦

 �̅�𝑦  is “convex density”, then the function 𝑓 𝐛𝑦  �̅�𝑦  is “convex density”. 
If 𝑓 𝐛𝑦  �̅�𝑦  is “concave density”, then 

𝐛  �̅�
 is “convex density” if 𝑓 𝑦 0. 

If 𝑓 𝐛𝑦  �̅�𝑦  is “concave density”, 
𝐛  �̅�

 is “convex density” if 𝑓 𝑦 0. 

If 𝑓 𝐛𝑦  �̅�𝑦  is “concave density”, 
𝐛  �̅�

 is “convex density”. 

3.  Copulas 

For modelling the bivariate real data sets, we can consider the bivariate XgRR type 
generated via the FGM copula, modified FGM copula, Clayton copula and Renyi's 
entropy copula. Many other types of copula could be considered in separate works. 
In this Section, we derive some new bivariate type XgRR (BXgRR) model using the 
theorems of FGM copula, modified FGM copula, Clayton copula and Renyi's entropy. 
The Multivariate XgRR (MvXgRR) type is also presented. However, future works may 
be allocated to study these new models. First, we consider the joint CDF (JCDF) of the 
FGM family, where 𝐶 𝑚, 𝑤 𝑚𝑤 1 𝜌𝑚∗𝑤∗ | ∗ , ∗ , where the 
marginal function 𝑚 𝐹 𝐹 , 𝑦 , 𝑤 𝐹 𝐹 , 𝑦 , 𝜌 ∈ 1,1  is 
a dependence parameter and for every 𝑚, 𝑤 ∈ 0,1 , 𝐶 𝑚, 0 𝐶 0, 𝑤 0, which is 
"grounded minimum", and 𝐶 𝑚, 1 𝑚 and 𝐶 1, 𝑤 𝑤 which is "grounded 
maximum", 𝐶 𝑚 , 𝑤 𝐶 𝑚 , 𝑤 𝐶 𝑚 , 𝑤 𝐶 𝑚 , 𝑤 0.   

3.1. Via FGM copula 

A copula is continuous in 𝑚 and 𝑤 where 
|𝐶 𝑚 , 𝑤 𝐶 𝑚 , 𝑤 | |𝑚 𝑚 | |𝑤 𝑤 |, 
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is the stronger Lipschitz condition. For 0 𝑚 𝑚 1 and  0 𝑤 𝑤 1,  
we have  

𝑃𝑟 𝑚 𝑀 𝑚 , 𝑤 𝑊 𝑤
𝐶 𝑚 , 𝑤 𝐶 𝑚 , 𝑤 𝐶 𝑚 , 𝑤 𝐶 𝑚 , 𝑤 0. 

Then, setting 
𝑚∗ 𝑆 , 𝑦 1 𝐹 , 𝑦 | ∗ ∈ ,  

and 
𝑤∗ 𝑆 , 𝑦 1 𝐹 , 𝑦 | ∗ ∈ , , 

we can easily obtain the JCDF of the FGM family from 

𝐶 𝑦 , 𝑦 𝐹 , 𝑦 𝐹 , 𝑦 1 𝜌 1 𝐹 , 𝑦 1 𝐹 , 𝑦 , 
where  

𝐹 , 𝑦 1
𝒽 𝑦

1 𝜃

1 𝜃 𝜃 log 𝒽 𝑦
1
2

𝜃 log 𝒽 𝑦
, 

𝒽 𝑦 1 𝑒 , 

𝐹 , 𝑦 1
𝒽 𝑦

1 𝑎

1 𝑎 𝑎 log 𝒽 𝑦
1
2

𝜃 log 𝒽 𝑦
, 

The JPDF can then be derived from 

𝑐 𝑚, 𝑤 1 𝜌 1 2𝑚 1 2𝑤  

or from 
𝑓 𝑦 , 𝑦 𝐶 𝐹 , 𝐹 𝑓 𝑓 . 

 
3.2. Via modified FGM copula 

The modified FGM copula is defined as 

𝐶 𝑚, 𝑤 𝑚𝑤 1 𝜌𝑉 𝑚 𝐴 𝑤 | ∈ ,   

or 
 𝐶 𝑚, 𝑤 𝑚𝑤 𝜌𝑉 𝑚 𝐴 𝑤 | ∈ , , 

where 𝑉 𝑚 𝑚𝑉 𝑚 , and 𝐴 𝑤 𝑤𝐴 𝑤 , where 𝑉 𝑚  and 𝐴 𝑤  are being two 
continuous functions on 0,1  where 𝑉 0 𝑉 1 𝐴 0 𝐴 1 0. Let  

𝑐 𝑖𝑛𝑓
𝜕

𝜕𝑚
𝑉 𝑚 |𝓺 𝑚 0, 𝑐 𝑠𝑢𝑝

𝜕
𝜕𝑚

𝑉 𝑚 |𝓺 𝑚 0, 

𝑑 𝑖𝑛𝑓
𝜕

𝜕𝑤
𝐴 𝑤 |𝓺 𝑤 0 

and 

𝑑 𝑠𝑢𝑝
𝜕

𝜕𝑤
𝐴 𝑤 |𝓺 𝑤 0. 
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Then, 1 𝑚𝑖𝑛 c c , d d ∞, where 
𝜕

𝜕𝑚
𝑉 𝑚 𝑉 𝑚 𝑚

𝜕
𝜕𝑚

𝑉 𝑚 , 

𝓺 𝑢 𝑚: 𝑚 ∈ 0,1 |
𝜕𝑉 𝑚

𝜕𝑚
 exists  

and 

𝓺 𝑤 𝑤: 𝑤 ∈ 0,1 |
𝜕𝐴 𝑤

𝜕𝑤
  exists . 

Type-I 
Recall the following functional forms for both 𝑉 𝑚  and 𝐴 𝑤 . Then, the BXgRR-

FGM (Type-I) can be derived from 
𝐶 𝑦 , 𝑦 𝐹 , 𝑦 𝐹 , 𝑦 𝜌𝑉 𝑚 𝐴 𝑦 | ∈ ,  

where 
𝑉 𝑦 𝐹 , 𝑦 𝑆 , 𝑦   

and 
  𝐴 𝑦   𝐹 , 𝑦 𝑆 , 𝑦 . 

Type-II 
Let 𝑉 𝑦 ∗ and 𝐴 𝑦 ∗ be two functional forms satisfying all the conditions stated 

earlier where   
𝑉 𝑦 ∗| 𝑆 , 𝑦 𝐹 , 𝑦  

and 
𝐴 𝑦 ∗| 𝑆 , 𝑦 𝐹 , 𝑦 . 

Then, the corresponding BXgRR-FGM (Type-II) can be derived from   
𝐶 , , 𝑦 , 𝑦 𝐹 , 𝑦 𝐹 , 𝑦 1 𝜌𝑉 𝑦 ∗ 𝐴 𝑦 ∗ . 

Type-III 
Let 𝑉 𝑦  and 𝐴 𝑦  be two functional forms for satisfying all the conditions stated 

earlier where 
𝑉 𝑦 𝐹 , 𝑦 log 1 𝑆 , 𝑦 , 

and 
𝐴 𝑦 𝐹 , 𝑦 log 1 𝑆 , 𝑦 . 

In this case, one can also derive a closed form expression for the associated CDF of 
the BXgRR-FGM (Type-III) from 

𝐶 𝑦 , 𝑦 𝐹 , 𝑦 𝐹 , 𝑦 1 𝜌𝑉 𝑚  𝐴 𝑚 . 

3.3. Via Clayton copula 

The Clayton copula can be considered as 
𝐶 𝑤 , 𝑤 1/𝑤 1/𝑤 1 | ∈ , . 
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Setting 𝑤 𝐹 , 𝑦 ∈ 0,1  and 𝑤 𝐹 , 𝑦 ∈ 0,1 , the BXgRR type can 
be derived from 𝐶 𝑦 , 𝑦 𝐶 𝐹 , 𝑦 , 𝐹 , 𝑦 . Similarly, the MvXgRR  
(𝐷-dimensional extension) from the above can be derived from 

𝐶 𝑤 𝑤 1 𝐷 . 

3.4.  Via Renyi's entropy 

Let 𝑚 ∈ 0,1 𝐹 , 𝑦  and 𝑤 ∈ 0,1 𝐹 , 𝑦 . Then, the Renyi's entropy 
copula can be expressed as 

𝐶 𝑦 , 𝑦 𝑦 𝐹 , 𝑦  𝑦 𝐹 , 𝑦 𝑦 𝑦 . 

Then, the associated BXgRR can be directly derived from 

𝐶 𝑦 , 𝑦 𝐶 𝐹 , 𝑦 , 𝐹 , 𝑦 . 

3.5.  Via Ali-Mikhail-Haq copula 

Under the stronger Lipschitz condition, the Archimedean Ali-Mikhail-Haq copula 
can be expressed as 

𝐶 u, ϖ
uϖ

1 𝜌uϖ
| ∈ , . 

Then, for u 1 𝐹 , 𝑦 , ϖ 1 𝐹 , 𝑦  we have the following Bv XgRR 
type 

𝐶 𝑦 , 𝑦
𝐹 , 𝑦 𝐹 , 𝑦

1 𝜌𝑆 , 𝑦 𝑆 , 𝑦
| ∈ , . 

4. Estimation 

4.1. Maximum likelihood estimation (MLE) 

Here, we consider the estimation of the unknown parameters of the new family 
from complete samples by maximum likelihood. Let  𝑦 , ⋯ , 𝑦  be a random sample 
from the XgRR model with a 2 1  parameter vector. The log-likelihood function for 
𝜃 , 𝜃  is given by 

ℓ 𝜃 , 𝜃 𝑛 log 𝜃 𝑛 log 1 𝜃 𝑛 𝑙𝑜𝑔 2 2𝑛 log 𝜃 3 log 𝑦  

𝜃
𝑦

𝜃 1 log 𝒽 𝑦 log 𝜃
1
2

𝜃 log 𝒽 𝑦 . 

where 𝒽 𝑦 1 𝑒 . The log-likelihood function in ℓ 𝜃 , 𝜃  can be 
maximized numerically by using R (optim), SAS (PROC NLMIXED) or Ox program 
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(sub-routine MaxBFGS), among others. For interval estimation of the parameters, 
the elements of the 2 2 observed information matrix 𝐉 𝜃 , 𝜃  can be evaluated 
numerically. 

4.2. Ordinary and weighted least-squares estimators 

The theory of least square estimation and weighted least square estimation was 
proposed by Swain et al. (1988) to estimate the parameters of the Beta distribution. It is 
based on the minimization of the sum of the square of differences of theoretical 
cumulative distribution function and empirical distribution function. Suppose  
𝐹 , 𝑦  :     denotes the distribution function of the XgRR distribution and 𝑦
𝑦 ⋯ 𝑦   be the  𝑛  ordered random sample. The ordinary least square estimates 
(OLSEs) are obtained by minimizing  

𝑂𝐿𝑆 𝜃 , 𝜃 𝐹 , 𝑦   :  
𝑖

𝑛 1
. 

Now, using (1) we have  

𝑂𝐿𝑆 𝜃 , 𝜃

⎩
⎪
⎨

⎪
⎧

⎣
⎢
⎢
⎢
⎢
⎡

1

1 𝑒

1 𝜃

⎝

⎜⎜
⎛

1 𝜃 𝜃 log 1 𝑒

1
2

𝜃 log 1 𝑒
⎠

⎟⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎤

𝑖
𝑛 1

⎭
⎪
⎬

⎪
⎫

. 

Then, least square estimators (LSE) of the parameters are obtained by 
simultaneously solving the following non-linear equations: 

⎩
⎪
⎨

⎪
⎧

⎣
⎢
⎢
⎢
⎢
⎡

1

1 𝑒

1 𝜃

⎝

⎜⎜
⎛

1 𝜃 𝜃 log 1 𝑒

1
2

𝜃 log 1 𝑒
⎠

⎟⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎤

𝑖
𝑛 1

⎭
⎪
⎬

⎪
⎫

𝜉 | ,
𝑦 0, 

and 

⎩
⎪
⎨

⎪
⎧

⎣
⎢
⎢
⎢
⎢
⎡

1

1 𝑒

1 𝜃

⎝

⎜⎜
⎛

1 𝜃 𝜃 log 1 𝑒

1
2

𝜃 log 1 𝑒
⎠

⎟⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎤

𝑖
𝑛 1

⎭
⎪
⎬

⎪
⎫

𝜉 | ,
𝑦 0, 

where 𝜉 | ,
𝑦   and 𝜉 | ,

𝑦  are the values of the first derivatives with respect 
to parameters of XgRR distribution. The weighted least squares estimates (WLSE) are 
obtained by minimizing the given form of equation with respect to the parameters  

𝑊𝐿𝑆 𝜃 , 𝜃
𝑛 1 𝑛 2

𝑖 𝑛 𝑖 1
𝐹 , 𝑦

𝑖
𝑛 1

. 
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The WLSE of the parameters are obtained by solving the following non-linear 
equations;  

𝑛 1 𝑛 2
𝑖 𝑛 𝑖 1

⎩
⎪
⎨

⎪
⎧

⎣
⎢
⎢
⎢
⎢
⎡

1

1 𝑒

1 𝜃

⎝

⎜⎜
⎛

1 𝜃 𝜃 log 1 𝑒

1
2

𝜃 log 1 𝑒
⎠

⎟⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎤

𝑖
𝑛 1

⎭
⎪
⎬

⎪
⎫

𝜉 | ,
𝑦 0, 

and 

𝑛 1 𝑛 2
𝑖 𝑛 𝑖 1

⎩
⎪
⎨

⎪
⎧

⎣
⎢
⎢
⎢
⎢
⎡

1

1 𝑒

1 𝜃

⎝

⎜⎜
⎛

1 𝜃 𝜃 log 1 𝑒

1
2

𝜃 log 1 𝑒
⎠

⎟⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎤

𝑖
𝑛 1

⎭
⎪
⎬

⎪
⎫

𝜉 | ,
𝑦 0, 

where  𝜉 | ,
𝑦   and 𝜉 | ,

𝑦   are the values of first derivatives of the CDF of 
XgRR distribution. 
 

4.3. Method of Cramer-Von-Mises estimation 

The Cramer-Von-Mises estimation (CVME) method of the parameters is based on 
the theory of minimum distance estimation. It was proposed by MacDonald (1971) and 
justified that the bias of the estimator is smaller than the other minimum distance 
estimators. Thus, The Crammer-Von-Mises estimates of the parameter 𝜃  and 𝜃  are 
obtained by minimizing the following expression with respect to the parameters 𝜃  and 
𝜃  respectively.  

𝐶𝑉𝑀 𝜃 , 𝜃
1

12𝑛
𝐹 , 𝑦

2𝑖 1
2𝑛

, 

and 

𝐶𝑉𝑀 𝜃 , 𝜃

⎣
⎢
⎢
⎢
⎢
⎡

1

1 𝑒

1 𝜃

⎝

⎜⎜
⎛

1 𝜃 𝜃 log 1 𝑒

1
2

𝜃 log 1 𝑒
⎠

⎟⎟
⎞ 2𝑖 1

2𝑛

⎦
⎥
⎥
⎥
⎥
⎤

. 



STATISTICS IN TRANSITION new series, September 2021 

 

111

The CVME of the parameters is obtained by solving the following non-linear 
equations  

⎣
⎢
⎢
⎢
⎢
⎡

1

1 𝑒

1 𝜃

⎝

⎜⎜
⎛

1 𝜃 𝜃 log 1 𝑒

1
2

𝜃 log 1 𝑒
⎠

⎟⎟
⎞ 2𝑖 1

2𝑛

⎦
⎥
⎥
⎥
⎥
⎤

𝜉 | ,
𝑦 0, 

and 

⎣
⎢
⎢
⎢
⎢
⎡

1

1 𝑒

1 𝜃

⎝

⎜⎜
⎛

1 𝜃 𝜃 log 1 𝑒

1
2

𝜃 log 1 𝑒
⎠

⎟⎟
⎞ 2𝑖 1

2𝑛

⎦
⎥
⎥
⎥
⎥
⎤

𝜉 | ,
𝑦 0, 

where 𝜉 | ,
𝑦   and 𝜉 | ,

𝑦  are the values of the first derivatives of the CDF of 
XgRR distribution with respect to 𝜃  and 𝜃  respectively. 

4.4. Bootstrapping method 

Bootstrapping method is a powerful statistical technique. It is especially useful 
when the sample size that we are working with is small. Under the usual circumstances, 
sample sizes of less than 40 cannot be dealt with by assuming a normal or a 𝑡 
distributions. Bootstrap techniques work quite well with samples that have less than 40 
elements. The reason for this is that bootstrapping involves resampling. These kinds of 
techniques assume nothing about the distribution of our data. Bootstrapping has 
become more popular as computing resources have become more readily available.  

5.  Numerical results for comparing estimation methods 

In this Section, a Monte Carlo simulation study is conducted for comparing the 
performance of the different estimators of the unknown parameters of the XgRR 
distribution. The performance of the different estimators proposed in the previous 
Section is evaluated in terms of their mean squared errors (MSEs). All the computations 
in this section are done by Mathcad program Version 15.0. We generate 1000 samples 
of the XgRR distribution, where 𝑛 20,50,100,200,500  and 𝜃  and 𝜃  are chosen as 
follows: 

 I II III 
𝜃 2.0 0.9 1.2 
𝜃 1.5 0.3 0.6 

The average values (AVs) of estimates and the corresponding MSEs of MLEs, LSEs, 
WLSEs, CVM, MPSD and Bootstrap method are obtained and reported in Tables 1, 2, 
3, 4 and 5. We observe that all the estimates show the property of consistency, i.e. the 
MSEs decrease as the sample size increases. 
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Table 1.  AVs and the corresponding MSEs (in parentheses) for n=20 

Parameters MLE LS WLS CVM Bootstrap 
𝜃 =2.0 2.06686 

(0.21967) 
2.07031 

(0.20541) 
2.09047 

(0.24017) 
2.08087 

(0.23470) 
3.14584 

(4.25306) 
𝜃 =1.5 1.52659 

(0.02907) 
1.52061 

(0.03600) 
1.51782 

(0.03636) 
1.51839 

(0.04756) 
1.19740 

(1.19181) 
𝜃 =0.9 0.99944 

(0.35047) 
0.93704 

(0.04215) 
0.93355 

(0.03902) 
0.92649 

(0.03634) 
0.77474 

(0.03767) 
𝜃 =0.3 0.31287 

(0.00451) 
0.28547 

(1.15021) 
0.23809 

(5.42295) 
0.23838 

(5.30798) 
0.43615 

(0.03477) 
𝜃 =1.2 1.24013 

(0.07944) 
1.25164 

(0.08231) 
1.24611 

(0.07525) 
1.23804 

(0.07098) 
1.03133 

(0.08032) 
𝜃 =0.6 0.62025 

(0.00956) 
0.60920 

(0.04099) 
0.61635 

(0.01483) 
0.61905 

(0.01549) 
0.79832 

(0.07196) 
 
Table 2. AVs and the corresponding MSEs (in parentheses) for n=50. 

Parameters MLE LS WLS CVM Bootstrap 
𝜃 =2.0 2.03571 

(0.07429) 
2.03548 

(0.08252) 
2.04436 

(0.07604) 
2.04309 

(0.07831) 
1.89752 

(0.07750) 
𝜃 =1.5 1.50659 

(0.01035) 
1.50738 

(0.01499) 
1.50208 

(0.01267) 
1.50268 

(0.01405) 
1.56873 

(0.02128) 
𝜃 =0.9 0.97998 

(0.11707) 
0.91650 

(0.01234) 
0.91229 

(0.01270) 
0.90955 

(0.01250) 
1.01084 

(0.02619) 
𝜃 =0.3 0.29945 

(0.00206) 
0.30253 

(0.00193) 
0.30513 

(0.00195) 
0.30620 

(0.00223) 
0.27442 

(0.00152) 
𝜃 =1.2 1.22066 

(0.02568) 
1.21680 

(0.02424) 
1.20984 

(0.02090) 
1.20756 

(0.02104) 
1.19130 

(0.01494) 
𝜃 =0.6 0.60589 

(0.00319) 
0.60694 

(0.00528) 
0.60833 

(0.00421) 
0.60960 

(0.00478) 
0.61487 

(0.00325) 
 
Table 3. AVs and the corresponding MSEs (in parentheses) for n=100 

Parameters MLE LS WLS CVM Bootstrap 
𝜃 =2.0 2.01577 

(0.03717) 
2.01094 

(0.03506) 
2.01555 

(0.03362) 
2.01478 

(0.03489) 
1.87189 

(0.03867) 
𝜃 =1.5 1.50394 

(0.00515) 
1.50564 

(0.00693) 
1.50324 

(0.00605) 
1.50379 

(0.00673) 
1.56382 

(0.00922) 
𝜃 =0.9 0.96579 

(0.05381) 
0.90754 

(0.00584) 
0.90982 

(0.00524) 
0.90921 

(0.00541) 
0.93491 

(0.01081) 
𝜃 =0.3 0.29496 

(0.00134) 
0.30160 

(0.00096) 
0.30052 

(0.00075) 
0.30070 

(0.00092) 
0.29517 

(0.00114) 
𝜃 =1.2 1.20965 

(0.01303) 
1.21049 

(0.01178) 
1.20931 

(0.01082) 
1.20922 

(0.01108) 
1.14055 

(0.01160) 
𝜃 =0.6 0.60315 

(0.00155) 
0.60230 

(0.00245) 
0.60269 

(0.00207) 
0.60268 

(0.00238) 
0.57792 

(0.00253) 
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Table 4. AVs and the corresponding MSEs (in parentheses) for n=200 

Parameters MLE LS WLS CVM Bootstrap 
𝜃 =2.0 2.00332 

(0.01841) 
2.01138 

(0.01710) 
2.00587 

(0.01740) 
2.00564 

(0.01811) 
1.84919 

(0.03575) 
𝜃 =1.5 1.50390 

(0.00263) 
1.50005 

(0.00329) 
1.50278 

(0.00313) 
1.50295 

(0.00350) 
1.57880 

(0.00910) 
𝜃 =0.9 0.95153 

(0.02540) 
0.90173 

(0.00267) 
0.90503 

(0.00264) 
0.90449 

(0.00270) 
0.98419 

(0.01048) 
𝜃 =0.3 0.29346 

(0.00087) 
0.30154 

(0.00046) 
0.30022 

(0.00038) 
0.30040 

(0.00046) 
0.27433 

(0.00091) 
𝜃 =1.2 1.20178 

(0.00634) 
1.19981 

(0.00491) 
1.20636 

(0.00513) 
1.20563 

(0.00527) 
1.25721 

(0.00807) 
𝜃 =0.6 0.60278 

(0.00079) 
0.60331 

(0.00111) 
0.60044 

(0.00099) 
0.60074 

(0.00115) 
0.57895 

(0.00119) 
 

Table 5. AVs and the corresponding MSEs (in parentheses) for n=500. 

Parameters MLE LS WLS CVM Bootstrap 
𝜃 =2.0 1.99647 

(0.00668) 
1.99838 

(0.00654) 
1.99702 

(0.00629) 
1.99672 

(0.00666) 
1.99960 

(0.00620) 
𝜃 =1.5 1.50344 

(0.00100) 
1.50277 

(0.00133) 
1.50334 

(0.00121) 
1.50356 

(0.00137) 
1.50239 

(0.00136) 
𝜃 =0.9 0.94897 

(0.01044) 
0.89934 

(0.00104) 
0.89870 

(0.00629) 
0.89860 

(0.00106) 
0.90144 

(0.00105) 
𝜃 =0.3 0.28999 

(0.00049) 
0.30117 

(0.00019) 
0.30139 

(0.00016) 
0.30151 

(0.00019) 
0.30039 

(0.00018) 
𝜃 =1.2 1.19801 

(0.00229) 
1.20037 

(0.00198) 
1.20245 

(0.00196) 
1.20247 

(0.00202) 
1.22109 

(0.00292) 
𝜃 =0.6 0.60204 

(0.00030) 
0.60112 

(0.00044) 
0.60018 

(0.00038) 
0.60015 

(0.00044) 
0.59211 

(0.00049) 

6.  Modified Right-Censored Test for Validation 

6.1.  The N.R.R statistic test 

Many goodness-of-fit tests are used to indicate whether or not it is reasonable to 
assume that a random sample comes from a specific distribution. For this purpose, 
researchers proposed many different goodness-of-fit tests. For the complete data, 
Nikulin 1973a, 1973b and 1973c  and Rao and Robson 1974  separately proposed 
a statistic known today as the N.R.R statistic. This statistical test is a natural 
modification of the Pearson statistic. To test the hypothesis  𝐻  we have 

𝐻 : 𝑃 𝑇 𝑡 𝐹 𝑡, 𝜁 | ∈ ,  , ,⋯, , 



114                                          Haitham M. Yousof et al.: A new reciprocal Rayleigh extension: properties… 

 

 

where 𝜁 represents the vector of unknown parameters. Nikulin (1973a, 1973b and 
1973c) and Rao and Robson 1974   proposed the N.R.R statistic defined as follows: 
Observations 𝑇 , 𝑇 , ⋯ , 𝑇  are grouped in 𝑟 subintervals and  𝜈 𝜈 , 𝜈 , ⋯ , 𝜈   is 
the vector of frequencies, where 𝜈  is frequency of ith group and  ∑ 𝜈 𝑛.  The tests 
are based on the following Pearson's statistic 

𝑌 𝜁 𝜒 𝜁 𝑛 ℓ 𝜁 𝚰 𝜁 𝐉 𝜁 ℓ 𝜁 , 

where 

𝜒 𝜁
𝜈 𝑛𝑝 𝜁

𝑛𝑝 𝜁
,
𝜈 𝑛𝑝 𝜁

𝑛𝑝 𝜁
, ⋯ ,

𝜈 𝑛𝑝 𝜁

𝑛𝑝 𝜁
, 

and 𝑝 𝜁  is the vector of probabilities and 𝜁 is the vector of parameters which can be 
known (simple hypothesis) or unknown (composite hypothesis). The 𝑌   statistic 
follows a chi-square  distribution with 𝑟 1  degrees of freedom (for more details see 
Nikulin (1973a, 1973b and 1973c)). 

6.2. Application to right-censored real data 

To test the null hypothesis 𝐻 , we use the N.R.R statistic. We compute the 
maximum likelihood estimators  

𝜃 0.95473 and 𝜃 1.24885. 

We then deduce the value of 𝑌 11.05847 . The critical value is 
𝜒 . 6 1 11.0705. 

Then, the N.R.R  𝑌   statistic value is less than the critical value, we say that taxes 
revenue data can be fitted by the XgRR model. The modified chi-squared test for 
composite hypothesis for complete samples was first considered by Nikulin (1973a, 
1973b and 1973c), Rao and Robson (1974). Several goodness-of-fit tests have been 
suggested by the statisticians for censored data. Bagdonavicius and Nikulin 2011𝑎, 𝑏  
proposed a modification of the N.R.R statistic that takes into account random right 
censorship and based on the maximum likelihood estimators on the initial data, also 
follows a limiting Chi-square distribution. In this Section we develop the approach 
proposed by Bagdonavicius and Nikulin 2011𝑎, 𝑏  to confirm the adequacy of XgRR 
model when the parameters are unknown and data are censored. Let us consider the 
composite hypothesis 

𝐻   :   𝐹 𝑡 ∈ 𝐹 𝐹 𝑡, 𝜁 | ∈ ,  ∈ ⊂ , 

where 𝜁 is an unknown m-dimensional parameter and 𝐹  is a differentiable and 
completely specified cdf with the support  0, ∞ . Let us consider a finite time interval, 
say,  0, 𝜏 , where  𝜏  is the maximum time of the study, and divide it into 𝑘 𝑠  smaller 
intervals  𝐼 𝑎 , 𝑎  , where  

0 𝑎 𝑎 . . . 𝑎 𝑎 ∞. 
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In this case the estimated  𝑎𝒌  is given by  

𝑎𝒌 𝛬
1

𝑛 𝑖 1
𝐸𝒋 𝛬 T , 𝜁 , 𝜁 , 𝑎𝒌 t  𝒋 1,2, … , 𝑘 

where  𝜁  is the maximum likelihood estimator of the parameter 𝜁, 𝛬  is the inverse of 
cumulative hazard function  𝛬 ,  𝑇   is the  𝑖   element in the ordered statistics 
𝑇 , … , 𝑇  and  

𝐸𝒋 𝑛 1 𝑖 𝛬 𝑎 𝒋 , 𝜁 𝛬 T , 𝜁
𝒍

, 

and 𝑎  are random data functions such as the 𝑘 intervals have equal expected numbers 
of failures  𝑒  . Usually in real application we fix  𝑘.  The test statistic for 𝐻  is given 
in Goual et al. (2020) and Goual and Yousof (2019). The survival times in days are for 
the 𝑛 51 patients. The data are: 7, 34, 42, 63, 64, 74*, 83, 84, 91, 108, 112, 129, 133, 
133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 173, 176, 185*, 218, 225, 241, 248, 
273, 277, 279*, 297, 319*, 405, 417, 420, 440, 523*, 523, 583, 594, 1101, 1116*, 1146, 
1226*, 1349*, 1412*, 1417. (* censored). We suppose that these data are distributed 
according to the XgRR distribution, we transform the survival times in months 
(1 month = 30.438  days), so the maximum likelihood estimates of the parameter 
vector 𝜁 are  

𝜁 5.00248,1.378452  

We choose 𝑟 7 as the number of classes. The elements of the test statistic 𝑌   is 
presented as follows, we find  𝑌 14.000154  and the critical value 𝜒 . 7

14.00924.  Comparing the critical value and the statistic test  𝑌 ,  we can say that Arm-
A head and neck cancer data can be adjusted by the XgRR model. 

7.  Concluding remarks 

In this article, a new reciprocal Rayleigh extension called the Xgamma reciprocal 
Rayleigh model is defined and studied. Relevant statistical properties such as raw 
moments, incomplete moments and moment generating function are derived. After a 
quick study for their properties, different non-Bayesian estimation methods under 
uncensored schemes are considered and described such as the maximum likelihood 
estimation method, ordinary least square estimation method, weighted least square 
estimation method, Cramér–von-Mises estimation method and Bootstrapping method. 
The performances of the proposed estimation methods are investigated through 
a simulation study. Many bivariate and multivariate type models have been also derived 
based on Farlie Gumbel Morgenstern copula, Clayton copula, Renyi’s entropy copula 
and Ali–Mikhail–Haq copula. A modified right-censored test for validation is applied 
to a right-censored real data set.  
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As a potential future work, we can use and apply the well-known Bagdonavičius-
Nikulin goodness-of-fit test and the modified version of the Bagdonavičius-Nikulin 
goodness-of-fit test to our new XgRR  model and many other useful lifetime models 
(see Goual et al. (2019), Ibrahim et al. (2020), Yadav et al. (2020) and Mansour et al. 
(2020a-f) for more details). The reciprocal Rayleigh distribution can be extended using 
some new G families such as presented by Alizadeh et al. (2020) and El-Morshedy et al. 
(2021). Some useful real-life data sets can be cited from Elgohari and Yousof (2020a 
and 2020b). 
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