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From the Editor   

This year's latest issue contains twelve articles. Their 34 authors come from 
10 different countries such as the United Kingdom, USA, India, Poland, Germany, 
Nigeria, Iran, Turkey, Pakistan, Australia, Ukraine, Jordan, Saudi Arabia and Egypt, 
which proves that our journal is a very good place for scientists from different parts of 
the world to exchange ideas and share research results. 

The publication of the final issue of the year is traditionally also a moment to 
express our gratitude and thanks to our authors, reviewers and all the participants of 
the editorial process. Our success is to cooperate with an international team of experts 
and great articles' founders that are the basis to publish high quality scientific papers. 
A list of the names of these people of merit for our journal is included in the 
Acknowledgements. On behalf of the Editorial Board, Associate Editors and the 
journal’s readers I sincerely thank all our partners and patrons. 

Invited papers   

This issue starts with the invited paper Unreported standard errors in meta-
analysis by Nicholas T. Longford. The paper discusses how to assess the loss of 
information caused by the practice excluding from meta-analysis these studies when 
the standard error of its treatment-effect estimator, or the estimate of the variance of 
the outcomes, is not reported and cannot be recovered from the available information. 
The author presents two sets of examples of the methods used, explaining in each 
section assumptions, difficulties, and conclusions from the analysis, noting also the 
context of the conducted studies (for example countries with different levels of 
development or organisation of health care).The examples shown in sections 4 and 
5 confirm that even simple methods, using some shortcuts on proper imputation, 
exploit nearly to the full the information about an incompletely reported study and they 
estimate the standard error of the overall treatment effect with negligible bias.  

Research articles 

The article entitled Approximately optimum strata boundaries for two 
concomitant stratification variables under proportional allocation by Faizan Danish 
and S. E. H. Rizvi deals with a problem of proper choice of the strata boundaries as an 
important factor as regards the efficiency of the estimator of population characteristic 
under consideration. For obtaining approximately optimum strata boundaries a Cum 
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Rule (i=3,4) has been provided based on a single study variable along with two 
concomitant variables used as the basis of stratification variables. The simulation study 
proved the superiority of the proposed methods with regard to the existing methods. 
The research also showed that the use of two stratification variables gains efficiency 
over a single auxiliary variable and the proposed methods are more precise than the 
existing methods. 

Henryk Gurgul, Jessica Hastenteufel, and Tomasz Wójtowicz in their article 
Changes in the impact of US macroeconomic news on financial markets the example 
of the Warsaw Stock Exchange analyse the behaviour of 5-minute returns of the  
WIG20 in a short period after the announcements of 13 macroeconomic indicators 
describing the US economy. Authors  examine how US macroeconomic news affected 
the WIG20 in years 2004-2019. The WIG20 reacts significantly to announcements of 
most of the indicators considered. This reaction is immediate and it is usually limited 
to the first 5-minute returns. The strongest impact is observed after NFP 
announcements. The analysis in sub-periods leads to the conclusion that, in general, 
US macroeconomic news announcements induced the highest averages of abnormal 
returns during the global financial crisis (2007-2009) and in the first few years after the 
crisis. In later years, the impact of information from the United States was notably 
weaker. 

The next paper Agu-Eghwerido distribution, regression model and applications by 
Agu Friday Ikechukwu and Joseph Thomas Eghwerido presents a one-parameter 
distribution called the Agu-Eghwerido (AGUE) distribution with its simple 
mathematical representation and the regression model of the AGUE distribution. The 
AGUE parameter was estimated using the method of maximum likelihood estimation. 
The lifetime applications of the AGUE distribution was illustrated using two lifetime 
data sets. The characteristic of the introduced model for a larger sample size was 
examined via simulation study and the simulation results showed that the increase in 
parameter values decreases the mean squared error value. Similarly, the mean estimate 
tends towards the true parameter value as the sample sizes increase. Thus, it provides 
the best fit and more flexible than Pranav, exponential and Lindley distributions for the 
data sets. Ultimately, the AGUE distribution can serve as an alternative model to 
Pranav, exponential and Lindley distributions in the literature. 

The article entitled A new extension of Odd Half-Cauchy Family of Distributions: 
properties and applications with regression modeling prepared by Subrata 
Chakraburty, Morad Alizadeh, Laba Handique, Emrah Altun and G. G. Hamedani 
proposes a new family of continuous distributions called the extended odd half Cauchy-
G. The distribution bases on the T −X construction of Alzaatreh et al. (2013) by 
considering half Cauchy distribution for T and the exponentiated G(x;ξ) as the 
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distribution of X. Authors have  outlined several particular cases and a number of 
important statistical characteristics of this family were investigated. On this basis a new 
regression model was proposed and its application in modelling data in the presence of 
covariates was presented. 

Muhammad Aslam, Mehreen Afzaal and Muḥammad Ishaq Bhatti discuss  
A study on exponentiated Gompertz distribution under Bayesian discipline using 
informative priors. This distribution has been recently used in almost all areas of 
human endeavours, starting from modelling lifetime data to cancer treatment. 
This paper explores the important properties of the EGZ distribution under Bayesian 
discipline using two informative priors: the Gamma Prior (GP) and the Inverse Levy 
Prior (ILP). The usefulness of the model is illustrated with the use of real-life data 
in relation to simulated data. The simulated study and real-life data were used for 
various sample sizes with 10,000 replications. The results for real life data 
and simulation are identical. 

In the next paper entitled The problem of statistical assessment of the potential for 
the development of regional integration processes Oleksandr Osaulenko, Olena 
Bulatova, Olha Zakharova and Natallia Reznikova show the use of integrated indices 
to evaluate the potential for the development of regional integration processes. A new 
research and methodological approach were proposed with regard to the intensity of 
the influence of internal and external factors on integrative relations development. 
Countries of the world choose their own strategy for participation in the processes of 
regional integration depending on challenges determined by their level of socio-
economic development, the existing potential, the nature of the development of 
external relations, etc. Thus, it is advisable to apply integral indicators as they allow 
providing  a comprehensive and quantitative description of processes of economic 
integration that take place in the world economy at a certain moment of time. 

Rama Shanker’s and Umme Habibah Rahman’s article presents The Type II 
Topp-Leone Frechet distribution: properties and applications. Authors discuss the 
properties of the distribution including hazard rate function, reverse hazard rate 
function, Mills ratio, quantile function and order statistics as well as the maximum 
likelihood estimation used for estimating the parameters of the proposed distribution. 
The paper deals also with the problem of applications of the distribution for modelling 
several data sets relating to temperature and the goodness of fit of the proposed 
distribution compared with that of the Frechet distribution. 

The next paper Record data from Kies distribution and related statistical 
inferences by Nesreen M. Al-Olaimat, Husam A. Bayoud and Mohammad Z. Raqab 
describes the Kies probability as an alternative to the extended Weibull models due to 
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the fact it provides a more efficient fit to some real-life data sets. The classical and 
Bayesian inferences for the Kies distribution based on records were proposed and the 
maximum likelihood estimates were studied jointly with asymptotic and bootstrap 
confidence intervals. The Bayes estimates, along with credible intervals were discussed 
assuming squared and LINEX loss functions. The performance of the different 
estimation methods was assessed via Monte Carlo simulations. From the simulation 
study it was concluded that the proposed informative Bayes estimates outperform the 
classical estimates in all considered cases. However, non-informative Bayesian and the 
classical estimation methods perform almost the same under SE and LINEX under 
small ν, while better results of the Bayesian methods are obtained under LINEX 
assuming other positive values of ν. The Bayes credible intervals compete the classical 
confidence intervals in terms of the coverage probability in all cases. 

Amal S. Hassan, Salwa M. Assar, Kareem A. Ali and Heba F. Nagy in their paper 
Estimation of the density and cumulative distribution functions of the exponentiated 
Burr XII distribution consider seven different estimators of the PDF and CDF of the 
EBXII distribution when the shape parameters k and c are assumed to be known. 
Maximum likelihood estimator, uniformly minimum variance unbiased estimator, 
least squares estimator, weighted least squares estimator, maximum product spacing 
estimator, Cramér-von-Mises estimator and Anderson-Darling estimator are obtained. 
A simulation study was performed to compare the behaviours of the proposed 
estimates. The results show that the maximum likelihood and uniformly minimum 
variance unbiased estimates perform better than the other estimators. 

The last paper prepared by Jagdish Saran, Narinder Pushkarna and Shikha Sehgal  
presents Relationships for moments of the progressively Type-II right censored order 
statistics from the power Lomax distribution and the associated inference. Several 
recurrence relations between single and product moments of progressively Type-II 
right censored order statistics from the power Lomax distribution were established. 
The relations enable the computation of all the single and product moments of 
progressively Type-II right censored order statistics for all sample sizes n and all 
censoring schemes (R_1,R_2,…,R_m ), m ≤n, in a simple recursive manner. 
The maximum likelihood approach was used for the estimation of the parameters and 
the reliability characteristic. A Monte Carlo simulation study was conducted to 
compare the performance of the estimates for different censoring schemes. 

Research Communicates and Letters 

The Research Communicates & Letters section presents a paper Towards a target 
employment rate within age and gender groups by Stanisław Jaworski and Zofia 
Zielińska-Kolasińska. The aim of the article was to state the prognosis about 
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employment rates in European countries. It seems that governments of many countries 
should revise their economic strategies affecting labour markets if they want to achieve 
satisfactory employment rates. The research presents a pessimistic prognosis of 
employment rates in European countries with respect to young and partly to older 
workers. The German employment rate served as a benchmark for this research. 
The likelihood was estimated by a Monte-Carlo simulation based on the class of 
exponential smoothing models. 

 
 

Włodzimierz Okrasa 
Editor  
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of informational infrastructure of the economy, society and the state – are appropriate 
for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by internationally 
recognized experts, who are guided in their decisions about the publication by criteria 
of originality and overall quality, including its content and form, and of potential 
interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
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GUS/Statistics Poland, 
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It is assumed, that the submitted manuscript has not been published previously and 
that it is not under review elsewhere. It should include an abstract (of not more than 
1600 characters, including spaces). Inquiries concerning the submitted manuscript, its 
current status etc., should be directed to the Editor by email, address above, or 
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Editorial  Policy 

The broad objective of Statistics in Transition new series is to advance the statistical and 
associated methods used primarily by statistical agencies and other research 
institutions. To meet that objective, the journal encompasses a wide range of topics 
in statistical design and analysis, including survey methodology and survey sampling, 
census methodology, statistical uses of administrative data sources, estimation 
methods, economic and demographic studies, and novel methods of analysis of socio-
economic and population data. With its focus on innovative methods that address 
practical problems, the journal favours papers that report new methods accompanied 
by real-life applications. Authoritative review papers on important problems faced by 
statisticians in agencies and academia also fall within the journal’s scope. 

*** 
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Unreported standard errors in meta-analysis

Nicholas T. Longford1

ABSTRACT

A study that would otherwise be eligible is commonly excluded from a meta-analysis when
the standard error of its treatment-effect estimator, or the estimate of the variance of the
outcomes, is not reported and cannot be recovered from the available information. This is
wasteful when the estimate of the treatment effect is reported. We assess the loss of informa-
tion caused by this practice and explore methods of imputation for the missing variance. The
methods are illustrated on two sets of examples, one constructed specifically for illustration
and another based on a published systematic review.

Key words: empirical Bayes, imputation, meta-analysis, missing value, sensitivity analysis.

1. Introduction

In a typical meta-analysis for comparing two treatments, A and B, there are H stud-
ies and for each study i we have an estimate θ̂i of the treatment effect θi , an estimate σ̂2

i
of the variance σ2

i of the outcomes and the within-treatment sample sizes niA and niB ,
from which the standard error of θ̂i , denoted by τi , can be easily estimated. For example,
when the subjects in study i are assigned to the treatments completely at random subject
to fixed sample sizes niA and niB , we have τ2

i = σ2
i (1/niA + 1/niB), and τ2

i is estimated
by τ̂2

i = σ̂2
i (1/niA + 1/niB). We assume that the estimators θ̂i and σ̂2

i are unbiased for
the respective targets θi and σ2

i , and that the variances σ2
iA and σ2

iB within the two treat-
ment groups coincide with σ2

i . The development presented here can easily be adapted for
heteroscedasticity because the key parameter we work with is the standard error τi and its
estimate. Note that τ̂i is not unbiased for τi , and neither is 1/τ̂2

i for 1/τ2
i , even when τ̂2

i
is unbiased for τ2

i ; see Longford (2010 and 2015) for a discussion of this issue in a wider
context.

For background to meta-analysis we refer to Rice, Higgins and Lumley (2018) and
references therein. Of historical importance is Glass (1976), credited with coining the term,
and Hedges and Olkin (1985), the first comprehensive account of statistical methods for
meta-analysis. Nowadays, meta-analysis is applied widely, in social and medical sciences in
particular, to pool information across studies in which identical or closely related parameters
are estimated.

Systematic reviews are a formalised approach to identifying studies suitable for meta-
analysis and related purposes; see Haidich (2010) for an introduction. The CONSORT
statement (Begg et al., 1996) and the STROBE initiative (von Elm et al., 2008) formulate
guidelines and standards for the conduct and presentation of such reviews and for reporting

1School of Public Health, Imperial College London, UK. E-mail: sntlnick@sntl.co.uk.
ORCID: https://orcid.org/0000-0003-4129-9726.
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single case studies in a manner conducive to their use in future systematic reviews. They
are widely adopted today.

We are concerned with the setting in which an estimate of the sampling variance τ2
i is

not available for one or a few studies. We deal with the case of a single study for which
τ̂2

i is not available, but the proposed methods and conclusions carry over to meta-analysis
in which several studies have this deficiency. Our focus is on meta-analysis with only a
few studies, to which even a single study may contribute with a relatively large amount of
information, so we can ill-afford to discard it. We assume that the estimates θ̂i and the
sample sizes niA and niB are available for all studies.

There are two generic methods for dealing with missing values in an analysis. By list-
wise deletion, we apply the planned analysis to the units (studies in a meta-analysis) for
which we have complete information. This is wasteful because we discard some studies
even though we have their estimates θ̂i , and sometimes also the sample sizes ni and other
details. By imputation, we substitute a value for each missing data item. However well we
may estimate the missing values σ̂2

i (or τ̂2
i ), we overstate the precision of the estimator θ̂ of

the overall treatment effect θ because by treating the imputed values σ̃2
i (or τ̃2

i ) on par with
the corresponding estimates we pretend to have more information than was in fact collected.
Multiple imputation (Rubin, 2004) addresses this deficiency in a principled way, although
it entails some complexities in our context.

Various forms of sensitivity analysis can hone in on the range of plausible values of the
complete-data estimator of the average treatment effect. For outcomes with values in a finite
range, imputation of extreme values is an obvious starting point. For an improvement of this
method, see Gamble and Hollis (2005). Publication bias is another issue related to missing
values. It concerns studies that were conducted but their results were not published. For a
landmark contribution to this topic, see Duval and Tweedie (2000). Rothstein, Sutton and
Borenstein (2005) is an authoritative edited volume dedicated to this subject. See Lin and
Chu (2018) for a recent contribution.

Our problem relates to a study published with incomplete information. On the one hand,
we want to rescue such a study for the meta-analysis by using all the available data; on the
other hand, we want to reflect in the statements we make the loss due to the incompleteness.
In brief, we want to be ‘honest’ in our inferential statements.

We explore two general approaches, modelling and sensitivity analysis. In Section 3,
we specify an empirical Bayes model for the variances σ2

i and impute a random draw from
the approximated conditional distribution of the missing variance σ2

H+1 . This imputation is
replicated (independently repeated) several times, to generate a set of plausible completions
of the dataset. We assume that the study-specific treatment effects coincide; θi = θ for all
studies i. In Section 3.2 we discuss random-effects meta-analysis (DerSimonian and Laird,
1986), in which this assumption is relaxed and the treatment effects θi are a random sample
from an unknown distribution.

In Section 4, we apply a method motivated by sensitivity analysis, in which we consider
a plausible range of values of σ2

i , or τ2
i , and evaluate the corresponding estimates of the

overall effect θ and standard errors of θ̂ . Section 5 applies the methods to a meta-analysis
with complete information, in which the standard error of one study is masked. Section
6 discusses some peripheral issues; they include elicitation of the information about the
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Table 1: Examples of sets of five studies included in a meta-analysis, with the sampling
variance estimate τ̂2

i not available for one study.

Case A Case B Case C

Study (i) θ̂i τ̂2
i ni θ̂i τ̂2

i ni θ̂i τ̂2
i ni

1 0.467 0.260 80 0.617 0.260 80 0.567 0.260 80
2 0.082 0.365 46 0.232 0.365 46 0.182 0.365 46
3 0.384 0.229 102 0.534 0.229 102 0.484 0.229 102
4 0.163 0.282 66 0.313 0.282 66 0.263 0.282 66
5 0.691 ? 92 0.691 ? 92 0.621 ? 92

missing value(s) and exploiting the information about the mean-variance relationship of the
outcomes.

Table 1 presents three examples, A, B and C, of study results for meta-analysis, each
with H + 1 = 5 studies, on which we illustrate the methods we develop. In each example,
all five studies have two treatment arms, with equal variances and equal sample sizes within
the arms of each study; σ2

iA = σ2
iB = σ2

i and niA = niB = 1
2 ni , i = 1, . . . ,5. The quintets of

sample sizes ni and the quartets of estimates of τ2
i are the same across the three cases, only

the sets of estimates differ.
By back-calculating the within-treatment variance estimates we can check that the vari-

ances are very likely to differ; the estimates are in the range 8.4 – 11.7. Study 5, with τ̂2
5 not

available, has an unexceptional sample size. In each case A – C, we consider the plausible
range (0.17,0.28) for τ̂2

5 . That is, we rule out the possibility that τ2
5 may be smaller than

0.17 or larger than 0.28. This choice is informed by the sample size and the variances in the
other studies. Some leeway at either limit of their range is allowed since the (unknown) vari-
ance may be larger or smaller than the four recorded variances. In practice, expert opinion
may provide some additional input.

2. Information gained by using imputation

Suppose we have H studies with complete information and another study, H + 1, with
the value of τ̂2

H+1 (or σ̂2
H+1) missing. The treatment effect common to the H studies is

estimated by

θ̂− =
w1 θ̂1 + · · ·+wH θ̂H

WH
,

where wi = 1/τ̂2
i and WH = w1 + · · ·+wH . Ignoring the uncertainty about the weights wi ,

that is, about the variances τ2
i , leads to the expression var(θ̂−) = 1/WH . This confirms that

information, defined as the reciprocal of the sampling variance, is additive. Specifically, the
information about θ contained in study i is wi , in the collection of H studies it is WH and, if
τ2

H+1 were available, it would be WH +wH+1 in the H +1 studies.
If we had complete information about study H+1, we would evaluate the version of the
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estimator θ̂− for H +1 studies, that is,

θ̂+ =
WH θ̂−+wH+1 θ̂H+1

WH +wH+1
.

If wH+1 were known the variance of the estimator of θ would be reduced by

1
WH

− 1
WH +wH+1

=
wH+1

WH (WH +wH+1)
,

or by 100wH+1/(WH + wH+1)%. As wH+1 is not known, the potential for reduction is
smaller. When wH+1 is not known, but a plausible range for it is defined, then we can find
the plausible range of this percentage. In the cases in Table 1, this range is (19.8,28.9)%.
The plausible reduction of the standard error is in the range (9.5,13.5)%. Thus, a lot is at
stake; the sampling variance could be reduced by as much as 29%, but the uncertainty about
the magnitude of this stake, about 9%, is not trivial either.

3. Empirical Bayes model for σ2
i

Imputation for a variance estimate is based on an estimate of the distribution underlying
the variances of the studies. We assume that this distribution is inverse gamma, and estimate
its parameters. First we derive the marginal distribution of the estimator σ̂2

i of the within-
treatment group variance σ2

i in study i = 1, . . . ,H.
We assume that, conditionally on the variance σ2

i , ki σ̂
2
i /σ2

i has χ2 distribution with ki

degrees of freedom. Thus, the conditional density of σ̂2
i , given its estimand σ2

i , is

f (x) =
1

Γ
( 1

2 ki
) ( ki

2σ2
i

) 1
2 ki

x
1
2 ki−1 exp

(
− ki x

2σ2
i

)
,

where Γ is the gamma function. Further, we assume that the variances σ2
i are a random

sample from the inverse gamma distribution with parameters α and γ:

g(y) =
1

Γ(γ)
α

γ

(
1
y

)γ+1

exp
(
−α

y

)
.

The marginal density of σ̂2
i is obtained by integration of the joint density of σ̂2

i and σ2
i :

Cx
1
2 ki−1

∫ +∞

0

(
1
y

) 1
2 ki+γ+1

exp
{
−1

y

(
α +

1
2

ki x
)}

dy

= CΓ

(
ki

2
+ γ

)
x

1
2 ki−1(

α + 1
2 ki x

) 1
2 ki+γ

,

where C is the standardising constant, for which the expression is a density. We approximate
the concluding expression by an inverse gamma density using the relation (1+ c/k)k .

= ec,
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precise for sufficiently large k. For the denominator, we have(
α +

ki x
2

) 1
2 ki+γ

=

(
ki x
2

) 1
2 ki+γ (

1+
2α

ki x

) 1
2 ki+γ

.
=

(
ki x
2

) 1
2 ki+γ

exp
{

2α

ki x

(
1
2

ki + γ

)}
.

Hence the approximation to the marginal density of σ̂2
i by an inverse gamma density,

1
Γ(γ)

{
α

ki
(ki +2γ)

}γ (1
x

)γ+1

exp
{
− α

ki x
(ki +2γ)

}
,

where the first two factors standardise the expression to be a density. The expectation of this
distribution is µ =α(1+2γ/ki)/(γ−1), assuming that γ > 1, and its variance is µ2/(γ−2),
assuming that γ > 2. The parameters α and γ of this density are estimated by maximising
the loglikelihood

l =−H log{Γ(γ)}+Hγ log(α)+ γ

H

∑
i=1

log
(

ki +2γ

ki

)
− (γ +1)

H

∑
i=1

log
(
σ̂

2
i
)
−α

H

∑
i=1

ki +2γ

ki σ̂
2
i

.

We apply the Newton-Raphson algorithm. The score functions for l are

∂ l
∂α

=
Hγ

α
−

H

∑
i=1

ki +2γ

ki σ̂
2
i

∂ l
∂γ

= −HΓ
′(γ)+H log(α)+

H

∑
i=1

log
(

ki +2γ

ki

)
+2γ

H

∑
i=1

1
ki +2γ

−
H

∑
i=1

log
(
σ̂

2
i
)

−2α

H

∑
i=1

1
ki σ̂

2
i
,

where Γ′ is the digamma function, the derivative of log(Γ). The elements of the Hessian
matrix are

− ∂ 2l
∂α2 =

Hγ

α2

− ∂ 2l
∂α ∂γ

= −H
α

+2
H

∑
i=1

1
ki σ̂

2
i

− ∂ 2l
∂γ2 = HΓ

′′(γ)−4
H

∑
i=1

1
ki +2γ

+4γ

H

∑
i=1

1

(ki +2γ)2 ,

where Γ′′ denotes the trigamma function, the derivative of the digamma function. The
Newton-Raphson algorithm converges very fast, as judged by any reasonable criterion for
convergence. An initial solution has to be provided; this is difficult to automate because the
loglikelihood is not concave throughout the parameter space.
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The expression for l implies that the sufficient statistics for α and γ are the average (or
total) of log(σ̂2

i ) and, assuming that γ ≪ 1
2 ki for all i, the average (or total) of 1/σ̂2

i . The
‘weights’ ki are therefore not as important for summarising the variances σ2

i as they are for
the treatment effect θ . We confirm this on an example in Section 5.

We derive a non-iterative estimator of (α,γ) that can be used as an alternative, or as
an initial solution for the Newton-Raphson algorithm. Given γ̂ , ∂ l/∂α implies a simple
expression for α̂;

α̂ =
H γ̂

H

∑
i=1

ki +2γ̂

ki σ̂
2
i

, (1)

which is well approximated by H γ̂/(1/σ̂2
1 + · · ·+1/σ̂2

H) when γ̂ ≪ ki for all i.

The posterior distribution of σ2
i is inverse gamma with expectation E(σ2

i | σ̂2
i ) = c and

variance var(σ2
i | σ̂2

i ) = c2/(γ−2), where c=α(k+2γ)/{k(γ−1)}. Denote these moments
by E and V , respectively. The ratio E2/V is equal to γ − 2 for all ki . This motivates the
moment-matching estimator γ̂ = 2+ Ê2/V̂ , based on the naïve estimators of E and V . For
α we do not have a moment-matching estimator, but we can use the estimator given by
equation (1), without the assumption that γ ≪ ki . Problems with maximum likelihood are
sometimes encountered with small-scale data or large values of log{Γ(γ̂)}. We have not
come across any, but this non-iterative method can be regarded as a back-up for such an
eventuality.

3.1. Imputation

With maximum likelihood estimators α̂ and γ̂ , we have several options for imputation
for an unknown variance. The simplest is to impute the naïve estimator of the expectation
of the fitted distribution, ĉ = α̂(k+ 2γ̂)/{k(γ̂ − 1)}. This quantity depends on the degrees
of freedom k, although only weakly when k ≫ 2γ , when (k+ 2γ̂)/k .

= 1. Next, we could
use for imputation values generated by a draw from the fitted (inverse gamma) distribution.
And finally, the uncertainty about α and γ could be reflected by drawing first a plausible
pair (α̃, γ̃) from the fitted distribution for (α,γ) and then drawing a value σ̃2

i from the plau-
sible distribution given by (α̃, γ̃). Some approximation cannot be avoided in this process
because the joint distribution of (α̂, γ̂) is known only asymptotically and is estimated by
using estimates for the unknown parameters. Bayesian counterparts of these procedures can
be implemented; (α̃, γ̃) is drawn from the joint posterior distribution of (α,γ). They also
entail some approximation; the paucity of information about α and γ is unavoidable, espe-
cially if we have no means of faithfully representing the prior information about them and,
indeed, when our prior information is scant. Care has to be exercised also in the choice of a
flat prior to represent the absence of any such information.

The maximum likelihood estimators of α and γ , based on studies 1 – 4, have very large
sampling variances and the two estimators are highly correlated. When maximum likelihood
(or any other method) is fitted to a small number of studies the process of using plausible
values entails a lot variation.
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3.2. Meta-analysis with random effects

We have assumed that the studies have a common expectation θ . It may be more ap-
propriate to assume that the study-specific treatment effects θi are a random sample from
a distribution with expectation θ and variance ω ≥ 0. If this variance were known, the
optimal estimator of θ based on the first H studies would be

θ̂ =
1

WH(ω)

H

∑
i=1

wH(ω) θ̂i ,

where wi(ω) = 1/(ω+ τ̂2
i ) and WH(ω) =w1(ω)+ · · ·+wH(ω); see DerSimonian and Laird

(1986). A profound difficulty in using or adapting this estimator is that ω is not known and,
when H is small, is estimated with very low precision. Even if all H studies were very
large, so that there would be very little uncertainty about each θi , i = 1, . . . ,H, ω could be
estimated with only H−1 degrees of freedom. When the studies have moderate sample sizes
and there is appreciable uncertainty about each θ̂i , the uncertainty about ω is even greater.
This is difficult to reflect in the estimation of var(θ̂), but it is obvious that the conventional
estimator v̂ar(θ̂) = 1/WH(ω̂) has a negative bias. In fact, even with the assumption of a
common treatment effect, ω = 0, the estimator v̂ar(θ̂) = 1/WH has a (small) negative bias
because the uncertainty about the study weights wi is ignored. However, this bias is in
practice negligible.

The effect of the study-level variance ω on the weights wi(ω) is to reduce their dis-
persion and shrink their relative weights wi/WH toward the common value 1/H. Therefore
the effect of uncertainty about the missing value of a sampling variance diminishes with
increasing ω . So, the case of ω = 0, explored in the rest of the article represents an extreme
case, albeit without taking the uncertainty about ω into account.

3.3. Examples

The fit of the model for the variances σ2
i , i = 1, . . . ,4, yields the estimates α̂ = 141.23

and γ̂ = 18.60, with estimated sampling variance matrix(
3870.33 611.86
611.86 103.93

)
.

The estimated correlation of the two estimators is 0.965. The empirical Bayes estimate of
the expected value of σ̂2

5 is 141.23/17.60× (1+ 2× 18.60/92) = 11.27. The correspond-
ing estimate of τ̂2

5 is 11.27× 2/92 = 0.245. By substituting this value for τ̂2
5 we obtain

the estimates θ̂+ = 0.382, 0.499 and 0.445 in the respective cases A, B and C, each with
estimated standard error 0.232. The latter is an underestimate in all three cases because we
have pretended τ̂2

5 to be known.
The uncertainty about τ̂2

5 is partly reflected by averaging the plausible estimates θ̃+

obtained by substituting for τ̂2
5 random draws from its fitted sampling (or posterior) distri-

bution. The estimate of θ is obtained as the average of the plausible estimates. The sampling
variance has two components: average of the plausible sampling variances and variance of
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the plausible estimates of θ . The latter component should be multiplied by (1+1/m); when
we choose a large m, this factor makes next to no difference.

We applied m = 1000 replications; we can be profligate with the choice of m because
the calculations that follow are simple. The averages in the three cases are 0.383, 0.500 and
0.445, and the standard errors are estimated by 0.232 in all three cases. Thus, the results
are altered only slightly by using plausible values τ̃2

5 . In fact, the estimates of the standard
errors are greater by less than 0.0002 compared to when τ̂2

5 is used.
The two kinds of imputation we applied are improper in the terminology of Rubin (2004)

because they fail to reflect the uncertainty about the missing value(s) in its entirety. Specif-
ically, we have pretended that the parameters α and γ were known and were equal to their
estimates. We make amends for this by drawing a random sample of plausible pairs (α̃, γ̃),
and then drawing a plausible value σ̃2

H+1 from each (plausible) distribution based on the
realised pair (α̃, γ̃). In this procedure, we assume that the sampling distribution of (α̂, γ̂) is
bivariate normal, with the sampling variance derived from the fitted information matrix. Re-
lying on asymptotic normality with such a small sample size H = 4 is clearly problematic,
and some error is committed. However, this is bound to be not as large as if we pretended
this variance matrix to vanish.

With this method of multiple imputation, we obtain the estimates 0.378, 0.497 and 0.443
for the respective cases A, B and C, with standard error 0.234 in each case. They do not
differ materially from the results obtained by simpler improper methods of imputation. The
estimate of the standard error is inflated by only 0.0025.

In generating replicates of (α̃, γ̃), we rejected 32 pairs because they contained at least
one negative value. The values of the plausible weight w̃5 ranged from 0.01 to 15.6; their
mean was 4.07 and standard deviation 1.31. The substantial uncertainty about the param-
eters α and γ translates to substantial uncertainty about τ2

5 or the weight w5 , but this does
not contribute substantially to the uncertainty about θ .

4. Plausible values of θ̂

An approach that involves relatively weak assumptions about the incompletely reported
study H +1 is based on a plausible range of values of τ2

H+1 . A plausible range, an interval
(τ2

H+1,L ,τ
2
H+1,U), is defined by the condition that all values of τ2

H+1 outside this interval
can be ruled out. An interval that subsumes a plausible range is also a plausible range, but
a subinterval of a plausible range may not be. In ideal circumstances, the plausible range
would be elicited from subject matter experts, such as clinical personnel involved in the
meta-analysis or one of its studies. We assume that a plausible range for τ2

H+1 has been
specified. A value is said to be plausible if it is contained in the plausible range.

We evaluate the estimator θ̂ conditionally on τ2
H+1 being equal to each value on a fine

grid that covers the plausible range. These values can be regarded as plausible for θ̂ , and the
range they cover, (θ̂L , θ̂U), as the plausible range for θ̂+ . The plausible values of var(θ̂+) =
1/(WH +wH+1) can be established similarly. If these two plausible ranges are narrow, then
we can conclude the analysis with these two intervals, admitting the uncertainty about θ̂+

additional to its sampling variation, as well as the uncertainty about the standard error.
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The results of the meta-analyses for the three sets of studies introduced in Table 1 are
presented in the panels in one row of Figure 1. The first panel at the top (Ae, for case A)
presents the plausible value of θ̂+ as a function of the plausible value of τ̂2

5 (solid line). The
estimate θ̂− is indicated by horizontal dashes. By including study 5 in the meta-analysis,
the estimate of θ̂ is increased by about 0.10, from θ̂ = 0.295 to between 0.373 – 0.409.
The plausible standard errors, plotted in panel As are in the range 0.222 – 0.235, reduced
from the standard error of θ̂− equal to 0.263. The t ratio, plotted in panel At, is increased
from 1.12 (based on θ̂−) to between 1.59 and 1.85. So, we conclude with no evidence of
a treatment effect, despite an appreciable increase in the estimate of θ and reduction in its
standard error.

Panels in the middle row, based on case B, present an example in which study 5 alters
the verdict of significance unequivocally, for any plausible value of τ̂2

5 . Panels at the bottom
(case C) display an example of impasse. As a function of the estimate τ̂2

5 , the t ratio (panel
Ct) intersects the horizontal line drawn at 1.96. There would be sufficient evidence of a
treatment effect for some plausible values of τ̂2

5 , namely in the range (0.170, 0.217), but
‘not significant’ would be the verdict for 0.217 < τ̂2

5 < 0.240.

4.1. Plausible verdicts of hypothesis testing

If establishing significance is the sole objective of the analysis, then we can conclude the
analysis with an unequivocal statement when the test of the relevant hypothesis yields the
same verdict for every plausible value of τ2

H+1 . This approach can be reduced to evaluating
the t ratio at the limits τ2

H+1,L and τ2
H+1,U and at most one other point. We assume that the t

test is used throughout, and that its assumptions are satisfied.
Let τ̃2 be a plausible value of τ2

H+1 and θ̃ and w̃H+1 the corresponding values of θ̂+ and
wH+1 . In Appendix A we show that, except when θ̂H+1 = 0, the t ratio, θ̃/

√
WH + w̃H+1 ,

is either a unimodal or a monotone function of τ̃2; its extension to the entire real axis has a
single extreme, w∗

H+1 =WH (θ̂−/θ̂H+1 −2), and is monotone in the two intervals separated
by w∗

H+1 . If w∗
H+1 lies outside (wH+1,L ,wH+1,U), then the t ratio is a monotone function of

w̃H+1 = 1/τ̃2 in this range, and so it suffices to evaluate it at the limits wH+1,L and wH+1,U ;
these values of t delimit the plausible range of the t ratio. When w∗

H+1 is contained in
(wH+1,L ,wH+1,U), the plausible values of the t ratio have the same sign throughout, and so
their range is delimited by the t ratio evaluated at w∗

H+1 and at either wH+1,L or wH+1,U .
The plausible range of p values is obtained straightforwardly, as the p value is a decreasing
function of |t|.

An interesting case arises when θ̂− and θ̂H+1 have opposite signs and WH θ̂−/θ̂H+1 is a
plausible value of wH+1 . Zero is now a plausible value of the t ratio, so the ratio may be
both positive and negative. But significance of the t ratio would be plausible only in some
esoteric settings with extremely wide plausible ranges of τ2

H+1 .
Apart from adopting the t statistic for the hypothesis θ = 0, the only assumption we have

made is about the plausible range for wH+1 . For its specification we have to rely on expert
opinion formed by information from other studies and the nature of the variation of the out-
come variable in the relevant population. Eliciting such opinion is far from trivial. Experts
may be ill-at-ease and reticent to cooperate, being concerned that the integrity and veracity
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Figure 1: Plausible estimates (e), standard errors (s) and t ratios (t) in the meta-analyses A,
B and C (Table 1). Horizontal dashes mark the relevant statistics for the four studies with
complete information and the horizontal dots are drawn at the critical value of the t ratio,
1.96. By construction (identical sets of variance estimates τ̂2

i in Table 1), the panels As, Bs
and Cs are identical.

of their statements may be undermined in the future when new information emerges.

An alternative to this approach involves finding the values of τ2
H+1 for which the p

value of 0.05, or another a priori selected value, is attained. The behaviour of the t ratio as a
function of τ2

H+1 = 1/wH+1 implies that there are at most two such values. These borderline
points are easy to find by the Newton method or another line search algorithm. Within each
interval delimited by a pair of these borderline values, the p value is either entirely greater or
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smaller than the reference value, say 0.05. We then ask the experts whether every interval in
which the p values are greater than 0.05 is entirely implausible. If the answer is affirmative,
then we conclude with the verdict of significance because it would have been attained for
any plausible value of τ2

H+1 .
A drawback of both approaches is the possibility of an impasse, which arises when

significance would have been achieved for some but not all plausible values of τ2
H+1 . In

such a case, we have to admit that both significance and its negation are plausible outcomes
of the analysis. In general, it is preferable to specify as narrow a plausible range for τ2

H+1 as
possible, to reduce the chances of an impasse. However, it is an imperative that any value
of τ2

H+1 outside the declared range can be ruled out; otherwise the integrity of the method
is breached. In the second variant of this approach, it is important to discourage a hasty or
perfunctory dismissal of the plausibility of the intervals in which the p value is greater than
the reference (0.05).

4.2. Accounting for the uncertainty about τ2
H+1

The uncertainty that can be attributed to the unknown wH+1 is assessed by the condi-
tional distribution of θ̂+ given θ̂− and WH . The Taylor expansion for θ̂+ around θ̂− yields
the approximation

var
(
θ̂+ | θ̂− , θ̂H+1

) .
=
(
θ̂H+1 − θ̂−

)2
E
{
(1+ rH+1)

−4
}

var(r̂H+1) , (2)

where ri = wi/WH , i = 1, . . . ,H + 1, is the relative weight. This identity is derived in Ap-
pendix B. It implies three factors that have an impact on the uncertainty about θ̂+ : the
deviation of θ̂H+1 from θ̂− , the relative magnitude of wH+1 with respect to WH , and the
variance of this ratio rH+1 . The first factor does not involve rH+1 , and can be evaluated
from the available data directly. It vanishes when θ̂H+1 = θ̂− , and then θ̂+ = θ̂− for any
value of τ2

H+1 . The second term has an upper bound of 1.0. If study H + 1 is large, then
wH+1 is also large, and then this factor is small. Further, when we have a lot of informa-
tion about θ , and so WH is large, then var(r̂H+1) is small. These considerations, however
loose and involving approximation, conform with intuition. A study H + 1 omitted from
meta-analysis introduces greater uncertainty about θ when θ̂H+1 is exceptional among the
estimates θ̂1 , . . . , θ̂H , when the study contains a lot of information about θ (wH+1 is small),
and when we are uncertain about wH+1 .

The first factor is equal to 0.167, 0.061 and 0.051 for the respective cases A – C presented
in Table 1. The other two factors have values common to the three cases. The plausible
values of rH+1 are in the range 0.265 – 0.406, and for 1/(1+ rH+1)

4 they are in the range
0.256 – 0.390. We approximate var(r̂H+1) conservatively by the variance of the uniform
distribution on (0.265,0.406), that is, 0.1412/12 = 0.00166, and the expectation of 1/(1+
rH+1)

4 by its largest plausible value, 1/1.2654 = 0.390. Thus a conservative estimate of
the variance in (2) is 0.167× 0.00166× 0.391 = 1.08 · 10−4, that is, standard deviation of
about 0.0104 in case A, 0.0063 in case B, and 0.0057 in case C. This is a small contribution
to the overall uncertainty attributable to the variation of the outcome variable in the studied
population(s), as quantified by 1/

√
WH = 0.263.
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Table 2: Estimates, standard errors and sample sizes (n(P) — placebo and n(M) — mirtaza-
pine) for the studies in the systematic review of Mavridis et al. (2014).

Study Estimate St. error n(P) n(M)

S1 –3.1 2.91 18 25
S2 –2.5 2.20 23 26
S3 –1.8 3.02 16 11
S4 –6.8 2.30 23 22
S5 3.6 1.71 20 21
S6 –4.6 2.26 26 29
S7 –2.3 1.97 32 34
S8 –2.9 1.68 47 50

5. Example II

In this section we illustrate the methods on a systematic review conducted by Mavridis et
al. (2014) for comparing mirtazapine, a drug for treating clinical depression, with placebo.
The outcome variable is recorded on the HAMD21 scale constructed originally by Hamilton
(1967) using a patient questionnaire. Larger values of HAMD21 correspond to more severe
illness.

The systematic review found eight studies. Their results are presented in Table 2, listing
the estimate of the treatment effect (θ̂i), its (estimated) standard error, and the number of
observations (n(P)i for placebo and n(M)

i for mirtazapine) for each study S1 – S8. Study S5,
the only one with θ̂i > 0, is an obvious outlier. The standard errors are in the range 1.68–
3.02, and the numbers of observations are in the range 27–97.

We pretend that one of the standard errors is missing and apply the methods that make
use of the estimate and sample size for this study. The results are presented in Table 3.
Row labelled –Si, i = 1, . . . ,8, represents the setting with the standard error in study Si
missing. The first two columns present the estimates of the parameters of the inverse gamma
distribution on which imputation for this missing value is based. The next column presents
the estimate of the treatment effect based on the seven retained studies (θ̂−). The next
two columns present the imputed standard error τ̃i derived from the (empirical) posterior
expectation of the variance σ2

i and the estimate of θ based on this standard error (θ̂+). The
right-most column displays the estimates and standard errors based on averaging over 100
random draws from the posterior distribution of σ2

i .
The results are presented with three decimal places, so that the small differences of the

estimates can be discerned. The target of estimation is the treatment effect based on the
estimates of all the eight studies, θ̂ = −2.061. With no data discarded, the standard error
of θ̂ is estimated by 0.751. By imputing the posterior mean, all single-imputation estimates
θ̂+ are close to the target, except for the setting –S5. The estimated standard errors are also
close to 0.751, except for –S5. All of them should exceed 0.751 because they are based
on less information. The contradiction arises because the uncertainty about the imputed
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Table 3: Estimates and estimated standard errors (se) of the treatment effect; metaanalysis of
studies summarised in Table 2, with one standard error τ̂i deleted; θ− — the study discarded
altogether; θ+ — the study included, with the posterior expectation of σi imputed; θ̃+ —
the study included, with multiple imputation for σi .
Row labelled –Sk, k = 1, . . . ,8, indicates that τ̂k is regarded as missing.

α̂ γ̂ θ̂− (se) τ̃i θ̂+ (se) θ̃+ (se)

–S1 3.03 7.46 –1.987 (0.777) 2.36 –2.096 (0.748) –2.098 (0.753)
–S2 2.89 6.63 –2.003 (0.799) 2.23 –2.060 (0.752) –2.061 (0.758)
–S3 3.05 6.87 –2.079 (0.775) 3.26 –2.064 (0.754) –2.063 (0.764)
–S4 2.89 6.62 –1.496 (0.795) 2.34 –2.043 (0.752) –2.050 (0.767)
–S5 5.54 13.45 –3.414 (0.836) 2.59 –2.750 (0.795) –2.753 (0.797)
–S6 2.94 7.00 –1.746 (0.796) 2.05 –2.120 (0.752) –2.121 (0.753)
–S7 2.93 6.92 –2.021 (0.812) 1.85 –2.066 (0.745) –2.064 (0.754)
–S8 3.09 7.57 –1.852 (0.840) 1.47 –2.108 (0.739) –2.113 (0.748)

standard error is ignored. Multiple imputation corrects this bias but the estimates θ̃+ differ
from their single-imputation counterparts θ̂+ only slightly.

The estimates stand out for the setting –S5 because study S5 has a smaller standard error
than its sample size suggests. When τ̃5 is imputed the contribution of S5 to estimating θ is
underrated, and so its influence is reduced. In summary, imputation of the posterior mean
of the variance is sufficient for estimating the treatment effect. Multiple imputation yields
similar estimates and inflates the standard errors only slightly.

We illustrate sensitivity analysis by pretending that τ̂5 is not recorded. Since θ̂5 is an
outlier among the estimates, it may be justified to discard the study altogether, especially
if a careful review of the literature and of other sources discovers some reason for the ex-
ceptional result. Failure to report τ̂5 might also raise suspicion about both the quality and
context of the study. Instead of the dichotomy, to include or exclude the study from the
meta-analysis, we define a plausible range of standard errors, (τ̃5L , τ̃5U). Exclusion corre-
sponds to τ̃5L =+∞, implying that also τ̃5U =+∞. Exclusion being plausible corresponds
to τ̃5L <+∞ and τ̃5U =+∞.

An analyst might impute for τ̂5 the standard error from a study with a similar sample
size, such as S1 or S4, and allowing some larger values to reflect the doubt about θ̂5 . Sup-
pose the plausible range for τ̂5 is set to (2,5). Figure 2 displays the plot of the plausible
values of θ̂+ as a function of τ̃5 (solid line) together with the plausible confidence intervals
(shaded area). For τ̃5 = 2.0, θ̂+ is close to the target θ̂+ = −2.06 (horizontal line of long
dashes), so the error caused by the failure to allow for τ̂5 = 1.7 < τ̃5L is not harsh.

For τ5 = 5.0, study S5 contributes with very small weight; θ̂+ is close to θ̂− , marked
by the horizontal dashed line. The standard error increases with τ̃5 , from 0.771 at τ̃5 = 2.0
to 0.824 at τ̃5 = 5 — the grey region narrows towards the right. The upper confidence limit
for θ̂+ decreases with τ̃5 . It crosses zero at τ̃5 = 1.32. So, there is evidence of a negative
effect of mirtazapine so long as τ̂5 > 1.32. If τ̂5 were very small, study S5 would dominate
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Figure 2: Sensitivity analysis. Plausible estimate of the treatment effect θ̂ as a function of
the plausible value of the standard error τ5 when τ̂5 for study S5 is masked, regarded as not
reported.

the meta-analysis and it would conclude with evidence of a positive (detrimental) effect of
mirtazapine. This would happen for τ̂5 < 0.64. Such an outcome would not be credible
given that all but one study yielded a negative estimate.

6. Discussion

The empirical Bayes approach in Section 3 involves some assumptions that are con-
tentious and their plausibility is difficult to assess. The approach motivated by sensitivity
analysis in Section 4 carries a lighter burden of assumptions but has a heavier demand on
input — it requires the declaration of a plausible range for the missing sampling variance.
Also, it may conclude with an impasse, when one conclusion, e.g., of a hypothesis test, is
obtained for some plausible values of this variance, and another conclusion for other values
that are equally plausible.

The analysis in Section 2 shows that a study with standard error not reported can con-
tribute to the estimation of the overall treatment effect. Accounting for the uncertainty about
the imputed standard error makes much less difference. Similar conclusions can be drawn
about using plausible values for the missing standard error(s).

The model applied in Section 3 can be expanded to a regression model, and thus strengthen
the inference about a missing variance by exploiting the association of the variance and
mean implied by the distribution of the outcomes or other auxiliary information. This ap-
proach is not always useful. For example, when the outcomes are binary and the events
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are neither rare nor very frequent the variance is a very flat function of the probability. In
any case, the small number of studies precludes any complex modelling and any reliable
inference about the mean-variance relationship; prior information may be more useful.

The examples in Sections 4 and 5 confirm that even simple methods, using some short-
cuts on proper imputation, exploit nearly to the full the information about an incompletely
reported study and they estimate the standard error of the overall treatment effect with neg-
ligible bias. Sensitivity analysis using plausible ranges for the missing variance has some
potential but this is undermined by the general reluctance to participate in elicitation of these
ranges.

The common or average treatment effect θ is ascribed importance, and motivates the
attempt to recover information contained in an incompletely reported study (H + 1). The
problem has some commonality with publication bias, a widely studied issue. The expecta-
tion θ can be interpreted as the treatment effect in a set of studies among which the realised
studies are a random sample. This interpretation has a flaw in that the treatment effects
of these studies, θ1 , . . . , θH+1 , would be a random sample from a meaningful distribution
only if the populations (constituencies) and contexts of the studies were selected at random
from a universe of potential studies, that is, according to a design. In practice, these as-
pects are selected haphazardly, influenced by the availability of expertise and funding and
concern about the specific issue. Also, the contexts of the realised studies, especially those
conducted in the more distant past and in countries with different levels of development and
organisation of health care, may differ a great deal from the context for which the inferences
drawn by a meta-analysis are intended. Such relevance is rarely incorporated in the weights
used for estimating the overall (or average) treatment effect.

All the data used in this article are displayed in Tables 1 and 2.
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Appendix A. The t ratio for θ̂ as a function of wH+1

In this appendix we explore the behaviour of the t ratio θ̂+/
√

WH +wH+1 as a function of
wH+1 . This function is

T (w) =
WH θ̂−+wθ̂H+1√

WH +w
.

Its derivative is

∂T
∂w

=
1√

WH +w

(
θ̂H+1 −

1
2

WH θ̂−+wθ̂H+1

WH +w

)

=
1

2(WH +w)
3
2

{
WH
(
2θ̂H+1 − θ̂−

)
+wθ̂H+1

}
.

The sign of this derivative does not depend on w when θ̂H+1 = 0. In that case, the derivative
has the same sign as −θ̂− . When θ̂H+1 ̸= 0, the derivative has a single root at

w∗
H+1 = WH

(
θ̂−

θ̂H+1
−2

)
,

where its sign switches from positive to negative or vice versa. Therefore T changes at
w∗

H+1 from decreasing to increasing or vice versa. Its value at w∗
H+1 is

T
(
w∗

H+1
)
=

2WH√
WH +w∗

H+1

(
θ̂−− θ̂H+1

)
.

When θ̂H+1 ̸= 0, the function T has a single root at w(0)
H+1 =−WH θ̂−/θ̂H+1 , which is posi-

tive when θ̂− and θ̂H+1 have opposite signs. In that case, w∗
H+1 < 0, and so T is monotone

in the plausible range. In summary, T is either unimodal without changing its sign in the
plausible range of wH+1 , or is monotone, in which case it may cross zero at one point.

Appendix B. Taylor expansion for θ̂+

The first-order partial differential of θ̂+ with respect to wH+1 is

∂ θ̂+

∂wH+1
=

(WH +wH+1) θ̂H+1 −WH θ̂−−wH+1 θ̂H+1

(WH +wH+1)2

=
WH
(
θ̂H+1 − θ̂−

)
(WH +wH+1)2

=
θ̂H+1 − θ̂−

WH

1(
1+ wH+1

WH

)2 ,

from which the expression for the conditional variance in equation (2) follows directly,
evaluating (∂ θ̂+/∂wH+1)

2 var(ŵH+1) and substituting rH+1 = wH+1/WH .
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Approximately optimum strata boundaries for two concomitant 
stratification variables under proportional allocation 

Faizan Danish1, S. E. H. Rizvi2 

ABSTRACT  

The proper choice of strata boundaries is an important factor determining the efficiency of 
the estimator of the  considered characteristics of a population. In this article, the 
Cumඥ𝐷௜ሺ𝑥, 𝑧య ሻ Rule (i=3,4) for obtaining approximately optimum strata boundaries has 
been applied, taking into account a single-study variable along with two concomitant 
variables serving as the basis of the stratification variables. The relative efficiency of the 
proposed methods has been demonstrated theoretically and empirically by comparing them 
to a selection of already-existing methods in a simulation study with the use of the 
proportional allocation method. 
Key words: stratification points, proportional allocation, minimal equation.  

1. Introduction 

Let there be a finite population consisting of N units, for which it is required to 
estimate the total or mean for the characteristic Y under study, using simple random 
sampling technique. In order to have this, we partition population L × M strata:  

1 1

L M

hk
h k

N N
 

  

where Nhk indicates the number of units in (h , k)th stratum. 

Let ‘n’ be the number of units to be drawn from the whole population and suppose 
that the allocation of sample size nhk  such that 

1 1

L M

hk
h k

n n
 

   
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Let 
hki

y  ( i = 1 , 2 , 3,…, hkN ) be the population unit and then the population total is  

1 1 1

hkNL M

hki
h k i

Y y
  

     

For the study variable, the unbiased estimate of Y ,
1 1

L M

hkst hkh k
y yW

 
   ,where  

1

1 hk

hkihk
ihk

n
yy

n 
   and Whk denotes the weight of the (h,k)th stratum. 

For stratified simple random sampling, the sample estimate sty is unbiased with 
sampling variance as below: 

   
2 2

1 hk hky
hkst

h k hk

W
V y f

n


   

where hk
hk

hk

n
f

N
  and if f.p.c is ignored, we have  

 
2 2

hk hky
st

h k hk

W
V y

n


  

2
hky represents the population variance for the character Y and is defined as  

 
2

2

1

1 hkN

hky hki hk
hk i

y y
N




   

hky being the population mean of all the hkN  units in the  ,
th

h k  stratum. 

Construction of stratification points was pioneered by Dalenius (1950), while 
minimizing variance set of equations as the functions of population parameters were 
obtained and due to their implicit nature, it becomes complicated to obtain solutions. 
Cochran (1961,1963) has also discussed the cases regarding the optimum boundaries. 
Yadav and Singh (1984), Rizvi et al. (2000), Danish et al. (2020), Khan et al. (2008), 
Khan et al. (2014), Danish et al. (2017), Danish et al. (2018), Danish and Rizvi 
(2018,2019) and Danish, F. (2018). Rizvi and Danish (2018) made an attempt to 
summarise the proposed contribution towards obtaining stratification points. 

The allocation procedure in which a sample size is selected as per proportion of the 
stratum is known as proportional allocation. In such allocation, the sample size is 
selected as  

hk
hk hk

nN
n nW

N
   



STATISTICS IN TRANSITION new series, December 2021 

 

21

thus,                                  hkn   hkN  and 
1 1

L M

hk
h k

n n
 

    

Hence, under such allocation, variance is 

  21
hk hkyst p

h k

V y W
n

 
 (1.1) 

In this paper, for obtaining stratification points using classical approach for two 
concomitant variables as the basis of stratification variables and a single study variable 
under the proportional allocation method by assuming different distributions of the 
concomitant variables and both dependent and independent cases have been discussed 
as well.  

2. Variance expression 

Let the regression model of the response variable Y and the two information 
variables X & Z be given as 

Y = C (X, Z) + e 

where ‘e’ is error term such that 

 | , 0E e x z 
 
and 𝑉ሺ𝑒|𝑥, 𝑧ሻ ൌ 𝜂ሺ𝑥, 𝑧ሻ ൐ 0,∀  ,x a b  ,z c d ,   

( b – a) < ∞ ,( c – d) < ∞ 

If joint marginal of X and Z is f(x, z) and f(x) and f(z) denotes marginal densities of 
individual variables, respectively, then under above regression model,  

we have  
11

,
h k

kh

hk

x z
W f x z x z

x z 

     is weight of a stratum. 
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2 2
hky hkc hk  

 
denotes its mean and variation respectively, 

where  1 1, , ,h h k kx x z z   be the stratification points and 
hk is the average 

value of the function ( , )x z  and 2
hkc  as  
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, ,

h k

kh

hkchkc
hk

x z
c x z f x z x z

W
x z

 



      



22                                                                           F. Danish , S. E. H. Rizvi: Approximately optimum strata… 

 

 

Using these relations, the variance can be expressed in terms of the population 
parameters of the function of X and Y and 𝑉ሺ𝑒|𝑥, 𝑧ሻ. The variance expression for the 
case of proportional allocation is therefore given by

  

       
 

 2
hk hkhkc

h k
st prop

W

V y
n

 
 

 
  


      (2.1) 

The expression for various terms can be in terms of Singh and Sukhatme (1969) 
and Danish et al. (2018). 

3.  Minimal equations for proportional allocation 

Since 
hk hk

h k
W    , which is the population parameter and therefore is a fixed 

constant. Hence, minimization of (2.1) is equivalent to minimization   

2
p hk hkc

h k
V W    (3.1) 

Thus, to obtain minimal equations, we minimize pV  by with respect of hx  and 
equate to zero, we get 

2 2 2 2 0p hk hk ik ikhkc hkc ikc ikc
h h h h hk

V W W W W
x x x x x

   
     
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  

After further simplification, we get 
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(3.2)  

For obtaining minimal equations we also differentiate pV partially w.r.t. kz   
in a similar way, we get 

      

     

1 1

1 1

2 2 2

2 2 2

,
, ,

,
, ,

h h

h h

h h

h h

x xk
hk k hkc khkc hkcx xhkh

x xk
hj k hjc khjc hjcx xhjh

f x z
W c x z x f x z x

W

f x z
W c x z x f x z x

W

  

  

 

 

 
       

 

              

  

  

(3.3) 
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However, for obtaining minimal equations we minimize pV  on equating the partial 

derivative of this expression with respect of hx  and kz  to zero, we get 
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This gives the equation as  

  
 2 1, 1, 2,..., 1

, ,
1, 1, 2,..., 12

hkc ijc
h k

i h h L
c x z

j k k M

     


   
           (3.4) 

On the condition that      ', , ,x z c x z f x z  belongs to class   functions, 
solutions to the system of equation (3.4) give OSB in the sense of minimization of 

variance  st
prop

V y . These equations are also very difficult to solve and, therefore, for 

these equations also we shall find methods of obtaining approximation to the exact 
solutions  ,h kx z . Further better approximation can be obtained by using some 
approximate iterative procedures. 

4.  Some miscellaneous results  

In the case of complexities in the equations, let us impose few regularity conditions 
on      , , , ,f x z c x z and x z .We state that  ,x z  belongs to class  if 
it satisfies 

i)  0 ,x z  

ii)  ,x z    

iii)      ' '', , , ,x z x z and x z    exist and are continuous ∀ ሺ𝑥, 𝑧ሻ  

in [(a, b), (c, d)] respectively such that    b a and d c      . 

Let us suppose     , ,f x z and x z belong to class Ω and the function c(x, 
z) satisfies the conditions (ii) and (iii). 
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Before we proceed to prove the results, let us define the symbol ‘O’, which has been 
used in the present investigation. 

For two functions    1 2, ,T x z and T x z , such that the ratio 

   1 2, ,T x z T x z  remains bounded as x and z tends to their limits, then we can write 

    1 2, ,T x z O T x z . 

Lemma 4.1: If the function  ,ijI x z  is defined as  

       2 2

1 1
1 1 2 1 1 2 1 2, ,

iz x j
ij z x

I x z t x t z f t t t t     
 
, 1 2 1 2&x x z z    

then 

 
        

          

1 1 21 1 1
1 2 1 2 1 2

1 2 33 2 1
51 2 1 2 1 2

1 1 1 1 1 2
,

1
2

2! 3 1 2 2 1 3

j j ji i i

x z

ij j j ji i i
i j

xx xz zz

k k k k k k
f f f

i j i j i j
I x z

k k k k k k
f f f O k

i j i j i j

    

    
 

 
  
      
 

  
     
       
  

(4.1) 

where  
2 2 2

1 2 2 21 2 1 21 2

, , , , , ,x z xx zz xz
f f f f f

f t t f f f f f f
t t t tt t

    
     

    
,  

            1 2 1k x x   and 2 2 1k z z  .  

Lemma 4.2: Let  ,x z  denote the conditional expectation of the function 

 1 2,t t , so that 

𝜇ఎሺ𝑥, 𝑧ሻ ൌ
׬ ׬ 𝜂ሺ𝑡ଵ, 𝑡ଶሻ௫మ

௫భ

௭మ
௭భ

  𝑓ሺ𝑡ଵ, 𝑡ଶሻ  𝜕𝑡ଵ𝜕𝑡ଶ

׬ ׬ 𝑓ሺ𝑡ଵ, 𝑡ଶሻ     𝜕𝑡ଵ𝜕𝑡ଶ
௫మ

௫భ

௭మ
௭భ

 

Then, the series expansion of  ,x z at point (t1 , t2 ) is given by 

 

     

       

  

' '''
2

1 2 1 2

2' '' 2 ''' '
3

1 22

4
1 2

2
1

2 12

,
12

x z

xx zz xz x z x z

f f f
k k k k

f

f f f f f f f f f f
x z k k

f

O k k



 
 

   
 



        
    

              
  

 
  
 
  

(4.2) 



STATISTICS IN TRANSITION new series, December 2021 

 

25

Lemma 4.3: If  2 ,x z  denotes the conditional variance of the function  1 2,t t
defined in the interval (x, z) , then 

         
2 ''2 1 22 '

'
, 1

12

k
x z k O k

 


 
   

  

                        (4.3) 

where    1 2k and k  denote all ,
ik s  with power ‘1’ and ‘2’ respectively. 

 

Lemma 4.4:   

     2 2 2 2

1 1 1 1

1 2
1 2 1 2 1 2 1 2 1 2, , 1 ( )

z x z x

z x z x
k k f t t t t f t t t t O k


                  

 
(4.4) 

Lemma 4.5: With  00 ,I x z  and  2 ,x z defined as in Lemma 4.1 and Lemma 4.3 

respectively, we have  

 

𝐼଴଴ሺ𝑥, 𝑧ሻ𝜎ఎ
ଶሺ𝑥, 𝑧ሻ ൌ

௞మ

ଵଶ
׬ ׬ 𝜂ᇱమሺ𝑡ଵ, 𝑡ଶሻ௫మ

௫భ

௭మ

௭భ
   𝑓ሺ𝑡ଵ, 𝑡ଶሻ𝜕𝑡ଵ𝜕𝑡ଶ                   (4.5) 

 

where k denotes any hk  or kk . 

5.  Minimal equations and their approximate solutions 

In this section we will obtain expansion of the series given in (3.4) about the points 

hx  and kz  the common boundary of    , 1, 1th thh k and h k  strata and 
obtain the approximate systems of equation, which will give approximately optimum 
points of stratification as their solutions. In doing so we shall make use of the Lemma’s 
already 4.1-4.5. 

The minimal equations for this method are given by  

𝑐ሺ𝑥௛, 𝑧௞ሻ െ 𝜇௛௞௖ ൌ 𝜇௜௝௖ െ 𝑐ሺ𝑥௛, 𝑧௞ሻ 

i= h +1,h = 1, 2, … L , j= k+1, k= 1,2,…,M 
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For R.H.S., the corresponding expansion for the L.H.S.  may be obtained by 

changing the signs of coefficients of even powers of  ,i jk k the width of  , thi j

stratum, where 1 1,i h h j k kk x x k z z     . From (4.2), after replacing 

   1 2 1, ,h hx x by x x   and    1 2 1, ,k kz z by z z  , we have 

  
' '' ' '' 2 ''''

2 3 4
2

2
1

2 12 24

x xx x
ikc i i i i

c f fc ff c ff c f cc
c k k k O k

c fc f c


              
        

  

where 1i h hk x x  and  derivatives are evaluated at hx . 

However, when the same functions are differentiated w.r.t. kz , we have 

 
' '' ' '' 2 ''''

2 3 4
2

2
1

2 12 24

z zz z
hjc j j j j

c f fc ff c ff c f cc
c k k k O k

c fc f c


              
        

 

where 1j k kk z z 
  

Here, the derivatives are evaluated at both h kx and z , we get 

           
' ''' 2 3 4

4
2

1
2 12

x z
ijc i j i j i j i j

c f f fcc
c k k k k f k k O k k

c fc


         
    

 

where 

   ' '' 2 '''

4 224

xx zz xz x zf f f f c f f f c f c
f

f c

    


 

Thus, we have  

 
       

' '' 2' 2
,

2 12

i j x z
ijc h k i j i j

k k c f f fc
c x z c k k O k k

f


        
    

 

Similarly, we get 

         
' ''

2' 2
,

2 12
h k x z

hkc h k h k h k
k k c f f fc

c x z c k k O k k
f


        

    
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Evaluating derivatives at h kx and z . Therefore, equation (3.4) can be put as

          

       

       

' ''
2'

' '' 2'

2

2 12

2

2 12

h k x z
h k h k

i j x z
i j i j

k k c f f fc
c k k O k k

f

k k c f f fc
c k k O k k

f

      
    

       
    

 (5.1)

 

Now, let us consider an expansion of the function 

   
2

1 1

'
1 2 1 2 1 2, ,k h

k h

z x
hk z x

B c t t f t t t t
 

     

about the point  ,h kx z . Expanding the integral about h kx and z with the help 
of the Taylor’s expansion for two variables, we have 

     
2

' ''
2'

'

2
1

2
x z h k

hk h k h k
f f c fc k k

B fc k k O k k
fc

  
   
  

        (5.2) 

where in (5.2) also the function of ,f  and their derivatives are evaluated at 

h kx and z . Thus, we find that 

         
32 3 ' ' '''

2
'

2
1

8 8 2

h k h k x zhk
h k h k

k k k k c f f c fcB c
k k O k k

f fc

       
    

 

or 

         

       

1 1
2 ' ' ''' 3 32

'

' ' ''
2

'

2
1

8 2 2

2
1

2 6

h k h k x zhk
h k h k

h k x z
h k h k

k k k k c f f c fcB c
k k O k k

f fc

k k c f f c fc
k k O k k

fc

           
        

       
    

(5.3) 
Similarly, we obtain 

         

1
2 3' ' ' '' 2

'

2
1

8 2 6

i j ij h k x z
i j i j

k k B c k k c f f c fc
k k O k k

f fc

                    
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Therefore, the minimal equations (5.1) can be put as 

   
   

11
2 3'2 ' 3 221 1

8 8

i j ijh k hk
h k i j

k k B ck k B c
O k k O k k

f f

                       
 (5.4) 

Hence, if the terms of order 
     

3

, , , h j
Sup

O k k
a b c d

 
 
 

can be neglected, we can 

replace the minimal equations approximately by  

   
11

2 3'2 ' 3

8 8

i j ijh k hk
k k B ck k B c

f f

              

 

or  2h k hkk k B  = Constant (5.5) 

In the case when it is possible to find a function  '
1 1 1, , ,h h k kQ x x z z   such that  

       

   

2

1 1

2 2 '
1 2 1 2 1 2

2'
1 1 1

, ,

, , , 1

k h

k h

z x
h k hk h k z x

h h k k h k

k k B k k c t t f t t t t

Q x x z z O k k

 

 

  

    

 
 

      (5.6) 

Thus, the system of equations (5.5) to the same degree of accuracy can be put as  

 '
1 1 1, , ,h h k kQ x x z z  = Constant (5.7) 

The above results can be put in the form of a note as follows. 
 
Remark 1: If the regression of the dependent variable  Y and stratification variables X 
and Z in an unbounded population is given by  

 ,Y C X Z e   

where ‘e’ is the error component such that  | ,E e x z  = 0 and

   | , , 0V e x z x z      , , ,x a b and z c d    with finite deviation 

of the intervals, and in addition if    
2' , ,c x z f x z  belong to Ω, then the system of 
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equations (3.4) giving strata boundaries  ,h kx z , which correspond to the minimum 

of  st prop
V y , can be put as  

       

       

2

1 1

2

1 1

1
2 2' 3

1 2 1 2 1 2

1
2 2 3'

1 2 1 2 1 2

, , 1

, , 1

k h

k h

k h

k h

z x
h k h kz x

z x
i j i jz x

k k c t t f t t t t O k k

k k c t t f t t t t O k k

 

 

        

         

 

 
. 

If the terms of order 
     

3

, , , h j
Sup

O k k
a b c d

 
 
 

can be neglected, these equations 

can be replaced by the approximate system of equations  

       
2

1 1

2 2'
1 2 1 2 1 2, , 1k h

k h

z x
h k h kz x

k k c t t f t t t t O k k
 

       = Constant 

Or equivalently by  

 '
1 1 1, , ,h h k kQ x x z z  = Constant 

Therefore, 

   

       
2

1 1

2'
1 1 1

2 2'
1 2 1 2 1 2

, , , 1

, , 1k h

k h

h h k k h k

z x
h k h kz x

Q x x z z O k k

k k c t t f t t t t O k k
 

 
   


       

  

The same result can also be obtained by minimizing the function  

     
2

1 1

2'
1 2 1 2 1 2, , 1k h

k h

z x
h kz x

h k

c t t f t t t t O k k
 

         

as in the light of Lemma 5,  212 hk hkc
h k

W    equals to this function 

Thus, we find that if the function    
2'

1 2, ,c x z f t t belongs to the class Ω the 

minimum value of 2
hk hkc

h k
W  and therefore  st prop

V y exists and the set of 

strata boundaries  ,h kx z , corresponding to this minimum, is the solution of the 
systems of equations (3.4) or equivalently of (5.4). These equations are very difficult to 
solve exactly and it becomes essential to find some approximation to stratification 
points.  
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It may be precisely solved by substituting the exact minimal equations by other 
systems of equations which are comparatively easy to solve but are only asymptotically 
equivalent to the exact equations. The error is introduced because we neglect terms of 
higher powers of the strata widths which can be justified when the total stratum is large. 
The approximate systems of equations are obtained by neglecting terms of order 

 3O m  where 
     

, , , h k
Sup

m k k
a b c d

 , on both sides of (5.4). For large strata, the 

terms of order  3O m are small and therefore the error involved in the approximate 

systems of equations is small, although this error is comparatively larger than the one 
involved in the case of optimum allocation. Here, we shall develop the approximate 
systems of equations given in (5.5) and (5.7). 

6. Approximate systems of equations 

I.  If in the expansion of the minimal equations (3.4) we neglect all terms except the 
 first on both sides of the equation, the solution is obtained by taking  

hx  = constant =
b a

L


 , h=1,2,…,L and kz =constant , 1, 2,...,

d c
k M

M


  .  

(6.1) 
Therefore  

 
0h L

b a
x a h with x a and x b

L

 
    

    

and    
 

 
0k M

d c
z c k with z c and z d

M

 
    

   
It cannot be suspected that this set of approximations can give good solutions as 

these are simple to obtain. However, the method is not applicable in the case of infinite 
range. 

 
II.  An approximation to the optimum points of stratification is obtained by solving the 
 systems of equations  

     
2

1 1

2 '
1 2 1 2 1 2 1, ,

h k

h k

x z

h k x z
k k c t t f t t t t C

 
   

       

 (6.2) 

as shown in (5.5). The solutions of this system of equations and also of those that will 
now follow, are expected to be closer to the optimum stratification  points  as compared 
to the solutions obtained from (6.1). 
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III. From Lemma 4 and equation (6.2), we get a general class of approximate systems 
 of equations as  

     
2

1 1

1

3 1 '
1 2 1 2 1 2, ,h k

h k

x z
h k x z

k k c t t f t t t t
 

 

      
   

   = Constant 

However, for 
1

2
  ,we have  

     
2

1 1

2
'

1 2 1 2 1 2 2, ,h k

h k

x z
h k x z

k k c t t f t t t t C
 

        

and for 
1

3
  , we have a system of equations as 

   
2

1 1

3
'3

1 2 1 2 1 2 3, ,h k

h k

x z

x z
c t t f t t t t C

 

 
   

 
   

giving approximations to stratification points  ,h kx z . As remarked in the case of the 
optimum allocation method, in some particular cases some of the approximate systems 
given in the above equations may be meaningless. Therefore, depending upon the 
situation, one should make the approximate choice of the systems of equations for 
obtaining the approximations to optimum points ,h kx z . 

7.  Cum  3 3 ,D x z  Rule 

If the function      
2', , ,3D x z c x z f x z  is bounded and its first two derivatives 

exists ∀ 𝑥 ∈  ,a b   & 𝑧 ∈ ,c d  , then taking equal intervals with a given values of L and 

M on the cumulative cube root of  3 ,D x z will give AOSB  ,h kx z . 

Remarks: 
I. If we take  either  ,c x z x    or  ,c x z z    in  3 ,D x z  it reduces 

to the method proposed by Singh and Sukhatme (1969). 

II. If the function  
2' ,c x z is constant, therefore the proposed method reduces to  

 Cum  3 ,f x z rule. 
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Further, for any distribution and given number of strata the set of AOSB will 
remain unchanged with respect to the form of conditional variance. However, the 
efficiency of the stratification will differ from stratified simple random sampling 
estimators as well as other estimators with the choice of various forms of conditional 
variance. 

8.  Empirical study 

For the purpose of empirical study, the effectiveness of the methods of finding 
approximation to the optimum points of stratification, we have considered the system 
of minimal equations obtained for the case of proportional allocation. In this 
illustration we shall consider equal interval approximation and the system of 
approximations given in (6) article. The former approximation is specially considered 
due to its simplicity. From all the later approximations we have only chosen one suitable 
method. Since the order of approximation involved in all these methods is the same, 
this one approximation will give the idea about the effectiveness of all other 
approximations given in article (6). For the sake of simplicity, the linear regression line 
Y on X and Z have been taken as the form y x z e      . Here, it is considered 
that the two auxiliary variables used for stratification are dependent. From all the 
subsequent approximations we have only chosen one suitable method. Since the order 
of approximation involved in all these methods is the same, this one approximation will 
give the idea about the effectiveness of all other approximations. For obtaining the 
stratification points under proportional allocation let us assume 
 , .c x z x z     Further, let us assume that the correlation coefficient between 

X and Z is denoted by  and is equal to 0.65. Let us consider the following examples: 

Empirical study 1:  
Suppose  

 
2

21
, 0

2

x

f x e x



   

and the variable Z has 

 
2

21
, 0

2

z

f z e z



   

In order to obtain the OSB when both the variables are standard normally 
distributed by assuming the value of regression coefficients 0.65   and 0.57  . 
For obtaining total 16 strata, 4 along X variable and 4 along Z variable using the 
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proposed Cum  3 3 ,D x z  rule, by solving it in Mathematica Software assuming that 

the distribution of X and Z are truncated at x = 6 and z = 4, respectively, we get the 
stratification points as below: 

Table 1.   OSB and Variance, for standard normally distributed auxiliary variables 

OSB  ,h kx z  
Variance

Cum 3 3( , )D x z Rule 
Variance 

(Singh  1975) 
% R.E. 

(0.3347,0.2673) 
(0.5779,0.2673) 
(1.9004,0.2673) 
(6.0000,0.2673) 
(0.3347,0.5284) 
(0.5779,0.5284) 
(1.9004,0.5284) 
(6.0000,0.5284) 
((0.3347,0.9865) 
(0.5779,0.9865) 
(1.9004,0.9865) 
(6.0000,0.9865) 
(0.3347,4.0000) 
(0.5779,4.0000) 
(1.9004,4.0000) 
(6.0000,4.0000) 

0.06798628 0.182346 268.21 

 

Empirical study 2:  
Let  

𝑓ሺ𝑥ሻ ൌ ቐ
1

𝜎𝑥√2𝜋
𝑒ି

ሺ೗೚೒ ೣషഋሻమ

మ഑మ ; 𝑥 ൐ 0, 𝜎 ൐ 0

0              , 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒  
 

and  

𝑓ሺ𝑧ሻ ൌ ൝
1

𝑏 െ 𝑎
, 𝑎 ൑ 𝑧 ൑ 𝑏

0         , 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒 
 
To obtain the OSB in proportional allocation using the proposed Cum  3 3 ,D x z

 
rule for uncorrelated auxiliary variables having densities as defined above. Standardised  
log-normal distribution is defined in the interval 𝑥 ∈ ሾ0,10ሿ and the other variable 

 0,1 ,z and β=0.82 & γ=0.437. For 3×2 (L×M) = 6 strata, i.e. 3 along X variable and 
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2 along Z variable, the results obtained after solving the function using Mathematica 
Software are presented in the following tables as: 

Table 2.  OSB and Variance, for standard lognormal and uniform distributions 

OSB 

 ,h kx z  

Variance 
(Cum 3

3( , )D x z Rule) 

(3.4216,0.4759) 
(6.5319,0.4759) 

(10.0000,0.4759) 
(3.4216,1.0000) 
(6.5319,1.0000) 

(10.0000,1.0000) 

0.035281796 

9.  For independent auxiliary variables under proportional allocation ( ρ = 0) 

In order to propose a technique under proportional allocation when the two 
auxiliary variables are independent to each other we need to proceed in the same way 
as proceeded in the case when they were dependent only with the difference that here 
in this case we have to take marginal densities rather than joint densities under 
consideration. We can write (5.3) as  

   
 

   
 

         
   

   

         
   

   

1 1
2 2' '3 3

' ' ''
2

'

' ' ''
2

'

8 8

2
1

2 6

2
1

2 6

h hh h

h x
h h

k z
k k

k kB c x B c z

f x f z

k c x f c f x c x
k O k

f x c x

k c z f c f z c z
k O k

f z c z

   
   
   
   

      
    

     
    

 

In a similar way, we have  

   
 

   
 

         
   

   

         
   

   

11
2 3'2 ' 3

' ' ''
2

'

' ' '' 2

'

8 8

2
1

2 6

2
1

2 6

j ji i

i x
i i

j z
j j

k B c zk B c x

f x f z

k c x f c f x c x
k O k

f x c x

k c z f c f z c z
k O k

f z c z

             
      

    
     

    
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where          
2 2

1 1

' '
1 1 1 2 2 2

h k

h k

x z
h kx z

B c t f t dt and B c t f t dt
 

  
 

 

However, if the terms of order    
3 3

, ,h k
Sup Sup

O k and O k
a b c d

   
   
   

can be 

neglected, we replace the minimal equations approximately by  

   
 

   
 

   
 

   
 

11 1 1
2 3'2 2 2' ' '3 3 3

8 8 8 8

j jh h ih h i k B c zk k kB c x B c z B c x

f x f z f x f z

                             

 

or in other words we have that 2 2
h kh kk B and k B are constants. In the case when it 

is possible to find a function    ' '
1 1 1 1, ,h h k kQ x x and Q z z   such that  

       

   

2

1

2 2 '
1 1 1

2'
1 1, 1

h

h

x
h h h x

h h h

k B k c t f t dt

Q x x O k







    

  

and                           
       

   

2

1

2 2 '
2 2 2

2'
1 1, 1

k

k

z
k k k z

k k k

k B k c t f t dt

Q z z O k







    


. 

 
The Remark 1 can be proceeded in the case of independent variables too. Similarly, 

an approximate system of equations can be proposed in the same way as proposed in 
the case when auxiliary variables are dependent, and can be written as  

ሺ𝑘௛𝑘௞ሻଶ ׬ ׬ 𝑐ᇱమሺ𝑡ଵሻ𝑐ᇱమሺ𝑡ଶሻ𝑓ሺ𝑡ଵሻ𝑓ሺ𝑡ଶሻ𝜕𝑡ଵ𝜕𝑡ଶ
௭ೖ

௭ೖషభ

௫೓
௫೓షభ

ൌ 𝐶ଵ.

 
The solution of this system of equations and also those that will now follow are 

expected to be closer to the optimum points of stratification as compared to the strata 
obtained composed from h

b a
k

L


  = Constant and k

d c
k

M


 = Constant. Therefore, 

depending on the situation one should make the approximate choice of the system of 
equations for obtaining the approximation of optimum points of stratification. 

 
 



36                                                                           F. Danish , S. E. H. Rizvi: Approximately optimum strata… 

 

 

10.  Cum  3 4 ,D x z Rule 

For equal intervals with given values of L and M on the cumulative cube root of 

 4 ,D x z  will give AOSB if the function          
2 2' '

4 ,D x z c x c z f x f z is 

bounded and its first derivative exists in all  ,x a b  and  ,z c d . 

Remarks: 

1. If the functions    
2 2' 'c x and c z are constants, then the proposed method 

is reduced to cum    3 f x f z rule. 

2. If we take    c x c z and    f x f z , then the proposed method is reduced 

to the Yadava and Singh (1984) method of Cum  3 2B x  

 where 
       

22 ' '

2 3

f x x c x x x x
B

x

  
  

11.  Empirical study 

We shall demonstrate empirically the efficiency of the given method obtaining 
approximately optimum strata boundaries (AOSB). For this purpose, we have 
considered the system of minimal equations obtained for the case of proportional 
allocation when the two auxiliary variables used for stratification are independent. 
From all the subsequent approximations we have only chosen one suitable method. 
Since the order of approximation involved in all these methods is the same, this one 
approximation will give the idea about the effectiveness of all other approximations. 
For obtaining the stratification points under proportional allocation let us assume 
 ,c x z x z     . Let us consider the following examples: 

Empirical study 3:  

Let     2 2 ,1 2f x x x     and   1,1 6zf z e z     
In order to obtain stratification points when the auxiliary variable X follows right-

triangular distribution defined in [1,2] and auxiliary variable Z follows exponential 
distribution defined in [1,6] we assume the values of 0.567   and 0.257  . While 
execution for obtaining OSB using Cum  3 4 ,D x z Rule by solving the function using 

Mathematica Software for 6 strata, 2 along X variable and 3 along Z variable. The results 
obtained are presented in the following table. 
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Table 3. OSB and Variance, with right-triangular and exponential distribution  

OSB 

 ,h kx z  

Variance 

% R.E. 
 Cum 3

4( , )D x z Rule 
 Yadava and Singh, 

1984 

(1.5000,1.9474) 
(1.0000,1.9474) 
(1.5000,3.3368) 
(1.0000,3.3368) 
(1.5000,6.0000) 
(1.0000,6.0000) 

0.089542 0.152122 169.89 

 
Empirical study 4: Let us consider the distribution of X as right-triangular having 

   2 2 ,1 4f x x x     
and Z variable is having a uniformly distributed having  

  1
,1 2f z z

b a
  


 

In order to find the OSB when one of the auxiliary variable is following right-
triangular distribution and the other uniform distribution, we assume the value of  

0.56   and 0.762  . The stratification points obtained for total 6 strata among 

that 3 along X variable and 2 along Z variable for the Cum  3 4 ,D x z Rule using 

Mathematica Software for solving the function are presented in the following table. 
 

Table 4.  Uncorrelated variables having right-triangular and exponential distribution, OSB and 
 Variance  

OSB 

 ,h kx z  

Variance 
% R.E. 

 Cum 3
4( , )D x z Rule Khan et al. (2008) 

(1.7880,1.5000) 
(2.6870,1.5000) 
(4.0000,1.5000) 
(1.7880,2.0000) 
(2.6870,2.0000) 
(4.0000,2.0000) 

0.0354952 0.08293 233.64 
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12.  Simulation Study 

In this section, we conduct a simulation study to investigate the effectiveness of the 
proposed dynamic programming with the following methods (1-3) in stratification 
package in the R statistical software and 4 & 5 in LINGO: 
1.  Dalenius and Hodges [1959] cum f method, which is the most frequently 
 used and better known method. 
2.  Gunning and Horgan [2004] method. 
3.  Lavallée -Hidiroglou [1988] method with Kozak’s [2004] algorithm. 
4.  Khan et al. [2015] method 
5.  Proposed method. 

In this study, a data set (with N = 5000) following the uniform and exponential 
distribution with a = 0, b=1, c= 0 and d = 2 was randomly generated by the R software. 
Then, the OSBs using the proposed method as discussed earlier are obtained for the 
three different number of strata, that is, (L,M )= (3 ,4). Then, the OSBs using the 
proposed method are obtained for (L,M )= (3 ,4). The OSBs are determined using cum 
f method, geometric method and the Lavallée-Hidiroglou (Kozak’s) method using the 
stratification package with CV = 0.75 and Khan et al. [10] and the proposed method 
using LINGO. 
Table 5.  The variance of variables for different stratification methods 

Stratification Method 
Variance 
(in e-09) 

Dalenius and Hodges [1959] cum f  method 312.8371 

Gunning and Horgan [2004] method 2891.916 

Lavallee-Hidiroglou  [1988]  method using Kozak’s   [2004]   method 728.3791 

Khan et al. [2015]  589 .7021 

Proposed method 203.107 

From the table above, it is noted that the OSBs obtained by the cum f method and 
the proposed dynamic programming method are very close to each other, whereas the 
OBSs in the other methods, geometric, Lavallée-Hidiroglou method with Kozak’s 
algorithm and Khan et al. (2015) differ widely from that of the proposed method. 
However, the table reveals that the proposed method yields the smallest variances of 
the estimate for all (L, M) = (3,4) as compared to all the other methods. Although the 
variances for the dynamic programming method are closed to the cum f method, the 
other two methods produce a greater variance than the dynamic programming 
technique. Thus, the study reveals that the proposed dynamic programming technique 



STATISTICS IN TRANSITION new series, December 2021 

 

39

is more efficient than the other methods while stratifying a population with a uniform 
and exponential distributions. 

13.  Conclusion 

The optimum stratification is defined as subdividing heterogeneous population 
into the best possible manner that makes the homogeneity within subpopulation and 
heterogeneity between them. Demarcation of strata boundaries is one of the main 
factors for efficient results in stratified random sampling. In this regard, we have 

proposed Cum  3 ,iD x z Rule (i = 3,4) for obtaining approximately OSB for two 

stratification variables having single study variables for both the dependent as well as 
independent cases for concomitant variables. Thus, comparing the proposed method 

Cum  3 3 ,D x z Rule for standard normally distributed auxiliary variables with the 

Singh (1975), the %RE obtained is 268.21, which indicates the efficiency of the proposed 
method. Further, the %RE obtained while making comparisons between the proposed 

method (Cum  3 4 ,D x z Rule) and the method given by Yadava and Singh (1984) 

results in 169.89 for right-triangular and exponential auxiliary variables. In the same 
case for right-triangular and uniform auxiliary variables the %RE comes out to be 
233.64 as compared with Khan et al. (2008) under proportional allocation. Further, the 
simulation study also proved the superiority of the proposed methods with regard to 
the existing methods. Thus, it can be concluded that the use of two stratification 
variables gains efficiency over a single auxiliary variable and the proposed methods are 
more precise than the existing methods. The proposed strategy can be entirely applied 
to different distributions that describe the concomitant variables. 
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Changes in the impact of US macroeconomic news on financial 
markets the example of the Warsaw Stock Exchange 

Henryk Gurgul1, Jessica Hastenteufel2, Tomasz Wójtowicz3 

ABSTRACT  

Due to the high importance of the American economy, in the past, announcements of US 
macroeconomic data were shown to have a significant impact on financial markets 
in general, and on European stock markets in particular. However, as this effect may vary 
in time, this paper examines the changes in the impact of US macroeconomic news on the 
WIG20, the main index of the Warsaw Stock Exchange. Based on intraday data from 2004-
2019 we study the changes in significance and in the strength of the reaction of WIG20 
to announcements of unexpected values of 13 indicators describing the American economy. 
On the basis of the event study analysis, we describe the reaction of the WIG20 index in the 
first few minutes after these kinds of announcements. 
Key words: event study, macroeconomic announcements, intraday data, Warsaw Stock 
Exchange.  

1. Introduction 

Information on the state of an economy is important for investors in financial 
markets, and it affects both the foreign exchange markets as well as the stock markets. 
Due to globalisation and the dominant role of the US economy, American 
macroeconomic news is very important in this context. This has been shown in various 
scientific papers dealing with this issue. In the beginning, these studies mainly 
examined the impact of US macroeconomic data on the USA, and on markets in other 
developed countries (e.g. Schwert, 1981; Pearce and Roley, 1985; Li and Hu, 1998; 
Nikkinen and Sahlström, 2004; Boyd et al., 2005; Andersen et al., 2007; Harju and 
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Hussain, 2011). Over time, this analysis was extended to investigate the impact of US 
macroeconomic data on emerging markets, including markets in Central and Eastern 
Europe (e.g. Hanousek et al., 2009; Gurgul and Wójtowicz, 2013, 2014, 2015). However, 
the number of papers concerning the reaction of European emerging markets 
to macroeconomic news from the USA is still very limited. 

Previously mentioned studies of stock market reactions to information about the 
US economy were carried out by various authors who applied various methods and 
used different data covering the periods of different economic conditions. Taking that 
into account, it is difficult to compare the results of these studies, and to draw 
conclusions from the changes in the impact of news from the United States. For this 
reason, in this paper we examine the reactions of the WIG20 (the main index of the 
Warsaw Stock Exchange) to announcements of 13 macroeconomic indicators 
containing current information about the state of the US economy over time. The WSE 
is the largest stock market among post communist countries in Central and Eastern 
Europe. Hence, the results of this paper can be seen as a reflection of changes observed 
on other emerging markets in the CEE region. Additionally, previous research from 
Gurgul and Wójtowicz (2014; 2015) suggests that the reaction of investors on the WSE 
is similar to that on the Vienna Stock Exchange. Therefore, the results of the study can 
be at least partially transferred to the VSE. 

To describe the reaction of the WSE to US data in detail, we consider 5-minute 
WIG20 returns from January 2004 until the end of July 2019. Application of this data 
allows us to comprehensively investigate the changes in strength and significance of the 
impact of US macroeconomic news over time. It is also important to mention that the 
period considered includes both the time of bull market before the global financial 
crisis, the time of the crisis itself, as well as the period of changes following the crisis. 
Additionally, it also covers periods of other crises in the world including the 
government-debt crisis in Greece or the financial crisis in Spain (2008–2014).  

By applying intraday data this paper is an extension of previous research about the 
event study methodology. To verify the significance and the strength of the impact of 
announcements of US macroeconomic data on the WIG20, we apply a nonparametric 
rank test proposed by Kolari and Pynnönen (2011). It is a generalization of the widely 
applied test of Corrado and Zivney (1992). The application of this methodology, 
instead of the commonly used GARCH models or regressions with dummy variables, 
allows us to analyse the significance of the reaction of index returns to American 
macroeconomic news more precisely. 

The remainder of the paper is organised as follows. In the next section we provide 
an overview of the existing literature focussing on the impact of macroeconomic 
announcements on financial markets. In Section 3 we present the US macroeconomic 
indicators and the returns used in this study. We also briefly describe the methodology 
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applied. Afterwards the empirical analysis and the discussion of its results are 
presented. The final section critically concludes the paper. 

2.  Literature review 

Early studies on the impact of US macroeconomic data announcements were 
focused on the US stock market (Geske and Roll, 1983; McQueen and Roley, 1993). 
These studies have been subsequently extended to other developed markets showing 
the importance of information about the US economy. For example, Nikkinen and 
Sahlström (2004) examined the impact of US and domestic macroeconomic news on 
the German and Finnish equity markets. Their study shows a dominant role of 
information from the US as the volatility on both markets is significantly impacted 
by US announcements, particularly by information about the unemployment rate and 
PPI. A wider group of stock markets was considered by Nikkinen et al. (2006), who 
analysed the impact of US macroeconomic news announcements on 35 stock markets 
around the world. Among these markets, there were some developed and emerging 
markets in Europe. Based on data from July 1995 to March 2002, Nikkinen et al. (2006) 
stated, on the one hand, that unexpected macroeconomic information from the USA 
affects the volatility on developed stock markets in Europe and Asia. On the other hand, 
the volatility on emerging CEE markets (including the Czech Republic, Hungary, 
Poland, Russia and Slovakia) was not significantly impacted by announcements of US 
macroeconomic indicators. This showed that developed and emerging markets in 
Europe reacted differently to US macroeconomic news announcements. However, this 
observation may have been caused by the application of data from the early period of 
the development of equity markets in the CEE region. This observation is supported 
by opposite results shown by Gurgul et al. (2012). Based on data from January 2004 to 
December 2011, Gurgul et al. (2012) pointed out a significant reaction of daily returns 
of the WIG20 to unexpected news about inflation and industrial production in the 
United States. 

More precise results on the impact of US macroeconomic news on European 
markets were obtained by applying intraday data. For example, based on the five-
minute returns Andersen et al. (2007) analysed the impact of US macroeconomic news 
on US, German and British stock, bond and foreign exchange markets. High-frequency 
data was also applied by Harju and Hussain (2011), who investigated the impact of 
scheduled US macroeconomic announcements on British, French, German, and Swiss 
stock markets. They proved that announcements of CPI, PPI, retail sales, durable 
goods orders, unemployment rate and industrial production lead to significant and 
immediate changes of the volatility and the 5-minute returns of the CAC40, the DAX30, 
the FTSE100, and the SMI. Similar results, significant and immediate reaction, 
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were presented by Dimpfl (2011), who analysed the 1-minute returns of the DAX from 
July 2003 to December 2006. Dimpfl (2011) showed that investors on the Frankfurt 
Stock Exchange react right after a news release and the significant reaction takes place 
in the first ten minutes. 

Gurgul and Wójtowicz (2015) analysed the reaction of the Austrian stock exchange.  
Applying 1-minute returns of the ATX (= the main index of Vienna Stock Exchange) 
from 2 January 2007 to 31 December 2013 they proved a significant impact 
of announcements of 10 US macroeconomic indicators on the returns and the 
volatility. The strongest reaction was induced by news from the US labour market 
included in nonfarm payrolls announcements. Gurgul and Wójtowicz (2015) also 
examined the changes in the strength of the reaction of the ATX to US macroeconomic 
announcements in subsequent years of the period under consideration. This analysis 
led to the conclusion that the strongest reaction of investors in Vienna took place 
during the global financial crisis in 2007-2009. After this period, the reaction of the 
ATX to news from the US economy was weaker.    

Empirical analysis based on intraday data has also been conducted for European 
emerging markets. Hanousek et al. (2009) investigated the reaction of stock prices 
in the Czech Republic, Hungary and Poland to US and EU macroeconomic news. 
On the basis of the five-minute returns from the period June 2, 2003  December 29, 
2006, Hanousek et al. (2009) showed that the Czech and the Hungarian stock markets 
reacted significantly to macroeconomic news from both the US and EU, while the stock 
market in Poland was only affected by announcements from the Eurozone. This line of 
research was continued by Hanousek and Kočenda (2011). Using 5-minute returns of 
the WIG20, the PX50 and the BUX from the period 2004–2007 they proved that stock 
markets in the Czech Republic, in Hungary and in Poland mainly reacted to 
macroeconomic information from the EU, and that macroeconomic data from the 
United States was not so important. 

Opposite conclusions follow from Gurgul and Wójtowicz (2014), who studied 
the reaction of the Polish stock market to US announcements. Based on the 1-minute 
returns from 1 April 2007 and 30 August 2013, they showed that the WIG20 reacted 
immediately and significantly to unexpected news from the US economy. A significant 
reaction was observed in the first minute after announcements about industrial 
production, durable goods orders, retail sales and nonfarm payrolls. Additional analysis 
performed by Gurgul and Wójtowicz (2014) indicated that US macroeconomic 
announcements did also influence medium and small stock indices of the stock 
exchange in Warsaw significantly.  

In addition to the impact on the stock markets, the impact of macroeconomic 
news on foreign exchange markets in the CEE countries has been examined. Égert 
and Kočenda (2014) showed that the Czech, the Hungarian and the Polish currencies 
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significantly react to American macroeconomic information. However, this reaction is 
different in the pre-crisis (2004-2007) than in the crisis period (2008-2009). 
The reaction of the foreign exchange markets in these countries to macroeconomic 
news from the Eurozone and the US was analysed also by Kočenda and Moravcova 
(2018), who applied intraday data from 2011-2015. 

3.  Data and methodology 

3.1.  Announcements 

In this paper, we investigate the impact of the announcements of 13 macroeconomic 
indicators describing various aspects of the US economy. These include: the Consumer 
Confidence Index (CCI), the Consumer Price Index (CPI), the Durable Goods Orders 
(DGO), the Existing Home Sales (EHS), the Housing Starts (HS), the Industrial 
Production (IP), the ISM Manufacturing Index (ISM), the Initial Jobless Claims (IJC), 
the Nonfarm Payrolls (NFP), the New Home Sales (NHS), the Producer Price Index 
(PPI), the Real GDP (GDP), and the Retail Sales (RS). In most papers the 
unemployment situation in the USA is described by the Unemployment Rate. However, 
as Andersen et al. (2007) show, Nonfarm Payrolls is one of the most significant 
macroeconomic indicators to describe the US unemployment situation. Similar 
conclusions follow from the research of Suliga and Wójtowicz (2013). 

We chose these indicators because they contain the most current and the most 
important information for investors. Almost all of these indicators are released on 
a monthly basis and they describe the economic situation in the USA in the previous 
(or even in the current) month. The only exception is IJC, which is announced weekly. 
It contains information from the previous week. Taking into account monthly data 
ensures a sufficient number of announcements to conduct this study. The second 
advantage of these indicators is that they have been widely studied in literature. 
Thus, we can compare the results of this analysis with previous research. 

All the indicators under study are released during trading hours on the WSE. Most 
of them (CPI, DGO, HS, IJC, NFP, PPI, GDP, and RS) are published at 8:30 EST  
(14:30 CET), CCI, EHS, ISM, and NHS are released at 10:00 EST (16:00 CET) and only 
values of IP are announced at 9:15 EST (15:15 CET), where EST means Eastern 
Standard Time and CET means Central European Time. 

The announcements are released on different days of the month and different days 
of the week. The sequence in which US macroeconomic indicator announcements are 
released may play an important role on how they are perceived by investors. The earlier 
the indicator is released, the more important it is for investors because it is more 
probable that it contains new, unexpected information. The value of indicators released 
later in a month can be forecasted based on the value of earlier indicators. The earliest 
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published indicator is ISM, which is announced in the first few days of a month. Then, 
it is followed by NFP, which is a part of the Employment Report published by the 
Bureau of Labour Statistics usually on the first Friday of each month. The majority of 
the other indicators (CPI, EHS, HS, IP, PPI, and RS) is released mainly in the middle of 
a month. The rest of them (CCI, DGO, NHS, and GDP) is released in the last few days 
of a month. However, it should be noted here that values of CCI describe consumers’ 
perception of the economic conditions in the current month. 

In this paper, we study the impact of unexpected news related to these US 
macroeconomic announcements. Thus, for each macroeconomic news release the 
actual value of the announced indicator is compared with its consensus forecast. 
All comparisons are performed on the basis of the consensus published by Bloomberg 
a few days before announcements. It allows us to classify all releases into three clusters: 
‘above consensus’, ‘below consensus’ and ‘in line with consensus’. Because the news 
in the last cluster is in line with previous investor expectations, our analysis focuses only 
the first two clusters, which contain unexpected news. 

In order to interpret the results of the analysis correctly we divide the 
announcements according to their meaning rather than simply compare them with the 
consensus. For most of the indicators, the announcement above the consensus is good 
news because it is expected to have a positive impact on the stock market. The only 
exception is publication of CPI, PPI and IJC, where values greater than the forecast are 
expected to have a negative impact on the stock prices and thus are seen by investors as 
bad news. Analogously, if the values of CPI, PPI and IJC are lower than the forecast, 
it is considered good news for the stock market. Based on this consideration we divide 
all the announcements into two categories of unexpected news: good news and bad 
news. For these two sets of data, we will perform the empirical analysis.  

In addition to analysing the impact of announcements of an individual indicator, 
we also examine the impact of all good and all bad news. In the set of all good (bad) 
news, we take into account only monthly announcements, i.e. without IJC 
announcements released weekly. Additionally, when two or more indicators are 
announced on the same day, we consider only the first indicator. Subsequent 
announcements on the same day are excluded from the sample because expectations 
about their value could be heavily influenced by earlier news, and thus, they might be 
different from consensus. When two or more announcements are made at the same 
hour, we consider them only if they do not contain contradictory information, i.e. when 
each of them is good news or each of them is bad news. The final numbers of the 
different types of events under study that take place during trading days on the WSE 
are reported in the second column of Table 1. 
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3.2.  Returns 

To describe the impact of US macroeconomic announcements on investors 
operating on the Warsaw Stock Exchange correctly we study the 5-minute percentage 
log-returns 𝑅௜,௧ of the WIG20 from 2 January 2004 to 31 July 2019: 

𝑅௜,௧ ൌ 100൫𝑙𝑛 𝑃௜,௧ െ 𝑙𝑛 𝑃௜,௧ିଵ൯, (1)

where 𝑃௜,௧ is the value of the WIG20 at the end of the 𝑡-th 5-minute period on day 
𝑖. The application of the 5-minute intraday returns is a common compromise between 
accuracy and the negative effects of market microstructure (e.g. Jones et al., 2005; 
Andersen et al., 2007; Harju and Hussain, 2011). The value of the WIG20 obtained from 
the WSE is calculated on the basis of stock prices of 20 largest and most liquid 
companies listed on the WSE. The behaviour of the share prices of WIG20 companies, 
as well as the perspectives of the companies themselves, are subject to deep analysis by 
investors. This is why we expect new important information to be included in the 
WIG20 very quickly. These expectations are also supported by the results of previous 
studies, for example Gurgul and Wójtowicz (2014). 

 
Figure 1.  Standard deviation of 5-min percentage WIG20 log-returns in the period 2004-2019 

Source: Own elaboration. 

The regarded period covers about 15 years characterised by changes in the 
economic situation in the United States and in the whole world. These changes include 
various crises that took place in these years. It is well known that the volatility on stock 
markets increases during such turbulent periods. This phenomenon has also been 
observed on the WSE. It is also visible on Figure 1, where we present values of the 
standard deviation 𝑆௜ computed for each day 𝑖 based on the 5-min log-returns of the 
WIG20 from the continuous trading phase of a session from days 𝑖 െ 20, … , 𝑖 ൅ 20. 
Due to these changes in volatility, to compare the strength of the reaction of the WIG20 
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returns to publications of US macroeconomic indicators in various sub-periods of the 
main period 2004-2019 we will also consider standardised 5-min returns 𝑆𝑅௜,௧ defined 
as 5-min log-returns 𝑅௜,௧ divided by the corresponding standard deviation 𝑆௜ defined as 
above for day 𝑖. In that case, standardised returns are expressed in terms of return 
standard deviation.  

3.3. Event study 

To investigate the impact of US macroeconomic news on the intraday returns of 
the WIG20 we use the event study methodology. In brief, it includes the analysis of the 
significance of the abnormal behaviour of returns (abnormal returns) around the event 
(in the so-called event window). In this paper, the events are defined as the 
announcements of unexpected macroeconomic news described previously. An event 
window contains two 5-minute WIG20 returns before the announcement and three 
returns after the announcement was made.  

Abnormal returns are defined as the difference between actual returns and their 
expected values computed based on data prior to the event window (form the pre-event 
window). For the 𝑖-th event and time t abnormal return 𝐴𝑅௜௧ is defined as: 

𝐴𝑅௜௧ ൌ 𝑅௜௧ െ 𝐸ሺ𝑅௜௧|Ωሻ, (2)
where 𝑅௜௧ is the 5-minute return and 𝐸ሺ𝑅௜௧|Ωሻ is the expectation of 𝑅௜௧ conditional on 
information set Ω form the pre-event window. In this paper we consider the pre-event 
window containing 36 values of 5-minute WIG20 returns just before the event window. 
This choice of the length of event and pre-event window ensures that the pre-event 
window does not start earlier than 10:25CET (when macroeconomic indicator 
in announced at 13:30CET) and even for data from before October 2005 (when trading 
sessions on the WSE started at 10:00CET) it does not contain intraday returns from the 
initial part of a trading session with increased volatility. To set up notation let us denote 
the moment of a news release by 𝑡 ൌ 0. Then, the event window includes the 5-minute 
returns for 𝑡 ൌ െ1, … ,3, while the pre-event window includes returns for 
𝑡 ൌ െ37, … , െ2. It should be noted here that the impact of the 𝑖-th news 
announcement can be observed only for 𝑡 ൒ 1.  

There are various methods of computing expected values of 𝑅௜௧. In this paper, 
however, we apply the constant mean model where 𝐸ሺ𝑅௜௧|Ωሻ is equal to the average of 
returns in the pre-event window. It is a simple but very useful and robust model.  

To test the significance of mean abnormal returns in the event window, we apply 
the nonparametric generalized rank test of Kolari and Pynnonen (2011) with 
a correction for event-implied volatility. The great advantage of this nonparametric test 
is that it does not need any assumption about the normality of abnormal returns. 
The test statistics is constructed as follows. 
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In the first step of the test procedure, we group events into a cluster. The events are 
a specific type of announcements, for example the announcements of a given 
macroeconomic indicator that are good (or bad) news for investors. For each 𝑖-th event 
in the cluster, for 𝑡 ൌ െ37, … ,3 we compute abnormal returns 𝐴𝑅௜௧ from (2) with 
𝐸ሺ𝑅௜௧|Ωሻ computed earlier as the average of returns in the pre-event window  
(𝑡 ൌ െ37, … , െ2). Then, for each event, all abnormal returns in the event and pre-
event windows are standardised:  

𝑆𝐴𝑅௜௧ ൌ 𝐴𝑅௜௧ 𝑆஺ோ೔
⁄ , (3)

where 𝑆஺ோ೔
 is the standard deviation of abnormal returns in the pre-event window. 

Thisprocedure ensures the comparability of abnormal returns computed based on data 
from days with high or low volatility.  

In order to account for any event-induced increase in volatility observed in the 
event window (Corrado, 2011; Corrado and Truong, 2008; Kolari, Pynnonen, 2011) 
we re-standardise the 𝑆𝐴𝑅௜௧s in the event window for 𝑡 ൐ 0 by dividing them by the 
cross-sectional standard deviation: 

𝑆𝐴𝑅௜௧
ᇱ ൌ ൜

𝑆𝐴𝑅௜௧ 𝑡 ൌ െ37, … ,0
𝑆𝐴𝑅௜௧/𝑆ௌ஺ோ೟

𝑡 ൌ 1, … ,3,  (4)

where  

𝑆ௌ஺ோ೟
ൌ ඩ

1
𝑁 െ 1

෍ሺ𝑆𝐴𝑅௜௧ െ 𝑆𝐴𝑅ప௧തതതതതതതሻଶ

ே

௜ୀଵ

 (5)

is the cross-sectional standard deviation of the standardised abnormal returns, and 𝑁 
is the number of events in the cluster. Under the null hypothesis of no news effect, 
𝑆𝐴𝑅௜௧

ᇱ s are zero mean and unit variance random variables. 
To study the impact of a news release we test the significance of abnormal returns 

for each 𝑡଴ in the event window separately. Thus, for each 𝑡଴ ൌ െ1, … ,3 the demeaned 
standardised abnormal ranks of 𝑆𝐴𝑅௜௧

ᇱ s are given by the formula: 

                     𝑈௜௧ ൌ
𝑟𝑎𝑛𝑘ሺ𝑆𝐴𝑅௜௧

ᇱ ሻ

𝑇 ൅ 1
െ 1/2 

 (6)

for 𝑖 ൌ 1, … , 𝑁, where 𝑡 ∈ Θ ൌ ሼെ37, … , െ2, 𝑡଴ሽ, 𝑇 െ 1 is the length of the pre-event 
window and 𝑟𝑎𝑛𝑘ሺ𝑆𝐴𝑅௜௧

ᇱ ሻ denotes the rank of 𝑆𝐴𝑅௜௧
ᇱ  within the vector consisting of 

standardised abnormal returns from the pre-event window and 𝑆𝐴𝑅௜௧బ
ᇱ . With this 

notation 𝑈௜௧బ
 denotes the demeaned standardised abnormal rank of 𝑆𝐴𝑅௜௧బ

ᇱ  and the null 
hypothesis of no news effect is equivalent to 

𝐸൫𝑈௜௧బ
൯ ൌ 0. (7)
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To test this hypothesis we apply the generalised rank 𝑡௚௥௔௡௞ test statistic of Kolari-
Pynnönen (2011) defined as: 

𝑡௚௥௔௡௞ ൌ 𝑍ඨ
𝑇 െ 2

𝑇 െ 1 െ 𝑍ଶ , (8)

where 𝑍 ൌ 𝑈ഥ௧బ
/𝑆௎ഥ, 𝑆௎ഥ ൌ ටଵ

்
∑ 𝑈ഥ௧

ଶ
௧∈஀  and 𝑈ഥ௧ ൌ

ଵ

ே
∑ 𝑈௜௧

ே
௜ୀଵ . 

Under the null hypothesis of no news effect, the distribution of 𝑡௚௥௔௡௞ statistic 
converges to Student t distribution with 𝑇 െ 2 degrees of freedom when the number of 
events 𝑁 in the cluster increases. 

It is worth noting here that the above procedure can be applied to standardised 
returns 𝑆𝑅௜,௧ defined in Section 3.2 instead of returns 𝑅௜,௧. Then, due to standardisation 
(3) and application of constant mean model abnormal standardised returns 𝐴𝑆𝑅௜௧ 
computed similarly to (2) are equal to standardised returns 𝐴𝑅௜௧ divided by 
corresponding standard deviation of 5-minute returns: 

𝐴𝑆𝑅௜௧ ൌ
𝐴𝑅௜௧

𝑆௜
, (9)

where 𝑆௜ is the standard deviation of 5-minute log returns of the WIG20 from the 
continuous trading phase of a session from 40-day window around the day of 𝑖-th 
announcement. Additionally, application of standardised returns instead of returns 
in the Kolari-Pynnönen test gives the same value of test statistic 𝑡௚௥௔௡௞. The more 
specific applications of described methodology are also given in Gurgul and Suliga 
(2019). 

In the analysis presented in the following section we use event study to test the 
significance of the announcements. However, the strength of the impact is described by 
average of abnormal returns 𝐴𝑅തതതത௧ or the average of abnormal standardised returns 𝐴𝑆𝑅തതതതതത௧ 
computed for given time 𝑡.   

4.  Empirical results 

4.1.  Reaction in the whole period 

In the first step of the analysis, we study the reaction of the WIG20 5-minute returns 
in the whole period 2004-2019. This will provide a background for further, more 
detailed analysis and comparisons.  

Table 1 presents the values of mean abnormal returns 𝐴𝑅തതതത௧ computed in the event 
window for bad (Panel A) or good (Panel B) unexpected news included 
in announcements of the US macroeconomic indicators described previously. Together 
with the values of 𝐴𝑅തതതത௧ we report results of the Kolari-Pynnönen generalised rank test. 
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In addition to the means for single indicators in Table 1, we also present the results of 
the event study analysis for all the bad and all the good news (rows “ALL”). 

Most of the significant means of abnormal returns are observed in the first five 
minutes just after a news release (𝑡 ൌ 1). It indicates that there is an immediate reaction 
of investors on the WSE to publication of US macroeconomic data. This significant 
change in the WIG20 is implied by most of the announcements. Only bad news included 
in announced values of the EHS and the PPI and good news about the DGO, the NHS, 
the PPI do not induce significant changes in the WIG20 at least at the 10% level. 

The strongest reaction, measured by values of the mean 𝐴𝑅തതതതଵ, is observed 
particularly after bad news regarding the DGO, the NFP and the GDP were released. 
In this case, the value of the WIG20 fell in the first five minutes after the announcement 
by about െ0.12% additionally. In the case of good news the announcements of the NPF 
implied the strongest changes of the WIG20 (𝐴𝑅തതതതଵ ൎ 0.166%). The analysis of the 
Kolari-Pynnönen test results indicates that the significant changes in the WIG20 are 
mainly limited to first five minutes after a news release. It confirms that the reaction of 
investors on the WSE is immediate and only lasts for a very short time. 

When we compare the values of  𝐴𝑅തതതതଵ after good news and the values of െ𝐴𝑅തതതതଵ after 
bad news it turns out that for most of the indicators they are very close. An additional 
comparison of the strength of the changes of the WIG20 after different kinds of news 
shows no reaction asymmetry. To be more precise, for each of the indicators the Mann-
Whitney test confirms that there is no significant difference between distributions of 
𝐴𝑅ଵ after good news and the distribution of – 𝐴𝑅ଵ after bad news. These observations 
do confirm previous results of Gurgul and Wójtowicz (2014). 

Table 1.  Mean abnormal returns (in %) of the WIG20 in the event window for bad and good news 
 from the US economy 

Indicator Number of events 𝑡 ൌ െ1 𝑡 ൌ 0 𝑡 ൌ 1 𝑡 ൌ 2 𝑡 ൌ 3 

Panel A: bad news 
CCI 50 -0.028 -0.004 -0.086** -0.011 0.011 
CPI 49 -0.007 -0.012 -0.102* -0.005 -0.003 
DGO 91 -0.010 0.000 -0.123*** 0.008 -0.003 
EHS 54 -0.014 -0.012 -0.041 0.014 0.015 
HS 98 0.009* 0.001 -0.024* -0.004 0.032 
IP 90 0.009 0.005 -0.053*** -0.002 0.010 
ISM 35 -0.008 -0.003 -0.078** 0.044** 0.036 
IJC 360 0.005 0.002 -0.051*** 0.004 0.004 
NFP 97 -0.009 0.005 -0.123** -0.002 0.016 
NHS 51 -0.017 0.025** -0.016** -0.019 0.002 
PPI 83 0.012 -0.017 -0.004 0.008 0.017 
GDP 80 0.022** 0.015* -0.124*** -0.031 0.010 
RS 92 0.001 -0.010 -0.079** 0.018 0.003 
ALL 859 -0.002 0.000 -0.068*** 0.000 0.013** 
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Table 1.  Mean abnormal returns (in %) of the WIG20 in the event window for bad and good news 
 from the US economy  (cont.) 

Indicator Number of events 𝑡 ൌ െ1 𝑡 ൌ 0 𝑡 ൌ 1 𝑡 ൌ 2 𝑡 ൌ 3 

Panel B: good news 
CCI 52 0.017* -0.007 0.037** 0.000 -0.009 
CPI 60 0.010 -0.003 0.060* 0.014 0.022 
DGO 85 -0.004 0.006 0.063 -0.005 -0.013* 
EHS 47 -0.002 0.007 0.035** -0.015 0.001 
HS 85 0.009 0.004 0.059*** 0.019 -0.009 
IP 73 0.018 0.027*** 0.053** 0.021 -0.015 
ISM 51 -0.022 -0.012 0.084** -0.012 -0.013 
IJC 391 -0.004 -0.007 0.048*** 0.009 -0.007 
NFP 78 0.006 0.013 0.166*** -0.007 0.005 
NHS 50 -0.008 0.019 0.046 0.011 -0.029 
PPI 78 0.007 0.000 0.008 0.021 -0.001 
GDP 67 0.000 0.005 0.096** -0.002 -0.026 
RS 76 0.002 0.014* 0.144*** -0.002 0.002 
ALL 806 0.002 0.005*** 0.071*** 0.003 -0.007* 

*, **, *** indicate significance of a mean at 10%, 5% and 1%, respectively, resulting from the Kolari-
Pynnönen rank test. 

Source: Own work. 

4.2.  Changes in reaction strength 

The main part of the empirical study in this paper is dealing with changes in the 
strength of investors’ reaction to US macroeconomic news in the last 15 years. To do 
this we compare the results of event study analysis carried out in various sub-periods. 
These sub-periods should be long enough to include a suitable number of 
macroeconomic announcements. On the other hand, these sub-periods should be as 
short as possible to give more accurate results. Finally, as a compromise, we perform an 
event study analysis in 5-year windows that are shifted every quarter. The first of these 
windows starts in January 2004 and ends in December 2008, while the last window is 
a little shorter and begins in October 2014 and ends in July 2019. 

As previously mentioned, a correct comparison of the strength of the WIG20 
changes after news announcements in various sub-periods may be biased by changes in 
the volatility. To overcome this problem we will also consider the standardised  
5-minute returns 𝑆𝑅௜,௧defined in Section 3.2. We note once again that the application 
of 𝑆𝑅௜,௧ instead of the returns does not change the results of the Kolari-Pynnönen test. 

The procedure described above is flexible enough to provide us with an appropriate 
description of changes in the reaction to US macroeconomic news announcements. 
In addition to that, due to the symmetry of the reaction of the WIG20 and to increase 
the number of events in each window we consider both types of unexpected news 
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(good and bad news) together. To do this, we multiply the abnormal returns 
(and abnormal standardised returns) corresponding to bad news by -1. As a result, 
all the abnormal results should move in the same direction after news announcements. 

Table 2.  Means of abnormal standardised returns of the WIG20 in the event window 

  2004-2019 2004-2008 2009-2013 2014-2019 End of 
significant 

impact   𝑁 𝐴𝑆𝑅തതതതതതଵ 𝑁 𝐴𝑆𝑅തതതതതതଵ 𝑁 𝐴𝑆𝑅തതതതതതଵ 𝑁 𝐴𝑆𝑅തതതതതതଵ

CCI 102 0.574*** -  -  35 0.917*** 60 0.315 Dec 2017 

CPI 109 0.663*** 42 1.016*** 33 0.132 31 0.599 Sep 2012 

DGO 176 0.747*** 58 1.076*** 57 1.064*** 56 0.144 Jun 2016 

EHS 101 0.377*  -  - 37 0.816** 59 0.097 Dec 2015 

HS 183 0.373*** 60 0.372* 58 0.637*** 59 0.096* Mar 2018 

IP 163 0.403*** 51 0.280* 53 0.968*** 53 -0.140 Mar 2017 

ISM 86 0.794***  -  - 29 1.668*** 52 0.318 Jun 2017 

IJC 751 0.416*** 243 0.379*** 243 0.765*** 242 0.171** Jul 2019 

NFP 175 1.364*** 57 1.095* 54 2.937*** 57 0.260 Jun 2017 

NHS 101 0.335***  -  - 35 0.636*** 60 0.035 Jun 2016 

PPI 161 0.033 53 0.451 55 0.013 49 -0.343 Insignif. 𝑡 

GDP 147 1.030*** 45 1.335*** 52 1.339** 45 0.368* Sep 2017 

RS 168 0.916*** 59 0.612*** 53 1.506*** 49 0.657 Dec 2017 

ALL 1665 0.620*** 418 0.780*** 543 1.054*** 640 0.160** - 
*, **, *** indicate significance of a mean at 10%, 5% and 1%, respectively, resulting from the Kolari-
Pynnönen rank test. 
Source: Own work. 

Due to the large number of the results of the analysis in the sub-periods, we do not 
report here all of them. In Table 2, we present the results of the empirical study for three 
disjoint windows: January 2004–December 2008, January 2009–December 2013, and 
October 2014–July 2019. More precisely, we report only the values of means of 
abnormal standardised returns 𝐴𝑆𝑅തതതതതതଵ in the first five minutes after macroeconomic 
news announcements are made. As a background, we also present the values of 𝐴𝑆𝑅തതതതതതଵ 
computed for the whole period considered. 

The comparison of the results in Table 2 clearly shows that the strongest reaction 
to macroeconomic news from the United States was observed in first two presented 
windows that include data from the period of the global financial crisis or from the 
period just after the crisis. However, for most of the indicators higher values  
of 𝐴𝑆𝑅തതതതതതଵ are in the post-crisis period (2009-2013). In the case of NPF, 𝐴𝑆𝑅തതതതതതଵ is close to 
3 indicating that the average of abnormal returns in the first five minutes after NFP 
announcements was three times the standard deviation of usual 5-minute returns. 
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In addition, the results of the Kolari-Pynnönen test indicate a very strong and highly 
significant impact of US macroeconomic news in this post-crisis period. 

The comparison of the last column of Table 2 with the rest of the results indicates 
a very strong decrease in the strength of impact of US macroeconomic data 
announcements on investors on the WSE in recent years. Only in a few cases, changes 
in the WIG20 implied by news under study are significant. Moreover, they are 
significant at most at the 5% level. Such a situation can also be observed when all the 
announcements are joined together. The insignificance of the reaction is accompanied 
by very low values of 𝐴𝑆𝑅തതതതതതଵ. For example, in the case of the NPF the average falls from 
2.94 in 2009-2013 to insignificant value of 0.26 in 2014-2019. 

To describe the changes in the reaction of the WIG20 to publications of US data 
during the whole period 2004-2019 more precisely we present the values of 𝐴𝑆𝑅തതതതതതଵ 
computed for all events in each of the 5-year windows in Figure 2. As a comparison, we 
do also present the values of 𝐴𝑆𝑅തതതതതതଵ from 2-year windows shifted also by one quarter. 
The results of the analysis in the 2-year window are more flexible and better describe 
the changes in the strength of the impact. However, it can be applied only to study the 
impact of announcements of all indicators together. In the case of a single indicator  
a 2-year window does not contain enough data to provide reliable results. 

 
Figure 2.  Averages of the abnormal standardised returns of the WIG20 over 2-year and 5-year 
 windows  
Source: Own work. 

The results presented in Figure 2 confirm the conclusion already drawn based on 
Table 2. They clearly indicate a very strong impact of US macroeconomic news 
announcements on investors on the Warsaw Stock Exchange during the global financial 
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crisis. In the pre-crisis periods, the values of 𝐴𝑆𝑅തതതതതതଵ in a 2-year period are on the level of 
0.3. However, when the crisis begins and the windows begin to include data from it, 
the average 𝐴𝑆𝑅തതതതതതଵbegins to grow rapidly up to about 1.4. The strong impact of news 
from the United States lasts until late 2012 when the averages slowly begin to decrease. 
From 2015-2016 we may observe a stabilisation of 𝐴𝑆𝑅തതതതതതଵ about 0.1. A similar behaviour 
of 𝐴𝑆𝑅തതതതതതଵ may be observed in the case of 5-year window. However, in this case the 
changes are slower and much smoother. 

Despite this observed decreasing tendency in 𝐴𝑆𝑅തതതതതതଵit should be pointed out that 
according to the results of the Kolari-Pynnönen test even in the last window the changes 
in the WIG20 induced by US macroeconomic news are significant. In fact, they are 
significant in every 5-year window. However, in some cases it is probably due to the 
large number of events in the cluster increasing the power of the test.  

The last column of Table 2 shows that changes of the WIG20 only after IJC 
announcements remain significant during the whole period. The rest of indicators 
become insignificant earlier. For example, the NFP announcements, which showed the 
strongest impact, are significant until July 2012–June 2017. 

5.  Conclusions 

In this paper, we analyse the changes in the impact of US macroeconomic news on 
investors on the Warsaw Stock Exchange. We examine the behaviour of 5-minute 
returns of the WIG20 in a short period after the announcements of 13 macroeconomic 
indicators describing the US economy were made. These indicators characterise 
inflation, industrial production, retail sales, the housing market, the labour market, and 
the GDP, among other things. Based on intraday returns from a 15-year period from 
January 2004 to July 2019 we are able to compare the strength of the impact of US 
macroeconomic news on the WIG20. 

When the whole period is taken into account, the WIG20 reacts significantly to 
announcements of most of the indicators considered. This reaction is immediate and it 
is usually limited to the first 5-minute returns. The strongest impact is observed after 
NFP announcements. 

The analysis in sub-periods leads to the conclusion that, in general, 
US macroeconomic news announcements induced the highest averages of abnormal 
returns during the global financial crisis (2007-2009) and in the first few years after the 
crisis. In later years, the impact of information from the United States was notably 
weaker. This change in the impact of US macroeconomic data was probably caused 
by the end of the crisis and by stabilising the economic situation in the United States. 
Additionally, new crises in various parts of the world attracted the attention of 
investors. 
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Agu-Eghwerido distribution, regression model and
applications
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ABSTRACT

Modelling lifetime data with simple mathematical representations and an ease in obtain-
ing the parameter estimate of survival models are crucial quests pursued by survival re-
searchers. In this paper, we derived and introduced a one-parameter distribution called the
Agu-Eghwerido (AGUE) distribution with its simple mathematical representation. The re-
gression model of the AGUE distribution was also presented. Several basic properties of the
new distribution, such as reliability measures, mean residual function, median, moment gen-
erating function, skewness, kurtosis, coefficient of variation, and index of dispersion, were
derived. The estimation of the proposed distribution parameter was based on the maximum
likelihood estimation method. The real-life applications of the distribution were illustrated
using two real lifetime negatively and positively skewed data sets. The new distribution pro-
vides a better fit than the Pranav, exponential, and Lindley distributions for the data sets. The
simulation results showed that the increase in parameter values decreases the mean squared
error value. Similarly, the mean estimate tends towards the true parameter value as the sam-
ple sizes increase.

Key words: AGUE distribution, AGUE regression model, moment generating function,
means residual function, hazard rate function, survival rate function.

1. Introduction

Introducing one-parameter distributions is a continuous concern for distribution theory
and survival researchers. Thus, the researchers desire to introduce mathematically tractable
and flexible lifetime probability models which can represent the random behaviour of real-
world lifetime situations without difficulty.

In the statistical literature, many one-parameter, as well as two or more parameters
probabilistic models have been introduced by researchers for modelling lifetime situations.
Some of these probability models provide good results for various life situations. However,
some of these developed models do not give good results for real-life scenarios. This might
be the case arising from physical sciences, medical sciences, biological sciences, agricul-
tural science, engineering among others. Similarly, some of these models require quite a
complex and time-consuming algorithm for their parameter estimation.

Lindley (1958) introduced a parameter Lindley distribution. Ghitany, Atieh, and Nadara-
jah (2008) applied the mathematical treatment to a parameter Lindley distribution. Shanker
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(2015a, 2016) proposed one-parameter Akash and Aradhana distributions. Shanker and
Shukla (2017) proposed one-parameter Ishita distribution. Shanker (2016) proposed one-
parameter Sujatha distribution. Shukla (2018) proposed one-parameter Pranav distribution.
Odom and Ijomah (2019) proposed one-parameter Odoma distribution. However, their
regression models were not explored. These distributions yielded good fit over Lindley
and exponential distributions for various data sets. Furthermore, the Pranav distribution by
Shukla was applied on three real lifetime data sets and provides a better fit to the data sets
than Lindley, Sujatha, Akash, and Ishita distributions respectively. However, the Odoma
distribution was applied to strength data of glass of the aircraft window and provides a
better fit than Pranav, Sujatha, Aradhana, Akash, Lindley, and exponential distributions re-
spectively. The mathematical properties of these probability models, as well as parameter
estimation, has been studied. Most of these probability models provide a good fit in some
real-life situations and performed poorly in others. Due to the shortfall of some of these
models, for instance the constant hazard rate of the exponential distribution could limit its
wider applications to increasing hazard rate lifetime situations. Hence, some of these distri-
butions have been extended, generalized, and applied in the literature by the addition of an
extra parameter by researchers including Zakerzadeh and Dolati (2009) generalized Lind-
ley distribution. Nadarajah et al. (2011) extended exponential distribution. Gómez and
Calderín (2011) derived the discrete Lindley distribution, properties, and applications. Bak-
ouch et al. (2012) obtained exponentiated exponential binomial distribution. Shanker and
Mishra (2013) obtained a sized-biased Quasi Poisson-Lindley distribution. Agu and On-
wukwe (2019) proposed exponentiated Laplace distribution as the extension of the Laplace
distribution. Eghwerido et al. (2020) proposed the alpha power Gompertz distribution.
Shanker and Amanuel (2013) obtained a new quasi Lindley distribution. Ghitany et al.
(2013) proposed the Power Lindley distribution. Merovci (2013) extends the Rayleigh dis-
tribution. Agu and Runyi (2018) studied the goodness of fit tests for normal distribution.
Warahena and Pararai (2014) proposed the generalized power Lindley distribution. Oluyede
and Yang (2014) generalized the inverse Weibull distribution among others. However, the
extensions do not guarantee high confidence in the model reliability. These extensions could
lead to complex mathematical representation, complex and time-consuming algorithm, and
difficulty in the estimation of parameters resulting in unreliable results.

In this respect, this paper is motivated to introduce a heavy-tailed simple mathemati-
cally structured one-parameter probability model with non-decreasing survival and hazard
functions, derive its regression model, require less time and simple algorithm, and ease in
the parameter estimation based on the test statistics performance results obtained from real-
life scenarios that are more reliable. The proposed model was generated by making use of
gamma and exponential distributions because of their inherent uniform base and constant
failure rate respectively. However, in statistical modelling, the Weibull, Gompertz, exponen-
tial and Lindley models are very popularly used in modelling compared to the lognormal and
gamma distributions. This is as a result of the inability to express their survival functions
in a closed form. Although, the exponential function has one-parameter with a constant
hazard rate, the Lindley has one-parameter monotonic decreasing hazard rate with a mix-
ture component of a gamma model with a shape parameter 2 and exponential distribution.
Its mixture proportions are λ

λ+1 and 1
λ+1 for a scale parameter λ . Also, the Akash model
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tries to improve the Lindley distribution by using a mixture of exponential and gamma with
a shape parameter 3 and mixing proportions λ 2

λ 2+2 and 2
λ 2+1 . Thus, to improve the flexi-

bility of the Lindley, Pranav, exponential, and Akash distributions, this article introduces a
parsimonious tractable distribution model called the AGUE distribution.

Let us consider two components mixture of one-parameter gamma distribution having
shape parameter 3 and scale parameter λ and exponential distribution with scale parameter
λ with their mixing proportions λ 6

λ 6+8 and 8
λ 6+8 respectively. This idea would be used to

develop the one-parameter distribution with simple mathematical representation.
The rest of the paper is structured as follows: Section 2 introduced the new distribution.

Section 3 explored the reliability measures of the new distribution. Section 4 explored the
moment generating function for the new distribution. Section 5 discussed the parameter
estimation for the new distribution. Section 5.1 introduced the regression model for the new
distribution. In Section 6, two real lifetime data set were adopted to illustrate the behaviour
of the new distribution. Section 7 provided the concluding remarks.

2. The AGUE distribution

This section introduces the proposed model. It also, examines some potential properties.
Let x be a random variable. Then, the new lifetime density function is introduced as

P(x) =
λ 3

λ 6 +8

[
λ

4 +4x2
]

exp(−λx), (1)

where λ > 0, x > 0. We would call the probability density function (pdf) of the one-
parameter life time distribution in (1) "AGU-EGHWERIDO (AGUE) distribution". See the
proof of the density function in Appendix. It follows from (1) that

dP(x)
dx

=
λ 3

λ 6 +8

[
8x−λ

5 −4λx2
]

exp(−λx).

For

1. λ < 1, dP(x)
dx = 0, this implies that P(x) is maximized at x0.

2. λ ≥ 1, dP(x)
dx ≤ 0, this implies that P(x) is decreasing at x.

The cumulative distribution function (cdf) of the AGUE distribution in (1) is given as

dP(x)
dx

= 1− 1
λ 6 +8

[
λ

6 +4λ
2x2 +8(λx+1)

]
exp(−λx), (2)

where λ > 0, x > 0.

3. Reliability measures

In this section, some reliability properties of the AGUE distribution were examined and
investigated.
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Figure 1: Pdf of AGUE distribution with different parameter cases

Figure 2: Cdf plot of the AGUE distribution with different parameter cases
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Figure 3: Survival plot of the AGUE distribution with different parameter cases

Let X be a continuous random variable with pdf P(x) and cdf p(x) . Then, the survival
rate function is expressed as

S(x) = 1− 1
λ 6 +8

[
λ

6 +4λ
2x2 +8(λx+1)

]
exp(−λx). (3)

The survival rate plot for different parameter values is shown in Figure 3.

3.1. The failure rate function

The failure rate function is given as

H(x) = lim
△x−→0

v(X < x+△x|R > x)
△x

=
P(x;λ )

S(x;λ )
.

Thus, we have the AGUE failure rate function as

H(x) =
λ 3

[
λ 4 +4x2

]
λ 6 +4λ 2x2 +8(λx+1)

. (4)

However, for

1. H(0) = λ 7

λ 6+8 .

2. H(x) is an increasing function in x, λ and λ 7

λ 6+8 < H(x)< λ .

The hazard rate plot for different parameter values is shown in Figure 4.
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Figure 4: Hazard plot of the AGUE distribution with different parameter cases

3.2. The mean residual function

Let be a random variable with pdf and cdf defined in (1) and (9) respectively. Thus, the
mean residual function of X is defined as

m(x) = E[X − x|X > x] =
1

p(x)
lim
c→∞

∫ c

x
[1− p(t)]dt.

However, for 1− p(x)> 0.

m(x) =
λ 5 +4λx2 +16x+ 24

λ

λ 6 +4λ 2x2 +8(λx+1)
, (5)

Moreover, for

1. m(0) =
λ 5+ 24

λ

λ 6+8 .

2. m(x) is a decreasing function in x and λ .

The mean residual plot for different parameter values is shown in Figure 5.

3.3. The median

The median of a random variable X is expressed as

m2(x) = lim
c→∞

∫ c

0
|x−K|P(x)dx,
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Figure 5: Mean residual plot of the AGUE distribution with different parameter cases

where µ = E(X) and K = Median (X). The above measures can be calculated using the
relationship defined as

E(|X − k|) =
∫ k

0
(k− x)P(x)dx+ lim

c→∞
(x− k)P(x)dx = 2

∫ k

0
(k− x)P(x)dx. (6)

Thus, the median of the AGUE distribution can be given as

m2(x) = 2
[

K −
λ 5 + 24

λ

λ 6 +8
− 1

λ 6 +8

[
exp(−λK)(4λK2

+16K +λ
5 +

24
λ
)+λ

6K +8K −λ
5 − 24

λ

]]
.

3.4. The quantile function

The quantile function of the AGUE distribution is obtained using the Lambert W func-
tion with W function defined as the solution to the equation W (x)exp(W (x)) = x ∈ [−1,∞),
where W0 is the principal branch of the Lambert function. The solution of the Lambert W
function of W (x)exp(W (x)) = x, with W0(0) = 0 and W0(x) increases with increase in x.
Thus, for x > 0, u∗ = (λ 6+8)(1−u)(λ 6+4x2λ 2+(9λx+8)), λ < 0, and u ∈ (0,1). Thus,
the xu =W0(exp(u∗))− λ 3−2

λ
.

A simulation is obtained using the quantile function obtained above. The values of the
parameter are chosen as 0.5, 1.0 and 2.5 for sample size 5, 10, 50, 100, 150, 250, 350 and
500. The sample size is replicated 5000 times. Table 1 shows the results.
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Table 1. Simulation results for AGUE distribution
n Parameter Average Estimate Bias MSE
5 λ =0.5 0.9950 0.0150 0.1929

λ=1.0 1.2008 0.2008 0.5558
λ=2.5 2.7462 0.5349 0.5071

10 λ =0.5 0.8516 0.0847 0.1077
λ =1.0 1.1847 0.1838 0.4671
λ =2.5 2.6838 0.1921 0.4014

50 λ =0.5 0.6664 0.0972 0.1005
λ =1.0 1.0072 0.1583 0.3273
λ =2.5 2.5949 0.1049 0.2702

100 λ =0.5 0.4754 0.1625 0.0071
λ =1.0 1.0025 0.1348 0.1929
λ =2.5 2.4712 0.0881 0.1052

150 λ =0.5 0.4544 0.1109 0.0045
λ =1.0 1.0009 0.0181 0.0824
λ =2.5 2.4519 0.0324 0.0841

250 λ =0.5 0.5013 0.2733 0.0024
λ =1.0 1.0008 0.0112 0.0053
λ =2.5 2.5030 0.0030 0.0070

350 λ =0.5 0.5002 0.4814 0.0015
λ =1.0 1.0002 0.0088 0.0034
λ =2.5 2.5003 0.0018 0.0055

500 λ =0.5 0.5001 0.4948 0.0011
λ =1.0 1.0005 0.3651 0.0041
λ =2.5 2.5001 0.2476 0.0006

In Table 1, increase in parameter values decreases the MSE. Also, the mean estimate
tends to the true parameter value as the sample sizes increase.

4. Moment generating function

The AGUE moment generating function is expressed as

mR(t) =
λ 3

λ 6 +8
lim
c→∞

[
λ

6
c

∑
m=0

(
t
λ
)m +

8
λ

c

∑
m=0

(
m+2

m

)
(

t
m
)m
]

= lim
c→∞

[
tm
[
λ 6 +(m+2)(m+4)

]
λ m(λ 6 +8)

]
.

(7)

Thekth moment about origin µ ′
k obtained as coefficient of tk

k! in MX (t) of the AGUE
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distribution is given by

µ
′
k = E(Xk) =

k!
[
λ 6 +(k+2)(k+4)

]
λ k(λ 6 +8)

k = 1,2,3, · · · (8)

In particular, we can obtain the first four moments of the AGUE distribution as

µ
′
1 =

λ 6 +15
λ (λ 6 +18)

, µ
′
2 =

2(λ 6 +24)
λ 2(λ 6 +8)

, µ
′
3 =

6(λ 6 +35)
λ 3(λ 6 +8)

, and µ
′
4 =

24(λ 6 +48)
λ 4(λ 6 +8)

.

Using the relationship between the raw moment and the central moment or the moment
about mean, we obtain the central of the AGUE distribution (1) as

µk = E(X −µ)k =
k

∑
m=0

(
k
m

)
µ
′
m(−µ)k−m, m = 0,1,2, · · · ,k.

In particular, we have
µ0 = 1, µ1 = 0.

µ2 = µ
′
2 −µ

2 =
λ 12 +34λ 6 +159

λ 2(λ 6 +8)2 .

µ3 = µ
′
3 −3µµ

′
2 +2µ

3 =
2λ 18 +114λ 12 +62λ 6 +2910

λ 3(λ 6 +8)3 .

µ4 = µ
′
4 +6µ

2
µ
′
2 −4µµ

′
3 −3µ

4 =
9λ 24 +1194λ 18 +16002λ 12 +31164λ 6 +96963

λ 4(λ 6 +8)4 .

The coefficient of skewness
√

β1 , coefficient of kurtosis β2 , coefficient of variation
C.V , and index of dispersion γ of the AGUE distribution (1) are obtained as

C.V =

√
λ 12 +34λ 6 +159

λ 6 +15
,

√
β1 =

2λ 18 +114λ 12 +62λ 6 +2910

(λ 12 +34λ 6 +159)
3
2

β2 =
9λ 24 +1194λ 18 +16002λ 12 +3116λ 6 +96963

(λ 12 +34λ 6 +159)2 , and γ =
λ 12 +34λ 6 +159

λ (λ 6 +8)(λ 6 +15)
.

Table 2 shows the variance, mean, skewness, kurtosis, coefficients of variation, and
index of dispersion for different parameter values for the AGUE distribution. The results in
Table 2 shown that the parameter values increases with decrease in the variance values.
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Table 2. Coefficients of variation, mean, variance, skewness, kurtosis and index of
dispersion for the AGUE distribution.

(λ ) µ σ2 CV
√

β1 β2 γ

0.4 4.6864 15.5250 0.8408 1.4545 3.8292 3.1567
0.01 187.500 24843.750 0.8406 1.4514 3.8354 132.33
0.6 3.1165 6.8894 0.8422 1.4410 3.7669 2.0684
0.5 3.7466 9.9319 0.8412 1.4519 3.8110 2.4999

0.016 117.188 9704.59 0.8406 1.4514 3.8354 82.647
2 0.5486 0.3101 1.0151 1.9281 5.9972 4.0703

4.1. Stochastic Orderings

The comparative behaviour of continuous random variables can be evaluated using
stochastic ordering.

A random variable X is said to be smaller than a random variable Y (Shaked 1994) if

X ≤L Y ⇒ X ≤hr⇒ X ≤m Y

⇓

X ≤st Y

• Hazard rate order (X ≤hr Y ) if Px(x)≥ Py(x) for all x

• Stochastic order (X ≤st Y ) if GX (x)≥ GY (x) for all x

• Mean residual life order (X ≤m Y ) if mX (x)≤ mY (x) for all x

• Likelihood ratio order (X ≤L Y ) if Px(x)
Py(x)

decreases in x

Theorem 4.1 Let X and Y follow the AGUE distribution with λ1 and λ2 respectively. If
λ1 ≥ λ2 , then X ≤L Y . Hence X ≤hr Y , X ≤m Y and X ≤st Y .

Proof
The AGUE distribution will be ordered based on the strongest likelihood ratio ordering

as established in Shaked (1994).

Px(x;λ1)

Py(x;λ2)
=

λ 3
1 exp(−λ1x)

[
λ 4

1 +4x2
]

(λ 6
1 +8)

λ2exp(−λ2x)
[

λ 4
2 +4x2

]
(λ 6

2 +8)

. (9)

d
dx

log
Px(x;λ1)

Py(x;λ2)
=

−2(λ 4
1 −λ 4

2 )

(λ 4
1 +4x2)(λ 4

2 +4x2)
− (λ1 −λ2). (10)

Thus, for λ1 > λ2,
d
dx log Px(x;λ1)

Py(x;λ2)
< 0⇒X ≤L Y , for λ1 < λ2,

d
dx log Px(x;λ1)

Py(x;λ2)
> 0 and if λ1 = λ2,

d
dx log Px(x;λ1)

Py(x;λ2)
= 0. Therefore X ≤hr Y,X ≤m Y and X ≤st Y.
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5. Parameter estimation of the AGUE distribution

Let x1,x2,x3, · · · ,xk be a random sample of size k observations sampled from the AGUE
distribution. Then, for x̄, the sample mean, the log-likelihood function of the AGUE distri-
bution can be derived as

InL = 3kInλ − kIn(λ 6 +8)+
k

∑
m=1

In(λ 6 +4x2
m)− kλ

k

∑
m=1

xm. (11)

Thus, taking the partial derivative, we have

dInL
dλ

=
3k
λ

− k6λ 5

(λ 6 +8)
+

k

∑
m=1

[
6λ 5

(λ 6 +4x2
m)

]
− kx̄. (12)

The estimate of the parameter λ can be obtained by equating to zero. The Newton-Raphson
algorithm Software like R, MATLAB, MAPLE and others are used to obtain the estimate.

5.1. The AGUE distribution regression model

In this section, we introduce the regression model for the AGUE distribution. In the
literature, numerous researchers have introduced regression form of probability model in-
tending to improve on the model flexibility and also make predictions easier using such
a regression model such as the Bivariate exponentiated-exponential geometric regression
model (Famoye, 2019), Exponentiated-exponential geometric regression model (Famoye
and Carl, 2016), Bivariate Weibull regression model based on censored samples (Hana-
gal, 2006), Transmuted Burr Type X distribution regression model (Khan, King, and Hud-
son, 2019), and Transmuted Log-logistic regression model (Granzotto and Louzada, 2015),
among others.

However, the Granzotto and Louzada (2015) approach is adopted for the AGUE model.
Consider Z to be a random variable with pdf of the AGUE distribution and g(x) = λ as

a parameter depending on the covariate vector X = (1,xm, · · · ,xk)
T , where m = 1,2, · · · ,k

and g(x) = λ = θ0 + θmxm + · · ·+ θkxk. Hence, the pdf of the AGUE distribution can be
redefined as

P(z|g(x)) =
(g(x))3

[
(g(x))4 +4z2

]
exp(−g(x)z)

(g(x))6 +8
, (13)

where g(x) is a regression model. The corresponding survival S(z|g(x)) and hazard h(z|g(x))
rate functions at period z of (13) can be written as

S(z|g(x)) =
[
(g(x))6 +4(g(x)z)2 +8(g(x)z+1)

]
exp(−g(x)z)

(g(x))6 +8
. (14)

h(z|g(x)) =
(g(x))3

[
(g(x))4 +4z2

]
(g(x))6 +4(g(x)z)2 +8(g(x)z+1)

. (15)
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Let pm, · · · , pk be a sample of size from the AGUE distribution, and Xm = (1,x1m, · · · ,
xkm)

T , be an mth vector of covariates, m = 0,1, · · · ,k and g(x) = λ = θ0 + θ1x1 + θ2x2 +

· · ·+ θkxk. Also, for convenience notation, let set x0 = 1, then g(x) = θXT , where θ =

(θ0,θ1, · · · ,θk) ∈ R1×(n+1) and

X =



x0

x1

.

.

.

xk


∈ R1×(n+1).

Thus, the log-likelihood function can be written as

L = InL(g(x)|p,x) = 3k
k

∑
m=0

In
(
(g(x))6 +8

)
+

k

∑
m=0

(
(g(x))6 +4p2

m
)
− k

k

∑
m=0

g(x)pm. (16)

The maximum likelihood estimates of the parameters of g(x), which maximizes (16), must
satisfy the equations

dL
dθ0

=
3k

∑
k
m=0 g(x)

− 6k ∑
k
m=0(g(x))

5

∑
k
m=0

[
(g(x))6 +8

] +6
k

∑
m=0

(g(x))5 − k
k

∑
m=0

ym = 0.

dL
dθm

=
3k ∑

k
m=0 xm

∑
k
m=0 g(x)

− 6k ∑
k
m=0 xm(g(x))5

∑
k
m=0

[
(g(x))6 +8

] +6
k

∑
m=0

xm(g(x))5 − k
k

∑
m=0

xm pm = 0.

6. Real-life data applications

The numerical applications of the one-parameter AGUE distribution are demonstrated
using two data sets.

Data set I is a data set report consisting of 63 observations of the strengths of 1.5cm
glass fibers. The data set has previously been analyzed in Sharma et al.(2016), Oguntunde
et al.(2017), Abdal-hameed et al. (2018), Eghwerido et al. (2021), Oguntunde et al.(2018),
Eghwerido and Agu (2021), Eghwerido, Agu and Ibidoja (2021a) and Khaleel, Al-Noor and
Abdal-Hameed (2020).

Data set II is a data set of about 346 nicotine measurements collected by the Fed-
eral Trade Commission. [http://www.ftc.gov/ reports/tobacco or https: // pw1.netcom.com/
rdavis2/ smoke. html.] used in Handique and Chakraborty (2016).

Tables 3a, 3b, 4a, and 4b present the parameter estimate and values of the test statistics
for the fitted models on the data sets. In addition, the model parameter (Par.) and their
corresponding Log-likelihood (LL), standard errors (Str. Error), and confidence intervals
(CI) are presented. R-programming was used to obtain the results. However, in Tables 3a,
3b, 4a, and 4b, the AGUE model test statistics are the lowest among all fitted models for the
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data sets. Thus, the AGUE model is chosen as the best model among others for these data
sets.

Figures 6, 7, 8, and 9 show the plots of the empirical estimated densities and density of
the models considered for the data sets.

Figure 6: The plots of the estimated ecdf for the AGUE distribution for data set I

Figure 7: The plots of the estimated density of the AGUE distribution for data set

Table 3a. Parameter estimates of the strengths of 1.5 cm glass fibers data.
Model Par. Est. Str. Error LL CI (95% )

Upper Lower
AGUE λ̂ 4.590 0.225 -237.634 5.031 4.149

Exponential λ̂ 0.664 0.084 -88.830 0.829 0.499
Pranav λ̂ 1.561 0.079 -90.481 1.716 1.406
Lindley λ̂ 0.996 0.095 -81.278 1.182 0.800

Table 3b. The test statistics values of the strengths of 1.5 cm glass fibers data.
Model AIC CAIC BIC HQIC
AGUE -473.268 -473.2024 -471.125 -472.425

Exponential -179.661 -179.726 -181.804 -180.504
Pranav -182.963 -183.028 -185.106 -183.806
Lindley -164.557 -164.623 -166.700 -165.390
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Figure 8: The plots of the estimated ecdf for the AGUE distribution for data set II

Figure 9: The plots of the estimated density of AGUE distribution for data set II

Table 4a. Parameter estimates of several brands of cigarettes data.
Model Par. Est. Str. Error LL CI (95%)

Upper Lower
AGUE λ̂ 8.207 0.167 -2677.47 8.534 7.870

Exponential λ̂ 1.173 0.063 -290.826 1.296 1.049
Pranav λ̂ 2.056 0.052 -345.079 2.157 1.955
Lindley λ̂ 1.620 0.068 -269.796 1.755 1.486

Table 4b. The test statistics values of several brands of cigarettes data.
Model AIC CAIC BIC HQIC
AGUE -5352.941 -5352.929 -5349.094 -5351.409

Exponential -583.651 -583.663 -587.498 -585.183
Pranav -692.157 -692.169 -696.004 -693.689
Lindley -541.593 -541.605 -545.439 -543.125

7. Conclusions

We introduced one-parameter distribution called the AGUE distribution with its math-
ematical representation and parameter estimation in this study. The regression model and
basic statistical properties such as the index of dispersion and others were explored. The
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AGUE parameter is estimated using the method of maximum likelihood estimation. The
lifetime applications of the AGUE distribution was illustrated using two-lifetime data sets.
The characteristic of the introduced model for larger sample size is examined via simula-
tion study. The AGUE distribution has the lowest value of test statistics. Thus, it provides
the best fit and more flexible than Pranav, exponential, and Lindley distributions for the
data sets. Ultimately, the AGUE distribution can serve as an alternative model to Pranav,
exponential, and Lindley distributions in the literature. A further research question is how
the applications of the regression model of the AGUE distribution can be explored on real
lifetime data.

7.1. Appendix: Probability density function

Let us write as Mood, Graybill and Boes (1974) stated that any function P(.) is defined
to be a pdf if and only if the following conditions are satisfied

1. P(x)≥ 0 for all x and

2. limc→∞

∫ c
−∞

P(x)dx = 1.

It is easy to see that the first property is satisfied for all x > 0. The second property is shown
as follows. Firstly,

lim
c→∞

∫ c

0
P(x)dx =

∫
∞

0

λ 3

λ 6 +8
[
λ

4 +4x2]exp(−λx)dx

=
λ 3

λ 6 +8
lim
c→∞

[∫ c

0
λ

4exp(−λx)dx+
∫ c

0
4x2exp(−λx)dx

]
.

By performing integration by parts, we obtained

λ 3

λ 6 +8

[
λ

3 +
8

λ 3

]
= 1.

Therefore, equation (1) is a pdf.

Acknowledgements

Thanks to the anonymous reviewers and the Editor in chief.

Conflıct of ınterest

The authors state that there is no conflict of interest related to this study.



74 F. I. Agu, J. T. Eghwerido: Agu-Eghwerido distribution, regression...

References

Abdal-hameed, M. K., Khaleel, M. A., Abdullah, Z. M., Oguntunde, P. E., Adejumo, A. O.,
(2018). Parameter estimation and reliability, hazard functions of Gompertz Burr Type
XII distribution. Tikrit Journal for Administration and Economics Sciences, 1(41-2),
pp. 381–400.

Agu, F. I., Onwukwe, C. E., (2019). Modified Laplace Distribution, Its Statistical Proper-
ties and Applications. Asian Journal of Probability and Statistics, pp. 1–14.

Agu, F. I, Francis, R. E., (2018). Comparison of goodness of fit tests for normal distribu-
tion. Asian Journal of Probability and Statistics, pp. 1–32.
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A new extension of Odd Half-Cauchy Family of
Distributions: properties and applications with regression

modeling
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ABSTRACT

The paper proposes a new family of continuous distributions called the extended odd half
Cauchy-G. It is based on the T −X construction of Alzaatreh et al. (2013) by consider-
ing half Cauchy distribution for T and the exponentiated G(x;ξ) as the distribution of X .
Several particular cases are outlined and a number of important statistical characteristics of
this family are investigated. Parameter estimation via several methods, including maximum
likelihood, is discussed and followed up with simulation experiments aiming to asses their
performances. Real life applications of modeling two data sets are presented to demonstrate
the advantage of the proposed family of distributions over selected existing ones. Finally,
a new regression model is proposed and its application in modeling data in the presence of
covariates is presented.

Key words: T −X method; regression; simulation; estimation

1. Introduction

Following the T −X construction of Alzaatreh et al. (2013), Cordeiro et al. (2017) pro-
posed a new generator of continuous probability distribution by considering Half-Cauchy
for T and exponentiated G (Lehmann alternative-I) for X . They called the family general-
ized odd Half-Cauchy (GOHC-G(α,ξ)) and investigated its properties and applications.
In the present paper we introduce a new ganerator called extended half Cauchy family
of distribution following the same construction by considering exponentiated G (Lehmann
alternative-II) for X and T following Half-Cauchy with probability density function (pdf)
q(t) = 2

π(1+t2)
, t > 0, where G(x;ξ) is the cumulative distribution function (cdf) of the base-

line distribution with parameter vector ξ. Now, following Alzaatreh et al. (2013) we define
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the proposed extended odd Half-Cauchy-G with the cdf

F(x;α,ξ) =
∫ 1−Ḡ(x;ξ)α

Ḡ(x;ξ)α

0

2
π(1+ t2)

dt =
2
π

arctan
[

1− Ḡ(x;ξ)α

Ḡ(x;ξ)α

]
, (1)

where x∈R and α > 0 is a parameter. The proposed family is denoted as shortly EOHC-G(α,ξ).

The pdf corresponding to (1) is given by

f (x;α,ξ) =
2α g(x;ξ) Ḡ(x;ξ)−α−1

π

[
1+

{
1− Ḡ(x;ξ)−α

}2
] =

2α g(x;ξ) Ḡ(x;ξ)α−1

π

[
Ḡ(x;ξ)2α +

{
1− Ḡ(x;ξ)α

}2
] , (2)

where g(x;ξ) = d
dx G(x;ξ) is the baseline pdf. Henceforth, a random variable X with density

function (2) is denoted by X ∼ EOHC-G(α,ξ).

It should be noted that for α = 1 both GOHC-G(α,ξ) and EOHC-G(α,ξ) reduce to the
odd half-Cauchy (OHC) family. Otherwise for α < 1, EOHC-G(α,ξ) >st GOHC-G(α,ξ)

and for α > 1 EOHC-G(α,ξ) <st GOHC-G(α,ξ). As such the two families give rise to
diffrent sets of distributions as special case for α ̸= 1.

For convenience we shall use G(x) = G(x;ξ), f (x) = f (x;α,ξ), etc.

The EOHC-G family is related to some distributions as stated below. Let X ∼EOHC-
G(α,ξ). Then, we have the following results.

1. If Y = Ḡ(X ;ξ)−α , then FY (y) = 2
π

arctan(y−1) and fY (y) = 2
π

1
1+(1−y)2 , y > 1.

2. If Y = Ḡ(X ;ξ)−α −1, then Y ∼ HC(0,1) with pdf fY (y) = 2
π

1
1+y2 , y > 0.

3. If Y = Ḡ(X ;ξ)α , then FY (y) = 2
π

arctan( 1−y
y ), 0 < y < 1.

The hazard rate function (hrf) of X is

h(x;α,ξ) =
2α g(x;ξ) Ḡ(x;ξ)α−1

π

[
Ḡ(x;ξ)2α +

{
1− Ḡ(x;ξ)α

}2
][

1− 2
π

arctan
{

Ḡ(x;ξ)−α −1
}] . (3)

1.1. Useful relation with the exponentiated class

Based on the following result of Gradshtyn and Ryzhik (2007) page 61, for x > 0,

arctan(x) =
π

2
−

∞

∑
i=0

(−1)i

(2 i+1)x2 i+1 .

We can derive the following mixture representation of the cdf and pdf of EOHC-G:
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F(x) =
2
π

arctan
[

1− Ḡ(x)α

Ḡ(x)α

]
= 1− 2

π

∞

∑
i=0

(−1)i Ḡ(x)α(2i+1)

(2 i+1)(1− Ḡ(x)α)2i+1

= 1− 2
π

∞

∑
i, j=0

(−1)i+ j
(
−2 i−1

j

)
Ḡ(x)α(2i+1)+α j

2 i+1
. (4)

Hence F(x) can be expressed as an infinite mixture of the exponentiated G(x) (Lehmann
alternative-II). Again

F(x) = 1− 2
π

∞

∑
i, j,k=0

(−1)i+ j+k
(
−2 i−1

j

)(
α(2i+1)+α j

k

)
G(x)k

2 i+1

= 1−
∞

∑
k=0

γk G(x)k =
∞

∑
k=0

νk G(x)k, (5)

where

γk =
2
π

∞

∑
i, j=0

(−1)i+ j+k
(
−2 i−1

j

)(
α(2i+1)+α j

k

)
2 i+1

,

ν0 = 1− γ0 and νk =−γk for k ≥ 1

Thus F(x) is seen as an infinite mixture of G(x)k, which is the exponentiated G(x)
distribution. Consequently, it is easy to verify that

f (x) =
∞

∑
k=0

νk(k+1)g(x)G(x)k

=
∞

∑
k=0

νkhk+1(x), (6)

where Hk+1(x) = G(x)k+1, hk+1(x) = d
dx Hk+1(x) = (k+1)G(x)k g(x) and h1(x) = g(x).

The rest of the paper is organized as follows. A few special cases are presented in
Section 2. Important properties like quantile function (qf), moments and moment generating
function (mgf) are presented in Section 3. In Section 4 maximum likelihood estimation and
its performance assessment via simulation is presented. Some other estimation methods
and their performance through simulation is presented in Section 5. In Section 6, a new
regression model is presented. In Section 7, data modelling applications with and without
covariate are presented. The paper ends with a concluding section.
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2. Sub-models of EOHC-G family

2.1. The EOHC-Burr XII (EOHC-BXII) distribution

Considering the BurrXII distribution (Burr, 1942) with pdf and cdf given by g(x) =
λβxλ−1(1+ xλ )−β−1, x > 0 and G(x) = 1− (1+ xλ )−β , λ > 0 and β > 0 the pdf and cdf
of EOHC-BXII distribution are given respectively by

f EOHC_BXII(x;α,λ ,β ) =
2αλβxλ−1 (1+ xλ

)−αβ−1

π

[(
1+ xλ

)−2αβ
+
{

1−
(
1+ xλ

)−αβ
}2

] , x > 0, (7)

FEOHC_BXII(x;α,λ ,β ) =
2
π

arctan
[(

1+ xλ

)αβ

−1
]
, x ≥ 0. (8)

Figure 1 shows the plots of the pdf and hazard of EOHC-BXII distribution for selected
parameter values.

2.2. The EOHC-Fr (EOHC-Fr) distribution

Let g(x) and G(x) be the pdf and cdf of the Frechet distribution, given as g(x) =
βθ β x−β−1 exp(−(θ/x)β ) and G(x) = exp(−(θ/x)β ), x ≥ 0, β > 0,θ > 0 respectively.
Then, the pdf and cdf of the EOHC-Fr distribution are

f EOHC_F(x;α,β ,θ) =
2αβθ β x−β−1 exp(−(θ/x)β )

[
1− exp(−(θ/x)β )

]α−1

π

[[
1− exp(−(θ/x)β )

]2α
+
[
1−

[
1− exp(−(θ/x)β )

]α
]] , (9)

and

FEOHC_F(x;α,β ,θ) =
2
π

arctan
[[

1− exp(−(θ/x)β )
]−α

−1
]
, x ≥ 0, (10)

respectively.
Figure 2 shows the plots of pdf and hazartd of EOHC-Fr distribution for some selected

parameters.

3. Properties of EOHC-G family

3.1. Quantile function and random sample generation

For a U ∼ Uniform(0,1) we can generate X ∼ EOHC-G by inverting (1) as

x = QG


[
1+ tan(π u

2 )
] 1

α −1[
1+ tan(π u

2 )
] 1

α

;ξ

 , (11)
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Figure 1: Plots of pdf and hazard for EOHC-BXII.
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where QG(·) = G−1(·) is the baseline qf. The quantiles of the EOHC-G distributions for any
baseline distribution can be obtained by (11). For instance, when u = 1/2, we obtain the
median of the baseline distribution. Additionally, we can generate random variables from
any baseline distribution using the given quantile function, in (11).

3.2. Moments

Let Yk+1 ∼exp-G(k+ 1) with pdf hk+1(x) = (k+ 1)g(x)G(x)k. An expression for the
nth moment of X can be obtained using equation (6) as

µ
′
n = E(Xn) =

∞

∑
k=0

νk E(Y n
k+1). (12)

Another expression for µ ′
n can be derived from equation (6) using the qf QG(u) of the

baseline distribution G as

µ
′
n =

∞

∑
k=0

(k+1)νk τn,k , (13)

where τn,k =
∫

∞

−∞
xn G(x)k g(x)dx =

∫ 1
0 QG(u)n ukdu. τn,k is the (n,k)th probability weighted

moment (PWM) of G. Thus, the moments of the EOHC-G distribution can be expressed in
terms of the PWMs of G.

For integer values of n, let µ
′
n = E(Xn) and µ = µ

′
1 = E(X), then one can also find the

nth central moment of the EOHC-BXII distribution as

µn = E(X −µ)n =
n

∑
i=0

(
n
i

)
µ

′
i (−µ)n−i. (14)

Using the first four moments of the EOHC-BXII distribution, we obtain the skewness
and kurtosis of the EOHC-BXII distribution. Figure 3 shows the behaviour of skewness and
kurtosis of the EOHC-BXII distribution.

3.3. Moment generating function

Lemma 1: The condition for F(x) to have a mgf is that G(x) also has a mgf.
Proof: Let m = inf{x|G(x)≥ 0.5}, then

MX (t) =
∫

∞

−∞

etx f(x)dx =
∫

∞

−∞

etx 2
π

g(x) Ḡ(x)α−1

Ḡ(x)2α +[1− Ḡ(x)α ]2
dx

≤
∫

∞

−∞

etx 2
π

g(x)
Ḡ(x)2α +[1− Ḡ(x)α ]2

dx

=
∫ m

−∞

etx 2
π

g(x)
Ḡ(x)2α +[1− Ḡ(x)α ]2

dx+
∫

∞

m
etx 2

π

g(x)
Ḡ(x)2α +[1− Ḡ(x)α ]2

dx.



STATISTICS IN TRANSITION new series, December 2021 83

alpha

0.5

1.0

1.5

2.0

2.5

3.0

be
ta

0.5

1.0

1.5

2.0

2.5

3.0

S
ke

w
n
e
s
s

1.0

1.5

2.0

2.5

3.0

3.5

EOHC − BXII(α, β, 2)

alpha

0.5

1.0

1.5

2.0

2.5

3.0

be
ta

0.5

1.0

1.5

2.0

2.5

3.0

K
u
rto

s
is

5

10

15

EOHC − BXII(α, β, 2)

Figure 3: Skewness and Kurtosis for EOHC-BXII.

The second integral above is finite and the first integral is not greater than∫
∞

m
etx 2

π

g(x)
Ḡ(x)2α

dx.

For x < m, we have Ḡ(x)≥ 0.5, so that

∫
∞

m
etx 2

π

g(x)
Ḡ(x)2α

dx <
22α+1

π

∫
∞

m
etx g(x)dx < ∞.

Thus, MX (t)< ∞.

Corollary 1: Using (6), the mgf of M(t) = E[exp(t X)] of X is

M(t) =
∞

∑
k=0

νk Mk+1(t), (15)

where Mk+1(t) is the mgf of Yk+1 ∼ exp−G(k+1). Alternatively, using equation (15) we
can write

M(t) =
∞

∑
k=0

(k+1)νk ρ(t,k), (16)

where

ρ(t,k) =
∫

∞

−∞

et x G(x)k g(x)dx =
∫ 1

0
exp{t QG(u)} ukdu.
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4. Maximum likelihood estimation

Let x = (x1,x2, ...,xr) be a random sample from EOHC-G family with parameter vector
η = (α, ξ). The log-likelihood function is

ℓ= ℓ(η) = r log
2α

π
+

r

∑
i=1

log [g(xi,ξ)) ]+(α −1)
r

∑
i=1

log [Ḡ(xi,ξ) ]

−
r

∑
i=1

[
log Ḡ(xi,ξ)

2α −{1− Ḡ(xi,ξ)
α }2].

The simultaneous solution of the partial derivatives of the log-likelihood gives the max-
imum likelihood estimators (MLEs) of the parameter of the EOHC-G family for a given
baseline distribution. Unfortunately, it is not possible because of the non-linear structures
of these derivatives. In this case, we prefer to maximize the log-likelihood function using
the iterative algorithms. It can be done by statistical software such as R, Matlab or Python.
Here, we use the R software to do this. The standard errors of the parameters are obtained
based on the observed information matrix.

4.1. Performance evaluation of MLE

The MLEs of the parameters of the EOHC-BXII distribution are investigated based on
the simulation study. The selected true parameter values are (α,λ ,β ) = (1.5,2,1) . The
used sample size is from n = 20 to n = 100. The simulation is replicated r = 200 times. The
MLEs are obtained as (α̂i, λ̂i, β̂i). We compute the biases and mean squared errors for each
sample size by using the below equations

Biasrθ̂ =
1
r

r

∑
i=1

(θ̂i −θi)andMSErθ̂ =
1
r

r

∑
i=1

(θ̂i −θi)
2
, forθ = (α,λ ,β ).

The simulation results are plotted in Figures 4 and 5, which shows that the biases and
mean square errors are near the zero for all parameters. These results confirms that the
MLEs of the parameters of the EOHC-BXII distributions are unbiased and consistent.

5. The other estimation methods

Several estimation methods can be used to estimate the unknown model parameters.
Here, we focus on four different estimation methods. These are briefly summarized in the
rest of this section. See Dey et al. (2018) for detailed information on these estimation
methods. Note that, {ti:n; i = 1,2, ...,n} are order statistics and F is the distribution function
of EOHC-BXII.
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Figure 4: Bias of α̂, β̂ , λ̂ versus r for EOHC-BXII when (α,β ,λ ) = (1.5,1,2).
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Figure 5: MSE of α̂, β̂ , λ̂ versus r for EOHC-BXII when (α,β ,λ ) = (1.5,1,2).
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5.1. Least square and weighted least square estimators

Swain et al. (1988) introduced the estimation methods for least square (LSE) and
weighted least square estimators (WLSE). These estimators are easily obtained by mini-
mizing the following functions:

SLSE(α,ξ) =
n

∑
i=1

(
F(ti:n;α,ξ)− i

n+1

)2

and

SWLSE(α,ξ) =
n

∑
i=1

(n+1)2(n+2)
i(n− i+1)

(
F(ti:n;α,ξ)− i

n+1

)2

5.2. Cramér–von–Mises estimator

Choi and Bulgren (1968) introduced the method for the Cramér-von-Mises Estimator
(CME), which is obtained by minimizing the following function

SCME(α,ξ) =
1

12n
+

n

∑
i=1

(
F(ti:n;α,ξ)− 2i−1

2n

)2

.

5.3. Anderson-Darling and right-tailed Anderson-Darling estimators

Anderson-Darling estimators (ADEs) and right-tailed Anderson Darling estimators, shortly
denoted as (RTADEs), were introduced by Anderson and Darling (1952) and Macdonald
(1971), respectively. The ADEs for the EOHC-BXII distribution can be obtained by mini-
mizing the below function

SADE(α,ξ) =−n− 1
n

n

∑
i=1

(2i−1){logF(ti:n;α,ξ+ logF(ti:n+1−i;α,ξ},

where F (·) = 1−F (·).

5.4. Simulation

Again, EOHC-BXII distribution is used to investigate the difference between the estima-
tion methods given in the above section. The true parameter vector is (α,λ ,β ) = (1.5,2,1)
and the sample size is n = 30,35, · · · ,300. The simulation is replicated r = 100 times. The
results are plotted in Figure 6.

The following results are obtained.

• For estimating α , AD method has the minimum amount of bias.

• For estimating λ , with small sample size, CVM method and for large sample size,
AD has the minimum amount of bias.

• For estimating β , AD method has the minimum amonut of bias.
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Figure 6: Bias of α̂ versus n when α = 1.5; Bias of β̂ versus n when β = 1 ; Bias of λ̂

versus n when λ = 2; MSE of α̂ versus n when α = 1.5 ; MSE of β̂ versus n when β = 1;
MSE of λ̂ versus n when α = 2
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• For estimating α , with small sample size, CVM method and for large sample size,
LSE has the minimum amount of MSE.

• For estimating λ , with small sample size, CVM method and for large sample size,
AD has the minimum amount of MSE.

• For estimating β , with small sample size, CVM method and for large sample size,
AD has the minimum amount of MSE.

6. The log-EOHC-Fr regression model

Consider the EOHC-Fr distribution with three parameters given in (9) and let X be a
random variable with EOHC-Fr distribution. Using the transformation Y = log(X) and the
re-parametrizations β = 1/σ and θ = exp(µ), the pdf of Y is

f (y) =
2α

σ
exp

{
−
( y−µ

σ

)}
exp

{
−exp

{
−
( y−µ

σ

)}}(
1−

[
exp

{
−exp

{
−
( y−µ

σ

)}}])−α−1

π

[
1+

{
1−

(
1−

[
exp

{
−exp

{
−
( y−µ

σ

)}}])−α
}2

] ,

(17)
where y ∈ ℜ. The parameter µ ∈ ℜ represents the location of Y and the parameter σ > 0 is
treated as a scale parameter and α > 0 is the shape parameter. The density in (17) is referred
as the Log-EOHC-Fr (LEOHC-Fr) distribution and denoted as Y ∼ LEOHC-Fr(α,µ,σ).
The survival function of (17) is

S (y) = 1− 2
π

arctan

[
1−

(
1−

[
exp

{
−exp

{
−
( y−µ

σ

)}}])α(
1−

[
exp

{
−exp

{
−
( y−µ

σ

)}}])α

]
, (18)

Now, we introduce a new parametric regression model to analyze the lifetimes of indi-
viduals with covariates. To do this, the identity link function is used to link the covariates
to location of the response variable. Let yi be a response variable that follows the den-
sity in (17) and v⊺i = (vi1, . . . ,vip) be a explanatory variable vector. We consider the below
location-scale regression model

yi = v⊺i β +σzi, i = 1, . . . ,n, (19)

where yi has density function (17), β = (β1, . . . ,βp)
⊺, and σ > 0, α > 0 are unknown

parameters.
The unknown parameters of the LEOHC-Fr are obtained by means of MLE method.

The response variable is defined as yi = min{log(xi), log(ci)}. The quantities log(xi) and
log(ci) represent the log-lifetimes and log-censoring times, respectively. We define two
sets to represents the log-lifetimes and log-censoring times. These are F and C. The set F
contains the log-lifetimes and C contains the log-censoring times. The general equation for
the log-likelihood function on the model in (19) is given by

l(Θ) = ∑
i∈F

log[ f (yi)]+∑
i∈C

log[S(yi)]
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where Θ = (α,σ ,β⊺), li(τ) = log[ f (yi)] and l(c)i (Θ) = log[S(yi)], f (yi). Replacing
f (yi) with (17) and S(yi) with (18) in the above equation, the log-likelihood function of the
LEOHC-Fr regression model is

ℓ(Θ) = r log
( 2α

σ

)
− ∑

i∈F
zi− ∑

i∈F
exp(zi)

+(−α −1) ∑
i∈F

log(1− [exp{−exp{−zi}}])

− ∑
i∈F

logπ

[
1+

{
1− (1− [exp{−exp{−zi}}])−α

}2
]

+ ∑
i∈C

log
(

1− 2
π

arctan
[

1−(1−[exp{−exp{−zi}}])α

(1−[exp{−exp{−zi}}])α

])
,

. (20)

where zi = (yi − µi)/σ , and r is the number of uncensored observations. The MLE of the
parameter vector, ℓ(Θ) is obtained by direct maximization of (20) using the optim function
of R software.

6.1. Residual analysis

Two types of the residuals are considered to study the residual analysis of the LEOHC-Fr
regression model.

6.1.1 Martingale residual

The martingale residuals for LEOHC-Fr model is (see Fleming and Harrington, 1994,
for details)

rMi =

 1+ log
(

1− 2
π

arctan
[

1−(1−[exp{−exp{−zi}}])α

(1−[exp{−exp{−zi}}])α

])
if i ∈ F,

log
(

1− 2
π

arctan
[

1−(1−[exp{−exp{−zi}}])α

(1−[exp{−exp{−zi}}])α

])
if i ∈C,

(21)

where zi = (yi −µi)/σ .

6.1.2 Modified deviance residual

The interpretation of the martingale residuals is not easy since it is not symmetrically
distributed around zero. Therefore, the modified deviance residual was proposed by Th-
erneau et al. (1990) to remove the lack of the martingale residuals. The modified deviance
residual for LEOHC-Fr model is

rDi =

{
sign(rMi){ −2 [rMi + log(1− rMi)]}

1/2, if i ∈ F,
sign(rMi){ −2rMi}

1/2, if i ∈C,
(22)

where rMi is the martingale residual.
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7. Real life applications

7.1. Modelling without covariates

Two different real-life data sets are considered here to study the suitability of the distri-
butions from EOHC-G(α,ξ) family in comparison with some existing distributions taking
BurrXII distribution as the baseline distribution. We have used AIC (Akaike Information
Criterion), BIC (Bayesian Information Criterion), CAIC (Consistent Akaike Information
Criterion) and HQIC (Hannan-Quinn Information Criterion) for selecting the best model.
The figures of fitted densities and the fitted cdf’s presented alongside the corresponding
observed histograms and ogives for visual checking.

Here we have considered Burr-XII as the baseline distribution in the EOHC-G fam-
ily and compared it with the following important extensions of Burr-XII model including
GOHC-BXII.

1. BXII distribution:

f (x) = λβxλ−1
(

1+ xλ

)−β−1
,λ > 0, β > 0, x > 0.

2. MOBXII distribution (Arwa Y. Al-Saiari et al., 2014):

f (x) =
λ βα xλ−1

(
1+ xλ

)−β−1[
1− (1−α)

(
1+ xλ

)−β
]2 , α > 0, λ > 0, β > 0,x > 0.

3. TLBXII distribution (Hesham and Soha, 2017):

f (x) = 2αλβxλ−1
(

1+ xλ

)−2β−1 [
1− (1+ xα)−2β

]α−1
,

α > 0, λ > 0, β > 0, x > 0.

4. KwBXII distribution (Paranaiba et al., 2013):

f (x) =
abλ β xλ−1(
1+ xλ

)β+1

[
1−

(
1+ xλ

)−β
]a−1

×

{
1−

[
1−

(
1+ xλ

)−β
]a}b−1

,

a > 0, b > 0, λ > 0, β > 0, x > 0.

5. BBXII distribution (Paranaiba et al., 2011):

f (x) =
λ β

B(a,b)
xλ−1

(
1+ xλ

)−β (b+1)
[

1−
(

1+ xλ

)−β
]a−1

,

a > 0, b > 0, λ > 0, β > 0, x > 0.
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6. BEBXII distribution (Mead, 2014):

f (x) =
λ β α

B(a,b)
xα−1

(
1+ xλ

)−β−1
[

1−
(

1+ xλ

)−β
]aα−1

×{
1−

[
1−

(
1+ xλ

)−β
]α}b−1

,

a > 0, b > 0, α > 0, λ > 0, β > 0, x > 0.

7. FBBXII distribution (Paranaiba et al., 2011):

f (x) =
λ β α−λ

B(a,b)
xλ−1

[
1+

( x
α

)λ
]−βb−1

{
1−

[
1+

( x
α

)λ
]−β

}a−1

,

a > 0, b > 0, α > 0, λ > 0, β > 0, x > 0.

8. FKwBXII distribution (Paranaiba et al., 2013):

f (x) =
abλ β xλ−1[

1+
( x

α

)λ
]β+1

[
1−

(
1+

( x
α

)λ
)−β

]a−1

×

{
1−

[
1−

(
1+

( x
α

)λ
)−β

]a}b−1

,

a > 0, b > 0, α > 0, λ > 0, β > 0, x > 0.

9. GOHC-BXII distribution (Cordeiro et al., 2017):

f (x;α,λ ,β ) =
2αλβxλ−1 (1+ xλ

)−β−1
[
1−

(
1+ xλ

)−β
]α−1

π

[[
1−

(
1+ xλ

)−β
]2αβ

+
{

1−
[
1−

(
1+ xλ

)−β
]α}2

] ,
α > 0, λ > 0, β > 0, x > 0.

In the first application, we work with the survival times (in days) of 72 guinea pigs
infected with virulent tubercle bacilli, observed and reported by Bjerkedal (1960). It is used
also by Shibu and Irshad (2016). The second data set is obtained from Hinkley, (1977). It
consists of thirty successive values of March precipitation (in inches) in Minneapolis/St
Paul. We have presented the descriptive statistics of the data sets I, and II in Table 1.
Findings of the data fitting in Tables 2, 3,4, 5. The total time on test (TTT) plot proposed
by Aarset (1987) is drawn to get information about the shape of the hazard of a given data
set. If the resulting shape of the TTT plot is a straight diagonal line, is of convex shape
and concave shape then the corresponding hazard is constant, decreasing and increasing
respectively. The TTT plots for the data sets considered here are presented in Figure 7 and
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Figure 7: TTT Plots of data I and II from right to left

Table 1: Descriptive Statistics for the data set I, and II

n Min. 1st Qu. Third Qu. Mean Median Max. Variance Skewness Kurtosis
72 0.1 1.08 2.30 1.85 1.56 7.00 1.44 1.79 4.16
30 0.32 0.92 2.09 1.67 1.47 4.75 1.00 1.03 0.93

indicate that the all the three data sets are increasing hazard rate.
In Tables 2-5 the MLEs with standard errors of the parameters for all the fitted the mod-

els, their AIC, BIC, CAIC and HQIC for the data sets I and II are presented respectively.
From these tables it is evident that for both the data sets considered here the EOHC-BXII
distribution with lowest AIC, BIC, CAIC, HQIC turned out to be the best model. More-
over, the plots of estimated pdf against the observed histograms and the estimated cdf of
EOHC-BXII against empirical cdfs in Figures 8 and 9 reveal that the proposed distribution
provides closest fit to both the data sets. It may be mentioned that the proposed three param-
eter distribution has even outperformed the four and five parameter extensions considered
here.

7.2. Modelling with covariates

Yousof et al. (2018) introduced the Log-odd log-logistic-Fréchet (LOLL-Fr) regression
model and analysed the Stanford heart transplant data set. The same data set was also ana-
lyzed by Korkmaz et al. (2020). Now, we use the same data set to illustrate the importance
of the LEOHC-Fr regression model and compare its performance with a regression model
of Yousof et al. (2018), LOLL-Fr regression. The data set can be found in an R pack-
age, p3state.msm. The sample and censoring rate are 103 and 27%, respectively. The aim
of the study is to analyze the survival times of individuals, say (yi) with covariates: v1-
year of acceptance to the program; v2- age of patient (in years); v3- previous surgery status
(1 = yes,0 = no); v4-transplant indicator (1 = yes,0 = no). The model in (23) is considered
and fitted by two models: LEOHC-Fr and LOLL-Fr regression models.

yi = β0+β1vi1 +β2vi2 +β3vi3 +β4vi4 +σzi , (23)
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Table 2: MLEs, standard errors, confidence interval (in parentheses) for the data set I

Model α̂ â b̂ λ̂ β̂

BXII
(λ ,β )

· · · · · · · · · 3.102 0.465

(0.538)
(2.05,4.16)

(0.077)
(0.31,0.62)

MOBXII
(α,λ ,β )

8.989 · · · · · · 2.259 1.533

(4.587)
(0,17.97)

(0.864)
(0.57,3.95)

(0.907)
(0,3.31)

TLBXII
(α,λ ,β )

1.796 · · · · · · 2.393 0.488

(0.915)
(0.002,3.59)

(0.907)
(0.62,4.17)

(0.244)
(0,0.97)

KwBXII
(a,b,λ ,β )

· · · 14.105 7.424 0.525 2.274

(10.805)
(0,35.28)

(11.850)
(0,30.65)

(0.279)
(0,1.07)

(0.990)
(0.33,4.21)

BBXII
(a,b,λ ,β )

· · · 2.555 6.058 1.800 0.294

(1.859)
(0,6.28)

(10.391)
(0,26.42)

(0.955)
(0,3.67)

(0.466)
(0,1.21)

BEBXII
(α,a,b,λ ,β )

0.572 1.876 2.991 1.780 1.341

(0.325)
(0,1.21)

(0.094)
(1.69,2.06)

(1.731)
(0,6.38)

(0.702)
(0.40,3.16)

(0.816)
(0,2.94)

FBBXII
(α,a,b,λ ,β )

1.655 0.621 0.549 3.398 1.381

(0.436)
(0.81,4.48)

(0.541)
(0,1.68)

(1.011)
(0,2.53)

(2.785)
(0,8.86)

(2.312)
(0,5.91)

FKwBXII
(α,a,b,λ ,β )

1.475 0.588 0.308 3.399 2.131

(0.361)
(0.76,2.18)

(0.442)
(0,1.42)

(0.314)
(0,0.92)

(2.082)
(0,7.47)

(1.833)
(0,5.72)

GOHCBXII
(α,λ ,β )

1.828 · · · · · · 1.981 0.987

(1.170)
(0,4.12)

(0.899)
(0.21,3.74)

(0.643)
(0,2.24)

EOHCBXII
(α,λ ,β )

0.491 · · · · · · 3.126 0.998

(0.017)
(0.45,0.52)

(0.462)
(2.22,4.03)

(0.136)
(0.73,1.26)
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Table 3: AIC, BIC, CAIC, HQIC values for the data set I

Model AIC BIC CAIC HQIC
BXII
(λ ,β )

209.60 214.15 209.77 211.40

MOBXII
(α,λ ,β )

209.74 216.56 210.09 212.44

TLBXII
(α,λ ,β )

211.80 218.63 212.15 214.52

KwBXII
(a,b,λ ,β )

208.76 217.86 209.36 212.38

BBXII
(a,b,λ ,β )

210.44 219.54 211.03 214.06

BEBXII
(α,a,b,λ ,β )

212.10 223.50 213.00 216.60

FBBXII
(α,a,b,λ ,β )

206.80 218.20 207.71 211.30

FKwBXII
(α,a,b,λ ,β )

206.50 217.90 207.41 211.00

GOHCBXII
(α,λ ,β )

206.66 213.50 207.01 209.36

EOHCBXII
(α,λ ,β )

205.96 212.80 206.31 208.66
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Figure 8: Plots of the observed histogram and estimated pdfs for the BXII, MOBXII, ,TL-
BXII, KwBXII, BBXII,BEBXII, FBBXII, FKwBII and EOHCBXII and observed ogive and
estimated cdf EOHCBXII for data set I from right to left
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Table 4: MLEs, standard errors, confidence interval (in parentheses) for the data set II

Model α̂ â b̂ λ̂ β̂

BXII
(λ ,β )

· · · · · · · · · 3.255 0.687

(0.645)
(1.99,4.52)

(0.137)
(0.41,0.95)

MOBXII
(α,λ ,β )

5.205 · · · · · · 2.121 1.666

(8.599)
(0,22.05)

(1.041)
(0.08,4.16)

(1.295)
(0,4.20)

TLBXII
(α,λ ,β )

3.949 · · · · · · 1.420 0.977

(5.685)
(0,15.09)

(1.019)
(0,3.42)

(0.904)
(0,2.75)

KwBXII
(a,b,λ ,β )

· · · 34.377 30.999 0.292 3.006

(109.591)
(0,249.17)

(63.785)
(0,156.01)

(0.368)
(0,1.01)

(4.298)
(0,11.43)

BBXII
(a,b,λ ,β )

· · · 39.029 15.796 0.389 1.645

(6.983)
(0,25.34)

(10.693)
(0,36.75)

(0.028)
(0.33,0.44)

(0.176)
(1.30,1.98)

BEBXII
(α,a,b,λ ,β )

1.000 15.563 7.818 0.617 1.388

(1.232)
(0,3.41)

(22.109)
(0,58.89)

(13.299)
(0,33.88)

(0.421)
(0,1.44)

(0.667)
(0,2.69)

FBBXII
(α,a,b,λ ,β )

26.693 3.925 58.407 0.889 0.925

(9.938)
(7.21,46.17)

(4.717)
(0,13.17)

(11.969)
(34.94,81.86)

(0.521)
(0,1.91)

(0.237)
(0.46,1.39)

FKwBXII
(α,a,b,λ ,β )

1.929 0.612 0.771 3.344 2.532

(0.668)
(0.62,3.24)

(0.144)
(0.32,0.89)

(0.823)
(0,2.38)

(1.396)
(0.61,6.08)

(1.077)
(0.42,4.64)

GOHCBXII
(α,λ ,β )

4.641 · · · · · · 1.124 2.177

(8.491)
(0,21.28)

(0.951)
(0,2.98)

(2.345)
(0,6.77)

EOHCBXII
(α,λ ,β )

0.432 · · · · · · 2.730 1.347

(0.174)
(0.09,0.77)

(0.570)
(1.61,3.84)

(0.098)
(1.15,1.53)
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Table 5: AIC, BIC, CAIC, HQIC values for the data set II

Model AIC BIC CAIC HQIC
BXII
(λ ,β )

88.50 91.30 88.94 89.38

MOBXII
(α,λ ,β )

87.28 91.48 88.20 88.60

TLBXII
(α,λ ,β )

86.62 90.82 87.54 87.94

KwBXII
(a,b,λ ,β )

86.16 91.76 87.76 87.92

BBXII
(a,b,λ ,β )

87.14 92.74 88.74 88.90

BEBXII
(α,a,b,λ ,β )

87.26 94.26 89.76 89.46

FBBXII
(α,a,b,λ ,β )

87.36 94.36 89.86 89.56

FKwBXII
(α,a,b,λ ,β )

87.14 94.14 89.64 89.34

GOHCBXII
(α,λ ,β )

84.78 88.98 85.70 86.12

EOHCBXII
(α,λ ,β )

84.42 88.62 85.34 85.74

Estimated pdf

x
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Figure 9: Plots of the observed histogram and estimated pdfs for the BXII, MOBXII, ,TL-
BXII, KwBXII, BBXII,BEBXII, FBBXII, FKwBII and EOHCBXII and observed ogive and
estimated cdf EOHCBXII for data set II from right to left
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Table 6: MLEs of the parameters to Stanford Heart Transplant Data for LOLL-Fr and
LEOHC-Fr regression models with corresponding SEs, p-values and −ℓ, AIC and BIC
statistics.

Models
LOLL-Fr LEOHC-Fr

Parameters Estimate S.E. p-value Estimate S.E. p-value
α 2.078 0.790 - 24.344 49.796 -
σ 2.886 0.954 - 5.728 2.952 -
β0 1.252 0.561 0.025 9.661 6.964 0.165
β1 0.181 0.096 0.061 0.204 0.094 0.031
β2 -0.047 0.018 0.010 -0.052 0.018 0.004
β3 -0.151 0.501 0.763 0.206 0.484 0.670
β4 0.551 0.268 0.039 0.437 0.365 0.230
−ℓ 160.932 158.965

AIC 335.865 331.931
BIC 354.308 350.374

The results of the fitted regression models including the estimated parameters, stan-
dard errors and corresponding p-values as well as model selection criteria such as AIC and
BIC values are given in Table 6. As seen from the reported values of AIC and BIC, the
LEOHC-Fr regression model has lower values of these statistics than those of the LOLL-Fr
regression model. Therefore, we conclude that the LEOHC-Fr regression model is more ap-
propriate than the LOLL-Fr regression model for the data used. Additionally, the regression
parameters β1 and β2 are statistically significant since the p-values of these parameters are
less than 5% significance level.

7.2.1 Residual Analysis of LEOHC-Fr model

Figure 10 displays the residuals analysis results of the LEOHC-Fr model. These figures
reveal the applicability and accuracy of the fitted LEOHC-Fr model. Since all residuals are
in the plotted envelopes, there is no possible outlier.

8. Conclusion

T-X method is used to generate a new family of continuous distributions. Important
statistical properties are investigated. Different estimation methods are discussed to estimate
the unknown model parameters via comprehensive simulation studies. Applications of data
modelling with distribution fitting and regression modelling have shown favourable results
for distributions belonging to the proposed family.
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Figure 10: The results of residual analysis: (left) plot of the modified deviance residuals
and (right) its quantile-quantile plot
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A study on exponentiated Gompertz distribution under Bayesian 
discipline using informative priors 

Muhammad Aslam1, Mehreen Afzaal2, M. Ishaq Bhatti3 

ABSTRACT  

The exponentiated Gompertz (EGZ) distribution has been recently used in almost all areas 
of human endeavours, starting from modelling lifetime data to cancer treatment. Various 
applications and properties of the EGZ distribution are provided by Anis and De (2020). 
This paper explores the important properties of the EGZ distribution under Bayesian 
discipline using two informative priors: the Gamma Prior (GP) and the Inverse Levy Prior 
(ILP). This is done in the framework of five selected loss functions. The findings show that 
the two best loss functions are the Weighted Balance Loss Function (WBLF) and the 
Quadratic Loss Function (QLF). The usefulness of the model is illustrated by the use of real-
life data in relation to simulated data. The empirical results of the comparison are presented 
through a graphical illustration of the posterior distributions. 
Key words: exponentiated Gompertz distribution, loss functions, informative priors, Bayes 
estimators, posterior risks.  

1. Introduction 

The Gompertz distribution was named after Benjamin Gompertz. It is an 
exponentially increasing, continuous probability distribution. Exponentiated 
Gompertz (EGZ) distribution is basically a truncated extreme value 
distribution (Johnson et al. 1994 and Chaturvedi et al. 2012) which ranges from zero to 
positive infinity. In early days EGZ was used in the area of insurance to measure life 
expectancy and human mortality rates with a range of 0 to ≅ 100. However, recently 
these distributions have been used in a wide range of other applications in various areas 
of human endeavours, including risk management, economic and finance, cancer 
treatment, medical and biological sciences and demography. Recently, the various 
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applications and properties of EGZ distribution have been studied by Chaturvedi et al. 
(2000), Abu-Zinadah et al. (2017), Hoseinzadeh et al. (2019), Mazucheli et al. (2019), 
Alrajhi et al. (2020), Dey et al. (2018), Leren et al. (2019), Anis and De (2020), Anis 
(2020), Jha et al. (2020), Shrivastava et al. (2019) and Obeidat et al. (2020), among 
others. For example, Abu-Zinadah et al. (2017), Dey et al. (2018) developed some 
theoretical properties of EGZ, which are being used by economists, financiers and 
practitioners. For example, Jha et al. (2020) applied EGZ distribution in reliability 
whereas Hoseinzadeh et al. (2019) employed in financial markets and risk management. 
Moreover, Mazucheli et al. (2019) introduced the unit-Gompertz (UG) distribution 
and studied some important properties. Anis and De (2020) pointed out a flaw of an 
error term in Mazucheli et al.’s (2019) paper and proposed a new type of UG-
distribution with additional interesting properties. Moreover, Alraihi et al. (2020) 
tackled hybrid censored sample issue of complexity in a fuzzy system and artificial 
intelligence, whereas Leren et al. (2020) applied EGZ model-based distribution to 
bladder cancer patient’s data and observed interesting properties in bioinformatics.  

In some early studies, El-Gohary et al. (2013) suggested EGZ’s interesting 
properties. Sherpiency et al. (2013) introduced a new distribution called bivariate 
generalized Gompertz (BGG) distribution, whose marginals are generalized Gompertz 
distributions (GGD) and discussed some of its properties. Zinadah and Oufi (2014) 
studied the EGZ distribution and its properties like, quantiles, median, mode, mean 
residual lifetime, mean deviations, Rényi entropy, density, survival and hazard 
functions were derived. Zinadah (2014a) derived the expressions for reliability and 
failure rate functions of the EGZ distribution. Saraçoğlu et al. (2014) considered the 
Maximum Likelihood Estimators (MLE) and Bayes Estimators (BE) for unknown 
parameters of GGD. Moreover, Zinadah (2014) also worked on three goodness of fit 
test statistics, namely Kolmogorov Smirnov (KS), Anderson Darling (AD) and Cramer 
Von Mises (CVM) for EGZ distribution utilizing complete and type-II censored data. 
Jafari et al. (2014) introduced a new four parameter generalized version of Gompertz 
distribution called Beta-Gompertz (BG) distribution. Zinadah (2014) examined the 
EGZ distribution, for estimating the shape parameter θ, considering five different 
estimation methods. Namely Maximum Likelihood method, method of Moments, 
method of Percentiles, Least Square method and Weighted Least Square method. 
Damcese et al. (2015) demonstrated a new lifetime model called Odd Generalized 
Exponential Gompertz (OGE-G) distribution.  

Furthermore, an important work of Zinadah and Oufi (2016) on the four 
estimators, namely: ML, Least Squares (LS), Weighted Least Squares (WLS), and 
Percentiles (PC) for the EGZ distribution is some extra contribution in the literature. 
Cordeiro et al. (2016) investigated a new distribution called Exponentiated Gompertz 
Generated (EGG) distribution. Bassiouny et al. (2017) proposed a new model, namely 
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Exponentiated Generalized Weibull-Gompertz (EGWG) distribution. Ade et al. (2017) 
developed a distribution known as Generalized Exponentiated Gompertz Makeham 
(EGGM) distribution, consisting of five parameters. Bakouch et al. (2017) introduced 
a new distribution called the Weighted Gompertz (WGO) distribution. 

From the above studies one can see that the literature review revealed that none of 
the authors have worked on attaining BEs and PRs of the EGZ distribution and have only 
studied its properties. Hence, this paper is an attempt to fill this gap in the literature. 
It attempts to analyze the unknown shape parameter of the EGZ distribution. The rest of 
the paper is organized as follows. In Section 2, we define the pdf of EGZ Distribution and 
derive its likelihood function. In Section 3, analysis is done on the unknown shape 
parameter of EGZ Distribution when the rest of the parameters are known. We have 
derived its posterior distribution, Bayes Estimators and PRs utilizing various loss 
functions. It considers GP and ILP which are contemplated as informative priors to 
acquiring the posterior distribution. In Section 4, simulation study is conducted, and 
comparison of the estimates is presented along with graphical illustration. A real life 
data set is considered for the analysis purpose in Section 5 and its results are discussed 
and compared with that of simulation using tabulation, and graphics of the posterior 
distribution are demonstrated to show that the best loss function is the WBLF followed 
by QLF. The final section contains some concluding remarks. 

2. EGZ distribution and its likelihood function 

The pdf of EGZ of variable X is given as: 
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Then (2) becomes:  
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The likelihood function of EGZ with known scale parameter , known shape 
parameter  and unknown shape parameter   is:

 )( 1),( mnexL   ,                (3) 
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3. Analysis of shape parameter of EGZ distribution 

3.1 Posterior distribution using informative priors 

Here, in this subsection we consider GP and ILP which are contemplated as 
informative priors to acquiring the posterior distribution. 

3.1.1 Gamma prior 

The gamma prior of with hyperparameters ‘v’ and ‘w’ is given by: 
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The posterior distribution using equations (3) and (4) is given by: 
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where, nv  2  and .12 mw   
which is the density kernel of gamma distribution having parameters 2  and 2 . 

Hence, the posterior distribution x is Gamma ( 2 , 2 ).  

3.1.2 Inverse levy prior 

The inverse Levy prior of   with hyperparameter ‘c’ is given by: 

,
2

)( 22

1 





c

e
c

p



   .0, c        (5) 

The posterior distribution using equations (3) and (5) is given by: 
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which is the density kernel of gamma distribution having parameters 3  and 3 . 

Hence, the posterior distribution x is Gamma ( 3 , 3 ). 
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3.2. BEs and PRs under different loss functions 

The general expressions for loss functions along with the expressions of their Bayes 
Estimators and PRs are given as follows. 

3.2.1 Squared error loss function 

The expression for squared error loss function is given as: 
,)(),( 2  L           (6) 

The Bayes estimator and posterior risk of SELF are: 
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3.2.2 Weighted squared error loss function 

The expression for weighted squared error loss function is given as: 
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The Bayes estimator and posterior risk of WSELF are: 
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3.2.3 Precautionary loss function 

The expression for precautionary loss function is given as: 
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The Bayes estimator and Posterior risk of PLF are: 
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3.2.4 Weighted balance loss function 

The expression for weighted balance loss function is given as: 
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The Bayes estimator and posterior risk of WBLF are: 
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3.2.5 Quadratic loss function 

The expression for quadratic loss function is: 
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The Bayes estimator and posterior risk of QLF are: 
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3.3. Expressions for BEs and PRs under different loss functions 

This section derives and summarize the expressions for BEs and PRs under SELF 
in the presence of priors based on GP and ILP distributions. This is done in tabular 
form below in Tables 3.1. to 3.5., which represent five loss functions, respectively. 

 

Table 3.1. Expressions for BEs and PRs under SELF 

 

Table 3.2. Expressions for BEs and PRs under WSELF 
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Table 3.3. Expressions for BEs and PRs under PLF 

Table 3.4. Expressions for BEs and PRs under WBLF 

 

Table 3.5. Expressions for BEs and PRs under QLF 

4. Simulation study 

In this section, we conduct a simulation study using the expression of the loss 
functions from above tables, which are obtained by the BEs and PRs for the shape 
parameter 𝜃, using two informative priors, namely: GP and ILP, under five different 
loss functions, namely SELF, WSELF, PLF, WBLF and QLF. Various sample sizes such 
as 20, 30,100, 300, 500, 1000 are used for simulation purposes, taking 10,000 
replications in ‘R’. Several values of the scale and shape parameters are considered. 
is taken as 2,  is taken as 1 and 3 and  is taken as 1, 2 and 3. The estimated values of 
the parameters for all BEs and PRs are tabulated in Table 4.1. below. It is important to 
note that corresponding to selected samples of GP’s and ILP’s values are given. BEs are 
without parenthesis while estimates of PRs are enclosed in parenthesis for each prior 
and loss function under different sample sizes. 
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Note from the above table, as the sample size, n, increases then the GP and ILP of 
BE also goes up but PRs decreases. Similarly, once we change the value of 𝜃=1 to 𝜃=2 
GP of BE and ILP follow the similar pattern with one exception. The same pattern is 
observed from the graphics demonstration via Bayes estimates and posterior risks for 
selected values of  , , w, v, and  given below in graphs Figures 4.1. to fig. 4.5. and 
figures 5.1. to 5.3. Rest of the graphs are not presented due to similar observations. 

Table 4.1. BEs and PRs under SELF using various priors 

Priors  =2 , =1,  =1, v =1, 1w , 1c  

N 20 30 100 300 500 1000 

GP 0.97626 
 (0.056405) 

0.97803 
 (0.03374) 

0.98101
 (0.012509) 

1.02273
 (0.00316) 

1.08835
 (0.00192) 

1.12402 
 (0.00095) 

ILP 
0.82894 

 (0.10345) 
0.94924 

 (0.02252) 
0.979703
 (0.00896) 

0.99385
 (0.00362) 

1.04427
 (0.00197) 

1.45631 
 (0.00095) 

Priors  =2 , =1,  =2, v =1, 1w , 1c  

GP 2.34054 
(0.26086) 

2.22234 
(0.15931) 

2.08343
 (0.04102) 

2.03552
 (0.01181) 

1.91313
(0.007305) 

1.88565 
 (0.00433) 

ILP 
2.12046 

 (0.159907) 
2.09176 

 (0.11592) 
1.97831

 (0.04474) 
1.89975

(0.01201) 
1.88035

 (0.00781) 
1.81055 

 (0.00437) 
Priors  =2 , =1,  =3 , v =1, 1w , 1c  

GP 
2.65453 

(0.33554) 
2.67769 

(0.23129) 
2.84175

 (0.08995) 
2.99406

 (0.02682) 
3.01425

 (0.01858) 
3.05168 

 (0.00895) 

ILP 2.62072 
 (0.39717) 

2.85344 
 (0.27311) 

2.86699
 (0.10028) 

2.88619
 (0.02285) 

2.93718
 (0.01642) 

3.17466 
(0.00862) 

Priors  =2 , =3,  =1, v =1, 1w , 1c  

GP 0.74424 
(0.02637) 

0.84441
(0.0230009) 

0.858404
(0.00729) 

1.01196
 (0.00352) 

1.03065
 (0.00217) 

1.04442 
 (0.00102) 

ILP 
0.65127 

 (0.04646) 
0.92084

 (0.013906) 
0.94216

 (0.00843) 
0.97597

 (0.00295) 
1.02088

(0.00208) 
1.03285 

(0.00106) 
Priors  =2 , =3,  =2, v =1, 1w , 1c  

GP 
1.720105 
 (0.22553) 

1.85295 
 (0.09544) 

1.98521
 (0.03399) 

1.99369
 (0.01309) 

2.03254
(0.00824) 

2.17628 
 (0.00397) 

ILP 1.83514 
 (0.17915) 

1.90751 
(0.16993) 

1.91639
 (0.03351) 

2.00648
 (0.01411) 

2.05984
 (0.00726) 

2.27661 
 (0.00402) 

Priors  =2 , =3,  =3, v =1, 1w , 1c  

GP 2.49229 
 (0.35855) 

2.74402 
 (0.20037) 

2.79417
(0.077301) 

2.94542
 (0.03222) 

3.11463
 (0.02063) 

3.215501 
 (0.00866) 

ILP 
2.23795 

 (0.364107) 
2.727302 
(0.16421) 

2.73206
 (0.15021) 

3.00286
 (0.03603) 

3.29053
 (0.01486) 

3.88547 
 (0.00901) 

Priors  =2 , =1,  =1 , v =1, w =2, 2c  

GP 0.87387 
 (0.04876) 

0.90072
 (0.02463) 

0.90842
(0.00817) 

0.95581
(0.00269) 

0.98606
 (0.00182) 

1.01198 
 (0.00097) 

ILP 
1.20682 

 (0.06767) 
1.17785

 (0.03656) 
1.05607

 (0.01449) 
0.98644

(0.00311) 
0.98438

(0.00193) 
0.96682 

 (0.00097) 
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Simulation Results’ Graphs 
 

 

 

 

 

Figure 4.1. Graphs of BEs and PRs for GP 
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Figure 4.2. Graphs of BEs and PRs for GP 
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Figure 4.3. Graphs of BEs and PRs for GP 
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Figure 4.4. Graphs of BEs and PRs for GP 
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Figure 4.5. Graphs of BEs and PRs for GP 
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5. Examining a real-life data set 

The data set consists of 50 observations of lifetimes of devices as given in Gohary et 
al. (2013). These are given below for the ready reference of the readers. 
0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 
60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.  
The various values of the BEs, PRs for parameter 𝜃 for selected values of  
𝛼, 𝜆, 𝑣, 𝑤 𝑎𝑛𝑑 𝑐 are tabulated in Tables 5.1. to 5.6. for two priors and five loss functions. 
The WBLF loss function highlighted in bold indicate the prefer priors. 

Table 5.1. BEs and PRs for parameter   when 1,1,1,1,2  cwv  

Prior 
Loss Functions 

 SELF WSELF PLF WBLF QLF 

GP 
BEs 10.22408 10.02361 10.32383 10.42455 9.82313 
PRs 2.04964 0.200472 0.19949 0.01923 0.02000 

ILP 
BEs 11.25167 11.02886 11.36252 11.47447 10.80606 
PRs 2.50693 0.222805 0.22171 0.01941 0.020202 

 

Table 5.2. BEs and PRs for parameter   when 2,2,1,1,2  cwv  

Prior 
Loss Functions 

 SELF WSELF PLF WBLF QLF 

GP 
BEs 8.51671 8.34972 8.59980 8.683709 8.18272 
PRs 1.42224 0.16699 0.16618 0.01923 0.02000 

ILP 
BEs 10.12384 9.92337 10.22359 10.32432 9.72289 
PRs 2.02954 0.20047 0.19948 0.01941 0.020202 

 

Table 5.3. BEs and PRs for parameter   when 3,1,2,1,2  cwv  

Prior 
Loss Functions 

 SELF WSELF PLF WBLF QLF 

GP 
BEs 10.42455 10.22408 10.52431 10.62502 10.02361 
PRs 2.08983 0.20047 0.199517 0.01886 0.019607 

ILP 
BEs 9.20151 9.01931 9.29217 9.38372 8.837102 
PRs 1.67659 0.182208 0.18131 0.01941 0.020202 
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Table 5.4.  BEs and PRs for parameter   when 1,1,1,3,2  cwv  

Prior 
Loss Functions 

 SELF WSELF PLF WBLF QLF 

GP 
BEs 17.49828 17.15517 17.669 17.84138 16.81207 
PRs 6.00372 0.343103 0.34143 0.01923 0.02000 

ILP 
BEs 20.91467 20.50052 21.12073 21.32883 20.08637 
PRs 8.66185 0.41415 0.41212 0.01941 0.020202 

 

Table 5.5.  BEs and PRs for parameter   when 2,2,1,3,2  cwv  

Prior 
Loss Functions 

 SELF WSELF PLF WBLF QLF 

GP 
BEs 13.02824 12.77279 13.15535 13.2837 12.51733 
PRs 3.32813 0.25545 0.25421 0.01923 0.02000 

ILP 
BEs 17.32673 16.98362 17.49744 17.66983 16.64052 
PRs 5.94486 0.343103 0.34142 0.01941 0.020202 

 

Table 5.6.  BEs and PRs for parameter   when 3,1,2,3,2  cwv  

Prior 
Loss Functions 

 SELF WSELF PLF WBLF QLF 

GP 
BEs 17.84138 17.49828 18.01212 18.18448 17.15517 
PRs 6.12144 0.343103 0.34146 0.01886 0.019607 

ILP 
BEs 14.78955 14.49669 14.93527 15.08241 14.20383 
PRs 4.331304 0.29286 0.29142 0.01941 0.020202 

5.1. Analysis of real-life data set 

From the above tables we can see that WBLF is the best and most preferable loss 
function under all the priors since it has the lowest PRs followed by QLF, both the loss 
functions having a minute difference in their PRs. Also, SELF has the highest PRs 
making it the least preferable loss function. Moreover, the PRs are minimum for the 
values of hyperparameters (1, 2) of GP making it the most preferable prior and pair to 
be used. Additionally, WBLF and QLF have same PRs for all values of  , . The only 
difference comes for GP for the values of hyperparameters (2,1), where the value of 
hyper-parameter ‘v’ changes and gives a different risk.  It can also be noticed that the 
results of simulation and the results for real life data are identical. These are 
demonstrated in the graphs below in Fig. 5.1. to 5.3. for various values of 𝑣 and 𝑤. 
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Posterior distribution graphs 

 

Figure 5.1.  Graph of posterior dist. For GP when 𝑣 ൌ 1, 𝑤 ൌ 1 and 𝑣 ൌ 1, 𝑤 ൌ 2  

 

Figure 5.2.  Graph of posterior dist. For GP when 1,2  wv and ILP for 1c  

 

Figure 5.3.  Graph of posterior dist. using ILP when 2c  and 3c  

6. Concluding remarks 

This paper explores important properties of the EGZ distribution under Bayesian 
using two informative priors: GP and ILP. This is done under five selected loss 
functions. We observe that the best loss functions are WBLF followed by QLF. The 
simulated study and real-life data were used for various sample sizes with 10,000 
replications. Several values of the scale and shape parameters are considered. 𝛼 is taken 
as 2, 𝜆 is taken as 1 and 3 and   is taken as 1, 2 and 3. We observe that as the sample 
size is extended, PR declines and BE comes nearest to the true value of shape parameter 
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 . Also, at various places over-estimation of parameters is noted. We also noted that 
the loss functions WBLF and QLF have similar PRs for all values of  ,  ,  under both 
the informative priors: GP and ILP. The only difference comes for GP for the values of 
hyperparameters (2,1), where the value of hyper-parameter ‘v’ changes and gives a 
different risk. In addition, WBLF has minimum PRs as compared to other loss 
functions followed by QLF under all the priors. Moreover, note that GP is the best prior 
as compared to all other priors and works best for the pair of hyperparameters (1, 2) 
since it has minimum PRs. The results for real life data and simulation are identical. 
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The problem of statistical assessment of the potential for the 
development of regional integration processes 

Oleksandr Osaulenko1, Olena Bulatova2, Olha Zakharova3, Natallia Reznikova4 

ABSTRACT  

The present article illustrates the use of integrated indices to evaluate the potential for the 
development of regional integration processes. The study examines a new research and 
methodological approach, which involves the use of an integral index of the potential for the 
development of integration processes, proposed with regard to the intensity of the influence 
of internal and external factors on integrative relations development. The application of the 
above-mentioned integrated index in a comparative analysis of the potential for the 
development of integration processes allows a comprehensive and quantitative description 
of the current regional integration processes taking place in the modern economy under 
certain regional models. 
Key words: integrated index, regional integration, EU, NAFTA, ASEAN, APTA.  

1. Introduction 

Modern processes of economic integration development taking place at the global 
and regional level are of complicated and contradictory nature and differ in depth and 
rate. However, today all the countries of the world economy are involved in this process 
regardless of the level of economic development achieved.  

Modern research conducted by international organizations like the World Bank, 
the World Trade Organization, the UN, regional banks of development and others 
provide sufficient statistical data and methodology that allow defining the scale, 
intensity and peculiarities of regional integration processes development. To find more 
information about research conducted by the UN, see Statistics Database COMTRADE 
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with integration associations of the world included: http://www.unstats.un.org; 
comparative research of regional integration conducted under the program of the UN 
University (Regional Integration Knowledge System): www.cris.unu.edu/riks.  

A number of regional organizations suggest a well-developed system of indicators 
that allow evaluating the level of development of regional integration processes using 
numerous best practices. The most widespread are as follows: indicators suggested by 
the European Commission (see http://ec.europa.eu); resource database of NAFTA 
Secretariat, which is used for studying the North American integration (see 
http://www.nafta-sec-alena.org/); indicators suggested by Asia Regional Integration 
Center (see http://aric.adb.org/) and Asian Development Bank (http://beta.adb.org/) 
applied to studying the integration processes taking place in Asia-Pacific region; 
Eurasian Development Bank uses its own methodology for studying the indicators of 
Eurasian integration (see http://www.eabr.org), which takes into account 3 types of 
indices: integration of a pair of countries (describes the intensity of ties between two 
post-Soviet countries), integration of the country as a part of a group of countries 
(characterizes the approximation of one post-soviet country to the biggest “regions” of 
the region), integration within the group of countries (characterizes the average level of 
interdependence between countries and dynamics of integration in time); Inter-
American Development Bank uses a number of indicators to study the integration 
processes in the countries of Latin America. These indicators allow analyzing market 
shifts as well as public management indices, transparency development, democracy, etc. 
(see http://www.iadb.org). 

Based on previous authors’ research (O. Bulatova et al., 2019) this article suggests 
combining existing indices of regional integration development into a respective 
system of integral evaluation, which will allow conducting complex comparative 
analysis of potential for integration process development.   

Defining modern scientific and methodological basis for international regional 
integration, classification of certain statistical instruments to evaluate these processes 
provided in previous research allows drawing up the conclusion that integration 
process development is influenced by many factors, both internal and external.  

For comprehensive accounting and evaluation of potential for integration 
processes development it is reasonable to apply integrated indices that provide 
comprehensive and quantitative description of regional integration processes taking 
place in modern economy under certain regional models at the present moment.  
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2.  Building the integrated index of the potential for integration process 
development    

As the analysis conducted shows, there is a need to develop certain methods of 
defining potential for further integration processes development. B. Balassa (1967) 
defined statistical and dynamical effects that appear in national economy as the result 
of deepening integration relations. Statistical effects are the result of redistribution of 
foreign trade flow of goods, factors of production, the result of introduction of the 
liberalization regime, expansion of markets of integrated countries may lead to positive 
trade creation effect and negative  trade diversion effect. In the long run, structural 
transformations in economies of integrated countries result in dynamic effects related 
to the development of business competition inside integration association, 
establishment of joint infrastructure, lowering transaction costs, etc.   

Integration processes development entails both quantitative and qualitative 
changes that influence structural shifts taking place in integrated countries. It is worth 
mentioning that it is still quite problematic to distinguish the influence of regional 
integration itself and deepening interaction between the countries due to the global 
integration development. A scientific inquiry by P. Lombaerde, G. Pietrangeli, 
C. Weeratunge (2008) that uses a number of indices that allow measuring the level of 
integration development at the level of regional groups, evaluating the role of every 
country in certain integration association based on its contribution, comparing 
processes of regional integration in different regions, etc., may be considered as 
a solution. 

The evaluation of the development of regional economic integration requires 
various indices that allow analyzing the depth of integration relations between the 
countries that form integration association. B. Russet (2009) considers economic 
interaction to be one of the regional integration criteria which is manifested 
in intraregional trade that imposes direct effect for every member.  

However, the most common in terms of assessing the level of integration 
interaction, determining the nature of the development of regional integration 
processes and their effectiveness, is the method of multidimensional evaluation, which 
involves the construction of appropriate comprehensive indicators. Scientific 
researches in this direction are aimed at developing an optimal integrated indicator, the 
structure of which most fully allows to provide a comprehensive assessment of the 
development of integration processes. In particular, De Lombaerde, Philippe & 
Dorrucci, Ettore & Genna, Gaspare & Mongelli, Francesco (2011), emphasizing the 
complex nature of the development of regional integration processes, the multi-vector 
nature of the changes, they are characterized, emphasize the need for continuous 
comprehensive monitoring to assess the system of indicators combined into 
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appropriate integral estimates. In this respect, they propose a Composite Integration 
Index, which is a relative assessment of the level of development of the integration 
association and is based on 8 sectoral indices. 

In a study by C.-Y. Park, R. Claveria (2018) it is proposed to apply the method of 
multidimensional evaluation to analyze the multifaceted measurement of regional 
integration processes based on the calculation of multidimensional regional integration 
index (MDRII), which includes 6 components (Trade and investment, Money and 
finance integration, Regional value chain, Infrastructure and connectivity, Movement 
of people, Institutional and social integration), combining 26 indicators (including 
integrated indices), which the authors tested to assess the development of integration 
processes at the level of individual countries. 

A comprehensive indicator that reflects the stages of development of the 
integration process (acquis communautaire, Single Market integration, Economic and 
Monetary Union, economic convergence) and is proposed to be used to assess the 
integration aspirations of EU countries, was developed by J. König (2017). In a research 
by Mursalova, Kh.N. (2019),  the methodological aspects of the application of complex 
indicators to assess the effectiveness of integration associations are analyzed, while the 
author does not specify what such an indicator should be, what its structure and the 
features of the calculation are. 

In a study by Makkonen, Teemu (2016), in terms of forming the structure of 
a comprehensive index to assess the level of regional integration is determined by the 
lack of existing indices, and therefore expediency of consideration the component that 
would reflect the development of science, technology and innovation (Science, 
Technology, and Innovation indicators), which are drivers of economic growth in the 
processes of integration interaction in particular. 

In the work of Gor, Seth. (2017) an analysis of the integrated integration index for 
the African region is presented (African Regional Integration Index), which includes 
16 indicators combined in 5 areas (trade integration, productive integration, free 
movement of people, financial and macroeconomic integration and regional 
infrastructure). Michaela Stanickova & Lukáš Melecký (2018) offer a composite 
weighted index of regional resilience to assess integration processes in EU regions. 
According to the authors, the most important factors to be taken into account in such 
an index are as follows: community links, human capital and sociodemographic 
structure, labour market, economic performance and innovation, science and research. 

Comparative analysis of approaches to the structuring of integrated indices allows 
us to reach conclusion about the predominance of a functional approach in the 
systematization of components, which allows taking into account the specific stages of 
development of integration cooperation and areas of interaction. 
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This study proposes an approach to assessing the development of integration 
processes, taking into account the internal and external components of the impact. 
In order to build the integrated index of the potential for integration process 
development it is necessary to introduce certain notations. Let us assume that there is 
a population of integration associations m and their level of development is 
characterized by the system of parameters (unique index). Let us set them as:  

 

),,,,,( 21 inijii xxxxХi  , where 

і – index of integrated association being analyzed  ( mi ,1 ),  

j – unique index which characterizes integration relations ( nj ,1 ).  

Thus, ijx  represents the value of j index for integration association і.  

When building integrated indices important methodical challenges are as follows: 
establishing the system of unique indices (parameters), which could provide suitable 
and comprehensive description of the stage of regional economic integration process 
development; choosing the form of integrated index itself, which will provide 
a generalized evaluation based on the system of unique indices built.    

When addressing the first challenge, unique parameters may be seen as certain 
systematized indices that allow evaluating the depth of integration relations between 
the countries of the world. The systemization and classification of the system of unique 
indices prove that the level of integration processes development on the one hand is 
determined by intraregional factors that define scale, depth and specifics of integration 
relations development within existing regional integration associations characterized 
by the intraregional trade and its share in total external trade turnover, the share of 
high-tech export in total intraregional export, index of GDP per capita in integration 
association. On the other hand, it is determined by the influence of external factors that 
characterize the place and role of integration association in global processes (the share 
of integration association in the world trade turnover including high-tech export, 
investments, population, etc.). The choice of the above mentioned indices is based on 
the results of correlation-regression analysis. Its results are provided in Table 1. 
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Table 1. The results of correlation-regression analysis of intraregional trade development (Хintra) EU, 
 NAFTA, ASEAN, АРТА 

EU 
Factors Regression coefficient  Elasticity coefficient   

GDP per capita, millions of U.S. 
dollars   130.2647 1.305492 

ІСТ export, millions of U.S. dollars  1.961292 0.152931 
Foreign Direct Investments, 
millions of U.S. dollars   -0.14551 -0.277184 

Population, thousands  29.04114 5.180026 
R2 = 0.9743 

Xintra = 130,26*GDP + 1,96*XICT - 0,15*FDI + 29,04*Pop - 1483424,58 

NAFTA 
Factors Regression coefficient  Elasticity coefficient   

GDP per capita, millions of U.S. 
dollars   52.40168 2.119695 

ІСТ export, millions of U.S. dollars   5.186308 0.560561 
Foreign Direct Investments, 
millions of U.S. dollars   -0.03817 -0.16249 

Population, thousands  -6.20109 -3.34038 
R2 = 0.9725 

Xintra = 52,4*GDP + 5,19*XICT – 0,04*FDI – 6,2*Pop + 1494523,34 

ASEAN 
Factors Regression coefficient  Elasticity coefficient   

GDP per capita, millions of U.S. 
dollars   161.0476 1.82068 

ІСТ export, millions of U.S. dollars  1.951287 0.492421 
Foreign Direct Investments, 
millions of U.S. dollars   -0.24749 -0.76421 

Population, thousands  0.035534 0.112483 
R2 = 9941 

Xintra = 161,05*GDP + 1,95*XICT – 0,25*FDI + 0,04*Pop - 117405,82 

APTA 
Factors Regression coefficient  Elasticity coefficient   

GDP per capita, millions of U.S. 
dollars   79.12081 0.991164 

ІСТ export, millions of U.S. dollars  3.253449 0.690553 
Foreign Direct Investments, 
millions of U.S. dollars   -0.04201 -0.14778 

Population, thousands  -0.29826 -5.20732 
R2 = 0.9948 

Xintra = 79,12*GDP + 3,25*XICT – 0,04*FDI – 0,3*Pop + 709704,6 
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Calculations allowed setting the system of unique parameters that build the 
integrated index. To be able to compare all the unique parameters it is necessary to 
standardize them. This will allow combining them in the integrated index. Authors 
suggest calculating standardized evaluation using this formula: 

minmax

min

xx

xx
P ij

ij 




 
where: 

хij – the value of the unique index j for integration association i, 
xmin, xmax respectively, minimum and maximum value of the unique index j. 
 
The calculation of standardized evaluation using the above mentioned formula is 

carried out when the increased value of certain parameter leads to the increase of the 
integrated index itself (incentive index). 

On the contrary, if the increase in the unique parameter leads to the decrease in the 
final integrated value (disincentive index), then the following formula should be used: 

minmax

max

xx

xx
P ij

ij 




 
It becomes clear that certain unique indices describing different aspects of 

integration relations do not equally affect its overall state. As a result, when building an 
integrated index of evaluation of potential for integration processes development it is 
necessary to define the value of every unique index mentioned above, i.e. coefficient of 
significance for  ij . 

Table 2.  Building the system of unique indices  

Intraregional factors External factors  

Intraregional trade (export) per 
capita, U.S. dollars  

IntraX The share of regional trade of an 
integration association in the world 
trade, % 

SX Intra
 

The share of intraregional trade 
and its share in total external trade 
turnover, % 

ITS  The share of investments of an 
integration association in world 
volume of investments, % 

FDIS  

The share of ICT in intraregional 
export, % 

ICTIntraX The share of GDP of integration 
association in world GDP, % 

GDPS 

Index of investments per capita, 
U.S. dollars   

FDI  The share of population of 
integration association in 
population of the world, % 

PopS  

GDP of integration association per 
capita, U.S. dollars   

GDP  The share of ІСТ export of 
integration association in the world 
export, % 

SX ICT
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If talking about the challenge of choosing the form of integrated index it appears 
that different types of weighted average are widely used in scientific research while 
building an overall index: arithmetical average, geometric average, square root average 
and some others. According to the analysis of practical application of different types of 
average it is advisable to consider the index of geometric weighted average as a form of 
an index while building integrated indices, when monotonous increase in certain 
parameter leads to the improvement of its state and overall index of its state requires 
maximization. This index may be written as:   





n

j
iji

jPI
1

)( 

  where in  0j  і 




n

j
ij

1

1
. 

The advisability of using this type of average to calculate the integrated index of 
integration processes development is proved by the provisions of axiomatic approach 
(monotonicity axiom, positive linear homogeneity, multiplicative axiom and identity 
axiom) described in the index theory by I. Fisher. Taking into account all of the above, 
the overall integrated index of the potential for integration process development should 
be: 

𝐼𝑃𝐷і ൌ
𝐼௜௡௧іା𝐼௘௫௧і

2
 

where: 
IPDi –  overall integrated index of the potential for integration processes 

development; 
Іintі     –  intraregional component of the potential for integration processes 

development;  
Іextі     –  external component of the potential for integration processes development. 
 
The subindex that characterizes the influence of an intraregional component of 

overall integrated index of integration processes development should be calculated as 
follows: 

5
intintint iiiiii GDPFDIICTraXITSraX PPPPPI 

 
The subindex that characterizes the influence of an external component on overall 

integrated index of integration processes development should be calculated as follows: 
 

5
int iiiiii GDPSFDISSICTXPopSraSXext PPPPPI 

 
The algorithm of calculating the integrated index of the potential for integration 

processes development is described in Figure 1. The suggested index ranges from 0 to 
1, its proximity to 1 shows significant potential for integration processes development. 
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Figure1.  The algorithm of building an integrated index of the potential for integration processes 
 development  
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Using the integrated index for comprehensive comparative analysis of the potential 
for integration processes development allows taking into account the intensity of 
influence of many factors (both internal and external), which in its turn allows 
providing a comprehensive and quantitative description of economic integration 
processes that take place in the world economy under certain regional models. 

3.  Evaluation   

Using the suggested method the authors calculate the integrated index of 
the potential for integration processes development for EU, NAFTA, ASEAN 
and APTA with regard to the intensity of the influence of factors that determine the 
intraregional component of the potential for development of integration processes as 
well as factors that allow evaluating the external component of the potential for 
integration processes development determined by the role of an integration association 
in the world economy.   

UNCTAD database was used for calculations systematized in Tables 3-4. Integrated 
indices of the potential for integration processes development calculated are provided 
in Table 5 and in Figure 2. 
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Figure 2. Dynamics of integrated index of potential for integration processes 

 
Despite the obvious fact that the existing trend in integration cooperation 

development loses its ground, the EU, compared to other organizations, is still an 
association with the highest rate of the potential for development. Starting from 2007, 
the intraregional factors determined the nature of changes in integration cooperation 
inside the association. There is a tendency of decreasing sub-indices of both internal 
and external components, although the changes take place with a different rate. In 
particular, the decrease in the external component outpaces a similar decrease in the 
internal component. Thus, the index of the external component decreased by 29% (in 
2018 compared to 2006 with top value of indices), while the internal one increased by 
3.6%. 

NAFTA is characterized by a relatively high level of potential for integration 
development, which, unlike the EU, is characterized by somewhat different laws of the 
change of the integral index. Thus, during the period of 2000-2008, there was a decrease 
in the level of development of integration processes, the integral indicator decreased by 
34.7%, from 0.613 in 2000 to 0.405 in 2008, which is the lowest value of the potential of 
integration cooperation. In the period 2008-2018, there is an increase in the level of the 
integrated indicator, which increased by 16.1%, but is lower by 23.3% compared to the 
level of 2000. 

So far, ASEAN is characterized by a low potential of the development of  integration 
processes, which mostly consist of  the indices of the intraregional component, whose 
value stays the same from 2000 until 2018 (0.23-0.25). At the same time, there are no 
significant changes in the dynamics of the integrated indicator. It is worth noting the 
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decrease in the level of development potential of integration processes (for 2000-2018, 
a decrease of 15.3%). 

APTA is characterized by the most intensive and accelerated growth rate of the 
potential for the integration processes development (the integrated index increased 
2.93 times from 0.126 in 2000 to 0.368 in 2018). The development of integration 
processes APTA is associated with the most rapid growth of the external component of 
development, the integral value of which became 3.1 times higher, reaching the level of 
0.58 in 2018, which is the maximum value of the external component of the 
development of the potential of integration processes in the analyzed associations. 

4.  Conclusion 

In order to evaluate the potential for the integration processes development, it is 
advisable to apply integral indicators as they allow providing a comprehensive and 
quantitative description of processes of economic integration that take place in the 
world economy at a certain moment of time. 

Today,  there is no single model of a regional trade agreement, so in most cases each 
country or integration association applies an integrated approach to exploiting the 
possibilities of integration agreements regarding access to new markets, expansion of 
investment opportunities, reduction of transaction costs, establishment of unified 
technical norms and requirements, protection of intellectual property, establishment of 
a unified competitive policy, transparency of the mechanism of state regulation. Such 
an integrated approach as a whole contributes to the deepening of integration 
cooperation with partner countries and creation of predictable political conditions that 
influence the development of trade and economic cooperation with all regions within 
the framework of certain economic space between states, and thus the expansion of 
continental and transcontinental integration cooperation. 

The greatest impact on the development of regionalization of the world economy 
with further building of the world's global space will be imposed by deepening and 
expansion of the most developed models of regional integration, which have already 
existed the world economy - European, North American and Asian-Pacific models. 
Involvement of other countries in this process, on a regional, continental or 
transcontinental basis, through the creation of free trade areas and other forms of "soft" 
integration will contribute to the deepening of the development of "new regionalism" 
and the emergence of totally new integrational entities that will no longer be of regional 
but of transcontinental nature, which corresponds to the level of international meta-
regions in the world economy. Countries of the world choose their own strategy for 
participation in the processes of regional integration, depending on challenges 
determined by their level of socio-economic development, the existing potential, the 
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nature of the development of external relations, etc. Considering the integration 
component of the strategy of further development of the countries of the world, it is 
necessary to pay attention to two aspects: first, to the features and lines of deepening 
the integration cooperation right inside the existing integration association; second is 
to define the lines of the integration policy towards other countries involved in the 
cooperation under continental and transcontinental models. 

The study of further development of continental and transcontinental models of 
regional integration is a logical extension of the analysis of models of international 
economic integration development, which encompasses not only trade and economic, 
but also other spheres (first of all, an industrial one). At the same time, existing fair 
restrictions objectify further study of the development of transcontinental integration 
just in terms of the implementation of trade and economic cooperation, as deeper forms 
of integration will face institutional constraints. 
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Type II Topp-Leone Frechet distribution: properties and 
applications 

Rama Shanker1, Umme Habibah Rahman2 

ABSTRACT  

The paper focuses on type II Topp-Leone Frechet distribution. Its properties including 
hazard rate function, reverse hazard rate function, Mills ratio, quantile function and order 
statistics have been studied. The maximum likelihood estimation used for estimating the 
parameters of the proposed distribution has been explained and expressions for the Fisher 
information matrix and confidence intervals have been provided. The paper discusses 
the applications of the distribution for modeling several datasets relating to temperature. 
Finally, the goodness of fit of the proposed distribution has been compared with that of the 
Frechet distribution. 
Key words: Frechet distribution, Topp-Leone distribution, reliability properties, applications. 

1. Introduction 

Frechet distribution introduced by Mourice Rene Frechet (1927) is defined by its 
cumulative distribution function (cdf) and probability density function ( pdf) 

  0,0,0;,; 
 
 xexG x                                   (1.1) 

and     0,0,0;,; 1 
 
 xexxg x           (1.2) 

where 0  is a shape parameter 0   is a scale parameter. It is an inverse of 
Weibull distribution introduced by Weibull (1951). Shanker and Shukla (2019) derived 
a generalization of Weibull distribution and discussed its statistical properties, 
estimation of parameter and applications. Frechet distribution is the type II extreme 
value distribution used for modeling extreme data from accelerate life testing, natural 
calamaties, rainfall, temperature, wind speed and so on. Nadarajah and Kotz (2003a, 
2006) introduced exponentiated Frechet distribution and other exponentiated type 
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distributions and discussed their statistical properties and parameter estimation. 
Mubarak (2012) discussed maximum likelihood and least squares estimates for the 
parameter of Frechet distribution based on progressive  type II censoring. The 
transmuted Frechet distribution and Marshall-Olkin Frechet distribution were 
discussed by Mahmoud and Mandouh (2013) and Krishna and Jose (2013), 
respectively. The Bayesian estimation of the shape parameter of Frechet distribution 
using different prior distribution and various loss functions has been discussed by Nasir 
and Aslam (2015). The beta exponential Frechet distribution and Weibull- Frechet 
distribution have been discussed by Mead et al (2017) and Afify et al (2016), 
respectively.  

The Topp-Leone distribution (TLD) proposed by Topp and Leone (1955) is one of 
the continuos distribution useful for generating new distribution. The most important 
characteristics of TLD is to provides closed forms for both the pdf and cdf. The TLD 
distribution received attention in statistics after the works of Nadarajah and Kotz 
(2003b) who studied some properties of TLD including moments, central moments and 
characteristic function. Ghitany et.al. (2005) discussed some reliability measures and 
stochastic orderings of TLD. The goodness of fit tests for the TLD has been studied by 
Al-Zahrani (2012). Reyad et al (2021) studied the properties, estimation and 
applications of Frechet Topp-Leone G-family of distributions.  

The type-I TLD developed for empirical data with J-shaped histogram such as 
powered  band functions and automatic calculating machine failure. Suppose 
a continuos random variable X  following type-I TLD (TITLD) are given by 

         xGxGxFTLG  2                                       (1.3) 

and              11 212    xGxGxGxgxfTLG        (1.4) 

where    
dx

xdG
xg   and 0  is a shape parameter. It has been observed that the TL 

random variable with finite support has the same bounds as the cdf  xG  of any other 
random variable. 

By taking    xexG  1 , where 0  is a scale parameter and 0  is 
a shape parameter, as the cdf of generalized exponential distribution proposed by 
Gupta and Kundu (1999), Sangsanit and Bodhisuwan (2016) introduced the Topp-
Leone generalized  exponential distribution(TLGED) defined by its pdf and cdf, 

         11
121112,,;


 

 xxxx
TLGE eeeexf  

 (1.5) 

and         xx
TLGE eexF   121,,;        (1.6) 
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Various statistical properties, estimation of parameters using maximum likelihood 
estimation and goodness of fit of TLGED have been studied by Sangsanit and 
Bodhisuwan (2016). 

Recently, Elgarhy et al (2018) introduced Type-II Topp-Leone generalized family 
of distribution. Suppose,  xg  and  xG  are the pdf and cdf of the parent 
distribution. The pdf and cdf of a random variable X  following Type-II Topp-Leone 
distribution (TIITLD) is defined by its cdf and pdf, 

      0,0;11; 2  


xxGxF                     (1.7) 

          0,0;12;
12 





xxGxGxgxf      (1.8) 

where 0  is a shape parameter. 
Since Frechet distribution has been extensively used in the modeling of data related 

to temperature ,it is hoped and expected that the proposed distribution which is an 
extension of Frechet distribution using Type II Topp-Leone distribution would provide 
a better fit for temperature data.  

The main motivation of considering Type II Topp-Leone Frechet distribution is that 
Frechet distribution being two-parameter distribution is very much useful for modeling 
data relating to temperature and it is expected that the proposed distribution, being three-
parameter distribution and based on the concept of Type II Topp-Leone distribution, 
would provide better fit over Frechet distribution. Some of the important properties of 
the proposed distribution including shapes of the pdf and cdf, asymptotic behaviour, 
hazard rate function, reverse hazard rate function, Mills ratio have been studied. 
Maximum likelihood estimation has been discussed for estimating parameters of the 
proposed distribuion. Finally, applications of the proposed distribution for modeling 
datasets relating to minimum temperature of Silchar, Assam have been discussed. 

2. Type II Topp-Leone Frechet Distribution 

Using the cdf and pdf of Frechet distribution in (1.7) and (1.8), the cdf and the pdf 
of type II Topp-Leone Frechet distribution (TIITLFD) can be expressed as  

     0,0,0,0;111,,;
2


 


 

xexF x    (2.1) 

       0,0,0,0;12,,;
12

21 


 




 

xeexxf xx  (2.2) 
where  and   are shape parameters and   is a scale parameter. Further, 
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This shows that TIITLFD is a proper density function. 
Graphs of the pdf and the cdf of TIITLFD are shown in fig.1 and fig.2 for varying 

values of the parameters   and, . 

 
 

 
Figure1.  Graphs of the pdf of TIITLFD  for varying values of parameters 
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Figure2. Graphs of the cdf of TIITLFD  for varying values of parameters 
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3. Statistical Properties 

In this section, statistical properties including asymptotic behaviour, survival 
function, hazard function, reverse hazard rate and mills ratio of TLLTLFD has been 
studied. 

3.1.  Asymptotic behavior 

The asymptotic behavior of TIITLFD for 0x  and x  are 
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These results confirm that the proposed distribution has a mode. 

3.2.  Reliability properties 

The survival function ( or the reliability function) is the propability that a subject 
survives longer than the expected time. The survival function of the TIITLFD is given by 

       .1,,;1,,;
2 

 


 xexFxS  

The hazard function (also known as the hazard rate, instantaneous failure rate or 
force of mortality) is the probability to measure the instant death rate of a subject. 
Suppose X  be a continuous random variable with pdf  xf  and cdf  xF . 
The hazard rate function of X is defined as  
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The corresponding  xh  of TIITLFD can be obtained as 
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The reverse hazard rate is the ratio between the probability density function and its 
distribution function. The reverse hazard function of TIITLFD is given by 
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The mills ratio is the ratio between the cdf and the pdf. The mills ratio of TIITLFD is  
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Graphs of the survival function and the hazard function of TIITLFD are shown in 
fig.3 and fig.4 for varying  values of the parameters  and, . 

 
 

 
 

Figure 3. Graphs of  survival function of TIITLFD for varying values of parameters 

 



146                                                                R. Shanker, U. Habibah Rahman: Type II Topp-Leone Frechet… 

 

 

 

 

 
Figure 4.  Graphs of  hazard function of  TIITLFD for varying values of parameters 

 



STATISTICS IN TRANSITION new series, December 2021 

 

147

3.3. Quantile function 

The quantile function is defined as 
   uFuQ 1  

Therefore, the corresponding quantile function for TIITLFD can be expressed as 
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Let U  has the uniform  1,0U  distribution. Taking 5.0u , the median of 
TIITLFD can be obtained as 
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Thus, the formula for generating random samples from TIITLFD for simulating 
random variable X  is given by 
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4. Distribution of order statistics 

Let nxxx ,...,, 21 be the random samples from TIITLFD   ,, . The pdf of thi
order statistics is given by 
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The pdf of thi  order statistics  iX  of TIITLFD is given by 
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Therefore, the pdf of the first order statistic  1X  can be expressed as 
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The pdf of the highest order statistic  nX  can be expressed as 
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5. Maximum likelihood estimation 

Let nxxx ,...,, 21  be a random sample of size n  from a TIITLFD   ,, . The 
log-likelihood function can be expressed as 
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The maximum likelihood estimate (MLE)   ˆ,ˆ,ˆ  of   ,,  of TIITLFD are the 
solutions of the following log- likelihood equations 
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These log-likelihood equation  can’t be solved analytically and required statistical 
software with iterative numerical techniques. These equations can be solved using R-
software. 

The 3×3 observed information matrix of TIITLFD can be presented as, 
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The inverse of the information  matrix results in the well-known variance-
covariance matrix. The 3×3 approximate Fishar information matrix corresponding to 
the above observed information matrix is given by 
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The solution of the  Fishar information matrix will yield asymptotic variance and 
covariance of the ML estimators for   ˆ,ˆ,ˆ . The approximate 100(1-α)% confidence 

intervals for   ,,  respectively are 
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where  is the upper 100αth percentile of the standard normal distribution. 

6.  Applications 

In this study, monthly mean temperature series of Silchar city, Assam, India from 
January 1988-July 2018 (30 years) which  is collected by India Meteorological 
Department, Pune, India has been analyzed. For the application purpose , the datasets 
from January to July has been considered. The data sets are given in Table 1.       

Table 1. Minimum temperature data for the district Silchar (Assam, India) from 1988-2018 

Months Temperature Data (Minimum Temperature) 

JANUARY 
11.7, 9.7, 11.6, 11.5, 13.5, 12.2, 12.5, 11.5, 12.4, 11.9, 13.3,  
12.3, 12.3, 11.3, 13.5, 12.5, 13.9, 12.5, 11.9, 11.4, 12.8, 12.9,  
11.1, 11.7, 12.3, 10.3, 12.1, 14.1, 12.6, 12.3, 11.9

FEBRUARY 
12.2, 12.8, 13.8, 16.0, 14.0, 14.9, 13.1, 13.8, 14.8, 13.6, 15.4,  
15.6, 13.9, 14.2, 14.6, 15.0, 14.1, 16.4, 16.9, 14.6, 12.6, 13.6,  
10.8, 13.4, 12.7, 14.3, 12.8, 13.5, 16.3, 14.6, 14.4

MARCH 
15.8, 16.1, 15.1, 19.5, 19.6, 17.3, 18.4, 16.7, 19.6, 19.0, 17.2,  
18.3, 18.2, 17.9, 17.6, 17.6, 19.8, 19.7, 18.8, 16.5, 18.4, 17.9,  
18.9, 17.5, 18.8, 17.6, 16.4, 17.6, 19.4, 17.3, 16.9

APRIL 
19.2, 19.7, 17.5, 20.9, 22.0, 20.3, 21.1, 21.2, 21.8, 20.1, 21.5,  
23.6, 21.6, 21.8, 20.8, 22.1, 21.0, 22.0, 21.5, 20.9, 22.1, 21.9,  
21.7, 21.2, 20.4, 20.9, 20.8, 21.2, 21.7, 20.6, 19.9

MAY 
20.0, 22.7, 21.3, 22.2, 22.5, 22.2, 24.0, 24.2, 23.5, 22.9, 24.2,  
23.5, 23.5, 23.7, 22.9, 23.7, 23.8, 22.2, 23.3, 24.1, 23.7, 23.4,  
23.4, 23.1, 23.0, 22.1, 23.2, 23.1, 23.2, 23.3, 21.4

JUNE 
22.6, 23.3, 22.4, 24.8, 25.0, 24.5, 25.3, 25.3, 24.6, 24.6, 25.3,  
25.3, 25.2, 25.4, 25.0, 24.9, 25.3, 25.6, 24.5, 25.1, 25.0, 25.1,  
24.7, 25.3, 24.3, 25.1, 25.4, 25.1, 25.4, 24.6, 23.6

JULY 
24.3, 23.2, 21.9, 25.9, 25.3, 25.2, 25.7, 25.6, 25.3, 25.7, 25.6,  
25.4, 25.6, 25.8, 25.4, 25.9, 25.0, 25.4, 26.0, 25.7, 25.5, 25.9,  
25.8, 25.5, 25.7, 24.6, 25.8, 25.7, 25.6, 25.3, 24.6
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In order to compare the TIITLFD with Frechet distribution (FD), we consider the 
criteria like Bayesian information criterion (BIC), Akaike Information Criterion (AIC), 
Akaike Information Criterion Corrected (AICC) and  Llog2 . The better distribution 
corresponds to lesser values of AIC, BIC, AICC and Llog2 . The formulae for 
calculating  AIC, BIC and  AICC are as follows: 
    ,log22 LKAIC  ,log2log LnkBIC 

)1(

)1(2





kn

kk
AICAICC ,      

where k is the number of parameters, n is the sample size and -2 logL is the maximized 
value of log likelihood function. The ML estimates of the parameters of the considered 
distributions  along with values of BICAICCAICL and,,log2  for the datasets in 
table 1 are presented in table 2.  

Table 2.  ML estimates of the parameters of the considered distributions along with values of 
 2log L  ,AIC, AICC and BIC 

Month Distribution 
ML Estimates of Parameters 

Llog2  AIC  AICC  BIC  
     

JANUARY 

TIITLFD 855.7040 2.2127 580.9820 83.65 89.65 90.54 93.95 

FD 902968.012 6.4906 ----- 109.77 113.77 114.66 116.64 

FEBRUARY 

TIITLFD 610.0494 1.9935 329.3614 104.71 110.71 115.60 115.01 

FD 237844.5 5.6279 ----- 128.31 132.31 133.20 135.18 

MARCH 

TIITLFD 3225.3562 2.3447 1082.718 99.44 105.44 106.33 109.74 

FD 716761.3 5.5199 ----- 139.62 143.62 144.51 146.49 

APRIL 

TIITLFD 8331.643 2.4482 9238.186 90.04 96.04 96.93 100.34 

FD 437995.8 5.0533 ----- 152.98 156.99 157.88 159.85 

MAY 

TIITLFD 12063.11 3.1993 2436.307 76.37 82.37 83.26 86.67 

FD 312889.7 4.7984 ----- 160.60 164.60 165.49 167.47 

JUNE 

TIITLFD 25189.16 3.3265 7596.683 78.99 68.99 69.89 73.30 

FD 905187.7 5.0160 ----- 161.98 165.98 166.86 168.84 

JULY 

TIITLFD 25713.03 3.3140 5699.862 64.38 70.38 71.27 74.69 

FD 462271.8 4.7767 ----- 166.41 170.41 171.30 173.28 
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It is obvious from above table 2 that TIITLFD provides much better fit than Frechet 
distribution for data relating to minimum temperature and hence the proposed 
distribution can be considered an improtant distribution for modeling minimum 
temperaure data.  

6. Concluding remarks 

In this paper Type II Topp-Leone Frechet distribution (TIITLFD) has been 
proposed. Its statistical properties including behaviour of pdf, cdf and hazard rate 
function have been discussed. The distribution of the order statistics has been given. 
The maximum likelihood estimation for estimating parameters of the proposed 
distribution has been discussed. The applications of the proposed distribution for 
modeling data relating to temperature has been explained and the goodness of fit of the 
TIITLFD and Frechet distribution has been presented for ready comparison.   
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Record data from Kies distribution and related
statistical inferences

Nesreen M. Al-Olaimat1, Husam A. Bayoud2, Mohammad Z. Raqab3

ABSTRACT

The Kies probability model was proposed as an alternative to the extended Weibull models as
it provides a more efficient fit to some real-life data sets in comparison to the aforementioned
models. The paper proposes classical and Bayesian inferences for the Kies distribution based
on records. Maximum likelihood estimates are studied jointly with asymptotic and bootstrap
confidence intervals. Moreover, Bayes estimates, along with credible intervals are discussed
assuming squared and LINEX loss functions. The proposed estimation methods have been
investigated and compared via simulation studies. A real data set has been analysed for
illustrative purposes.

Key words: Bayesian estimates, Kies distribution, maximum likelihood estimation, records.

1. Introduction

For its importance in many practical fields, the Weibull distribution has received
the attention of several authors in the literature. Moreover, many modified versions of the
Weibull distribution were developed in the literature. One of the modified versions of the
Weibull distribution is known as Kies Distribution and was firstly proposed by Kies (1958).
Recently, Kies distribution has received the attention of different authors, including Kumar
and Dharmaja (2014), who studied some of its important statistical aspects and showed that
it possess increasing, decreasing and bathtub hazard rate functions that would make it a
good alternative for some versions of the extended Weibull distributions, namely the gener-
alized Weibull (GW) distribution, modified Weibull (MW) distribution, beta Weibull (BW)
distribution and beta generalized Weibull (BGW) distribution. In 2013, Kumar and Dhar-
maja studied the one-parameter Kies distribution as a special case, called the reduced Kies
(RK) distribution, which is shown to possess certain special properties that are analogous
to those of the Weibull distribution. In 2017, they proposed a generalized version of the
extended reduced Kies distribution, called a modified Kies (MK) distribution, see Kumar
and Dharmaja (2017a). In addition, Kumar and Dharmaja (2017b) introduced and studied
an exponentiated reduced Kies distribution with two parameters.
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The cumulative distribution function (CDF), probability density function (PDF), haz-
ard rate and cumulative hazard rate functions of the two-parameter Kies distribution K(λ ,
β ) are given by:

F(x;λ ,β ) = 1− e−λ( x
1−x )

β

, (1)

f (x;λ ,β ) =
βλxβ−1

(1− x)β+1 e−λ( x
1−x )

β

, (2)

h(x;λ ,β ) =
βλxβ−1

(1− x)β+1 , (3)

and

H(x;λ ,β ) = λ

(
x

1− x

)β

, (4)

respectively, where 0 < x < 1, λ > 0 and β > 0.
The Kies distribution has a bounded range, which makes it appropriate model for

fitting real data sets with a bounded range. However, there are many situations in which
the observations can take values only in a limited range, like proportions, percentages or
fractions. Papke and Wooldridge (1996) pointed out that variables in many economic ap-
plications such as the fraction of total weekly hours spent on working, the proportion of
income spent on non-durable consumption, industry market shares, and a fraction of land
area allocated to agriculture are all bounded between zero and one. Moreover, Genc (2013)
indicated that when the reliability is measured as a percentage or ratio, it is important to
have models defined on the unit interval in order to have reasonable results.

This paper studies classical and Bayesian inferences for the parameters of the Kies
distribution based on records. Records play an important role in several fields of statistics
which date back to Chandler (1952), who firstly defined and provided groundwork for math-
ematical theory of records. However, record statistics arise in many practical fields includ-
ing hydrology, meteorology, sporting and athletic events wherein only records are usually
considered, for more details and applications on records, readers may refer to Arnold et al.
(1998), Ahsanullah (2004), Ahsanullah and Raqab (2006) and Ahsanullah and Nevzorov
(2015).

Let {X j, j ≥ 1} be a sequence of independent and identically distributed (iid) contin-
uous random variables (r.v.’s) with CDF F(x) and PDF f (x). An observation X j is defined
to be an upper record if X j > Xi for every j > i, and an analogous definition can be given
for lower records (with the inequality being reversed). By convention, the first record X1 is
called the trivial record because it is an upper and a lower record value simultaneously.

The set of the upper record values is given by the r.v.’s XU(k) for k ≥ 1 where
U(1) = 1, U(k) = min{ j : j >U(k−1),X j > XU(k−1)}.

Suppose we have a random sample (not ordered) of size n, say {X1,X2, ...,Xn}, the
set {

XU(1) = X1,XU(2), ...,XU(m)

}
,

presents a set of upper record values with size 1 ≤ m ≤ n that is obtained from the ran-
dom sample. The sequence U(k), k ≥ 1 is called the sequence of upper record times. For
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simplicity, we denote the sequence of upper record values {XU( j)}m
j=1 by {Yj}m

j=1.
In this paper, we will need the following lower and upper incomplete gamma func-

tions ∫ z

0
tα−1e−µtdt = µ

−α
γ(α,µz), (5)∫

∞

z
tα−1e−µtdt = µ

−α
Γ(α,µz), (6)

respectively. Additionally,∫
∞

z
t−α e−tdt = z

−α
2 e(

−α
2 )W− α

2 ,(
1−α

2 )(z), (7)

where Wc1,c2(g) is the Whittaker function, which is defined, for |arg(−g)|< 3π

2 , as

Wc1,c2(g) =
Γ(−2c2)

Γ( 1
2 − c2 − c1)

Mc1,c2(g)+
Γ(2c2)

Γ( 1
2 + c2 − c1)

Mc1,−c2(g), (8)

in which

Mc1,c2(g) = e−
g
2 gc2+

1
2

∞

∑
k=0

{
( 1

2 − c1 + c2)k

(1+2c2)k

gk

k!

}
, (9)

the series given in Eq. (9) converges for all finite values of g. Also, the pochhammer symbol
is defined as follows:

(a)k = a(a+1)(a+2)...(a+ k−1) =
Γ(a+ k)

Γ(a)
=

k

∏
i=1

(a+ i−1), (10)

where (a)0 = 1 and (1)k = k!.

The rest of this paper is organized as follows: forms of the single moment and some
properties for records from K(λ , β ) are derived in Section 2. In Section ??, classical es-
timation methods are proposed for the parameters of the Kies distribution based on upper
records. In Section 4, the Bayes estimators based on the squared error and linear expo-
nential loss functions are computed using gamma priors for the two unknown parameters.
Further in Section 5, we consider a real data set for illustrative purposes. In Section 6, sim-
ulation studies are carried out in order to study the performance of the proposed estimation
methods. Finally, the paper is concluded in Section 7.

2. Distributional properties of records from Kies distribution

The aim of this section is to present some properties and derive the form of the kth
moment of the mth record from K(λ , β ). The PDF of the mth record value and the joint PDF
of the mth and sth records are given, respectively, Arnold et al. (1998) by

fm(y) =
[H(y)]m−1

Γ(m)
f (y), (11)

and

fm,s(y,z) =
[H(y)]m−1

Γ(m)
h(y)

[H(z)−H(y)]s−m−1

Γ(s−m)
f (z), (12)

where −∞ < y < z < ∞, H(.) and h(.) are the cumulative hazard and the hazard rate func-
tions, respectively.
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Result 2.1. By using Eqs. (2), (3) and (4), the PDF of the mth record and the joint PDF of
the mth and sth records from K(λ , β ) given in Eqs. (11) and (12),respectively, become

fm(y) =
βλ m

Γ(m)
(

y
1− y

)mβ 1
y(1− y)

e−λ ( y
1−y )

β

, (13)

fm,s(y,z) =
λ sβ 2

Γ(m)
(

y
1− y

)mβ 1
y(1− y)

[( z
1−z )

β − ( y
1−y )

β ]s−m−1

Γ(s−m)

zβ−1

(1− z)β+1 e−λ ( z
1−z )

β

, (14)

where 0 < y < z < 1 and λ , β > 0.

Using Eqs. (13) and (5), the CDF Fm of the mth record value from the Kies distribu-
tion is given by

Fm(y) =
γ(m,λ ( y

1−y )
β )

Γ(m)
,m ≥ 1, (15)

where 0 < y < 1 and λ , β ≥ 0.

Result 2.2. Suppose that the random variable X follows a Kies distribution. Then, one can
prove that

X D
=

( 1
λ

X∗)
1
β

1+( 1
λ

X∗)
1
β

,

where D means converges in distribution and X∗ =− log(1−U) where U is Uniform(0, 1).
It is obvious that X∗ follows a standard exponential distribution. Consequently, using the
result, A.4.10, Page(174) of Houchens (1984), the corresponding sequence of records can
be described by

Ym
D
=

( 1
λ

∑
m
i=1 X∗

i )
1
β

1+( 1
λ

∑
m
i=1 X∗

i )
1
β

, (16)

where {X∗
i }m

i=1 is a sequence of i.i.d. Exp(1) random variables

Result 2.3. If the random variable X has a Kies distribution, then kth moment µ
(k)
m = E(Y k

m)

for the mth record from the Kies distribution is given by

µ
(k)
m = Ψ(m,λ ,β ,k) =

1
Γ(m)

∞

∑
j=0

(−1) j (k) j

j!
λ
−( k+ j

β
)
γ(m+

k+ j
β

,λ )

+
1

Γ(m)

β (m−1)

∑
j=0

(−1) j (k) j

j!
λ

j
β Γ(m− j

β
,λ )

+
1

Γ(m)
[

∞

∑
j=β (m−1)+1

(−1) j (k) j

j!
λ

m
2 +

j
2β

− 1
2 e

m
2 −

j
2β

− 1
2

×Wm
2 −

j
2β

− 1
2 ,(

m
2 −

j
2β

)
(λ )].

(17)
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Proof. By using Eq. (13), the kth moment for the mth record from the Kies distribution is

E(Y k
m) =

∫ 1

0

βλ m

Γ(m)
(

ym

1− ym
)mβ yk

m

ym(1− ym)
e−λ ( ym

1−ym )β

dym. (18)

On substituting ( ym
1−ym

)β = t in Eq(18), we get

E(Y k
m) =

λ m

Γ(m)

∫
∞

0
(

t
1
β

1+ t
1
β

)ktm−1e−λ tdt.

On splitting the integral and expanding (1+ t
1
β )−k using Newton’s Generalization of

the binomial theorem, we get the following

E(Y k
m) =

λ m

Γ(m)

∫ 1

0

tm+ k
β
−1

(1+ t
1
β )k

e−λ tdt +
λ m

Γ(m)

∫
∞

1

tm+ k
β
−1

t
k
β (t

−1
β +1)k

e−λ tdt, (19)

E(Y k
m) =

λ m

Γ(m)

∞

∑
j=0

(−1) j(k) j

j!

∫ 1

0
(t

k+ j+mβ

β
−1
)e−λ tdt

+
λ m

Γ(m)

∞

∑
j=0

(−1) j(k) j

j!

∫
∞

1
(t

mβ− j
β

−1
)e−λ tdt,

(20)

where (.) j is the Pochhammer symbol given by (10), if we put u = λ t we get

E(Y k
m) =

1
Γ(m)

∞

∑
j=0

(−1) j(k) j

j!
λ
− k+ j

β

∫
λ

0
(u

k+ j+mβ

β
−1
)e−udu

+
1

Γ(m)

∞

∑
j=0

(−1) j(k) j

j!
λ

j
β

∫
∞

λ

(u
mβ− j

β
−1
)e−udu,

(21)

since the exponent m− j
β

in the second integral carries positive and negative values, there-
fore, on splitting the second summation we get the following:

E(Y k
m) =

1
Γ(m)

∞

∑
j=0

(−1) j(k) j

j!
λ
− k+ j

β

∫
λ

0
(u

k+ j+mβ

β
−1
)e−udu

+
1

Γ(m)

β (m−1)

∑
j=0

(−1) j(k) j

j!
λ

j
β

∫
∞

λ

um− j
β
−1e−udu

+
1

Γ(m)

∞

∑
j=β (m−1)+1

(−1) j(k) j

j!
λ

j
β

∫
∞

λ

u−(1+ j
β
−m)e−udu,

(22)

which leads to (17) in the light of (5), (6) and (7).

The expected value of the mth record value [E(Ym)] is the first moment, which is
given by:

µ
(1)
m = Ψ(m,λ ,β ,1).
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In addition, the variance of the mth record value is

var(Ym) = Ψ(m,λ ,β ,2)− [Ψ(m,λ ,β ,1)]2.

For illustrative purposes, E(Ym) and variance of some records of the Kies distribu-
tion, namely 3rd , 5th, 7th and 10th, are computed and summarized in Tables (1) and (2) as-
suming different values of λ and β . It can be observed from these tables that E(Ym)(Variance)
increases(decreases) with m, which is expected.

Table 1: Expected values and variances of records from K(λ , β ) with λ= 0.75 and 1

λ = 0.75 λ = 1

m β = 0.75 β = 2 β = 0.75 β = 2

E(Ym) Variance E(Ym) Variance E(Ym) Variance E(Ym) Variance

3 0.80600 0.01810 0.64400 0.00519 0.74800 0.02350 0.61100 0.00549
5 0.90300 0.00387 0.70800 0.00242 0.86600 0.00625 0.67800 0.00267
7 0.94000 0.00111 0.74500 0.00142 0.95500 0.00201 0.71700 0.00161
10 0.96400 0.00027 0.77900 0.00080 0.97800 0.00021 0.75400 0.00092

Table 2: Expected values and variances of records from K(λ , β ) with λ= 2 and 3

λ = 2 λ = 3

m β = 0.75 β = 2 β = 0.75 β = 2

E(Ym) Variance E(Ym) Variance E(Ym) Variance E(Ym) Variance
3 0.57000 0.03240 0.52800 0.00585 0.45300 0.03110 0.47900 0.00577
5 0.73200 0.01470 0.59900 0.00317 0.62400 0.01920 0.55000 0.00332
7 0.81600 0.00659 0.64200 0.00203 0.72600 0.01060 0.59500 0.00222
10 0.88200 0.00228 0.68500 0.00124 0.81500 0.00450 0.63900 0.00140

3. Classical estimation

3.1. Maximum likelihood estimation

Let data = {y1,y2, . . . ,ym} be the first m upper record values arising from a sequence
of iid K(λ , β ) with CDF, PDF and hazard rate being defined in Eqs. (1), (2) and (3), respec-
tively. The likelihood function of the data is given by (see Arnold et al. (1998).

L(data;λ ,β ) = f (ym;λ ,β )
m−1

∏
i=1

h(yi;λ ,β )

= β
m

λ
me−λ ( ym

1−ym )β
m

∏
i=1

yβ−1
i

(1− yi)β+1 .

(23)

Thus, the log-likelihood function l(data|λ ,β ) = logL(data;λ ,β ) can be written as

l(data|λ ,β ) =m logλ +m logβ −λ (
ym

1− ym
)β +(β −1)

m

∑
i=1

(logyi)−(β +1)
m

∑
i=1

log(1− yi),

(24)
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where 0 < y1 < y2 < ... < ym < 1, β > 0 and λ > 0. The following proposition shows the
existence and uniqueness of the MLEs of λ and β .

Proposition 3.1. The log-likelihood function l(data|λ ,β ) is unimodal function of λ and β .

Proof. Note that l(data|λ ,β ) is a continuous function in λ and β , and is strictly concave
as the Hessian matrix is negative definite. Thus, l(data|λ ,β ) is unimodal of λ and β .
This shows the existence and uniqueness of the MLEs of the unknown parameters λ and
β .

Substituting Ri =
yi

1−yi
, i = 1,2, ...,m and solving the following system of equations (equa-

tions 25 and 26)

0 =
∂ l(data|λ ,β )

∂λ
=

m
λ
−Rβ

m, (25)

0 =
∂ l(data|λ ,β )

∂β
=

m
β
−λRβ

m logRm +
m

∑
i=1

log(Ri), (26)

we immediately obtain the MLEs of β and λ as
β̂ =

m

∑
m−1
i=1 log(Rm

Ri
)
, (27)

and
λ̂ =

m

Rβ̂
m

. (28)

3.2. Asymptotic confidence interval

Since it is not easy to derive the exact distribution of the MLEs, we cannot obtain the
exact confidence intervals (CIs) for the parameters λ and β . Consequently, the asymptotic
CIs (ACIs) of the parameters are derived using the asymptotic distribution of the MLEs.
To this end, we need to find the variance-covariance matrix of the MLEs. The observed
information matrix of λ and β is given by

I(λ ,β ) =−

 ∂ 2l(data|λ ,β )
∂ 2λ

∂ 2l(data|λ ,β )
∂λ∂β

∂ 2l(data|λ ,β )
∂β∂λ

∂ 2l(data|λ ,β )
∂ 2β

 ,

where
∂ 2l(data|λ ,β )

∂ 2λ
= − m

λ 2 ,

∂ 2l(data|λ ,β )
∂λ∂β

=
∂ 2l(data|λ ,β )

∂β∂λ
=−Rβ

m logRm,

∂ 2l(data|λ ,β )
∂ 2β

= −(
m+λβ 2Rβ

m log2 Rm

β 2 ).
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Therefore, the approximate variance−covariance matrix for the MLE of θ = (λ ,β )

is given by

V =−

 ∂ 2l(data|λ ,β )
∂ 2λ

∂ 2l(data|λ ,β )
∂λ∂β

∂ 2l(data|λ ,β )
∂β∂λ

∂ 2l(data|λ ,β )
∂ 2β

−1

(λ ,β )=(λ̂ ,β̂ )

=

(
V11 V12

V21 V22

)
, (29)

where

V11 =
m+λβ 2Rβ

m log2(Rm)
m
λ 2 (m+λβ 2Rβ

m log2(Rm))−β 2(Rβ
m log(Rm))2

V12 = V21 =
−Rβ

m log(Rm)
m

λ 2β 2 (m+λβ 2Rβ
m log2(Rm))− (Rβ

m log(Rm))2

V22 =
1

m
β 2 +λRβ

m log2(Rm)− (λRβ
m log(Rm))2

m

.

The asymptotic joint distribution of the MLEs λ̂ and β̂ is approximated by bivariate
normal, and is given by: (

λ̂

β̂

)
N∼
[(

λ

β

)
,

(
V11 V12

V21 V22

)]
. (30)

Hence, by replacing λ and β by their MLEs, we get an estimate of V as follows:

V̂ =

 m

(Rβ̂
m)2

(1+ β̂ 2 log2 Rm)
−β̂ 2 logRm

Rβ̂
m

−β̂ 2 logRm

Rβ̂
m

β̂ 2

m .


Consequently, asymptotic 100(1−α)% CIs for the parameters λ and β are, respec-

tively, given by:

(Lλ ,Uλ ) = (λ̂ − z1− α
2

√
V̂11), λ̂ + z1− α

2

√
V̂11), (31)

and
(Lβ ,Uβ ) = (β̂ − z1− τ

2

√
V̂22, β̂ + z1− τ

2

√
V̂22), (32)

where zα is 100α th percentile of the standard normal distribution. However, some cases
provide negative lower bounds of the asymptotic CI while the parameters λ and β are
positive. In order to avoid such a case, we propose using a log−transformation for pa-
rameters in order to construct a modified asymptotic confidence intervals for λ and β

following the lines of Ren and Gui (2020). Since, for a parameter, η , g(η) = log(η) is
differentiable with g′(η) ̸= 0, hence Var[g(η̂)] = Var(η̂)

η̂2 . Therefore, modified asymptotic
(1−α)100%(0 < α < 1) CIs for λ and β can be easily obtained, respectively, as follows: λ̂

e
z1− τ

2
λ̂

√
V11

, λ̂e
z1− τ

2
λ̂

√
V 11

 and

 β̂

e

z1− τ
2

β̂

√
V22

, β̂e

z1− τ
2

β̂

√
V22

 . (33)
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3.3. Bootstrap method

Since the asymptotic CIs results do not perform quite well for a small sample size,
the percentile Bootstrap method, which is denoted by Boot-p, is presented in this section
to construct approximate CIs for λ and β using the following algorithm, see for example,
Ahmed (2014):

Step 1) From the records y1,y2, ...,ym, compute the MLEs λ̂ML and β̂ML.

Step 2) Using λ̂ML and β̂ML that are obtained in Step 1, generate a random sample of records
from K(λ , β ), called a bootstrap sample.

Step 3) Based on the Bootstrap sample that is obtained in Step 2, compute the correspond-
ing MLEs λ̂ ∗ and β̂ ∗ of λ and β , respectively.

Step 4) Repeat Steps (2) and (3) B-times to obtain {λ̂ ∗
1 , λ̂

∗
2 , . . . , λ̂

∗
B} and {β̂ ∗

1 , β̂
∗
2 , . . . , β̂

∗
B}.

Step 5) Arrange {λ̂ ∗
1 , λ̂

∗
2 , ..., λ̂

∗
B} and {β̂ ∗

1 , β̂
∗
2 , . . . , β̂

∗
B} in ascending order and obtain

{λ̂ ∗
(1), λ̂

∗
(2), . . . , λ̂

∗
(B)} and {β̂ ∗

(1), β̂
∗
(2), ..., β̂

∗
(B)}.

Step 6) The approximate 100(1−α)% Boot-p CIs for λ and β are given by(
λ̂ ∗
(B α

2 )
, λ̂ ∗

(B(1− α
2 ))

)
and

(
β̂ ∗
(B α

2 )
, β̂ ∗

(B(1− α
2 ))

)
, respectively.

4. Bayesian estimation

In this section, we derive the posterior densities of the parameters β and λ based on
the upper record values, then obtain the corresponding Bayes estimates of these parameters
under different loss functions. Symmetric and asymmetric loss functions are considered in
our study, which are squared error (SE) and linear exponential (LINEX) loss functions. The
SE loss function of the parameter η and an estimate η̂ is given by:

LSE(η̂ ,η) = (η̂ −η)2 . (34)
As the SE loss function leads to identical penalization for underestimation and over-

estimation, an asymmetric loss function, known as LINEX loss function, was proposed by
Zellner (1986). The LINEX loss function of the parameter η and an estimate η̂ is given by:

LLINEX (η̂ ,η) = b[eν(η̂−η)−ν(η̂ −η)−1], (35)
where b > 0 is the scale of the loss function. In our study, we assume b = 1. The param-
eter ν ̸= 0 indicates the shape parameter of the loss function. The LINEX loss function is
affected by ν , the sign of ν indicates the direction of the asymmetry, and the magnitude
of ν indicates the degree of the asymmetry. It is known that assuming ν > 0 means that
overestimation is considered to be more costly than underestimation, while assuming ν < 0
means the reverse situation, and when ν is close to zero, the LINEX loss function is almost
symmetric and is approximately equal to the SE loss function. Thus, for small values of
ν , estimation results obtained by both LINEX and SE are close, for more details about the
LINEX loss function readers may refer to Zellner (1986).
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A natural choice of the priors of λ and β would be to assume that the two quantities
are independent with gamma distributions; namely Gamma(a1,b1) and Gamma(a2,b2), re-
spectively, where the hyper-parameters a1,a2,b1 and b2 are nonnegative numbers chosen to
reflect prior knowledge about the parameters λ and β .

The joint prior distribution of λ and β is obtained as follows:
g(λ ,β ) ∝ λ

a1−1e−b1λ
β

a2−1e−b2β . (36)

In light of the upper record data = {y1,y2, ...,ym}, the joint posterior distribution of
λ and β is obtained as follows:

π(λ ,β |data) ∝ L(data|λ ,β )g(λ ,β ), (37)
where L(data|λ ,β ) is the likelihood function given in Eq. (23) and g(λ ,β ) is the joint prior
density that is given in Eq. (36). By substituting Eqs. (36) and (23) in Eq. (37), the joint
posterior density of λ and β is immediately given by:

π(λ ,β |data) ∝ λ
m+a1−1

β
m+a2−1e−βb2e−λ (b1+(Rm)

β )
m

∏
i=1

Rβ

i . (38)

It can be seen that the joint posterior distribution in Eq. (38) can be represented as
follows:

π(λ ,β |data) ∝ π1(β |data)π2(λ |β ,data), (39)

where

π1(β |data) ∝
β m+a2−1e−βb2 ∏

m
i=1 Rβ

i(
b1 +Rβ

m

)m+a1
, (40)

and π2(λ |β ,data) is a gamma density with shape and scale parameters equal to m+a1 and[
b1 +Rβ

m

]−1
, respectively.

Subsequently, the Bayes estimate of any function of λ and β , say η (λ ,β ), under SE
and LINEX loss functions separately are respectively given by:

θ̂BS =

∫
∞

0
∫

∞

0 η(λ ,β )π1(β |data)π2(λ |β ,data)dβdλ∫
∞

0
∫

∞

0 π1(β |data)π2(λ |β ,data)dβdλ
, (41)

and

θ̂BL =− 1
ν

log

(∫
∞

0
∫

∞

0 e−νη(λ ,β )π1(β |data)π2(λ |β ,data)dβdλ∫
∞

0
∫

∞

0 π1(β |data)π2(λ |β ,data)dβdλ

)
. (42)

Unfortunately, the Bayes estimates in Eqs. (41) and (42) cannot be derived in explicit
forms. Therefore, we propose to approximate the Bayes estimates and the corresponding
credible intervals by using an importance sampling technique as suggested by Chen and
Shao (1999). Similar procedure was used, for example, by Chen et al. (2000), Kundu
and Pradhan (2009), Pradhan and Kundu (2009), Pradhan and Kundu (2011) and Bayoud
(2016).

It can be easily seen that the marginal posterior of β in Eq. (40) can be rewritten as
follows:

π1(β |data) ∝ g1(β |data)g2(β ), (43)

where g1(β |data) is a gamma density with shape and scale parameters equal to (m+ a2)
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and 1
b2

, respectively, and

g2(β ) =
∏

m
i=1 Rβ

i(
b1 +Rβ

m

)m+a1
. (44)

Now, we propose the following algorithm, along the line of Kundu and Pradhan
(2009), to compute the approximate Bayes estimates and to construct the associated credible
intervals for the parameters β and λ .

Let data = {y1,y2, . . . ,ym} be a set of m upper records and let ai and bi,(i = 1,2)
be pre-assumed hyper-parameters chosen based on prior information about the underlying
parameters β and λ .

Step 1) Generate a random sample of size M from the gamma density function g1(β |data),
say {β1,β2, ...,βM};

Step 2) For each β j, generate λ j from the gamma density function π2(λ |β j,data), say
{λ1,λ2, ...,λM};

Step 3) Compute g2(βi), for j = 1,2, ...,M;

Step 4) Under the SEL function, a simulation consistent estimate of η (λ ,β ) can be ob-
tained using the importance sampling technique as:

η̂BS (λ ,β ) =
∑

M
j=1 η (λ j,β j)g2(β j)

∑
M
j=1 g2(β j)

.

Hence, β̂BS =
∑

M
j=1 β j g2(β j)

∑
M
j=1 g2(β j)

and λ̂BS =
∑

M
j=1 λ j g2(β j)

∑
M
j=1 g2(β j)

.

Step 5) Under the LINEX function, a simulation consistent estimate of η (λ ,β ) can be
obtained using the importance sampling technique as:

θ̂BL = η̂BL (λ ,β ) =− 1
ν

log
∑

M
j=1 e−νη(λ j ,β j)g2(β j)

∑
M
j=1 g2(β j)

.

Hence, β̂BL =− 1
ν

log
∑

M
j=1 e−νβ j g2(β j)

∑
M
j=1 g2(β j)

and λ̂BL =− 1
ν

log
∑

M
j=1 e−νλ j g2(β j)

∑
M
j=1 g2(β j)

.

Step 6) Compute

w j =
g2(β j)

∑
M
j=1 g2(β j)

f or j = 1,2, . . . ,M;

Step 7) Arrange the set {(β1,w1),(β2,w2), ...,(βM,wM)} as{
(β(1),w[1]),(β(2),w[2]), . . . ,(β(M),w[M])

}
, where β(1) ≤ β(2), . . . ,≤ β(M) are order

statistics of β j from the sample of size M obtained in Step (1) with w[k] being the
value of wi’s associated with kth order statistic of βi’s, say β(k).
Similarly, we obtain

{
(λ(1),w[1]),(λ(2),w[2]), . . . ,(λ(M),w[M])

}
, which are order

statistics of λ j from the sample of size M obtained in Step (2) and w[k] as defined
above.
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Step 8) The 100(1−α)% credible interval (CrI) for η is given by (η̂(100 α
2 )
, η̂(100(1− α

2 ))
),

where η̂(100p) is a simulation consistent Bayes estimate for η , which is given by
η(Mp) such that Mp is the integer satisfying:

Mp

∑
j=1

w[ j] ≤ p <
Mp+1

∑
j=1

w[ j].

Remark 4.1. Since β̂BS and λ̂BS are unique Bayes estimates for β and λ , respectively, then
they are admissible based on Theorem 2.4 of Lehmann and Casella (1998).

Remark 4.2. Since β̂BL and λ̂BL are unique Bayes estimates for β and λ , respectively, then
they are admissible based on Theorem 2.4 of Lehmann and Casella (1998).

5. Data analysis

In this section, record statistics from a real data set obtained from K(λ , β ) are an-
alyzed in order to illustrate the proposed estimation methods. All the computations are
performed using Mathematica codes.

5.1. Real data: total annual rainfall

In this example, we analyze the total annual rainfall (in inches) during 25 years from
1984-2008 recorded at Los Angeles Civic Center. This data is given below, see
http : // www.laalmanac.com/weather/we08aa.php:

12.82 17.86 7.66 2.48 8.08 7.35 11.99 21.00 7.36
8.11 24.35 12.44 12.40 31.01 9.09 11.57 17.94 4.42

16.42 9.25 37.96 13.19 3.21 13.53 9.08

This data set was studied by Tarvirdizade and Ahmadpour (2016). Firstly, all observations
have been divided over 100 in order to transform them to be in (0,1), the support of K(λ ,
β ). Then, the well-known Kolmogorov-Smirnov (K-S) goodness of fit test is used to test
whether the Kies distribution adequately fits this data set or not. The MLEs of λ and β have
been computed based on the complete sample numerically using Newton Raphson method
to be 11.1410 and 1.4171, respectively. The corresponding K-S test statistic and the asso-
ciated P-value are equal to 0.1674 and 0.4851, respectively. Accordingly, one cannot reject
the hypothesis that the data set comes from K(λ , β ).
It can be easily seen that the upper records obtained from this data set are: 0.1282, 0.1786,
0.2100, 0.2435, 0.3101, 0.3796.
Based on these records, the MLEs, 95% ACIs, Bayes estimates and the corresponding 95%
credible intervals are computed for the underlying parameters λ and β . To study how sen-
sitive are the Bayes estimates for the choice of the hyper-parameters, the following priors
are considered: Prior 0 : a1 = b1 = a2 = b2 = 0, Prior 1 : a1 = 24,b1 = 2,a2 = 7,b2 = 5,
and Prior 2 : a1 = 12,b1 = 1,a2 = 12,b2 = 9.
Tables (3) and (4) summarize the results of point and interval estimates, respectively, based
on both the classical and the Bayesian approaches.
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Table 3: Estimates for λ and β based on the real data set

Parameter MLE. Bayes Estimates
Prior 0 Prior 1 Prior 2

LINEX SE. LINEX SE. LINEX
ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2

λ 12.0148 12.1468 8.3301 4.8332 12.0110 12.0330 11.0390 9.2047 12.0510 12.0940 10.2930 7.8200

β 1.4135 1.4152 1.3363 1.1582 1.4370 1.4376 1.4076 1.3304 1.3695 1.3700 1.3462 1.2823

Table 4: 95% ACIs and CrIs of λ and β based on the real data set

Parameter ACI CrI
Prior 0 Prior 1 Prior 2

λ (4.5358, 31.8260) (4.4128, 23.3846) (8.5085, 16.3880) (6.7847, 18.7840)

β (0.6350, 3.1463) (0.5187, 2.7489) (0.9224, 2.2084) (0.9052, 2.0203)

6. Simulation study

In this section, a simulation study is conducted to evaluate the performance of the
proposed estimation methods based on Kies record data. Simulations are performed using
three sets of parameter values (λ = 1,β = 2), (λ = 2,β = 1) and (λ = β = 2), mainly to
compare the MLEs with the Bayes estimators and also to explore their effects on different
parameter values. A given number m of upper records are generated from K(λ , β ) using
Eq. (16). The MLEs and the approximate Bayes estimates are computed using the impor-
tance sampling procedure. Bayes estimates are computed under the SE and LINEX loss
functions assuming the following priors, which are assumed based on the considered cases:
Prior 0: a1 = 0, b1 = 0, a2 = 0, b2 = 0.
For λ = 1, β = 2:
Prior 1: a1 = 2, b1 = 2, a2 = 16, b2 = 8 and Prior 2: a1 = 4, b1 = 4, a2 = 8, b2 = 4.
For λ = 2, β = 1:
Prior 3: a1 = 4, b1 = 2, a2 = 8, b2 = 8 and Prior 4: a1 = 8, b1 = 4, a2 = 16, b2 = 16.
For λ = 2, β = 2:
Prior 5: a1 = 8, b1 = 4, a2 = 8, b2 = 4 and Prior 6: a1 = 10, b1 = 5, a2 = 10, b2 = 5.

These priors are proposed so as λ has the same mean but different variances, sim-
ilarly for β . The main purpose of this is to reflect the sensitivity of our inferences to the
choice of the hyper-parameters. The shape parameter of LINEX loss function ν is assumed
to equal -0.01, 0.5 and 2, separately.

Simulation studies are performed with M = 1000 iterations using Mathematica codes.
The mean squared error (MSE) of the proposed MLEs and Bayes estimates is computed.
The point estimation results are reported in Tables (5), (6) and (7) assuming the true param-
eters are (λ = 1,β = 2), (λ = 2,β = 1) and (λ = β = 2), respectively, assuming m = 5, 6,
7 and 8. Further, the performance of the proposed classical CIs and Bayes CrIs are studied
in terms of the average length (AL) and the coverage probability (CP). Tables (8), (9) and
(10) present the ALs and CPs of the 95% ACIs, Boot-p CIs and CrIs for λ and β assuming
m = 5, 6, 7 and 8.
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Tables (5), (6) and (7) show that the performance of the Bayes estimates is better
than that of the MLEs for both parameters in terms of MSEs. It can be also seen that the
informative Bayes estimates under LINEX loss function with positive ν outperform the
other estimates in most considered cases. However, non-informative Bayes estimates and
the MLEs perform almost the same in most considered cases, but for positive ν the non-
informative Bayes estimates under LINEX loss function outperform, in terms of the MSE,
the MLEs. As expected, the Bayes estimates under some prior assumptions compete the
corresponding Bayes estimates under other priors. For example, the MSEs of the Bayes es-
timates under Prior 4 are getting smaller than their counterparts under Prior 3. It is evident
that all Bayes estimates under the informative priors behave better than the MLEs and the
non-informative Bayes estimates. Clearly, the MSE of the proposed estimates decreases as
m increases for both λ and β .

In view of interval estimation, Tables (8), (9) and (10) summarize the ALs and CPs
of ACIs, Boot-p CIs and CrIs of λ and β when (λ ,β ) = (1,2),(2,1) and (2,2), respectively.
The informative Bayes credible intervals are superior to the ACIs and the Boot-p CIs in the
sense of coverage probability optimality criterion. It is noteworthy that the coverage prob-
abilities of the Bayes credible intervals are generally well matched to their nominal levels.
However, non informative Bayes credible intervals and ACIs are superior to the Boot-p CIs
as they produce higher coverage probability with less average lengths. In general, there is a
clear evidence that the informative credible intervals is the most valid method as it gives the
highest simulated coverage probabilities comparing the intervals established by the classical
approach.

Table 5: Average and MSE Values of the MLEs and Bayes estimates when λ = 1 and β = 2

m Parameter Criterion MLE. Bayes Estimates
Prior 0 Prior 1 Prior 2

LINEX SE. LINEX SE. LINEX
ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2

m=5
β

Average 4.285 3.730 3.005 2.813 2.143 2.144 2.097 1.971 2.199 2.201 2.129 1.952
MSE 12.258 9.9641 3.0226 0.6083 0.0504 0.0507 0.0370 0.0236 0.1420 0.1431 0.1062 0.0650

λ
Average 0.550 0.491 0.672 0.808 0.941 0.961 0.913 0.804 1.015 1.038 0.987 0.866

MSE 0.670 0.834 0.598 0.412 0.1192 0.1099 0.1005 0.1019 0.0905 0.0911 0.0785 0.0746

m=6
β

Average 2.776 2.995 2.671 2.324 2.092 2.093 2.052 1.941 2.160 2.162 2.101 1.951
MSE 4.9816 5.1280 2.0570 0.5392 0.0350 0.0352 0.0271 0.0221 0.1177 0.1183 0.0938 0.0642

λ
Average 0.939 0.936 0.950 0.982 1.048 1.053 1.004 0.893 1.015 1.038 0.987 0.866

MSE 0.6109 0.6132 0.5151 0.3858 0.1100 0.1049 0.0887 0.0749 0.0905 0.0911 0.0785 0.0746

m=7
β

Average 2.492 2.501 2.237 2.101 1.984 1.984 1.949 1.857 2.155 2.157 2.1050 1.979
MSE 2.4238 2.4667 1.2455 0.4004 0.0304 0.0305 0.0228 0.0210 0.093 0.094 0.0737 0.0503

λ
Average 1.158 1.205 1.121 1.108 1.048 1.073 1.023 0.899 0.955 0.998 0.949 0.833

MSE 0.5639 0.5658 0.4832 0.3647 0.0802 0.0841 0.0694 0.0549 0.0828 0.0831 0.0751 0.0727

m=8
β

Average 2.376 2.421 2.181 2.115 2.0922 2.0828 2.051 1.968 2.114 2.115 2.074 1.977
MSE 0.7529 0.8120 0.6131 0.3737 0.0153 0.0154 0.0103 0.0072 0.0501 0.0504 0.0383 0.0218

λ
Average 1.100 1.112 1.081 1.072 1.051 1.086 1.037 0.921 0.993 1.050 1.000 0.880

MSE 0.5416 0.5430 0.4717 0.3597 0.0787 0.0745 0.0624 0.0541 0.0791 0.0606 0.0688 0.0683
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Table 6: Average and MSE Values of the MLEs and Bayes estimates when λ = 2 and β = 1

m Parameter Criterion MLE. Bayes Estimates
Prior 0 Prior 3 Prior 4

LINEX SE. LINEX SE. LINEX
ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2

m=5
β

Average 1.626 1.703 1.405 1.357 1.068 1.069 1.049 0.998 1.046 1.046 1.034 1.002
MSE 1.5740 1.5929 0.9497 0.3181 0.0285 0.0286 0.0246 0.0181 0.0123 0.0123 0.0109 0.0087

λ
Average 1.784 1.762 1.708 1.798 2.003 2.014 1.888 1.617 2.039 2.044 1.960 1.760

MSE 1.7627 1.7681 1.5471 1.4310 0.2154 0.2184 0.1907 0.2612 0.1028 0.1164 0.1006 0.1278

m=6
β

Average 1.444 1.398 1.208 1.198 1.0785 1.079 1.062 1.017 1.026 1.026 1.016 0.988
MSE 0.5791 0.5814 0.3471 0.2047 0.0250 0.0251 0.0241 0.0148 0.0105 0.0105 0.0097 0.0085

λ
Average 1.944 1.925 1.901 1.899 2.083 2.106 1.980 1.702 2.019 2.021 1.941 1.747

MSE 1.7591 1.752 1.4231 1.390 0.2113 0.2168 0.1888 0.2477 0.0892 0.0971 0.0893 0.1277

m=7
β

Average 1.315 1.297 1.2577 1.189 1.038 1.038 1.024 0.986 1.040 1.041 1.031 1.006
MSE 0.2623 0.2541 0.1914 0.1310 0.0172 0.0173 0.0154 0.0124 0.0094 0.0094 0.0085 0.0068

λ
Average 1.536 1.621 1.781 1.812 1.914 1.977 1.866 1.618 1.988 1.985 1.910 1.729

MSE 1.5867 1.5973 1.2577 1.0010 0.1879 0.1387 0.1543 0.2381 0.0881 0.0969 0.0853 0.1197

m=8
β

Average 1.174 1.179 1.128 1.118 1.044 1.044 1.033 1.003 1.032 1.0321 1.024 1.001
MSE 0.1703 0.1715 0.1128 0.0891 0.0131 0.0132 0.0116 0.0087 0.0093 0.0093 0.0082 0.0066

λ
Average 1.771 1.684 1.702 1.779 1.898 1.899 1.818 1.604 2.027 2.046 1.969 1.780

MSE 1.0664 1.0981 0.9087 0.8727 0.16697 0.1272 0.1394 0.2344 0.0879 0.0884 0.0810 0.1136

Table 7: Average and MSE Values of the MLEs and Bayes estimates when λ = 2 and β = 2

m Parameter Criterion MLE. Bayes Estimates
Prior 0 Prior 5 Prior 6

LINEX SE. LINEX SE. LINEX
ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2 ν =−0.01 ν = 0.5 ν = 2

m=5
β

Average 3.517 3.621 2.971 2.607 2.181 2.182 2.111 1.932 1.997 1.998 1.942 1.801
MSE 6.8171 7.0197 2.5659 0.5555 0.1649 0.1658 0.1264 0.1123 0.1077 0.1080 0.0990 0.1084

λ
Average 3.145 3.208 2.748 2.510 1.966 1.953 1.869 1.672 2.050 2.057 1.989 1.815

MSE 4.3416 4.5390 1.9262 1.1788 0.1269 0.1373 0.1335 0.1872 0.0992 0.1061 0.0931 0.1076

m=6
β

Average 3.054 2.841 2.641 2.4871 2.090 2.091 2.027 1.862 2.039 2.040 1.989 1.863
MSE 3.5818 3.6457 1.7527 0.4956 0.1401 0.1407 0.1170 0.1073 0.1070 0.1076 0.0978 0.0988

λ
Average 1.695 1.642 1.773 1.893 1.983 1.991 1.909 1.710 2.066 2.055 1.988 1.820

MSE 2.2436 2.2749 1.4881 1.0301 0.0876 0.0837 0.0814 0.1401 0.0806 0.0772 0.0674 0.0856

m=7
β

Average 2.509 2.612 2.331 2.210 2.110 2.111 2.062 1.942 2.166 2.167 2.118 1.996
MSE 2.1891 2.2171 1.2571 0.3701 0.1061 0.1066 0.0869 0.0730 0.0920 0.0929 0.0895 0.0515

λ
Average 1.704 1.698 1.710 1.724 2.062 2.071 1.996 1.804 2.081 2.062 1.989 1.807

MSE 0.8909 0.8931 0.6138 0.4003 0.0700 0.0830 0.0662 0.0832 0.0621 0.0667 0.0649 0.0761

m=8
β

Average 2.962 2.979 2.651 2.341 2.139 2.140 2.089 1.957 2.112 2.112 2.078 1.990
MSE 2.1486 2.2129 1.1741 0.3540 0.09485 0.0952 0.0799 0.0680 0.0562 0.0565 0.0451 0288

λ
Average 1.7852 1.704 1.803 1.814 1.944 1.890 1.825 0.0636 0.0798 0.0801 0.0677 0.0408

MSE 0.8812 0.8921 0.6013 0.3124 0.0697 0.0821 0.0651 0.0831 0.0608 0.0652 0.0611 0.0753

Table 8: ALs and CPs of 95% CIs of λ = 1 and β = 2

Cases ACI Boot-p CrIs

Prior 0 Prior 1 Prior 2

m β λ β λ β λ β λ β λ

m=5 CP 0.80 0.93 0.70 0.81 0.93 0.83 0.97 0.96 0.99 0.95
AL 3.8612 6.0170 7.5359 12.7930 4.8621 2.3738 4.8741 2.1439 6.9520 1.8891

m=6 CP 0.88 0.94 0.76 0.85 0.94 0.78 0.98 0.96 0.99 0.95
AL 2.6151 5.8688 4.3292 7.0043 4.2388 2.1614 5.0343 2.0812 7.3202 1.8049

m=7 CP 0.88 0.95 0.82 0.87 0.95 0.77 0.99 0.97 0.99 0.96
AL 2.2432 5.6800 2.9700 4.9216 3.8525 2.0112 5.2122 1.9840 7.7010 1.7304

m=8 CP 0.88 0.95 0.83 0.94 0.96 0.72 0.99 0.99 0.99 0.96
AL 2.0205 5.4132 2.5839 4.9142 3.6011 1.8501 5.3762 1.9293 8.0700 1.5527
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Table 9: ALs and CPs of 95% CIs of λ = 2 and β = 1

Cases ACI Boot-p CrIs

Prior 0 Prior 3 Prior 4

m β λ β λ β λ β λ β λ

m=5 CP 0.84 0.93 0.71 0.77 0.89 0.81 0.96 0.97 0.99 0.93
AL 3.3471 6.4309 6.2641 28.2670 2.4086 4.1827 3.4144 3.8074 2.4416 3.3268

m=6 CP 0.86 0.93 0.73 0.83 0.91 0.79 0.97 0.98 0.99 0.94
AL 2.6966 5.8499 4.7969 7.5577 2.4037 3.5744 3.6622 3.6126 2.4941 3.2894

m=7 CP 0.86 0.95 0.75 0.83 0.92 0.79 0.98 0.98 0.99 0.95
AL 2.3408 5.6125 4.0902 6.7176 2.0447 3.2721 3.8511 3.3761 2.6494 3.2165

m=8 CP 0.90 0.97 0.79 0.86 0.93 0.78 0.99 0.98 0.99 0.99
AL 1.9024 5.5002 2.7860 4.6248 1.8546 2.9352 3.9861 3.0051 2.6921 3.0488

Table 10: ALs and CPs of 95% CIs of λ = 2 and β = 2

Cases ACI Boot-p CrIs

Prior 0 Prior 5 Prior 6

m β λ β λ β λ β λ β λ

m=5 CP 0.85 0.91 0.72 0.82 0.91 0.91 0.96 0.97 0.99 0.95
AL 6.7013 6.4842 13.3060 12.9420 5.6959 4.4634 7.0471 3.2719 6.1916 3.1703

m=6 CP 0.89 0.91 0.79 0.83 0.91 0.90 0.97 0.98 0.99 0.95
AL 5.2326 5.8095 9.5716 6.3452 4.6384 4.0721 7.4476 3.1824 6.4401 3.0779

m=7 CP 0.89 0.96 0.80 0.83 0.94 0.88 0.99 0.97 0.99 0.96
AL 4.5255 5.6413 7.4424 5.5048 4.1055 3.6944 7.7343 3.0254 6.7930 3.0302

m=8 CP 0.93 0.98 0.82 0.88 0.94 0.86 0.99 0.98 0.99 0.98
AL 3.9058 5.6261 5.9419 4.9526 3.5840 3.3658 8.1000 2.9724 7.0417 2.8790

7. Conclusion

In this paper, classical and Bayesian inferences were proposed for the two-parameter
Kies distribution based on upper records. Some distributional properties of the Kies distribu-
tion based on records were studied. Uniqueness and existence of the MLEs were discussed.
Asymptotic and bootstrap confidence intervals were constructed. In the context of Bayesian
estimation, the Bayes estimates of the parameters cannot be obtained in explicit forms. So,
approximate Bayes estimates along with their associated credible intervals were obtained
by employing importance sampling technique under SE and LINEX loss functions assum-
ing non-informative and informative priors for both parameters. The performance of the
different estimation methods was assessed via Monte Carlo simulations. Generally, from
the simulation study, it was concluded that the proposed informative Bayes estimates out-
perform the classical estimates in all considered cases. However, non-informative Bayesian
and the classical estimation methods perform almost the same under SE and LINEX under
small ν , while better results of the Bayesian methods are obtained under LINEX assum-
ing other positive values of ν . Classical confidence intervals (asymptotic and Boot-P) and
Bayes credible intervals were also constructed for the unknown parameters. It is clearly ev-
ident that the Bayes credible intervals compete the classical confidence intervals in terms of
the coverage probability in all cases. It was also noticed that the Asymptotic CI outperforms
the Boot-p CI in all cases. Finally, a real data set was analyzed for illustrative purposes.
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Estimation of the density and cumulative distribution functions 
of the exponentiated Burr XII distribution 
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ABSTRACT  

The exponentiated Burr Type XII (EBXII) distribution has wide applications in reliability 
and economic studies. In this article, the estimation of the probability density function and 
the cumulative distribution function of EBXII distribution is considered. We examine the 
maximum likelihood estimator, the uniformly minimum variance unbiased estimator, the 
least squares estimator, the weighted least squares estimator, the maximum product spacing 
estimator, the Cramér–von-Mises estimator, and the Anderson–Darling estimator. We 
derive analytical forms for the bias and mean square error. A simulation study is performed 
to investigate the consistency of the suggested methods of estimation. Data relating to the 
wind speed and service times of aircraft windshields are used with the studied methods. The 
simulation studies and real data applications have revealed that the maximum likelihood 
estimator performs more efficiently than its remaining counterparts. 
Key words: exponentiated Burr Type XII model, least squares estimator, maximum 
likelihood estimator, uniform minimum variance unbiased estimator, weighted least squares 
estimator. 
Mathematical Subject Classification: 62F10. 

1.  Introduction  

The Burr Type XII (BXII) distribution has gained special attention in physics, 
actuarial studies, reliability and applied statistics. Characteristics of the BXII 
distribution are near to several distributions like exponential, normal, lognormal, etc. 
Extra properties about the BXII distribution can be found in Headrick et al. (2010). 
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The exponentiated Burr Type XII distribution is a generalization to the BXII 
distribution through adding a new shape parameter. The cumulative distribution 
function (CDF) of the EBXII distribution is defined as follows: 

           ( ) 1 1 ;  , ,  , 0,
kcG x x x k c




     

 
                                    (1) 

where, k, c and   are shape parameters.  The probability density function (PDF) 
of the EBXII corresponding to (1) is specified by 

       
β 111 1 1 1 ;  , ,  , 0.

k kc c cg x ck x x x x k c 
         

 
              (2) 

Statistical developments on the EBXII model have been studied by several authors. 
Among them, AL-Hussaini and Hussein (2011) studied maximum likelihood (ML) and 
Bayesian estimation to the parameters of the EBXII distribution under Type II censored 
data. Kumar et al. (2017) established several explicit expressions and recurrence 
relations for single and product moments of r-th lower record values from the EBXII 
distribution. 

Statistical inference is one of the most popular topics in research and scientific 
studies whether from the theoretical or applied aspects. Most traditional studies have 
been focused on inferring the parameter(s) involved in the distribution. 
The importance of statistical distributions is not limited to the characterization of 
statistical phenomena, but rather to the calculation of many population metrics such as 
moments, probability weighted moments, failure rate function, etc. However, it would 
be more useful to study the efficient estimation of the PDF and CDF. The estimation of 
the PDF and the CDF is important for many reasons. For instance, the best estimators 
for the PDF can be used to estimate functionals of the PDF such as estimation of 
Kullback-Leibler divergence, as provided by Hurvich et al. (1990), estimation of Fisher 
information (see Mielniczuk and Wojtyś (2010), the estimation of the differential 
entropy (see Nilsson and Kleijn (2007), and estimation of the Rényi entropy. Similarly, 
the best estimators for the CDF can be used to estimate functionals of the CDF like 
estimation of quantiles (see Saleh et al. (1988) and estimation of the Lorenz curve (see 
Woo and Yoon (2001)).  

Some studies on the estimation of PDF and CDF have appeared in recent literature 
for some continuous distributions, for instance, Pareto distribution by Asrabadi (1990) 
and (Dixit and Nooghabi (2010), Dixit and Nooghabi (2011)), exponentiated Pareto 
distribution by Jabbari (2010), generalized Rayleigh distribution by Alizadeh et al. 
(2013), generalized exponential Poisson distribution by Bagheri et al. (2014), 
exponentiated Weibull by Alizadeh et al. (2015a), generalized exponential distribution 
by Alizadeh et al. (2015b), exponentiated Gumbel distribution by Bagheri et al. (2016a), 
Weibull extension distribution by Bagheri et al. (2016b), Lindley distribution by Maiti 
and Mukherjee (2018), generalized logistic distribution by Tripathi et al. (2017), 
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Frechet distribution by Maleki and Deiri (2017) and Topp-Leone distribution by 
Benkhelifa (2017), exponentiated gamma distribution (Rasekhi (2018)), and Gompertz 
distribution (Dey et al. (2018)). 

Our objective here is to investigate the efficient estimation of the PDF and the CDF 
of the EBXII model due to its wide statistical applications and developments. Different 
parametric methods of estimation, namely ML, uniformly minimum variance unbiased 
(UMVU), least squares (LS), weighted least squares (WLS), Cramér-von-Mises (CvM), 
Anderson–Darling (AD) and maximum product spacing (MPS) are considered.  This 
paper is organized as follows. Sections (2) and (3) provide ML and UMVU estimators 
of the PDF and CDF with their mean square errors (MSEs).  Section (4) includes other 
parametric methods of estimation. Section (5) comprises a simulation study in order to 
compare different suggested estimators. A real data set is analyzed for illustrative 
purpose in Section (6). The article ends with concluding remarks in Section (7). 

2.  Maximum likelihood estimators  

In this section we obtain the ML estimators of the PDF and the CDF of the EBXII 
distribution. Let X1, X2, …, Xn be a random sample with size n from the EBXII 
distribution with known parameters k and c. The log likelihood function of the EBXII 
distribution is given by 
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(3) 
The ML estimator of ,  say ˆ, is given as 
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We can rewrite CDF(1) as follows: 

െln𝐺ሺ𝑥ሻ ൌ  𝛽𝑉,    𝑉 ൌ  െln ሺ1 െ ሺ1 ൅ 𝑥௖ሻି௞ሻ.  

It can be seen that 𝑉 has an exponential distribution with scale parameter .  Then 
T has a gamma ሺ𝑛, 𝛽ሻ, random variable with density function given by 

  1 , 0. 
Γ( )

n
n tf t t e t

n
                                                       (4) 
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Therefore, ˆ ,
n

S
T

    has an inverse gamma ( , )n n distribution with PDF 

given by 
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Applying the invariance property of the ML method, the required PDF and CDF 
estimators are obtained as follows: 
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Now, we show that  ĝ x  and  Ĝ x are biased estimators of   g x and   G x

respectively. Further, the MSEs are obtained. Theorem (1) calculates  ( )ˆ r
E g x  and 
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Proof: First by using 1, (1 ) ,c c kb x d x    then  ĝ x can be rewritten as follows:  
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Here, K (.)  denotes the modified Bessel’s function of the second kind of order   

(see equation (3.471.9) in (Gradshteyn and Ryzhik (2000)). Similarly,   ( )ˆ r
E G x  

takes the following form: 
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Theorem 2: The MSEs for  ĝ x  and  Ĝ x respectively are given by 
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Proof: Since 
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Hence,   2ˆE g x  and   ˆE g x  can be obtained by setting r =1 and r =2 

in Theorem (1), hence the   ˆMSE g x  is easily calculated. The proof of 

   ˆMSE G x is similar. 

3.  Uniformly minimum variance unbiased estimators  

In this section, UMVU estimators of the PDF and CDF of the EBXII distribution 
are considered. In addition, the rth moment and the MSE of these estimators are 
derived.  

Let 1, . . . , nX X be a random sample of size n from the EBXII distribution. Then, 
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(assumed k and c are known parameters). Recall that T has a gamma ሺ𝑛, 𝛽ሻ distribution 
with density function (4). According to the Lehmann-Scheffe theorem, if 
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where  1,g x t  is the joint PDF of X1 and T.  Therefore,  *g t is the UMVU estimator 
of   .g x   

Lemma 1: The conditional distribution of V given T = t is obtained as 
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Proof: We have 
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In the following theorem the UMVU estimators for  g x and  G x  are obtained. 

Theorem 3: The uniformly minimum variance unbiased estimators for   g x and 

  G x are given by  

 
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  

Proof: The estimator ( )g x  is the UMVU estimator for ( )g x  can be proved by the 

Lehmann-Scheffe theorem and Lemma (1).  In addition,  xG  is the UMVU 
estimator of G(x) from the fact that 

 
1

ln(1 (1 ) )
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nc kd t x
x g x
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d
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Further, we compute the MSEs for the two UMVU estimators of  g x and 

  ,G x  suppose that 

   
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111 1

and  ( ) ln 1 1 .
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Then, we obtain the following expectation: 

        
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After some simplification, we obtain 
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( )

1n i r u

p x

e du u



    is the upper incomplete gamma function, so   r

E g x

can be formulated as follows: 
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Similarly, we can prove that 

    
0

( ) ( , ( ) )1 .
Γ( )

inr r
r i i

i

nr r
p x n i p xE G x

in

 




 
  


 


                             (8) 

Theorem 4. The mean square errors for  g x and  G x , respectively, are given by 
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and 
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Proof: Since 

       2 2
,MSE g x E g x g x    

where   2
E g x  can be obtained by setting r =2 in (7), hence we can calculate 

  .MSE g x  The proof of   MSE G x is similar. 
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4.  Other parametric methods of estimation  

In this section, several methods of estimation such as LS, WLS, MPS, CvM and AD 
are considered. All these methods are based on the CDF. Let : , 1, , ,i nX i n   be the 
order statistics of a random sample from the EBXII distribution and assumed k and c 
are known parameters. Then, the LS, WLS, MPS, CvM and AD estimators of the PDF 
and the CDF of the EBXII distribution are derived in the following subsections. 

4.1. Least squares and weighted least squares estimators 

The ordinary least squares and the weighted least squares (Swain et al. (1988)) are 
well-known methods used for estimating the unknown parameters. The LS estimator 
of , say,    and the WLS estimator of , say, , are given by minimizing the 
following quantities with respect to   

2

:
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( ) ,
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n

i n

i
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         (10) 
 

There is no closed form solution for ,  in minimizing Equations (9) and (10), so 
the numerical technique is applied to find    and  . Hence, the LS and WLS 
estimators of the CDF and PDF for the EBXII distribution are obtained, respectively, as 
follows:  
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and 
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4.2. Maximum product of spacing estimators 

The MPS has been proposed by Cheng and Amin (1979) as an alternative method 
for the ML for the estimation parameters of continuous univariate distribution. Let a 
sample of size n be available from EBXII, we define the corresponding uniform spacings 
as follows: 

: 1: , 1,2,..( ) ( ) .,i i n i n i nD G x G x     where 0: 1:( ) 0, ( ) 1,n n nG x G x  
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The MPS estimator of ,  say ,


 can be obtained by maximizing the geometric 
mean of the spacings,  
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with respect to . Equivalently, the following expression 
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can be maximized to obtain the desired estimator of .  It can be shown that 


 satisfies 
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There is no closed form 

solution for   in (12), so the numerical technique is applied to find


. Now, the MPS 
estimators of the CDF and PDF are obtained as follows:  
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4.3. Cramér-von-Mises and Anderson Darling estimators 

Cramér-von-Mises is a type of minimum distance estimators (also called maximum 
goodness of fit estimators), which is based on the difference between the estimate of the 
CDF and its empirical distribution function. The CvM estimator of  , say ,   is 
obtained by minimizing the following function with respect to   
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Equivalently, we solve the equation 
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to obtain   in the previous equation. So, the CvM estimators of the CDF and PDF are 
obtained as follows: 
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Additionally, the Anderson-Darling method was initially discussed by Anderson 
and Darling (1952) as another type of minimum distance estimators.  The AD estimator 
of  , say ,   is obtained by minimizing, with respect to  the function 
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Analogously, these estimators can also be obtained by solving the following non-
linear equation 
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with respect to  . Therefore, the AD estimators of the CDF and PDF for the EBXII 
distribution are obtained as follows: 
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5.  Simulation study 

A simulation study is carried out in this section to determine the efficient estimate 
of the PDF and CDF between the following estimates: ML, UMVU, LS, WLS, MPS, 
CvM and AD. The MSE is used to compare between these estimators. One thousand 
random samples with sizes n=10,25,50,75 and 100 are generated from the EBXII 
distribution with different sets of parameters  , ,k c  = (0.5,2,2.5), (1,2,2.5), (2,2,2.5), 
(1.5,2,1.5), (2,2,1.5) and (4,2,1.5). The MSEs of each estimate are displayed in Tables 1 
and 2. It can be detected from these tables that ML and UMVU estimates are more 
efficient than the other corresponding estimates. 

In addition, Figures 1 to 6 display the MSEs values for the PDF and CDF of the 
EBXII distribution by proposed methods. The left-hand side graph in each figure is 
related to the PDF estimates and the corresponding right-hand side graph is the CDF 
estimates. Generally, the efficiency of all estimates improves as sample size increases. 

Figure 7 and Figure 8 show the performance of a different set of the parameters. 
We detect from these figures that the ML and UMVU estimates of the set of parameters 
 , ,k c = (4, 2, 1.5) have better statistical properties than the other corresponding 
studied sets.  

 
 



STATISTICS IN TRANSITION new series, December 2021 

 

181

Table 1.  The MSEs of the PDF and CDF estimates of the EBXII distribution for  , ,k c = 
(0.5,2,2.5), (1,2,2.5) and (2,2,2.5) 

Sample 
size Methods 

0.5   1   2   
PDF CDF PDF CDF PDF CDF 

n=10 ML 
UMVU 

MPS 
CvM 
AD 
LS 

WLS 

0.11 
0.115 
0.201 
0.107 
0.111 
0.111 
0.116 

7.917e-3 
8.007e-3 
8.227e-3 

0.012 
8.739e-3 

0.013 
0.012 

0.026 
0.031 
0.03 
0.04 

0.028 
0.042 
0.039 

8.763e-3 
8.753e-3 
8.849e-3 

0.012 
9.135e-3 

0.013 
0.012 

0.021 
0.026 
0.023 
0.037 
0.024 
0.039 
0.037 

7.979e-3 
7.957e-3 
8.047e-3 

0.013 
8.788e-3 

0.014 
0.013 

n=25 ML 
UMVU 

MPS 
CvM 
AD 
LS 

WLS 

0.039 
0.037 
0.056 
0.032 
0.045 
0.033 
0.032 

2.952e-3 
2.915e-3 
2.965e-3 
3.902e-3 
3.257e-3 
3.906e-3 
3.626e-3 

9.415e-3 
0.01 
0.01 

0.013 
0.011 
0.013 
0.012 

2.884e-3 
2.871e-3 
2.971e-3 
3.824e-3 
3.333e-3 
4.017e-3 
3.482e-3 

8.208e-3 
8.865e-3 
8.741e-3 

0.011 
9.48e-3 
0.011 

9.925e-3 

2.962e-3 
2.951e-3 
3.058e-3 
3.917e-3 
3.368e-3 
3.939e-3 
3.495e-3 

n=50 ML 
UMVU 

MPS 
CvM 
AD 
LS 

WLS 

0.012 
0.012 
0.016 
0.015 
0.014 
0.015 
0.014 

1.483e-3 
1.482e-3 
1.535e-3 
1.969e-3 
1.752e-3 
1.972e-3 
1.791e-3 

4.635e-3 
4.844e-3 
5.113e-3 
6.104e-3 
5.435e-3 
6.126e-3 
5.635e-3 

1.393e-3 
1.398e-3 
1.47e-3 

1.832e-3 
1.629e-3 
1.836e-3 
1.686e-3 

4.181e-3 
4.365e-3 
4.501e-3 
5.476e-3 
4.875e-3 
5.485e-3 
5.048e-3 

1.46e-3 
1.464e-3 
1.534e-3 
1.914e-3 
1.709e-3 
1.917e-3 
1.765e-3 

n=75 ML 
UMVU 

MPS 
CvM 
AD 
LS 

WLS 

8.442e-3 
8.49e-3 

0.01 
0.011 

9.722e-3 
0.011 

9.86e-3 

9.864e-4 
9.893e-4 
1.032e-3 
1.319e-3 
1.175e-3 
1.323e-3 
1.186e-3 

3.014e-3 
3.07e-3 

3.142e-3 
4.13e-3 

3.616e-3 
4.134e-3 
3.716e-3 

9.171e-4 
9.121e-4 

9.3e-4 
1.235e-3 
1.086e-3 
1.236e-3 
1.111e-3 

2.685e-3 
2.729e-3 
2.74e-3 

3.733e-3 
3.247e-3 
3.732e-3 
3.319e-3 

9.409e-4 
9.351e-4 
9.485e-4 
1.291e-3 
1.13e-3 

1.291e-3 
1.151e-3 

n=100 ML 
UMVU 

MPS 
CvM 
AD 
LS 

WLS 

5.985e-3 
6.005e-3 
6.877e-3 
7.305e-3 
6.731e-3 
7.351e-3 
6.819e-3 

7.63e-4 
7.619e-4 
7.802e-4 
9.491e-4 
8.642e-4 
9.495e-4 
8.725e-4 

2.508e-3 
2.562e-3 
2.672e-3 
3.329e-3 
2.959e-3 
3.339e-3 
2.978e-3 

7.553e-4 
7.567e-4 
7.855e-4 
1.005e-3 
8.928e-4 
1.007e-3 
8.966e-4 

2.135e-3 
2.183e-3 
2.257e-3 
2.808e-3 

2.5e-3 
2.814e-3 
2.515e-3 

7.462e-4 
7.481e-4 
7.785e-4 
9.835e-4 
8.764e-4 
9.858e-4 
8.792e-4 

 
  



182                                                          Amal S. Hassan et al.: Estimation of the density and cumulative … 

 

 

Table 2.  The MSEs of the PDF and CDF estimates of the EBXII distribution for the set of parameters 

 , ,k c = (1.5,2,1.5), (2,2,1.5) and (4,2,1.5) 

Sample 
size Methods 

1.5   2   4   
PDF CDF PDF CDF PDF CDF 

n=10 ML 
UMVU 

MPS 
CvM 

 
AD 
LS 

WLS 

0.022 
0.028 
0.029 
0.03 

0.026 
0.032 
0.03 

7.947e-3 
7.907e-3 
7.971e-3 

0.012 
8.779e-3 

0.014 
0.012 

0.013 
0.017 
0.017 
0.019 
0.016 
0.02 

0.019 

7.405e-3 
7.287e-3 
7.291e-3 

0.011 
8.207e-3 

0.011 
0.01 

7.499e-3 
9.843e-3 
9.129e-3 

0.012 
9.04e-3 
0.013 
0.012 

7.8e-3 
7.826e-3 
7.948e-3 

0.011 
8.78e-3 
0.011 
0.011 

n=25 ML 
UMVU 

MPS 
CvM 
AD 
LS 

WLS 

8.38e-3 
9.201e-3 

0.01 
0.011 

9.843e-3 
0.011 
0.01 

3.083e-3 
3.076e-3 
3.187e-3 
3.973e-3 
3.544e-3 
3.985e-3 
3.709e-3 

6.48e-3 
7.156e-3 
7.699e-3 
8.25e-3 

7.366e-3 
8.338e-3 
7.932e-3 

3.386e-3 
3.398e-3 
3.544e-3 
4.274e-3 
3.782e-3 
4.285e-3 
4.043e-3 

3.285e-3 
3.574e-3 
3.601e-3 
4.578e-3 
3.99e-3 

4.616e-3 
4.29e-3 

3.042e-3 
2.997e-3 
3.008e-3 
4.11e-3 

3.596e-3 
4.119e-3 
3.823e-3 

n=50 ML 
UMVU 

MPS 
CvM 
AD 
LS 

WLS 

3.934e-3 
4.112e-3 
4.453e-3 
5.304e-3 
4.687e-3 
5.34e-3 

4.858e-3 

1.504e-3 
1.499e-3 
1.544e-3 
1.961e-3 
1.732e-3 
1.964e-3 
1.788e-3 

3.015e-3 
3.178e-3 
3.43e-3 

3.972e-3 
3.507e-3 
4.004e-3 
3.634e-3 

1.522e-3 
1.529e-3 
1.614e-3 
1.935e-3 
1.716e-3 
1.944e-3 
1.761e-3 

1.631e-3 
1.714e-3 
1.801e-3 
2.246e-3 
1.979e-3 
2.258e-3 
2.052e-3 

1.377e-3 
1.377e-3 
1.437e-3 
1.884e-3 
1.659e-3 
1.889e-3 
1.712e-3 

n=75 ML 
UMVU 

MPS 
CvM 
AD 
LS 

WLS 

2.699e-3 
2.768e-3 
2.934e-3 
3.451e-3 
3.109e-3 
3.465e-3 
3.169e-3 

1.01e-3 
1.004e-3 
1.023e-3 
1.252e-3 
1.129e-3 
1.253e-3 
1.148e-3 

1.972e-3 
2.048e-3 
2.203e-3 
2.615e-3 
2.339e-3 
2.63e-3 

2.361e-3 

9.846e-4 
9.896e-4 
1.043e-3 
1.299e-3 
1.158e-3 
1.303e-3 
1.165e-3 

1.121e-3 
1.153e-3 
1.201e-3 
1.435e-3 
1.277e-3 
1.439e-3 
1.297e-3 

9.636e-4 
9.608e-4 
9.888e-4 
1.219e-3 
1.086e-3 
1.22e-3 

1.102e-3 
n=100 ML 

UMVU 
MPS 
CvM 
AD 
LS 

WLS 

1.951e-3 
1.987e-3 
2.087e-3 
2.619e-3 
2.318e-3 
2.625e-3 
2.361e-3 

7.399e-4 
7.365e-4 
7.477e-4 
9.819e-4 
8.687e-4 
9.817e-4 
8.829e-4 

1.354e-3 
1.38e-3 

1.434e-3 
1.815e-3 
1.61e-3 

1.819e-3 
1.634e-3 

7.04e-4 
7.005e-4 

7.1e-4 
9.273e-4 
8.245e-4 
9.276e-4 
8.345e-4 

8.727e-4 
8.922e-4 
9.219e-4 
1.189e-3 
1.052e-3 
1.192e-3 
1.065e-3 

7.468e-4 
7.453e-4 
7.614e-4 
1.007e-3 
8.908e-4 
1.007e-3 
9.022e-4 

Note: in the tables, e denoted to base 10. 
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Figure1.  The MSEs of the PDF and CDF for the parameter set  , ,k c = (0.5,2,2.5) 

 
Figure 2.  The MSEs of the PDF and CDF for the parameter set  , ,k c = (1,2,2.5) 

 
Figure 3.  The MSEs of the PDF and CDF for the parameter set  , ,k c = (2,2,2.5) 

 
Figure 4.  The MSEs of the PDF and CDF for the parameter set  , ,k c = (1.5,2,1.5) 
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Figure 5.  The MSEs of the PDF and CDF for the parameter set  , ,k c = (2,2,1.5) 

 
Figure 6.  The MSEs of the PDF and CDF for the parameter set  , ,k c = (4,2,1.5) 

 
Figure 7.  The MSEs of the PDF and CDF of the ML estimators for all the parameter sets 

 
Figure 8.  The MSEs of the PDF and CDF of the UMVU estimators for all parameter sets 
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6.  Application to real data 

Real data sets are considered to compare between ML, LS, WLS, CvM, AD and MPS 
methods. The first data consist of 31 observations that represent the Average Monthly 
Wind Speed (m/s) at Kolkata (from 1st March, 2009 to 31st March, 2009); these data 
were introduced by Bhattacharya and Bhattacharjee (2010). The second data set 
represents the data on service times of 63 aircraft windshield given by Murthy et al. 
(2004). For both data sets, all the three parameters are considered as unknown 
parameters. The parameters are estimated by ML, MPS, LS, WLS, CvM and AD 
methods. ML, MPS estimators are obtained by maximizing Equations (3) and (11), 
respectively, with respect to ,  k and c . LS, WLS, CvM and AD estimators can be 
obtained by minimizing Equations (9), (10), (13) and (14), respectively, with respect to
 , k and c. We compared the estimation methods by means of model selection criteria. 
The criteria like Akaike information criterion (AIC), Bayesian information criterion 
(BIC), and corrected Akaike information criterion (AICc) are considered. The model 
with the minimum AIC, BIC and AICc is chosen as the best model to fit the data. In 
addition, the PDF plot (estimated PDFs versus the empirical histogram for the data) 
and the CDF plot (estimated CDFs versus the empirical CDF for the data) are used in 
the model selection. Tables 3 and 4 give the parameter estimates and the values of the 
model selection for different methods. 
 

Table 3.  Estimates of the parameters and the corresponding AIC, BIC and AICc for first data 

Methods c Estimate k Estimate  Estimate AIC BIC AICc 

ML 
LS 

WLS 
CvM 
AD 

MPS 

2.139 
3.295 
3.113 
3.278 
3.461 
1.198 

1.631 
0.686 
0.856 
0.757 
0.701 
1.040 

1.333 
0.599 
0.701 
0.647 
0.585 
0.989 

56.304 
57.841 
56.921 
57.237 
57.317 
79.264 

60.605 
62.143 
61.223 
61.539 
61.619 
83.566 

56.946 
58.484 
57.564 
57.88 
57.96 

79.687 

 

Table 4.  Estimates of the parameters and the corresponding AIC, BIC and AICc for second data 

Methods c Estimate k Estimate  Estimate AIC BIC AICc 

ML 
LS 

WLS 
CvM 
AD 

MPS 

1.378 
1.148 
1.174 
1.154 
1.381 
1.402 

1.206 
2.103 
2.302 
2.142 
1.242 

1.1 

1.988 
6.789 
8.321 
7.156 
2.456 
1.734 

235.331 
270.693 
291.356 
275.685 
237.674 
235.739 

241.76 
277.123 
297.786 
282.115 
244.103 
242.168 

235.527 
270.89 

291.553 
275.882 
237.87 

235.939 
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As seen from Tables 3 and 4, the ML estimates give the smallest values compared 
with the other estimates. Figures 9 and 10 represent plots of the CDFs and PDFs of the 
EBXII distribution based on the fitted ML, LS, WLS, CvM, AD and MPS methods to 
the data, the figures indicate the superiority of the ML method over the other methods. 

 

Figure 9.  CDF and PDF plots for Wind Speed (m/s) data fitted by different methods of estimation 

 

 

  

Figure 10.  CDF and PDF plots for service times of 63 aircraft windshield fitted by different 
methods of estimation 
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7.  Conclusion 

In this paper, we consider seven different estimators of the PDF and CDF of the 
EBXII distribution when the shape parameters k and c are assumed to be known. 
Maximum likelihood estimator, uniformly minimum variance unbiased estimator, 
least squares estimator, weighted least squares estimator, maximum product spacing 
estimator, Cramér-von-Mises estimator and Anderson-Darling estimator are obtained. 
The MSEs of the maximum likelihood and uniformly minimum variance unbiased 
estimators are given in explicit forms. A simulation study is performed to compare the 
behaviours of the proposed estimates. A real data set is considered for illustrative 
purposes. The results show that the maximum likelihood and uniformly minimum 
variance unbiased estimates perform better than the other estimators.  

References 

al-Hussaini, E. K., Hussein, M., (2011). Estimation using censored data from 
exponentiated Burr type XII population. American Open Journal of Statistics, 1, 
pp. 33–45. 

Alizadeh, M., Bagheri, F., M Khaleghy Moghaddam, M., (2013). Efficient estimation of 
the density and cumulative distribution function of the generalized Rayleigh 
distribution. Journal of Statistical Research of Iran JSRI, 10(1), pp. 1–22. 

Alizadeh, M., Bagheri, S., Jamkhaneh, E. B., Nadarajah, S., (2015a). Estimates of the 
PDF and the CDF of the exponentiated Weibull distribution. Brazilian Journal of 
Probability and Statistics, 29(3), pp. 695–716. 

Alizadeh, M., Rezaei, S., Bagheri, S., Nadarajah, S., (2015b). Efficient estimation for the 
generalized exponential distribution. Statistical Papers, 56(4), pp. 1015–1031. 

Anderson, T. W., Darling, D. A., (1952). Asymptotic theory of certain "goodness of fit" 
criteria based on stochastic processes. The annals of mathematical statistics,  
pp. 193–212. 

Asrabadi, B. R., (1990). Estimation in the Pareto distribution. Metrika, 37(1), pp. 199–
205. 

Bagheri, S., Alizadeh, M., Baloui Jamkhaneh, E., Nadarajah, S., (2014). Evaluation and 
comparison of estimations in the generalized exponential-Poisson distribution. 
Journal of Statistical Computation and Simulation, 84(11), pp. 2345–2360. 



188                                                          Amal S. Hassan et al.: Estimation of the density and cumulative … 

 

 

Bagheri, S., Alizadeh, M., Nadarajah, S., (2016a). Efficient estimation of the PDF and 
the CDF of the exponentiated Gumbel distribution. Communications in Statistics-
Simulation and Computation, 45(1), pp. 339–361. 

Bagheri, S., Alizadeh, M., Nadarajah, S., Deiri, E., (2016b). Efficient estimation of the 
PDF and the CDF of the Weibull extension model. Communications in Statistics-
Simulation and Computation, 45(6), pp. 2191–2207. 

Benkhelifa, L., (2017). Efficient estimation in the Topp-Leone distribution. arXiv 
preprint arXiv:1701.03822. 

Bhattacharya, P., Bhattacharjee, R., (2010). A study on Weibull distribution for 
estimating the parameters. Journal of Applied Quantitative Methods, 5(2),  
pp. 234–241. 

Cheng, R. C. H. , Amin, N. A. K., (1979). Maximum product of spacings estimation 
with application to the lognormal distribution. Cardiff,Math. University of Wales 
Institute of Science and Technology. 

Dey, S., Kayal, T., Tripathi, Y. M., (2018). Evaluation and comparison of estimators in 
The Gompertz Distribution. Annals Of Data Science, 5(2), pp. 235–258. 

Dixit, U., Nooghabi, M. J., (2010). Efficient estimation in the Pareto distribution. 
Statistical Methodology, 7(6), pp. 687–691. 

Dixit, U., Nooghabi, M. J., (2011). Efficient estimation in the Pareto distribution with 
The Presence Of Outliers. Statistical Methodology, 8(4), pp. 340–355. 

Gradshteyn, I., Ryzhik, I., (2000). Table of Integrals, Series, and Products, Academic 
Press, San Diego, CA. 

Headrick, T., Pant, M., Sheng, Y., (2010). On simulating univariate and multivariate 
Burr Type III and Type XII distributions. Applied Mathematical Sciences, 4, 
pp. 2207–2240. 

Hurvich, C. M., Shumway, R., Tsai, C.-L., (1990). Improved estimators of Kullback–
Leibler information for autoregressive model selection in small samples. 
Biometrika, 77(4), pp. 709–719. 

Jabbari, N. H., (2010). Efficient estimation of PDF, CDF and rth moment for the 
exponentiated Pareto distribution in the presence of outliers. Statistics: A Journal 
of Theoretical and Applied Statistics, 44(4), pp. 1–20. 

Kumar, D., Saran, J., Jain, N., (2017). The exponentiated burr xii distribution: moments 
and estimation based on lower record values. Sri Lankan Journal of Applied 
Statistics, 18(1), pp. 1–18. 



STATISTICS IN TRANSITION new series, December 2021 

 

189

Maiti, S. S., Mukherjee, I., (2018). On estimation of the PDF and CDF of the Lindley 
distribution. Communications in Statistics-Simulation and Computation, 47(5), 
pp. 1370–1381. 

Maleki, F., Deiri, E., (2017). Efficient Estimation of the PDF and the CDF of the Frechet 
Distribution. Annals of Data Science, 4(2), pp. 211–225. 

Mielniczuk, J., Wojtyś, M., (2010). Estimation of Fisher information using model 
selection. Metrika, 72(2), pp. 163–187. 

Murthy, D. P., Xie, M., Jiang, R., (2004). Weibull Models, Haboken, NJ, USA, John 
Wiley & Sons. 

Nilsson, M., Kleijn, W. B., (2007). On the estimation of differential entropy from data 
located on embedded manifolds. IEEE Transactions on Information Theory, 53(7), 
pp. 2330–2341. 

Rasekhi, M., (2018). A study on methods for estimating the PDF and the CDF in the 
exponentiated gamma distribution. Communications in Statistics-Simulation and 
Computation, pp. 1–15. 

Saleh, A. M. E., Hassanein, K., Ali, M. M., (1988). Estimation and testing of hypotheses 
about the quantile function of the normal distribution. Journal of Information and 
Optimization Sciences, 9(1), pp. 85–98. 

Swain, J. J., Venkatraman, S., Wilson, J. R., (1988). Least-squares estimation of 
distribution functions in Johnson's translation system. Journal of Statistical 
Computation and Simulation, 29(4), pp. 271–297. 

Tripathi, Y. M., Mahto, A. K., Dey, S., (2017). Efficient Estimation of the PDF and the 
CDF of a Generalized Logistic Distribution. Annals of Data Science, 4(1),  
pp. 63–81. 

Woo, J. S., Yoon, G. E., (2001). Estimations of Lorenz curve and Gini index in a Pareto 
distribution. Communications for Statistical Applications and Methods, 8(1),  
pp. 249–256. 

 



 



STATISTICS IN TRANSITION new series, December 2021 
Vol. 22, No. 4 pp. 191–212, DOI 10.21307/stattrans-2021-045 
Received – 09.09.2019; accepted – 14.10.2020 

Relationships for moments of the progressively Type-II right 
censored order statistics from the power Lomax distribution  

and the associated inference  
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ABSTRACT 

In this paper, we establish several recurrence relations between single and product moments 
of progressively Type-II right censored order statistics from the power Lomax distribution. 
The relations enable the computation of all the single and product moments of progressively 
Type-II right censored order statistics for all sample sizes 𝑛 and all censoring schemes 
ሺ𝑅ଵ, 𝑅ଶ, … , 𝑅௠ሻ, 𝑚 ൑ 𝑛, in a simple recursive manner. The maximum likelihood approach 
is used for the estimation of the parameters and the reliability characteristic. A Monte Carlo 
simulation study has been conducted to compare the performance of the estimates for 
different censoring schemes.  

Key words: progressively Type-II right censored order statistics, single moments, product 
moments, recurrence relations, power Lomax distribution, maximum likelihood estimation. 
Mathematics Subject Classification: 62G30; 62G05 

1.  Introduction 

The Lomax distribution, proposed by Lomax (1954) was introduced originally for 
modelling business data and has been widely applied in a variety of contexts. In lifetime 
models, it is considered as an important model and belongs to the family of decreasing 
failure rate. Bryson (1974) found that this distribution can be used as heavy tailed 
alternative to the exponential, Weibull and gamma distributions. 

Many authors constructed generalizations of the Lomax distribution. For example, 
Ghitany et al. (2007) introduced the Marshall-Olkin extended Lomax distribution, 
Abdul-Moniem and Abdel-Hameed (2012) introduced the exponentiated Lomax 
distribution, Tahir et al. (2015) introduced the Weibull Lomax distribution, Al-Zahrani 
and Sagor (2014) studied the Poisson Lomax distribution. Recently, Tahir et al. (2016) 

                                                           
1  Department of Statistics, University of Delhi, India. E-mail: jagdish_saran52@yahoo.co.in.  
2 Department of Statistics, University of Delhi, India. E-mail: narinderpushkarna@ramjas.du.ac.in.  
3  Corresponding author, Department of Statistics, University of Delhi, India. E-mail: shikhastats@gmail.com.  
 ORCID: https://orcid.org/0000-0002-2333-9264. 



192                                                                                                        J. Saran et al.: Relationships for moments… 

 

 

and Afify et al. (2016) introduced the Gumbel-Lomax distribution and the Transmuted 
Weibull Lomax distribution, respectively, and studied their mathematical and statistical 
properties. 

A new extension of the Lomax distribution was proposed by Rady et al. (2016) as 
three parameter power Lomax distribution, by considering the power transformation 

𝑋 ൌ  𝑇
ଵ

ఉൗ , where the random variable ሺ𝑟. 𝑣. ሻ  𝑇 follows the Lomax distribution with 
parameters 𝛼 and 𝜆 . Then the distribution of 𝑟. 𝑣.  𝑋  with three parameters 𝛼, 𝛽 and 𝜆  
is referred to as “power Lomax distribution”, where 𝛼 and 𝛽 are the shape parameters 
and 𝜆 is the scale parameter of the distribution. 

The probability density function (p.d.f.) of 𝑟. 𝑣.  𝑋 following the power Lomax 
distribution is given as 

                          𝑓ሺ𝑥ሻ ൌ
ఈఉ

ఒ
𝑥ఉିଵ ቀ1 ൅

௫ഁ

ఒ
ቁ

ିሺఈାଵሻ

,     𝑥 ൐ 0, 𝛼, 𝛽, 𝜆 ൐ 0.                       (1.1) 

The corresponding cumulative distribution function (c.d.f.) is given by 

             𝐹ሺ𝑥ሻ ൌ 1 െ ቀ1 ൅
௫ഁ

ఒ
ቁ

ିఈ
,      𝑥 ൐ 0, 𝛼, 𝛽, 𝜆 ൐ 0.                       (1.2) 

The reliability (survival) function 𝑅ሺ𝑥ሻ of the power Lomax distribution is given as 

                       𝑅ሺ𝑥ሻ ൌ  ቀ1 ൅
௫ഁ

ఒ
ቁ

ିఈ
,        𝑥 ൐ 0, 𝛼, 𝛽, 𝜆 ൐ 0,                          (1.3) 

and the failure rate function (hazard function) of the power Lomax distribution is given 
by  

             ℎሺ𝑥ሻ ൌ
௙ሺ௫ሻ

ோሺ௫ሻ
ൌ

ఈఉ௫ഁషభ

ఒା௫ഁ  ,         𝑥 ൐ 0, 𝛼, 𝛽, 𝜆 ൐ 0.                         (1.4) 

From Eqs. (1.1) and (1.2), one can observe that the characterizing differential 
equation for the power Lomax distribution is given as 

                     𝛼𝛽ሺ1 െ 𝐹ሺ𝑥ሻሻ ൌ ൫𝑥 ൅ 𝜆𝑥ଵିఉ൯𝑓ሺ𝑥ሻ.                                 (1.5) 

Note: For 𝛽 ൌ 1 in Eq. (1.1), the p.d.f. reduces to that of the Lomax distribution. 

2.  Progressively Type-II right censored order statistics 

The progressive Type-II right censoring scheme is quite useful in reliability and 
life-testing experiments because it allows the experimenter for items to be removed 
before the termination of the experiment to save time and cost. The progressive 
censoring scheme and associated inferential procedures have been discussed by several 
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authors including Aggarwala and Balakrishnan (1996, 1998), Balakrishnan and 
Aggarwala (2000), Cohen (1963, 1976, 1991), Cohen and Whitten (1988), Balakrishnan 
and Sandhu (1995), Athar et al. (2014), Saran and Pushkarna (2001, 2014), Saran and 
Pande (2012), Pushkarna et al. (2015) and Saran et al. (2018). The progressive censoring 
scheme can be described as follows: 

Let 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ be a sequence of independent and identically distributed (i.i.d.) 
random variables representing failure times of 𝑛 identical units placed on a life-test. 
Under the progressively Type-II right censoring scheme, at the time of 𝑖௧௛ failure ሺ𝑖 ൌ
1,2, … , 𝑚, where 𝑚 ൑ 𝑛ሻ, 𝑅௜ surviving items are removed at random from the 
experiment, where 𝑅ଵ, 𝑅ଶ, … , 𝑅௠ are fixed integers. In other words, if a censoring 
scheme ሺ𝑅ଵ, 𝑅ଶ, … , 𝑅௠ሻ is fixed such that immediately following the first failure, 
𝑅ଵ surviving items are removed from the experiment at random; immediately following 
the first failure after that point; i.e. after second observed failure, 𝑅ଶ surviving items are 
removed from the experiment at random; this process continues until, at the 𝑚௧௛ 
observed failure, 𝑅௠ items are removed from the experiment. 

Thus, in this type of sampling, 𝑚 failures are observed and 

෍ 𝑅௜ items are progressively censored so that 𝑛 ൌ  𝑚 ൅ ෍ 𝑅௜

௠

௜ୀଵ

. The withdrawal of

௠

௜ୀଵ

 

items may be seen as a model describing drop-outs of units due to failures, which have 
causes other than the specific one under study. In this sense, progressive censoring 
schemes are applied in clinical trials as well. The drop-outs of patients may be caused, 
e.g. by personal or ethical decisions, and they are regarded as random withdrawals.  

Let  𝑋ଵ:௠:௡
ሺோభ,ோమ,…,ோ೘ሻ ൏  𝑋ଶ:௠:௡

ሺோభ,ோమ,…,ோ೘ሻ ൏  … ൏ 𝑋௠:௠:௡
ሺோభ,ோమ,…,ோ೘ሻ,  be the 𝑚 ordered 

observed failure times in a sample of size 𝑛 from the  Power Lomax distribution as 
defined by (1.1), under the progressively Type-II right censoring 
 scheme ሺ𝑅ଵ, 𝑅ଶ, … , 𝑅௠ሻ, 𝑚 ൑ 𝑛 .  

Then, the joint p.d.f. of  𝑋ଵ:௠:௡
ሺோభ,ோమ,… ,ோ೘ሻ,  𝑋ଶ:௠:௡

ሺோభ,ோమ,… ,ோ೘ሻ , … , 𝑋௠:௠:௡
ሺோభ,ோమ,… ,ோ೘ሻ is given by 

(Balakrishnan and Sandhu (1995)) 

𝑓ଵ,ଶ,…,௠:௠:௡ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥௠ሻ ൌ 𝐴ሺ𝑛, 𝑚 െ 1ሻ ෑ 𝑓ሺ𝑥௜ሻሾ1 െ 𝐹ሺ𝑥௜ሻሿோ೔

௠

௜ୀଵ

,  

                                        0 ൏  𝑥ଵ  ൏ 𝑥ଶ  ൏ ⋯ ൏ 𝑥௠  ൏ ∞,            (2.1) 
where 

𝐴ሺ𝑛, 𝑚 െ 1ሻ ൌ 𝑛ሺ𝑛 െ 𝑅ଵ െ 1ሻሺ𝑛 െ 𝑅ଵ െ 𝑅ଶ െ 2ሻ … ሺ𝑛 െ 𝑅ଵ െ 𝑅ଶ െ ⋯ െ 𝑅௠ିଵ െ 𝑚 ൅ 1ሻ, 

                                                                                                                                       (2.2) 
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𝑓ሺ𝑥ሻ and 𝐹ሺ𝑥ሻ are given by (1.1) and (1.2), respectively. Here, note that all the factors 
in 𝐴ሺ𝑛, 𝑚 െ 1ሻ are positive integers. Also, it may be observed that the different factors 
in 
𝐴ሺ𝑛, 𝑚 െ 1ሻ represent the number of units still on test immediately preceding the 
1௦௧, 2௡ௗ, … , 𝑚௧௛ observed failures, respectively. 

Similarly, for convenience in notation, let us define for 𝑞 ൌ 0,1, … , ሺ𝑝 െ 1ሻ, 

𝐴ሺ𝑝, 𝑞ሻ ൌ 𝑝ሺ𝑝 െ 𝑅ଵ െ 1ሻሺ𝑝 െ 𝑅ଵ െ 𝑅ଶ െ 2ሻ … ൫𝑝 െ 𝑅ଵ െ 𝑅ଶ െ ⋯ െ 𝑅௤ െ 𝑞൯, 

with all the factors being positive integers.  

We shall denote the 𝑘௧௛ single moment of the 𝑖௧௛ progressively Type-II right 
censored order statistics, from (2.1), as 

𝜇௜:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖሻ

ൌ 𝐸 ቂ𝑋௜:௠:௡
ሺோభ,ோమ,…,ோ೘ሻቃ

௞
 

ൌ  𝐴ሺ𝑛, 𝑚 െ 1ሻ න න … න 𝑥௜
௞ ෑ 𝑓ሺ𝑥௧ሻሾ1 െ 𝐹ሺ𝑥௧ሻሿோ೟

௠

௧ୀଵ

𝑑𝑥௧ ,  1 ൑ 𝑖 ൑ 𝑚 ൑ 𝑛 , 𝑘 ൒ 0,    

0 𝑥ଵ𝑥௠                                                                                         (2.3) 

and the  ሺ𝑟, 𝑠ሻ௧௛ product moment of the 𝑖௧௛and 𝑗௧௛ progressively Type-II right 
censored order statistics from (2.1), as 

𝜇௜,௝:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞሻ

ൌ  𝐸 ቂቄ𝑋௜:௠:௡
ሺோభ,ோమ,…,ோ೘ሻቅ

௥
ቄ𝑋௝:௠:௡

ሺோభ,ோమ,…,ோ೘ሻቅ
௦
ቃ                     

              ൌ 𝐴ሺ𝑛, 𝑚 െ 1ሻ න  න  … න  𝑥௜
௥𝑥௝

௦ ෑ 𝑓ሺ𝑥௧ሻሾ1 െ 𝐹ሺ𝑥௧ሻሿோ೟

௠

௧ୀଵ

𝑑𝑥௧;  

                                                                                0 𝑥ଵ𝑥௠

 1 ൑ 𝑖 ൏ 𝑗 ൑ 𝑚 ൑ 𝑛, 𝑟, 𝑠 ൒ 0,      (2.4) 

where 𝐴ሺ𝑛, 𝑚 െ 1ሻ is defined before. 

In Sections 3 and 4, utilizing the characterizing differential Eq. (1.5), we have 
derived recurrence relations for the single and the product moments of progressively 
Type-II right censored order statistics from the power Lomax distribution. These 
relations along with the recursive algorithm presented in Section 5 would enable one to 
compute all the single and product moments of progressively Type-II right censored 
order statistics for all sample sizes 𝑛 and all censoring schemes ሺ𝑅ଵ, 𝑅ଶ, … , 𝑅௠ሻ, 𝑚 ൑
𝑛, in a simple recursive manner. In Section 6, for the estimation of the parameters and 
the reliability characteristics, maximum likelihood approach is used. In Section 7, 
Monte Carlo simulation study is conducted to compare the performance of the 
estimates for different censoring schemes. 



STATISTICS IN TRANSITION new series, December 2021 

 

195

3.  Recurrence relations for single moments 

In this section, we shall exploit the relation (1.5) to establish recurrence relations 
for the single moments of progressively Type-II right censored order statistics from the 
power Lomax distribution. The results are presented in the form of the following 
theorems. 

Theorem 3.1: For 2 ൑ 𝑚 ൑ 𝑛 and for 𝑘 ൒ 0,  

𝜇ଵ:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖశഁሻ

൤1 െ
𝛼𝛽

ሺ𝑘 ൅ 𝛽ሻ
ሺ𝑅ଵ ൅ 1ሻ൨    ൌ

𝛼𝛽
ሺ𝑘 ൅ 𝛽ሻ

ሺ𝑛 െ 𝑅ଵ െ 1ሻ𝜇ଵ:௠ିଵ:௡
ሺோభାோమାଵ,ோయ,…,ோ೘ሻሺೖశഁሻ

 

െ 𝜆𝜇ଵ:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖሻ

,    (3.1) 
and for 𝑚 ൌ 1, 𝑛 ൌ 1,2, … . and 𝑘 ൒ 0, 

          𝜇ଵ:ଵ:௡
ሺ௡ିଵሻሺೖశഁሻ

  ቀ
௡ఈఉ

௞ାఉ
െ 1ቁ ൌ  ቂ𝜆𝜇ଵ:ଵ:௡

ሺ௡ିଵሻሺೖሻ
ቃ.                              (3.2) 

Proof: From (2.3), we have 

𝜇ଵ:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖశഁሻ

൅ 𝜆 𝜇ଵ:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖሻ

 

         ൌ 𝐴ሺ𝑛, 𝑚 െ 1ሻ න  න   … න ቐන ൫𝑥ଵ
௞ାఉ ൅ 𝜆𝑥ଵ

௞൯𝑓ሺ𝑥ଵሻሾ1 െ 𝐹ሺ𝑥ଵሻሿோభ𝑑𝑥ଵ 

௫మ

଴

ቑ 

                                    0 𝑥ଶ 𝑥ଷ...𝑥௠  
                      ൈ 𝑓ሺ𝑥ଶሻሾ1 െ 𝐹ሺ𝑥ଶሻሿோమ …  𝑓ሺ𝑥௠ሻሾ1 െ 𝐹ሺ𝑥௠ሻሿோ೘𝑑𝑥ଶ 𝑑𝑥ଷ … 𝑑𝑥௠ 

  ൌ 𝐴ሺ𝑛, 𝑚 െ 1ሻ ׬ ׬   ׬  …    𝐼ሺ𝑥ଶሻ ∏ 𝑓ሺ𝑥௧ሻሾ1 െ 𝐹ሺ𝑥௧ሻሿோ೟௠
௧ୀଶ 𝑑𝑥௧ ,                        (3.3) 

                             0  𝑥ଶ 𝑥ଷ ൏... 𝑥௠ 

where 

               𝐼ሺ𝑥ଶሻ ൌ න ቀ𝑥ଵ
௞ାఉ ൅ 𝜆𝑥ଵ

௞ቁ 𝑓ሺ𝑥ଵሻሾ1 െ 𝐹ሺ𝑥ଵሻሿோభ𝑑𝑥ଵ 

௫మ

଴

                                        

   ൌ න 𝑥ଵ
௞ାఉିଵ ቀ𝑥ଵ ൅ 𝜆𝑥ଵ

ଵିఉቁ 𝑓ሺ𝑥ଵሻሾ1 െ 𝐹ሺ𝑥ଵሻሿோభ𝑑𝑥ଵ.

௫మ

଴

  

Making use of the relation (1.5), we have  

𝐼ሺ𝑥ଶሻ ൌ 𝛼𝛽 න 𝑥ଵ
௞ାఉିଵሾ1 െ 𝐹ሺ𝑥ଵሻሿோభାଵ𝑑𝑥ଵ.

௫మ

଴

             

Upon integrating by parts by treating 𝑥ଵ
௞ାఉିଵ for integration and 

 ሾ1 െ 𝐹ሺ𝑥ଵሻሿோభାଵ for differentiation we have 

𝐼ሺ𝑥ଶሻ ൌ
ఈఉ

ሺ௞ାఉሻ
ቂ𝑥ଶ

௞ାఉሾ1 െ 𝐹ሺ𝑥ଶሻሿோభାଵ ൅ ሺ𝑅ଵ ൅ 1ሻ ׬ 𝑥ଵ
௞ାఉሾ1 െ 𝐹ሺ𝑥ଵሻሿோభ𝑓ሺ𝑥ଵሻ𝑑𝑥ଵ

௫మ

଴ ቃ.         
(3.4) 



196                                                                                                        J. Saran et al.: Relationships for moments… 

 

 

Substituting the resultant expression of 𝐼ሺ𝑥ଶሻ from (3.4) in (3.3), we get 

  𝜇ଵ:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖశഁሻ

൅ 𝜆 𝜇ଵ:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖሻ

 

ൌ
𝛼𝛽

ሺ𝑘 ൅ 𝛽ሻ
ቂሺ𝑛 െ 𝑅ଵ െ 1ሻ𝜇ଵ:௠ିଵ:௡

ሺோభାோమାଵ,ோయ,…,ோ೘ሻሺೖశഁሻ
൅ ሺ𝑅ଵ ൅ 1ሻ𝜇ଵ:௠:௡

ሺோభ,ோమ,ோయ,…,ோ೘ሻሺೖశഁሻ
ቃ, 

which upon rearrangement yields the relation in (3.1). 

Next, for 𝑚=1, 𝑛=1,2,… and 𝑘≥0, 

𝜇ଵ:ଵ:௡
ሺோభሻሺೖశഁሻ

൅ 𝜆 𝜇ଵ:ଵ:௡
ሺோభሻሺೖሻ

ൌ 𝐴ሺ𝑛, 0ሻ න൫𝑥ଵ
௞ାఉ ൅ 𝜆𝑥ଵ

௞൯𝑓ሺ𝑥ଵሻሾ1 െ 𝐹ሺ𝑥ଵሻሿோభ𝑑𝑥ଵ

ஶ

଴

                 

                            ൌ 𝑛 න 𝑥ଵ
௞ାఉିଵ൫𝑥ଵ ൅ 𝜆𝑥ଵ

ଵିఉ൯𝑓ሺ𝑥ଵሻሾ1 െ 𝐹ሺ𝑥ଵሻሿோభ𝑑𝑥ଵ

ஶ

଴

 

     ൌ 𝑛𝛼𝛽 න 𝑥ଵ
௞ାఉିଵሾ1 െ 𝐹ሺ𝑥ଵሻሿோభାଵ𝑑𝑥ଵ    

ஶ

଴

 

     ൌ 𝑛
𝛼𝛽

ሺ𝑘 ൅ 𝛽ሻ
𝜇ଵ:ଵ:௡

ሺ௡ିଵሻሺೖశഁሻ
,                              

which, upon rearrangements, yields the relation in (3.2). 

Remark 3.1: It may be noted that the first progressively Type-II right censored order 
statistic 

𝑋ଵ:௠:௡
ሺோభ,ோమ,…,ோ೘ሻ is the same as the first usual order statistic from a sample of size 𝑛, 

regardless of the censoring scheme employed. This is because no censoring has taken 
place before this time.    

Theorem 3.2: For 2 ൑ 𝑖 ൑ 𝑚 െ 1, 𝑚 ൑ 𝑛 and 𝑘 ൒ 0,  

𝜇௜:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖశഁሻ

ቈ1 െ
𝛼𝛽ሺ𝑅௜ ൅ 1ሻ

ሺ𝑘 ൅ 𝛽ሻ
቉

ൌ
𝛼𝛽

ሺ𝑘 ൅ 𝛽ሻ
ቂሺ𝑛 െ 𝑅ଵ െ 𝑅ଶ െ … െ 𝑅௜

െ 𝑖ሻ𝜇௜:௠ିଵ:௡
ሺோభ,ோమ,…,ோ೔షభ,ோ೔ାோ೔శభାଵ,ோ೔శమ,… ,ோ೘ሻሺೖశഁሻ

െ ሺ𝑛 െ 𝑅ଵ െ 𝑅ଶ െ … െ 𝑅௜ିଵ െ 𝑖

൅ 1ሻ𝜇௜ିଵ:௠ିଵ:௡
ሺோభ,ோమ,…,ோ೔షమ,ோ೔షభାோ೔ାଵ,ோ೔శభ,… ,ோ೘ሻሺೖశഁሻ

ቃ െ 𝜆𝜇௜:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖሻ

.             
(3.5) 

Proof: From (2.3), we have 

𝜇௜:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖశഁሻ

൅ 𝜆 𝜇௜:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖሻ

 
ൌ 𝐴ሺ𝑛, 𝑚 െ 1ሻ    ׬ ׬  …   ׬ …   𝐽ሺ𝑥௜ିଵ, 𝑥௜ାଵሻ ∏ 𝑓ሺ𝑥௧ሻሾ1 െ 𝐹ሺ𝑥௧ሻሿோ೟௠

௧ୀଵ
௧ஷ௜

𝑑𝑥௧,  (3.6) 
                  0  𝑥ଵ ൏ ⋯ ൏ 𝑥௜ିଵ ൏ 𝑥௜ାଵ ൏ ⋯ ൏ 𝑥௠ 
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where  
 𝐽ሺ𝑥௜ିଵ, 𝑥௜ାଵሻ ൌ ׬ 𝑥௜

௞ାఉିଵ ቀ𝑥௜ ൅ 𝜆𝑥௜
ଵିఉቁ 𝑓ሺ𝑥௜ሻሾ1 െ 𝐹ሺ𝑥௜ሻሿோ೔𝑑𝑥௜ .    

௫೔శభ

௫೔షభ
       (3.7) 

Making use of the relation in (1.5), we have 
𝐽ሺ𝑥௜ିଵ, 𝑥௜ାଵሻ ൌ 𝛼𝛽 ׬ 𝑥௜

௞ାఉିଵሾ1 െ 𝐹ሺ𝑥௜ሻሿோ೔ାଵ𝑑𝑥௜ .                 
௫೔శభ

௫೔షభ
     (3.8) 

Integrating by parts by treating 𝑥௜
௞ାఉିଵ for integration and      ሾ1 െ 𝐹ሺ𝑥௜ሻሿோ೔ାଵfor 

differentiation, we have 
𝐽ሺ𝑥௜ିଵ, 𝑥௜ାଵሻ 

ൌ
ఈఉ

ሺ௞ାఉሻ
 ቂ𝑥௜ାଵ

௞ାఉሾ1 െ 𝐹ሺ𝑥௜ାଵሻሿோ೔ାଵ െ 𝑥௜ିଵ
௞ାఉሾ1 െ 𝐹ሺ𝑥௜ିଵሻሿோ೔ାଵ ൅

ሺ𝑅௜ ൅ 1ሻ ׬ 𝑥௜
௞ାఉሾ1 െ 𝐹ሺ𝑥௜ሻሿோ೔𝑓ሺ𝑥௜ሻ𝑑𝑥௜ 

௫೔శభ

௫೔షభ
ቃ.                    (3.9) 

Substituting the resultant expression of 𝐽ሺ𝑥௜ିଵ, 𝑥௜ାଵሻ from (3.9) in (3.6) and 
simplifying, leads to (3.5). 

Likewise, the following recurrence relation can also be established. 

Theorem 3.3: For 𝑚 ൑ 𝑛 and 𝑘 ൒ 0,  

𝜇௠:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖశഁሻ

ቈ
𝛼𝛽ሺ𝑅௠ ൅ 1ሻ

ሺ𝑘 ൅ 𝛽ሻ
െ 1቉ 

ൌ
𝛼𝛽

ሺ𝑘 ൅ 𝛽ሻ
ቂሺ𝑛 െ 𝑅ଵ െ 𝑅ଶ െ … െ 𝑅௠ିଵ െ 𝑚 ൅ 1ሻ ൈ 𝜇௠ିଵ:௠ିଵ:௡

ሺோభ,ோమ,…,ோ೘షమ,ோ೘షభାோ೘ାଵሻሺೖశഁሻ
ቃ 

       ൅𝜆𝜇௠:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೖሻ

.                                                                                                                (3.10) 

4.  Recurrence relations for product moments  

In this section, we shall exploit the relation (1.5) to establish recurrence relations 
for the product moments, defined in Eq. (2.4), of progressively Type-II right censored 
order statistics from the power Lomax distribution. The results are presented in the 
form of the following theorems. 

Theorem 4.1: For 1 ൑ 𝑖 ൏ 𝑗 ൏ 𝑚, 𝑚 ൑ 𝑛, and 𝑟, 𝑠 ൒ 0, 

𝜇௜,௝:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞశഁሻ

ቈ1 െ
𝛼𝛽൫𝑅௝ ൅ 1൯

ሺ𝑠 ൅ 𝛽ሻ
቉

ൌ
𝛼𝛽

ሺ𝑠 ൅ 𝛽ሻ
ቈ൫𝑛 െ 𝑅ଵ െ 𝑅ଶ െ … െ 𝑅௝ െ 𝑗൯𝜇௜,௝:௠ିଵ:௡

൫ோభ,ோమ,…,ோೕషభ,ோೕାோೕశభାଵ,ோೕశమ,… ,ோ೘൯
ሺೝ,ೞశഁሻ

െ ቀ𝑛 െ 𝑅ଵ െ 𝑅ଶ െ … െ 𝑅௝ିଵ െ ሺ𝑗 െ 1ሻቁ

ൈ 𝜇௜,௝ିଵ:௠ିଵ:௡
൫ோభ,ோమ,…,ோೕషమ,ோೕషభାோೕାଵ,ோೕశభ,… ,ோ೘൯

ሺೝ,ೞశഁሻ

቉ െ 𝜆𝜇௜,௝:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞሻ

.  

(4.1) 
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Proof: From (2.4), we have 

𝜇௜,௝:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞశഁሻ

൅ 𝜆 𝜇௜,௝:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞሻ

 

ൌ 𝐴ሺ𝑛, 𝑚 െ 1ሻ න   …  න   … න 𝑥௜
௥𝐽൫𝑥௝ିଵ, 𝑥௝ାଵ൯ ෑ 𝑓ሺ𝑥௧ሻሾ1 െ 𝐹ሺ𝑥௧ሻሿோ೟

௠

௧ୀଵ
௧ஷ௝

𝑑𝑥௧,   

                             0  𝑥ଵ ൏ ⋯ ൏ 𝑥௝ିଵ ൏ 𝑥௝ାଵ ൏ ⋯ ൏ 𝑥௠
 (4.2) 

where 
             𝐽൫𝑥௝ିଵ, 𝑥௝ାଵ൯ ൌ ׬ 𝑥௝

௦ାఉିଵ ቀ𝑥௝ ൅ 𝜆𝑥௝
ଵିఉቁ 𝑓൫𝑥௝൯ൣ1 െ 𝐹൫𝑥௝൯൧

ோೕ𝑑𝑥௝ .            
௫ೕశభ

௫ೕషభ
    

(4.3) 

Using (3.9), we get 

𝐽൫𝑥௝ିଵ, 𝑥௝ାଵ൯ ൌ
𝛼𝛽

ሺ𝑠 ൅ 𝛽ሻ
 

⎣
⎢
⎢
⎢
⎡𝑥௝ାଵ

௦ାఉൣ1 െ 𝐹൫𝑥௝ାଵ൯൧
ோೕାଵ

െ 𝑥௝ିଵ
௦ାఉൣ1 െ 𝐹൫𝑥௝ିଵ൯൧

ோೕାଵ
 

൅൫𝑅௝ ൅ 1൯ න 𝑥௝
௦ାఉൣ1 െ 𝐹൫𝑥௝൯൧

ோೕ𝑓൫𝑥௝൯𝑑𝑥௝ 

௫ೕశభ

௫ೕషభ ⎦
⎥
⎥
⎥
⎤

.                     

   (4.4) 

Substituting the resultant expression for 𝐽ሺ𝑥௝ିଵ, 𝑥௝ାଵሻ from (4.4) in (4.2) and 
simplifying, on using (2.4), we get 

𝜇௜,௝:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞశഁሻ

൅ 𝜆 𝜇௜,௝:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞሻ

 

ൌ
𝛼𝛽𝐴ሺ𝑛, 𝑚 െ 1ሻ

ሺ𝑠 ൅ 𝛽ሻ
න   …  න   … න 𝑥௜

௥𝑥௝ାଵ
௦ାఉൣ1 െ 𝐹൫𝑥௝ାଵ൯൧

ோೕାଵ
ෑ 𝑓ሺ𝑥௧ሻሾ1 െ 𝐹ሺ𝑥௧ሻሿோ೟

௠

௧ୀଵ
௧ஷ௝

𝑑𝑥௧   

                 0  𝑥ଵ ൏ ⋯ ൏ 𝑥௝ିଵ ൏ 𝑥௝ାଵ ൏ ⋯ ൏ 𝑥௠ 

   െ
𝛼𝛽𝐴ሺ𝑛, 𝑚 െ 1ሻ

ሺ𝑠 ൅ 𝛽ሻ
න   …  න   … න 𝑥௜

௥𝑥௝ିଵ
௦ାఉൣ1 െ 𝐹൫𝑥௝ିଵ൯൧

ோೕାଵ
ෑ 𝑓ሺ𝑥௧ሻሾ1 െ 𝐹ሺ𝑥௧ሻሿோ೟

௠

௧ୀଵ
௧ஷ௝

𝑑𝑥௧   

               0  𝑥ଵ ൏ ⋯ ൏ 𝑥௝ିଵ ൏ 𝑥௝ାଵ ൏ ⋯ ൏ 𝑥௠ 

        ൅
𝛼𝛽൫𝑅௝ ൅ 1൯

ሺ𝑠 ൅ 𝛽ሻ
𝜇௜,௝:௠:௡

ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞశഁሻ
 

ൌ
𝛼𝛽𝐴ሺ𝑛, 𝑚 െ 1ሻ

ሺ𝑠 ൅ 𝛽ሻ
 

    ൈ න … න … න 𝑥௜
௥𝑥௝ାଵ

௦ାఉൣ1 െ 𝐹൫𝑥௝ାଵ൯൧
ோೕାோೕశభାଵ

𝑓൫𝑥௝ାଵ൯𝑑𝑥௝ାଵ ෑ 𝑓ሺ𝑥௧ሻሾ1 െ 𝐹ሺ𝑥௧ሻሿோ೟

௠

௧ୀଵ
௧ஷ௝,௝ାଵ

𝑑𝑥௧ 

       0 𝑥ଵ ൏ ⋯ ൏ 𝑥௝ିଵ ൏ 𝑥௝ାଵ ൏ ⋯ ൏ 𝑥௠ 
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       െ
𝛼𝛽𝐴ሺ𝑛, 𝑚 െ 1ሻ

ሺ𝑠 ൅ 𝛽ሻ
 

    ൈ න … න … න 𝑥௜
௥𝑥௝ିଵ

௦ାఉൣ1 െ 𝐹൫𝑥௝ିଵ൯൧
ோೕషభାோೕାଵ

𝑓ሺ𝑥௝ିଵሻ𝑑𝑥௝ାଵ ෑ 𝑓ሺ𝑥௧ሻሾ1 െ 𝐹ሺ𝑥௧ሻሿோ೟

௠

௧ୀଵ
௧ஷ௝ିଵ,௝

𝑑𝑥௧ 

        0 𝑥ଵ ൏ ⋯ ൏ 𝑥௝ିଵ ൏ 𝑥௝ାଵ ൏ ⋯ ൏ 𝑥௠ 

൅
𝛼𝛽൫𝑅௝ ൅ 1൯

ሺ𝑠 ൅ 𝛽ሻ
𝜇௜,௝:௠:௡

ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞశഁሻ
 

ൌ
𝛼𝛽

ሺ𝑠 ൅ 𝛽ሻ
ቈ൫𝑛 െ 𝑅ଵ െ 𝑅ଶ െ … െ 𝑅௝ െ 𝑗൯𝜇௜,௝:௠ିଵ:௡

൫ோభ,ோమ,…,ோೕషభ,ோೕାோೕశభାଵ,ோೕశమ,… ,ோ೘൯
ሺೝ,ೞశഁሻ

െ ቀ𝑛 െ 𝑅ଵ െ 𝑅ଶ െ … െ 𝑅௝ିଵ

െ ሺ𝑗 െ 1ሻቁ 𝜇௜,௝ିଵ:௠ିଵ:௡
൫ோభ,ோమ,…,ோೕషమ,ோೕషభାோೕାଵ,ோೕశభ,… ,ோ೘൯

ሺೝ,ೞశഁሻ

൅ ൫𝑅௝ ൅ 1൯𝜇௜,௝:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞశഁሻ

቉, 

which on rearranging the terms leads to (4.1). 

Theorem 4.2: For 1 ൑ 𝑖 ൑ 𝑚 െ 1 and  𝑚 ൑ 𝑛 and 𝑟, 𝑠 ൒ 0,  

  𝜇௜,௠:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞశഁሻ

ቈ
𝛼𝛽ሺ𝑅௠ ൅ 1ሻ

ሺ𝑠 ൅ 𝛽ሻ
െ 1቉ 

ൌ  
𝛼𝛽

ሺ𝑠 ൅ 𝛽ሻ
ቂ൫𝑛 െ 𝑅ଵ െ 𝑅ଶ െ … െ 𝑅௠ିଵ െ ሺ𝑚 െ 1ሻ൯𝜇௜,௠ିଵ:௠ିଵ:௡

ሺோభ,ோమ,…,ோ೘షమ,ோ೘షభାோ೘ାଵሻሺೝ,ೞశഁሻ
ቃ 

൅𝜆𝜇௜,௠:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞሻ

.                                                                                           (4.5) 

Proof: The relation in (4.5) may be proved by following exactly the same steps as those 
used in proving Theorem 4.1. 

Remark 4.1: It may be noted that Theorem 4.1 holds even for 𝑗 ൌ 𝑖 ൅ 1, without 

altering the proof, provided we realize that 𝜇௜,௜:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೝ,ೞሻ

ൌ  𝜇௜:௠:௡
ሺோభ,ோమ,…,ோ೘ሻሺೝ శೞሻ

. 

Remark 4.2: For the special case  𝑅ଵ ൌ 𝑅ଶ ൌ ⋯ ൌ 𝑅௠ ൌ 0   so that 𝑚 ൌ 𝑛  in which 
case the progressively censored order statistics become the usual order statistics 
𝑋ଵ:௡ , 𝑋ଶ:௡ , … , 𝑋௡:௡, whose single moments are denoted by 𝜇௜:௡

ሺ௞ሻ for 1 ൑ 𝑖 ൑ 𝑛 and 
product moments are denoted by 𝜇௜,௝:௡

ሺ௥,௦ሻ for 1 ൑ 𝑖 ൏ 𝑗 ൑ 𝑛, the recurrence relations 
established in Sections 3 and 4 reduce to that of usual order statistics from Power Lomax 
distribution. 
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5. Recursive computational algorithm  

Thomas and Wilson (1972) gave a computational method for obtaining single and 
product moments of progressively Type-II right censored order statistics from an 
arbitrary continuous distribution through a mixture form that expresses them in terms 
of those of the usual order statistics from a sample of size 𝑛. Utilizing the knowledge of 
recurrence relations obtained in Sections 3 and 4 in a systematic manner, along with 
the mixture formula for missing moments, one can evaluate the moments of 
progressively Type-II right censored order statistics from the power Lomax distribution 
for all sample sizes and all censoring schemes (𝑅ଵ, 𝑅ଶ, … , 𝑅௠ሻ in a simple recursive way. 
The same has been demonstrated in the Sub- Sections 5.2 and 5.3.  
First, we will derive the exact explicit forms for the single and product moments of 
order statistics from a given random sample 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ from the power Lomax 
distribution.  

5.1.  Exact expressions for single and product moments of order statistics from 
 power Lomax distribution              

Let 𝑋ଵ, 𝑋ଶ, … , 𝑋௡ be a random sample of size 𝑛 from the power Lomax distribution 
defined in (1.1) and let 𝑋ଵ:௡ ൑ 𝑋ଶ:௡ ൑ ⋯ ൑ 𝑋௡:௡ be the corresponding order statistics. 
Then the probability density function (p.d.f.) of 𝑋௜:௡ ሺ1 ൑ 𝑖 ൑ 𝑛ሻ is given by: 

  𝑓௜:௡ሺ𝑥ሻ ൌ 𝐶௜:௡ሾ𝐹ሺ𝑥ሻሿ௜ିଵሾ1 െ 𝐹ሺ𝑥ሻሿ௡ି௜𝑓ሺ𝑥ሻ ,       0 ൏  𝑥 ൏  ∞,                         (5.1) 

and the joint density function of 𝑋௜:௡ and 𝑋௝:௡ሺ1 ൑ 𝑖 ൏ 𝑗 ൑ 𝑛ሻ is given by 

𝑓௜,௝:௡ሺ𝑥, 𝑦ሻ ൌ 𝐶௜,௝:௡ሾ𝐹ሺ𝑥ሻሿ௜ିଵሾ𝐹ሺ𝑦ሻ െ 𝐹ሺ𝑥ሻሿ௝ି௜ିଵ ሾ1 െ 𝐹ሺ𝑦ሻሿ௡ି௝𝑓ሺ𝑦ሻ𝑓ሺ𝑥ሻ, 

0 ൏  𝑥 ൏  𝑦 ൏ ∞,         

(5.2) 

where 𝑓ሺ𝑥ሻ and 𝐹ሺ𝑥ሻ are given by (1.1) and (1.2), respectively, and 

𝐶௜:௡ ൌ
𝑛!

ሺ𝑖 െ 1ሻ! ሺ𝑛 െ 𝑖ሻ!
 and  𝐶௜,௝:௡ ൌ

𝑛!
ሺ𝑖 െ 1ሻ! ሺ𝑗 െ 𝑖 െ 1ሻ! ሺ𝑛 െ 𝑗ሻ!

. 

Then, the single moments of order statistics 𝑋௜:௡ሺ1 ൑ 𝑖 ൑ 𝑛ሻ are given by 

   µ௜:௡
ሺ௞ሻ ൌ 𝐸൫𝑋௜:௡

௞ ൯ ൌ ׬ 𝑥௞𝑓௜:௡ሺ𝑥ሻ𝑑𝑥 ,        𝑘 ൌ 1,2, …  .                  
  ஶ

଴      (5.3) 

Similarly, the product moments of 𝑋௜:௡ and 𝑋௝:௡ሺ1 ൑ 𝑖 ൏ 𝑗 ൑ 𝑛ሻ are given by 

  µ௜,௝:௡
ሺ௥,௦ሻ ൌ 𝐸൫𝑋௜:௡

௥ 𝑋௝:௡
௦ ൯ ൌ ׬ ׬ 𝑥௥𝑦௦𝑓௜,௝:௡ሺ𝑥, 𝑦ሻ𝑑𝑦𝑑𝑥 ,

ஶ
௫        𝑟, 𝑠 ൌ 1,2, …  .      

  ஶ
଴  (5.4) 
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Theorem 5.1: For the power Lomax distribution as given in (1.1) and for 1 ൑ 𝑖 ൑
𝑛, and 𝑘 ൌ 1,2,3, …, we have 

µ௜:௡
ሺ௞ሻ ൌ 𝐸൫𝑋௜:௡

௞ ൯ ൌ 𝛼𝜆
௞

ఉൗ 𝐶௜:௡ ෍ ൬
𝑖 െ 1

𝑙
൰ ሺെ1ሻ௟

𝛤 ቀ1 ൅
௞

ఉ
ቁ 𝛤 ቀ𝛼 ൅ 𝛼𝑛 ൅ 𝑙𝛼 െ

௞

ఉ
െ 𝛼𝑖ቁ

𝛤ሺ𝛼 ൅ 𝛼𝑛 ൅ 𝑙𝛼 ൅ 1 െ 𝛼𝑖ሻ
,

௜ିଵ

௟ୀ଴

 

 (5.5) 
exists for the choice of 𝛼 and 𝛽 such that 𝛼 ൐  

௞

௡ఉ
. 

Proof: Using (5.1) and binomial expansion of  ሾ1 െ ሺ1 െ 𝐹ሺ𝑥ሻሻሿ௜ିଵ, Eq. (5.3) can be 
rewritten as 

µ௜:௡
ሺ௞ሻ ൌ 1𝐶௜:௡ ෍ ൬

𝑖 െ 1
𝑙

൰ ሺെ1ሻ௟ න 𝑥௞ሾ1 െ 𝐹ሺ𝑥ሻሿ௡ି௜ା௟𝑓ሺ𝑥ሻ𝑑𝑥 .

  ஶ

଴

௜ିଵ

௟ୀ଴

 

Substituting the values of 𝑓ሺ𝑥ሻ and 𝐹ሺ𝑥ሻ as given by (1.1) and (1.2), in the above 
equation we get 

µ௜:௡
ሺ௞ሻ ൌ 𝐶௜:௡ ෍ ൬

𝑖 െ 1
𝑙

൰ ሺെ1ሻ௟ 𝛼𝛽
𝜆

න 𝑥௞ାఉିଵ ቆ1 ൅
𝑥ఉ

𝜆
ቇ

ିሺఈାఈ௡ା௟ఈାଵିఈ௜ሻ

𝑑𝑥 .

  ஶ

଴

௜ିଵ

௟ୀ଴

 

Simplifying the above integral we get the desired result as given by Eq.(5.5). 

Theorem 5.2: For the power Lomax distribution as given in (1.1) and for  1 ൑ 𝑖 ൏ 𝑗 ൑
𝑛 , and 𝑟, 𝑠 ൌ 1,2,3, …, and  ௦

ఉ
 ∊  𝑍ା, we have 

µ௜,௝:௡
ሺ௥,௦ሻ ൌ 𝛼ଶ𝜆

ሺೝశೞሻ
ഁ 𝐶௜,௝:௡ ෍ ෍ ෍ ൬

𝑖 െ 1
𝑡

൰

ೞ
ഁ

௨ୀ଴

௝ି௜ିଵ

௠ୀ଴

൬
𝑗 െ 𝑖 െ 1

𝑚
൰ ቆ

𝑠
𝛽ൗ

𝑢
ቇ ሺെ1ሻ௧ା௠ା௨

௜ିଵ

௧ୀ଴

 

                               ൈ
ଵ

௖

௰ቀଵାೝ
ഁ

ቁ௰ቀఈሺ௔ାଵሻା௖ିೝ
ഁ

ቁ

௰ሺఈሺ௔ାଵሻା௖ାଵሻ
,                                                                    

(5.6) 
where 

𝑎 ൌ 𝑡 ൅ 𝑗 െ 𝑖 െ 𝑚 െ 1, 𝑏 ൌ 𝑚 ൅ 𝑛 െ 𝑗 and 𝑐 ൌ 𝛼ሺ1 ൅ 𝑏ሻ ൅ 𝑢 െ
𝑠
𝛽

. 

Proof: Using (5.2) and binomial expansion of ሾ𝐹ሺ𝑥ሻሿ௜ିଵ in the powers of ሾ1 െ 𝐹ሺ𝑥ሻሿ, 
and binomial expansion of ሾ𝐹ሺ𝑦ሻ െ 𝐹ሺ𝑥ሻሿ௝ି௜ିଵ  in the powers of ሾ1 െ 𝐹ሺ𝑥ሻሿ and ሾ1 െ
𝐹ሺ𝑦ሻሿ, Eq. (5.4) can be rewritten as  

      µ௜,௝:௡
ሺ௥,௦ሻ ൌ 𝐶௜,௝:௡ ෍ ෍ ൬

𝑖 െ 1
𝑡

൰ ൬
𝑗 െ 𝑖 െ 1

𝑚
൰ ሺെ1ሻ௧ା௠

௝ି௜ିଵ

௠ୀ଴

௜ିଵ

௧ୀ଴

ൈ න න 𝑥௥𝑦௦

ஶ

௫

ሾ1 െ 𝐹ሺ𝑥ሻሿ௧ା௝ି௜ି௠ିଵሾ1 െ 𝐹ሺ𝑦ሻሿ௠ା௡ି௝𝑓ሺ𝑥ሻ𝑓ሺ𝑦ሻ𝑑𝑦𝑑𝑥

ஶ

଴

  

          ൌ 𝐶௜,௝:௡ ∑ ∑ ൫௜ିଵ
௧ ൯൫௝ି௜ିଵ

௠ ൯ሺെ1ሻ௧ା௠௝ି௜ିଵ
௠ୀ଴ ׬ 𝑥௥ஶ

଴
௜ିଵ
௧ୀ଴ ሾ1 െ 𝐹ሺ𝑥ሻሿ௔𝑓ሺ𝑥ሻ𝐼ଵሺ𝑥ሻ𝑑𝑥,         

(5.7) 
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where 𝑎 ൌ 𝑡 ൅ 𝑗 െ 𝑖 െ 𝑚 െ 1, 𝑏 ൌ 𝑚 ൅ 𝑛 െ 𝑗 and 
     𝐼ଵሺ𝑥ሻ ൌ ׬ 𝑦௦ஶ

௫
ሾ1 െ 𝐹ሺ𝑦ሻሿ௕𝑓ሺ𝑦ሻ𝑑𝑦.                                     (5.8) 

Substituting the values of f(y)  and F(y)  from (1.1)  and (1.2),respectively in Eq.(5.8) 
and simplifying we get  

        𝐼ଵሺ𝑥ሻ ൌ 𝛼𝜆
௦

ఉൗ ∑ ቀ
௦

ఉൗ
௨

ቁ
ೞ
ഁ
௨ୀ଴ ሺെ1ሻ௨

൬ଵା
ೣഁ

ഊ
൰

ష೎

௖
                           (5.9) 

where 𝑐 ൌ 𝛼ሺ1 ൅ 𝑏ሻ ൅ 𝑢 െ
௦

ఉ
.  

Substituting the value of 𝐼ଵሺ𝑥ሻ from Eq. (5.9) in (5.7) and simplifying the expression 
by putting the values of 𝑓ሺ𝑥ሻ and 𝐹ሺ𝑥ሻ as given by (1.1) and (1.2), we get the desired 
result (5.6).  

5.2. Recursive algorithm for single moments 

Case I:  When 𝒏 ൌ 𝟏, 𝐭𝐡𝐞𝐧 𝒎 ൌ 𝟏 

In this case, we have only one progressive censoring scheme  𝑅ଵ ൌ 0. Thus, from 
Eq. (2.3) and using Eq. (5.5), we have for 𝛼 ൐

௞

ఉ
and 𝑘 ൌ 1,2, …   , 

     𝐸 ቀ𝑋ଵ:ଵ:ଵ
ሺ଴ሻ ቁ

௞
ൌ 𝜇ଵ:ଵ:ଵ

ሺ଴ሻሺೖሻ
ൌ 𝜇ଵ:ଵ

ሺ௞ሻ ൌ 𝐸൫𝑋௞൯ ൌ 𝛼𝜆
௞

ఉൗ ௰ሺଵାೖ
ഁ

ሻ௰ሺఈି
ೖ
ഁ

ሻ

௰ሺఈାଵሻ
.               (5.10) 

Using (5.10), 𝜇ଵ:ଵ:ଵ
ሺ଴ሻሺೖሻ

 ∀ 𝑘 ൌ 1,2, ….   , can be calculated.   
Alternatively, these moments can also be obtained by using the recurrence relation 

given in  
Eq. (3.2) on putting 𝑛=1, i.e. by using the relation  

𝜇ଵ:ଵ:ଵ
ሺ଴ሻሺೖశഁሻ

ൌ 𝜇ଵ:ଵ
ሺ௞ାఉሻ ൌ

𝜆ሺ𝑘 ൅ 𝛽ሻ

𝛽ሺ𝛼 െ 1ሻ െ 𝑘
𝜇ଵ:ଵ

ሺ௞ሻ. 

Case II:  When 𝒏 ൌ 𝟐, 𝐭𝐡𝐞𝐧 𝒎 ൌ 𝟏 𝐨𝐫 𝟐 
   Subcase (i): 𝒎 ൌ 𝟏 

We have only one progressive censoring scheme 𝑅ଵ ൌ 1, and in this case we have 
from Eq. (3.2), on putting 𝑛 ൌ 2, 

                      𝜇ଵ:ଵ:ଶ
ሺଵሻሺೖశഁሻ

ቀଶఈఉ

௞ାఉ
െ 1ቁ   ൌ  𝜆 𝜇ଵ:ଵ:ଶ

ሺଵሻሺೖሻ
,                           (5.11) 

where 

       𝜇ଵ:ଵ:ଶ
ሺଵሻሺೖሻ

 ൌ 𝜇ଵ:ଵ:ଶ
ሺ௞ሻ ൌ  𝜇ଵ:ଶ

ሺ௞ሻ  ൌ  2𝛼𝜆
௞

ఉൗ ௰ሺଵାೖ
ഁ

ሻ௰ሺଶఈି
ೖ
ഁ

ሻ

௰ሺଶఈାଵሻ
 .                    (5.12) 

(Obtained on putting  𝑖 ൌ 1 and 𝑛 ൌ 2 in Eq. ሺ5.5ሻሻ 
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Using Eq. (5.12) and the recurrence relation given by Eq. (5.11) (for values of 

 𝛽 ∊  𝑍ାሻ, ∀  𝑘 ൌ 1,2, ….   , and  𝛼 ൐
௞

ଶఉ
 , 𝜇ଵ:ଵ:ଶ

ሺଵሻሺೖሻ
 can be calculated. 

   Subcase (ii): 𝒎 ൌ 𝟐 

We have only one progressive censoring scheme 𝑅ଵ ൌ 𝑅ଶ ൌ 0, In this case we have 

  𝐸 ቀ𝑋1:2:2
ሺ0,0ሻቁ ൌ 𝜇1:2:2

ሺ0,0ሻ ൌ 𝜇1:2 and 𝐸 ቀ𝑋2:2:2
ሺ0,0ሻቁ ൌ 𝜇2:2:2

ሺ0,0ሻ ൌ 𝜇2:2. 

 Also,     𝐸 ቀ𝑋ଵ:ଶ:ଶ
ሺ଴,଴ሻቁ

ଶ
ൌ 𝜇ଵ:ଶ:ଶ

ሺ଴,଴ሻሺଶሻ
ൌ 𝜇ଵ:ଶ

ሺଶሻ and 𝐸 ቀ𝑋ଶ:ଶ:ଶ
ሺ଴,଴ሻቁ

ଶ
ൌ 𝜇ଶ:ଶ:ଶ

ሺ଴,଴ሻሺଶሻ
ൌ 𝜇ଶ:ଶ

ሺଶሻ   

and these values concerning ordinary order statistics can be evaluated using Eq. (5.5).  

Case III: When 𝒏 ൌ 𝟑, 𝐭𝐡𝐞𝐧 𝒎 ൌ 𝟏 𝐨𝐫 𝟐 𝐨𝐫 𝟑  

   Subcase (i): 𝒎 ൌ 𝟏  

We have only one progressive censoring scheme 𝑅ଵ ൌ 2, and in this case we have 
from Eq. (3.2), on putting 𝑛 ൌ 3, we get  

    𝜇ଵ:ଵ:ଷ
ሺଶሻሺೖశഁሻ

ቀଷఈఉ

௞ାఉ
െ 1ቁ   ൌ  𝜆 𝜇ଵ:ଵ:ଷ

ሺଶሻሺೖሻ
,                                             (5.13) 

where 

             𝜇ଵ:ଵ:ଷ
ሺଶሻሺೖሻ

 ൌ 𝜇ଵ:ଵ:ଷ
ሺ௞ሻ ൌ  𝜇ଵ:ଷ

ሺ௞ሻ  ൌ  3𝛼𝜆
௞

ఉൗ ௰ሺଵାೖ
ഁ

ሻ௰ሺଷఈି
ೖ
ഁ

ሻ

௰ሺଷఈାଵሻ
 .                           

(5.14) 

(Obtained on putting  𝑖 ൌ 1 and 𝑛 ൌ 3 in Eq. ሺ5.5ሻሻ 
Using Eq. (5.14) and the recurrence relation given by Eq. (5.13) (for values of 𝛽 ∊

 𝑍ା), ∀ 𝑘 ൌ 1,2, … , and 𝛼 ൐
௞

ଷఉ
 , 𝜇ଵ:ଵ:ଷ

ሺଶሻሺೖሻ
  can be calculated. 

   Subcase (ii): 𝒎 ൌ 𝟐  

We have only two progressive censoring schemes. One is 𝑅ଵ ൌ 1 and 𝑅ଶ ൌ 0 and 
the other is 𝑅ଵ ൌ 0 and 𝑅ଶ ൌ 1.  

   When 𝑹𝟏 ൌ 𝟏 𝐚𝐧𝐝 𝑹𝟐 ൌ 𝟎 

On putting 𝑛 ൌ 3, 𝑚 ൌ 2,  𝑅ଵ ൌ 1 and 𝑅ଶ ൌ 0 in (3.1), we get 

  𝜇ଵ:ଶ:ଷ
ሺଵ,଴ሻሺೖశഁሻ

ቀ1 െ
ଶఈఉ

௞ାఉ
ቁ ൌ

ఈఉ

௞ାఉ
 𝜇ଵ:ଵ:ଷ

ሺଶሻሺೖశഁሻ
െ 𝜆𝜇ଵ:ଶ:ଷ

ሺଵ,଴ሻሺೖሻ
,                       (5.15) 

where 𝜇ଵ:ଵ:ଷ
ሺଶሻሺೖశഁሻ

 can be calculated using (5.14), and 𝜇ଵ:ଶ:ଷ
ሺଵ,଴ሻሺೖሻ

ൌ  𝜇ଵ:ଷ
ሺ௞ሻ. 

Using the recurrence relation given by Eq. (5.15) (for values of 𝛽 ∊  𝑍ା), 

𝜇ଵ:ଶ:ଷ
ሺଵ,଴ሻሺೖశഁሻ

 ∀ 𝑘 ൌ 1,2, … , can be calculated. 
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Further, on using mixture formula, we have   

                 𝜇ଶ:ଶ:ଷ
ሺଵ,଴ሻ ൌ

1
2

ሾ𝜇ଶ:ଷ ൅ 𝜇ଷ:ଷሿ and  

                𝜇ଶ:ଶ:ଷ
ሺଵ,଴ሻሺమሻ

ൌ
1
2

ቂ𝜇ଶ:ଷ
ሺଶሻ ൅ 𝜇ଷ:ଷ

ሺଶሻቃ. 

Proceeding in a similar manner 𝜇ଵ:ଶ:ଷ
ሺଵ,଴ሻሺೖሻ

and 𝜇ଶ:ଶ:ଷ
ሺଵ,଴ሻሺೖሻ

∀ 𝑘 ൌ
1,2, … .   can be calculated. 

   When 𝑹𝟏 ൌ 𝟎 𝐚𝐧𝐝 𝑹𝟐 ൌ 𝟏  

In this case, we find that      

𝐸 ቀ𝑋ଵ:ଶ:ଷ
ሺ଴,ଵሻቁ ൌ 𝜇ଵ:ଶ:ଷ

ሺ଴,ଵሻ ൌ 𝜇ଵ:ଷ, 𝐸 ቀ𝑋ଶ:ଶ:ଷ
ሺ଴,ଵሻቁ ൌ 𝜇ଶ:ଶ:ଷ

ሺ଴,ଵሻ ൌ 𝜇ଶ:ଷ,           

𝐸 ቀ𝑋ଵ:ଶ:ଷ
ሺ଴,ଵሻቁ

ଶ
ൌ 𝜇ଵ:ଶ:ଷ

ሺ଴,ଵሻሺమሻ
ൌ 𝜇ଵ:ଷ

ሺଶሻ  and   𝐸 ቀ𝑋ଶ:ଶ:ଷ
ሺ଴,ଵሻቁ

ଶ
ൌ  𝜇ଶ:ଶ:ଷ

ሺ଴,ଵሻሺమሻ
ൌ 𝜇ଶ:ଷ

ሺଶሻ. 

Other moments can be obtained similarly. 

   Subcase (iii): 𝒎 ൌ 𝟑 

We have only one progressive censoring scheme   𝑅ଵ ൌ 0, 𝑅ଶ ൌ 0 and  𝑅ଷ ൌ 0. In 
this case  

 𝐸 ቀ𝑋ଵ:ଷ:ଷ
ሺ଴,଴,଴ሻቁ ൌ 𝜇ଵ:ଷ:ଷ

ሺ଴,଴,଴ሻ ൌ 𝜇ଵ:ଷ,        𝐸 ቀ𝑋ଶ:ଷ:ଷ
ሺ଴,଴,଴ሻቁ ൌ 𝜇ଶ:ଷ:ଷ

ሺ଴,଴,଴ሻ ൌ 𝜇ଶ:ଷ,         

  𝐸 ቀ𝑋ଵ:ଷ:ଷ
ሺ଴,଴,଴ሻቁ

ଶ
ൌ 𝜇ଵ:ଷ:ଷ

ሺ଴,଴,଴ሻሺଶሻ
ൌ 𝜇ଵ:ଷ

ሺଶሻ,        𝐸 ቀ𝑋ଶ:ଷ:ଷ
ሺ଴,଴,଴ሻቁ

ଶ
ൌ 𝜇ଶ:ଷ:ଷ

ሺ଴,଴,଴ሻሺଶሻ
ൌ 𝜇ଶ:ଷ

ሺଶሻ,   

and             𝐸 ቀ𝑋ଷ:ଷ:ଷ
ሺ଴,଴,଴ሻቁ

ଶ
ൌ 𝜇ଷ:ଷ:ଷ

ሺ଴,଴,଴ሻሺଶሻ
ൌ 𝜇ଷ:ଷ

ሺଶሻ. 

All these values can be obtained by using the result given in Eq. (5.5) for ordinary 
order statistics.  

5.3.  Recursive algorithm for product moments 

To evaluate the moments of progressively Type-II right censored order statistics 
from Power Lomax distribution, we have considered the case for 𝑟 ൌ 𝑠 ൌ 1. 

Case I: When 𝒏 ൌ 𝟐 and 𝒎 ൌ 𝟐 
In this case we have only one progressive censoring scheme, i.e. 𝑅ଵ ൌ  𝑅ଶ ൌ 0. 

Thus, from Eq. (2.4), we have for 𝛼 ൐
ଵ

ఉ
 

𝐸൫𝑋ଵ:ଶ:ଶ
ሺ଴,଴ሻ𝑋ଶ:ଶ:ଶ

ሺ଴,଴ሻ൯ ൌ 𝜇ଵ,ଶ:ଶ:ଶ
ሺ଴,଴ሻ ൌ 𝜇ଵ:ଶ:ଶ ൌ ሺ𝜇ଵ:ଵሻଶ ൌ ቌ𝛼𝜆

ଵ
ఉൗ

𝛤ሺ1 ൅
ଵ

ఉ
ሻ𝛤ሺ𝛼 െ

ଵ

ఉ
ሻ

𝛤ሺ𝛼 ൅ 1ሻ
ቍ

ଶ

 , 

(cf. Arnold et al. (1992), Eqn. (5.3.10)). 
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Case II: When 𝒏 ൌ 𝟑 and 𝒎 ൌ 𝟐 
We have only two progressive censoring schemes. One is 𝑅ଵ ൌ 1 and 𝑅ଶ ൌ 0 and 

the other is 𝑅ଵ ൌ 0 and 𝑅ଶ ൌ 1.  
   When 𝑹𝟏 ൌ 𝟏 𝐚𝐧𝐝 𝑹𝟐 ൌ 𝟎 

In this case we have 

       𝐸 ቀ𝑋ଵ:ଶ:ଷ
ሺଵ,଴ሻ𝑋ଶ:ଶ:ଷ

ሺଵ,଴ሻቁ ൌ 𝜇ଵ,ଶ:ଶ:ଷ
ሺଵ,଴ሻ ൌ

ଵ

ଶ
 ൫𝜇ଵ,ଶ:ଷ ൅ 𝜇ଵ,ଷ:ଷ൯,  from the mixture formula.  

   When 𝑹𝟏 ൌ 𝟎 𝐚𝐧𝐝 𝑹𝟐 ൌ 𝟏 

In this case we have  𝐸 ቀ𝑋ଵ:ଶ:ଷ
ሺ଴,ଵሻ𝑋ଶ:ଶ:ଷ

ሺ଴,ଵሻቁ ൌ 𝜇ଵ,ଶ:ଶ:ଷ
ሺ଴,ଵሻ ൌ 𝜇ଵ,ଶ:ଷ.   

Case III: When 𝒏 ൌ 𝟑 and 𝒎 ൌ 𝟑 
In this case we have only one progressive censoring scheme  𝑅ଵ ൌ  𝑅ଶ ൌ 𝑅ଷ ൌ 0 

and  

     𝐸 ቀ𝑋ଵ:ଷ:ଷ
ሺ଴,଴,଴ሻ𝑋ଶ:ଷ:ଷ

ሺ଴,଴,଴ሻቁ ൌ 𝜇ଵ,ଶ:ଷ:ଷ
ሺ଴,଴,଴ሻ ൌ 𝜇ଵ,ଶ:ଷ,  𝐸 ቀ𝑋ଵ:ଷ:ଷ

ሺ଴,଴,଴ሻ𝑋ଷ:ଷ:ଷ
ሺ଴,଴,଴ሻቁ ൌ 𝜇ଵ,ଷ:ଷ:ଷ

ሺ଴,଴,଴ሻ ൌ 𝜇ଵ,ଷ:ଷ   

and    𝐸 ቀ𝑋ଶ:ଷ:ଷ
ሺ଴,଴,଴ሻ𝑋ଷ:ଷ:ଷ

ሺ଴,଴,଴ሻቁ ൌ 𝜇ଶ,ଷ:ଷ:ଷ
ሺ଴,଴,଴ሻ ൌ 𝜇ଶ,ଷ:ଷ. 

Likewise, using Eq. (5.6) and recurrence relations for product moments as derived 
in Section 4, one could proceed for higher values of 𝑛 and all choices of 
𝑚 and ሺ𝑅ଵ, 𝑅ଶ, … , 𝑅௠ሻ. 

6. Maximum Likelihood Estimators (MLEs) 

Based on the observed sample 𝑥ଵ ൏ 𝑥ଶ ൏ ⋯ ൏ 𝑥௠ from a progressively Type-II 
censoring scheme, (𝑅ଵ, 𝑅ଶ, … , 𝑅௠ሻ,  the likelihood function can be written as  

𝐿ሺ𝛼, 𝛽, 𝜆ሻ ൌ 𝐴ሺ𝑛, 𝑚 െ 1ሻ ∏ 𝑓ሺ𝑥௧
௠
௧ୀଵ , 𝛼, 𝛽, 𝜆ሻሾ1 െ 𝐹ሺ𝑥௧, 𝛼, 𝛽, 𝜆ሻሿோ೟; 𝑥 ൐

0 , 𝛼, 𝛽, 𝜆 ൐ 0,            (6.1) 

where 

𝐴ሺ𝑛, 𝑚 െ 1ሻ ൌ 𝑛ሺ𝑛 െ 𝑅ଵ െ 1ሻሺ𝑛 െ 𝑅ଵ െ 𝑅ଶ െ 2ሻ … ሺ𝑛 െ 𝑅ଵ െ 𝑅ଶ െ ⋯ െ 𝑅௠ିଵ
െ 𝑚 ൅ 1ሻ, 

and 𝑓ሺ. ሻ and 𝐹ሺ. ሻ are same as defined in (1.1) and (1.2), respectively. Therefore, 
ignoring the additive constant the log-likelihood function is written as 

𝑙𝑜𝑔൫𝐿ሺ𝛼, 𝛽, 𝜆ሻ൯ ൌ 𝑚𝑙𝑜𝑔ሺ𝛼ሻ ൅ 𝑚𝑙𝑜𝑔ሺ𝛽ሻ െ 𝑚𝑙𝑜𝑔ሺ𝜆ሻ ൅ ሺ𝛽 െ 1ሻ ෍ 𝑙𝑜𝑔ሺ𝑥௧ሻ
௠

௧ୀଵ

 

      െ ∑ ሺ𝛼ሺ𝑅௧ ൅ 1ሻ ൅ 1ሻ 𝑙𝑜𝑔 ൬1 ൅
௫೟

ഁ

ఒ
൰௠

௧ୀଵ .                                    (6.2) 
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To compute the MLEs of the unknown parameters 𝛼, 𝛽 and 𝜆, consider the three 
normal equations: 

𝜕𝑙𝑜𝑔 ሺ𝐿ሻ
𝜕𝛼

ൌ
𝑚
𝛼

െ  ෍ሺ1 ൅ 𝑅௧ሻ
௠

௧ୀଵ

𝑙𝑜𝑔 ቆ1 ൅
𝑥௧

ఉ

𝜆
ቇ ൌ 0, 

𝜕𝑙𝑜𝑔 ሺ𝐿ሻ
𝜕𝛽

ൌ
𝑚
𝛽

൅ ෍ 𝑙𝑜𝑔ሺ𝑥௧ሻ
௠

௧ୀଵ

െ ෍
ሺ𝛼ሺ1 ൅ 𝑅௧ሻ ൅ 1ሻ𝑥௧

ఉ 𝑙𝑜𝑔ሺ𝑥௧ሻ

𝜆 ൅ 𝑥௧
ఉ

௠

௧ୀଵ

ൌ 0, 

and 

𝜕𝑙𝑜𝑔 ሺ𝐿ሻ
𝜕𝜆

ൌ െ
𝑚
𝜆

൅
1
𝜆

෍
𝑥௧

ఉሺ𝛼ሺ1 ൅ 𝑅௧ሻ ൅ 1ሻ

𝜆 ൅ 𝑥௧
ఉ

௠

௧ୀଵ

ൌ 0, 

whose solution provide the MLEs 𝛼ො, 𝛽መ and 𝜆መ .  

Once MLEs of 𝛼, 𝛽 and λ are obtained as 𝛼ො , 𝛽መ and 𝜆መ , the MLEs of 
𝑅ሺ𝑡ሻ and ℎሺ𝑡ሻ can be obtained using invariance property of MLEs as  

                𝑅෡ ሺ𝑡ሻ ൌ ൭1 ൅
𝑡ఉ෡

𝜆መ
൱

ିఈෝ

, 𝑡 ൐ 0   and         

ℎ෠ሺ𝑡ሻ ൌ
𝛼ො 𝛽መ𝑡ఉ෡ିଵ

𝜆መ ൅ 𝑡ఉ෡
    , 𝑡 ൐ 0.     

7.  Simulation study 

In this Section, a simulation study is conducted to observe the behaviour of the 
proposed method for different sample sizes, different effective sample sizes and for 
different censoring schemes. We have considered different sample sizes; 𝑛 ൌ 35,40,50; 
different effective sample sizes; 𝑚 ൌ 20,25,30,35,40,50; different censoring schemes. 
In all the cases we have used 𝛼 ൌ 2, 𝛽 ൌ 1 and 𝜆 ൌ 2. For a given set of 
𝑛, 𝑚 and a censoring scheme, using the algorithm proposed by Balakrishnan and 
Sandhu (1995), a sample is generated. Using the sample, the MLEs of unknown 
parameters 𝛼 , 𝛽 and λ are computed based on the method proposed in Section 6. 
Finally, with 1000 replications, using a program in R, the MLEs of 
𝛼, 𝛽, 𝜆 , 𝑅ሺ𝑡ሻ and ℎሺ𝑡ሻalong with their average bias and mean square errors (MSEs) are 
obtained. The average bias is reported within brackets against each estimate and the 
results are presented in Tables 7.1, 7.2a and 7.2b. 
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Table 7.1.  MLEs of α , β and λ along with their Average Bias and MSE for different censoring 
schemes, for 𝛼 ൌ 2, 𝛽 ൌ 1 and 𝜆 ൌ 2 

n m Censoring Scheme 𝛼ො 𝛽መ  𝜆መ 𝑴𝑺𝑬ሺ𝛼ොሻ 𝑴𝑺𝑬ሺ𝛽መሻ 𝑴𝑺𝑬ሺ𝜆መሻ 
35 20 (3*0,5,3*0,5,3*0,5,8*0) 1.94181 

(-0.0582) 
1.03903 

(0.03903)
1.89249 

  (-0.1075)
0.35059 0.20826 0.31453 

35 20 (1,2,1,2,1,2*0,1,1,0,1,0,1,0,2,0,1,
1,2*0) 

1.95704 
(-0.0429) 

1.04216 
(0.04216)

1.96635 
(-0.0337) 

0.36253 0.20725 0.34712 

35 20 (15,19*0) 2.01236 
(0.01236)

1.01958 
(0.01958)

2.01264 
(0.01264)

0.33291 0.13837 0.33011 

35 25 (5*0,5,7*0,5,11*0) 1.95215 
(-0.0478) 

1.02663 
(0.02663)

1.93115 
(-0.0689) 

0.32803 0.17725 0.30247 

35 25 (1, 2, 0, 2, 1, 0, 0, 1, 1, 0, 1, 0, 1, 
12*0) 

1.96322 
(-0.0368) 

1.02506 
(0.02506)

1.96717 
(-0.0328) 

0.32532 0.14379 0.31937 

35 25 (10,24*0) 2.02428 
(0.02428)

1.01749 
(0.01749)

2.02533 
(0.02533)

0.30106 0.12965 0.32033 

35 35 (35*0) 1.99586 
(-0.0041) 

1.00524 
(0.00524)

1.99661 
(-0.0034) 

0.19950 0.07522 0.20118 

40 25 (5,4*0,5,7*0,5,11*0) 1.96951 
(-0.0305) 

1.01450 
(0.0145) 

1.94261 
(-0.0574) 

0.31210 0.19161 0.29743 

40 25 (1,2,1,2,1,2*0,1,1,0,1,0,1,0,2,0,1,
1,7*0) 

1.96329 
(-0.0367) 

1.02692 
(0.02692)

1.97827 
(-0.0217) 

0.30661 0.13456 0.30967 

40 25 (15,24*0) 2.02742 
(0.02742)

1.02021 
(0.02021)

2.04453 
(0.04453)

0.28108 0.11671 0.29954 

40 30 (3*0,5,10*0,5,15*0) 1.97058 
(-0.0294) 

1.02329 
(0.02329)

1.95472 
(-0.0453) 

0.30219 0.18862 0.30098 

40 30 (1, 2, 1, 2, 1, 0, 0, 1, 1, 0, 1, 
19*0) 

1.95811 
(-0.0419) 

1.02032 
(0.02032)

1.97122 
(-0.0288) 

0.28149 0.12976 0.28352 

40 30 (10,20*0) 1.99483 
(-0.0052) 

1.01458 
(0.01458)

1.99475 
(-0.0052) 

0.27662 0.12839 0.29211 

40 40 (40*0) 1.99802 
(-0.0019) 

1.00227 
(0.00227)

1.99777 
(-0.0023) 

0.19019 0.05713 0.19717 

50 25 (5,4*0,5,4*0,5,4*0,5,4*0,5,4*0) 2.02323 
(0.02323)

0.99753 
(-0.0025) 

2.04855 
(0.04855)

0.28921 0.13003 0.25912 

50 25 (25,24*0) 2.00972 
(0.00972)

1.01253 
(0.01253)

2.03109 
(0.03109)

0.25413 0.11080 0.24879 

50 30 (5,4*0,5,5*0,5,5*0,5,12*0) 1.99786 
(0.00214)

1.02274 
(0.02274)

2.02981 
(0.02981)

0.24142 0.12644 0.26907 

50 30 (20,29*0) 2.01786 
(0.01786)

0.99015 
(-0.0099) 

2.02153 
(0.02153)

0.22832 0.12561 0.20991 

50 40 (8*0,5,8*0,5,22*0) 1.95692 
(-0.0431) 

1.01711 
(0.01711)

1.94165 
(-0.0584) 

0.21131 0.12675 0.25002 

50 40 (10,39*0) 2.00875 
(0.00875)

1.01251 
(0.01251)

2.01141 
(0.01141)

0.20149 0.10939 0.19972 

50 50 (50*0) 2.00123 
(0.00123)

1.00135 
(0.00135)

2.00191 
(0.00191)

0.12615 0.03927 0.16793 
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Table 7.2a.  MLEs of 𝑅ሺ𝑡ሻand ℎሺ𝑡ሻ  along with their Average Bias and MSE for different censoring 
schemes, for 𝛼 ൌ 2, 𝛽 ൌ 1 , λ ൌ 2 and 𝑡 ൌ 0.5 

𝒕 ൌ 𝟎. 𝟓; 𝑹ሺ𝒕ሻ ൌ 𝟎. 𝟔𝟒; 𝒉ሺ𝒕ሻ ൌ 𝟎. 𝟖 

n m Censoring Scheme 𝑅෠ሺ𝑡ሻ ℎ෠ሺ𝑡ሻ 𝑀𝑆𝐸ሺ𝑅෠ሺ𝑡ሻሻ 𝑀𝑆𝐸ሺℎ෠ሺ𝑡ሻሻ 
35 20 (3*0,5,3*0,5,3*0,5,8*0) 0.63804 

(-0.002) 
0.74962 

(-0.0504) 0.01321 0.03465 
35 20 (1,2,1,2,1,2*0,1,1,0,1,0,1,0,2,0,1,1,2*0) 0.64294 

(0.00294) 
0.76023 

(-0.0398) 0.01327 0.03022 
35 20 (15,19*0) 0.63772 

(-0.0023) 
0.75152 

(-0.0485) 0.01262 0.03349 
35 25 (5*0,5,7*0,5,11*0) 0.64416 

(0.00416) 
0.76376 

(-0.0362) 0.01329 0.02173 
35 25 (1, 2, 0, 2, 1, 0, 0, 1, 1, 0, 1, 0, 1 ,12*0) 0.64215 

(0.00215) 
0.75891 

(-0.0411) 0.00981 0.02020 
35 25 (10,24*0) 0.64309 

(0.00309) 
0.76364 

(-0.0364) 0.00976 0.01964 
35 35 (35*0) 0.64043 

(0.00043) 
0.79646 

(-0.0035) 0.00512 0.01582 
40 25 (5,4*0,5,7*0,5,11*0) 0.63524 

(-0.0048) 
0.75699 
(-0.043) 0.01236 0.03126 

40 25 (1,2,1,2,1,2*0,1,1,0,1,0,1,0,2,0,1,1,7*0) 0.64416 
(0.00416) 

0.75361 
(-0.0464) 0.01483 0.03212 

40 25 (15,24*0) 0.63783 
(-0.0022) 

0.76114 
(-0.0389) 0.00933 0.02231 

40 30 (3*0,5,10*0,5,15*0) 0.64176 
(0.00176) 

0.76083 
(-0.0392) 0.00940 0.02153 

40 30 (1, 2, 1, 2, 1, 0, 0, 1, 1, 0, 1 ,19*0) 0.63668 
(-0.0033) 

0.75993 
(-0.0401) 0.00971 0.01987 

40 30 (10,20*0) 0.64857 
(0.00857) 

0.76648 
(-0.0335) 0.01050 0.01901 

40 40 (40*0) 0.63928 
(-0.0007) 

0.79685 
(-0.0032) 0.00425 0.01322 

50 25 (5,4*0,5,4*0,5,4*0,5,4*0,5,4*0) 0.64424 
(0.00424) 

0.77405 
(-0.026) 0.01393 0.01874 

50 25 (25,24*0) 0.63967 
(-0.0003) 

0.78257 
(-0.0174) 0.01009 0.01716 

50 30 (5,4*0,5,5*0,5,5*0,5,12*0) 0.64205 
(0.00205) 

0.78017 
(-0.0198) 0.01006 0.01718 

50 30 (20,29*0) 0.63367 
(-0.0063) 

0.77948 
(-0.0205) 0.00960 0.01872 

50 40 (8*0,5,8*0,5,22*0) 0.64139 
(0.00139) 

0.78965 
(-0.0104) 0.01110 0.01482 

50 40 (10,39*0) 0.63778 
(-0.0022) 

0.78342 
(-0.0166) 0.01211 0.01613 

50 50 (50*0) 0.63994 
(-0.00006) 

0.79866 
(-0.0013) 0.00303 0.01209 
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Table 7.2b.  MLEs of 𝑅ሺ𝑡ሻand ℎሺ𝑡ሻ  along with their Average Bias and MSE for different censoring 
schemes, for 𝛼 ൌ 2, 𝛽 ൌ 1 , λ ൌ 2 and t ൌ 2 

𝒕 ൌ 𝟐; 𝑹ሺ𝒕ሻ ൌ 𝟎. 𝟐𝟓; 𝒉ሺ𝒕ሻ ൌ 𝟎. 𝟓 

n m Censoring Scheme 𝑅෠ሺ𝑡ሻ ℎ෠ሺ𝑡ሻ 𝑀𝑆𝐸ሺ𝑅෠ሺ𝑡ሻሻ 𝑀𝑆𝐸ሺℎ෠ሺ𝑡ሻሻ 
35 20 (3*0,5,3*0,5,3*0,5,8*0) 0.25230 

(0.0023) 
0.51557 

(0.01557) 0.00866 0.06067 
35 20 (1,2,1,2,1,2*0,1,1,0,1,0,1,0,2,0,1,1,2*0) 0.25098 

(0.00098) 
0.51532 

(0.01532) 0.00834 0.05801 
35 20 (15,19*0) 0.24831 

(-0.0017) 
0.48845 

(-0.0116) 0.00902 0.04897 
35 25 (5*0,5,7*0,5,11*0) 0.24792 

(-0.0021) 
0.50292 

(0.00292) 0.00838 0.04923 
35 25 (1, 2, 0, 2, 1, 0, 0, 1, 1, 0, 1, 0, 1 ,12*0) 0.24803 

(-0.002) 
0.50371 

(0.00371) 0.00692 0.04810 
35 25 (10,24*0) 0.24672 

(-0.0033) 
0.50354 

(0.00354) 0.00689 0.04799 
35 35 (35*0) 0.24976 

(-0.00024) 
0.50102 

(0.00102) 0.00451 0.02815 
40 25 (5,4*0,5,7*0,5,11*0) 0.24562 

(-0.0044) 
0.49653 

(-0.0035) 0.00767 0.03965 
40 25 (1,2,1,2,1,2*0,1,1,0,1,0,1,0,2,0,1,1,7*0) 0.25093 

(0.00093) 
0.48032 

(-0.0197) 0.00558 0.04365 
40 25 (15,24*0) 0.24847 

(-0.0015) 
0.48964 

(-0.0104) 0.00621 0.04221 
40 30 (3*0,5,10*0,5,15*0) 0.24863 

(-0.0014) 
0.49876 

(-0.0012) 0.00606 0.03932 
40 30 (1, 2, 1, 2, 1, 0, 0, 1, 1, 0, 1 ,19*0) 0.24798 

(-0.002) 
0.49721 

(-0.0028) 0.00755 0.03123 
40 30 (10,20*0) 0.24832 

(-0.0017) 
0.50176 

(0.00176) 0.00518 0.03078 
40 40 (40*0) 0.24978 

(-0.0002) 
0.50090 
(0.0009) 0.00317 0.02120 

50 25 (5,4*0,5,4*0,5,4*0,5,4*0,5,4*0) 0.24882 
(-0.0018) 

0.50387 
(0.00387) 0.00578 0.03821 

50 25 (25,24*0) 0.25017 
(0.00017) 

0.49536 
(-0.0046) 0.00592 0.03729 

50 30 (5,4*0,5,5*0,5,5*0,5,12*0) 0.24932 
(-0.0007) 

0.49674 
(-0.0033) 0.00503 0.03655 

50 30 (20,29*0) 0.25102 
(0.00102) 

0.48991 
(-0.0101) 0.00499 0.03812 

50 40 (8*0,5,8*0,5,22*0) 0.25091 
(0.00091) 

0.50148 
(0.00148) 0.00432 0.03556 

50 40 (10,39*0) 0.24965 
(-0.0004) 

0.49839 
(-0.0016) 0.00341 0.03233 

50 50 (50*0) 0.25009 
(0.00009) 

0.50039 
(0.00039) 0.00246 0.01109 
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From Table 7.1, we observe that for complete samples, MLEs of 𝛼, 𝛽 and λ are very 
nearly unbiased and can be regarded as good estimators. It is also observed that for 
complete samples, as the sample size 𝑛 increases the average MSE decreases. In 
addition, the MSE generally decreases as the failure information 𝑚 increases, and for 
all the censoring schemes the MSE of the estimates is quite small and can be used in all 
practical situations. Here one has to make a trade-off  between the precision of the 
estimation method and the cost of the experiment. Also, from Tables 7.2a and 7.2b, it 
is observed that for the MLEs of R(𝑡) and ℎ(𝑡), the MSE generally decreases as the failure 
information 𝑚 increases. In addition, for the complete samples, as the sample size 𝑛 
increases the average MSE decreases.  

8.  Conclusion  

Some recurrence relations between the single and the product moments of 
progressively Type-II right censored order statistics from the power Lomax distribution 
have been derived, which would assist us to compute the moments of progressively 
Type-II right censored order statistics for every 𝑛 and for different censoring 
arrangements ሺ𝑅ଵ, 𝑅ଶ, … , 𝑅௠ሻ, 𝑚 ൑ 𝑛.  The recursive algorithm is presented with the 
help of which the single and product moments of progressively Type-II right censored 
order statistics from the power Lomax distribution can be easily obtained. Further, a 
maximum likelihood approach is used to estimate the parameters of the power Lomax 
distribution, which are further used to estimate the reliability characteristics. A Monte 
Carlo method is used to simulate the data and to compare the performance of the 
estimates for different censoring schemes. 
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Towards a target employment rate within
age and gender groups
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ABSTRACT

Quarterly employment rates in European countries are analysed in terms of the likelihood of
achieving a specific employment rate within age and gender groups in a five-year horizon.
The German employment rate serves as a benchmark for this research. The likelihood is
estimated by a Monte-Carlo simulation based on the class of exponential smoothing models.
The research presents a pessimistic prognosis of employment rates in European countries
with respect to young and partly to older workers.

Key words: employment rate, exponential smoothing, forecasting, state space approach.

1. Introduction

The European Employment Strategy dates back to 1997, when the Member States of the
European Union committed themselves to establishing a set of common goals and tasks in
the field of employment policy. Its main goal was to create more and better jobs throughout
the European Union. Consequently, national governments have proposed and agreed com-
mon employment policy priorities and objectives. Governments have committed to annual
reports on the implementation of the Employment Guidelines and an assessment of the Key
Employment and Social Indicators.

In 2010, the European Council adopted the Europe 2020 strategy. One of the main
targets of this strategy at the European Union level was to raise, by the year 2020, the
employment rate of the population aged 20-64 years to at least 75%. The year 2010 was
a key milestone in the evolution of the European Employment Strategy because European
cooperation on the economic and employment policy had faced the global economic and
financial crisis during 2007-09. The crisis has slowed the economic development of many
countries until 2013. Despite the global crisis the majority of European countries achieved
their targets.

Two age groups in the labour force are of particular interest: people aged 15-24 and 55-
64. The population of the European Union is currently experiencing an ageing process, and
predictions in this area suggest that this process will accelerate during 2019-2050 (Corselli-
Nordblad et al. (2020a)). Demographic ageing means the proportion of people of working
age in the EU is shrinking. Hence, the employment rate of older and young people is among
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the main policy objectives that European Union has adopted in recent years. A consider-
able portion of young people aged 15-24 years in the EU is economically inactive. The
European Union supports the process of reducing youth unemployment by creating various
programs, like The Youth Guarantee (European Commission (2018)), Youth Employment
Initiative (European Commission (2012)), Skills Agenda for Europe (European Commis-
sion (2020b)) and Investing in Europe’s Youth (European Commission (2017)). Moreover,
the European Commission suggests that the most pressing concern of policy-makers is to
encourage older people to remain in the labour market for as long as possible (Corselli-
Nordblad et al. (2020a)). A key reason for increasing retirement age is to ensure the finan-
cial sustainability of the state pension programme. Moreover, the retirement-aged include
workers with extensive experience who can contribute to generating new jobs and make net
contribution to GDP. There is also evidence that meaningful and appropriate work benefits
older people. Paid work increases their incomes, helping them to achieve higher standards
of living. In response, many countries have decided to increase the retirement age. But there
is an example of doing the opposite. The topic of the age at which Poles retire returned in
the election campaign of 2020. The retirement age was raised in 2012 by the government
of Donald Tusk. According to the law then in force, men were to reach the target retirement
age of 67 in 2020, and women 20 years later – in 2040. In 2016, the government of Beata
Szydło restored the act to its pre-2012 version.

The aim of the work is to estimate the probability of achieving given employment rates
within age and gender groups across European countries in a five-year horizon on the basis
of employment time series forecasts. German 2019 employment rates reduced proportion-
ally by 5% are taken as the base rates. We compare them accordingly with employment rates
of other member states of the European Union. The choice of these base rates is justified to
some extent. The applied analysis required comparisons with reasonably high rates. More-
over, the German labour market belongs to the strongest in Europe and experienced robust
performance in the financial crisis of 2007-2009. Therefore, the choice seems reasonable
as benchmarks of better and satisfactory employment rates for many member states of the
European Union. The estimates are based on quarterly employment rates from Eurostat.

2. Research methodology

The probability of achieving a given employment rate is estimated by Monte-Carlo sim-
ulation by the use of exponential smoothing methods. Although the methods have been
around since the 1950s, a modelling framework incorporating procedures for model selec-
tion was not developed until the nineties. Ord et al. (1997), Hyndman et al. (2002) and Hyn-
dman et al. (2005) have shown that all exponential smoothing methods are optimal forecasts
from innovations state space models. The innovations state space approach provides pre-
diction intervals, maximum likelihood estimation and procedures for model selection. The
theoretical background of the methods can be found in Hyndman et al. (2008b). Software
implementation of the methods is described in Hyndman et al. (2008a), where for each of
the fifteen exponential smoothing methods the authors specify two possible innovations state
space models, one corresponding to a model with additive errors and the other to a model
with multiplicative errors. The models are combinations of components such as the trend,
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seasonal, and irregular or error components. The trend component can be additive, additive
damped, multiplicative and multiplicative damped. The seasonal component can be additive
or multiplicative. The general model involves a state vector xt = (lt ,bt ,st ,st−1, . . . ,st−m+1)

′

and state space equations of the form

yt = w(xt−1)+ r(xt−1)εt

xt = f (xt−1)+g(xt−1)εt ,

where yt , t = 1, . . . ,T , denote observations, {εt} is a Gaussian white noise process with
mean zero and variance σ2. Components lt ,bt and st are unobservable and represent the
trend, slope and seasonality respectively. The number of seasons in a period, denoted by m,
is a given number. Functions w,r, f ,g are known and have a specific form (see Hyndman et
al. (2008a)).

As an illustrative example of this class of models let us consider the known Holt’s model
defined by the equations:

Level: yt = αyt +(1−α)(lt +bt−1)

Growth: bt = β
⋆(lt − lt−1)+(1−β

⋆)bt−1

These equations can be rewritten to the following form:

yt =
(
1 1

)
xt−1 + εt

xt =

(
1 1
0 1

)
xt−1 +

(
α

β

)
εt

where β = αβ ⋆, xt = (lt ,bt)
′, µt = ŷt = lt−1 + bt−1 and εt = yt − µt denotes the on-step

forecast error at time t. The model is fully specified once we state the distribution of the
error term εt . Note that in this case

wt(xt−1) =
(
1 1

)
xt−1, r(xt−1) = 1, f (xt−1) =

(
1 1
0 1

)
xt−1 and g(xt−1) =

(
α

β

)
. Gen-

erally, a penalised method based on the in-sample fit Akaike’s Information Criterion is used
in the work to choose appropriate models for the investigated employment series. To esti-
mate the probability of achieving the given target employment rate the set of 1000 sample
paths that are future to and conditional on the data is produced. Then, the number of paths
crossing the target is calculated. Thus, we estimate probability P(yt > target) for a given t.
The maximum estimate error in this case does not exceed 3%.

3. An example: the Visegrád Group

The Visegrád Group is a cultural and political alliance of four countries of Central Eu-
rope (the Czech Republic, Hungary, Poland and Slovakia), all of which are members of
the EU and of NATO, with the aim to advance mutual co-operation in military, cultural,
economic, climate and energy matters and to further their integration to the EU. All of the
countries belonged to the former Eastern Block. The employment rates of these countries
and Germany are shown in Figure 1.
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Figure 1: Quarterly time series of employment rates of Germany and the member countries
of the Visegrád Group with respect to gender and age groups: 2005-2019

Figure 2: The comparison of the 2019 employment rates of Germany and the member
countries of the Visegrád Group with respect to gender and age groups
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Note that middle-aged workers (25-54 years old) have similar employment rates. There
are much greater differences between the employment rates in the group of young (15-24
years old) and old people (55-64 years old). This can be seen in the comparison of Germany
against different countries of the Visegŕad Group. The German employment rate is at least
as high as those of other countries. We want to find out the probabilities of the member
countries of the Visegrád Group achieving the given level of 95% German employment
rate. Figure 2 depicts 2019 employment rates of Germany and the member countries of
the Visegrád Group with respect to gender and age groups. It can be taken to mean that
differences between probabilities of achieving the given levels will be smaller in young and
old workers. For example, the difference in the group of young women between Slovak
and German employment rates is relatively large (over 20%). The Slovak employment time
series has been well under 30% since 2010 and was declining in the last four years. Thus,
the probability of reaching the German employment rate is expected to be low in the case
of young Slovak women.

Let us consider the forecast of the Slovak employment rate for this group. The point
forecast is given in blue in Figure 3. Three further forecasts were simulated, smoothed and
added in red into Figure 3. The forecasts are represented by three smoothed lines starting at
2020. In order to estimate the probability of crossing the given level, there were 1000 such
lines generated altogether. The forecasts were smoothed to avoid the short-term influences
of seasonal pattern.

2005 2010 2015 2020

20
26

32

Figure 3: Forecast of the employment rate for young Slovak women

The procedure was repeated for the rest of the member countries of the Visegrád Group.
The prognosis for young people is not optimistic: neither probability based on prediction
for four countries and years 2020-2024 exceeds 1%. The results for old people are better but
not in all of the countries (Table 1). The results for middle-aged people are the best (Table
2). In this case, most estimates are equal to one.

In general, most middle-aged people are employed. The employment rate of older work-
ers increased between 2005 and 2019 but the pace of growth was not uniform in the consid-
ered countries. Universally older workers bring a level of experience, critical thinking and
sheer knowledge that cannot be taught. In some industries it takes a decade or longer for
workers to gain the technical skills necessary to master the job. Despite these advantages,
the labour market of many countries does not offer suitable jobs for older people. There are
many reasons for this but discussing them is beyond the scope of the work. In fact, not all
countries are expected to improve the employment rate of older workers.
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Table 1: Forecasts of the probabilities of reaching the 95% German employment rates by
the member countries of the Visegrád Group with respect to gender; results for old people

Gender Country 2020 2021 2022 2023 2024

Female Czechia 0.13 0.84 0.98 1.00 1.00
Hungary 0.00 0.00 0.00 0.00 0.00
Poland 0.00 0.00 0.00 0.00 0.00
Slovakia 0.02 0.45 0.80 0.93 0.97

Male Czechia 0.99 0.99 1.00 1.00 1.00
Hungary 0.51 0.87 0.96 0.98 0.98
Poland 0.00 0.00 0.00 0.03 0.10
Slovakia 0.00 0.00 0.00 0.00 0.00

Table 2: Forecasts of the probabilities of reaching the 95% German employment rates by
the member countries of the Visegrád Group with respect to gender; results for middle-aged
people

Gender Country 2020 2021 2022 2023 2024

Female Poland 0.40 0.42 0.44 0.46 0.45
Slovakia 0.70 0.67 0.64 0.63 0.62
Other countries 1.00 1.00 1.00 1.00 1.00

Male All countries 1.00 1.00 1.00 1.00 1.00

Compared to old people, young workers tend to have fewer general work skills and less
specific human capital relevant to the particular firm employing them (Bell et al. (2011)).
They are faced with wages that provide inadequate compensation for the loss of benefits
and with suboptimal commutes. The lack of mobility and limited job search area severely
limits their job opportunities.

Many factors influence the employment rate. An interesting discussion may be found in
Matthews et al. (2014). Each of the European countries has its own specific factors lowering
its employment rate. As the set of common goals and tasks in the field of employment policy
is formulated and agreed on, the main goal for every country is to create more and better
jobs. This will increase the employment rate. The reasonable measure of the rise should be
based on the level itself. The idea of model-based estimate of achieving the specific level
representing the one of the strongest labour markets in Europe holds this criterion and takes
into account the structure of employment rate time series. The benchmark in this approach
is the strong German economy, which is the largest contributor to the EU budget.

4. Employment Rates Forecasts

The following countries were analysed: Austria, Belgium, Bulgaria, Croatia, Cyprus,
Czechia, Denmark, Estonia, Finland, France, Greece, Spain, Ireland, Lithuania, Luxem-
burg, Latvia, Malta, Netherlands, Germany, Poland, Portugal, Romania, Slovakia, Slovenia,
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Sweden, Hungary, the United Kingdom, Italy. The model-based estimates of achieving the
95% German employment rates were calculated as in the previous section. The results are
as follows.

Results for young women and men.

1. The estimated probabilities are less than 0.05 for Belgium, Bulgaria, Czechia, Greece,
Spain, France, Croatia, Italy, Cyprus, Latvia, Hungary, Poland, Portugal, Romania,
Slovenia, Slovakia.

2. The estimated probabilities are equal to at least 0.98 for Denmark, Malta, Nether-
lands, Austria, Finland, Sweden, the United Kingdom.

3. For other countries the estimates are in Table 3. With the exception of Ireland, the
estimates are increasing.

Table 3: Model-based estimates of achieving the 95% German employment rates; results
for young workers from countries with estimates greater or equal to 0.05 and less than 0.98

Gender Country 2020 2021 2022 2023 2024

Female Estonia 0.53 0.63 0.69 0.72 0.75
Ireland 0.39 0.30 0.24 0.19 0.21
Lithuania 0.00 0.00 0.02 0.10 0.23

Male Estonia 0.38 0.46 0.51 0.58 0.61
Ireland 0.12 0.10 0.06 0.06 0.06
Lithuania 0.00 0.00 0.03 0.06 0.09

Most of the calculated estimates do not exceed 5%. Only 25% of European countries have
the estimates greater than 98%. Three countries are between these two extreme cases. This
shows that the European countries are highly differentiated.

Results for middle-aged women and men.
Estimates for middle-aged people are shown in Figure 4. In this case, estimates for most

countries are very close to one, therefore only those that are less than 0.9 are displayed.
Generally, most middle-aged people in Europe are employed. Employment rates are as high
as in Germany and in some cases they are slightly greater. Therefore, the estimates are close
to one.

Results for old-aged women and men.
The case of old workers is rather complex. For some of the countries the probabilities

of reaching the 95% of the appropriate German employment rates levels are very low (e.g.
for Poland, Romania and Greece) (Table 4). On the other hand, there are countries with
a high probability of achieving it (Table 4). Some countries show the probability steeply
increasing in the group of women or men (Figure 5).
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Figure 4: Model-based estimates of achieving the 95% German employment rates; results
for middle-aged people from countries with estimates less than 0.9

Table 4: Countries with the investigated probabilities less than 0.3 are marked with × and
greater than 0.8 are marked with ⊗

Country Women Men Country Women Men

Greece × × Czechia ⊗ ⊗
Croatia × × Denmark ⊗ ⊗
Italy × Estonia ⊗
Hungary × × Latvia ⊗
Malta × Lithuania ⊗ ⊗
Austria × Netherlands ⊗ ⊗
Poland × × Finland ⊗ ⊗
Romania × × Sweden ⊗
Belgium × United ⊗
Spain × Cyprus ⊗
France × Hungary ⊗
Slovenia ×
Slovakia ×

An interesting case is France. The country is one of the largest contributors to the EU
budget, like Germany, but its employment rate is less than in Germany and the investigated
probability is very low in both gender groups (mostly less than 2%). This shows how diffi-
cult it is to resolve the dispute about the reasons for the given employment levels to differ.
Differences in German and French labour-market institutions are significant. The two coun-
tries have different economic strategies that affect employment rate and level. Application
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of collective bargaining at the firm level allows for more flexibility in Germany (Herzog-
Stein et al. (2013), Möller (2010)). However, the higher resilience and flexibility of the
German labour market comes at the price of higher market-income inequality and poverty
across individuals and age groups (Hartung et al. (2018), Cléaud et al. (2019)).

Figure 5: Model-based estimates of achieving the 95% German employment rates; results
for old-aged people from countries with estimates between 0.3 and 0.8

Although Germany’s growth model has allowed it to benefit from the strong post-2008
financial crisis recovery in the global economy, it also makes it more exposed to swings in
the global cycle. France’s growth model has relied more on domestic demand. Together
with a larger public sector, this has helped to smooth out economic cycles, but has also
implied some losses in cost competitiveness and a significantly higher tax burden (Cléaud
et al. (2019)).

5. Summary

The idea of model-based probability estimate of reaching the specified employment rate
level represented by one of the strongest labour markets in Europe and at the same time
one of the largest contributors to the EU budget, i.e. Germany, was applied. This approach
takes into account the structure of employment rate time series and allows to forecasting the
probability of achieving the given level. The research comprises groups by age and gender.
The prognosis is based on the data from 2005 to 2019. The data embracing the year 2020 are
not included in the analysis. The one-year series relate to the global spread of a new disease
and appear too short to be included into a statistical model. According to the knowledge of
the authors no similar approach to the issue has been proposed.

The obtained results are not optimistic for young people. Low probability of reaching
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the German employment rates levels results from the past covering of 2005-2019 time pe-
riod. It means that the time series consist of low rates (for example in the case of Bulgaria,
Italy or Greece) or are not expected to increase fast enough as in the case of Cyprus, Latvia,
Slovenia and other countries with relatively high employment rates. This is true for Bel-
gium, Bulgaria, Czechia, Greece, Spain, France, Croatia, Italy, Cyprus, Latvia, Hungary,
Poland, Portugal, Romania, Slovenia and Slovakia. The 2019 employment rates of these
countries are shown in Figure 6.

Figure 6: The 2019 employment rates for young people

The employment rates for old people are more optimistic. The rates are increasing and
that is reflected by the increasing probability of approaching the levels of German employ-
ment rates. Slovakia, Portugal, Spain and Belgium show high growth rates among women.
Their probabilities of approaching the 95% German employment rates levels are expected
to rise above 80% no later than in 2024. Among men it includes Estonia, Italy, Finland and
Austria (see Figure 5).

The employment rates for old people may be strongly influenced by the pandemic. A
large body of research has established health as a significant factor affecting the labour mar-
ket participation of older people, with those in poorer health more likely not to be employed
(van den Berg et al. (2008), van Rijn et al. (2014)). Figure 7 shows the distribution of dif-
ference between employment rates of 2020:Q2 and of 2019:Q2. About half of the European
countries show a decrease in employment rates among old-aged people since the beginning
of the pandemic. The distribution is shifted to the left compared to the corresponding data
of a previous year. Differences in employment levels are more varied for women, as can be
seen from the different scale of distributions.
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Figure 7: Employment rate difference distribution 2020:Q2 vs 2019:Q2 and 2019:Q2 vs
2018:Q2 for old people across European countries.

The German Institute for Economic Research (DIW Berlin) said that Germany’s eco-
nomic output could return to pre-crisis levels toward the end of 2021. The prognosis for Eu-
rope is less optimistic. Autumn 2020 Economic Forecast of European Commission claims
that output in both the euro area and the EU is not expected to recover its pre-pandemic
level in 2022. Hence, the forecasts contained in this article should be postponed by at least
two years.

The low employment rate of young people is very disadvantageous from a social point
of view. Already in the nineteenth century, Gustav Le Bon wrote: The conditions of success
in life are the possession of judgment, experience, initiative, and character – qualities which
are not bestowed by books (Le Bon (2015)). This message is still relevant today (compare
with Bell et al. (2011) and Standing (2016)).

The increasing employment rate of older people is implied by demographic ageing. The
European Commission suggests that policy makers should have incentivized older workers
to remain longer in the labour market. Good health is for many an imperative for working
beyond the pensionable age. The employment rate for old people depends strongly on the
quality of health, quality of work, benefit system and other factors.

Low employment rates of young and old workers are connected with the phenomenon
of a growing number of people with transient roles in the labour market, short spells of
employment interspersed with unemployment spells of varied length that do not make life
meaningful. Standing (2016) argues that this class of workers, called Precariat, will cause
instability in society. Presence of a large Precariat raises the spectre of populist movements
to restrict the movement of labour and to promote disenfranchisement of various vulnerable
groups. The populist movements go against the mainstream media, universities, the political
class, banks, and also against widely accepted truisms such as global warming and the
benefits of free trade (Dustmann et. al (2017)).

Some implications of low employment were outlined. The issue is complex and requires
detailed research. The aim of the article is not to explain the complexity of the labour mar-
ket, but to state the pessimistic prognosis about employment rates in European countries. It
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seems that governments of many countries should revise their economic strategies affecting
labour market if they want to achieve satisfactory employment rates
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