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Agu-Eghwerido distribution, regression model and
applications
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ABSTRACT

Modelling lifetime data with simple mathematical representations and an ease in obtain-
ing the parameter estimate of survival models are crucial quests pursued by survival re-
searchers. In this paper, we derived and introduced a one-parameter distribution called the
Agu-Eghwerido (AGUE) distribution with its simple mathematical representation. The re-
gression model of the AGUE distribution was also presented. Several basic properties of the
new distribution, such as reliability measures, mean residual function, median, moment gen-
erating function, skewness, kurtosis, coefficient of variation, and index of dispersion, were
derived. The estimation of the proposed distribution parameter was based on the maximum
likelihood estimation method. The real-life applications of the distribution were illustrated
using two real lifetime negatively and positively skewed data sets. The new distribution pro-
vides a better fit than the Pranav, exponential, and Lindley distributions for the data sets. The
simulation results showed that the increase in parameter values decreases the mean squared
error value. Similarly, the mean estimate tends towards the true parameter value as the sam-
ple sizes increase.

Key words: AGUE distribution, AGUE regression model, moment generating function,
means residual function, hazard rate function, survival rate function.

1. Introduction

Introducing one-parameter distributions is a continuous concern for distribution theory
and survival researchers. Thus, the researchers desire to introduce mathematically tractable
and flexible lifetime probability models which can represent the random behaviour of real-
world lifetime situations without difficulty.

In the statistical literature, many one-parameter, as well as two or more parameters
probabilistic models have been introduced by researchers for modelling lifetime situations.
Some of these probability models provide good results for various life situations. However,
some of these developed models do not give good results for real-life scenarios. This might
be the case arising from physical sciences, medical sciences, biological sciences, agricul-
tural science, engineering among others. Similarly, some of these models require quite a
complex and time-consuming algorithm for their parameter estimation.

Lindley (1958) introduced a parameter Lindley distribution. Ghitany, Atieh, and Nadara-
jah (2008) applied the mathematical treatment to a parameter Lindley distribution. Shanker
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(2015a, 2016) proposed one-parameter Akash and Aradhana distributions. Shanker and
Shukla (2017) proposed one-parameter Ishita distribution. Shanker (2016) proposed one-
parameter Sujatha distribution. Shukla (2018) proposed one-parameter Pranav distribution.
Odom and Ijomah (2019) proposed one-parameter Odoma distribution. However, their
regression models were not explored. These distributions yielded good fit over Lindley
and exponential distributions for various data sets. Furthermore, the Pranav distribution by
Shukla was applied on three real lifetime data sets and provides a better fit to the data sets
than Lindley, Sujatha, Akash, and Ishita distributions respectively. However, the Odoma
distribution was applied to strength data of glass of the aircraft window and provides a
better fit than Pranav, Sujatha, Aradhana, Akash, Lindley, and exponential distributions re-
spectively. The mathematical properties of these probability models, as well as parameter
estimation, has been studied. Most of these probability models provide a good fit in some
real-life situations and performed poorly in others. Due to the shortfall of some of these
models, for instance the constant hazard rate of the exponential distribution could limit its
wider applications to increasing hazard rate lifetime situations. Hence, some of these distri-
butions have been extended, generalized, and applied in the literature by the addition of an
extra parameter by researchers including Zakerzadeh and Dolati (2009) generalized Lind-
ley distribution. Nadarajah et al. (2011) extended exponential distribution. Gómez and
Calderín (2011) derived the discrete Lindley distribution, properties, and applications. Bak-
ouch et al. (2012) obtained exponentiated exponential binomial distribution. Shanker and
Mishra (2013) obtained a sized-biased Quasi Poisson-Lindley distribution. Agu and On-
wukwe (2019) proposed exponentiated Laplace distribution as the extension of the Laplace
distribution. Eghwerido et al. (2020) proposed the alpha power Gompertz distribution.
Shanker and Amanuel (2013) obtained a new quasi Lindley distribution. Ghitany et al.
(2013) proposed the Power Lindley distribution. Merovci (2013) extends the Rayleigh dis-
tribution. Agu and Runyi (2018) studied the goodness of fit tests for normal distribution.
Warahena and Pararai (2014) proposed the generalized power Lindley distribution. Oluyede
and Yang (2014) generalized the inverse Weibull distribution among others. However, the
extensions do not guarantee high confidence in the model reliability. These extensions could
lead to complex mathematical representation, complex and time-consuming algorithm, and
difficulty in the estimation of parameters resulting in unreliable results.

In this respect, this paper is motivated to introduce a heavy-tailed simple mathemati-
cally structured one-parameter probability model with non-decreasing survival and hazard
functions, derive its regression model, require less time and simple algorithm, and ease in
the parameter estimation based on the test statistics performance results obtained from real-
life scenarios that are more reliable. The proposed model was generated by making use of
gamma and exponential distributions because of their inherent uniform base and constant
failure rate respectively. However, in statistical modelling, the Weibull, Gompertz, exponen-
tial and Lindley models are very popularly used in modelling compared to the lognormal and
gamma distributions. This is as a result of the inability to express their survival functions
in a closed form. Although, the exponential function has one-parameter with a constant
hazard rate, the Lindley has one-parameter monotonic decreasing hazard rate with a mix-
ture component of a gamma model with a shape parameter 2 and exponential distribution.
Its mixture proportions are λ

λ+1 and 1
λ+1 for a scale parameter λ . Also, the Akash model
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tries to improve the Lindley distribution by using a mixture of exponential and gamma with
a shape parameter 3 and mixing proportions λ 2

λ 2+2 and 2
λ 2+1 . Thus, to improve the flexi-

bility of the Lindley, Pranav, exponential, and Akash distributions, this article introduces a
parsimonious tractable distribution model called the AGUE distribution.

Let us consider two components mixture of one-parameter gamma distribution having
shape parameter 3 and scale parameter λ and exponential distribution with scale parameter
λ with their mixing proportions λ 6

λ 6+8 and 8
λ 6+8 respectively. This idea would be used to

develop the one-parameter distribution with simple mathematical representation.
The rest of the paper is structured as follows: Section 2 introduced the new distribution.

Section 3 explored the reliability measures of the new distribution. Section 4 explored the
moment generating function for the new distribution. Section 5 discussed the parameter
estimation for the new distribution. Section 5.1 introduced the regression model for the new
distribution. In Section 6, two real lifetime data set were adopted to illustrate the behaviour
of the new distribution. Section 7 provided the concluding remarks.

2. The AGUE distribution

This section introduces the proposed model. It also, examines some potential properties.
Let x be a random variable. Then, the new lifetime density function is introduced as

P(x) =
λ 3

λ 6 +8

[
λ

4 +4x2
]

exp(−λx), (1)

where λ > 0, x > 0. We would call the probability density function (pdf) of the one-
parameter life time distribution in (1) "AGU-EGHWERIDO (AGUE) distribution". See the
proof of the density function in Appendix. It follows from (1) that

dP(x)
dx

=
λ 3

λ 6 +8

[
8x−λ

5 −4λx2
]

exp(−λx).

For

1. λ < 1, dP(x)
dx = 0, this implies that P(x) is maximized at x0.

2. λ ≥ 1, dP(x)
dx ≤ 0, this implies that P(x) is decreasing at x.

The cumulative distribution function (cdf) of the AGUE distribution in (1) is given as

dP(x)
dx

= 1− 1
λ 6 +8

[
λ

6 +4λ
2x2 +8(λx+1)

]
exp(−λx), (2)

where λ > 0, x > 0.

3. Reliability measures

In this section, some reliability properties of the AGUE distribution were examined and
investigated.
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Figure 1: Pdf of AGUE distribution with different parameter cases

Figure 2: Cdf plot of the AGUE distribution with different parameter cases
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Figure 3: Survival plot of the AGUE distribution with different parameter cases

Let X be a continuous random variable with pdf P(x) and cdf p(x) . Then, the survival
rate function is expressed as

S(x) = 1− 1
λ 6 +8

[
λ

6 +4λ
2x2 +8(λx+1)

]
exp(−λx). (3)

The survival rate plot for different parameter values is shown in Figure 3.

3.1. The failure rate function

The failure rate function is given as

H(x) = lim
△x−→0

v(X < x+△x|R > x)
△x

=
P(x;λ )

S(x;λ )
.

Thus, we have the AGUE failure rate function as

H(x) =
λ 3

[
λ 4 +4x2

]
λ 6 +4λ 2x2 +8(λx+1)

. (4)

However, for

1. H(0) = λ 7

λ 6+8 .

2. H(x) is an increasing function in x, λ and λ 7

λ 6+8 < H(x)< λ .

The hazard rate plot for different parameter values is shown in Figure 4.
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Figure 4: Hazard plot of the AGUE distribution with different parameter cases

3.2. The mean residual function

Let be a random variable with pdf and cdf defined in (1) and (9) respectively. Thus, the
mean residual function of X is defined as

m(x) = E[X − x|X > x] =
1

p(x)
lim
c→∞

∫ c

x
[1− p(t)]dt.

However, for 1− p(x)> 0.

m(x) =
λ 5 +4λx2 +16x+ 24

λ

λ 6 +4λ 2x2 +8(λx+1)
, (5)

Moreover, for

1. m(0) =
λ 5+ 24

λ

λ 6+8 .

2. m(x) is a decreasing function in x and λ .

The mean residual plot for different parameter values is shown in Figure 5.

3.3. The median

The median of a random variable X is expressed as

m2(x) = lim
c→∞

∫ c

0
|x−K|P(x)dx,
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Figure 5: Mean residual plot of the AGUE distribution with different parameter cases

where µ = E(X) and K = Median (X). The above measures can be calculated using the
relationship defined as

E(|X − k|) =
∫ k

0
(k− x)P(x)dx+ lim

c→∞
(x− k)P(x)dx = 2

∫ k

0
(k− x)P(x)dx. (6)

Thus, the median of the AGUE distribution can be given as

m2(x) = 2
[

K −
λ 5 + 24

λ

λ 6 +8
− 1

λ 6 +8

[
exp(−λK)(4λK2

+16K +λ
5 +

24
λ
)+λ

6K +8K −λ
5 − 24

λ

]]
.

3.4. The quantile function

The quantile function of the AGUE distribution is obtained using the Lambert W func-
tion with W function defined as the solution to the equation W (x)exp(W (x)) = x ∈ [−1,∞),
where W0 is the principal branch of the Lambert function. The solution of the Lambert W
function of W (x)exp(W (x)) = x, with W0(0) = 0 and W0(x) increases with increase in x.
Thus, for x > 0, u∗ = (λ 6+8)(1−u)(λ 6+4x2λ 2+(9λx+8)), λ < 0, and u ∈ (0,1). Thus,
the xu =W0(exp(u∗))− λ 3−2

λ
.

A simulation is obtained using the quantile function obtained above. The values of the
parameter are chosen as 0.5, 1.0 and 2.5 for sample size 5, 10, 50, 100, 150, 250, 350 and
500. The sample size is replicated 5000 times. Table 1 shows the results.
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Table 1. Simulation results for AGUE distribution
n Parameter Average Estimate Bias MSE
5 λ =0.5 0.9950 0.0150 0.1929

λ=1.0 1.2008 0.2008 0.5558
λ=2.5 2.7462 0.5349 0.5071

10 λ =0.5 0.8516 0.0847 0.1077
λ =1.0 1.1847 0.1838 0.4671
λ =2.5 2.6838 0.1921 0.4014

50 λ =0.5 0.6664 0.0972 0.1005
λ =1.0 1.0072 0.1583 0.3273
λ =2.5 2.5949 0.1049 0.2702

100 λ =0.5 0.4754 0.1625 0.0071
λ =1.0 1.0025 0.1348 0.1929
λ =2.5 2.4712 0.0881 0.1052

150 λ =0.5 0.4544 0.1109 0.0045
λ =1.0 1.0009 0.0181 0.0824
λ =2.5 2.4519 0.0324 0.0841

250 λ =0.5 0.5013 0.2733 0.0024
λ =1.0 1.0008 0.0112 0.0053
λ =2.5 2.5030 0.0030 0.0070

350 λ =0.5 0.5002 0.4814 0.0015
λ =1.0 1.0002 0.0088 0.0034
λ =2.5 2.5003 0.0018 0.0055

500 λ =0.5 0.5001 0.4948 0.0011
λ =1.0 1.0005 0.3651 0.0041
λ =2.5 2.5001 0.2476 0.0006

In Table 1, increase in parameter values decreases the MSE. Also, the mean estimate
tends to the true parameter value as the sample sizes increase.

4. Moment generating function

The AGUE moment generating function is expressed as

mR(t) =
λ 3

λ 6 +8
lim
c→∞

[
λ

6
c

∑
m=0

(
t
λ
)m +

8
λ

c

∑
m=0

(
m+2

m

)
(

t
m
)m
]

= lim
c→∞

[
tm
[
λ 6 +(m+2)(m+4)

]
λ m(λ 6 +8)

]
.

(7)

Thekth moment about origin µ ′
k obtained as coefficient of tk

k! in MX (t) of the AGUE
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distribution is given by

µ
′
k = E(Xk) =

k!
[
λ 6 +(k+2)(k+4)

]
λ k(λ 6 +8)

k = 1,2,3, · · · (8)

In particular, we can obtain the first four moments of the AGUE distribution as

µ
′
1 =

λ 6 +15
λ (λ 6 +18)

, µ
′
2 =

2(λ 6 +24)
λ 2(λ 6 +8)

, µ
′
3 =

6(λ 6 +35)
λ 3(λ 6 +8)

, and µ
′
4 =

24(λ 6 +48)
λ 4(λ 6 +8)

.

Using the relationship between the raw moment and the central moment or the moment
about mean, we obtain the central of the AGUE distribution (1) as

µk = E(X −µ)k =
k

∑
m=0

(
k
m

)
µ
′
m(−µ)k−m, m = 0,1,2, · · · ,k.

In particular, we have
µ0 = 1, µ1 = 0.

µ2 = µ
′
2 −µ

2 =
λ 12 +34λ 6 +159

λ 2(λ 6 +8)2 .

µ3 = µ
′
3 −3µµ

′
2 +2µ

3 =
2λ 18 +114λ 12 +62λ 6 +2910

λ 3(λ 6 +8)3 .

µ4 = µ
′
4 +6µ

2
µ
′
2 −4µµ

′
3 −3µ

4 =
9λ 24 +1194λ 18 +16002λ 12 +31164λ 6 +96963

λ 4(λ 6 +8)4 .

The coefficient of skewness
√

β1 , coefficient of kurtosis β2 , coefficient of variation
C.V , and index of dispersion γ of the AGUE distribution (1) are obtained as

C.V =

√
λ 12 +34λ 6 +159

λ 6 +15
,

√
β1 =

2λ 18 +114λ 12 +62λ 6 +2910

(λ 12 +34λ 6 +159)
3
2

β2 =
9λ 24 +1194λ 18 +16002λ 12 +3116λ 6 +96963

(λ 12 +34λ 6 +159)2 , and γ =
λ 12 +34λ 6 +159

λ (λ 6 +8)(λ 6 +15)
.

Table 2 shows the variance, mean, skewness, kurtosis, coefficients of variation, and
index of dispersion for different parameter values for the AGUE distribution. The results in
Table 2 shown that the parameter values increases with decrease in the variance values.
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Table 2. Coefficients of variation, mean, variance, skewness, kurtosis and index of
dispersion for the AGUE distribution.

(λ ) µ σ2 CV
√

β1 β2 γ

0.4 4.6864 15.5250 0.8408 1.4545 3.8292 3.1567
0.01 187.500 24843.750 0.8406 1.4514 3.8354 132.33
0.6 3.1165 6.8894 0.8422 1.4410 3.7669 2.0684
0.5 3.7466 9.9319 0.8412 1.4519 3.8110 2.4999

0.016 117.188 9704.59 0.8406 1.4514 3.8354 82.647
2 0.5486 0.3101 1.0151 1.9281 5.9972 4.0703

4.1. Stochastic Orderings

The comparative behaviour of continuous random variables can be evaluated using
stochastic ordering.

A random variable X is said to be smaller than a random variable Y (Shaked 1994) if

X ≤L Y ⇒ X ≤hr⇒ X ≤m Y

⇓

X ≤st Y

• Hazard rate order (X ≤hr Y ) if Px(x)≥ Py(x) for all x

• Stochastic order (X ≤st Y ) if GX (x)≥ GY (x) for all x

• Mean residual life order (X ≤m Y ) if mX (x)≤ mY (x) for all x

• Likelihood ratio order (X ≤L Y ) if Px(x)
Py(x)

decreases in x

Theorem 4.1 Let X and Y follow the AGUE distribution with λ1 and λ2 respectively. If
λ1 ≥ λ2 , then X ≤L Y . Hence X ≤hr Y , X ≤m Y and X ≤st Y .

Proof
The AGUE distribution will be ordered based on the strongest likelihood ratio ordering

as established in Shaked (1994).

Px(x;λ1)

Py(x;λ2)
=

λ 3
1 exp(−λ1x)

[
λ 4

1 +4x2
]

(λ 6
1 +8)

λ2exp(−λ2x)
[

λ 4
2 +4x2

]
(λ 6

2 +8)

. (9)

d
dx

log
Px(x;λ1)

Py(x;λ2)
=

−2(λ 4
1 −λ 4

2 )

(λ 4
1 +4x2)(λ 4

2 +4x2)
− (λ1 −λ2). (10)

Thus, for λ1 > λ2,
d
dx log Px(x;λ1)

Py(x;λ2)
< 0⇒X ≤L Y , for λ1 < λ2,

d
dx log Px(x;λ1)

Py(x;λ2)
> 0 and if λ1 = λ2,

d
dx log Px(x;λ1)

Py(x;λ2)
= 0. Therefore X ≤hr Y,X ≤m Y and X ≤st Y.
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5. Parameter estimation of the AGUE distribution

Let x1,x2,x3, · · · ,xk be a random sample of size k observations sampled from the AGUE
distribution. Then, for x̄, the sample mean, the log-likelihood function of the AGUE distri-
bution can be derived as

InL = 3kInλ − kIn(λ 6 +8)+
k

∑
m=1

In(λ 6 +4x2
m)− kλ

k

∑
m=1

xm. (11)

Thus, taking the partial derivative, we have

dInL
dλ

=
3k
λ

− k6λ 5

(λ 6 +8)
+

k

∑
m=1

[
6λ 5

(λ 6 +4x2
m)

]
− kx̄. (12)

The estimate of the parameter λ can be obtained by equating to zero. The Newton-Raphson
algorithm Software like R, MATLAB, MAPLE and others are used to obtain the estimate.

5.1. The AGUE distribution regression model

In this section, we introduce the regression model for the AGUE distribution. In the
literature, numerous researchers have introduced regression form of probability model in-
tending to improve on the model flexibility and also make predictions easier using such
a regression model such as the Bivariate exponentiated-exponential geometric regression
model (Famoye, 2019), Exponentiated-exponential geometric regression model (Famoye
and Carl, 2016), Bivariate Weibull regression model based on censored samples (Hana-
gal, 2006), Transmuted Burr Type X distribution regression model (Khan, King, and Hud-
son, 2019), and Transmuted Log-logistic regression model (Granzotto and Louzada, 2015),
among others.

However, the Granzotto and Louzada (2015) approach is adopted for the AGUE model.
Consider Z to be a random variable with pdf of the AGUE distribution and g(x) = λ as

a parameter depending on the covariate vector X = (1,xm, · · · ,xk)
T , where m = 1,2, · · · ,k

and g(x) = λ = θ0 + θmxm + · · ·+ θkxk. Hence, the pdf of the AGUE distribution can be
redefined as

P(z|g(x)) =
(g(x))3

[
(g(x))4 +4z2

]
exp(−g(x)z)

(g(x))6 +8
, (13)

where g(x) is a regression model. The corresponding survival S(z|g(x)) and hazard h(z|g(x))
rate functions at period z of (13) can be written as

S(z|g(x)) =
[
(g(x))6 +4(g(x)z)2 +8(g(x)z+1)

]
exp(−g(x)z)

(g(x))6 +8
. (14)

h(z|g(x)) =
(g(x))3

[
(g(x))4 +4z2

]
(g(x))6 +4(g(x)z)2 +8(g(x)z+1)

. (15)



70 F. I. Agu, J. T. Eghwerido: Agu-Eghwerido distribution, regression...

Let pm, · · · , pk be a sample of size from the AGUE distribution, and Xm = (1,x1m, · · · ,
xkm)

T , be an mth vector of covariates, m = 0,1, · · · ,k and g(x) = λ = θ0 + θ1x1 + θ2x2 +

· · ·+ θkxk. Also, for convenience notation, let set x0 = 1, then g(x) = θXT , where θ =

(θ0,θ1, · · · ,θk) ∈ R1×(n+1) and

X =



x0

x1

.

.

.

xk


∈ R1×(n+1).

Thus, the log-likelihood function can be written as

L = InL(g(x)|p,x) = 3k
k

∑
m=0

In
(
(g(x))6 +8

)
+

k

∑
m=0

(
(g(x))6 +4p2

m
)
− k

k

∑
m=0

g(x)pm. (16)

The maximum likelihood estimates of the parameters of g(x), which maximizes (16), must
satisfy the equations

dL
dθ0

=
3k

∑
k
m=0 g(x)

− 6k ∑
k
m=0(g(x))

5

∑
k
m=0

[
(g(x))6 +8

] +6
k

∑
m=0

(g(x))5 − k
k

∑
m=0

ym = 0.

dL
dθm

=
3k ∑

k
m=0 xm

∑
k
m=0 g(x)

− 6k ∑
k
m=0 xm(g(x))5

∑
k
m=0

[
(g(x))6 +8

] +6
k

∑
m=0

xm(g(x))5 − k
k

∑
m=0

xm pm = 0.

6. Real-life data applications

The numerical applications of the one-parameter AGUE distribution are demonstrated
using two data sets.

Data set I is a data set report consisting of 63 observations of the strengths of 1.5cm
glass fibers. The data set has previously been analyzed in Sharma et al.(2016), Oguntunde
et al.(2017), Abdal-hameed et al. (2018), Eghwerido et al. (2021), Oguntunde et al.(2018),
Eghwerido and Agu (2021), Eghwerido, Agu and Ibidoja (2021a) and Khaleel, Al-Noor and
Abdal-Hameed (2020).

Data set II is a data set of about 346 nicotine measurements collected by the Fed-
eral Trade Commission. [http://www.ftc.gov/ reports/tobacco or https: // pw1.netcom.com/
rdavis2/ smoke. html.] used in Handique and Chakraborty (2016).

Tables 3a, 3b, 4a, and 4b present the parameter estimate and values of the test statistics
for the fitted models on the data sets. In addition, the model parameter (Par.) and their
corresponding Log-likelihood (LL), standard errors (Str. Error), and confidence intervals
(CI) are presented. R-programming was used to obtain the results. However, in Tables 3a,
3b, 4a, and 4b, the AGUE model test statistics are the lowest among all fitted models for the
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data sets. Thus, the AGUE model is chosen as the best model among others for these data
sets.

Figures 6, 7, 8, and 9 show the plots of the empirical estimated densities and density of
the models considered for the data sets.

Figure 6: The plots of the estimated ecdf for the AGUE distribution for data set I

Figure 7: The plots of the estimated density of the AGUE distribution for data set

Table 3a. Parameter estimates of the strengths of 1.5 cm glass fibers data.
Model Par. Est. Str. Error LL CI (95% )

Upper Lower
AGUE λ̂ 4.590 0.225 -237.634 5.031 4.149

Exponential λ̂ 0.664 0.084 -88.830 0.829 0.499
Pranav λ̂ 1.561 0.079 -90.481 1.716 1.406
Lindley λ̂ 0.996 0.095 -81.278 1.182 0.800

Table 3b. The test statistics values of the strengths of 1.5 cm glass fibers data.
Model AIC CAIC BIC HQIC
AGUE -473.268 -473.2024 -471.125 -472.425

Exponential -179.661 -179.726 -181.804 -180.504
Pranav -182.963 -183.028 -185.106 -183.806
Lindley -164.557 -164.623 -166.700 -165.390
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Figure 8: The plots of the estimated ecdf for the AGUE distribution for data set II

Figure 9: The plots of the estimated density of AGUE distribution for data set II

Table 4a. Parameter estimates of several brands of cigarettes data.
Model Par. Est. Str. Error LL CI (95%)

Upper Lower
AGUE λ̂ 8.207 0.167 -2677.47 8.534 7.870

Exponential λ̂ 1.173 0.063 -290.826 1.296 1.049
Pranav λ̂ 2.056 0.052 -345.079 2.157 1.955
Lindley λ̂ 1.620 0.068 -269.796 1.755 1.486

Table 4b. The test statistics values of several brands of cigarettes data.
Model AIC CAIC BIC HQIC
AGUE -5352.941 -5352.929 -5349.094 -5351.409

Exponential -583.651 -583.663 -587.498 -585.183
Pranav -692.157 -692.169 -696.004 -693.689
Lindley -541.593 -541.605 -545.439 -543.125

7. Conclusions

We introduced one-parameter distribution called the AGUE distribution with its math-
ematical representation and parameter estimation in this study. The regression model and
basic statistical properties such as the index of dispersion and others were explored. The
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AGUE parameter is estimated using the method of maximum likelihood estimation. The
lifetime applications of the AGUE distribution was illustrated using two-lifetime data sets.
The characteristic of the introduced model for larger sample size is examined via simula-
tion study. The AGUE distribution has the lowest value of test statistics. Thus, it provides
the best fit and more flexible than Pranav, exponential, and Lindley distributions for the
data sets. Ultimately, the AGUE distribution can serve as an alternative model to Pranav,
exponential, and Lindley distributions in the literature. A further research question is how
the applications of the regression model of the AGUE distribution can be explored on real
lifetime data.

7.1. Appendix: Probability density function

Let us write as Mood, Graybill and Boes (1974) stated that any function P(.) is defined
to be a pdf if and only if the following conditions are satisfied

1. P(x)≥ 0 for all x and

2. limc→∞

∫ c
−∞

P(x)dx = 1.

It is easy to see that the first property is satisfied for all x > 0. The second property is shown
as follows. Firstly,

lim
c→∞

∫ c

0
P(x)dx =

∫
∞

0

λ 3

λ 6 +8
[
λ

4 +4x2]exp(−λx)dx

=
λ 3

λ 6 +8
lim
c→∞

[∫ c

0
λ

4exp(−λx)dx+
∫ c

0
4x2exp(−λx)dx

]
.

By performing integration by parts, we obtained

λ 3

λ 6 +8

[
λ

3 +
8

λ 3

]
= 1.

Therefore, equation (1) is a pdf.
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