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From the Editor   

It is with great pleasure that we can announce the upgrading of Statistics 
in Transition new series (SiTns) in terms of points allocated by the Ministry of 
Education and Science to scientific journals, and by the same token, to the articles 
published in SiTns – from 40 to 70 points. 

Also, the formal and legal relations with authors publishing in our journal will 
change as well – namely papers submitted from now on will be made available in the 
framework of Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0) free 
licences. The practical implication of this is that the authors will retain all their 
copyrights, and the readers will be able to use the work according to the provisions of 
the licence. Authors will be granting the licence to the publisher of SiTns in a statement 
submitted along with the paper (the new statement form can be downloaded from 
https://sit.stat.gov.pl/ForAuthors).   

The presented March issue contains 12 articles by authors from 13 countries: 
Turkey, India, Iran, Poland, Botswana, Jordan, Thailand, USA, Pakistan, Canada, 
Nigeria, Saudi Arabia, and Indonesia. We are convinced that such a geographic 
diversity adds to the value of also the thematically diversified problems discussed in the 
articles presented in our journal. 

Invited paper   

The issue starts with the Invited paper entitled Estimation of mask effectiveness 
perception for small domains using multiple data sources by Aditi Sen and Partha 
Lahiri. The paper discusses the impacts of pandemics on public health and related 
societal issues. Due to the fact that mask wearing is one of the few precautions against 
COVID-19, the authors develop a synthetic estimation method to estimate proportions 
of perceived mask effectiveness for small area using a logistic model that combines 
information from multiple data sources. The authors select the working model using 
an extensive data analysis facilitated by a new variable selection criterion for survey data 
and benchmarking ratios and propose a jackknife method to estimate variance of their 
proposed estimator. From the data analysis, it is evident that the proposed synthetic 
method outperforms direct survey-weighted estimator with respect to commonly used 
evaluation measures. To quantify people's perception of mask effectiveness and to 
prevent the spread of COVID-19 for small areas, the authors use Understanding 
America Study's (UAS) survey data on COVID-19 as the primary data source. The issue 
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of mask effectiveness perception is a critical one and helps in understanding the future 
impacts or spread of the disease at the state level. Wearing masks is undoubtedly one of 
the few and most effective precautionary measures.  

Research articles 

Aysegul Yabaci and Deniz Sigirli in their article Comparison of tree-based 
methods used in survival data present survival trees and forests as the popular non-
parametric alternatives to parametric and semi-parametric survival models. The 
Conditional inference trees (Ctree), Conditional inference forests (Cforest) and 
Random survival forests (RSF) methods are discussed in detail and the performances 
of the survival forest methods, namely the Cforest and RSF have been compared with 
a simulation study. The results of the simulation demonstrate that the RSF method with 
a log-rank score distinction criteria outperforms the Cforest and the RSF with log-rank 
distinction criteria. As a result, it has been shown that the RSF method performs better 
than the Cforest. For both methods, it can be said that the Aalen estimator performs 
better than the other estimators. The performance of both methods was better when 
the proportional hazard assumption was not provided. In addition, the RSF method 
shows that the logrank distinction criteria, which is one of two different separation 
criteria, performs better than the logrank score distinction criteria. 

The paper entitled Estimating the population mean using a complex sampling 
design dependent on an auxiliary variable by Arijit Chaudhuri and Sonakhya 
Samaddar starts with a view that the simplest strategy to estimate a population total 
without bias is to employ Simple Random Sampling (SRS) with replacement (SRSWR) 
and the expansion estimator based on it. Anything other than that including SRS 
Without Replacement (SRSWOR) and usage of the expansion estimator is a complex 
strategy. In the paper, the authors examine if from a complex sample at hand a gain 
in efficiency may be unbiasedly estimated comparing the ”rival population total-
estimators” for the competing strategies and how suitable model-expected variances of 
rival estimators compete in magnitude as examined numerically through simulations. 

Mehdi Goldoust and Adel Mohammadpour discuss Generalized extended 
Marshall-Olkin family of lifetime distributions. The authors introduce a new 
generalized class of lifetime distributions, called the LPS2 family of distributions, 
by compounding a lifetime and twice power series distributions in a serial and parallel 
structure. The new models extend several distributions widely used in the lifetime 
literature such as the exponential power series, Weibull power series, and 
complementary of exponential power series distributions. A mathematical treatment of 
the new distributions is provided, including ordinary and incomplete moments, 
quantile, moment generating and mean residual functions. The maximum likelihood 
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estimation technique is used to estimate the model parameters and a simulation study 
is conducted to investigate the performance of the maximum likelihood estimates. The 
authors perform a Monte Carlo simulation study to assess the finite sample behaviour 
of the maximum likelihood estimators. Some members of the LPS2 family are fitted to 
two real data sets to illustrate the usefulness of the new distributions. They provide 
better fits than other competing models consistently. 

Barbara Kowalczyk’s and Robert Wieczorkowski’s article New improved Poisson 
and negative binomial item count techniques for eliciting truthful  answers to sensitive 
questions is devoted to demonstrating how Item Count Techniques (ICTs)  pioneered 
by Miller  are working in the context of indirect survey questioning methods designed 
to deal with sensitive features. These techniques have gained the support of many 
applied researchers and encountered further theoretical development. The two new 
item count methods called Poisson and negative binomial ICTs were also proposed. 
However, if the population parameters of the control variable are not given from the 
outside source, the methods are not very efficient.  In the paper the authors analyse best 
linear unbiased and maximum likelihood estimators of the population proportion of 
the sensitive attribute in the new introduced models. Theoretical results presented in 
the manuscript are supported by a comprehensive simulation study. The improved 
procedure allowed increasing efficiency of the estimation as compared to the original 
Poisson and negative binomial ICTs. In the article three new models are proposed: 
Poisson-Poisson neutral questions ICT, Poisson-negative binomial neutral questions 
ICT, and negative binomial-negative binomial neutral questions ICT. Newly proposed 
methods maintain privacy of respondents at the same level regarding the sensitive 
question. At the same time the three newly proposed techniques increase efficiency of 
the estimation, which is very important in indirect methods of questioning. 

Broderick Oluyede, Thatayaone Moakofi, and Fastel Chipepa discuss a new class 
of distributions in the paper entitled The odd power generalized Weibull-G power 
series class of distributions: properties and applications. The authors develop a new 
class of distributions, namely the odd power generalized Weibull-G power series 
(OPGW-GPS) class of distributions and present some special classes of the proposed 
distribution. Structural properties have also been derived. The authors conducted 
a simulation study to evaluate the consistency of the maximum likelihood estimates. 
Moreover, two real data examples on selected data sets were provided to illustrate the 
usefulness of the new class of distributions. The proposed model outperforms several 
non-nested models on selected data sets. Furthermore, from the results shown in the 
manuscript, the authors conclude that the OPGW-WP distribution is indeed a better 
model compared to several selected models since it is associated with the lowest values 
for all the the goodness-of-fit statistics (and the largest p-value for the K-S statistic). 
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In the next paper, A modified robust confidence interval for the population mean 
of distribution based on deciles, a new approach to estimating the population mean of 
a skewed distribution is considered by Moustafa Omar Ahmed Abu-Shawiesh, 
Juthaphorn Sinsomboonthong, and B. M. Golam Kibria. Acknowledging that the 
confidence interval is an important statistical estimator used to estimate the population 
location and dispersion parameters, the authors look for a robust modified confidence 
interval building upon an adjustment of the Student’s t confidence interval based on 
the decile mean and decile standard deviation for estimating the population mean of 
a skewed distribution. The efficiency of the proposed interval estimator is evaluated 
using an extensive Monte Carlo simulation study. The coverage ratio and average width 
of the proposed confidence interval are compared with some existing, widely used 
confidence intervals. The simulation results show that, in general, the proposed interval 
estimator performs significantly well. For illustration purposes, three real-life data sets 
are analyzed, which support the findings obtained from the simulation study to some 
extent. Consequently, the authors recommend practitioners using the robust modified 
confidence interval for estimating the population mean when the data is generated by 
a normal or skewed distribution. 

The paper entitled Estimation procedures for reliability functions of 
Kumaraswamy-G Distributions based on Type II Censoring and the sampling scheme 
of Bartholomew by Aditi Chaturvedi and Surinder Kumar discusses Kumaraswamy-
G distributions and derive a Uniformly Minimum Variance Unbiased Estimator 
(UMVUE) and a Maximum Likelihood Estimator (MLE) of the two measures of 
reliability, namely R(t) = P(X > t) and P = P(X > Y) under Type II censoring scheme 
and sampling scheme of Bartholomew (1963). Authors also develop interval estimates 
of the reliability measures. A comparative study of the different methods of point 
estimation has been conducted on the basis of simulation studies. An analysis of a real 
data set has been presented for illustration purposes. The paper focuses on developing 
classical estimators for different parameters and reliability functions of Kumaraswamy-
G distributions under various sampling schemes and investigating their properties. 
However, an interesting alternative to MLE and UMVU estimators can be provided by 
the empirical Bayes approach or ML-II estimators based on the robust Bayesian 
approach of Shrivastava et al.. 

The paper by Jakub Janus entitled Long-term sovereign interest rates in Czechia, 
Hungary and Poland: a comparative assessment with an affine term structure model 
provides a comparative evaluation of the behaviour of long-term sovereign yields 
in Czechia, Hungary and Poland from 2001 to 2019. An affine term structure model 
developed by Adrian, Crump and Moench (2013) is used as an empirical framework 
for the decomposition of the bond yields into term premium and risk-neutral 
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components. The paper aimed to examine the sovereign 10-year bond yields in three 
Central European economies: Czechia, Hungary, and Poland, from 2001 to 2019. The 
ACM term structure to extract time-varying risk-neutral and term premium 
components were developed. The evolution of these components, along with their 
relative role in driving the actual interest rates were discussed. The  international 
comovements of 10-year yields between the CE economies and Germany was studied, 
and as an extension the baseline term structure model was corrected. 

Uzma Yasmeen, Muhammad Noor-ul-Amin, and Muhammad Hanif in their 
article focus on Variance estimation in stratified adaptive cluster sampling. In many 
sampling surveys, the use of auxiliary information at either the design or estimation 
stage, or at both these stages is usual practice. Auxiliary information is commonly used 
to obtain improved designs and to achieve a high level of precision in the estimation of 
population density. Adaptive cluster sampling (ACS) was proposed to observe rare 
units with the purpose of obtaining highly precise estimations of rare and specially 
clustered populations in terms of least variances of the estimators. This sampling design 
proved to be more precise than its more conventional counterparts, including simple 
random sampling (SRS), stratified sampling, etc. In this paper, a generalised estimator 
is anticipated for a finite population variance with the use of information of an auxiliary 
variable under stratified adaptive cluster sampling (SACS). The bias and mean square 
error expressions of the recommended estimators are derived up to the first degree of 
approximation. A simulation study showed that the proposed estimators have the least 
estimated mean square error under the SACS technique in comparison with variance 
estimators in stratified sampling. 

The last article prepared by Akeem Ajibola Adepoju, Sauta S. Abdulkadir, 
Danjuma Jibasen, and Haruna Chiroma propose Interval Type-2 fuzzy Exponentially 
Weighted Moving Average Control Chart. The paper aims to develop an Interval Type-
2 fuzzy Exponentially Weighted Moving Average Control Chart (IT2FEWMA) under 
the fuzzy type-2 condition. This development will facilitate monitoring small and 
moderate shifts in the production process in conditions of uncertainty. The manuscript 
extends the control limits of the classical control chart of the exponentially weighted 
moving average (EWMA). The IT2FEWMA is advantageous over the classical EWMA 
due to its flexibility over the control limits, but it is not capable of detecting a big shift 
in the process due to the fact that classical EWMA does not have such capacity too. This 
article is a new addition to the existing Statistical Process Control Tools. It is useful 
when the process engineer needs to monitor a process whose measurement is obtained 
in fuzzy environment and a small shift needs to be detected. 
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Research Communicates and Letters 

The Research Communicates & Letters section presents a paper by Anna 
Islamiyati, Raupong, Anisa Kalondeng, and Ummi Sari entitled Estimating the 
confidence interval of the regression coefficient of the blood sugar model through 
a multivariable linear spline with known variance. The estimates from confidence 
intervals are more powerful than point estimates, because there are intervals for 
parameter values used to estimate populations. In relation to global conditions, 
involving issues such as type 2 diabetes mellitus, it is very difficult to make estimations 
limited to one point only. Therefore, in this article, the authors estimate confidence 
intervals in a truncated spline model for type 2 diabetes data. They use a non-
parametric regression model through a multi-variable spline linear estimator. The use 
of the model results from the irregularity of the data, so it does not form a parametric 
pattern. Subsequently, the authors obtained the interval from beta parameter values for 
each predictor. Body mass index, HDL cholesterol, LDL cholesterol and triglycerides 
all have two regression coefficients at different intervals as the number of the found 
optimal knot points is one. This value is the interval for multivariable spline regression 
coefficients that can occur in a population of type 2 diabetes patients. 

Włodzimierz Okrasa 
Editor  

© Włodzimierz Okrasa. Article available under the CC BY-SA 4.0 licence  
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Submission information for Authors 

Statistics in Transition new series (SiT) is an international journal published 
jointly by the Polish Statistical Association (PTS) and Statistics Poland, on a quarterly 
basis (during 1993–2006 it was issued twice and since 2006 three times a year). Also, it 
has extended its scope of interest beyond its originally primary focus on statistical issues 
pertinent to transition from centrally planned to a market-oriented economy through 
embracing questions related to systemic transformations of and within the national 
statistical systems, world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved in 
data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy makers 
and the general public – with a platform for exchange of ideas and for sharing best 
practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement – as 
either a scientific domain (new research and data analysis methods) or as a domain 
of informational infrastructure of the economy, society and the state – are appropriate 
for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by internationally 
recognized experts, who are guided in their decisions about the publication by criteria 
of originality and overall quality, including its content and form, and of potential 
interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
sit@stat.gov.pl,  
GUS/Statistics Poland, 
Al. Niepodległości 208, R. 296, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published previously and 
that it is not under review elsewhere. It should include an abstract (of not more than 
1600 characters, including spaces). Inquiries concerning the submitted manuscript, its 
current status etc., should be directed to the Editor by email, address above, or 
w.okrasa@stat.gov.pl. 

For other aspects of editorial policies and procedures see the SiT Guidelines on its 
Web site: http://stat.gov.pl/en/sit-en/guidelines-for-authors/ 
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Editorial  Policy 

The broad objective of Statistics in Transition new series is to advance the statistical and 
associated methods used primarily by statistical agencies and other research 
institutions. To meet that objective, the journal encompasses a wide range of topics 
in statistical design and analysis, including survey methodology and survey sampling, 
census methodology, statistical uses of administrative data sources, estimation 
methods, economic and demographic studies, and novel methods of analysis of socio-
economic and population data. With its focus on innovative methods that address 
practical problems, the journal favours papers that report new methods accompanied 
by real-life applications. Authoritative review papers on important problems faced by 
statisticians in agencies and academia also fall within the journal’s scope. 
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Estimation of mask effectiveness perception for small
domains using multiple data sources

Aditi Sen1, Partha Lahiri2

ABSTRACT

Understanding the impacts of pandemics on public health and related societal issues at gran-
ular levels is of great interest. COVID-19 is affecting everyone in the globe and mask wear-
ing is one of the few precautions against it. To quantify people’s perception of mask ef-
fectiveness and to prevent the spread of COVID-19 for small areas, we use Understanding
America Study’s (UAS) survey data on COVID-19 as our primary data source. Our data
analysis shows that direct survey-weighted estimates for small areas could be highly unreli-
able. In this paper, we develop a synthetic estimation method to estimate proportions of per-
ceived mask effectiveness for small areas using a logistic model that combines information
from multiple data sources. We select our working model using an extensive data analysis
facilitated by a new variable selection criterion for survey data and benchmarking ratios. We
suggest a jackknife method to estimate the variance of our estimator. From our data analy-
sis, it is evident that our proposed synthetic method outperforms the direct survey-weighted
estimator with respect to commonly used evaluation measures.

Key words: cross-validation, jackknife, survey data, synthetic estimation.

1. Introduction

Mask effectiveness perception is a topic of great relevance during the COVID-19 pan-
demic with emergence of new variants, multiple waves and fluctuating infection r ates. In 
the United States, national estimates of mask effectiveness perception can be derived by 
weighted means or proportions from respondent level data from a national survey like the 
Understanding America Study. However, to draw conclusions for small areas (e.g., states) 
for which sample sizes are small, direct estimates are inappropriate and misleading with 
very low or high estimates and highly variable standard errors.

In this paper, we explore a synthetic estimation of the perception on mask effectiveness, 
i.e., proportion of people considering mask to be highly effective at the state level. The is
an indirect method of borrowing strength from similar areas. A synthetic estimator is not
area specific in the study variable of interest and can be applied to any probability and non-
probability sample design. Such methods are often employed in practice for their simplicity
and ability to produce estimates for areas with no sample from the sample survey. More-
over, when the survey does not provide any sample for many areas, a synthetic method may
be appealing to public policy makers as the same estimation method is applied to all areas,
irrespective of whether an area has sample or not. There is a widespread use of synthetic

1PhD Student, Applied Mathematics & Statistics, and Scientific Computation. E-mail: asen123@umd.edu
2Director and Professor, The Joint Program in Survey Methodology & Professor, Department of Mathematics, 

University of Maryland, College Park, MD 20742, USA. E-mail: plahiri@umd.edu

© Aditi Sen, Partha Lahiri. Article available under the CC BY-SA 4.0 licence 
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estimation in different small area applications; e.g. Ghosh (2020), Marker (1995) and oth-
ers. A synthetic method uses explicit or implicit models to link several disparate databases
in producing efficient estimates for small areas. Hansen et al. (1953) presented an early
example of a regression method to produce synthetic estimates of the median number of
radio stations heard during the day for over 500 counties of the United States. Stasny et
al. (1991) developed a regression-synthetic method for estimating county acreage of wheat
using a non-probability sample of farms along with auxiliary data on planted acreage and
district indicators. Marker (1999) and Rao and Molina (2015) presented more examples
of synthetic small area estimators based on regression models. For our problem, we com-
bine UAS data with the census data and Covid Tracking Report data to develop synthetic
estimates of mask effectiveness perception for the states.

In Section 2, we describe primary and supplementary data used in this paper. In Sec-
tion 3, we evaluate performances of the state level direct survey-weighted estimates. The
performance of the direct method is poor, which motivates synthetic estimation, described
in Section 4. In this Section, we introduce a JACKKNIFE method to estimate variance of
the synthetic estimator. We report main results from our data analysis in Section 5. In this
Section, we introduce a new model selection criterion for complex survey data. Finally, we
evaluate synthetic estimates by comparative analogy of plotting with direct estimates for a
handful of states, some small like District of Columbia, Rhode Island, North Dakota and
large states like New York, California, Florida. We conclude the paper by summarizing the
utility of the methods described in the paper and discussing how they can be extended to
any other binary, categorical or continuous variable from this survey or any other survey
with little adjustments or modifications.

2. Data used

For this study, we will use the UAS as the primary data containing study variable on
the perception of mask effectiveness and supplementary data containing information for
building small domain modelling and estimation procedures.

2.1. The Primary Data: Understanding America Study (UAS)

The Understanding America Study (UAS), conducted by the University of Southern
California (USC), is an internet panel of households representing the entire United States.
A household is broadly defined as anyone living together with the person who signed up
for participating in the UAS. Using members of the population-representative UAS panel,
USC’s Center for Economic and Social Research (CESR) launched the Understanding Coro-
navirus in America tracking survey on March 10, 2020. The survey provides useful infor-
mation on attitudes, behaviours, including health care avoidance behaviour, mental health,
personal finances around the novel coronavirus pandemic in the United States.

Initial requests were sent out to the UAS panel members in order to determine their
willingness to participate in an ongoing Coronavirus of UAS surveys. Among 9,063 UAS
panel members who responded to the initial request, 8,547 were found eligible to participate
in the survey. On average until November, 2020 (wave 16) about six thousand respondents
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Table 1: Understanding of America Survey (UAS) wave details

Wave Number Wave Name Time period Sample size
1 UAS 230 March 10, 2020 - March 31, 2020 6,932
2 UAS 235 April 1, 2020 - April 28, 2020 5,478
3 UAS 240 April 15, 2020 - May 12, 2020 6,287
4 UAS 242 April 29, 2020 - May 26, 2020 6,403
5 UAS 244 May 13, 2020 - June 9, 2020 6,407
6 UAS 246 May 27, 2020 - June 23, 2020 6,408
7 UAS 248 June 10, 2020 - July 8, 2020 6,346
8 UAS 250 June 24, 2020 - July 22, 2020 6,077
9 UAS 252 July 8, 2020 - Aug 5, 2020 6,289

10 UAS 254 July 22, 2020 - Aug 19, 2020 6,371
11 UAS 256 Aug 5, 2020 - Sep 2, 2020 6,238
12 UAS 258 Aug 19, 2020 - Sep 16, 2020 6,284
13 UAS 260 Sep 2, 2020 - Sep 30, 2020 6,284
14 UAS 262 Sep 16, 2020 - Oct 14, 2020 6,129
15 UAS 264 Sep 30, 2020 - Oct 27, 2020 6,181
16 UAS 266 Oct 14, 2020 - Nov 11, 2020 6,181

participate in the surveys, as seen from sample size in Table 1. Beginning in March 2020,
the first round was UAS 230, which fielded from March 10 to March 31, 2020, with most
responses happening during the period of March 10-14, 2020. UAS 230 is the first round
of the survey that includes questions specifically tailored to COVID-19. These questions
were repeated in subsequent longitudinal waves. The survey is being conducted in multiple
waves. As of November 11, 2020,there are 16 waves, as described in Table 1 with their time
periods.

For each wave, eligible panel members are randomly assigned to respond on a specific
day so that a full sample is invited to participate over a 14-day period. Respondents have
14 days to complete the survey but receive an extra monetary incentive for completing the
survey on the day they are invited to participate. Thus, except for the first wave, the data
collection period for each wave is four weeks with a two-week overlap between any two
consecutive waves. Each wave data consists of, on an average, six thousand observations.

The UAS is sampled in batches, through address-based sampling. The batches are allo-
cated for national estimation and also for special population estimation (Native Americans,
California, and Los Angeles county). Essentially UAS is a multiple-frame survey with four
frames: Nationally Representative Sample, Native Americans, Los Angeles (LA) County,
and California. Table 2 shows the relationship between the batches and frames, but each
batch draws from only one frame.

As of November 2020, there are 21 batches, the latest being added in August, 2020.
Most batches use a two-stage probability sample design in which zip codes are drawn first
and then households are drawn at random from the sampled zip codes (except for two small
sub-groups that are simple random samples from lists). The National batches draw zip
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Table 2: Relationship between Batches and Frames in the Understanding America Survey

Batch Frame
1 U.S.

2,3 Native American
4 Los Angeles County young mothers

5 to 12 U.S.
13,14,18,19 Los Angeles County

15,16 California
17,20,21 U.S.

codes without replacement, but the Los Angeles County batches draw with replacement and
do sometimes contain the same zip code in different batches.

The base weights account for the differential probability of sampling a zip-code and an
address within it. The base weights are then adjusted for nonresponse. Finally, at the na-
tional level, the distribution of nonresponse adjusted weights is calibrated to that of the 2018
Current Population Survey (CPS) weights with respect to selected demographic variables.
Weights are provided for all batches, except for batch 4, which comprises Los Angeles
County young mothers, and non-Native American households in batches 2 and 3. Angrisani
et al. (2019) describe the sampling and weighting for UAS in great detail.

The survey includes a national bi-weekly long-form questionnaire and a weekly Los
Angeles County short-form questionnaire administered in each bi-weekly wave. The survey
data contains information on different demographic variables such as age, race, sex, and
Hispanic origin, education, marital status, work status, identifiers for the states and zip-
codes, and various outcome variables affecting human lives (e.g., mental stress, personal
finances, COVID-19 like symptoms, testing results, etc.) The data also contains base and
final weights so survey-weighted direct estimates for different outcome variables of interest
can be produced.

2.2. Supplementary Data

The COVID Tracking Project: Both national and state level data can be downloaded from
https://covidtracking.com. We use the data as a source of state specific auxiliary variables in
our models. The COVID Tracking Project collects and publishes testing data daily for the
United States as a whole and also for states and territories. From this data we understand
that for 50 states and the District of Columbia (DC) combined the total test count has been
increasing fast with more than 1 million in April 2020 to close to total 200 million by
end of November 2020. The daily test count also increased from around 180K in April
2020 to 1.5 million in November 2020. There are various state specific auxiliary variables
that could be potentially predictive of the perception on mask effectiveness. They include
COVID-19 daily total testing, total test results (positive/negative), death, recovery count (as
obtained from Johns Hopkins data on coronavirus), hospitalization, ventilation, etc. With
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the increase in tests (due to better supply of testing kits, increase in awareness, etc.) or
increase in positive cases (due to mask mandate being relaxed, advent of a new variant,
etc.), one may argue that people’s perceptions of mask effectiveness may change. Thus
for this study, we use the following auxiliary variables that could be potentially useful in
explaining our outcome variable on perception of mask effectiveness:

(i) totalTestResults: total number of tests with positive or negative results,

(ii) positive: total number of positive tests.

To make the above two auxiliary variables comparable across 50 states and the District of
Columbia, we have used appropriate scaling factors to create the following two auxiliary
variables, which we have used in our modelling:

(i) Testing rate: (Total tests with positive or negative results)/(Total population of state),

(ii) Positivity rate: (Total positive tests)/ (Total tests with positive or negative results).

Population density data: We use population density estimates in our modelling. Popu-
lation density estimates for US states in 2010 are obtained from the U.S. Census Bureau
(2020). For this study, we have created a categorical variable from it with three levels as
follows:

• low - when population density of a state is less than or equal to 101 people per square
mile (1st quartile from 2010 census data), e.g. North Dakota, Wyoming, Alaska etc.,

• medium - when population density is greater than 101 but less than or equal to 231
people per square mile (median), e.g. Georgia, Michigan, Virginia, etc.,

• high - when population density is greater than 231 people per square mile, e.g. New
York, California, District of Columbia, etc.

Democratic party affiliation: For a given state, we have created a binary variable, which
takes on the value 1 if the Governor of the state is a Democrat and 0 otherwise. The infor-
mation is prior to the 2020 election and obtained from Wikipedia (2020).

Region membership of the states: Since 1950, the United States Census Bureau defines
four statistical regions, with nine divisions. Using information obtained from the Census
Bureau (2010) we have marked each state as one of the four regions - Northeast, Midwest,
South and West.

Census Bureau’s Population Estimates Program (PEP): For our synthetic estimation
method, we need population counts for different demographic groups in the 50 states and the
District of Columbia. The Census Bureau releases various tables of population estimates.
On June 2020, the Population Division of the U.S. Census Bureau released annual state
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resident population estimates by age, sex, race, and Hispanic origin for the period April 1,
2010 to July 1, 2019. The Census Bureau essentially obtains these estimates using the 2010
decennial census as the base and updates by births, deaths, migration etc. available from the
administrative records and others obtained from the American Community Survey (ACS)
survey. We have used two data sources as follows:

1. SCPRC-EST2019-18+POP-RES: Estimates of the Resident Population Age 18 Years
and Older for the US states from July 1, 2019 (released on December 2019), which
can be directly used.

2. SC-EST2019-ALLDATA5: Estimates of population by Age, Sex, Race, and Hispanic
Origin – 5 race groups (5 race alone or in combination groups). This data needs to
be adjusted by filtering out 18+ population (with “AGE”) for the above-mentioned
domains (using variables “RACE” for white and rest as other race and “ORIGIN” for
Hispanic or Non-Hispanic). Sex is not used, although present in the data and hence
set to value 0 for all. The domain wise populations are then adjusted with a factor
(i.e., multiplying with domain wise population/total state population) so that the sum
of all the domains is equal to the total state level estimate mentioned before.

3. Direct estimation

For the mask effectiveness perception problem, we focus on the following question from
survey questionnaire: How effective is wearing a face mask such as the one shown here
for keeping you safe from coronavirus? This is a categorical variable with five possible
answers: (i) Extremely Ineffective, (ii) Somewhat Ineffective, (iii) Somewhat Effective, (iv)
Extremely Effective, and (v) Unsure. The answer choices of respondents have been used
to create a binary variable that takes on the value 1 is taken if mask is considered to be
Extremely Effective by respondent and 0 otherwise. Using this binary variable the direct
estimate works really well at overall national level with low standard error.

The survey data contains respondents residing in 50 states and DC, but naturally they are
not evenly distributed. For larger states like California or Florida, there is a sizable volume
in the sample of even as high as 2000 respondents and for smaller states like Delaware or
Wyoming, there is very little representation of even 3 or 4 respondents. In such scenarios,
direct survey-weighted estimates are highly misleading. For example, we see for the first
three waves 0% of people in Wyoming think mask is extremely effective, which happens
because all the respondents in the sample take the value 0 for binary response variable
perceived mask effectiveness. Hence this is not a good method to draw a conclusion for the
whole population of the states.

We observe extremely variable standard error (SE) or margin of error (ME). Estimated
SE, or equivalently, estimated ME for a state depends on the sample size and the value of
estimated proportion. For a state with small sample size, say less than 12, SE is either 0
or very high. From computations of direct estimates, from multiple waves we see that for
Rhode Island, a state whose contribution in the wave is small with 2 or 3 respondents, esti-
mated SE in the first few waves (1 and 2) is 0%. We obtain 0 SE when all the observations
are the same. In the case of Rhode Island the cause is latter. But as soon as we have a mix
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Figure 1: Direct estimates of perceived mask effectiveness and associated standard errors
for four selected states.

of 0s and 1s, SE becomes very high, as high as even 30% from wave 5 onwards to wave 9
for Rhode Island.

Figure 1 displays erratic behaviour of direct estimates and standard errors for four states
with varying population sizes (as estimated from the Census Bureau’s PEP data)- one with
high population (California - estimated adult population of 30 million from PEP), one with
medium population (New York - estimated adult population of 15 million from PEP) – one
with small population (Maryland - estimated adult population of 4 million from PEP) and
one with very small population (Rhode Island - estimated adult population of 800k from
PEP). The curves for Rhode Island are very unstable whereas, those for New York and
California are quite stable. These SE estimates are thus surely very unstable or unreliable
and typically, in public opinion polls margin of errors (2SE) is targeted at a low level such
as 3% or 4%. Figure 1 for Rhode Island demonstrates high variability in state estimates for
smaller states.

Along with high variability a demonstration of high bias in the direct state estimates
can also be observed. Since we do not know the truth for perceived mask effectiveness, we
cannot demonstrate bias properties for perceived mask effectiveness. But we can say if we
consider another outcome variable for which “truth" is known from the PEP data, we can at
least partially justify our claim. Using Figure 2 we show that UAS estimates of proportions
of people falling in the four demographic groups or domains we considered do not match up
with PEP data for states, but they more or less match at the national level. For large states
like California, the difference between PEP estimate of the percentage of adult population
and UAS direct wave estimate is negligible. This is similar for medium sized states like
Maryland and New York, but for small states like Rhode Island and North Dakota, referring
to Figure 2, we see the percentages vary significantly with even 0% or no contribution in
some domains.

4. Synthetic method

For developing the synthetic estimation of perceived mask effectiveness for small areas,
i.e., at state level, we first define the following notations and then derive a formula for
the estimator from a logistic regression model. Let yk denote the value of outcome (or
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Figure 2: PEP vs. UAS estimates of 4 domains
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dependent) variable for the kth respondent (k = 1, · · · ,n), where n denotes the number of
respondents in a given wave (say, wave 2 covering April 1-April 28, 2020) of the UAS
survey. The outcome variable is binary as defined by yk = 1 if respondent k considers mask
wearing to be extremely effective. Let xk = (xk1, · · · ,xkp)

′ denote the value of a vector of
auxiliary variables (same as independent variables or predictor variables or covariates) for
respondent k. We have focused on the following two criteria for selecting the auxiliary
variables for the unit level logistic regression model: (i) auxiliary variables should have
good explanatory power in explaining the outcome variable of interest; (ii) total or mean
of these auxiliary variables for the population should be available from a big data such as a
large survey, administrative records or decennial census. Let Ni and Ngi be the population
size of the adult (18+) and the gth group in state i, respectively. As discussed previously in
the data section Ngi and Ni values are obtained from the US Census Bureau. Let ygik be the
value of the outcome variable for kth respondent in state i for the gth group (g= 1, · · · ,G; i=
1, · · · ,m; k = 1, · · · ,Nig). Here we have m = 51 (50 states and DC) small areas. Let zi be a
vector of state specific auxiliary variables. For the estimation of mask-effectiveness variable
for the 50 states and the District of Columbia, we write the population model as:

Level 1: ygik|θgi
ind∼ f (.;θgi), Level 2: h(θgi) = x′gβ + z′iγ, (1)

for k = 1, · · · ,Ngi, g = 1, · · · ,G; i = 1, · · · ,m, where f (.;θgi) is a suitable distribution with
parameter θgi (here for binary variable this is a Bernoulli distribution with success probabil-
ity θgi); h(θgi) is a suitable known link function (for this application, we take logit link); β

and γ are unknown parameters to be estimated using UAS micro data, i.e., at the respondent
or unit level using survey weights.

We estimate population mean for state i by: ˆ̄Y syn
i = ∑

G
g=1(Ngi/Ni)θ̂gi = ∑

G
g=1(Ngi/Ni)

h−1(x′gβ̂ +z′iγ̂), where h−1 is the inverse function of h; β̂ and γ̂ are survey-weighted estima-

tors of β and γ , respectively. If h(·) is a logit function, we have ˆ̄Y syn
i = ∑

G
g=1(Ngi/Ni)θ̂gi =

∑
G
g=1(Ngi/Ni)exp(x′gβ̂ + z′iγ̂)

[
1+ exp(x′gβ̂ + z′iγ̂)

]−1
.

We propose a jackknife method to estimate the variance of the proposed synthetic esti-
mator. We obtain jth jackknife resample by deleting all survey observations in batch j. Thus
we have m = 20 jackknife resamples from wave 14 onwards because there are 20 batches
in total, whereas earlier for waves 1 to 13 there were in total 19 batches in each wave data,
the latest addition being “21 MSG 2020/08 Nat. Rep. Batch 11" in August 2020 and LA
County Young mothers is not present in any of the waves. For each jackknife resample, we
recompute replicate synthetic estimate using (1). We will get m such replicate estimates,
say, ˆ̄Y syn

i(− j) ( j = 1, · · · ,m). We can then estimate the variance of ˆ̄Y syn
i by

v( ˆ̄Y syn
i ) =

m−1
m

m

∑
j=1

(
ˆ̄Y syn
i(− j)−

1
m

m

∑
j=1

ˆ̄Y syn
i(− j)

)2

. (2)
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Table 3: Direct national estimates of perceived mask effectiveness (associated standard er-
rors) for selected demographic groups and first five waves.

Direct Estimate Wave 1 Wave 2 Wave 3 Wave 4 Wave 5

Overall National
14%

(0.6%)
41%

(0.9%)
47%

(0.9%)
46%

(0.9%)
44%

(0.9%)

NH White Age(18-44)
12%

(1.1%)
33%

(1.7%)
39%

(1.6%)
37%

(1.6%)
33%

(1.6%)

NH White Age(45+)
11%

(0.7%)
40%

(1.2%)
46%

(1.1%)
46%

(1.1%)
44%

(1.1%)

Other race Age(18-44)
20%

(1.7%)
48%

(2.6%)
54%

(2.3%)
50%

(2.3%)
49%

(2.3%)

Other race Age(45+)
17%

(1.7%)
47%

(2.7%)
58%

(2.5%)
58%

(2.5%)
58%

(2.4%)

5. Data analysis

At national level in order to understand the broader question on the identification of
demographic factors influencing effectiveness perceptions certain domains or groups are
created based on race-ethnicity x age. These four groups are Non Hispanic White Age
18-44, Non Hispanic White Age 45+, Other race Age 18-44 and Other race Age 45+. Con-
siderable variation among these groups is observed across multiple waves with all standard
errors (SE) from direct estimates around 2%, after which it is chosen for further estimation
study. The direct survey-weighted estimates at the national level as well as domain level
from waves 1 to 5 are provided in Table 3 along with the standard errors in parenthesis;
see also Figure 3. We observe that the overall national estimate and the domain NH White
Age(45+) behave similarly (e.g, 46% and 44% for waves 4 and 5, respectively). The Other
Race Age (45+) domain has the highest perception of mask effectiveness (e.g., 58% for
waves 4 and 5), whereas the domain NH White Age (18-44) has the least value of such
estimate (e.g., 37% and 33% at wave 4 and 5, respectively). Thus this breakdown of the
population into domains can be used further for modelling. We have used R survey pack-
age to compute such estimates with the weights of respondents as provided in the wave
data. We refer to the papers by Lumley (2004, 2010, 2020) for understanding the R survey
package.

From the aforementioned observations, it is clear that direct estimates are not stable
even at the state level. The synthetic estimators essentially would borrow strength from
other states through implicit or explicit models and combine information from the sample
survey, various administrative/census records, or previous surveys. Synthetic estimators are
highly effective and appealing in small area estimation. Referring to synthetic estimation
methods explained in Lahiri and Pramanik (2019), we employ a unit level logistic model
with respondent level characteristics like the age x race/ethnicity along with state level aux-
iliary variables such as regional identifier (e.g., Northeast, Midwest, South or West), party
affiliation of state governor or DC mayor (Democratic or Republic) and even the state level
COVID-19 testing or positivity rate. Thus we have combined the data in UAS survey with
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Figure 3: National direct wave estimates of perceived mask effectiveness and associated
standard error direct estimates; overall estimates as well as estimates for four groups are
provided.

the US Census Bureau data and Covid Tracking Project data to derive state level synthetic
estimates of population means and totals for the variable of interest.

5.1. Variable Selection

For all the 16 waves, we first fit the full model, i.e., the model with all auxiliary variables
listed earlier. Table 4 displays significant auxiliary variables in all the waves. We then con-
centrate our focus on the models given in Table 5. These are logistic regression models for
the indicator response variable perceived mask effectiveness with different combinations of
auxiliary variables. In every case, we use R survey package to run weighted logistic regres-
sion with quasi-Bernoulli family, where weights are the final post-stratification weights as
provided by UAS and design is defined with such weights and no strata or cluster.

The full model, i.e., M1, is our starting point. True values of some of the coefficients
of M1 may be zero; if the sample size is large, those coefficients will be estimated at near
zero. But, if we keep too many covariates in a model, the estimates may be subject to high
variability (and thereby we may lose some predictive power if we select a model with a lot
of covariates.)

We now explore the possibility of reducing the number of auxiliary variables from M1.
There are a large number of possible models so we proceed systematically. To this end, we
fit M1 for all the 16 waves. Table 4 reports significant auxiliary variables for each of the
16 waves. In all the models, we include intercept (whether or not it is significant). Using
information in Table 4, we create Table 5, which lists a number of competing models with
less number of model parameters. We now explain why we want to consider models M1-M7
for further comparison.

All the auxiliary variables except for the democratic party affiliation appear in at least
one wave. Thus, a natural question is what happens if we drop the democratic party af-
filiation from M1, which motivates keeping M2 for further investigation. Positivity rate is
significant only in wave 5. This suggests inclusion of model M3 for further investigation.
The factors NH Whites (18-44), NH Whites (45+), Other Race (18-44), population density
are all significant for 5 waves: 6,7, 12, 14, and 16. So the model M7 seems to be a natural
choice. We then consider models M3-6. Note that, in addition to NH Whites (18-44), NH
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Table 4: Significant covariates in Model 1 for different waves; from R package output of
significance code and p-value pairs to be interpreted as ‘***’ for [0, 0.001], ‘**’ for (0.001,
0.01], ‘*’ for (0.01, 0.05], ‘•’ for (0.05, 0.1], ‘ ’ for (0.1, 1]

Wave intercept

NH White
Age(18-44)
(indicator)

NH White
Age(44+)
(indicator)

Other race
Age(18-44)
(indicator)

testing
rate

positivity
rate

population
density

(categorical)

region
Northeast
(indicator)

region
Midwest

(indicator)

region
South

(indicator)

Democratic
party

(indicator)

1 *** * *** • **

2 *** * •

3 *** *** ***

4 *** *** * *** **

5 * *** *** * ** ** •

6 *** *** * ***

7 *** *** * **

8 *** *** *** *

9 *** *** • ***

10 *** *** * * **

11 *** *** • *** • •

12 *** *** * ***

13 *** *** • * ** **

14 *** *** • ***

15 *** *** • •

16 *** *** * ***

Table 5: A list of competing models

Model intercept

NH White
Age(18-44)
(indicator)

NH White
Age(44+)
(indicator)

Other race
Age(18-44)
(indicator)

testing
rate

positivity
rate

population
density

(categorical)

region
Northeast
(indicator)

region
Midwest

(indicator)

region
South

(indicator)

Democratic
party

(indicator)

M1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

M2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

M3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

M4 ✓ ✓ ✓ ✓ ✓ ✓ ✓

M5 ✓ ✓ ✓ ✓ ✓ ✓

M6 ✓ ✓ ✓ ✓ ✓ ✓

M7 ✓ ✓ ✓ ✓ ✓
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Whites (45+), Other Race (18-44), population density, each of these three models includes
an additional auxiliary variable significant in at least one wave. For example, M4 includes
an additional auxiliary variable testing rate because all M4 coefficients are significant in
wave 10.

To select one out of the seven models listed in Table 5, we apply a cross-validation
leave-one-state-out method. We now describe the method. We leave out the entire UAS
survey data on the outcome variable yi (e.g., perceived mask effectiveness) for state i and
predict the vector of outcome variables for all sampled units of the leave out state using xg

for the sampled unit and z−i for the leave out state. Let f (yi|y−i) denote the joint density
of yi, all the observations in state i, conditional on the data from the rest of the states, say
y−i. For the Bernoulli distribution of yi for state i, using independence, we have for known
model parameters β and γ:

log f (yi|y−i;β ,γ) =
G

∑
g=1

ngi

∑
k=1

[
ygik logθgi +(ngi − ygik) log(1−θgi)

]
=

G

∑
g=1

ngi

∑
k=1

[
ygik log

(
θgi

1−θgi

)
+ngi log(1−θgi)

]

=
G

∑
g=1

ngi

∑
k=1

[
ygik(x′gβ + z′iγ)−ngi log

(
1+ exp(x′gβ + z′iγ)

)]
.

Using data from the rest of states, i.e., y(−i) we get survey-weighted estimates β and γ and
plug in the above expression. Let these estimates be β̂w,(−i) and γ̂w;(−i). We then define our
model selection criterion as:

C =
m

∑
i=1

G

∑
g=1

ngi

∑
k=1

wgik

[
ygik(x′gβ̂w,(−i)+ z′iγ̂w;(−i))−ngi log

(
1+ exp(x′gβ̂w,(−i)+ z′iγ̂w;(−i))

)]
.

For each of the models in Table 5, we compute C model selection measures for all the
waves (wave 1-16). In Table 6, we report the quantiles (minimum, first quartile, median,
third quartile, maximum) and mean of C values (over the 16 waves) for each model in
Table 5. We divide C value from each model by the sample size of the wave to scale down
the numbers for ease of comparison. The C values are all negative, as these are logarithm
of fractions. For every state, iteratively regressions are run and regression estimates are
obtained, which are used in the formula. Using Table 6, we select M2 as the best performing
model because this model produces maximum value of all descriptive statistics reported in
Table 6.

5.2. Synthetic estimation of the perception of mask effectiveness for the states

In this section, we consider benchmarked synthetic estimates, which are obtained from
the synthetic estimates after a ratio adjustment. These benchmarked synthetic estimates,
when appropriately aggregated over the 50 states and the District of Columbia, yield the
national direct estimate. We compare both synthetic and benchmarked synthetic estimates
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Table 6: Cross validation leave one state out statistic for all models

Model 0% 25% 50% 75% 100% Mean
M1 -89 -83 -75 -68 -16 -71
M2 -79 -55 -10 -8 -7 -28
M3 -92 -86 -83 -78 -20 -78
M4 -92 -86 -82 -77 -21 -78
M5 -91 -84 -80 -76 -19 -76
M6 -68 -59 -55 -51 -17 -54
M7 -90 -82 -76 -69 -15 -72

with the corresponding direct sample survey estimates (i.e., weighted proportion of peo-
ple from UAS who believe mask is extremely effective) for the 50 states and the District
of Columbia. This gives us an idea about the magnitude of biases in the synthetic and
benchmarked synthetic estimates because direct estimates, though unreliable, are unbiased
or approximately so. In Figure 4, we have 6 plots corresponding to 6 states (3 with small
population - District of Columbia, North Dakota, Rhode Island, and 3 with large population
- California, New York, Florida) of point estimates (direct and benchmarked synthetic) vs
waves, which display time series trends from wave 1 to wave 16. The direct estimates of
perceived mask effectiveness for small states could be unreasonable. For example, for the
District of Columbia, direct estimates are 0% for both waves 1 and 2. On the other hand,
benchmarked synthetic estimates 18% and 39% are more reasonable for these two waves –
they are more in line with the national estimates for such waves. Similarly, for Rhode Island
unreasonable 100% perceived mask effectiveness direct estimates for waves 13 and 15 have
also been modified to more reasonable benchmarked synthetic estimates.

Figure 5 displays standard errors of direct and benchmarked synthetic estimates. The
proposed jackknife method is used to compute standard errors for benchmarked synthetic
estimates. We denote standard errors of direct and benchmarked synthetic estimates by SE
and STD, respectively. If we focus on the error graphs, the values from direct estimates get
as high as 32% for small states (i.e. one with low contribution to overall sample size). Using
benchmarked synthetic estimates at the state level, the error has reduced to almost 6 times
with as low as 6% standard error from the jackknife method. For larger states like New
York and Florida, the errors reduce using benchmarked synthetic estimate, although not to
a great extent. For the state contributing most to the sample size, California, the standard
errors are more or less similar.

For the chosen model M2, we create a state level comparative diagram of benchmarked
synthetic estimates with direct estimates in Figure 6 using data from wave 16. As at the
state level, the synthetic estimates and the corresponding benchmarked synthetic estimates
are really close, we have not plotted synthetic estimates for ease of viewing. We observe that
our synthetic estimates are much more stable than the corresponding direct estimates. The
states arranged in increasing order of population sizes show that the issue of highly variable
state level direct estimates for the smaller states has been mitigated by the synthetic method.
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Figure 4: Time series trend of direct and benchmarked synthetic estimate for 6 sample states
(3 small, 3 large)
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Figure 5: Time series trend of SE of direct and benchmarked synthetic estimate for 6 sample
states (3 small, 3 large)
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For largely populated states as well as for small ones, the benchmarked synthetic estimates
are doing a good job of estimating the proportion of the response variable. We next check
the robustness of the synthetic estimator in terms of variance through the jackknife method.

Figure 6: State level comparison of direct and synthetic estimates from M1 for wave 16

We fitted M2 for wave 16 data and obtained jackknife estimates of variances and hence
standard errors at the state level. We provide a comparative view with the SE from direct
estimates at the state level. The two graphs in Figure 7 are based on the wave 16 data. In the
x-axis, states are arranged in increasing order of sample sizes. In the first graph, the y-axis
is the ratio of direct estimate (survey-weighted) and synthetic estimate. In the second graph,
the y-axis is the ratio of STD and SE, where SE is the standard error of direct estimate
coming right from UAS (treating states as domains) and STD is the jackknife standard error
of benchmarked synthetic estimate. For states with small sample sizes (e.g. Rhode Island,
Wyoming), we see a lot of differences between the survey-weighted direct estimates and
the synthetic estimates. For states with large sample sizes (e.g., California), the ratio is
approaching to 1 (as plotted by the straight line) as the auxiliary variables used to construct
the synthetic estimator are reasonable. We observe that all the jackknife estimates are much
smaller than direct estimates and we conclude that the model is a fair one at estimating the
perceived mask effectiveness at state level.

We define Benchmark Ratio (BR) as the ratio of the overall direct national estimate to
the synthetic estimate (aggregated at the national level). The synthetic estimates, which
are obtained at the state level, are aggregated by multiplying by the ratio of the adult state
population to the overall US adult population estimate and then adding up. The closer the
value of BR is to 1 the better is the model. We see from Table 7 that BR is close to 1 for all
waves, using which we compute the Benchmarked or BR synthetic estimate.
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Figure 7: Comparison of direct with benchmarked synthetic estimates through the ratio
SE/STD and ratio of estimates from M1 for wave 16; domains arranged in increasing order
of sample size.

Table 7: Benchmarking ratios and national synthetic and benchmarked synthetic estimates
for last five waves; synthetic estimates are based on Model 1.

Model 0% 25% 50% 75% 100% Mean
Benchmarking Ratio 0.98 0.98 0.99 0.99 1.00 0.99

Synthetic 14.08% 45.22% 48.63% 50.43% 51.94% 46.00%
Benchmarked Synthetic 13.86% 44.62% 48.02% 49.66% 51.22% 45.38%

6. Conclusion

The method of estimating population means or totals for the states of USA explained in
the paper provides sensible and numerically sound estimates and the model selection with
all standard error of estimates within 2%. We noticed high variability of synthetic estimates
at the state level estimation. We further note that while direct UAS estimates are designed
to produce approximately unbiased estimates at the national level, they are subject to biases
for the state level estimation. Biases in the direct proportion estimates at the state level may
arise from the fact that they are essentially ratio estimates since the state sample sizes are
random and expected sample sizes are small for most states. Moreover, the UAS weights
are not calibrated at the state level.

From our investigation, we found that synthetic estimates improve on UAS direct esti-
mates in terms of variance reduction, especially for the small states. But since synthetic esti-
mates are derived using a working model, they are subject to biases when working model is
not reasonable. However, we observe that the benchmarking ratios for all waves are consis-
tently around 1 showing lack of evidence for bias. Our benchmarked synthetic estimates are
close to the synthetic estimates because the benchmarking ratios are close to 1. None-the-
less by benchmarking synthetic estimates we achieve data consistency and it is reasonable
to expect to reduce biases as well. We add that it is possible to reduce biases at the state level
by benchmarking the synthetic estimates to the UAS direct estimates for a group of states
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(e.g., benchmarking with a division). This may be needed for other synthetic estimation
problems.

Infection rates has declined declining in most parts of the USA. However, with differ-
ential vaccination hesitancy rates across the US states and emergence of new COVID-19
variants, identification of granular level mask effectiveness perception rates may remain an
important problem in the US. While we wait to reach herd immunity through aggressive
vaccination program, good control of the spread of COVID-19 and its different variants in
different parts of the world is essential. Thus, it will be of interest to understand mask effec-
tiveness perception rates in communities throughout the world, especially where infection
rates are high. Not only COVID-19, but for other infectious diseases, mask effectiveness
perception is likely to stay relevant. While we illustrate the proposed synthetic methodol-
ogy for state level estimation of perceived mask effectiveness, the methodology is general
and can be applied to granular sub-state levels with no sample from the primary survey
data. Moreover, similar synthetic methodology can be developed in the future to estimate
granular level proportions related to personal finance, mental health, etc.
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Comparison of tree-based methods used in survival data 

Aysegul Yabaci1, Deniz Sigirli2 

ABSTRACT 

Survival trees and forests are popular non-parametric alternatives to parametric and semi-
parametric survival models. Conditional inference trees (Ctree) form a non-parametric class 
of regression trees embedding tree-structured regression models into a well-defined theory 
of conditional inference procedures. The Ctree is applicable in a varietyof regression-related 
issues, involving nominal, ordinal, numeric, censored, as well as multivariate response 
variables and arbitrary measurement scales of covariates. Conditional inference forests 
(Cforest) consitute a survival forest method which combines a large number of Ctrees. The 
Cforest provides a unified and flexible framework for ensemble learning in the presence of 
censoring. The random survival forests (RSF) methodology extends the random forests 
method enabling the approximation of rich classes of functions while maintaining 
generalisation errors low. In the present study, the Ctree, Cforest and RSF methods are 
discussed in detail and the performances of the survival forest methods, namely the Cforest 
and RSF have been compared with a simulation study. The results of the simulation 
demonstrate that the RSF method with a log-rank score distinction criteria outperforms the 
Cforest and the RSF with log-rank distinction criteria. 

Key words: tree-based methods, conditional inference trees, conditional inference forests, 
random survival forests. 

1. Introduction  

Tree-based methods constitute classification and regression models in the form of 
a tree structure according to data sets. Understanding the decision rules used in the 
creation of tree structures makes the use of the method common. Decision trees 
perform decision making with a multi-stage and sequential approach in solving the 
classification and regression problem (Safavian et al. 1991). 

The Classification and Regression Trees (C&RT) provide a visual representation of 
the effect of independent variables on dependent variables and the interaction between 
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them, which is used to estimate the class membership of a discrete or continuous 
dependent variable without pre-requisite presentation of the independent variable. 
In general, if the dependent variable is categorical, the name of the method is the 
classification tree, and if it is continuous, the method is called the regression tree 
(Breiman et al. 1984). 

Survival trees and forests are popular non-parametric alternatives to parametric 
and semi-parametric survival models. A single tree set can be classified according to 
survival characteristics by taking into consideration independent variables, while a very 
powerful estimating tool can be obtained through tree sets created by the combination 
of trees. 

The aim of this study is to evaluate the performances of random survival forests 
(RSF) and conditional inference forest (Cforest) methods as tree-based methods used 
in survival data analysis, for different conditional censored survival function 
estimators, for different sample sizes and for cases where the proportional hazard 
assumption is provided and not provided. 

2. Methods of comparison 

2.1. Conditional inference trees  Ctree 

Let 𝑇෨  show the actual time of death and 𝐶 be the time of censoring,  𝑇 ൌ 𝑚𝑖𝑛൫𝑇෨ ,𝐶൯ 
is the dependent variable and ∆ൌ 𝐼൫𝑇෨ ൑ 𝐶൯ is the state variable. Let  𝑿 ൌ ൫𝑋ଵ, … ,𝑋௣൯ be 
the vector of p dimensional covariate from 𝒳 ൌ 𝒳ଵ  ൈ …ൈ𝒳௣  sample space. The 
situation in which covariates are measured on any scale is discussed. Given the 
covariate of 𝑿, 𝑇 is the conditional distribution of the dependent variable, presented in 
the form of ℱ𝑻|𝑿 to be a function of the common variables of ℱ𝑻|𝑿 in the Eq. (1) that is 
bound to suppose. 

          ℱ்|𝑿 = ℱሺ𝑇 ቚ 𝑓൫𝑋ଵ, …𝑋௣൯ቁ .                                                   (1) 

Let ℒ be given as in Eq. (2), where some 𝑋௝௜ (j=1,..,p ; i=1,..,n) covariate values are 
missing, and independent and identically distributed observation values are n units of 
the random sample ‘learning sample’. 

   ℒ ൌ ሼሺ𝑻௜ ,∆௜, 𝑿௜ሻ   𝑖 ൌ 1, … ,𝑛 ሽ.                                                  (2) 

For each node in the tree, there is a unit weights vector. Let the unit weight vector 
be shown as 𝒘 ൌ ሾ𝑤ଵ, …𝑤௡ሿ. If the observation values of the relevant variable are 
located on this node, the corresponding value in the weight vector is 1, and if not 0 
(Hothorn et al. 2006b). 
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The following steps are taken to create conditional inference trees: 
Step 1: For 𝒘 unit weights, the general null hypothesis that there is independence 
between any of the p covariates and the dependent variable is tested. If this hypothesis 
is not rejected, then it is stopped. In other cases,  𝑿௝∗   is chosen as the 𝑗∗nth covariate, 
which has the strongest relationship with T. 
Step 2: The   𝑋௝∗  variable, which divides the 𝐴∗ ⊂  𝑋௝∗  set into two discrete sets 𝐴∗ and 
 𝑋௝∗/𝐴∗, is selected. 
Step 3: Step-1 and step-2,  𝒘௟௘௙௧  and 𝒘௥௜௚௛௧   unit weights are modified and repeated.  

In Step 1, the absence hypothesis is as follows: 

𝐻଴ ൌሩ𝐻଴
௝

௣

௝ୀଵ

 

Here, p partial hypotheses are defined as follows: 

𝐻଴
௝:ℱ்|𝑿𝒋 ൌ ℱ்   ;  j ൌ 1, … , p 

When the 𝐻଴ hypothesis cannot be rejected at the specified α level of significance, 
the division stops. The relationship between the T and each 𝑋௝ , 𝑗 ൌ 1, … ,𝑝  covariate 
is tested by the 𝐻଴

௝ hypotheses, which are partial hypotheses. For this hypothesis, the 
test statistics or p values are used to select the covariate that is the most associated with 
T. Weights of 𝑤௜   can be set to 0 or 1.  

The symmetric group of all permutations of elements corresponding to the unit 
weight 𝑤௜ ൌ 1   is shown with 𝑆ሺℒ,𝑤ሻ. In this case, the relationship between T and 
𝑋௝ , ሺ 𝑗 ൌ 1, … ,𝑝ሻ is measured by the linear test statistic given below (Hothorn et al. 
2006b). 

𝑻௝ሺℒ,𝑤ሻ ൌ 𝑣𝑒𝑐ሺ∑ 𝑤௜𝑔௝ሺ𝑋௝௜ሻℎሺሺ𝑇௜ , ሺ𝑇ଵ, … .𝑇௡ሻሻᇱሻ
௡
௜ୀଵ ሻ  ∈  ℝ௣ೕ௤                   (3) 

Where  𝑔௝ ∶  𝒳௝ → ℝ௣ೕ  is the non-random transformation of the covariate  𝑋௝. For 
continuous covariate,  𝑔௝௜ሺ𝑥ሻ ൌ 𝑥  unit transformation can also be applied. Also, it is 
possible to rank or nonlinear transformations. The effect function ℎ ∶  𝒯 ൈ 𝒯௡ → ℝ௤ is 
based on response variables in symmetric permutation and is obtained as in Eq. (4). In 
survival data, ℎ can be selected as log-rank score. 

ℎሺ𝑇௜ , ሺ𝑇ଵ, … .𝑇௡ሻሻ ൌ ∑ 𝑤௞ 𝐼ሺ𝑇௞ ൑ 𝑇௜ሻ   𝑖 ൌ 1, . .𝑛                           ௡
௞ୀଵ     (4) 

To divide the covariate selected in Step-1 into two, the permutation test is used 
in Step-2. The test statistic, which is a special case of  𝑻௝ሺℒ,𝑤ሻ the test statistic, 
is calculated as in Eq.(5). 

𝑻௝∗
஺ ሺℒ,𝑤ሻ ൌ 𝑣𝑒𝑐൫∑ 𝑤௜ 𝐼൫𝑋௝∗௜ ∈ 𝐴൯ℎሺ

௡
௜ୀଵ 𝑇௜ , ሺ𝑇ଵ, … .𝑇௡ሻᇱ൯ ∈ ℝ௤                     (5) 
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This linear statistic gives two sampling test statistics that measure the discordance 
between samples {𝑇௜ห𝑤௜ ൐ 0 𝑣𝑒 𝑋௝௜ ∈ 𝐴; 𝑖 ൌ 1, . . ,𝑛ൟ and {𝑇௜ห𝑤௜ ൐ 0 𝑣𝑒 𝑋௝௜ ∉ 𝐴; 𝑖 ൌ
1, . .𝑛ൟ.  Conditional expected value µ௝∗

஺  and covariance  𝛴௝∗
஺ are calculated as in Eq. (6) 

and Eq. (7) respectively. 

𝜇௝ ൌ 𝔼ቀ𝑻௝ሺℒ,𝑤ሻቚ𝑆ሺℒ,𝑤ሻቁ ൌ 𝑣𝑒𝑐ሺሺ∑ 𝑤௜𝑔௝ሺ𝑋௝௜ሻሻ 𝔼 ሺℎ | 𝑆ሺℒ,𝑤ሻሻᇱሻ ௡
௜ୀଵ               (6) 

∑௝ ൌ 𝕍ሺ𝑻௝ሺℒ,𝑤ሻ | 𝑆ሺℒ,𝑤ሻ ).                                                   (7) 

Using this expected value and covariance, 𝑻௝∗
஺ ሺℒ,𝑤ሻ's standardized test statistic is 

obtained from c(𝑡௝∗
஺, µ௝∗

஺ ,𝛴௝∗
஺ሻ. The distinction that corresponds to the maximum of this 

test statistic is indicated by "𝐴∗ ". The test statistic that is maximized over all possible 
subsets of A is as in Eq. (8) 

𝐴∗ ൌ 𝑎𝑟𝑔𝑚𝑎𝑥஺ c(𝑡௝∗
஺ , µ௝∗

஺ ,𝛴௝∗
஺ሻ.                                                   (8) 

Then, as stated in Step 2 of the algorithm, "𝑤௟௘௙௧" and "𝑤௥௜௚௛௧" unit weights are 
determined by the functions 𝒘௟௘௙௧,௜ ൌ 𝑤௜ Ιሺ 𝑿௝∗௜ ∈  𝐴∗ሻ and  𝒘௥௜௚௛௧,௜ ൌ 𝑤௜  Ιሺ 𝑿௝∗௜ ∉
 𝐴∗ሻ  and the weights are modified and repeat Step-1 and Step-2. 

2.2.  Conditional inference forest method  Cforest  

Assume that the conditional distribution function of T the response variable is 
dependent on random variable X with the function 𝑓:𝒳 → ℝ. In this case, ℱ்|௑ ൌ
ℱ்|௙ሺ௑ሻ. The conditional censoring survival function is given in the form of 
 𝐺ሺ 𝑇 ∣ 𝐗 ሻ ൎ  ℙሺ𝐶 ൐ 𝑡 ∣ 𝐗 ൌ xሻ. Let 𝜓  be the function space of all candidate 
estimators  𝜓:𝒳 → ℝ.  Estimation of the regression function f, as defined by full data 
loss function L is found by minimizing the expected value of the risk function. However, 
the full data function cannot be calculated because all data cannot be reached in the 
presence of censored observation. Therefore, instead of the full data loss function, the 
observed data loss function 𝐿 ൌ ሺ𝑇,𝜓ሺ𝐗ሻ ∣ 𝜂ሻ is used. In this case, the expected value 
of the observed data loss function is obtained as given in Eq. (9). Here, the expected 
value of the full loss data function is intended to be minimized according to the 
candidate estimators 𝜓 𝜖 Ψ  (Hothorn et al. 2006a). 

𝔼்,𝑿𝐿௙௨௟௟൫𝑇,𝜓ሺ𝐗ሻ൯  ൌ 𝐿ሺ׬ 𝑇,𝜓ሺ𝐗ሻ ∣∣ 𝜂 ሻ𝑑ℱ்,୼,𝐗 ൌ𝔼்,୼,𝐗 𝐿ሺ 𝑇,𝜓ሺ𝐗ሻ ∣∣ 𝜂 ሻ.                (9) 

In Eq. (9), η is the nuisance parameter and can be defined as a conditional censored 
survival function. The observed loss data function can be defined as Eq. (10) by using 
𝐺ሺ 𝑇 ∣ 𝑿 ሻିଵ. 

𝐿ሺ 𝑇,𝜓ሺ𝑿ሻ ∣∣ 𝐺 ሻ ൌ 𝐿൫𝑇,𝜓ሺ𝑿ሻ൯
∆

ீ൫𝑇∣∣𝑿൯
 .                                         (10) 
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The full data loss function is weighted by the inverse of the probability of censored 
after T time. In this case, the expected value of the observed data loss function is 
obtained as in Eq. (11). 

𝔼෡்,∆,𝑿 𝐿ሺ 𝑇,𝜓ሺ𝑿ሻ ∣∣ 𝐺 ሻ

ൌ 𝑛ିଵ෍𝐿൫𝑇௜ ,𝜓ሺ𝑿𝒊ሻ ∣∣ 𝐺෠ ൯ ൌ

௡

௜ୀଵ

𝑛ିଵ෍𝐿൫𝑇௜ ,𝜓ሺ𝑿𝒊ሻ ∣∣ 𝐺෠ ൯

௡

௜ୀଵ

∆௜
𝐺෠ሺ 𝑇௜ ∣∣ 𝑿𝒊 ሻ

 .   

(11) 
The regression function predictor 𝑓መ is obtained by minimizing this equation 

according to the candidate predictors 𝜓 ∈ Ψ. Here the 𝐺 conditional censored survival 
function is unknown and its estimator is used instead. As a 𝐺෠ estimator, the 
nonparametric estimator, Cox estimator or the cumulative Aalen estimator can be used. 
In the case of 𝑤௜ ൌ ∆௜ 𝐺෠ሺ𝑇௜ ∣ 𝑿𝒊ሻିଵ, 𝐰 ൌ ሺ𝑤ଵ,𝑤ଶ, . . ,𝑤௡ሻ is called  IPC ( the inverse 
probability of censored weights). 

The conditional inference forest (cforest) algorithm has been proposed by Hothorn 
et al to find the values of 𝜓 that minimize the expected value of the observed data loss 
function. 𝐰 weight vector is calculated by using the observed learning sample ℒ ൌ
ሼሺ𝑇௜ ,∆௜ ,𝑿𝒊ሻ; 𝑖 ൌ 1, … ,𝑛ሽ and 𝑤௜ ൌ ∆௜ 𝐺෠ሺ𝑇௜ ∣ 𝑿𝒊ሻିଵ. If the learning sample contains 
a censored observation value, it is 𝑤௜ ൌ 0 because it is ∆௜ൌ 0. The steps of the algorithm 
are as follows (Hothorn et al. 2006a): 
Step 1: Set 𝑚 ൌ 1 and 𝑀 ൐ 1. 
Step 2: From the multinomial distribution with parameter 𝑛 and ሺ∑ 𝑤௜

௡
௜ୀଵ ሻିଵ𝒘, 

a random vector of the unit numbers 𝐯௠ ൌ ሺ𝑣௠ଵ, … , 𝑣௠௡ሻ is drawn. 
Step 3: With a regression tree, the sample space 𝒳 is divided into 𝐾ሺ𝑚ሻ cells and 
created 𝜋௠ ൌ ൫𝑅௠ଵ, … ,𝑅௠௄ሺ௠ሻ൯ pieces are created. This regression tree is created 
using the learning sample ℒ with case counts 𝐯௠. In the permutations of the ℒ learning 
sample, i th observation takes place once. 
Step 4: Increase  𝑚 by one, repeat Step 2 and step 3 until  𝑚 ൌ 𝑀. 

In Step 3, using the learning sample obtained in Step 2, a survival tree is obtained 
with a conditional inference trees algorithm. Let  𝒯௠ denote 𝑚 th survival tree and 
𝒯௠ሺ𝒙ሻ denote terminal node with 𝒙 covariate value in the 𝑚 th tree. Each 𝒙 value will 
take place on a single terminal node. 

𝑁෩௜ሺ𝑠ሻ ൌ 𝐼ሺ𝑇௜ ൑ 𝑠,∆௜ൌ 1ሻ  and  𝑍෨௜ሺ𝑠ሻ ൌ 𝐼ሺ𝑇௜ ൐ 𝑠ሻ 

𝑁෩௠∗ ሺ𝑠, 𝑥ሻ ൌ ∑ 𝑣௜௠𝐼ሺ𝑋௜ ∈ 𝒯௠ሺ𝑥ሻሻ𝑁෩௜ሺ𝑠ሻ
௡
௜ୀଵ                                          (12) 

𝑍෨௠∗ ሺ𝑠, 𝑥ሻ ൌ ∑ 𝑣௜௠𝐼൫𝑋௜ ∈ 𝒯௠ሺ𝑥ሻ൯𝑍෨௜ሺ𝑠ሻ                                  
௡
௜ୀଵ         (13) 
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Where 𝑁෩௠∗ ሺ𝑠, 𝑥ሻ  and 𝑍෨௠∗ ሺ𝑠, 𝑥ሻ are respectively the number of uncensored events 
in the terminal node up to the time of 𝑠 corresponding to the 𝒙 covariate value, and the 
number of units at risk at 𝑠 time. In this case, when 𝒙 is given a covariate, the ensemble 
survival function for t time is equal to that of Eq. (14). 

𝑆መ௖௙௢௥௘௦௧ሺ 𝑡 ∣ 𝑥 ሻ ൌ ∏ ቀ1 െ
∑ ே෩೘

∗ ሺ௦,௫ሻಾ
೘సభ

∑ ௓෨೘
∗ ሺ௦,௫ሻಾ

೘సభ
ቁ .௦ஸ௧                                          (14) 

2.2. Random survival forest method  RSF 

The algorithm steps of the RSF method are as follows: 
Step 1: Extract M bootstrap sample from the original data. Each bootstrap sample 
should exclude average 37% of the original data. The data that is excluded is called out-
of-bag data (OOB). 
Step 2: Create a survival tree for each bootstrap samples. On each node of the tree, 
randomly ඥ𝑝 candidate variable is selected. The node is separated by using candidate 
variables that maximise the survival difference between child nodes. 
Step 3: continue the split until at least one observed case remains on each terminal node. 
Step 4: Cumulative hazard function (CHF) is calculated for each tree. Average to obtain 
the ensemble CHF. 
Step 5: Using OOB data, estimation error is calculated for the ensemble cumulative 
hazard function (Ishwaran et al. 2008a). 

Logrank test is being used to compare two groups survival, by putting equal weights 
to each individual (Mantel N. 1966; Karadeniz et al. 2018). Two methods can be used 
as separation criteria in the algorithm. The first is the log-rank distinction and the 
second is the log-rank score distinction (Segal 1988; Ciampi et al.1986; Hothorn and 
Lausanne 2003). 

i. Log-rank distinction criteria 

Let  𝑇௜  ; 𝑖 ൌ 1, . . ,𝑛 denote the survival time of 𝑖 th unit and 𝑋௝ covariate for the 
distinction on a node, 𝑋௝ ൑ 𝑐  and 𝑋௝ ൐ 𝑐 according to the cut point of c. Let  𝑠ଵ ൏ 𝑠ଶ ൏
⋯ ൏ 𝑠௭ denote discrete time of death on a node for 𝑧 ൌ 1, … ,𝑁. For the m th tree,
𝑁෩௠ௗ
∗ ሺ𝑠௭, 𝑥ሻ  show the number of people dying in 𝑠௭  time on child nodes d=1,2. 
𝑁෩௠∗ ሺ𝑠௭, 𝑥ሻ =𝑁෩௠ଵ

∗ ሺ𝑠௭, 𝑥ሻ ൅ 𝑁෩௠ଶ
∗ ሺ𝑠௭, 𝑥ሻ is in format. For the m th tree,  , 𝑍෨௠ௗ

∗ ሺ𝑠௭, 𝑥ሻ 
indicates the number of units at risk at 𝑠௭ time on child nodes d=1,2. In this 
case, 𝑍෨௠∗ ሺ𝑠௭, 𝑥ሻ ൌ 𝑍෨௠ଵ

∗ ሺ𝑠௭, 𝑥ሻ ൅ 𝑍෨௠ଶ
∗ ሺ𝑠௭, 𝑥ሻ and 𝑍෨௠ଵ

∗ ሺ𝑠௭, 𝑥ሻ ൌ #ሼ𝑇௜ ൒ 𝑠௭ , 𝑥௜ ൑ 𝑐ሽ, 
𝑍෨௠ଶ
∗ ሺ𝑠௭, 𝑥ሻ ൌ #ሼ𝑇௜ ൒ 𝑠௭ , 𝑥௜ ൐ 𝑐ሽ. Where 𝑥௜ ,  is the value that the 𝑋௝ covariate takes for 

unit i th. 𝑛ௗ  is the total number of units observed in the d th child node. Thus, 𝑛ଵ ൌ
#ሼ𝑖: 𝑥௜ ൑ 𝑐ሽ and 𝑛ଶ ൌ #ሼ𝑖: 𝑥௜ ൐ 𝑐ሽ are equal to 𝑛 ൌ 𝑛ଵ ൅ 𝑛ଶ.  
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The log-rank test statistic for the c cut-off value of the 𝑋௝ covariate is as in Eq. (15). 

𝐿𝑜𝑔𝑅𝑎𝑛𝑘൫𝑋௝ , 𝑐൯ ൌ
∑ ൭ே෩೘భ

∗ ൫௦೥,௑ೕ൯ି௓෨೘భ
∗ ൫௦೥,௑ೕ൯

෩ಿ೘
∗ ቀೞ೥,೉ೕቁ

ೋ෩೘
∗ ቀೞ೥,೉ೕቁ

൱ಿ
೥సభ

ඩ∑
ೋ෩೘భ
∗ ቀೞ೥,೉ೕቁ

ೋ෩೘
∗ ቀೞ೥,೉ೕቁ

ቌሺଵି
ೋ෩೘భ
∗ ቀೞ೥,೉ೕቁ

ೋ෩೘
∗ ቀೞ೥,೉ೕቁ

ሻሺ
ೋ෩೘
∗ ቀೞ೥,೉ೕቁష ෩ಿ೘

∗ ቀೞ೥,೉ೕቁ

ೋ෩೘
∗ ቀೞ೥,೉ೕቁషభ

ሻ ே෩೘
∗ ൫௦೥,௑ೕ൯ቍ

ಿ
೥సభ

  .             

(15) 
ห𝐿𝑜𝑔𝑅𝑎𝑛𝑘൫𝑋௝ , 𝑐൯ห provides a measure for node distinction. The distinction occurs 

between the two terminal nodes that has the highest ห𝐿𝑜𝑔𝑅𝑎𝑛𝑘൫𝑋௝ , 𝑐൯ห  value. The best 
distinction value of ห𝐿𝑜𝑔𝑅𝑎𝑛𝑘൫𝑋௝∗, 𝑐∗൯ห ൒ ห𝐿𝑜𝑔𝑅𝑎𝑛𝑘൫𝑋௝ , 𝑐൯ห is determined by the 
value of the 𝑋௝ covariate and c cut-off value (Segal 1988; Hothorn and Lausen 2003). 

ii. Log-rank score distinction criteria 

Another distinction rule is the log-rank score distinction rule proposed by Hothorn 
and Lusen (2003). Assume that the values of the 𝑋௝ covariate are sorted as 𝑥ଵ ൑ 𝑥ଶ ൑
⋯ ൑ 𝑥௡. For each 𝑇௜  survival time, ranks are obtained as in Eq. (16). 

𝛼௜ ൌ ∆௜ െ ∑ ∆ೖ
௡ି௰ೖାଵ

௰೔
௞ୀଵ  .                                                  (16) 

Where,𝛤௞ ൌ #ሼ𝑠: 𝑇௦ ൑ 𝑇௞ሽ. In this case, the log-rank score statistic is obtained as 
in Eq. (17). 

𝐿𝑜𝑔𝑅𝑎𝑛𝑘𝑠𝑘𝑜𝑟൫𝑋௝ , 𝑐൯ ൌ
∑ ఈ೔ି௡భఈೣ೔ರ೎

ට௡భሺଵି
೙భ
೙
ሻ௦ഀ
మ

 .                                         (17) 

In Eq. (17), 𝛼  and 𝑠ఈଶ  is defined as the sample mean and sample variance of ranks, 
respectively. 𝐿𝑜𝑔𝑅𝑎𝑛𝑘𝑠𝑐𝑜𝑟𝑒൫𝑋௝ , 𝑐൯ provides log-rank score for node distriction. 

2.4.  Estimators used in estimating G conditional censored survival function 

i. Nonparametric estimator 

Let 𝐺ሺ𝑇 ∣ 𝑋ሻ ൎ 𝑃ሺ𝐶 ൐ 𝑡 ∣ 𝑋 ൌ 𝑥ሻ and 𝐾ሺ𝑡ሻ denote respectively conditional 
survival function of the censoring time and any kernel function. The nonparametric 
estimator used by Graf et al. is given in Eq. (18). (Gerds and Schumacher 2007). 

𝐺෠ே௢௡௉௔௥ ൌ ቄ𝐺: 𝑠𝑢𝑝௧
หீ൫𝑇∣∣𝑋 ൯ିீሺ்ห௑ᇲሻ∣

|௑ି௑ᇲ|ഀ
൑ 𝐾ሺ𝑡ሻ ൐ 0ቅ.                             (18) 

ii. Cox estimator 

Let α and 𝐻଴ሺ𝑡ሻ  denote respectively regression coefficient and initial cumulative 
hazard function. Cox regression estimator is given in Eq. (19) (Gerds and Schumacher 
2007). 

𝐺෠஼௢௫ ൌ ൛𝐺஑,ுబሺ௧ሻ:𝐺ሺ𝑇 ∣ 𝑋 ሻ ൌ 𝑒𝑥𝑝ሼെexp ሺαᇱ𝑋ሻ𝐻଴ሺ𝑡ሻሽ;α ∈ ℝௗൟ .                 (19) 
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iii. Aalen estimator 

Let 𝛼ሺ𝑡ሻ denote time-dependent regression coefficient. Cumulative Aalen 
regression estimator are given as in Eq. (20) (Gerds and Schumacher 2007). 

𝐺෠஺௔௟௘௡ ൌ ൜𝐺஑:𝐺ሺ𝑇 ∣ 𝑋 ሻ ൌ 𝑒𝑥𝑝 ቄെ׬ 𝑋ᇱ𝛼ሺ𝑠ሻ.𝑑𝑠 
௧
௦ୀ଴ ቅൠ.                             (20) 

2.5.  Criteria used to evaluate model performance 

2.5.1.  Brier Score  BS 

The prediction error defined as the time dependent expected Brier score is one of 
the measures for assessing the predictive performances of rival survival modeling 
strategies. If the score is close to zero, the class estimates are accepted to be reliable. Let 
 ∆௜ൌ 𝐼൫𝑇෨௜ ൑ 𝑡൯ be state of i th unit for t time. When X is given, the probability of survival 
predicted at t time for the i th unit is shown as 𝑆መሺ 𝑡 ∣∣ 𝑋௜ ሻ . In this case, the Brier score 
is the same as the Eq. (21) 

𝐵𝑆൫𝑡, 𝑆መ൯ ൌ 𝐸ൣ𝐼ሺ𝑇෨௜ ൐ 𝑡ሻ െ 𝑆መሺ 𝑡 ∣∣ 𝑋௜ ሻଶ ൧ .                                     (21) 

The expected value is calculated based on the data of the i th  unit  which is not 
included in the learning set. The first critical value for the Brier score is 33%. This 
corresponds to the risk predicted by the random number drawn from the U[0,1] 
distribution. The second critical value is 25% and corresponds to 50% risk estimation 
for each unit. Another criterion is the Brier score value obtained from the model from 
which all independent variables are extracted (Ishwaran et al. 2008a). Residual squares 
are weighted using the inverse probabilities of the censored weights given in Eq. (22). 

𝑊෡௜ሺ𝑡ሻ ൌ
ூሺ ෨்೔ஸ௧ሻ∆೔
෠ீሺ ෨்೔ି∣௑೔ሻ

൅
ூሺ ෨்೔வ௧ሻ
෠ீሺ௧∣௑೔ሻ

 .                                                   (22) 

Here 𝐺෠ሺ𝑡 ∣ 𝑥ሻ ൎ 𝑃ሺ𝐶௜ ൐ 𝑡 ∣ 𝑋௜ ൌ 𝑥ሻ is the estimate of the conditional survival 
function for the i th  unit of censoring time. If an independent set of data 𝐷௡ is available, 
the expected Brier score is the same as in Eq. (23). 

𝐵𝑆෢൫𝑡, 𝑆መ൯ ൌ
ଵ

௡
∑ 𝑊෡௜ሺ𝑡ሻሼ௜∈஽೙ 𝐼ሺ𝑇෨௜ ൐ 𝑡ሻ െ 𝑆መሺ𝑡 ∣ 𝑋௜ሻሽଶ.                                 (23) 

Where n is the number of units in 𝐷௡ (i=1,.,n) and  calculated from the learning 
data 𝑆መ. 

2.5.2.  Integrated Brier Score  IBS 

Prediction errors can be summed up with IBS as follows: 

     𝐼𝐵𝑆ሺ𝑇𝐻, 𝜏ሻ ൌ
ଵ

ఛ
׬ 𝑇𝐻ሺ𝑡, 𝑆መ
ఛ
௧ୀ଴ ሻ𝑑𝑡                                                (24) 
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Where TH is the prediction error obtained using methods such as Apperr (apparent 
prediction), BootCvErr (Boostrap Cross Validation prediction), NoInfErr (ignorance 
prediction error), boot632pluserr (0.632+ prediction). 𝜏 is the time of maximum 
observation (𝜏 ൐ 0ሻ. 

2.5.3.  Concordance Index  C-Index 

Concordance Index is the probability of concordance between the predicted and 
the observed survival. Model performance increases as the C Index value approaches to 
1. C-Index is not based on a fixed point of time, unlike other indexes that measure the 
performance of survival (Ishwaran, 2008). C-Index is calculated with Steps 1-3: 

Step 1: Create all possible pairs of units on the data set. 
Step 2: If pairs is censored which the unit corresponding to shorter survival time, 

the pair is neglected. If both pairs are alive and  𝑇௜ ൌ 𝑇௝ , i and j pairs are neglected. 
"Allowed” can be expressed as the total number of pairs that are not neglected. 

Step 3: When  𝑇௜ ് 𝑇௝, if it has worse prediction results with shorter survival time, 
it gets a value of 1, if the prediction results are equal it gets a value of 0.5 for each allowed 
pair. For each allowable pair, if  𝑇௜ ൌ 𝑇௝  and both are dead, the result is worse than that 
which is dead, then it gets a value of 1, otherwise it gets a value of 0.5. “Concordance” 
represents the sum of the values received by all allowed pairs. 

C-Index is defined below: 

𝐶 ൌ
𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒
𝐴𝑙𝑙𝑜𝑤𝑒𝑑

 . 

3. Material and method 

Simulation studies were carried out under different scenarios in order to compare 
the performance of RSF and Cforest methods from tree-based methods used in survival 
data. In addition, Aalen, Cox and nonparametric estimators were evaluated for the 
performance of the RSF method in the case of using different separation criteria and 
conditional survival function of the censoring time (Gerds and Schumacher 2007). For 
this purpose, data derivation were made with two different scenario. The first scenario 
examine the situation in which the proportional hazard assumption is provided and the 
second senario examine the situation in which the proportional hazard assumption is 
not provided (Ishwaran and et al. 2010; Zhu and Kosorok 2012). In both scenarios, the 
criterion for the number of independent variables randomly chosen in each division 
was taken as the square root of the number of variables p. Sample size was determined 
as 100, 200 and 300. The number of trees created is M=100, bootstrap number is B=100, 
the test set (out of bag data) uses 37% of the total sample size and the training set (in bag 
data) uses 63% of the total sample size. The number of units on each terminal node is 
limited to 6. Simulation was carried out with 1000 repetitions. 
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Scenario 1: The number of independent variables was taken as p = 25. Let 𝑋 ൌ
ሺ𝑋ଵ, … ,𝑋ଶହሻ, Σ௜௝ ൌ 𝜌|௜ି௝| (𝜌=0.9) and diagonal elements 1. Covariates were derived 
from the multivariate normal distribution with Σ௣ൈ௣ variance-covariance matrix and 
ሾ0ሿ௣ൈଵ mean vector. Let 𝑏଴=0,1, survival times were derived independently from 
exponential distribution with  𝜇 ൌ 𝑏଴ ൈ ∑ 𝑋௜

ଶ଴
௜ୀଵଵ . Censored times were derived 

independently from exponential distribution with  𝜇 2 ൗ . The state variable was obtained 
as ∆ൌ 𝐼൫𝑇෨ ൑ 𝐶൯. For this scenario, censored rate was approximately 30%. 
Scenario 2: The number of independent variables was taken as p = 25. Let 𝑋 ൌ
ሺ𝑋ଵ, … ,𝑋ଶହሻ, Σ௜௝ ൌ 𝜌|௜ି௝| (𝜌=0.75) and and diagonal elements 1. Covariates were 
derived from the multivariate normal distribution with Σ௣ൈ௣ variance-covariance 
matrix and ሾ0ሿ௣ൈଵ mean vector. Survival times were derived independently from log-
normal distribution with  𝜇 ൌ 0.1 ൈ ห∑ 𝑋௜

ହ
௜ୀଵ ห ൅ 0.1 ൈ ห∑ 𝑋௜

ଶହ
௜ୀଶଵ ห. Censored time was 

derived from the log normal distribution with  𝜇 ൅ 0.5 mean. The state variable was 
obtained as ∆ൌ 𝐼൫𝑇෨ ൑ 𝐶൯. For this scenario, censored rate was approximately 30%. 
Model performances were evaluated with IBS and C Index. 

Pec, party, randomForestSRC packets were used in R 3.4.1 program in simulation 
study(Hothorn and et al. 2005; Mogensen and et al. 2012a; Ishwaran and et al. 2008b). 

4. Evaluation  

The results of the simulation study were presented by taking into consideration 
scenario 1 and Scenario 2 with Table 1-12. The mean and standard values of RSF and 
Cforest method with two separate criteria for Aalen, Cox and nonparametric 
estimators, three estimators used in the calculation of IPC weights and three sample 
sizes were presented in the table. 

Table 1.  The mean and standard error values according to the C-Index criteria of RSF and Cforest 
method for different survival times in cases where n=100 and the proportional hazard 
assumption is provided 

C-Index (scenario 1, n=100) 
Survival Time 

0.5 2 3.5 
𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 

RSF(logrank-nonparametric) 0.9111 0.0007 0.8780 0.0010 0.8639 0.0016 
RSF(logrank-Cox) 0.9133 0.0006 0.8808 0.0009 0.8652 0.0009 
RSF(logrank-Aalen) 0.9202 0.0004 0.8887 0.0008 0.8689 0.0008 
RSF(logrankscore- nonparametric ) 0.8849 0.0009 0.8477 0.0010 0.8165 0.0012 
RSF(logrankscore-Cox) 0.8868 0.0008 0.8481 0.0009 0.8268 0.0011 
RSF(logrankscore-Aalen) 0.8927 0.0007 0.8575 0.0008 0.8309 0.0010 
Cforest(non parametric) 0.8333 0.0010 0.8205 0.0020 0.7931 0.0024 
Cforest(Cox) 0.8319 0.0009 0.8249 0.0010 0.8126 0.0011 
Cforest(Aalen) 0.8319 0.0009 0.8249 0.0010 0.8126 0.0011 



STATISTICS IN TRANSITION new series, March 2022 

 

31

Table 2.  The mean and standard error values according to the C-Index criteria of RSF and Cforest 
method for different survival times in cases where n=200 and the proportional hazard 
assumption is provided 

C-Index (scenario 1, n=200) 
Survival Time 

0.5 2 3.5 
𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 

RSF(logrank-nonparametric) 0.9675 0.0008 0.8786 0.0009 0.8639 0.0016 

RSF (logrank-Cox) 0.9678 0.0007 0.8908 0.0008 0.8652 0.0009 

RSF (logrank-Aalen) 0.9680 0.0005 0.8987 0.0007 0.8689 0.0008 

RSF (logrankscore- nonparametric) 0.8850 0.0009 0.8475 0.0010 0.8170 0.0017 

RSF(logrankscore-Cox) 0.8870 0.0008 0.8485 0.0009 0.8281 0.0011 

RSF (logrankscore-Aalen) 0.8935 0.0007 0.8590 0.0008 0.8309 0.0010 

Cforest(nonparametric) 0.8689 0.0010 0.8249 0.0020 0.7931 0.0024 

Cforest (Cox) 0.8689 0.0010 0.8596 0.0010 0.8126 0.0011 

Cforest (Aalen) 0.8769 0.0009 0.8596 0.0010 0.8126 0.0011 
 
 
 

Table 3.  The mean and standard error values according to the C-Index criteria of RSF and Cforest 
method for different survival times in cases where n=300 and the proportional hazard 
assumption is provided 

C-Index (scenario 1, n=300) 
Survival Time 

0.5 2 3.5 
𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 

RSF(logrank-nonparametric) 0.9838 0.0009 0.8886 0.0010 0.8739 0.0012 

RSF(logrank-Cox) 0.9857 0.0006 0.8908 0.0009 0.8752 0.0006 

RSF (logrank-Aalen) 0.9869 0.0004 0.8990 0.0007 0.8789 0.0003 

RSF (logrankscore- nonparametric) 0.8950 0.0009 0.8475 0.0012 0.8276 0.0014 

RSF (logrankscore-Cox) 0.8965 0.0006 0.8485 0.0010 0.8381 0.0011 

RSF (logrankscore-Aalen) 0.8970 0.0005 0.8590 0.0008 0.8509 0.0010 

Cforest(nonparametric) 0.8879 0.0010 0.8249 0.0020 0.7931 0.0024 

Cforest(Cox) 0.8889 0.0010 0.8596 0.0010 0.8125 0.0013 

Cforest (Aalen) 0.8969 0.0009 0.8596 0.0010 0.8126 0.0011 
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Table 4.  The mean and standard error values according to the C-Index criteria of RSF and Cforest 
method for different survival times in cases where n=100 and the proportional hazard 
assumption is not provided 

C-Index (scenario 2, n=100) 
Survival Time 

0.5 2 3.5 
𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 

RSF(logrank-nonparametric) 0.9802 0.0002 0.9434 0.0004 0.9076 0.0006 

RSF (logrank-Cox) 0.9801 0.0002 0.9435 0.0004 0.9079 0.0006 

RSF (logrank-Aalen) 0.9834 0.0001 0.9552 0.0002 0.9282 0.0002 

RSF (logrankscore- nonparametric) 0.9801 0.0002 0.8576 0.0015 0.8265 0.0009 

RSF (logrankscore-Cox) 0.9799 0.0002 0.8581 0.0009 0.8368 0.0006 

RSF (logrankscore-Aalen) 0.9825 0.0002 0.8775 0.0008 0.8409 0.0002 

Cforest(nonparametric) 0.9323 0.0012 0.8602 0.0010 0.8342 0.0011 

Cforest (Cox) 0.9324 0.0012 0.8603 0.0010 0.8361 0.0009 

Cforest (Aalen) 0.9336 0.0010 0.8605 0.0009 0.8398 0.0008 
 
 
 

Table 5.  The mean and standard error values according to the C-Index criteria of RSF and Cforest 
method for different survival times in cases where n=200 and the proportional hazard 
assumption is not provided 

C-Index (scenario 2, n=200) 
Survival Time 

0.5 2 3.5 
𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 

RSF(logrank-nonparametric) 0.9765 0.0009 0.9385 0.0005 0.9056 0.0010 

RSF(logrank-Cox) 0.9789 0.0003 0.9436 0.0003 0.9083 0.0004 

RSF (logrank-Aalen) 0.9795 0.0001 0.9462 0.0002 0.9152 0.0003 

RSF(logrankscore- nonparametric) 0.8950 0.0017 0.8675 0.0015 0.8275 0.0018 

RSF(logrankscore-Cox) 0.8970 0.0005 0.8785 0.0007 0.8381 0.0010 

RSF (logrankscore-Aalen) 0.8995 0.0003 0.8990 0.0005 0.8409 0.0007 

Cforest(nonparametric) 0.9015 0.0015 0.8194 0.0016 0.8002 0.0012 

Cforest (Cox) 0.9028 0.0010 0.8291 0.0009 0.8013 0.0008 

Cforest (Aalen) 0.9041 0.0002 0.8291 0.0009 0.8035 0.0005 
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Table 6.  The mean and standard error values according to the C-Index criteria of RSF and Cforest 
method for different survival times in cases where n=300 and the proportional hazard 
assumption is not provided 

C-Index (scenario 2, n=300) 
Survival Time 

0.5 2 3.5 
𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 

RSF(logrank-nonparametric) 0.9948 0.0008 0.9100 0.0012 0.8839 0.0011 

RSF (logrank-Cox) 0.9957 0.0005 0.9108 0.0010 0.8852 0.0006 

RSF (logrank-Aalen) 0.9969 0.0003 0.9120 0.0004 0.8889 0.0002 

RSF (logrankscore- nonparametric) 0.8970 0.0009 0.8475 0.0010 0.8576 0.0012 

RSF (logrankscore-Cox) 0.8985 0.0006 0.8585 0.0008 0.8581 0.0011 

RSF (logrankscore-Aalen) 0.8990 0.0005 0.8690 0.0007 0.8609 0.0010 

Cforest(nonparametric) 0.8979 0.0013 0.8749 0.0020 0.7998 0.0022 

Cforest (Cox) 0.8989 0.0010 0.8896 0.0010 0.8125 0.0009 

Cforest (Aalen) 0.8989 0.0009 0.8896 0.0010 0.8126 0.0005 
 
 

Table 7.  The mean and standard error values according to the IBS criteria of RSF and Cforest 
method for different survival times in cases where n=100 and the proportional hazard 
assumption is provided 

IBS (scenario 1, n=100) 
AppErr BootCvErr NoInfErr Boot632plusErr 
𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 

RSF(logrank-nonparametric) 0.0298 0.0056 0.1660 0.0360 0.2850 0.0060 0.1389 0.0279 

RSF (logrank-Cox) 0.0292 0.0042 0.1646 0.0253 0.2814 0.0050 0.1384 0.0258 

RSF (logrank-Aalen) 0.0286 0.0021 0.1630 0.0156 0.2787 0.0038 0.1372 0.0168 

RSF (logrankscore- 
nonparametric) 0.0300 0.0070 0.1745 0.0380 0.3050 0.0120 0.1439 0.0289 

RSF (logrankscore-Cox) 0.0295 0.0068 0.1736 0.0293 0.3014 0.0090 0.1424 0.0280 

RSF (logrankscore-Aalen) 0.0287 0.0035 0.1720 0.0166 0.2987 0.0058 0.1412 0.0267 

Cforest(nonparametric) 0.1010 0.0200 0.1534 0.0210 0.2576 0.0104 0.1386 0.0225 

Cforest (Cox) 0.1007 0.0191 0.1512 0.0198 0.2399 0.0098 0.1384 0.0210 

Cforest (Aalen) 0.0974 0.0120 0.1489 0.0127 0.2342 0.0090 0.1363 0.0133 

*AppErr: apparent prediction, BootCvErr: Boostrap Cross-Validation prediction, noinferr: ignorance 
prediction error, Boot632plusErr: 0.632+ prediction 
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Table 8.  The mean and standard error values according to the IBS criteria of RSF and Cforest 
method for different survival times in cases where n=200 and the proportional hazard 
assumption is provided 

IBS (scenario 1, n=200) 
AppErr BootCvErr NoInfErr Boot632plusErr 
𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 

RSF(logrank-nonparametric) 0.0288 0.0036 0.1640 0.0335 0.2845 0.0050 0.1379 0.0259 

RSF (logrank-Cox) 0.0282 0.0022 0.1626 0.0233 0.2794 0.0045 0.1373 0.0238 

RSF (logrank-Aalen) 0.0276 0.0019 0.1615 0.0145 0.2767 0.0028 0.1362 0.0148 

RSF(logrankscore- 
nonparametric) 0.0290 0.0070 0.1645 0.0367 0.3030 0.0110 0.1418 0.0260 

RSF (logrankscore-Cox) 0.0285 0.0068 0.1636 0.0291 0.2914 0.0085 0.1412 0.0270 

RSF (logrankscore-Aalen) 0.0277 0.0035 0.1620 0.0164 0.2867 0.0050 0.1409 0.0167 

Cforest(nonparametric) 0.1008 0.0197 0.1514 0.0187 0.2456 0.0094 0.1376 0.0215 

Cforest (Cox) 0.0987 0.0172 0.1508 0.0166 0.2297 0.0066 0.1368 0.0200 

Cforest (Aalen) 0.0961 0.0110 0.1469 0.0115 0.2210 0.0050 0.1338 0.0113 

*AppErr: apparent prediction, BootCvErr: Boostrap Cross-Validation prediction, noinferr: ignorance 
prediction error, Boot632plusErr: 0.632+ prediction 
 
 

Table 9.  The mean and standard error values according to the IBS criteria of RSF and Cforest 
method for different survival times in cases where n=300 and the proportional hazard 
assumption is provided 

IBS (scenario 1, n=300) 
AppErr BootCvErr NoInfErr Boot632plusErr 
𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 

RSF(logrank-nonparametric) 0.0275 0.0032 0.1628 0.0325 0.2275 0.0045 0.1365 0.0247 

RSF (logrank-Cox) 0.0271 0.0020 0.1616 0.0228 0.2283 0.0037 0.1355 0.0222 

RSF (logrank-Aalen) 0.0265 0.0012 0.1609 0.0136 0.2247 0.0018 0.1320 0.0136 

RSF (logrankscore- 
nonparametric) 0.0285 0.0063 0.1635 0.0357 0.3020 0.0100 0.1417 0.0249 

RSF (logrankscore-Cox) 0.0283 0.0064 0.1626 0.0271 0.2904 0.0075 0.1410 0.0260 

RSF (logrankscore-Aalen) 0.0276 0.0027 0.1617 0.0154 0.2357 0.0040 0.1401 0.0147 

Cforest(nonparametric) 0.1006 0.0177 0.1513 0.0167 0.2454 0.0094 0.1366 0.0215 

Cforest (Cox) 0.0977 0.0162 0.1504 0.0146 0.2294 0.0066 0.1358 0.0200 

Cforest (Aalen) 0.0951 0.0106 0.1459 0.0105 0.2308 0.0050 0.1328 0.0113 

*AppErr: apparent prediction, BootCvErr: Boostrap Cross-Validation prediction, noinferr: ignorance 
prediction error, Boot632plusErr: 0.632+ prediction 
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Table 10.  The mean and standard error values according to the IBS criteria of RSF and Cforest 
method for different survival times in cases where n=100 and the proportional hazard 
assumption is not provided 

IBS (scenario 2, n=100) AppErr BootCvErr NoInfErr Boot632plusErr 
𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 

RSF(logrank-nonparametric) 0.0296 0.0056 0.1658 0.0350 0.2840 0.0054 0.1379 0.0269 

RSF (logrank-Cox) 0.0290 0.0042 0.1642 0.0243 0.2804 0.0044 0.1374 0.0248 

RSF (logrank-Aalen) 0.0285 0.0021 0.1627 0.0146 0.2777 0.0032 0.1362 0.0158 

RSF (logrankscore- 
nonparametric) 0.0297 0.0070 0.1743 0.0370 0.3040 0.0116 0.1429 0.0279 

RSF (logrankscore-Cox) 0.0292 0.0068 0.1732 0.0283 0.3004 0.0087  0.1414 .0270 

RSF(logrankscore-Aalen) 0.0295 0.0035 0.1718 0.0156 0.2977 0.0054 0.1402 0.0257 

Cforest(nonparametric) 0.1007 0.0200 0.1531 0.0200 0.2566 0.0102 0.1376 0.0215 

Cforest (Cox) 0.1005 0.0191 0.1508 0.0188 0.2389 0.0097 0.1374 0.0200 

Cforest (Aalen) 0.0964 0.0120 0.1479 0.0117 0.2332 0.0087 0.1353 0.0123 

*AppErr: apparent prediction, BootCvErr: Boostrap Cross-Validation prediction, noinferr: ignorance 
prediction error, Boot632plusErr: 0.632+ prediction 
 
 

Table 11.  The mean and standard error values according to the IBS criteria of RSF and Cforest 
method for different survival times in cases where n=200 and the proportional hazard 
assumption is not provided 

IBS (scenario 2, n=200) AppErr BootCvErr NoInfErr Boot632plusErr 

𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 

RSF(logrank-nonparametric) 0.0278 0.0026 0.1630 0.0325 0.2835 0.0040 0.1369 0.0249 

RSF (logrank-Cox) 0.0272 0.0012 0.1616 0.0223 0.2784 0.0035 0.1363 0.0228 

RSF (logrank-Aalen) 0.0266 0.0009 0.1605 0.0135 0.2757 0.0018 0.1352 0.0138 

RSF (logrankscore- 
nonparametric) 0.0280 0.0060 0.1635 0.0357 0.3020 0.0100 0.1408 0.0249 

RSF (logrankscore-Cox) 0.0275 0.0058 0.1626 0.0281 0.2904 0.0075 0.1405 0.0260 

RSF (logrankscore-Aalen) 0.0267 0.0025 0.1610 0.0154 0.2857 0.0040 0.1402 0.0157 

Cforest(nonparametric) 0.1007 0.0187 0.1504 0.0177 0.2446 0.0084 0.1366 0.0205 

Cforest (Cox) 0.0977 0.0162 0.1506 0.0156 0.2287 0.0056 0.1358 0.0195 

Cforest (Aalen) 0.0951 0.0100 0.1459 0.0105 0.2300 0.0043 0.1328 0.0108 

*AppErr: apparent prediction, BootCvErr: Boostrap Cross-Validation prediction, noinferr: ignorance 
prediction error, Boot632plusErr: 0.632+ prediction 
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Table 12.  The mean and standard error values according to the IBS criteria of RSF and Cforest 
method for different survival times in cases where n=300 and the proportional hazard 
assumption is not provided 

IBS (scenario 2, n=300) AppErr BootCvErr NoInfErr Boot632plusErr 
𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 𝓍̅ 𝑠𝓍̅ 

RSF(logrank-nonparametric) 0.0265 0.0022 0.1618 0.0315 0.2817 0.0035 0.1358 0.0237 

RSF (logrank-Cox) 0.0261 0.0010 0.1606 0.0218 0.2773 0.0027 0.1352 0.0222 

RSF (logrank-Aalen) 0.0255 0.0002 0.1608 0.0126 0.2737 0.0008 0.1347 0.0126 

RSF (logrankscore- 
nonparametric) 0.0275 0.0053 0.1625 0.0347 0.3010 0.0098 0.1407 0.0239 

RSF (logrankscore-Cox) 0.0273 0.0054 0.1616 0.0261 0.2902 0.0065 0.1400 0.0250 

RSF (logrankscore-Aalen) 0.0266 0.0017 0.1607 0.0144 0.2847 0.0030 0.1399 0.0137 

Cforest(nonparametric) 0.1005 0.0167 0.1503 0.0157 0.2444 0.0084 0.1356 0.0205 

Cforest (Cox) 0.0967 0.0152 0.1501 0.0136 0.2305 0.0056 0.1348 0.0197 

Cforest (Aalen) 0.0941 0.0104 0.1449 0.0102 0.2284 0.0040 0.1318 0.0103 

*AppErr: apparent prediction, BootCvErr: Boostrap Cross-Validation prediction, noinferr: ignorance 
prediction error, Boot632plusErr: 0.632+ prediction 
 
5. Results and discussion 

In this study, Cforest method (Hothorn and et al. 2006a), which aims to minimize 
the proposed empirical risk function for right-censored data and a community with 
a low correlation structure by creating different trees, and RSF method (Ishwaran and 
et al. 2008a), which is an extension of Brieman's random forest method for right-
censored data, are compared according to C-Index and IBS criteria. 

According to the C-Index criterion; in all cases, RSF method has higher mean C - 
Index values and lower standard error values than Cforest method. When we examined 
the sample size, it was observed that the mean C-Index values for both scenarios and 
both methods were increased and standard error values were decreased with the 
increase in sample size. It is observed gave the best results for the RSF method and the 
non parametric estimator has lower mean C-Index values than the Aalen estimator and 
Cox estimator. In the Cforest method, it was observed that the nonparametric estimator 
had lower C-Index mean values and similar results were obtained in Cox and Aalen 
estimator. When the RSF method was examined in terms of two different separation 
criteria, it was determined that the logrank distinction had higher mean C-Index values 
and lower standard error values. Compared to the situation in which the proportional 
hazard assumption is provided and not provided, it has been observed that both 
methods perform better in the absence of the proportional hazard assumption. 
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However, when the proportional hazard assumption provided, there has been a further 
decrease in the mean C-Index values for the RSF method compared to the Cforest 
method. 

According to the IBS criterion; for all cases, in both scenarios, and for all 𝐺෠ 
estimation methods (Cox, Aalen and Nonparametric), the RSF method has lower mean 
and standard error values than the Cforest method. With the increase in sample size, 
model performance was observed to increase in all cases according to IBS criteria. 
For all methods and for both scenarios, Aalen estimator has a lower error value than 
nonparametric estimator and Cox estimator. When examined according to RSF 
separation criteria, it was determined that logrank distinction criteria had lower IBS 
mean values and standard error values. In this study, it was observed that all methods 
performed better in the case that the proportional hazard assumption is not provided, 
compared to the case that the proportional hazard assumption is provided. 

Mogensen and et al. (2012) examined the performance of the RSF, Cforest and Cox 
regression models using the "cost" data set included in the PEC package. As a result, 
while some cross-validation methods found the performance of the methods to be 
similar, some cross-validation methods found the performance of the RSF method to 
be higher. 

Gerds and Schumacher (2007) used marginal Kaplan-Meier, Cox, Aalen and 
nonparametric estimators for calculating IBS values. However, if the censored 
mechanism of the Kaplan-Meier estimator is dependent on the common variables, it 
gives error. For this reason, they recommended the use of three other predictors for the 
case where the censored survival function is dependent on the common variables. 
In their simulation study, they stated that the Aalen estimator was better than the Cox 
estimator. The results of our simulation study showed that the Aalen estimator has 
better performance in both methods. Ciampi (1986) proposed the use of logrank test 
statistic to compare two child nodes in decision trees. Ishwaran and et al.(2008a) stated 
that the model obtained by using logrank criteria is higher than C-Index value when 
they apply the RSF method on 11 sets of data according to different separation rules. 
According to the results of our simulation study, it was determined that the logrank 
distinction criteria showed higher performance than the logrank score distinction 
criteria in the case where the proportional hazard assumption is provided and not 
provided in the RSF method. 

As a result, it has been shown that the RSF method performs better than the Cforest. 
For both methods, it can be said that the Aalen estimator performs better than the other 
estimators. The performance of both methods was better if the proportional hazard 
assumption was not provided. In addition, the RSF method shows that the logrank 
distinction criteria, which is one of two different separation criteria, performs better 
than the logrank score distinction criteria. 
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Estimating the population mean using a complex sampling
design dependent on an auxiliary variable

Arijit Chaudhuri1, Sonakhya Samaddar2

ABSTRACT

In surveying finite populations, the simplest strategy to estimate a population total with-
out bias is to employ Simple Random Sampling (SRS) with replacement (SRSWR) and the
expansion estimator based on it. Anything other than that including SRS Without Replace-
ment (SRSWOR) and usage of the expansion estimator is a complex strategy. We examine
here (1) if from a complex sample at hand a gain in efficiency may be unbiasedly estimated
comparing the ”rival population total-estimators” for the competing strategies and (2) how
suitable model-expected variances of rival estimators compete in magnitude as examined
numerically through simulations.

Key words: Des Raj and symmetrized Des Raj estimator and associated variance, Hansen-
Hurwitz estimation and variance, Hartley-Ross, Horvitz-Thompson, Lahiri-Midzuno-Sen,
Murthy, Rao-Hartley-Cochran procedures vis-a-vis SRSWOR and SRSWR.
AMS Subject classification: 62 DO5.

1. Introduction

Stratifed SRSWOR is supposed to outperform unstratified SRSWOR because the con-
ventional unbiased estimator of the population mean in the former has a variance as a func-
tion of the ’Within Sum of Squares’ contrasted with the latter involving the ’Total Sum of
Squares’ if the strata are well constructed and maybe, effectively controlled Between strata
variability. Using the survey data from a stratified SRSWOR it is well known vide Cochran
(1977) and JNK Rao (1961) how the gain in stratification may duly be estimated vis-a-vis
unstratified SRSWOR.

It is our interest to extend this approach covering a few competitive pairs of strategies in
each of which it is difficult to work out plausible variance formulae in closed form illustrated
in Section 2 below.

Covering pairs of sampling strategies for estimating population totals when variance
formulae are available for unbiased estimators, we intend to examine how more compli-
cated complex strategies may be justified from the efficiency gaining point of view vis-a-vis
SRSWR and SRSWOR as the basic procedures by postulating simplified regression models
thereby working out their model-based expected values of the variances of rival unbiased
estimators for the population total.

Details are given in the Section 3 below.
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A comparative study by simulations is presented in Section 4. Comments are also stated
there.

To our knowledge the literature covers no follow-up of JNK Rao’s (1961) approach treat-
ing any other strategies. Our Section 2 below is a novel exercise removing this deficiency
taking account of several worthy alternatives. Secondly, considering a simple special case
of Fairfield Smith’s (1938) popular super-population model and bringing several useful and
popular sampling strategies under this umbrella we, as a novelty, study, by simulation, how
the numerical model-expected design variances of unbiased estimators of finite population
totals (or means) for complex and simple sampling strategies fare among each other.

2. Estimating Gain in Efficiency

2.1. (PPSWOR, Des Raj Estimator) strategy versus (SRSWOR, Expansion Estimator)

Suppose y is a variable of interest taking values yi for the respective units i of a finite
population U = (1, . . . , i, . . . ,N), with a total Y = ∑

N
i=1 yi.

Let positive values xi of another positively correlated variable x be all known for the
units i of U, with a total X = ∑

N
i=1 xi and pi =

xi
X be the unit-wise normed size measures. X ,

Y denote the population means of x and y.
Probability proportional to size measures xi (PPS) without replacement (PPSWOR)

sample selection method is implemented by selecting a number, say, n(≥2) units from U
ordered as the 1st ,2nd , . . . ,nth, namely i1, i2, . . . , i j, . . . , in with respective probabilities

pi1,
pi2

1− pi1
, . . . ,

pi j

1− pi1 − . . .− pi j−1

j = 1,2, . . . ,n.

Then, Des Raj’s unbiased estimator for Y is

tD =
1
n
(t1 + t2 + . . .+ tn)

with

t1 =
yi1

pi1
,

t2 = yi1 +
yi2

pi2
(1− pi1), . . . ,

t j = yi1 + yi2 + . . .+
yi j

pi j
(1− pi1 − pi2 − . . .− pi j−1), j = 1,2, . . . ,n.

The formula for the exact variance of tD is given by Roychoudhury (1957). But its
closed form expression is pretty complicated. Nevertheless, an unbiased estimator for V (tD)
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is given by Des Raj(1956) as

v(tD) =
1

2n2(n−1)

n

∑
j=1

n

∑
k=1,k ̸= j

(t j − tk)2

which is pretty simple in form.
Suppose a PPSWOR sample chosen as above is at hand as s = (i1, i2, . . . , in) along with

the values yi1,yi2, . . . ,yin.
Suppose we consider a comparable strategy composed of an SRSWOR sample sWOR of

size n and the expansion estimator based on it as

Ny =
N
n ∑

i∈sWOR

yi

with variance

VSWOR(Ny) =
(N −n)N2

Nn(N −1)

N

∑
i=1

(yi −Y )2

where y denotes the sample mean.
Then, an unbiased estimator for this is derived as follows: We have

V (tD) = E(t2
D)−Y 2

So an unbiased estimator for Y 2 is

Ŷ 2 = t2
D − v(tD) . . .(2.1)

Also an unbiased estimator for ∑
N
1 y2

i is tD(y2), which is tD as above with every y in tD
replaced by corresponding y2. So, an unbiased estimator for V (Ny) is

v1 =

(
1
n
− 1

N

)
N2

N −1

[
tD(y2)− Ŷ 2

N

]
. . .(2.2)

with Ŷ 2 as given in (2.1).
Then G1 = v1 − v(tD) unbiasedly estimates gain in efficiency of (PPSWOR,tD) over

(SRSWOR,Ny).

2.2. (PPSWOR, Symmetrized Des Raj Estimator) versus (SRSWOR, Expansion Esti-
mator)

Given the ordered sample as in section (2.1) as s= (i1, i2, . . . , in) and Des Raj’s estimator
tD = tD(s) based on this ordered s, let s∗ be the set of all samples obtained by permuting the
n units in s in all possible n! ways and

p(s∗) = ∑
s→s∗

p(s),
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writing ∑s→s∗ to denote the sum over all possible samples in the set s∗. Then

t∗SD = t∗SD(s
′) =

∑s→s∗ p(s)tD(s)
∑s→s∗ p(s)

= t∗SD(s),

say, for any member s′ in set s∗ is the ’Symmetrized Des Raj’ estimator for Y. Also, it is
well known, vide (Chaudhuri(2010), p19) that

V (t∗SD(s)) =V (tD(s))−E(tD − t∗SD)
2.

Hence, an unbiased estimator for V (t∗SD) is

v(t∗D) = v(tD)− (tD − t∗SD)
2.

If the survey data (s′,yi|i ∈ s′) are at hand, an unbiased estimate for VSWOR(Ny) follows
as

v2 =

(
1
n
− 1

N

)
N2

(N −1)

[
t∗SD(y

2)− (Ŷ 2)′

N

]
. . .(2.3)

Writing t∗SD(y
2) as t∗SD(s

′) with each yi in t∗SD(s
′) replaced by y2

i and

(Ŷ 2)′ = (t∗SD(s
′))2 − v2(t∗SD) . . .(2.4)

2.3. (Lahiri-Midzuno-Sen sampling with Ratio Estimator) versus (SRSWOR, Expan-
sion Estimator)

Lahiri-Midzuno-Sen’s (1951, 1952, 1953) or LMS sample is selected by choosing on
the first draw from U a unit i with selection probability pi followed by an SRSWOR in (n-1)
draws from the remaining (N-1) units excluding the first chosen unit i from U.

Then, tR = X y
x is the exact unbiased ratio estimator for Y based on such a sample, with

x denoting the sample mean of x.

Vide Chaudhuri(2010) an exactly unbiased estimator of variance of tR is

v(tR) =
N

∑
N

∑
i< j=1

ai j
Isi j

∑i∈s pi

(
N −1
n−1

− 1
∑i∈s pi

)
;

here s is the LMS sample of size n, and

Isi j =

{
1 i, j ∈ s
0 otherwise

and

ai j = pi p j

(
yi

pi
−

y j

p j

)2

;
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also πi = the inclusion probability of i in an LMS sample is given by

πi =
N −n
N −1

pi +
n−1
N −1

and

πi j =
N −n

(N −1)(N −2)
(pi + p j)+

(n−2)(n−1)
(N −1(N −2))

is the inclusion probability of i and j in an LMS sample of size n. So, an unbiased estimator
of V (Ny) from the LMS sample is

V̂SWOR(Ny) = v3 =

(
1
n
− 1

N

)
N2

(N −1)

[
∑
i∈s

y2
i

πi
− 1

N
(t2

R − v(tR))

]

because
V (tR) = E(t2

R)−Y 2

and Y 2 is unbiasedly estimated by t2
R −v(tR). So, v3 −v(tR) unbiasedly estimates the gain in

efficiency of (LMS,tR) over (SRSWOR,Ny)

2.4. (SRSWOR,Hartley-Ross estimator) versus (SRSWOR, Expansion estimator)

Based on an SRSWOR s of size n an unbiased estimator for Y given by Hartley and
Ross (1954) is

ŶHR = N
[

r+
(

N −1
N

)(
n

n−1

)
1
X
(y− rx)

]
= N [r+ c(y− rx)] ,

say, writing r = 1
n ∑i∈s

yi
xi and x, y are sample means of x and y and X is the population mean

of x.
An unbiased estimator for V (ŶHR) is given by

v(ŶHR) = (ŶHR)
2 −

[
N
n ∑

i∈s
y2

i +
N(N −1)
n(n−1) ∑ ∑

i̸= j∈s
yiy j

]

because for SRSWOR πi =
n
N ∀i and πi j =

n(n−1)
N(N−1) ∀i ̸= j

An unbiased estimator for V (Ny) from an SRSWOR s of size n is

v4 =

(
1
n
− 1

N

)
N2

(n−1) ∑
i∈s

(yi − y)2.

So v4 − v(ŶHR) tells us how much we may gain in efficiency on using ŶHR rather than
Ny.

In Section 3 below we consider situations when for complex surveys variances of unbi-
ased estimators for Y have manageably elegant forms.
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3. How under a simple model expected variances fare relative to each
other

Model

We assume that
yi = βxi + εi, i ∈U = (1,2,3, . . . ,N)

Here β is an arbitrary unknown constant which determines y’s dependence on x’s. x′is
are auxilliary variables which are known for all population units. ε ′i s are error terms with
zero mean and some common variance τ2, which is also not fixed.
Every expectation that we have taken in the upcoming Sections 3.1 to 3.9 are based on the
above mentioned model.

This model is a simple special case of the well-known popular Fairfield Smith’s (1938)
super-population model under which the model-variance of εi is τ2xγ

i for i=1,2,...,N. In the
literature most strategies are treated utilizing this model and the literature on comparison
among model expected variances of design- unbiased estimators of finite population to-
tals (or means) is rather vast. But in this paper we may draw attention to the following
few, namely the text by Sarndal, Swensson and Wretman (1992) and a few papers in peer-
reviewed journals namely by JNK Rao and Bayless, D.L. (1969), JNK Rao and Bayless,
D.L. (1970), TJ Rao (1967) and Chaudhuri and Arnab (1979). The last-mentioned paper,
Chaudhuri and Arnab (1979), is worthy of attention because in it, expressing Model- (Fair-
field Smith’s)- expected variances of ratio estimator based on LMS scheme by E1, that of
Rao-Hartley-Cochran estimator by E2 and that of Horvitz-Thompson estimator based on an
IPPS sample by E3, it is shown that
(i) E1 < E2 < E3 if γ < 1,
(ii) E1 > E2 > E3 if γ > 1 and
(iii) E1 = E2 = E3 if γ = 1.

3.1. Strategy 1: (SRSWR, Expansion Estimator)

For SRSWR in n draws from population of size N the expansion estimator Ny is unbi-
ased for Y = ∑

N
i=1 yi with variance

V (Ny) =
N2

n
σ

2 =
N
n

N

∑
i
(yi −Y )2; σ

2 =
1
N

N

∑
1
(yi −Y )2.

Under a model its expected value is

E (V (Ny)) =
N
n

E

[
N

∑
i=1

(yi −Y )2

]

E denotes generically a model-based expectation operator.
Then

E (V (Ny)) =
N(N −1)

n

[
τ

2 +β
2Sxx

]
= (srswr)
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where

Sxx =
1

N −1

N

∑
i=1

(xi −X)2.

3.2. Strategy 2: (SRSWOR,Ny)

We have in this case

V (Ny) =
N2(N −n)
Nn(N −1)

N

∑
i=1

(yi −Y )2.

And thus,

E (V (Ny)) =
N(N −n)

n
(τ2 +β

2Sxx) = (srswor).

3.3. Strategy 3: (PPSWR, Hansen-Hurwitz Estimator tHH )

The Hansen Hurwitz estimator (1943) is given by

tHH =
1
n

n

∑
r=1

yr

pr
,

with
yr=y-value for the unit chosen on r-th draw
pr=probability of the unit being chosen on r-th draw

V (tHH) =
1
n

[
N

∑
1

y2
i

pi
−Y 2

]

with

E (V (tHH)) =
τ2

n

(
NX

N

∑
1

1
xi
−N

)
= (ppswr).

3.4. Strategy 4: (PPSWR, Horvitz-Thompson Estimator

For PPSWR sampling in n draws the inclusion-probabilities are

πi = 1− (1− pi)
n

πi j = 1− (1− pi)
n − (1− p j)

n +(1− pi − p j)
n.

Following Chaudhuri and Pal (2003) the Horvitz & Thompson’s (1952) estimator (HTE),
tHT = ∑i∈s

yi
πi

based on a PPSWR sample s in n draws has the variance

V (tHT )PPS =
N

∑
N

∑
i< j

(πiπ j −πi j)

(
yi

πi
−

y j

π j

)2

+
N

∑
1

y2
i

πi
αi
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with αi = 1+ 1
πi

∑ j ̸=i πi j −∑
N
1 πi. Then

E (V (tHT )PPS) = β
2

[
N

∑
1

x2
i

πi
+∑∑

i̸= j
xix j

πi j

πiπ j
−X2

]

+ τ
2

(
N

∑
1

1
πi

−N

)
+β

2
N

∑
1

αi
x2

i
πi

+ τ
2

N

∑
1

αi

πi
= (ppswrht).

3.5. Strategy 5: (SRSWR,HTE)

For SRSWR in n draws the inclusion-probabilities are

πi = 1− (
N −1

N
)n

πi j = 1−2(
N −1

N
)n +(

N −2
N

)n.

For the HTE based on SRSWR in n draws the variance is

V (tHT )SRS =
N

∑
N

∑
i< j

(πiπ j −πi j)

(
yi

πi
−

y j

π j

)2

+
N

∑
1

y2
i

πi
αi

with

E (V (tHT )SRS) = β
2

[
N

∑
1

x2
i

πi
+∑∑

i̸= j
xix j

πi j

πiπ j
−X2

]

+ τ
2

(
N

∑
1

1
πi

−N

)
+β

2
N

∑
1

αi
x2

i
πi

+ τ
2

N

∑
1

αi

πi
= (srswrht).

3.6. Strategy 6: (SRSWR, N times the mean of the sampled distinct units only

From Chaudhuri (2010, pp. 35-36)we know that the sample mean of the distinct units
in a sample s chosen by SRSWR in n-draws is unbiased for the population mean Y and the
expansion estimator given by N multiplied by this mean yd , say, Ŷd = Nyd has the variance

V (Ŷd) = N2

[
1
N

N

∑
i=1

(
j

N

)n−1

− 1
N

]
S2

writing S2 = 1
(N−1) ∑

N
i=1(yi −Y )2 and so

E (V (Ŷd)) = N2

[
1
N

N

∑
1

(
j

N

)n−1

− 1
N

]
(τ2 +β

2Sxx) = (srswrd)
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writing Sxx =
1

N−1 ∑
N
1 (xi −X)2.

3.7. Strategy 7: (Rao-Hartley-Cochran Sampling, Rao-Hartley-Cochran Estimator)

A sample of size n by Rao-Hartley-Cochran (RHC(1962)) scheme is taken by choosing
from the population first a sample of N1 units by SRSWOR, then a sample of size N2 from
the remaining (N −N1) units of the population and successively and similarly, finally an
SRSWOR of size Nn keeping N1 +N2 + . . .+Nn = N and for the sake of efficiency taking
Ni =

[N
n

]
for i = 1,2, . . . ,k and the last (n-k) of these NiFLs as

[N
n

]
+1 with the restriction

N1 +N2 + . . .+Nn = N. Such a choice is uniquely possible. For the parts of the population
so constructed, the values of pi are noted and

Qi = pi1 + . . .+ piNi

for the i-th pair or group is noted.
Then, writing ∑n as the sum over these n pairs or groups and ∑n ∑n as the sum over the

distinct pairs of these groups follows the RHC’s unbiased estimator for Y as

tRHC = ∑
n

yi j

pi j
Qi

on taking independently across these n groups just one unit say labelled ij from the i-th
group denoting the associated y value as yi j. Then, it follows that

V (tRHC) =
∑n N2

i −N
N(N −1) ∑

n
∑
n

pi p j

(
yi

pi
−

y j

p j

)2

.

Also,

E (V (tRHC)) =

(
∑n N2

i −N
)

N −1
τ

2

(
X

N

∑
1

1
xi
−1

)
= (rhc).

3.8. Strategy 8: (An Inclusion Probability Proportional to size (IPPS or πPS) sam-
pling, Horvitz-Thompson Estimator

The Horvitz Thompson estimator based on a sample s of size (of distinct unit) n is
tHT = ∑i∈s

yi
πi

and πi = npi, i ∈ Population

V (tHT ) = ∑∑
i< j

(πiπ j −πi j)

(
yi

πi
−

y j

π j

)2

and

E (V (tHT )) =
Nτ2

n

(
X

N

∑
1

1
xi
−n

)
= (ippsht).
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3.9. Strategy 9: Lahiri-Midzuno-Sen (LMS) sampling Scheme, Horvitz-Thompson
Estimator (HTE)

For the sample s of size n for the LMS scheme, the HT estimator is tHT = ∑i∈s
yi
πi

with
the variance

V (tHT ) = ∑∑
i< j

(πiπ j −πi j)

(
yi

πi
−

y j

π j

)2

with

πi =
(N −n)
(N −1)

pi +
(n−1)
(N −1)

and

πi j =
(N −n)(n−1)
(N −1)(N −2)

(pi + p j)+
(n−1)(n−2)
(N −1)(N −2).

It follows that

E (V (tHT )LMS) = β
2

[
N

∑
1

x2
i

πi
+∑∑

i ̸= j
xix j

πi j

πiπ j
−X2

]
+ τ

2

(
N

∑
1

1
πi

−N

)
= (lmsht).

4. A numerical study by Simulation

4.1. Simple Model yielding x,y values

Model: Let yi = βxi + εi i ∈ U = (1,2 . . . ,N) with β an arbitrarily chosen positive
constant; xiFLs are independently generated from distribution function

F(x) = 1− e−
1
10 x, x > 0.

The choice of x was from such a distribution mainly because we wanted to use positive
values of explanatory variables keeping in mind the application of such a model in real life.
The mean of 10 was taken to choose values with considerably moderate values.

εiFLs are independently randomly generated from the Normal distribution N(0,1) for i =
1,2, . . . ,N.

Also, we take β = 2.3, 1.6, and 3.6 and N = 23. Using these different values of β we
generated three sets of values which shall be treated as population. The generated values
with β = 2.3 are reported in Table 1.
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Table 1: Table of Population values
Sl.No x y Sl.No x y

1 7.55 18.15 13 12.38 28.41
2 11.82 27.25 14 44.24 100.37
3 1.46 1.36 15 10.55 23.84
4 1.40 3.84 16 10.35 23.42
5 4.36 9.97 17 18.76 43.09
6 28.94 66.42 18 6.55 16.16
7 12.30 26.81 19 3.37 8.51
8 5.40 11.93 20 5.88 13.37
9 9.57 22.41 21 23.65 54.13

10 1.47 4.74 22 6.42 15.46
11 13.91 31.88 23 2.94 7.32
12 7.62 17.91

Throughout this paper we shall use only these three sets of (x,y)-values whenever needed
for illustrations as the finite population values of x and y. For the material presented in
sections 2.1-2.4 we intend to use the values generated as given above to illustrate the realized
magnitudes of estimated gains in efficiencies of pairs of competing strategies. For this, from
the population of N=23 sets of (x,y)-values samples of size n=7 are chosen by appropriately
defined procedures. The findings are presented in Section 4.2 below in specified tables.

In order to present numerical illustrations for the materials covered in Sections 3.1
through 3.9 we use the x-values of three generated populations mentioned above for the
population of size N=23 but β values are differently taken and εi’s are supposed to have
a constant model variance τ2 which are variably taken for illustration. On every occasion
a sample of size n is illustrated with the value 7 but y-values are accordingly supposed to
be generated yielding the specified model-expected variances illustrated in tables in Section
4.3 below.

4.2. Numerical study of material in Sections 2.1-2.4

For the purpose of presentation of materials covered in Sections 2.1-2.4, we have chosen
10 separate and independent samples each of size 7 from different populations generated as
mentioned above. We worked on deriving the estimated variances and tabulated them below
side by side.
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Table 2: Estimated variances given in Sections 2.1-2.4 for samples of size n=7 from the
(x,y)

v(tD) v1 v(t∗SD) v2 v(tR) v3 v(ŶHR) v4
i ii iii iv v vi vii viii

1806.07 4908.88 1718.08 2418.30 325.73 15196.67 5219.82 25418.88
1.76 3291.07 1.31 395.99 31.21 7845.60 24429.38 18072.16
7.57 12883.59 7.54 1097.78 509.82 2496.31 10429.85 45723.08
3.58 19646.11 2.72 1854.53 35.15 3269.31 5805.09 6658,41

39.77 6404.84 39.74 2163.54 6.49 411.98 22844.20 4321.82
315.56 4776.37 315.49 4321.30 39.93 2237.48 11985.97 5815.61
9.85 6366.44 9.18 3045.95 18.25 1476.29 860.27 2640.17

324.63 3685.89 324.49 5052.97 117.28 4474.86 4470.89 7616.78
3152.35 1301.71 3147.20 8209.40 8.76 344.86 35946.81 6572.70

15.29 5249.95 11.14 2583.30 239.06 21144.43 2014.46 42327.04

Comments

From the values of the estimated variances we may say that (i) (PPSWOR, tD) is substan-
tially more gainful in efficiency over (ii) (SRSWOR, Expansion Estimator) both of which
are much inferior to (iii) (PPSWOR, Symmetrized Des Raj Estimator). For the sample size
n=7 we had to obtain 7! = 5040 Des Raj estimates. But with powerful statistical software it
did not cost us much time.

Compared to (vi) (SRSWOR,Ny) the strategy (v) (LMS, Ratio Estimator) is enormously
more gainful as it should be because a size variable is employed. Compared to (viii)
(SRSWOR,Ny), (vii) (SRSWOR, Hartley-Ross Estimator) is also more gainful, but pre-
sumably because an auxiliary size-measure is employed.

4.3. Numerical study of material in Sections 3.1-3.9

Using the values of xi from three different populations and variously choosing β and
τ2 explained in Section 4.1, we present below in Table 3, 4 and 5 the values of the model
expected variances of various unbiased estimators for a finite population total of a variable
y of interest based on samples taken according to various schemes.



STATISTICS IN TRANSITION new series, March 2022 51

Table 3: Ten values for each of the model-expected variances for first population
SRSWR SRSWOR PPSWR PPSWR SRSWR SRSWR RHC IPPS LMS

Ny Ny tHH HT E HT E Nyd RHC HT E HT E
(β ,τ2) (srswr) (srswor) (ppswr) (ppswrht) (srswrht) (srswrd) (rhc) (ippsht) (lmsht)
(0.1,5) 434.55 316.03 815.49 1051.10 448.74 388.17 609.19 716.92 298.45

(0.1,10) 795.98 578.89 1630.98 2073.27 805.91 711.03 1218.4 1433.83 564.18
(0.2,2) 437.05 317.85 326.20 524.57 509.11 390.41 243.68 286.77 237.13

(0.2,10) 1015.33 738.42 1630.98 2160.04 1080.6 906.97 1218.4 1433.83 662.31
(0.5,5) 2189.4 1592.29 815.49 1745.31 2646.19 1955.74 609.19 716.92 1083.45
(1.5,2) 16596.34 12070.07 326.16 6917.12 20744.01 14825.12 243.68 286.77 7465.73
(2.5,5) 46060.8 33498.76 815.49 19100.64 57582.57 41145.02 609.19 716.92 20708.61

(2.5,10) 46422.23 33671.62 1630.98 20122.81 57939.74 41467.87 1218.34 1433.83 20974.35
(2.5,25) 47506.51 34550.19 4077.44 23189.33 59011.27 42436.44 3046 3584.59 21771.56

(3,2) 65951.66 47964.85 326.19 26441.87 82547.43 58913.06 243.68 286.767 29544.03

Table 4: Ten values for each of the model-expected variances for second population
SRSWR SRSWOR PPSWR PPSWR SRSWR SRSWR RHC IPPS LMS

Ny Ny tHH HT E HT E Nyd RHC HT E HT E
(β ,τ2) (srswr) (srswor) (ppswr) (ppswrht) (srswrht) (srswrd) (rhc) (ippsht) (lmsht)
(0.1,5) 421.76 306.74 827.45 1045.82 436.46 376.75 618.14 728.88 298.43

(0.1,10) 783.19 569.59 1654.91 2063.89 793.64 699.61 1236.28 1457.76 557.62
(0.2,2) 385.92 280.67 330.98 518.18 460.03 344.73 247.26 291.55 215.02

(0.2,10) 964.20 701.24 1654.91 2147.11 1031.51 861.30 1236.27 1457.76 639.33
(0.5,5) 1869.84 1359.89 827.45 1711.52 2339.40 1670.29 618.14 728.88 946.09
(1.5,2) 13720.30 9978.4 330.98 6648.23 17982.88 12256.02 247.26 291.55 6234.14
(2.5,5) 38071.79 27688.57 827.45 18354.19 49912.75 34008.62 618.14 728.88 17287.6

(2.5,10) 38433.21 27951.43 1654.91 19372.27 50269.93 34331.48 1236.27 1457.76 17552.79
(2.5,25) 39517.50 28740 4137.27 22426.51 51341.45 35300.05 3090.69 3644.41 18348.37

(3,2) 54447.49 39598.17 330.98 25371.23 71502.90 48636.65 247.26 291.55 24618.34

Table 5: Ten values for each of the model-expected variances for third population
SRSWR SRSWOR PPSWR PPSWR SRSWR SRSWR RHC IPPS LMS

Ny Ny tHH HT E HT E Nyd RHC HT E HT E
(β ,τ2) (srswr) (srswor) (ppswr) (ppswrht) (srswrht) (srswrd) (rhc) (ippsht) (lmsht)
(0.1,5) 433.82 315.50 2637.29 3664.84 441.64 387.52 1970.15 2538.72 298.03

(0.1,10) 795.25 578.36 5274.58 7307.63 798.82 710.38 3940.30 5077.44 565.04
(0.2,2) 434.14 315.74 1054.91 1545.29 480.75 387.81 788.06 1015.49 230.89

(0.2,10) 1012.43 736.31 5274.59 7373.77 1052.24 904.38 3940.31 5077.44 658.11
(0.5,5) 2171.27 1579.11 2637.29 4193.92 2468.95 1939.54 1970.15 2538.72 1042.59
(1.5,2) 16433.17 11951.39 1054.92 6417.29 19148.91 14679.36 788.06 1015.49 7087.09
(2.5,5) 45607.53 33169.11 2637.29 17421.07 53151.72 40740.12 1970.15 2538.72 19656.68

(2.5,10) 45968.96 33431.97 5274.58 21063.87 53508.89 41062.98 3940.30 5077.44 19923.69
(2.5,25) 47053.24 34220.54 13186.47 31992.25 54580.42 42031.55 9850.76 12693.61 20724.72

(3,2) 65298.96 47490.15 1054.92 21297.84 76167.01 58330.01 788.06 1015.49 28027.93
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Comments

Among the strategies (srswr) (SRSWR, Ny), (srswor) (SRSWOR, Ny) and (srswrd)
(SRSWR,Nyd), as anticipated (srswor) fares best and (srswrd) in between the other two.
Moreover (srswrht) (SRSWR, tHT ) fares worse than all these three. Between the (ppswr)
(PPSWR, tHH ) and the (rhc) RHC strategy, the latter performs better for every (β , τ2) pair
as it should. Interestingly, (ppswrht) (PPSWR, tHT ) fares worse than both.

(ippsht) (IPPS, tHT ) strategy fares competitively against (lmsht) (LMS, tHT ), the latter
poorer as τ2 is taken higher. Interestingly, they are found competitive against all four strate-
gies with equal probability sampling making no use of size measures.

Most interestingly, the (rhc) RHC strategy fares by far the best among all the strategies
under our competition here for almost all choices of our (β , τ2)’s.

5. Discussions

The present work has clearly two distinct aspects. One of them is extending the well-
known approach of comparing the classical stratified sampling strategy with the correspond-
ing unstratified one in terms of the two variance estimates from the stratified sample at hand
on identifying the Des Raj estimator combined with PPSWOR, the symmetrized Des Raj
estimator with PPSWOR, the Hartley-Ross estimator based on SRSWOR and the mean of
values of distinct sample units in SRSWR versus the over-all sample mean in SRSWR and
the expansion estimator in SRSWOR as the situations when easy variance estimator for-
mulae are easy to derive. The other being on observing that the first aspect can be impres-
sively clarified through simulated illustrations, following it through an appeal to simulated
illustrations also to compare model-based expectations of exact design variances of pairs
of well-known unbiased estimators of population totals citing several complex and simple
sampling strategies.

6. Conclusions

(i) In the first case in Section 5, as expected, the complex strategies numerically outper-
form the respective simpler ones. Thus, it is vindicated that to go for the complex alterna-
tives is lucrative rather than to remain complacent about the simpler alternatives.
(ii) In the second case of Section 5, for various alternative pairs relative performances of
model-expected variances are comparatively demonstrated in Section 4.3. The Rao-Hartley-
Cochran (1962) strategy for our illustrated numerical situation is demonstrated to fare as the
most effective strategy. But from this it cannot be claimed that one should always go for
this in practice. Respective performances are well illustrated in Section 4.3 of course. We
cannot make general conclusions beyond our illustrated example of course.
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Generalized extended Marshall-Olkin family of
lifetime distributions

Mehdi Goldoust1, Adel Mohammadpour2

ABSTRACT

We introduce a new generalized family of nonnegative continuous distributions by adding
two extra parameters to a lifetime distribution, called the baseline distribution, by twice com-
pounding a power series distribution. The new family, called the lifetime power series-power
series family, has a serial arrangement of parallel structures, which extends the Marshall and
Olkin structure. Four special models are discussed. A mathematical treatment of the new
distributions is provided, including ordinary and incomplete moments, quantile, moment
generating and mean residual functions. The maximum likelihood estimation technique is
used to estimate the model parameters and a simulation study is conducted to investigate
the performance of the maximum likelihood estimates. Its applicability is also illustrated by
means of two real data sets.

Key words: compound distribution, hazard rate function, lifetime distribution, maximum
likelihood estimation, power series distribution.

1. Introduction

Classical well-known distributions, such as Weibull, gamma and Lomax distributions,
are widely used for modeling data in many disciplines, including engineering, statistics,
medical sciences, economics, and insurance. However, in many practical situations, they
cannot provide appropriate fits on real data sets. Throughout the two last decades, sev-
eral generators have been proposed in the literature to extend well-known distributions by
adding one or more parameters to the baseline distribution. Since 1997, when Marshall
and Olkin proposed a way to add a parameter to the lifetime distribution, by compounding
with the geometric distribution, several new families of distributions have been derived by
compounding the power series distribution with many other nonnegative continuous distri-
butions to provide more flexible distributions for modeling lifetime data.

Marshall and Olkin’s (1997) method was based on the lifetime of a series or parallel
system with an unknown amount of components. Their work was extended by Chahkandi
and Ganjali (2009), which proposed the exponential power series (EPS) distribution. Fur-
thermore, Morais and Barreto-Souza (2011) proposed the Weibull power series (WPS) dis-
tribution containing the EPS distribution as a particular case. On the other hand, Flores
et al. (2013) introduced the complementary EPS distribution, complementary to the EPS
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E-mail: mehdigoldust@gmail.com. ORCID: https://orcid.org/0000-0002-5859-3350.
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distribution and Munteanu et al. (2014) presented complementary WPS distribution. Some
more well-known generators based on Marshal-Olkin generated family (MO-G) are Ku-
maraswamy Marshall-Olkin by Alizadeh et al. (2015), Beta Marshall-Olkin by Alizadeh
et al. (2015), exponentiated logarithmic Marshal-Olkin by Marinhoa and Cordeiro (2016),
and Marshall-Olkin alpha power family by Nassar et al. (2019).

According to Ross (2010), any system can be represented both as a series arrangement
of parallel structures or as a parallel arrangement of series structures. Using this key, the
purpose of this paper is to introduce a new generator of lifetime distributions by compound-
ing a lifetime distribution with twice power series distribution, obtaining what is referred
to as the LPS2 family of distributions. The proposed family is motivated by a system con-
sisting of serial components with each component consisting of a parallel of components.
Some researchers published real examples of systems made by the serial, and parallel com-
ponents are resonant converters (Kazimierczuk et al., 1993), hybrid electric bus (Xiong et
al., 2009), and hybrid envelope amplifiers (Hassan et al., 2012).

The paper is organized as follows. In Section 2, we introduce the new family of distribu-
tions. Four special cases of this family are defined in Section 3. Section 4 derives some of its
mathematical properties. The explicit expressions for the moments, incomplete moments,
generating function, and mean residual time are given in this section. The estimation of
parameters using the maximum likelihood method is investigated in Section 5. In Section
6, a simulation study is performed to show the behaviour of asymptotic biases and mean
square errors of maximum likelihood estimations (MLEs). Illustrative examples of two real
data sets are given in Section 7. Finally, in Section 8, we present some concluding remarks.

2. The LPS2 family of distributions

Let Xi, js be a sequence of independent and identically (iid) random sample from a base-
line lifetime distribution for j = 1,2, . . . ,Zi, i= 1,2, . . . ,U , with probability density function
(pdf) π(x;ςςς) and cumulative distribution function (cdf) Π(x;ςςς), where ςςς denoted the pa-
rameter vector of baseline distribution. Suppose Z1,Z2, . . . ,ZU are iid zero truncated power
series random variables with probability mass function (pmf)

P(z;θ) =
bzθ

z

B(θ)
,

for z = 1,2, . . ., where bz depends only on z and B(θ) = ∑
∞
z=1 bzθ

z < ∞. Furthermore,
suppose U is a zero truncated power series random variable with pmf

P(u;λ ) =
auλ u

A(λ )
,

for u = 1,2, . . ., where au depends only on u and A(λ ) = ∑
∞
u=1 auλ u < ∞. Consider that

Xi, js, Zis and U are independent, we define a system, which is made of U series components,
that the ith component is made of Zi components working in parallel. Figure 1 shows an
illustration of this system. Then the lifetime of the system is
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1 2 U

Figure 1: The system made up of series and parallel components.

X = min
{

max
{

Xi, j
}Zi

j=1

}U

i=1
.

Table 1 shows useful quantities of some members of the power series family (truncated at
zero) such as the Poisson, geometric, logarithmic series, negative binomial and binomial
distributions.

Table 1: Members of the power series family.

power series family pmf λ extended λ after compounding au A(λ ) I(λ ) =
∫

λ

0 A′ (v) log{A′ (v)}dv

Poisson e−λ λ u/u!
(
1− e−λ

)
0 < λ < ∞ λ ∈ (−∞,0)

⋃
(0,+∞) 1/u! eλ −1 (λ −1)eλ +1

Geometric (1−λ )λ u−1 0 < λ < 1 λ ∈ (−∞,0)
⋃
(0,1) 1 λ/(1−λ ) −2(λ + log{1−λ})/(1−λ )

Logarithmic series −λ u/u log{1−λ} 0 < λ < 1 λ ∈ (−∞,0)
⋃
(0,1) 1/u − log{1−λ} − 1

2 log2 {1−λ}

Negative Binomial
(m+u−1

u

)
(1−λ )m

λ u/1− (1−λ )m 0 < λ < 1 λ ∈ (−∞,0)
⋃
(0,1)

(m+u−1
u

)
(1−λ )−m −1 log{m}A′(λ )− m+1

m

{
(1−λ )−m [m log{1−λ}+1]−1

}
Binomial

(m
u

)
λ u/((1+λ )m −1) 0 < λ < ∞ λ ∈ (−1,0)

⋃
(0,+∞)

(m
u

)
(1+λ )m −1 (1+λ )m log

{
m(1+λ )m−1

}
− log{m}

It could be shown that the marginal cdf of X is

F (x;ξξξ ) = 1− [A(λ )]−1A
(

λ

{
1− B(θΠ(x;ςςς))

B(θ)

})
, (1)

for x > 0 and ξξξ = (ςςς ,θ ,λ ). Hence, S (x;ξξξ ) = 1−F (x;ξξξ ) is the corresponding survival
function and the pdf and hazard rate function (hrf) of LPS2 family are defined as follows:

f (x;ξξξ ) =
λθπ (x;ςςς)B′ (θΠ(x,ςςς))

A(λ )B(θ)
A′
(

λ

{
1− [B(θ)]−1B(θΠ(x;ςςς))

})
(2)

and

h(x;ξξξ ) =
λθπ (x,ςςς)B′ (θΠ(x;ςςς))A′

(
λ

{
1− [B(θ)]−1B(θΠ(x;ςςς))

})
B(θ)A

(
λ

{
1− [B(θ)]−1B(θΠ(x;ςςς))

}) ,

for x > 0, respectively. Furthermore, A′(.) and B′(.) are the derivative of A(.) and B(.)
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functions, respectively. The hrf can be constant, decreasing, increasing, J-shaped, bathtub-
shaped, and upside-down bathtub-shaped for a different type of the baseline and power
series distributions (see Section 3). The LPS2 family of distributions contains all com-
pounded lifetime distributions, which were built by the Marshall and Olkin method. Here,
some sub-models of the LPS2 family are presented.

• When Z1,Z2, . . . = 1 and the baseline is an exponential or a Weibull distribution, we
obtain the EPS (Chahkandi and Ganjali, 2009) and WPS (Morais and Barreto-Souza,
2011) distributions respectively;

• when U = 1 and the baseline is an exponential or a Weibull distribution, we obtain the
CEPS (Flores et al., 2013) and the max-Weibull power series (Munteanu et al., 2014)
distributions respectively.

Furthermore, since

lim
λ→0

A(λ ) = 0 and lim
λ→0

A(λx)
A(λ )

= x,

thereupon, we have

• The lifetime power series distributions with minimum structure is a special limiting case
of the LPS2 family of distributions when θ → 0+. In general,

lim
θ→0+

F (x;ξξξ ) = 1− [A(λ )]−1 lim
θ→0

A
(

λ

{
1− B(θΠ(x;ςςς))

B(θ)

})
= 1− [A(λ )]−1A(λ {1−Π(x;ςςς)}) ;

• The complementary lifetime power series distributions with maximum structure is a spe-
cial limiting case of the LPS2 family of distributions when λ → 0+. In general,

lim
λ→0+

F (x;ξξξ ) = 1− lim
λ→0

A
(

λ

{
1− B(θΠ(x;ςςς))

B(θ)

})
[A(λ )]−1 = [B(θ)]−1B(θΠ(x;ςςς)) ;

• The baseline distribution is a special limiting case of this new family when θ ,λ → 0+

lim
θ→0+

lim
λ→0+

F (x;ξξξ ) = Π(x;ςςς) .

3. Some special models

In this section, we consider some special cases of the LPS2 distribution. These special
models generalize some well-known distributions in the literature. We provide four special
models of this family corresponding to the baseline exponential, Weibull, Lomax (Lx), and
generalized half-normal (GHN) distributions. To illustrate the flexibility of the distributions,
graphs of the pdf and hrf for some selected distributions are presented.
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It should be noted that compounding of a lifetime geometric family (Marshall and Olkin,
1997) with a geometric distribution again, just expand the parameter space and its cdf
doesn’t change. Suppose Xi, j is a sequence of the independent identically lifetime random
variables with cdf F (x;ςςς). The cdf of a lifetime geometric-geometric family of distributions
(compounding a lifetime and twice geometric distribution) with parameter ξξξ = (ςςς ,θ ,λ ) is

F (x;ξξξ ) =
(1−λ )F (x;ςςς)

1−θ +(θ −λ )F (x;ςςς)
,

for x > 0. With a reparameterization γ = θ−λ

1−λ
, we can write

F (x;ςςς ,γ) =
F (x;ςςς)

1− γF (x;ςςς)
,

for x > 0 and γ < 1. The lifetime geometric-geometric family of distributions (LGG) is due
to Marshall and Olkin (1997) with expanded geometric parameter space. On the other hand,
the parameter space of truncated Poisson distribution in compound distributions could be
extended to (−∞,0)

⋃
(0,+∞), and the parameter space of truncated binomial distribution

could be extended to (−1,0)
⋃
(0,+∞). A more similar extension of the parameter space

may be done to power series parameters (see Table 1).

3.1. Exponential power series-power series distribution (EPS2D)

The EPS2D distribution is defined from (1) by taking Π(x;β ) = 1− e−βx. Then, its
density function is given by

f (x) =
βθλe−βxB′ (θ

[
1− e−βx

])
A(λ )B(θ)

A′
(

λ

{
1− [B(θ)]−1B

(
θ

[
1− e−βx

])})
,

for x > 0 and β > 0.

3.2. Weibull power series-power series distribution (WPS2D)

The cdf and pdf of the Weibull distribution with scale parameter β and shape parameter
α are given by Π(x;α,β ) = 1− e−βxα

and π(x;α,β ) = αβxα−1e−βxα

, respectively. The
WPS2D pdf follows by inserting these expressions in (2) as

f (x) =
αβθλxα−1e−βxα

B′
(

θ

[
1− e−βxα

])
A(λ )B(θ)

A′
(

λ

{
1− [B(θ)]−1B

(
θ

[
1− e−βxα

])})
,

for x> 0, α > 0 and β > 0. Figures 2 and 3 display the pdf and hrf of the Weibull geometric-
Poisson distribution (WGPD) for some selected parameter values.
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Figure 2: Graphs of the WGPD pdf for some selected values of the parameters.

3.3. Lomax power series-power series distribution (LxPS2D)

The LxPS2D distribution is defined from (2) by taking Π(x;β ) = 1− [1+βx]−α for the
cdf of the Lomax distribution with parameters α and β . The LxPS2 pdf is given by

f (x) =
αβθλB′ (θ

{
1− [1+βx]−α

})
A(λ )B(θ) [1+βx]α+1 A′

(
λ

{
1− [B(θ)]−1B

(
θ
{

1− [1+βx]−α
})})

,

for x > 0, α > 0 and β > 0.

3.4. Generalized half-normal power series-power series distribution (GHNPS2D)

Cooray and Ananda (2008) introduced generalized half-normal distribution with cdf and
pdf
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Figure 3: Graphs of the WGPD hrf for some selected values of the parameters.

Π(x) = 2Φ(βxα)−1 and π (x) =

√
2
π

αβxα−1e−
1
2 (βxα )2

,

respectively. The GHNPS2D pdf follows by inserting these expressions in (2) as

f (x) =

√
2
π

αβθλxα−1B′ (θ [2Φ(βxα)−1 ])

A(λ )B(θ)e
1
2 (βxα )2 A′

(
λ

{
1− [B(θ)]−1B(θ [2Φ(βxα)−1 ])

})
,

for x > 0, α,β > 0 and Φ(.) denotes the cdf of standard normal distribution.

4. Some useful properties

In this section, we derive some useful structural properties of the LPS2 distributions.
These include the two useful linear representations for (1) and (2) (Section 4.1), the r-th
moment, moment generating function and mean residual lifetime (Section 4.2), the quantiles
(Section 4.3).

4.1. Two useful linear representations

Let X be a LPS2 random variable with parameters ξξξ = (ςςς ,θ ,λ ). Using the binomial

expansion and A′ (λ ) =
∞

∑
u=1

uauλ u−1, the cdf and pdf of X can be expanded as

F (x;ξξξ ) =
∞

∑
k=1

∞

∑
j=0

φk, jΠ(x;ςςς)k+ j (3)



62 M. Goldoust, A. Mohammadpour: Generalized extended Marshall-Olkin family...

and

f (x;ξξξ ) = π (x,ςςς)
∞

∑
k=1

∞

∑
j=0

ϕk, jΠ(x;ςςς)k+ j−1, (4)

for x > 0, where φk, j = φk, j (θ ,λ ) and ϕk, j = ϕk, j (θ ,λ ) = (k+ j)φk, j. For further details,
see Appendix.

4.2. Moment properties

First, we derive the r-th moment for a random variable X . Therefore, the r-th moment
of X ∼ LPS2(ςςς ,θ ,λ ) is given by

µ
′
r = E [X r] =

∞

∑
k=1

∞

∑
j=0

ϕk, j

∫
∞

0
xr

π (x,ςςς)Π(x)k+ j−1dx

=
∞

∑
k=1

∞

∑
j=0

ϕk, jM (r,k+ j−1),

for r > 0, where M (s,k+ j−1) is the (s,k+ j−1)th probability weighted moment (PWM)
of baseline distribution defined by Greenwood et al. (1979) as follows:

M (i, j) = E
[
X i

Π(X) j
]
=

∫ +∞

0
xi[Π(x)] jdΠ(x) .

The moment generating function (mgf) of the LPS2 family of distributions is given by

MX (t) = E
[
etX]= E

[
∞

∑
s=0

(tX)s

s!

]
=

∞

∑
s=0

ts

s!
E [X s]

=
∞

∑
s, j=0

∞

∑
k=1

ϕk, j

s!
M (s,k+ j−1)ts.

Given the survival to time x0, the residual life is the period from x0 until the time of
failure. From (4), the mean residual lifetime of the LPS2 distribution is given by

m(x0) = E [X − x0|X > x0] = [S (x0;ξξξ )]−1
∫

∞

x0

v f (v)dv− x0

= [S (x0;ξξξ )]−1
∞

∑
k=1

∞

∑
j=0

ϕk, jMx0 (1,k+ j−1)− x0,

where the upper incomplete probability weighted moment was defined as

Mx0 (i, j) =
∫

∞

x0

xi[Π(x)] jdΠ(x) .
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4.3. Quantiles

If U is a uniform [0,1] random variable then

X = Π
−1

(
1
θ

B−1
(

B(θ)

[
1− 1

λ
A−1 (UA(λ ))

]))
is a LPS2 random variable, where Π−1(.) is the inverse of baseline cdf. Furthermore, A−1(.)

and B−1(.) are the inverse of A(.) and B(.) functions, respectively. It follows that the ωth
quantile of the LPS2 distributions is

xω = Π
−1

(
1
θ

B−1
(

B(θ)

[
1− 1

λ
A−1 (ωA(λ ))

]))
.

The effects of the parameters on the skewness of random variable X can be shown based
on quantiles. The Bowley skewness (Kenney and Keeping, 1962), also known as the quan-
tile skewness coefficient, is defined by

B =
x0.75 + x0.25 −2x0.5

x0.75 − x0.25
.

Figure 4 graphs the Bowleie’s measure for the WGPD distribution. The graph indicates the
variability of this measures on the α , β , θ and λ parameters.
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Figure 4: Graphs of skewness based on the quantiles of the WGPD distribution.

5. Estimation of the parameters

In this section, we determine the maximum likelihood estimates (MLEs) of the parame-
ters of the LPS2 family of distributions from complete samples only. Let X =(X1,X2, . . . ,Xn)

be a random sample from the LPS2 distribution with observed values x= (x1,x2, . . . ,xn) and
parameters ξξξ = (ςςς ,θ ,λ ). The log-likelihood function is given by
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ℓ(ξξξ | x) = n logθ +n logλ −n log [A(λ )]−n log [B(θ)]+
n

∑
i=1

log [π (xi;ςςς)]

+
n

∑
i=1

log
[
A′
(

λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

})]
. (5)

By differentiating (5) with respect to ςςς , θ and λ , and then equating these derivative to
zero, we obtain the components of score vector Un (ξξξ ) =

(
∂ℓ
∂ςςς
, ∂ℓ

∂θ
, ∂ℓ

∂λ

)
, where

∂ℓ

∂ςςς
=

n

∑
i=1

πςςς (xi;ςςς)
π (xi;ςςς)

− λθ

B(θ)

n

∑
i=1

Πςςς (xi;ςςς)B′ (θΠςςς (xi;ςςς)
)

A′′
(

λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

})
A′
(

λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

}) ,

∂ℓ

∂θ
=

n
θ
− nB′ (θ)

B(θ)
−λ

n

∑
i=1

B(θ)Π(xi;ςςς)B′ (θ Ḡ(xi;ςςς)
)
−B′ (θ)B(θΠ(xi;ςςς))

[B(θ)]2

×
A′′

(
λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

})
A′
(

λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

})
and

∂ℓ

∂λ
=

n
λ
− nA′ (λ )

A(λ )

+
n

∑
i=1

{
1− [B(θ)]−1B

(
θ Ḡ(xi;ςςς)

)}
A′′

(
λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

})
A′
(

λ

{
1− [B(θ)]−1B(θΠ(xi;ςςς))

}) ,

where

Πςςς (xi;ςςς) =
∂Π(xi;ςςς)

∂ςςς
and πςςς (xi;ςςς) =

∂π (xi;ςςς)
∂ςςς

.

The maximum likelihood estimates, ξ̂ξξ of ξξξ = (ςςς ,θ ,λ ) are obtained by solving the nonlin-
ear equations Un (ξξξ ) =

(
∂ℓ
∂ςςς
, ∂ℓ

∂θ
, ∂ℓ

∂λ

)
= 0. These equations have no closed form and the

values of the parameters ςςς , θ and λ must be found by using iterative methods. To solve
these equations, it is usually more convenient to use nonlinear optimization methods such
as the Newton-Raphson, quasi-Newton, or Nelder-Mead procedures. The Adequacy Model
package version 1.0.8 available in the R programming language was used for numerical
maximization in the data examples Section 7. For interval estimation of (ςςς ,θ ,λ ) and hy-
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pothesis tests on these parameters, we obtain the observed information matrix since the
expected information matrix is very complicated and requires numerical integration. The
(p+ 2)× (p+ 2) observed information matrix Jn(ξξξ ), where p is the dimension of the pa-
rameter vector ςςς , becomes

Jn(ξξξ ) =



∂ 2ℓ

∂ςςς2
∂ 2ℓ

∂ςςς∂θ

∂ 2ℓ

∂ςςς∂λ

∂ 2ℓ

∂θ∂ςςς

∂ 2ℓ

∂θ 2
∂ 2ℓ

∂θ∂λ

∂ 2ℓ

∂λ∂ςςς

∂ 2ℓ

∂λ∂θ

∂ 2ℓ

∂λ 2


.

Under the usual regularity conditions and that the parameters are in the interior of the pa-
rameter space, but not on the boundary and large n, the distribution of

√
n
(

ξ̂ξξ −ξξξ

)
can be

approximated by Np+2
(
0,nJ−1

n (ξξξ )
)
. This approximation can be used to construct confi-

dence intervals and tests of hypotheses.

6. A simulation study

In this section, we assess the performance of the MLEs of the WGPD distribution as the
particular case of LPS2 distribution with respect to sample size n. Samples of sizes 20, 50,
100, 200 and 500 are generated for different combinations of ξξξ = (α,β ,θ ,λ ) from WGPD
distribution by using (5). We repeated the simulation k =1000 times with parameter values I
: α = 2, β = 1, θ = 0.5, λ = 1 and II : α = 1.5, β = 0.5, θ = 0.7, λ = 0.8, then the MLEs
of the parameters are calculated. The standard deviation (SD) of the parameter estimates
are computed by inverting the observed information matrices. The bias and mean squared
errors (MSE) are given respectively by

biasε (n) =
1

1000

1000

∑
i=1

(ε̂i − ε)

and

MSEε (n) =
1

1000

1000

∑
i=1

(ε̂i − ε)2,

for ε = α,β ,θ ,λ where ε̂i is ith MLE of ε with standard error sε̂i . The empirical results are
given in Table 2 indicate that the MLEs perform well for estimating the model parameters.
According to the results, it can be concluded that as the sample size n increases, the MSEs
decay toward zero. We also observe that for all the parameters, the biases decrease as the
sample size n increases.



66 M. Goldoust, A. Mohammadpour: Generalized extended Marshall-Olkin family...

Table 2: The mean, bias, MSE, standard error of the MLE estimators.

I II
n Parameter R.value MLE Bias MSE SD R.value MLE Bias MSE SD

n = 20

α 2 2.0912 0.0912 0.1129 0.4445 1.5 1.5412 0.0412 0.0478 0.2715
β 1 1.1614 0.1614 0.3196 0.7924 0.5 0.5738 0.0738 0.0827 0.4787
θ 0.5 0.4743 -0.0257 0.2130 0.9124 0.7 0.6281 -0.0719 0.0671 0.6591
λ 1 1.2050 0.2050 0.7241 3.2141 0.8 0.7705 -0.0295 0.2252 2.9567

n = 50

α 2 2.0675 0.0675 0.0621 0.3502 1.5 1.5133 0.0133 0.0319 0.3024
β 1 1.0758 0.0758 0.2385 0.6444 0.5 0.5641 0.0641 0.1539 0.3816
θ 0.5 0.4815 -0.0185 0.1861 0.9618 0.7 0.6202 -0.0798 0.0552 0.3252
λ 1 0.8462 -0.1538 0.6177 2.9721 0.8 0.7888 -0.0112 0.2413 2.6142

n = 100

α 2 2.0561 0.0561 0.0464 0.2216 1.5 1.5031 0.0310 0.0151 0.1699
β 1 1.0877 0.0877 0.1445 0.3892 0.5 0.5494 0.0494 0.0483 0.2502
θ 0.5 0.4921 -0.0079 0.0706 0.7271 0.7 0.6594 -0.0406 0.0387 0.6048
λ 1 1.0921 0.0921 0.5822 2.3921 0.8 0.7354 -0.0646 0.2166 2.1081

n = 200

α 2 1.9792 -0.0208 0.0162 0.1648 1.5 1.4985 -0.0015 0.0076 0.1263
β 1 1.0393 0.0393 0.0485 0.2704 0.5 0.5185 0.0185 0.0176 0.1519
θ 0.5 0.4216 -0.0787 0.6224 0.7334 0.7 0.6762 -0.0238 0.0198 0.4513
λ 1 1.0434 0.0434 0.1905 2.1947 0.8 0.7766 -0.0234 0.2347 1.6921

n = 500

α 2 1.9875 -0.0125 0.0085 0.1147 1.5 1.4955 -0.0045 0.0033 0.0914
β 1 1.0079 0.0079 0.0277 0.1807 0.5 0.5053 0.0053 0.0084 0.1059
θ 0.5 0.4888 -0.0112 0.0412 0.4425 0.7 0.6894 -0.0106 0.0177 0.3191
λ 1 0.9871 -0.0129 0.0927 1.5535 0.8 0.8302 0.0302 0.0962 1.2971

7. Two application examples

In this section, we present two applications of LPS2 family of distributions using real-
life data sets. In the applications, we use the Adequacy Model package version 1.0.8 avail-
able in the R programming language. The fit is compared to other distributions based on the
maximized log-likelihood, the Kolmogorov-Smirnov test (K-S), Akaike Information Crite-
rion (AIC), corrected Akaike Information Criterion (AICc) and Bayesian Information Cri-
terion (BIC). Finally, we provide the histograms of the data sets to have a visual comparison
of the fitted density functions.

Data set 1

The first set consists of the number of successive failures for the air conditioning system
of each member in a fleet of 13 Boeing 720 airplanes. The pooled data, yielding a total of
213 observations, were first analyzed by Proschan (1963) and further discussed in Dahiya
and Gurland (1972), Adamidis and Loukas (1998) and Tahmasbi and Rezaei (2008). Table
3 gives some descriptive statistics for the first data set. Figure 5a displays the Gaussian
kernel density estimation for this data set.

For this data set, the new distributions, exponential geometric binomial (EGBD) and
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Table 3: Descriptive statistics for data set 1.

n Mean Q1 Median Q3 Mode Variance Skewness Kurtosis Min Max
213 93.14 22 57 118 14 11398.47 2.11 7.92 1 603

Weibull geometric geometric (WGGD) distributions given by the following pdfs were fitted:

fEGBD (x;α,β ,θ ,λ ) =
mλβ (1−θ)e−βx

[
1−θ +(θ +λ )e−βx

]m−1

[(1+λ )m −1]
{

1−θ
(
1− e−βx

)}m+1 ,

and

fWGGD (x;α,β ,γ) =
αβ (1− γ)xα−1e−βxα{

1− γe−βxα
}2

for x > 0, α,β > 0, γ,θ < 1, λ ∈ R. For comparison purposes, we also fit the general-
ization of Weibull distribution (GWD) (Shanker and Shukla, 2019), the generalization of
generalized gamma distribution(GGD) (Shanker and Shukla, 2019), beta exponential (BE)
(Nadarajah and Kotz, 2006) and odd Weibull (OW) (Cooray, 2006) distributions. Estimates
of the parameters of the distributions, standard errors (in parentheses), log-likelihood func-
tion evaluated at the parameter estimates, K-S statistic and its p-value are shown in Table 4.
Furthermore, to compare the models, the AIC, AICc, and BIC indices are obtained too. In
general, the smaller the values of these criteria, the better the fit. According to these formal
tests, the WGGD model has the largest likelihood, the smallest K-S statistic, the largest
p-value, and the smallest values for all other indices, among all fitted models.

Figure 6a gives the graph of the estimated pdfs of the WGGD, EGBD, and other compet-
itive models that are used to fit the data after replacing the unknown parameters included in
each distribution by their MLEs. The fitted pdf of the WGGD distribution captures the ob-
served histograms better than others for the data sets 1. This real example suggests that the
three-parameter WGGD fits data set 1 very well when compared to the other distributions.

Data set 2

The second application takes into account the data related to the breaking stress of car-
bon fibres of 50 mm in length from Nicholas and Padgett (2006). This data set was used
by Cordeiro and Lemonte (2011) which is given in Table 5. Table 6 gives some descriptive
statistics for this data set. Figure 5b displays the Gaussian kernel density estimation for the
second data set.

For the second data set, the new distributions, generalized half normal geometri Poisson
distribution (GHNGPD) and WGPD were fitted:

fCHNGPD (x;α,β ,θ ,λ ) =

√
2
π

αβλ (1−θ)xα−1e−
1
2 (βxα )2[

eλ −1
]
{1−2θΦ(−βxα)}2 exp

[
2λ (1−θ)Φ(−βxα)

1−2θΦ(−βxα)

]
,
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Table 4: Estimates and goodness-of-fit measures for the first data set.

Model MLEs (standard errors) Log-likelihood K-S p-value AIC AICc BIC

EGBD 0.0067, 0.0403, 0.2201 -1175.871 0.0564 0.633 2357.74 2357.85 2367.82
SE (0.0022, 0.3957, 0.2170)

WGGD 1.1982, 0.0017, 0.7651 -1174.180 0.0504 0.765 2354.36 2354.47 2364.44
SE ( 0.029, 2.14×10−5, 0.0430)

GWD 0.9395, 0.9219, 0.0168 -1177.586 0.0662 0.425 2361.17 2361.34 2371.26
SE (1.0679, 0.0487, 0.0168)

GGD 3.7958, 0.4419, 0.6943, 0.6911 -1174.514 0.0537 0.685 2357.03 2357.218 2370.47
SE (2.8461, 0.1786, 0.2453, 0.2701)

BE 1.0483, 2.2710, 0.0104 -1177.771 0.0637 0.475 2361.54 2361.73 2371.62
SE (0.5925, 1.5206, 0.0058)

OW 0.6667, 0.0469, 1.4838 -1176.062 0.0587 0.581 2358.12 2358.24 2368.20
SE (0.1581, 0.0312, 0.3907)

Table 5: Breaking stress of carbon fibres data.

0.39 0.85 1.08 1.25 1.47 1.57 1.61 1.61 1.69 1.80 1.84
1.87 1.89 2.03 2.03 2.05 2.12 2.35 2.41 2.43 2.48 2.50
2.53 2.55 2.55 2.56 2.59 2.67 2.73 2.74 2.79 2.81 2.82
2.85 2.87 2.88 2.93 2.95 2.96 2.97 3.09 3.11 3.11 3.15
3.15 3.19 3.22 3.22 3.27 3.28 3.31 3.31 3.33 3.39 3.39
3.56 3.60 3.65 3.68 3.70 3.75 4.20 4.38 4.42 4.70 4.90

and

fWGPD (x;α,β ,θ ,λ ) =
αβλ (1−θ)xα−1e−βxα[
eλ −1

]{
1−θe−βxα

}2 exp

[
λ (1−θ)e−βxα

1−θe−βxα

]

for x > 0, α,β > 0, θ < 1, λ ∈ R. We also fit the BE, beta Weibull (BW) (Famoye et al.,
2005), Cauchy Weibull logistic (CWL) (Almheidat et al., 2015), Gumbel Weibull (GW) (Al-
Aqtash et al., 2014) distributions to make a comparison with the new models. The parameter
estimates, the log-likelihood values, the Kolmogorov-Smirnov statistics, and respective p-
values are given in Table 7. Additionally, a comparison of these proposed distributions using
the criteria, explained earlier, is presented.

It is observed that the WGPD distribution provides the best fit. In particular, we can see
that the largest log-likelihood value, the largest p-value, the smallest AIC value, the smallest
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Table 6: Descriptive statistics for data set 2.

n Mean Q1 Median Q3 Mode Variance Skewness Kurtosis Min Max
66 2.178 2.178 2.853 3.278 1.61 0.795 -0.131 3.223 0.390 4.90
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Figure 5: The Gaussian kernel density estimation for: (a) data set 1 (b) data set 2.

AICc value, and the smallest BIC value are obtained for the WGPD distribution. The fitted
densities (with the respective histogram) are shown in Figure 6b. These indicate a good fit
for the WGPD distribution for the second data set. It is clear from Tables 4 and 7 and also
Figures 6a and 6b that the WGGD and WGPD models provide the best fits to these two real
data sets.
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Figure 6: Estimates of the density functions for the: (a) data set 1 (b) data set 2.

More on estimated hazard functions

The failure rate of a system usually depends on time, with the rate varying over the life
cycle of the system. the hazard rate refers to the rate of failure for a system of a given age
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Table 7: Estimates and goodness-of-fit measures for the second data set.

Model MLEs (standard errors) Log-likelihood K-S p-value AIC AICc BIC

GHNGPD 0.8290, 1.0219, -37.8800, -0.8760 -84.849 0.0744 0.882 177.70 178.35 186.46
SE (0.4745, 0.9104, 73.3213, 4.1871)

WGPD 1.6669, 0.5589, -11.9420, -1.0240 -84.705 0.0723 0.902 177.41 178.07 186.17
SE (0.8913, 0.9326, 29.3124, 2.8723)

BE 0.1131, 7.5072, 20.9967 -91.223 0.1393 0.181 188.47 188.85 195.01
SE (0.0170, 0.7642, 1.4865)

CWL 2.1437, 7.9321, 2.9530 -86.989 0.1040 0.515 179.98 180.37 186.55
SE (0.7221, 1.8887, 0.1083)

BW 3.6790, 0.0136, 0.8820, 1.0594 -85.971 0.0830 0.786 179.94 180.60 188.70
SE (0.7915, 0.0133, 0.3241, 1.2743)

GW 3.4359, 5.5673, 2.4231, 1.1324 -84.834 0.0733 0.893 177.67 187.32 186.43
SE (1.1494, 2.8064, 0.5078, 0.4524)

x and is defined as h(x) = f (x)/S(x). Hazard rate provides an alternative characterization
for the distribution of a random variable, especially when dealing with lifetime data and it
is quite useful in defining and formulating a model. In this section, we focus on estimated
hrfs as for the previous sections.

First, we provide the total time on test (TTT) transform procedure proposed by Aarset
(1987) as a tool to identify the hazard behaviour of the distribution. The TTT-transform can
illustrate the variety of the hazard rate curves for a lifetime distribution. If the empirical
TTT-transform is convex and concave, the shape of the corresponding hrf is decreasing and
increasing, respectively. If the TTT-transform is convex and concave, the hrf will have a
bathtub shape. Finally, if the TTT-transform is concave and convex, a unimodal hrf will be
more appropriate. Figure 7a shows that the TTT-plot for the first data set has a concave and
convex shape. It indicates that the hrf has a unimodal shape. Figure 7b shows that the TTT-
plot for the second data set has a concave shape. It indicates that the hrf has an increasing
shape.

Graphs of the estimated hrfs are displayed in Figures 8 for data sets 1 and 2. Hence,
the WGGD and WGPD distributions could be the appropriate models for the fitting of such
data sets.

8. Conclusions

We introduce a new generalized class of lifetime distributions, called the LPS2 family of
distributions, by compounding a lifetime and twice power series distributions in a serial and
parallel structure. The new models extend several distributions widely used in the lifetime
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Figure 7: TTT-plot on the data sets 1 and 2.
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Figure 8: Graphs of estimated hrf for the data sets 1 and 2.

literature such as the exponential power series, Weibull power series, and complementary of
exponential power series distributions. The pdf of the new distributions can be expressed as
a linear combination of baseline distributions and they have a hazard function that displays
flexible behaviour. We provide a mathematical treatment of this family, including moments,
quantiles, reliability functions, and moment generating function as well as the mean residual
lifetime. The method of maximum likelihood was used to estimate the model parameters.
We perform a Monte Carlo simulation study to assess the finite sample behavior of the max-
imum likelihood estimators. Some members of the LPS2 family are fitted to two real data
sets to illustrate the usefulness of the new distributions. They provide better fits than other
competing models consistently.
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Appendix

Proof of (3) and (4)

Using the binomial expansion, we have

F (x;ξξξ ) = 1− [A(λ )]−1
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j
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[m( j+1)− j]bm+1lk, j−m. Then

F (x;ξξξ ) =
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∑
k=1

∞

∑
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φk, jΠ(x,ςςς)k+ j,

where

φk, j = φk, j (θ ,λ ) = [A(λ )]−1
∞

∑
u=k

(
u
k

)
(−1)k+1lk, jauλ

u
θ

k+ j[B(θ)]−k.

Finally, Equation (4) is obtained by using the direct differentiation of (3).
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New improved Poisson and negative binomial item count 
techniques for eliciting truthful answers to sensitive questions  

Barbara Kowalczyk1, Robert Wieczorkowski2 

ABSTRACT 

Item count techniques (ICTs) are indirect survey questioning methods designed to deal with 
sensitive features. These techniques have gained the support of many applied researchers 
and undergone further theoretical development. Latterly in the literature, two new item 
count methods, called Poisson and negative binomial ICTs, have been proposed. However, 
if the population parameters of the control variable are not provided by the outside source, 
the methods are not very efficient. Efficiency is an important issue in indirect methods of 
questioning due to the fact that the protection of respondents’ privacy is usually achieved at 
the expense of the efficiency of the estimation. In the present paper we propose new 
improved Poisson and negative binomial ICTs, in which two control variables are used in 
both groups, although in a different manner. In the paper we analyse best linear unbiased 
and maximum likelihood estimators of the proportion of the sensitive attribute in the 
population in the introduced new models. The theoretical findings presented in the paper 
are supported by a comprehensive simulation study. The improved procedure allowed the 
increase of the efficiency of the estimation compared to the original Poisson and negative 
binomial ICTs. 

Key words: sensitive questions, indirect questioning methods, item count techniques, 
Poisson ICT, negative binomial ICT, EM algorithm 

1.  Methodology and questionnaire design 

Reliable data on stigmatizing, socially unaccepted or illegal features are very hard 
to obtain in direct questioning. Many indirect methods of questioning have been 
developed to help in eliciting honest answers to sensitive questions and to eliminate the 
social desirability bias. Among them two methods are predominant: randomised 
response techniques (Warner 1965, Chaudhuri 2011, Imai 2015, Dihidar and 
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Bhattacharya, 2017) and item count techniques (Miller, 1984, Blair and Imai, 2012, 
Chaudhuri and Christofides, 2007, Imai, 2011, Holbrook and Krosnick, 2010, Comsa 
and Postelnicu, 2013, Wolter and Laier, 2014, Kuha and Jackson, 2014, Trappman et 
al., 2014, Kowalczyk and Wieczorkowski, 2017, Krumpal et al., 2018). Item count 
techniques have many practical advantages (Tourangeau and Yan, 2007). They are very 
easy to implement, they do not require the use of any randomize device, and they are 
very easy to understand so the respondents realize how their privacy is being protected.  

Latterly Tian et al. (2017) proposed new item count techniques, called Poisson and 
negative binomial ICTs. In their method (if the population parameters of the control 
variable are not given from the outside source) a sample of n elements is divided into a 
control group and a treatment group, of 𝑛ଵ and 𝑛ଶ elements respectively. Respondents 
in the control group are asked one neutral question with possible count outcomes 
0,1,2,… An exemplary questionnaire might look like the following: 

𝑄: How many times did you use an Uber last month?  Your answer is …. 
Respondents in the treatment group are presented with two questions: one exactly 

the same as in the control group, and one sensitive with possible outcomes 0 or 1. 
Respondents in the treatment group are asked to report only the sum of the two 
questions. An exemplary questionnaire might look like the following: 

𝑄: How many times did you use an Uber last month? 

S: Have you ever bribed an official? Assign number 1 if ‘yes’ (YES = 1) and number 
0 if ‘not’ (NOT = 0).  

Please report ONLY the sum of the two numbers. The sum is … 

To increase efficiency of the estimation we propose a new item count method, 
which draws on the idea of the Poisson and negative binomial ICTs introduced by Tian 
et al. (2017) and advances the original method in order to attain greater efficiency of 
the estimation. Our improved technique incorporates the sensitive question in two 
groups and combines it with two different neutral questions. Below we describe the 
newly proposed methodology.  

We divide the sample of n elements into the first and second treatment groups, of 
𝑛ଵ and 𝑛ଶ elements respectively. In the first group respondents are asked one neutral 
question 𝑄ଵ with possible count outcomes 0,1,2,… Then respondents are presented 
with two questions, one neutral 𝑄ଶ with possible count outcomes 0,1,2,…, and one 
sensitive 𝑆 with possible outcomes 0 or 1. To protect their privacy respondents are 
asked to report only the sum of their answers to questions 𝑄ଶ and 𝑆. They are never 
asked to report their answer to the sensitive question S. Below we give an exemplary 
questionnaire for the first treatment group. 

𝑄ଵ: How many times did you use a taxi last month?  Your answer is …. 
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Now, we show you two questions. Do not answer them until you read the end.  
𝑄ଶ: How many times were you at the cinema last month? 
S: Have you ever bribed an official? Assign number 1 if ‘yes’ (YES = 1) and number 

0 if ‘not’ (NOT = 0).  
Please report ONLY the sum of the two numbers. The sum is … 

In the second treatment group neutral questions are switched. Therefore, an 
exemplary questionnaire for the second group is given below.  

𝑄ଶ: How many times were you at the cinema last month? Your answer is …. 
Now, we show you two questions. Do not answer them until you read the end.  
𝑄ଵ: How many times did you use a taxi last month? Remember your number but do 

not reveal it. 
S: Have you ever bribed an official? Assign number 1 if ‘yes’ (YES = 1) and number 

0 if ‘not’ (NOT = 0).  
Please report ONLY the sum of the two numbers. The sum is … 

It is very important that the sensitive question is mentioned only once in each group 
and the respondents are never asked to answer the sensitive question directly. To assure 
complete privacy the two neutral questions should be unrelated with each other and 
unrelated with the sensitive question. It also ensures that the privacy protection level in 
the newly proposed methods is exactly the same as in the original Poisson and negative 
binomial ICTs. 

2.  Statistical model and estimation 

2.1.  Notation 

Let 𝑋ሺଵሻ, 𝑋ሺଶሻ denote control variables being the answers to the neutral questions 
𝑄ଵ and  𝑄ଶ respectively, and let 𝑍 denote a Bernoulli distributed variable being the 
answer to the sensitive question S. To assure complete protection of the privacy we 
assume that  𝑋ሺଵሻ, 𝑋ሺଶሻ, 𝑍 are independent. Let 𝑃ሺ𝑍 ൌ 1ሻ ൌ 𝜋 be an unknown sensitive 
proportion under study. Let 𝑌ሺଵሻ denote an observed variable indicating the sum of 
answers to questions 𝑄ଶ and S in the first treatment group, i.e. 𝑌ሺଵሻ ൌ 𝑋ሺଶሻ ൅ 𝑍.  
Analogously, let 𝑌ሺଶሻ be an observed variable indicating the sum of answers to questions 
𝑄ଵ and S in the second treatment group, i.e. 𝑌ሺଶሻ ൌ 𝑋ሺଵሻ ൅ 𝑍. In the first treatment 
group we have two vectors of observed variables: ቀ𝑋ଵ

ሺଵሻ, … ,𝑋௡భ
ሺଵሻቁ and ቀ𝑌ଵ

ሺଵሻ, … ,𝑌௡భ
ሺଵሻቁ. 

In the second group vectors of observed variables are ቀ𝑋௡భାଵ
ሺଶሻ , … ,𝑋௡భା௡మ

ሺଶሻ ቁ and 

ቀ𝑌௡భାଵ
ሺଶሻ , … ,𝑌௡భା௡మ

ሺଶሻ ቁ. Sensitive variable under study Z is not directly observable in this 
model. Z is a latent variable, which is in line with the principle of privacy protection.  
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2.2.  Best linear unbiased estimator 

We consider a linear estimator of the form 

𝜋ො ൌ ∑ 𝛼௜𝑋௜
ሺଵሻ௡భ

௜ୀଵ ൅ ∑ 𝛽௜𝑌௜
ሺଵሻ௡భ

௜ୀଵ ൅ ∑ 𝛾௜𝑋௜
ሺଶሻ௡భା௡మ

௝ୀ௡భାଵ
൅ ∑ 𝛿௜𝑌௜

ሺଶሻ௡భశ೙మ
௜ୀ௡భାଵ

,        (1) 
where 𝛼,𝛽, 𝛾, 𝛿 are constants weight factors. We determine 𝛼,𝛽, 𝛾, 𝛿 so as to minimize 
variance 𝑉𝑎𝑟ሺ𝜋ොሻ of the estimator 𝜋ො  subject to the condition that this estimator is 
unbiased.   

Conditions for unbiasedness are 

⎩
⎨

⎧∑ 𝛼௜
௡భ
௜ୀଵ ൅ ∑ 𝛿௜

௡భା௡మ
௜ୀ௡భାଵ

ൌ 0

∑ 𝛽௜
௡భ
௜ୀଵ ൅ ∑ 𝛾௜

௡భା௡మ
௝ୀ௡భାଵ

ൌ 0

∑ 𝛽௜
௡భ
௜ୀଵ ൅ ∑ 𝛿௜

௡భା௡మ
௜ୀ௡భାଵ

ൌ 1

                                           (2) 

To achieve the smallest variance, the expression to be minimized is 

            𝑉𝑎𝑟ሺ𝜋ොሻ െ 𝜆ଵቀ∑ 𝛼௜
௡భ
௜ୀଵ ൅ ∑ 𝛿௜

௡భା௡మ
௜ୀ௡భାଵ

ቁ െ 𝜆ଶቀ∑ 𝛽௜
௡భ
௜ୀଵ ൅ ∑ 𝛾௜

௡భା௡మ
௝ୀ௡భାଵ

ቁ െ     

െ𝜆ଷቀ∑ 𝛽௜
௡భ
௜ୀଵ ൅ ∑ 𝛿௜

௡భା௡మ
௜ୀ௡భାଵ

െ 1ቁ                                       (3) 

The minimization leads to the best linear unbiased estimator (BLUE) of the 
sensitive population proportion 𝜋, which can be written in the final form  

𝜋ො ൌ 𝑤൫𝑌തሺଶሻ െ 𝑋തሺଵሻ൯ ൅ ሺ1 െ 𝑤ሻ൫𝑌തሺଵሻ െ 𝑋തሺଶሻ൯                            (4)  
where 

𝑤 ൌ
௏௔௥൫௒തሺభሻ൯ା௏௔௥൫௑തሺమሻ൯

௏௔௥൫௒തሺమሻ൯ା௏௔௥൫௑തሺభሻ൯ା௏௔௥൫௒തሺభሻ൯ା௏௔௥൫௑തሺమሻ൯
                                  (5) 

Variance of the BLUE estimator is 

𝑉𝑎𝑟ሺ𝜋ොሻ ൌ
భ

೙భ೙మ
൫ଶ௏௔௥൫௑ሺభሻ൯ାగሺଵିగሻ൯൫ଶ௏௔௥൫௑ሺమሻ൯ାగሺଵିగሻ൯

భ
೙భ
൫ଶ௏௔௥൫௑ሺమሻ൯ାగሺଵିగሻ൯ା భ

೙మ
൫ଶ௏௔௥൫௑ሺభሻ൯ାగሺଵିగሻ൯

         (6) 

For 𝑛ଵ ൌ 𝑛ଶ ൌ 0.5𝑛 and for 𝑉𝑎𝑟൫𝑋ሺଶሻ൯ ൌ 𝑉𝑎𝑟൫𝑋ሺଵሻ൯ formula (6) simplifies to the 
form 

𝑉𝑎𝑟ሺ𝜋ොሻ ൌ
ଵ

௡
൫2𝑉𝑎𝑟൫𝑋ሺଵሻ൯ ൅ 𝜋ሺ1 െ 𝜋ሻ൯               (7) 

For 𝑛ଵ ൌ 𝑛ଶ ൌ 0.5𝑛 variance of the method of moment estimator in original Tian 
et al. (2017) Poisson and negative binomial ICTs with one neutral variable 𝑋ሺଵሻ is  

𝑉𝑎𝑟൫𝜋ො௢௥௜௚൯ ൌ
ଶ

௡
൫2𝑉𝑎𝑟൫𝑋ሺଵሻ൯ ൅ 𝜋ሺ1 െ 𝜋ሻ൯             (8) 

From (7) and (8) it can be easily seen that for 𝑛ଵ ൌ 𝑛ଶ ൌ 0.5𝑛 and for 𝑉𝑎𝑟൫𝑋ሺଶሻ൯ ൌ
𝑉𝑎𝑟൫𝑋ሺଵሻ൯ we get 

𝑉𝑎𝑟ሺ𝜋ොሻ ൌ 0.5𝑉𝑎𝑟൫𝜋ො௢௥௜௚൯                                             (9) 
and the theoretical BLUE estimator in the improved model is more efficient than the 
method of moment estimator in the original model. Due to the fact that variances that 
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appear in formula (5) are not known in advance the theoretical BLUE estimator cannot 
be used directly. Therefore, we propose to use in practice the empirical BLUE estimator 
(EBLUE) of the form 

𝜋ො௘௠௣ ൌ 𝑤ෝ  ௘௠௣൫𝑌തሺଶሻ െ 𝑋തሺଵሻ൯ ൅ ሺ1 െ𝑤ෝ  ௘௠௣ሻ൫𝑌തሺଵሻ െ 𝑋തሺଶሻ൯            (10) 

where 

𝑤  ௘௠௣ ൌ
భ
೙భ
௦మ൫௒ሺభሻ൯ା భ

೙మ
௦మ൫௑ሺమሻ൯

భ
೙మ
௦మ൫௒ሺమሻ൯ା భ

೙భ
௦మ൫௑ሺభሻ൯ା భ

೙భ
௦మ൫௒ሺభሻ൯ା భ

೙మ
௦మ൫௑ሺమሻ൯

                        (11) 

and 𝑠ଶ൫𝑋ሺଵሻ൯, 𝑠ଶ൫𝑋ሺଶሻ൯, 𝑠ଶ൫𝑌ሺଵሻ൯, 𝑠ଶ൫𝑌ሺଶሻ൯ are sample variances of observed variables  
𝑋ሺଵሻ, 𝑋ሺଶሻ, 𝑌ሺଵሻ, 𝑌ሺଶሻ respectively. Properties of the proposed EBLUE estimator of the 
sensitive proportion 𝜋 are analyzed in Section 3.  

2.3.  Maximum likelihood estimation via EM algorithm 

In our model, the sensitive variable under study 𝑍~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖ሺ𝜋ሻ is not directly 
observable. In order to obtain maximum likelihood estimators in models with latent 
variables it is convenient to use expectation maximization (EM) algorithm introduced 
by Dempster et al. (1977) and further developed by, e.g. McLachlan and Krishnan 
(2008). EM algorithm has also become a standard tool for determining ML estimators 
when dealing with item count techniques, see, e.g. Imai (2011), Kuha and Jackson 
(2014), Tian et al. (2017). Complete log-likelihood function in our model is 

𝑙𝑛𝐿௖௢௠൫𝜋,𝜃ଵ,𝜃ଶ; 𝑥ሺଵሻ, 𝑥ሺଵሻ, 𝑥ሺଶሻ,𝑦ሺଵሻ,𝑦ሺଶሻ, 𝑧൯ ൌ 

                            ൌ ∑ 𝑙𝑛𝑝ఏభሺ𝑥௜ሻ
௡భ
௜ୀଵ ൅ ∑ 𝑙𝑛𝑝ఏమሺ𝑥௝ሻ

௡భା௡మ
௝ୀ௡భାଵ

൅  

                            ൅∑ 𝑧௜𝑙𝑛𝑝ఏమሺ𝑦௜ െ 1ሻ௡భ
௜ୀଵ ൅ ∑ 𝑧௝𝑙𝑛𝑝ఏభሺ𝑦௝ െ 1ሻ௡భା௡మ

௝ୀ௡భାଵ
൅  

                            ൅∑ ሺ1 െ 𝑧௜ሻ𝑙𝑛𝑝ఏమሺ𝑦௜ሻ
௡భ
௜ୀଵ ൅ ∑ ሺ1 െ 𝑧௝ሻ𝑙𝑛𝑝ఏభሺ𝑦௝ሻ

௡భା௡మ
௝ୀ௡భାଵ

൅    

൅∑ 𝑧௝ln 𝜋௡భା௡మ
௝ୀଵ ൅ ∑ ሺ1 െ 𝑧௝ሻ lnሺ1 െ 𝜋ሻ ,௡భା௡మ

௝ୀଵ                                    (12) 

where 𝑝ఏభሺ𝑥ሻ and 𝑝ఏమሺ𝑥ሻ are probability mass functions of the control variables 𝑋ሺଵሻ 
and 𝑋ሺଶሻ respectively. Conditional expectation computed in E-step of the EM algorithm 
is 

                           𝐸గబ,ఏభబ,ఏమ೚ሾ𝑙𝑛𝐿௖௢௠ሺ𝜋,𝜃ଵ,𝜃ଶ;𝑦,𝑍|𝑌 ൌ 𝑦ሻሿ ൌ     

                           ൌ ∑ 𝑙𝑛𝑝ఏభሺ𝑥௜ሻ
௡భ
௜ୀଵ ൅ ∑ 𝑙𝑛𝑝ఏమሺ𝑥௝ሻ

௡భା௡మ
௜ୀ௡భାଵ

൅    

                           ൅∑ 𝑧̆௜𝑙𝑛𝑝ఏమሺ𝑦௜ െ 1ሻ௡భ
௜ୀଵ ൅ ∑ 𝑧̆௝𝑙𝑛𝑝ఏభሺ𝑦௝ െ 1ሻ௡భା௡మ

௝ୀ௡భାଵ
൅  

                           ൅∑ ሺ1 െ 𝑧̆௜ሻ𝑙𝑛𝑝ఏమሺ𝑦௜ሻ
௡భ
௜ୀଵ ൅ ∑ ሺ1 െ 𝑧̆௝ሻ𝑙𝑛𝑝ఏభሺ𝑦௝ሻ

௡భା௡మ
௝ୀ௡భାଵ

൅  

൅∑ 𝑧̆௝ln 𝜋௡భା௡మ
௝ୀଵ ൅ ∑ ሺ1 െ 𝑧̆௝ሻln ሺ1 െ 𝜋ሻ௡భା௡మ

௝ୀଵ                        (13) 



80                                             B. Kowalczyk , R. Wieczorkowski: New improved Poisson and negative… 

 

 

where 

 𝑧̆௜ ൌ 𝐸గబ,ఏమ೚ ቀ𝑍௜ቚ𝑌௜
ሺଵሻ ൌ 𝑦௜ቁ ൌ

௣ഇమబሺ௬೔ିଵሻగబ
௣ഇమబሺ௬೔ିଵሻగబା௣ഇమబሺ௬೔ሻሺଵିగబሻ

 for 𝑖 ൌ 1, … ,𝑛ଵ             (14) 

𝑧̆௝ ൌ 𝐸గబ,ఏభబ ቀ𝑍௝ቚ𝑌௝
ሺଶሻ ൌ 𝑦௝ቁ ൌ

௣ഇభబሺ௬ೕିଵሻగబ
௣ഇభబ൫௬ೕିଵ൯గబା௣ഇభబ൫௬ೕ൯ሺଵିగబሻ

 for 𝑗 ൌ 𝑛ଵ ൅ 1, … ,𝑛ଵ ൅ 𝑛ଶ  

(15) 
To represent distribution of the count data Poisson and negative binomial 

distributions are commonly used. Therefore we consider three different cases: when 
both neutral variables follow Poisson distribution, when one neutral variable follows 
Poisson and the other neutral variable follows negative binomial distribution, and the 
last case, when both neutral variables follow negative binomial distributions.  

Consider the first case where both neutral variables follow Poisson distribution. In 
this case we have 𝑋ሺଵሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ𝜆ଵሻ, 𝑋ሺଶሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ𝜆ଶሻ. Based on (12-15) we derive 
final iterative formulas for ML estimators via E-step and M-step of the EM algorithm 
as below. 
E Step: 

 𝑧̆௜ ൌ 𝐸൫𝑍௜|𝑌௜
ሺଵሻ൯ ൌ

௬೔ሺభሻగ

௬೔ሺభሻగାఒమሺଵିగሻ
  for 𝑖 ൌ 1, … ,𝑛ଵ                          (16) 

𝑧̆௝ ൌ 𝐸൫𝑍௝|𝑌௝
ሺଶሻ൯ ൌ

௬ೕሺమሻగ

௬ೕሺమሻగାఒభሺଵିగሻ
 for 𝑗 ൌ 𝑛ଵ ൅ 1, … ,𝑛ଵ ൅ 𝑛ଶ              (17) 

M step: 
𝜋ො ൌ

ଵ

௡భା௡మ
ቀ∑  𝑧̆௜

௡భ
௜ୀଵ ൅ ∑ 𝑧̆௝

௡భା௡మ
௝ୀ௡భାଵ

ቁ                                      (18) 

𝜆መଵ ൌ
ଵ

௡భା௡మ
ቀ∑ 𝑥௜

ሺଵሻ௡భ
௜ୀଵ ൅ ∑ ൫𝑦௝ሺଶሻ െ 𝑧̆௝൯

௡భା௡మ
௝ୀ௡భାଵ

ቁ                          (19) 

𝜆መଶ ൌ
ଵ

௡భା௡మ
ቀ∑ ሺ𝑦௜

ሺଵሻ െ  𝑧̆௜ሻ
௡భ
௜ୀଵ ൅ ∑ 𝑥௝

ሺଶሻ௡భା௡మ
௝ୀ௡భାଵ

ቁ                          (20) 

When one variable follows Poisson distribution and the other one follows negative 
binomial distribution, say 𝑋ሺଵሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ𝜆ሻ, 𝑋ሺଶሻ~𝑁𝐵ሺ𝑟,𝑝ሻ, first we assess  parameter 
𝑟 based on the second treatment group  

𝑟̂ ൌ
൫௫̅ሺమሻ൯

మ

ௌమሺ௑ሺమሻሻି௫̅ሺమሻ
                                                        (21) 

and then we derive iterative formulas for the ML estimators via E-step and M-step of 
the EM algorithm as below. 
E Step: 

𝐸൫𝑍௜|𝑌௜
ሺଵሻ൯ ൌ

௬೔ሺభሻగ

௬೔ሺభሻగା൫௬೔ሺభሻା௥ିଵ൯௣ሺଵିగሻ
 for 𝑖 ൌ 1, … ,𝑛ଵ                   (22) 

𝐸൫𝑍௝|𝑌௝
ሺଶሻ൯ ൌ

௬ೕሺమሻగ

௬ೕሺమሻగାఒሺଵିగሻ
 for 𝑗 ൌ 𝑛ଵ ൅ 1, … ,𝑛ଵ ൅ 𝑛ଶ                 (23) 
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M step: 

𝜋ො ൌ
ଵ

௡భା௡మ
ቀ∑ 𝑧௜

௡భ
௜ୀଵ ൅ ∑ 𝑧௝

௡భା௡మ
௝ୀ௡భାଵ

ቁ                                         (24) 

𝜆መ ൌ
ଵ

௡భା௡మ
ቀ∑ 𝑥௜

ሺଵሻ௡భ
௜ୀଵ ൅ ∑ ൫𝑦௝ሺଶሻ െ 𝑧௝൯

௡భା௡మ
௝ୀ௡భାଵ

ቁ                       (25) 

𝒑ෝ ൌ
ቀ∑ ሺ𝒚𝒊

ሺ𝟏ሻି𝒛𝒊ሻ
𝒏𝟏
𝒊స𝟏 ା∑ 𝒙𝒋

ሺ𝟐ሻ𝒏𝟏శ𝒏𝟐
𝒋స𝒏𝟏శ𝟏

ቁ

ሺ𝒏𝟏ା𝒏𝟐ሻ𝒓ାቀ∑ ሺ𝒚𝒊
ሺ𝟏ሻି𝒛𝒊ሻ

𝒏𝟏
𝒊స𝟏 ା∑ 𝒙𝒋

ሺ𝟐ሻ𝒏𝟏శ𝒏𝟐
𝒋స𝒏𝟏శ𝟏

ቁ
                                 (26) 

When both neutral variables follow negative binomial distribution, say 
𝑋ሺଵሻ~𝑁𝐵ሺ𝑟ଵ,𝑝ଵሻ and 𝑋ሺଶሻ~𝑁𝐵ሺ𝑟ଶ,𝑝ଶሻ, we first assess  parameters 𝑟ଵ, 𝑟ଶ based on the 
first and second treatment groups respectively by:  

𝑟̂ଵ ൌ
൫௫̅ሺభሻ൯

మ

ௌమሺ௑ሺభሻሻି௫̅ሺభሻ
                                                  (27) 

𝑟̂ଶ ൌ
൫௫̅ሺమሻ൯

మ

ௌమሺ௑ሺమሻሻି௫̅ሺమሻ
                                                  (28) 

Next we derive formulas necessary to implement the EM algorithm. 
E Step: 

For 𝑖 ൌ 1, … ,𝑛ଵ: 

𝐸൫𝑍௜|𝑌௜
ሺଵሻ൯ ൌ

௬೔ሺభሻగ

௬೔ሺభሻగା൫௬೔ሺభሻା௥మିଵ൯௣మሺଵିగሻ
                                (29) 

For 𝑗 ൌ 𝑛ଵ ൅ 1, … ,𝑛ଵ ൅ 𝑛ଶ: 

𝐸൫𝑍௝|𝑌௝
ሺଶሻ൯ ൌ

௬ೕሺమሻగ

௬ೕሺమሻగା൫௬ೕሺమሻା௥భିଵ൯௣భሺଵିగሻ
                               (30) 

M step: 

𝜋ො ൌ
ଵ

௡భା௡మ
ቀ∑ 𝑧௜

௡భ
௜ୀଵ ൅ ∑ 𝑧௝

௡భା௡మ
௝ୀ௡భାଵ

ቁ                                           (31) 

𝑝̂ଵ ൌ
ቀ∑ ௫೔

ሺభሻ೙భ
೔సభ ା∑ ሺ௬ೕ

ሺమሻି௭ೕሻ
೙భశ೙మ
ೕస೙భశభ

ቁ

ሺ௡భା௡మሻ௥భାቀ∑ ௫೔
ሺభሻ೙భ

೔సభ ା∑ ሺ௬ೕ
ሺమሻି௭ೕሻ

೙భశ೙మ
ೕస೙భశభ

ቁ
                             (32) 

 𝑝̂ଶ ൌ
ቀ∑ ሺ௬೔

ሺభሻି௭೔ሻ
೙భ
೔సభ ା∑ ௫ೕ

ሺమሻ೙భశ೙మ
ೕస೙భశభ

ቁ

ሺ௡భା௡మሻ௥మାቀ∑ ሺ௬೔
ሺభሻି௭೔ሻ

೙భ
೔సభ ା∑ ௫ೕ

ሺమሻ೙భశ೙మ
ೕస೙భశభ

ቁ
                              (33) 

 

3.  Simulation studies 

To examine properties of the proposed improved Poisson and negative binomial 
ICTs and compare them with original Tian et al. (2017) design we conduct 
a comprehensive simulation study. For each set of model parameters separately, namely 
for 𝑛 ൌ 500, 1000, 2000 and for 𝜋 ൌ 0.05, 0.1, 0.2, 0.3, we generate n independent 
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variables 𝑍ଵ,𝑍ଶ, … ,𝑍௡ from Bernoulliሺ𝜋ሻ distribution. We use these once generated 
variables for all models considered in this section. Next, for each set of model 
parameters we generate 0.5𝑛 independent variables  𝑋ଵ

ሺଵሻ, … ,𝑋଴.ହ௡
ሺଵሻ  from 𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ𝜆ଵ) 

distribution. These variables are used for both improved and original Poisson ICTs. For 
the improved Poisson ICT (Poisson-Poisson model) we additionally generate 0.5𝑛 
independent variables 𝑋଴.ହ௡ାଵ

ሺଶሻ , … ,𝑋௡
ሺଶሻ from 𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ𝜆ଶ) distribution. Next, we 

generate 0.5𝑛 independent variables  𝑋ଵ
ሺଵሻ, … ,𝑋଴.ହ௡

ሺଵሻ  from 𝑁𝐵ሺ𝑟ଵ,𝑝ଵሻ distribution. We 
use these variables for both improved and original negative binomial ICTs. For the 
improved negative binomial ICT (NB-NB model) we additionally generate 0.5𝑛 
independent variables 𝑋଴.ହ௡ାଵ

ሺଶሻ , … ,𝑋௡
ሺଶሻ from 𝑁𝐵ሺ𝑟ଶ,𝑝ଶሻ distribution. Last but not least 

we generate 0.5𝑛 independent variables  𝑋ଵ
ሺଵሻ, … ,𝑋଴.ହ௡

ሺଵሻ  from 𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ𝜆ଵ) and 0.5𝑛 
independent variables 𝑋଴.ହ௡ାଵ

ሺଶሻ , … ,𝑋௡
ሺଶሻ from 𝑁𝐵ሺ𝑟,𝑝ሻ distribution for the improved 

Poisson-NB model. 
Based on the generated values we obtained n realizations of the two dimensional 

observable variables ሺ𝑋,𝑌ሻ in the new models 

൫𝑋௝ ,𝑌௝൯ ൌ ቐ
ቀ 𝑋௝

ሺଵሻ,𝑋௝
ሺଶሻ ൅ 𝑍௝ቁ            𝑓𝑜𝑟 𝑗 ൌ 1, … ,0.5𝑛

ቀ𝑋௝
ሺଶሻ,𝑋௝

ሺଵሻ ൅ 𝑍௝ቁ   𝑓𝑜𝑟 𝑗 ൌ 0.5𝑛 ൅ 1, … ,𝑛
, 

and in the original Tian et al. (2017) models 

𝑌௝ ൌ ൝
𝑋௝
ሺଵሻ                   𝑓𝑜𝑟 𝑗 ൌ 1, … ,0.5𝑛

𝑋௝
ሺଵሻ ൅ 𝑍௝  𝑓𝑜𝑟 𝑗 ൌ 0.5𝑛 ൅ 1, … ,𝑛

. 

Finally, we calculated EBLUE and ML estimators via EM algorithm according to 
formulas obtained in Section 2 and analogous MM and ML estimators according to 
formulas given in Tian et al. (2017). This process was replicated for each set of model 
parameters independently 10 000 times. In the simulation study we consider values 𝜋 ൑
0.3. This corresponds to applications as the proportion of individuals  possessing the 
sensitive feature is usually not very high in the general population.   

The R codes used in our simulations are available at 
https://github.com/rwieczor/ICT_Poisson_Negativebinomial. 
In Table 1 root mean square error and bias of empirical best linear unbiased 

estimator is presented for different overall sample sizes, different sensitive proportions, 
and different models. It should be noted that obtained values of the RMSE of the EBLUE 
estimators are very close to the theoretical values ඥ𝑉𝑎𝑟ሺ𝜋ොሻ, where 𝑉𝑎𝑟ሺ𝜋ොሻ is the 
variance of the theoretical BLUE estimator given in formula (7). RMSE and bias of 
maximum likelihood (ML) estimator is presented in Table 2. Naturally efficiency of the 
estimation increases (RMSE decreases) with the increase of the sample size. By 
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comparing Tables 1 and 2 it can be easily seen that ML estimators are more efficient 
than the corresponding EBLUE estimators. Advantage of ML over EBLUE estimators 
in terms of efficiency is especially highly visible for the small sample sizes and small 
values of 𝜋. Bias of the EBLUE estimators is very small. For ML estimators bias is visible 
for small values of 𝜋 and small values of 𝑛. 

Table 1. RMSE and BIAS (in parenthesis) of the EBLUE for different model parameters in the new 
model 

Sample size 𝜋 ൌ 0.05 𝜋 ൌ 0.1 𝜋 ൌ 0.2 𝜋 ൌ 0.3 

𝑋ሺଵሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ2ሻ, 𝑋ሺଶሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ2ሻ 
n = 500 0.089 (0.001) 0.090 (-0.001) 0.091 (-0.001) 0.091 (0.000) 
n = 1000 0.063 (0.001) 0.065 (0.001) 0.064 (0.001) 0.064 (0.000) 
n = 2000 0.045 (0.000) 0.045 (0.000) 0.046 (0.000) 0.046 (0.001) 

𝑋ሺଵሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ2ሻ, 𝑋ሺଶሻ~𝑁𝐵ሺ𝑟 ൌ 2, 𝑝 ൌ 0.4ሻ 
n = 500 0.092 (0.000) 0.093 (0.000) 0.093 (-0.001) 0.093 (0.001) 
n = 1000 0.065 (0.000) 0.065 (0.000) 0.067 (0.000) 0.066 (0.000) 
n = 2000 0.046 (0.000) 0.046 (0.000) 0.046 (0.000) 0.046 (0.000) 

𝑋ሺଵሻ~𝑁𝐵ሺ𝑟 ൌ 2, 𝑝 ൌ 0.4ሻ, 𝑋ሺଶሻ~𝑁𝐵ሺ𝑟 ൌ 2,𝑝 ൌ 0.4ሻ 
n = 500 0.096 (0.001) 0.095 (0.001) 0.097 (0.001) 0.096 (-.002) 
n = 1000 0.068 (0.000) 0.067 (-0.001) 0.068 (0.001) 0.068 (0.001) 
n = 2000 0.047 (0.000) 0.048 (-0.001) 0.048 (0.000) 0.048 (0.000) 

 

Table 2. RMSE and BIAS (in parenthesis) of the ML estimators in the new model 

Sample size  𝜋 ൌ 0.05 𝜋 ൌ 0.1 𝜋 ൌ 0.2 𝜋 ൌ 0.3 

𝑋ሺଵሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ2ሻ, 𝑋ሺଶሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ2ሻ 
n = 500 0.070 (0.017) 0.079 (0.006) 0.087 (-0.001) 0.086 (0.000) 
n = 1000 0.052 (0.008) 0.061 (0.002) 0.062 (0.001) 0.060 (0.000) 
n = 2000 0.040 (0.003) 0.044 (0.000) 0.044 (0.000) 0.043 (0.001) 

𝑋ሺଵሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ2ሻ, 𝑋ሺଶሻ~𝑁𝐵ሺ𝑟 ൌ 2, 𝑝 ൌ 0.4ሻ 
n = 500 0.067 (0.015) 0.076 (0.006) 0.080 (-0.002) 0.077 (-.002) 
n = 1000 0.052 (0.007) 0.057 (0.002) 0.058 (-0.001) 0.054 (-.002) 
n = 2000 0.039 (0.003) 0.043 (0.000) 0.041 (0.000) 0.038 (-.001) 

𝑋ሺଵሻ~𝑁𝐵ሺ𝑟 ൌ 2, 𝑝 ൌ 0.4ሻ, 𝑋ሺଶሻ~𝑁𝐵ሺ𝑟 ൌ 2, 𝑝 ൌ 0.4ሻ 
n = 500 0.062 (0.013) 0.071 (0.004) 0.074 (-0.003) 0.070 (-.005) 
n = 1000 0.049 (0.007) 0.054 (0.001) 0.054 (-0.001) 0.050 (-.002) 
n = 2000 0.037 (0.003) 0.040 (-0.001) 0.038 (-0.001) 0.035 (-.001) 
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In Tables 3-4 we present RMSE of moments and ML estimators in original Tian et. 
al (2017) Poisson and negative-binomial ICTs. It should be noted that obtained values 
of the RMSE of moments estimators are very close to the theoretical values 
ඥ𝑉𝑎𝑟ሺ𝜋ො௢௥௜௚ሻ, where 𝑉𝑎𝑟൫𝜋ො௢௥௜௚൯ is given in formula (8). By determining sample sizes 
and the privacy protection level at the same level we can see that the new proposed 
models are more efficient. Gain in efficiency is achieved for all sample sizes and all 
values of 𝜋 when comparing ML estimators in original and improved techniques and 
also when comparing MM with EBLUE estimators. It has to be emphasized that the 
new models resulted also in smaller bias when ML estimators are concerned.  

Table 3. RMSE and BIAS (in parenthesis) of moments estimators in original Tian et al. (2017) 
Poisson and negative-binomial ICTs  

Sample size 𝜋 ൌ 0.05 𝜋 ൌ 0.1 𝜋 ൌ 0.2 𝜋 ൌ 0.3 

𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ2ሻ 
n = 500 0.128 (-.001) 0.128 (0.000) 0.128 (-0.002) 0.129 (-.001) 
n = 1000 0.091 (0.001) 0.092 (0.000) 0.090 (0.001) 0.091 (0.000) 
n = 2000 0.064 (0.000) 0.064 (0.000) 0.065 (0.000) 0.065 (0.001) 

𝑋~𝑁𝐵ሺ𝑟 ൌ 2,𝑝 ൌ 0.4ሻ 
n = 500 0.136 (0.003) 0.135 (0.002) 0.137 (-0.001) 0.136 (-.002) 
n = 1000 0.094 (0.000) 0.095 (0.000) 0.096 (0.001) 0.096 (0.001) 
n = 2000 0.068 (-0.001) 0.069 (-0.002) 0.069 (0.001) 0.068 (-.001) 

 

Table 4. RMSE and BIAS (in parenthesis) of ML estimators in original Tian et. al (2017) Poisson and 
negative-binomial ICTs  

Sample size 𝜋 ൌ 0.05 𝜋 ൌ 0.1 𝜋 ൌ 0.2 𝜋 ൌ 0.3 

𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ2ሻ 
n = 500 0.095 (0.030) 0.105 (0.016) 0.117 (0.000) 0.120 (-.002) 
n = 1000 0.071 (0.018) 0.081 (0.006) 0.086 (0.001) 0.086 (-.001) 
n = 2000 0.052 (0.008) 0.06 (0.001) 0.063 (-0.001) 0.060 (0.001) 

𝑋~𝑁𝐵ሺ𝑟 ൌ 2,𝑝 ൌ 0.4ሻ 
n = 500 0.083 (0.024) 0.091 (0.008) 0.101 (-0.006) 0.098 (-.008) 
n = 1000 0.063 (0.014) 0.071 (0.002) 0.075 (-0.002) 0.070 (-.004) 
n = 2000 0.048 (0.005) 0.055 (-0.001) 0.055 (-0.001) 0.050 (-.002) 

 

For further investigation let us consider succeeding model parameters and compare 
ML estimators in the improved and original Tian et al. (2017) Poisson ICT. Results of 
the simulation studies are given in Tables 5 and 6. In all cases both RMSE and BIAS of 
the ML estimators are visibly smaller when using newly proposed models.  
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Table 5. RMSE and BIAS (in parenthesis) of the ML estimators in the new model and original 
Poisson ICT 

Sample size  𝜋 ൌ 0.05 𝜋 ൌ 0.1 𝜋 ൌ 0.2 𝜋 ൌ 0.3 

New model 𝑋ሺଵሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ1ሻ, 𝑋ሺଶሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ1ሻ 
n = 500 0.053 (0.009) 0.06 (0.002) 0.063 (-0.001) 0.060 (0.000) 
n = 1000 0.040 (0003) 0.045 (0.000) 0.044 (-0.001) 0.042 (-.001) 
n = 2000 0.030 (0.001) 0.032 (-0.001) 0.031 (0.000) 0.030 (0.000) 

Original model 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ1ሻ 
n = 500 0.070 (0.017) 0.079 (0.006) 0.087 (-0.001) 0.084 (0.000) 
n = 1000 0.053 (0.007) 0.060 (0.001) 0.062 (-0.001) 0.060 (-.001) 
n = 2000 0.040 (0.003) 0.044 (0.000) 0.044 (-0.001) 0.042 (-.0010 

New model 𝑋ሺଵሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ3ሻ, 𝑋ሺଶሻ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ3ሻ 
n = 500 0.083 (0.024) 0.093 (0.011) 0.106 (0.001) 0.106 (-.001) 
n = 1000 0.062 (0.013) 0.071 (0.004) 0.076 (-0.002) 0.076 (-.001) 
n = 2000 0.047 (0.005) 0.053 (0.001) 0.054 (0.000) 0.054 (0.000) 

Original model 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛ሺ3ሻ 
n = 500 0.116 (0.043) 0.124 (0.026) 0.141 (0.007) 0.146 (0.000) 
n = 1000 0.084 (0.024) 0.093 (0.010) 0.104 (0.000) 0.108 (-.001) 
n = 2000 0.061 (0.012) 0.070 (0.004) 0.076 (0.000) 0.075 (0.000) 

 

Table 6. RMSE and BIAS (in parenthesis) of the ML estimators in the new model and original 
negative-binomial ICT 

Sample size  𝜋 ൌ 0.05 𝜋 ൌ 0.1 𝜋 ൌ 0.2 𝜋 ൌ 0.3 

New model  𝑋ሺଵሻ~𝑁𝐵ሺ𝑟 ൌ 2,𝑝 ൌ 0.6ሻ, 𝑋ሺଶሻ~𝑁𝐵ሺ𝑟 ൌ 2, 𝑝 ൌ 0.6ሻ 
n = 500 0.094 (0.029) 0.102 (0.012) 0.115 (-0.002) 0.112 (-.007) 
n = 1000 0.072 (0.017) 0.080 (0.004) 0.087 (-0.003) 0.081 (-.005) 
n = 2000 0.055 (0.009) 0.062 (0.000) 0.062 (-0.002) 0.057 (-.002) 

Original model  𝑋~𝑁𝐵ሺ𝑟 ൌ 2, 𝑝 ൌ 0.6ሻ 
n = 500 0.124 (0.046) 0.131 (0.026) 0.147 (0.004) 0.153 (-.010) 
n = 1000 0.096 (0.031) 0.103 (0.013) 0.116 (-0.003) 0.114 (-.009) 
n = 2000 0.071 (0.016) 0.080 (0.003) 0.086 (-0.002) 0.082 (-.003) 

New model  𝑋ሺଵሻ~𝑁𝐵ሺ𝑟 ൌ 3,𝑝 ൌ 0.5ሻ, 𝑋ሺଶሻ~𝑁𝐵ሺ𝑟 ൌ 3, 𝑝 ൌ 0.5ሻ 
n = 500 0.098 (0.033) 0.108 (0.018) 0.118 (-0.001) 0.118 (-.004) 
n = 1000 0.074 (0.019) 0.083 (0.008) 0.089 (-0.001) 0.085 (-.002) 
n = 2000 0.056 (0.010) 0.064 (0.002) 0.064 (-0.001) 0.060 (-.001) 

Original model  𝑋~𝑁𝐵ሺ𝑟 ൌ 3, 𝑝 ൌ 0.5ሻ 
n = 500 0.133 (0.052) 0.139 (0.034) 0.153 (0.005) 0.160 (-.004) 
n = 1000 0.101 (0.033) 0.108 (0.017) 0.118 (0.000) 0.120 (-.003) 
n = 2000 0.073 (0.018) 0.083 (0.007) 0.089 (-0.001) 0.085 (-.003) 
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It is worth mentioning that in all comparisons we have set the overall sample size 
and privacy protection at the same level. Privacy protection is usually measured by the 
probability that the respondent possesses the sensitive attribute conditional on his or 
her answer. This probability was set to be the same in both compared methods by 
attaching the identical parameters to the control neutral variable associated with the 
sensitive one. In some surveys, however, asking a sensitive question – even indirectly – 
can be slightly more costly than asking the neutral one. In the new methods an indirect 
question about the sensitive variable is asked in the two groups and also two neutral 
questions are asked. Therefore, the newly proposed techniques can be slightly more 
costly in some situations, which also should be mentioned. However, this does not seem 
to apply to all surveys. Nevertheless, evident advantages of the newly proposed 
techniques in terms of efficiency and privacy protection should initiate its further 
development and application.     

4.  Conclusions 

Item count techniques have attracted much attention among applied researchers. 
Methodology and theory of this method is still being developed, with a significant 
contribution by Tian et al. (2017), who introduced Poisson and negative binomial item 
count techniques. The two techniques allow for eliciting honest answers to sensitive 
questions, simplify the questionnaire design and theory. But this effect is achieved at 
the expense of the efficiency of the estimation, which is not high in the proposed 
techniques. In the paper three new models are proposed: Poisson-Poisson neutral 
questions ICT, Poisson-negative binomial neutral questions ICT, and negative 
binomial-negative binomial neutral questions ICT. Newly proposed methods maintain 
privacy of respondents at the same level regarding the sensitive question. At the same 
time the three newly proposed techniques increase efficiency of the estimation, which 
is very important in indirect methods of questioning.  
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The odd power generalized Weibull-G power series class of
distributions: properties and applications

Broderick Oluyede1, Thatayaone Moakofi2, Fastel Chipepa3

ABSTRACT

We develop a new class of distributions, namely, the odd power generalized Weibull-G power
series (OPGW-GPS) class of distributions. We present some special classes of the proposed
distribution. Structural properties, have also been derived. We conducted a simulation study
to evaluate the consistency of the maximum likelihood estimates. Moreover, two real data
examples on selected data sets, to illustrate the usefulness of the new class of distributions.
The proposed model outperforms several non-nested models on selected data sets.

Key words: Weibull-g distribution, power series, Poisson distribution, logarithmic distribu-
tion, maximum likelihood estimation.

1. Introduction

Existing distributions or a family of distributions cannot model all real lifetime data.
Thus, there is a need to modify them by adding one or more parameters to gain flexibility.
Some families of distributions available in the literature include the Weibull-G distribution
by Bourguignon et al. (2014), the odd generalized half-logistic Weibull-G family of distri-
butions by Chipepa et al. (2020a), the exponentiated generalized (EG) class of distributions
by Cordeiro et al. (2013), beta-G family by Eugene et al. (2002), new power generalized
Weibull-G family by Oluyede et al. (2021), the odd exponentiated half-logistic-G family of
distributions by Afify et al. (2017), to mention a few.

Several generalized distributions proposed in the literature involving the power series in-
clude the exponentiated generalized power series class of distributions by Oluyede et al.
(2020c), a new generalized Lindley-Weibull class of distributions by Makubate et al. (2020),
the exponentiated power generalized Weibull power series family of distributions by Al-
dahlan et al. (2019), Weibull-power series distributions by Morais and Barreto-Souza (2011),
complementary exponential power series by Flores et al. (2013), complementary extended
Weibull-power series by Cordeiro and Silva (2014), Burr XII power series by Silva and
Silva and Cordeiro (2015), extended Weibull-power series (EWPS) distribution by Silva et
al. (2013).
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In this paper, we propose a new class of distributions, namely the odd power generalized
Weibull-G power series (OPGW-GPS) class of distributions. An attractive feature about the
model is that the extra parameter introduced have the capability to control both the weights
at the tails of the density function. Also, the new class of distributions can model different
types of failure rate functions that are available in different areas like reliability, engineer-
ing and biological studies. The new proposed distribution offers more flexibility in data
modelling since the special cases exhibit more non-monotonic shapes for the hazard rate
function compared to the other power series reviewed in this paper. Furthermore, the new
class of distributions gives birth to more families of distributions by choosing any continu-
ous probability distribution as a baseline distribution G(x;ψ).

In a recent note, Moakofi et al. (2021) developed the odd power generalized Weibull-G
(OPGW-G) family of distributions. The cumulative distribution function (cdf) and proba-
bility density function (pdf) of the OPGW-G distribution are given by

F(x;α,β ,ψ) = 1− exp{1− (1+ t)β} (1)

and

f (x;α,β ,ψ) =
αβ (1+ t)β−1 exp{1− (1+ t)β}g(x;ψ)(

1−G(x;ψ)
)2

( G(x;ψ)

1−G(x;ψ)

)α−1

,

(2)

respectively, where t =
(

G(x;ψ)

1−G(x;ψ)

)α

, for α,β > 0 and parameter vector ψ. In this note,

we extend the OPGW-G family of distributions by compounding it with the power series
distribution.

Let N be a zero truncated discrete random variable having a power series distribution, whose
probability mass function (pmf) is given by

P(N = n) =
anθ n

C(θ)
,n = 1,2,3, ..., (3)

where C(θ) = ∑
∞
n=1 anθ n is finite, θ > 0 and {an}n≥1 a sequence of positive real numbers.

If we consider X(1) = min(X1,X2, ...,XN), then the cumulative distribution function (cdf)
and probability density function (pdf) of X(1)|N = n are defined by

FX(1)|N=n(x) = 1−
C(θS(x;ψ))

C(θ)
, (4)

and

fX(1)|N=n(x) =
θg(x;ψ)C′(θS(x;ψ))

C(θ)
, (5)
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where S(x;ψ) is the survival function of the baseline distribution and ψ is a vector of pa-
rameters from the baseline distribution g(x;ψ). The power series family of distributions
includes binomial, Poisson, geometric and logarithmic distributions Johnson et al. (1994).

The rest of the paper is organized as follows: In Section 2, we present the new model
and some of the statistical properties. We present some special cases of the proposed class
of distributions in Section 3. A simulation study is presented in Section 4 and applications
in Section 5, followed by concluding remarks.

2. The Model, Sub-Classes and Properties

In this section, we develop the new model, referred to as the odd power generalized
Weibull-G power series (OPGW-GPS) class of distributions. Some statistical properties,
including expansion of the density function, hazard rate function, quantile function, sub-
classes, moments, moment generating function and maximum likelihood estimation of model
parameters are derived. Details on the derivations of other statistical properties are given in
the Web-Appendix.

2.1. The Model

Using equation (4), the odd power generalized Weibull-G power series (OPGW-GPS)
class of distributions denoted by OPGW-GPS(α,β , θ , ψ) has cdf and pdf given by

FOPGW−GPS(x) = 1− C(θ(exp{1− (1+ t)β}))
C(θ)

, (6)

and

fOPGW−GPS(x) =
θαβ (1+ t)β−1g(x;ψ)(

1−G(x;ψ)
)2 exp{1− (1+ t)β}

( G(x;ψ)

1−G(x;ψ)

)α−1

×
C′ (θ [exp{1− (1+ t)β}]

)
C(θ)

, (7)

respectively, where t =
(

G(x;ψ)

1−G(x;ψ)

)α

, for α,β , θ , x > 0 and parameter vector ψ.

Table 1 below presents the special families of OPGW-GPS distribution when C(θ) is spec-
ified in equation (6).
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Table 1: Special Families of the OPGW-GPS Distribution

Distribution C(θ) an cdf

OPGW-G Poisson eθ −1 (n!)−1 1- exp(θ [exp{1−(1+t)β }])−1
exp(θ)−1

OPGW-G Geometric θ(1−θ)−1 1 1- (1−θ)(exp{1−(1+t)β })
(1−θ [exp{1−(1+t)β }])

OPGW-G Logarithmic − log(1−θ) n−1 1- log(exp{1−(1+t)β })
log(1−θ)

OPGW-G Binomial (1+θ)m −1
(m

n

)
1- (1+θ [exp{1−(1+t)β }])m−1

(1+θ)m−1

2.2. Regularity Condition

We use the Kullback-Leibler distance between densities fα , for α1 ̸= α2

D( f1, f2) =
∫

f (x|α1) log
(

f (x|α1)
f (x|α2)

)
dx > 0. Hence, we obtain

D( f1, f2) =
∫

f (x|α1)

(
log
[

α1

α2

]
+(α1 −α2) log

[ G(x;ψ)

1−G(x;ψ)

])
dx

=
∫

f (x|α1)

(
log
[

α1[1−G(x;ψ)](α1−α2)

α2[G(x;ψ)](α1−α2)

])
dx, (8)

therefore, D( f1, f2)> 0, for α1 ̸= α2 since log
[

α1[1−G(x;ψ)](α1−α2)

α2[G(x;ψ)](α1−α2)

]
> 0.

2.3. Quantile Function

Let X be a random variable with cdf defined by equation (6). The quantile function
QOPGW−GPS(u) is defined by FOPGW−GPS(QOPGW−GPS(u)) = u,0 ≤ u ≤ 1 so that the quantile
function of the OPGW-GPS class of distributions is given by

QOPGW−GPS(u) = G−1
[([(

1− log
(

C−1
[
C(θ)

(
1−u

)]
θ

)) 1
β

−1
]−1

α

+1
)−1]

. (9)

2.4. Expansion of Density

The pdf of the OPGW-GPS class of distributions is an infinite linear combination of
exponentiated-G distribution expressed as

fOPGW−GPS(x) =
∞

∑
m=0

wm+1gm+1(x;ψ), (10)
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where gm+1(x;ψ) = (m+ 1)
(

G(x;ψ)
)m

g(x;ψ) is the Exp-G distribution with power pa-
rameter (m+1) and

wm+1 =
∞

∑
j,k,i,l=0

∞

∑
n=1

(
j
k

)(
β (k+1)−1

i

)(
α(i+1)−1

l

)(
−(α(i+1)+1)+ l

m

)
× αβ (−1)k+l+mn j+1anθ n

C(θ) j!
1

m+1
.

(11)

2.5. Moments and Generating Function

If X follows the OPGW-GPS distribution and Y ∼ Exp−G(m+1), then using equation
(10) the pth raw moment, µ ′

p of the OPGW-GPS class of distributions is obtained as

µ
′
p = E(X p) =

∫
∞

−∞

xp f (x)dx

=
∞

∑
m=0

wm+1E(Y p),

where wm+1 is given by equation (11). The moment generating function (MGF) M(t) =
E(etX ) is given by:

MX (t) =
∞

∑
m=0

wm+1MY (t),

where MY (t) is the mgf of Y and wm+1 is given by equation (11).

2.6. Distribution of Order Statistics

Let X1,X2, ...,Xn be a random sample from OPGW-GPS class of distributions and sup-
pose X1:n < X2:n < ... < Xn:n denote the corresponding order statistics. The pdf of the kth

order statistic is given by

fk:n(x) =
n!

(k−1)!(n− k)!

∞

∑
m=0

n−k

∑
l=0

(
n− k

l

)
(−1)lhm+1gm+1(x;ψ), (12)

where gm+1(x;ψ) = (m+1)g(x;ψ)Gm(x;ψ) is an Exp-G with power parameter m+1 and
the linear component

hm+1 =
∞

∑
p, j,k,i,v=0

∞

∑
n,z=1

nandz,pθ z+n

Cz+1(θ)

(n+ z) j

j!

(
k+ l −1

p

)(
j
k

)(
β (k+1)−1

i

)
×

(
α(i+1)−1

v

)(
−(α(i+1)+1)+ v

m

)
(−1)p+k+m

αβ
1

m+1
.

(13)
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2.7. Rényi Entropy

In this subsection, Rényi entropy for OPGW-GPS class of distributions is derived. An
entropy is a measure of uncertainty or variation of a random variable. Rényi entropy by
Rényi (1961) is a generalization of Shannon entropy by Shannon (1951). Rényi entropy for
OPGW-GPS class of distributions is given by

IR(v) =
1

1− v
log
(

∞

∑
m=0

w∗e(1−v)IREG

)
, (14)

where IREG =
∫

∞

0 [(1+m/v)g(x;ψ)Gm/v(x;ψ)]vdx is Rényi entropy for an Exp-G distribu-
tion with power parameter (m/ν +1) and

w∗ =
∞

∑
j,k,i,l,m=0

∞

∑
n=1

dv,nθ v+n−1(
C(θ)

)v (v+(n−1)) j(αβ )v
(

j
k

)(
β (k+ v)− v

i

)
(−1)k+l+m

j!

×
(

α(i+ v)−1
l

)(
−(α(i+ v)+ v)+ l

m

)
1

(1+m/ν)v . (15)

Consequently, Rényi entropy for OPGW-GPS class of distributions can be obtained from Rényi en-
tropy of the Exp-G distribution.

2.8. Maximum Likelihood Estimation

We obtain the maximum likelihood estimates of the parameters of the OPGW-GPS class of dis-
tributions in this section. Let Xi ∼ OPGW −GPS(α,β ,θ ,ψ) and ∆ = (α,β ,θ ,ψ)T be the parameter
vector. The log-likelihood ℓ= ℓ(∆) based on a random sample of size n is given by

ℓ(∆) = n ln [θαβ ]+ (β −1)
n

∑
i=1

ln[1+ t]−n ln[C(θ)]+
n

∑
i=1

(1− (1+ t)β )

+ (α −1)
n

∑
i=1

ln

[
G(x;ψ)

1−G(x;ψ)

]
+

n

∑
i=1

ln
[
C′
(

θ

[
exp
(

1− [1+ t]β
)])]

+
n

∑
i=1

ln
[
g(x;ψ)

]
−2

n

∑
i=1

ln
[(

1−G(x;ψ)
)2
]
,

where t =
(

G(x;ψ)

1−G(x;ψ)

)α

. The maximum likelihood estimates of the parameters, denoted by

∆̂ is obtained by solving the nonlinear equation ( ∂ℓn
∂α

, ∂ℓn
∂β

, ∂ℓn
∂θ

, ∂ℓn
∂ψk

)T = 0, using a numeri-
cal method such as the Newton-Raphson procedure. The multivariate normal distribution
Nq+3(0,J(∆̂)−1), where the mean vector 0 = (0,0,0,0)T and J(∆̂)−1 is the observed Fisher
information matrix evaluated at ∆̂, can be used to construct confidence intervals and con-
fidence regions for the individual model parameters and for the survival and hazard rate
functions.
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3. Some Special Classes of the OPGW-GPS Class of Distributions

In this section, special classes of OPGW-GPS class of distributions are presented by
specifying the baseline distribution to be Weibull and log-logistic distributions, respectively.
We considered the power series distributions Poisson and Logarithmic for each selected
baseline distribution. The cdf and pdf of the Weibull distribution are given by G(x;λ ) =

1− exp
(
−xλ

)
and g(x;λ ) = λxλ−1 exp

(
−xλ

)
, for λ > 0, and x > 0. Furthermore, the

log-logistic distribution has cdf and pdf given by G(x;λ ) = 1−
(
1+ xλ

)−1
and g(x;λ ) =

λxλ−1
(
1+ xλ

)−2
, for λ > 0, and x > 0.

3.1. Odd Power Generalized Weibull-Weibull Poisson (OPGW-WP) Distribution

The cdf and pdf of the OPGW-WP distribution are given by

FOPGW−WP(x) = 1− exp(θ [exp{1− (1+ z)β}]−1)
exp(θ)−1

,

and

fOPGW−WP(x) = θαβ (1+ z)β−1

((
1− exp{−xλ}

)
exp{−xλ}

)α−1

exp{1− (1+ z)β}

× λxλ−1 exp{−xλ}
exp{−xλ}2

exp{θ [exp{1− (1+ z)β}]}
(exp(θ)−1)

,

respectively, where z =
( 1−exp{−xλ }

exp{−xλ }

)α , for α,β , λ and θ > 0.

Figure 1 shows the plots of pdfs and hrfs of the OPGW-WP distribution. The pdf can
take various shapes that include uni-modal, reverse-J, left skewed and right-skewed. Fur-
thermore, the hazard rate functions (hrfs) for the OPGW-WP distribution exhibit increasing,
reverse-J, bathtub, and upside bathtub shapes.
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Figure 1: Plots of the pdf and hrf for the OPGW-WP distribution

3.2. Odd Power Generalized Weibull-Weibull Logarithmic (OPGW-WLoG) Distribu-
tion

The cdf and pdf of the OPGW-WLoG distribution are given by

FOPGW−WLoG(x) = 1− log[1−θ(exp{1− (1+ z)β})]
log[1−θ ]

,

and

fOPGW−WLoG(x) = θαβ (1+ z)β−1
(

1− exp{−xλ}
exp{−xλ}

)α−1

exp{1− [1+ z]β}

× λxλ−1 exp{−xλ}
exp{−xλ}2

(1−θ [exp{1− (1+ z)β}])−1

− log[1−θ ]
,

respectively, for α,β , λ > 0 and 0 < θ < 1.

Figure 2 shows the plots of pdfs and hrfs of the OPGW-WLoG distribution. The pdf can
take various shapes that include uni-modal, reverse-J, left or right-skewed. Furthermore, the
hazard rate functions (hrfs) for the OPGW-WLoG distribution exhibit increasing, reverse-J,
bathtub, upside-down bathtub, and upside-down bathtub follwed by bathtub shapes.
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Figure 2: Plots of the pdf and hrf for the OPGW-WLoG distribution

3.3. Odd Power Generalized Weibull-Log-Logistic Poisson (OPGW-WLLoGP) Distri-
bution

The cdf and pdf of the OPGW-LLoGP distribution are given by

FOPGW−LLoGP(x) = 1− exp{θ [exp{1− (1+w)β}]}−1
exp(θ)−1

,

and

fOPGW−LLoGP(x) = θαβ (1+w)β−1
(

1− (1+ xλ )−1(
1+ xλ

)−1

)α−1

exp{1− (1+w)β}

× λxλ−1(1+ xλ )−2

(1+ xλ )−2

exp{θ [exp{1− (1+w)β}]}
exp{θ}−1

,

respectively, where w =
( 1−(1+xλ )−1

(1+xλ )−1

)α , for α,β ,λ and θ > 0.

Figure 3 shows the plots of the pdfs and hrfs of the OPGW-LLoGP distribution. The pdf
can take various shapes that include almost-symmetric, reverse-J, left or right-skewed. The
hazard rate functions (hrfs) for the OPGW-LLoGP distribution exhibit increasing, reverse-J,
bathtub and upside-down bathtub shapes.
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Figure 3: Plots of the pdf and hrf for the OPGW-LLoGP distribution

3.4. Odd Power Generalized Weibull-Log-Logistic Logarithmic (OPGW-LLoGLoG)
Distribution

The cdf and pdf of the OPGW-LLoGLoG distribution are given by

FOPGW−LLoGLoG(x) = 1− log[1−θ(exp{1− (1+w)β})]
log[1−θ ]

,

and

fOPGW−LLoGLoG(x) = θαβ (1+w)β−1
(

1− (1+ xλ )−1

(1+ xλ )−1

)α−1
λxλ−1(1+ xλ )−2

(1+ xλ )−2

× exp{1− (1+w)β} (1−θ [exp{1− (1+w)β}])−1

− log[1−θ ]
,

respectively, for α,β ,λ > 0 and 0 < θ < 1.

Figure 4 shows the pdfs of the OPGW-LLoGLoG distribution. The pdf can take various
shapes that include unimodal, reverse-J, left or right-skewed. Furthermore, the hazard rate
functions (hrfs) for the OPGW-LLoGLoG distribution exhibit increasing, reverse-J, bathtub,
upside-down bathtub, and upside-down bathtub follwed by bathtub shapes.
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Figure 4: Plots of the pdf and hrf for the OPGW-LLoGLoG distribution

4. Simulation Study

In this section, the performance of the OPGW-WP distribution is examined by conduct-
ing various simulations for different sizes (n=25, 50, 100, 200, 400, 800 and 1000 ) via the
R package. We simulate N = 1000 samples for the true parameters values given in Table 2.
The table lists the mean MLEs of the model parameters along with the respective bias and
root mean squared errors (RMSEs). The precision of the MLEs is discussed by means of
the following measures: mean, mean square error (MSE) and average bias.

The estimated parameter values in Table 2 indicate that the estimates are quite stable and,
more importantly, are close to the true parameter values for these sample sizes. The sim-
ulation study shows that the maximum likelihood method is appropriate for estimating the
OPGW-WP model parameters. In fact, the means of the parameters tend to be closer to the
true parameter values when n increases. The bias and RMSE for the estimated parameter,
say, θ̂ , are given by:

Bias(θ̂) =
∑

N
i=1 θ̂i

N
−θ , and RMSE(θ̂) =

√
∑

N
i=1(θ̂i −θ)2

N
,

respectively.

5. Inference

We present two real data examples in this section, to illustrate the importance of the
OPGW-WP distribution. We compared the OPGW-WP distribution to various models. We
estimate model parameters using the maximum likelihood estimation technique via the nlm
package in R Software (2014). Model performance was assessed using the Adequacy-



100 Oluyede B., Moakofi T., Chipepa F.: The odd power generalized Weibull-G...

Table 2: Monte Carlo Simulation Results for OPGW-WP Distribution: Mean, RMSE and
Average Bias

α = 0.5,β = 1.1,λ = 1.1,c = 1.1 α = 1.0,β = 1.0,λ = 1.0,c = 0.9
n Mean RMSE Bias Mean RMSE Bias

25 0.5335 0.9724 0.0335 1.0068 1.4337 0.0068
50 0.4575 0.4222 -0.0425 0.7489 0.7986 -0.2511
100 0.4224 0.2242 -0.0776 0.7243 0.5732 -0.2757

α 200 0.4464 0.1718 -0.0536 0.7645 0.4457 -0.2355
400 0.4505 0.1216 -0.0495 0.8235 0.3418 -0.1765
800 0.4662 0.0888 -0.0338 0.8991 0.2600 -0.1009

1000 0.4757 0.0779 -0.0243 0.9316 0.2332 -0.0684
25 0.8481 0.3930 -0.2519 0.7820 0.3946 -0.2180
50 0.8847 0.3324 -0.2153 0.8130 0.3100 -0.1870
100 0.9469 0.2894 -0.1531 0.8612 0.2648 -0.1388

β 200 1.0077 0.2298 -0.0923 0.9268 0.2081 -0.0732
400 1.0337 0.1653 -0.0663 0.9621 0.1488 -0.0379
800 1.0636 0.1172 -0.0364 0.9873 0.0951 -0.0127

1000 1.0737 0.0913 -0.0263 0.9907 0.0798 -0.0093
25 2.8782 2.0091 1.3782 3.0075 2.9668 2.0075
50 2.4305 1.4320 0.9305 2.5782 2.2024 1.5782
100 2.2442 1.1478 0.7442 2.1886 1.7264 1.1886

λ 200 1.9503 0.8102 0.4503 1.7452 1.1217 0.7452
400 1.8119 0.5772 0.3119 1.4616 0.7597 0.4616
800 1.6766 0.3879 0.1766 1.2337 0.4634 0.2337

1000 1.6274 0.3250 0.1274 1.1665 0.3893 0.1665
25 2.6701 2.6410 1.5701 2.9833 3.9787 2.0833
50 2.3715 1.8348 1.2715 2.5426 2.1073 1.6426
100 2.0826 1.7178 0.9826 2.2745 2.0097 1.3745

c 200 1.6754 1.3790 0.5754 1.7600 1.5762 0.8600
400 1.4741 0.9297 0.3741 1.4197 1.1446 0.5197
800 1.3180 0.6384 0.2180 1.1350 0.7098 0.2350

1000 1.2605 0.5092 0.1605 1.0595 0.5971 0.1595
α = 1.1,β = 1.5,λ = 0.9,c = 1.1 α = 1.0,β = 0.9,λ = 1.0,c = 0.9

25 0.9414 1.3843 -0.1586 0.8803 1.0931 -0.1197
50 0.8392 0.9418 -0.2608 0.7589 0.8029 -0.2411
100 0.8497 0.8119 -0.2503 0.7232 0.5468 -0.2768

α 200 0.8751 0.6733 -0.2249 0.7517 0.4154 -0.2483
400 0.9233 0.5315 -0.1767 0.8211 0.3367 -0.1789
800 1.0137 0.4518 -0.0863 0.8871 0.2439 -0.1129

1000 1.0340 0.4206 -0.0660 0.9209 0.2185 -0.0791
25 1.8679 0.7760 0.3679 0.6926 0.3115 -0.2074
50 1.7416 0.5930 0.2416 0.7050 0.2879 -0.1950
100 1.6756 0.4820 0.1756 0.7525 0.2565 -0.1475

β 200 1.6521 0.3916 0.1521 0.7895 0.2225 -0.1105
400 1.6211 0.3205 0.1211 0.8284 0.1683 -0.0716
800 1.5767 0.2530 0.0767 0.8686 0.1063 -0.0314

1000 1.5605 0.2270 0.0605 0.8756 0.0936 -0.0244
25 2.7571 2.7198 1.8571 2.6099 2.3171 1.6099
50 2.5146 2.3418 1.6146 2.3455 1.8754 1.3455
100 2.2513 2.0824 1.3513 1.9934 1.3621 0.9934

λ 200 1.8883 1.6188 0.9883 1.6985 0.9996 0.6985
400 1.5498 1.2004 0.6498 1.4514 0.7178 0.4514
800 1.2673 0.8589 0.3673 1.2390 0.4494 0.2390

1000 1.1892 0.7238 0.2892 1.1732 0.3883 0.1732
25 2.0189 4.2126 0.9189 2.7413 3.1552 1.8413
50 1.7098 2.4929 0.6098 2.6147 2.1555 1.7147
100 1.4663 1.0845 0.3663 2.3388 2.0413 1.4388

c 200 1.2365 0.7964 0.1365 2.0201 1.8711 1.1201
400 1.1102 0.7889 0.0102 1.6168 1.4018 0.7168
800 1.0299 0.5098 -0.0701 1.2507 0.8697 0.3507

1000 1.0471 0.4529 -0.0529 1.1567 0.7870 0.2567
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Model package in R software R Software (2014) and the following goodness-of-fit statis-
tics were considered: Cramer-von-Mises (W ∗) and Andersen-Darling (A∗), -2loglikelihood
(-2 log L), Akaike Information Criterion (AIC), Consistent Akaike Information Criterion
(AICC), Bayesian Information Criterion (BIC), Kolmogorov-Smirnov (K-S) statistic (and
its p-value), and sum of squares (SS). The model with the smallest values of the goodness-
of-fit statistics and a bigger p-value for the K-S statistic is regarded as the best model.

The OPGW-WP distribution was compared to the following models: odd Weibull-Topp-
Leone-log-logistic Poisson (OW-TL-LLoGP), odd Weibull-Topp-Leone-log-logistic geo-
metric (OW-TL-LLoGG) and odd Weibull-Topp-Leone-log-logistic logarithmic (OW-TL-
LLoGL) by Oluyede et al. (2020b), exponentiated half-logistic-power generalized Weibull-
log-logistic (EHL-PGW-LLoG) by Oluyede et al. (2020a), odd exponentiated half-logistic-
Burr XII (OEHL-BXII) by Aldahlan and Afify (2018), exponentiated half-logistic odd
Weibull-Topp-Leone-log logistic (EHLOW-TL-LLoG) by Chipepa et al. (2020a), odd gen-
eralized half-logistic Weibull-Weibull (OGHLW-W) by Chipepa et al. (2020b), odd log-
logistic exponentiated Weibull (OLLEW) by Afify et al. (2018), Kumaraswamy odd Lindley-
log logistic (KOL-LLoG) by Chipepa et al. (2019) and Kumaraswamy-Weibull (Kw-W) by
Cordeiro et al. (2010). The pdfs of the non-nested models are

fOW−T L−LLoGP(x;α,λ ,γ,θ) =
2θγαλxλ−1(1+ xλ )−3[1− (1+ xλ )−2]γα−1

[1− (1− (1+ xλ )−2)γ ]α+1

× exp
{
−
[

[1− (1+ xλ )−2]γ

[1− (1− (1+ xλ )−2)γ ]

]α}

×
exp
(

θ

(
exp
{
−
[

[1−(1+xλ )−2]γ

[1−(1−(1+xλ )−2)γ ]

]α}))
exp(θ)−1

,

for α,λ ,γ,θ > 0,

fOW−T L−LLoGG(x;α,λ ,γ,θ) =
2(1−θ)γαλxλ−1(1+ xλ )−3[1− (1+ xλ )−2]γα−1

[1− (1− (1+ xλ )−2)γ ]α+1

× exp
{
−
[

[1− (1+ xλ )−2]γ

[1− (1− (1+ xλ )−2)γ ]

]α}

×

(
1−

(
θ

(
exp
{
−
[

[1− (1+ xλ )−2]γ

[1− (1− (1+ xλ )−2)γ ]

]α})))−2

,
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for α,λ ,γ > 0 and 0 < θ < 1,

fOW−T L−LLoGL(x;α,λ ,γ,θ) =
2θγαλxλ−1(1+ xλ )−3[1− (1+ xλ )−2]γα−1

[1− (1− (1+ xλ )−2)γ ]α+1

× exp
{
−
[

[1− (1+ xλ )−2]γ

[1− (1− (1+ xλ )−2)γ ]

]α}

×

(
1−
(

θ

(
exp
{
−
[

[1−(1+xλ )−2]γ

[1−(1−(1+xλ )−2)γ ]

]α})))−1

− log(1−θ)
,

for α,λ ,γ > 0 and 0 < θ < 1,

fEHL−PGW−LLoG(x;α,β ,δ ,c) = 2αβδ

[
1+
(

1− (1+ xc)−1

(1+ xc)−1

)α
]β−1

e

(
1−
[

1+
(

1−(1+xc)−1

(1+xc)−1

)α
]β
)

×
(
(1+ xc)−1

)−(α+3)

1+ e

(
1−
[

1+
(

1−(1+xc)−1

(1+xc)−1

)α
]β
)

−2

×

1− e

(
1−
[

1+
(

1−(1+xc)−1

(1+xc)−1

)α
]β
)

1+ e

(
1−
[

1+
(

1−(1+xc)−1

(1+xc)−1

)α
]β
)


δ−1

cxc−1
(

1− (1+ xc)−1
)α−1

,

for α,β ,δ ,c > 0,

fOEHLBXII (x;α,λ ,a,b) =
2αλabxa−1 exp(λ [1− (1+ xa)b])(1− exp(λ [1− (1+ xa)b]))α−1

(1+ xa)−b−1(1+ exp(λ [1− (1+ xa)b]))α+1 ,

for α,λ ,a,b > 0,

fEHLOW−T L−BXII (x;α,β ,δ ,λ ,γ) =
4αβδλγxλ−1(1+ xλ )−2γ−1[1− (1+ xλ )−2γ ]αβ−1

(1− [1− (1+ xλ )−2γ ]α )β+1

× exp(−t)
(
1+ exp(−t)

)−2
[

1− exp(−t)
1+ exp(−t)

]δ−1
,

where t =
[

[1−(1+xλ )−2γ ]α

1−[1−(1+xλ )−2γ ]α

]β

, for α,β ,δ ,λ ,γ > 0 (We obtain the EHLOW-TL-LLoG distribution

from the EHLOW-TL-BXII distribution by setting γ = 1),

fOGHLW−W (x;α,β ,λ ,γ) =
2αβλγxγ−1e−λxγ

(1− e−λxγ

)β−1 exp
{
−α

[
1−e−λxγ

e−λxγ

]β}
e−(β+1)λxγ

(
1+ exp

{
−α

[
1−e−λxγ

e−λxγ

]β})2
,
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for α,β ,λ ,γ > 0,

fOLLEW (x;α,β ,γ,θ) =
θβγxβ−1e−(x/α)β

[1− e−(x/α)β

]γθ−1(1− [1− e−(x/α)β

]γ )θ−1

αβ ([1− e−(x/α)β

]θγ +(1− [1− e−(x/α)β

]γ )θ )2
,

for α,β ,λ ,γ,θ > 0,

fKOL−LLoG(x;a,b,λ ,c) = ab
[

λ 2

(1+λ )

cxc−1

(1+ xc)−1 exp(−λ z)
]

×
[

1− λ +((1+ xc)−1)

(1+λ )((1+ xc)−1)
exp(−λ z)

]a−1

×

(
1−
[

1− λ +((1+ xc)−1)

(1+λ )((1+ xc)−1)
exp(−λ z)

]a)b−1

,

where z = (1−(1+xc)−1)
((1+xc)−1)

, a,b,λ ,c > 0, and

fKw−W (x;a,b,α,β ) = abα
β xβ−1e−(αx)β

(1− e−(αx)β

)a−1(1− (1− e−(αx)β

)a)b−1,

for a,b,α,β > 0.

Data analysis results are shown in Tables 3 and 4. A histogram of data, fitted densities and proba-
bility plots are shown in Figures 5 and 6.

5.1. Carbon Fibres Data

The data set consists of 66 observations on breaking stress of carbon fibres (Gba). The data set
was reported by Nichols and Padgett (2006). The observations are: 3.70, 2.74, 2.73, 2.50, 3.60, 3.11,
3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97,
3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35,
2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98, 2.76, 4.91, 3.68, 1.84, 1.59,
3.19, 1.57, 0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69,
1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89,
2.88, 2.82, 2.05, 3.65.

The estimated variance-covariance matrix is
0.1944 −1.0502×10−3 −0.0340 −0.1122
−0.0010 3.7606×10−5 −0.0008 −0.0094
−0.0340 −8.5370×10−4 0.0629 0.2165
−0.1122 −9.4433×10−3 0.2165 4.2044


and the 95% confidence intervals for the model parameters are given by
α ∈ [1.1232±0.8643], β ∈ [0.0096±0.0120], λ ∈ [2.8341±0.4918] and θ ∈ [4.3616±4.0189].
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Table 3: MLEs and goodness-of-fit statistics

Estimates Statistics
Model α β λ θ −2log L AIC AICC BIC W ∗ A∗ K-S p-value

OPGW-WP 1.1232 0.0096 2.8341 4.3616 282.3 290.3 290.7 300.7 0.0629 0.3926 0.0609 0.8526
(0.4409) (0.0061) (0.2509) (2.0504)

α λ γ θ

OW-TL-LLoGP 6.3768 0.2383 4.3496 14.3196 282.6 290.6 291.0 301.0 0.0681 0.3966 0.0650 0.7924
(8.7731) (0.2573) (3.4799) (27.1783)

OW-TL-LLoGG 2.3977 0.5925 5.4260 3.0075 ×10−13 282.9 290.9 291.3 301.3 0.0725 0.4300 0.0636 0.8133
(5.9558) (1.0870) (6.9440) (2.0297)

OW-TL-LLoGL 3.0041 0.4891 4.6641 1.0180 ×10−10 282.8 290.8 291.2 301.2 0.0684 0.4186 0.0615 0.8438
(3.0503) (0.4251) (2.8576) (0.0010)

α β δ c
EHL-PGW-LLoG 1.2499 0.6264 2.6141 1.4037 286.8 294.8 295.2 305.2 0.1568 0.7964 0.1003 0.2664

(63.3087) (0.2445) (0.9515) (71.1000)
α λ θ -

OEHL-BXII 0.3078 0.0019 11.9671 0.4005 318.6 326.6 327.1 337.1 0.2041 1.4189 0.1301 0.0679
(0.0616) (0.0024) (0.0016) (0.0666)

b β δ c
EHLOW-TL-LLoG 3.8346 2.3341 1.3504 0.4819 282.4 290.4 290.8 300.8 0.0626 0.3766 0.0618 0.8392

(5.5094) (6.3418) (0.8344) (1.2822)
α β λ γ

OGHLW-W 2.4257 ×10−5 0.4640 18.7820 0.2151 287.0 295.0 295.4 305.4 0.0699 0.5971 0.0635 0.8141
(7.2507 ×10−6) (4.5353 ×10−3) (1.1192 ×10−4) (0.0122)

α β γ θ

OLLEW 3.4848 2.5562 0.6938 1.4692 282.4 290.4 290.8 300.8 0.0659 0.3865 0.0631 0.8208
(3.1200) (1.3638) (1.4331) (1.5554)

a b λ c
KOL-LLoG 2.1807 8.9816 0.2946 1.1641 282.6 290.6 291.0 301.0 0.0684 0.3994 0.0646 0.7982

(5.7138) (75.5774) (0.5355) (2.5688)
a b α β

Kw-W 73.5730 3.6270 ×103 109.0600 0.1408 282.9 290.9 291.3 301.3 0.0804 0.4446 0.0688 0.7313
(6.3506) (0.0017) (0.8936) (0.0063)
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Figure 5: Fitted pdfs and probability plots for carbon fibres data set

Table 3 shows results for the various models fitted for carbon fibres data set. From the given results,
we conclude that the OPGW-WP distribution is a good model compared to the selected models since
it has the lowest values for the goodness-of-fit statistics: −2logL, AIC, AICC, BIC, A∗, W ∗ and K-S
(and the largest p-value for the K-S statistic). Also, from fitted densities and probability plots shown
in Figure 5, we observe that the OPGW-WP model fit the data set better than the other models because
it has the lowest value for the SS statistic.
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5.2. Strengths of 1.5 cm Glass Fibres Data

The second data set represents strengths of 1.5 cm glass fibres. The data set was also analysed by
Bourguignon et al. (2014) and Chipepa et al. (2020c). The data are 0.55, 0.93, 1.25, 1.36, 1.49, 1.52,
1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76,
1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29,
1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67,
1.70, 1.78, 1.89.

The estimated variance-covariance matrix is
0.0318 −5.4363×10−4 −0.0540 −0.0432
−0.0005 9.0349×10−5 −0.0029 −0.0192
−0.0540 −2.9252×10−3 0.4700 0.4033
−0.0432 −1.9221×10−2 0.4033 7.5440


and the 95% confidence intervals for the model parameters are given by
α ∈ [0.4327±0.3500], β ∈ [0.0149±0.0186], λ ∈ [6.6097±1.3438] and θ ∈ [6.02271±5.3834].

Table 4: MLEs and goodness-of-fit statistics

Estimates Statistics
Model α β λ θ −2log L AIC AICC BIC W ∗ A∗ K-S p-value

OPGW-WP 0.43272 0.0149 6.6097 6.0271 25.3 33.3 34.0 41.9 0.1070 0.6061 0.1195 0.3298
(0.1786) (0.0095) (0.6856) (2.7466)

α λ γ θ

OW-TL-LLoGP 54.4878 0.0638 2.7087 488.4785 30.4 38.4 39.1 47.0 0.2382 1.3088 0.1527 0.1058
(12.3996) (0.0176) (0.0756) (0.5924)

OW-TL-LLoGG 4.7219 0.6701 3.5777 1.8173 ×10−9 31.1 39.1 39.8 47.7 0.2572 1.4103 0.1636 0.0686
(2.4099) (0.2953) (0.6537) (0.5338)

OW-TL-LLoGL 4.1499 0.7465 3.7542 5.2222 ×10−8 31.3 39.3 40.0 47.9 0.2634 1.4437 0.1642 0.0669
(3.0503) (0.4251) (2.8576) (0.0010)

α β δ c
EHL-PGW-LLoG 2.0377 0.6397 2.1273 1.7395 39.3 47.3 48.0 55.9 0.4178 2.2961 0.2077 0.0087

(0.2532) (0.1854) (0.6324) (0.2966)
α λ θ -

OEHL-BXII 0.3225 0.0030 11.8172 0.8356 50.3 58.3 59.0 66.9 0.2417 1.3747 0.1423 0.1558
(0.0670) (0.0036) (0.0075) (0.1347)

b β δ c
EHLOW-TL-LLoG 1.1293 0.1464 4.3716 7.8796 34.9 42.9 43.6 51.4 0.3373 1.8409 0.1868 0.0246

(0.7335) (0.0736) (1.0252) (3.8531)
α β λ γ

OGHLW-W 3.0734 ×10−5 0.5007 16.9910 0.4785 27.1 35.1 35.8 43.6 0.1372 0.7816 0.1284 0.2500
(3.2131 ×10−6) (2.1967 ×10−9) (6.4740 ×10−11) (6.2517 ×10−10)

α β γ θ

OLLEW 1.9920 8.7485 0.3021 1.6872 28.0 36.0 36.7 44.6 0.1864 1.0314 0.1320 0.2223
(0.2975) (3.9396) (0.2668) (0.7436)

a b λ c
KOL-LLoG 0.5532 25.4210 0.0038 5.9116 27.4 35.4 36.1 44.0 0.1507 0.8450 0.1293 0.2429

(0.0577) (6.0680 ×10−6) (0.0012) (0.0066)
a b α β

Kw-W 1.04695 641.1439 0.2009 5.5116 30.4 38.4 39.1 47.0 0.2372 1.3038 0.1522 0.1082
(3.9411) (0.0539) (0.0228) (20.5514)

Furthermore, from the results shown in Table 4, we conclude that the OPGW-WP distribution is indeed
a better model compared to several selected models since it is associated with the lowest values for all
the the goodness-of-fit statistics (and the largest p-value for the K-S statistic). We also observe from
Figure 6 that the OPGW-WP model fit the data set better than the other models that were considered.



106 Oluyede B., Moakofi T., Chipepa F.: The odd power generalized Weibull-G...

   

X

D
e
n
s
it
y

0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

OPGW−WP
OW−TL−LLoGP
OGHLW−W
Kw−W
OLLEW
KOL−LLoG

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Observed probability

E
x
p
e
c
te

d
 p

ro
b
a
b
ili

ty

OPGW−WP(SS=0.0608)
OW−TL−LLoGP(SS=0.0663)
OGHLW−W(SS=0.0701)
Kw−W(SS=0.0758)
OLLEW(SS=0.0642)
KOL−LLoG(SS=0.0666)

Figure 6: Fitted pdfs and probability plots for glass fibres data set
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A modified robust confidence interval for the population mean 
of distribution based on deciles 
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ABSTRACT 

The confidence interval is an important statistical estimator of population location and 
dispersion parameters. The paper considers a robust modified confidence interval, which is 
an adjustment of the Student’s t confidence interval based on the decile mean and decile 
standard deviation for estimating the population mean of a skewed distribution. The 
efficiency of the proposed interval estimator is evaluated on the basis of an extensive Monte 
Carlo simulation study. The coverage ratio and average width of the proposed confidence 
interval are compared with certain existing and widely used confidence intervals. 
The simulation results show that, in general, the proposed interval estimator’s performance 
is highly effective. For illustrative purposes, three real-life data sets are analyzed, which, to 
a certain extent, support the findings obtained from the simulation study. Thus, we 
recommend that practitioners use the robust modified confidence interval for estimating the 
population mean when the data are generated by a normal or skewed distribution. 

Key words: robust confidence interval, decile mean, decile mean standard deviation, decile 
mean standard error, Monte Carlo simulation 

1.  Introduction 

The normality assumption is the basis for many developed statistical theories. One 
of these theories is the estimation theory for constructing the confidence interval 
developed by Neyman (1937). However, in real life a lot of the data do not follow 
normality assumption and data are not mound shaped, rather they are skewed; that is, 
there is a lack of symmetry of the distribution about the mean. Skewed data may harm 
our results. Skewness is considered either positive or negative based on the direction 
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and nature of the distribution. It has long been known that when sampling from 
a skewed population, with small sample sizes, the usual frequentist confidence intervals 
for the population mean (𝜇) have poor coverage properties (Meeden, 1999). The 
positively skewed data, for example, are common in various fields of modelling such as 
in psychology (Cain et al., 2016), health science (Baklizi and Kibria, 2009; Banik and 
Kibria, 2010; Ghosh and Polansky, 2016), environmental science (Mudelsee and Alkio, 
2007), biological science (McDonald, 2014), engineering science and others. 
A confidence interval is an interval estimator that will capture the true parameter value 
in repeated samples. Abu-Shawiesh et al. (2019) defined confidence interval as a range 
of values that provides the user with an understanding of how precise the estimates of 
a parameter are. In practice, it is usual to use normal theory to construct a confidence 
interval for making inferences about the population mean (𝜇). Unfortunately, the 
confidence interval based on this theory suffers when samples come from skewed or 
non-normal populations. Therefore, it is important to construct a confidence interval 
of a population mean (𝜇) that is not limited by the assumption of population normality 
(Miller and Penfield, 2005). Several other methods have been described in the literature, 
such as transformation methods and bootstrap methods, to obtain an acceptable 
coverage rate and small interval width with skewed distribution and small sample sizes 
(Meeden, 1999; Shi and Kibria, 2007; Ghosh and Polansky, 2016). There are various 
methods in the literature in which confidence intervals are obtained for the population 
mean (𝜇). In practice, it is often possible to work with smaller sample sizes. In such 
cases, Student’s t confidence interval can be preferred instead of the classical confidence 
interval, but it requires an assumption of normality. Luh and Guo (2001) argued that 
“since violation of the normality assumption may be fairly common in applied research, 
robust and efficient alternatives to deal with the problem are needed”. Therefore, it is 
essential to use robust estimators which are less affected by outliers or small departures 
from the model assumptions (Sindhumol et al., 2016). Johnson (1978) proposed 
a modification of the Student’s t confidence interval for skewed distributions. Since 
Johnson (1978), many researchers have obtained confidence intervals for population 
mean of a skewed distribution (Chen, 1995; Meeden, 1999; Kibria, 2006; Shi and Kibria, 
2007; Baklizi, 2008; Abu-Shawiesh et al., 2009; Baklizi and Kibria, 2009; Abu-Shawiesh 
et al., 2011; Pek et al., 2017; Abu-Shawiesh et al., 2018; Abu-Shawiesh and Saghir, 2019; 
Akyuz and Abu-Shawiesh, 2020; Sinsomboonthong et al., 2020).  

In this paper, we compare various methods for constructing a confidence interval 
for the population mean (𝜇) when data are normally or non-normally distributed and 
propose a new robust confidence interval. This proposed confidence interval is an 
adjustment of the Student’s t confidence interval based on the decile mean and the 
decile mean standard deviation. Since a theoretical comparison is not possible, we 
investigate the performance of the proposed confidence interval by using a Monte Carlo 
simulation study and its implementation with three real-life data sets. 
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2.  The decile mean (DM) and the decile mean standard deviation (SDDM) 

The sample mean (𝑥̅) and sample standard deviation (s) are the most popular and 
frequently used classical estimators of the location and scale parameters of a probability 
distribution. However, they are unreliable in the presence of skewed distributions. 
In this paper, we estimate them with well-known and simple robust estimators of 
location and scale. They are the decile mean (DM) for location and the decile mean 
standard deviation (SDDM) for scale. Furthermore, the standard error of the decile mean 
standard deviation (SDDM) is defined.  

2.1.  The Deciles (Dm) 

The central tendency of a data set is a measure of the location or most typical value 
of the data set. There are various types of descriptive statistics, such as sample mean, 
sample median and sample trimmed mean that can be chosen as a measure of the 
central tendency; under a well-behaved normal distribution, they possess some 
desirable properties. But there is evidence that they may perform poorly and not as well 
as expected in the presence of skewed distributions. Rana et al. (2012) proposed a new 
measure of central tendency based on deciles called the decile mean (DM). This 
measure is fairly robust as it automatically discards extreme observations or outliers 
from both tails but at the same time is more informative than the sample median 
in every respect. Let 𝑋ଵ,𝑋ଶ, … ,𝑋௡ be independent identically distributed (𝑖𝑖𝑑) 
observations from a given population with mean (µ) and standard deviation (𝜎); then 
the deciles, which are a measure of position, are the values (nine in number) of the 
variable that divide any ordered data set 𝑋ሺଵሻ,𝑋ሺଶሻ, … ,𝑋ሺ௡ሻ into ten equal parts so that 
each part represents ଵ

ଵ଴
 of the sample or population, and are denoted by 𝐷ଵ,𝐷ଶ, … ,𝐷ଽ . 

The fifth decile (𝐷ହ) is equal to the sample median (MD). The deciles determine the 
values for 10%, 20% … and 90% of the data set. Now assume that 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ be the 
sample observations of the random sample  𝑋ଵ,𝑋ଶ, … ,𝑋௡ , then the deciles can be 
calculated as follows: 

(1) Order the observations 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ according to the magnitude of the values to get 
the ordered data set 𝑥ሺଵሻ, 𝑥ሺଶሻ, … , 𝑥ሺ௡ሻ. 

(2) To find the value of the 𝑚௧௛ sample decile where 𝑚 ൌ 1, 2, … , 9 , the following 
simple formula can be used: 

 𝐷௠ ൌ 𝑥
ቀቂ೘ ሺ೙శభሻ

భబ
ቃቁ

 observation                                                  (1) 

where 𝑛 is the total number (sample size) of observations. 
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2.2.  The Decile Mean (DM) 

The decile mean, denoted by DM for the random sample 𝑋ଵ,𝑋ଶ, … ,𝑋௡, can be 
calculated by summing all the deciles 𝐷ଵ,𝐷ଶ, … ,𝐷ଽ and dividing the sum by the number 
of deciles. Thus, the formula to find the decile mean (DM) from 9 deciles is as follows: 

            𝐷𝑀 ൌ
∑ ஽೔
వ
೔సభ

ଽ
ൌ  

஽భା ஽మା⋯ା ஽వ
ଽ

                                                  (2) 

The main advantage of the decile mean (DM) is that it is less sensitive to extreme 
values than any other existing measures; also, it depends on 80% of a sample. Let 𝑋 
distributed like 𝑋ଵ,𝑋ଶ, … ,𝑋௡. Then 𝐷௠ is a number for which 𝑃ሺ𝑋 ൏ 𝐷௠ሻ  ൑  

௠

ଵ଴
 ൑

𝑃ሺ𝑋 ൑ 𝐷௠ሻ. If 𝑋 has absolutely continuous distribution function 𝐹ሺ𝑥ሻ ൌ 𝑃ሺ𝑋 ൑ 𝑥ሻ 
then 𝐹ሺ𝐷௠ሻ ൌ 𝑃ሺ𝑋 ൑ 𝐷௠ሻ ൌ

௠

ଵ଴
. It is termed a robust estimator in this regard. Rana et 

al. (2012) used the bootstrap method to investigate the sampling distribution of the 
newly proposed decile mean (DM) with three other popular and commonly used 
measures of location, i.e., the sample mean, median and trimmed mean, and found that 
the newly proposed decile mean (DM) has the following properties: 

(i) The distribution of the sample decile is quite normal in shape and irrespective of 
the presence of outliers. 

(ii) The bias and standard error of sample decile mean (DM) are very small, and 
among the four compared estimators, this estimator appears to be the best in every 
respect. 

(iii) The results presented show that all four estimators are biased, but this bias is the 
least for the sample decile mean (DM).  

Both the bootstrap and simulation study demonstrate that the sample decile mean 
(DM) is a more accurate measure of central tendency or location in terms of possessing 
smaller bias and lower standard errors in a variety of situations, and hence can be 
recommended to be used as an effective measure of central tendency or location. 

2.3.  Decile Mean Standard Deviation (SDDM) and Standard Error ሺ𝐒𝐄𝐃𝐌ሻ 

Decile mean standard deviation (SDDM) is a robust measure of dispersion proposed 
by Doullah (2018) as an alternative to the sample standard deviation (S). Let 
𝑋ଵ,𝑋ଶ, … ,𝑋௡ be a random sample of size 𝑛 from a given population with mean (µ) and 
standard deviation (𝜎); then the decile mean standard deviation (SDDM) can be 
calculated by using the following formula: 

         SDୈ୑ ൌ   ට ୘୦ୣ ୱ୳୫ ୭୤ ୲୦ୣ ଽ ୢୣୡ୧୪ୣୱ ୭୤ ሺଡ଼౟ିୈ୑ሻమ 

ଽ ି ଵ
ൌ ටଵ

଼
 ∑ ሺ𝐷௜ െ 𝐷௠ሻଶଽ

௜ୀଵ                  (3) 
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Doullah (2018) also defined the standard error of the decile mean standard deviation 
(SDDM), denoted by 𝑆𝐸஽ெ , to be computed as follows:  

                                             𝑆𝐸஽ெ ൌ
ௌ஽ವಾ
√௡

                                                          (4) 

3.  Methods for estimation the confidence interval for the population mean 

In this section, the used methods and the proposed robust method for confidence 
interval of the population mean (𝜇) for normal and non-normal distributions are 
introduced. Let 𝑋ଵ,𝑋ଶ, … ,𝑋௡ be 𝑖𝑖𝑑 random sample of size 𝑛 from a population with 
mean (µ) and standard deviation (𝜎). Our purpose is to find an interval estimate for the 
population mean (μ) with a specific level of confidence. Several methods have been 
suggested in the literature to find the confidence interval for 𝜇. These are (a) the 
parametric approach, (b) the modified t approach, (c) the nonparametric approach and 
(d) the bootstrap approach, among others. In this study, we concentrate on (a) and (b) 
approaches only. The (1 – α) 100% confidence intervals for the population mean (μ) by 
different approaches are presented below. 

3.1. The Parametric t-Approach 

The parametric method to construct the (1 – α) 100% confidence interval  for the 
population mean (μ) is the most used approach because it is well understood, simple 
and widely used to construct such the confidence interval. Under this approach, we 
consider two confidence interval methods. Let 𝑋ଵ,𝑋ଶ, … ,𝑋௡ be a random sample of size 
𝑛 from a normal distribution with mean (µ) and variance (𝜎ଶ); that is, 
𝑋ଵ,𝑋ଶ, … ,𝑋௡~𝑁ሺ𝜇, 𝜎ଶሻ. Then, the (1 – α) 100% confidence interval for the population 
mean (𝜇) given by Student (1908) and known as the Student’s t confidence interval for 
a small sample size 𝑛 (𝑛 ൑ 30) and unknown population standard deviation (𝜎) can be 
constructed as follows: 

                                     𝐶. 𝐼.ൌ 𝑋ത േ 𝑡ሺ ഀ
మ 

,   ௡ିଵሻ  
ௌ

√௡
                                                   (5) 

 

where 𝑋ത ൌ 𝑛ିଵ ∑ 𝑋௜
௡
௜ୀଵ  , 𝑆 ൌ ටሺ𝑛 െ 1ሻିଵ ∑ ሺ𝑋௜ െ 𝑋തሻଶ௡

௜ୀଵ  and 𝑡ሺఈ ଶ⁄ ,௡ିଵሻ is the upper 

𝛼/2 percentage point of the Student’s t-distribution with (𝑛 െ  1) degrees of freedom. 
Now, since the Student’s t confidence interval depends on the normality assumption, it 
may not be the best confidence interval and may not perform as well as expected in the 
presence of skewed distributions. DiCicco and Efron (1996) and Boos and Hughes-
Oliver (2000) stated that the Student’s t confidence interval is not very robust and can 
be quite inaccurate in practice for non-normal data.  
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3.2. The Modified Parametric t-Approach 

If the 𝑖𝑖𝑑 random sample 𝑋ଵ,𝑋ଶ, … ,𝑋௡ is from a non-normal distribution, the 
distribution of the t-statistic is not a Student’s t distribution. In particular, the skewness 
of a non-normal distribution has a large impact on the validity of the Student’s t-
distribution; see, for example, Yanagihara and Yuan (2005). Several methods for 
constructing the (1 – α) 100% confidence interval for the population mean (𝜇) have 
been proposed to remove the effect of skewness by modifying the t-statistic. Here, we 
briefly review the most important of these methods. 

3.2.1. The Johnson t-Approach 

Based on the first term of the inverse Cornish–Fisher expansion, Johnson (1978) 
proposed the following confidence interval estimator for the population mean (𝜇): 

                                     𝐶. 𝐼.ൌ ቂ𝑋ത ൅
ఓෝయ
଺௡ௌమ

ቃ േ 𝑡ሺ ഀ
మ 

,௡ିଵሻ  
ௌ

√௡
                                                   (6) 

where  𝜇̂ଷ ൌ
∑ ሺ௑೔ି௑തሻయ
೙
೔సభ

௡
  is the estimator of the third central moment of the population 

(𝜇ଷ). Kibria (2006) concluded it appears that the width of the Student’s t and Johnson-
t confidence intervals is the same. 

3.2.2.  The Chen t-Approach  

Using the Edgeworth expansion, Chen (1995) modified the CLT approach and 
proposed the following confidence interval estimator for the population mean (𝜇): 

    𝐶. 𝐼.ൌ 𝑋ത േ  ቎ 𝑡ሺ ഀ
మ 

,௡ିଵሻ ൅
ఊෝ ቆଵାଶ௧

ቀ
ഀ
మ ,೙షభቁ
మ ቇ

଺ √௡
൅

ఊෝమ ቆ௧
ሺ 
ഀ
మ ,೙షభሻ

ା ଶ௧
ቀ
ഀ
మ ,೙షభቁ
మ ቇ

ଽ ௡
቏  

ௌ

√௡
                    (7) 

where 𝛾ො ൌ ఓෝయ
ௌయ

 is the estimate of the coefficient of skewness. 

3.2.3.  The Yanagihara and Yuan t-Approach 

To reduce the effect of the mean bias as well as population skewness, Yanagihara 
and Yuan (2005) proposed the following confidence interval estimator for the 
population mean (𝜇): 

                                  𝐶. 𝐼.ൌ ൥𝑋ത ൅  
ሺௌ ௞෠యሻ

൬ሺସ௡ሻቀଶାభఱ
೙
ቁ൰
൩ േ 𝑡ሺ ഀ

మ 
,௡ିଵሻ  

ௌ

√௡
                                   (8) 

 

where 𝑘෠ଷ ൌ
൫∑ ሺ௑೔ି௑തሻయ

೙
೔సభ ௡⁄ ൯

൫∑ ሺ௑೔ି௑തሻమ
೙
೔సభ ௡⁄ ൯

య మ⁄  . 
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3.2.4.  The Shi and Kibria Mad t-Approach 

In terms of using the sample median (MD) rather than the sample mean (𝑋ത) for 
defining the sample standard deviation, Shi and Kibria (2007) proposed another 
confidence interval estimator for the population mean (μ), as follows: 

                                    𝐶. 𝐼.ൌ 𝑋ത േ 𝑡ሺ ഀ
మ 

,௡ିଵሻ  
ௌሚమ
√௡

                                                              (9) 

where 𝑆ሚଶ ൌ
ଵ

௡
 ∑ |𝑋௜ െ 𝑋ത|௡

௜ୀଵ  is the sample mean absolute deviation (Mad). 

3.2.5.  The Abu-Shawiesh, Banik and Kibria AADM t-Approach 

Abu-Shawiesh et al. (2018) proposed a modification of the Student’s t confidence 
interval for the population mean (μ) of a skewed distribution, called AADM-t 
confidence interval estimator and expressed as follows: 

 

                                    𝐶. 𝐼.ൌ 𝑋ത േ 𝑡ሺ ഀ
మ 

,௡ିଵሻ  
஺஺஽ெ

√௡
                                                     (10) 

where 𝐴𝐴𝐷𝑀 ൌ
ඥగ ଶ⁄

௡
 ∑ |𝑋௜ െ 𝑀𝐷|௡

௜ୀଵ  is the average absolute deviation from the 
sample median (Gastwirth, 1982). Gastwirth (1982) stated that the AADM is an 
asymptotically normally distributed, consistent estimator of the population standard 
deviation (σ) and almost surely converges to it. 

3.3.  The Confidence Interval Based on Resampling Approach  

Efron and Tibshirani (1993) recommended resampling approach to generate a 
large number of independent bootstrap samples 𝑥∗ଵ,  𝑥∗ଶ, … ,  𝑥∗஻ for a random sample 
from an unknown distribution with population mean. A bootstrap sample 𝑥∗ ൌ
ሺ𝑥ଵ

∗, 𝑥ଶ
∗, … , 𝑥௡∗ሻ  is obtained by randomly resampling n times with replacement from the 

original data sample 𝑥ଵ, 𝑥ଶ, … , 𝑥௡. Then, the (1 – α) 100% confidence interval based on 
bootstrap percentile for the population mean (𝜇) can be constructed as follows: this 
approach performs resampling technique B times and let  𝜇̂∗ଵ, 𝜇̂∗ଶ, … , 𝜇̂∗஻  be the 
estimator of parameter 𝜇 for each independent bootstrap sample  𝑥∗ଵ,  𝑥∗ଶ, … ,  𝑥∗஻. If 
𝜇̂∗ is a random variable drawn from the normal distribution with mean 𝜇̂  and variance 
𝜎ොଶ, then the (1 – α) 100% bootstrap percentile confidence interval estimator for the 
population mean (𝜇) can be expressed in the form of equation (11) and (12) as follows: 

 

    𝐶𝐿   ൌ 100 ∙ α 2ൗ
௧௛  𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 𝜇̂∗′𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛                               (11)

   𝑈𝐶𝐿 ൌ 100 ∙ ሺ1 െ α
2ൗ ሻ௧௛ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 𝜇̂∗′𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛                    (12) 
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The bootstrap confidence interval produce a good coverage ratio for interval 
estimation as shown in the study by DiCiccio and Efron (1996), Marinho et al. (2018), 
Ghosh and Polansky (2016). 

3.4.  The Proposed Robust DMSDDM t-Approach 

In this section, we propose a robust modification of the Student’s t confidence 
interval for the population mean (𝜇) of a skewed population. It is a simple adjustment 
of the Student’s t confidence interval and can be obtained with the following steps:  
Step 1: Select a random sample of size (𝑛), 𝑋ଵ, 𝑋ଶ, . . . ,𝑋௡ , from the probability 

distribution of the random variable 𝑋. 

Step 2:   Calculate the sample decile mean (DM), which is given by equation (2).  

Step 3:   Calculate the decile mean standard deviation (SDDM) and the standard error of 
the decile mean standard deviation (𝑆𝐸஽ெ), which are given by equations (3) 
and (4). 

Step 4:  The lower confidence limit (LCL) and the upper confidence limit (UCL) for the 
ሺ1 െ 𝛼ሻ100% proposed robust confidence interval estimator–DMSDDM-t 
confidence interval–of the population mean (𝜇) for the skewed distribution 
can be calculated as follows: 

                                𝐿𝐶𝐿 ൌ 𝐷𝑀 െ 𝑡ሺ ഀ
మ 

,௡ିଵሻ  
ௌ஽ವಾ
√௡

                                                   (13) 

                               𝑈𝐶𝐿 ൌ 𝐷𝑀 ൅ 𝑡ሺ ഀ
మ 

,௡ିଵሻ  
ௌ஽ವಾ
√௡

                                                    (14) 

where 𝒕ሺ 𝜶
𝟐 

,𝒏ି𝟏ሻ is the upper α/2 percentage point of the Student’s t-distribution with 
(𝒏 െ 𝟏) degrees of freedom. 

4. The simulation study 

Since a theoretical comparison among these confidence intervals is not possible, a 
simulation study is conducted. All the simulation results are performed by SAS 
programming version 9.4.  

4.1.  Performance Evaluation 

A Monte Carlo simulation study is presented in this section to compare the 
performance of eight confidence interval estimators for the population mean of three 
distributions. We consider a set of possible useful confidence intervals and compare 
them with the proposed robust method, aiming to confirm that it is appropriate for 
estimating the population mean (μ) of a skewed distribution. To make comparisons 
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among confidence intervals, the coverage ratio (CR) and average width (AW) of the 
confidence intervals are considered as the performance criteria. A smaller width 
indicates a better confidence interval when the coverage ratios are the same level. 
Further, the higher coverage ratio indicates a better confidence interval when the 
widths of intervals are the same level. The sample sizes of 𝑛 = 10, 20, 30, 40, 50 and 100 
were randomly generated 100,000 times. For each set of samples, 95% confidence 
intervals were constructed for the considered methods and the construction of 
bootstrap percentile confidence intervals for the population mean are generated 
resampling 1,000 times for each situation. The coverage ratio (CR) and the average 
width (AW) of the confidence intervals are obtained using the following two formulas: 

                     𝐶𝑅 ൌ
#ሺ௅ ஸ ఏ ஸ ௎ሻ

ଵ଴଴,଴଴଴
         and      𝐴𝑊 ൌ

∑  ሺ௎೔ ି ௅೔ሻ
భబబ,బబబ
೔సభ

ଵ଴଴,଴଴଴
                      (15) 

4.2.  Probability Distributions for the Simulation Study 

To study the effect of skewness and compare the performance of the eight 
confidence interval estimators for the population mean (μ) of the distribution, two 
cases for the simulation observations, namely normal and skewed distributions, are 
considered in this study. 

Case (a): Normal Distribution 

The normal distribution is symmetric and has no skewness. The probability density 
function (𝑝𝑑𝑓) of a normal distribution with mean μ and standard deviation σ, 
𝑁ሺ𝜇,𝜎ଶሻ, is given as follows: 

𝑓ሺ𝑥;  𝜇,𝜎ሻ ൌ
ଵ

ఙ √ଶగ
 𝑒ି

భ
మ

 ቀೣషഋ
഑
ቁ
మ

 ;   െ∞ ൏ 𝑥 ൏ ∞ , െ∞ ൏ 𝜇 ൏ ∞ ,   𝜎 ൐ 0          (16) 

In the simulation algorithm of this study, the population mean μ and the 
population standard deviation σ are set as 𝜇 ൌ 20 and 𝜎 ൌ 5, 10, 20. 

Case (b): Skewed Distributions 

The skewness of a probability distribution refers to the departure of the distribution 
from symmetry. A distribution with longer tail on the left is negative skewed, and a 
distribution with longer tail on the right is positive skewed (Sharma et al., 2009). For 
skewed distributions, we simulate observations from two probability distributions with 
varying degrees of skewness as follows: 

(i) The chi-square distribution, 𝜒ሺ௞ሻଶ , where 𝑘 is the number of degrees of freedom 
with probability density function (𝑝𝑑𝑓), is given as follows: 

                          𝑓ሺ𝑥;  𝑘ሻ ൌ ቊ
ଵ

Гሺ௞ ଶ⁄ ሻ ଶೖషభ
 𝑥ሺ௞ ଶ⁄ ሻିଵ 𝑒ି௫/ଶ , 𝑥 ൐ 0  

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                 (17) 
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The mean and the variance of the chi-square distribution are given by 𝜇 ൌ
𝑘 and 𝜎ଶ ൌ 2𝑘. The coefficient of skewness of the distribution is ඥ8/𝑘 . In the 
simulation algorithm of this study, the parameter 𝑘 for the chi-square distribution is 
set as 𝑘 = 5, 10, 50. 

(ii) The triangular distribution, 𝑇𝑟ሺ𝑎, 𝑏, 𝑐ሻ, involves parameters a, b and c, where a is 
the minimum value, b is the maximum value and c is the most likely value (mode). 
The triangular distribution is selected for this study as it can be used to model both 
positive and negative skewed distributions. The probability density function 
(𝑝𝑑𝑓) for the triangular distribution is given as follows: 

              𝑓ሺ𝑥;𝑎, 𝑏, 𝑐ሻ ൌ

⎩
⎪
⎨

⎪
⎧

0 , 𝑥 ൏ 𝑎
ଶሺ௫ି௔ሻ

ሺ௕ି௔ሻሺ௖ି௔ሻ
, 𝑎 ൑ 𝑥 ൑ 𝑐

ଶሺ௕ି௫ሻ

ሺ௕ି௔ሻሺ௕ି௖ሻ

0

,
,
𝑐 ൏ 𝑥 ൑ 𝑏
𝑥 ൐ 𝑏

                                          (18) 

The mean and variance of the triangular distribution, 𝑇𝑟ሺ𝑎, 𝑏, 𝑐ሻ, are given by 𝜇 ൌ
௔ା௕ା௖

ଷ
   and  𝜎ଶ ൌ

௔మା௕మା௖మି௔௕ି௔௖ି௕௖

ଵ଼
. The skewness coefficient of the triangular 

distribution is given by √ଶሺ௔ା௕ିଶ௖ሻሺଶ௔ି௕ି௖ሻሺ௔ିଶ௕ା௖ሻ
ହሺ௔మା௕మା௖మି௔௕ି௔௖ି௕௖ሻయ మ⁄  . In the simulation algorithm of this 

study, we simulate observations from 𝑇𝑟ሺ0, 1, 0.05ሻ, 𝑇𝑟ሺ0, 1, 0.5ሻ and 𝑇𝑟ሺ0, 1, 0.95ሻ to 
represent the positive, symmetric and negative cases of the triangular distribution, 
respectively. Table 4.1 shows the specific distributions and their skewness coefficients 
used in this simulation study. 

Table 4.1. Coefficients of skewness for the studied simulation probability distributions 

Probability Distributions Parameters Coefficients of Skewness 

𝑁ሺ𝜇,𝜎ଶሻ 𝜇 ൌ 20, 𝜎 ൌ 5, 10, 20 0 

𝜒ሺ௞ሻ
ଶ  

𝑘 ൌ 5 1.2649 
𝑘 ൌ 10 0.8944 
𝑘 ൌ 50 0.4000 

𝑇𝑟ሺ0, 1, 𝑐ሻ 
𝑐 ൌ 0.05 0.5607 
𝑐 ൌ 0.50 0 
𝑐 ൌ 0.95 -0.5607 

4.3.  The Simulation Study Results 

The simulation results for all studied cases are shown in Tables 4.2 to 4.10. The 
performance of 95% confidence intervals of the population mean for the eight methods 
are as follows: in the case of normally distributed data as shown in Tables 4.2 to 4.4, it is 
observed that the coverage ratio of DMSDDM-t confidence interval is slightly under 
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0.95 for all sample sizes. However, the coverage ratio of Bootstrap-percentile 
confidence interval is only slightly under 0.95 for a small sample size, but it close to 0.95 
for the large sample sizes. In addition, the coverage ratios of five intervals–Student’s t, 
Johnson-t, Chen-t, YY-t and AADM-t–are close to 0.95 for all sample sizes. Further, 
the coverage ratio of Mad-t confidence interval is more under than the nominal level 
when compared with the proposed interval. When the performance of confidence 
intervals is compared in terms of the average width, the five methods in which the 
coverage ratio is close to 0.95 tend to have no difference in average width for any sample 
size or any of the normal distributed data. Although, the coverage ratio of the proposed 
method is slightly lower than that of the five methods, the average width of this 
proposed interval is smaller than that of the five intervals for all sample sizes and it is 
smaller than the average width of Bootstrap-percentile for the large sample size.  

Table 4.2.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of normal distribution with 𝜇 ൌ 20 and 𝜎 ൌ 5 

n 
Performance 

Measures 
Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9506 0.9506 0.9477 0.9505 0.8855 0.9438 0.9260 0.9013 
AW 7.0 7.0 7.1 7.0 5.4 6.8 6.2 5.7 

20 CR 0.9496 0.9495 0.9482 0.9495 0.8826 0.9459 0.9174 0.9266 
AW 4.6 4.6 4.6 4.6 3.6 4.6 4.1 4.2 

30 CR 0.9494 0.9495 0.9489 0.9495 0.8819 0.9464 0.9142 0.9345 
AW 3.7 3.7 3.7 3.7 2.9 3.7 3.3 3.5 

40 CR 0.9499 0.9499 0.9493 0.9499 0.8820 0.9481 0.9138 0.9382 
AW 3.2 3.2 3.2 3.2 2.5 3.2 2.8 3.0 

50 CR 0.9501 0.9502 0.9499 0.9501 0.8818 0.9483 0.9129 0.9409 
AW 2.8 2.8 2.8 2.8 2.2 2.8 2.5 2.7 

100 CR 0.9501 0.9501 0.9501 0.9501 0.8818 0.9490 0.9119 0.9449 
AW 2.0 2.0 2.0 2.0 1.6 2.0 1.8 1.9 

Table 4.3.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of normal distribution with 𝜇 ൌ 20 and 𝜎 ൌ 10 

n 
Performance 

Measures 
Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9506 0.9506 0.9477 0.9505 0.8855 0.9437 0.9260 0.9013 
AW 13.9 13.9 14.1 13.9 10.8 13.6 12.5 11.4 

20 CR 0.9496 0.9495 0.9482 0.9495 0.8826 0.9458 0.9173 0.9266 
AW 9.2 9.2 9.3 9.2 7.3 9.1 8.2 8.4 

30 CR 0.9494 0.9494 0.9489 0.9495 0.8820 0.9464 0.9142 0.9345 
AW 7.4 7.4 7.4 7.4 5.9 7.3 6.6 7.0 

40 CR 0.9499 0.9500 0.9493 0.9499 0.8821 0.9481 0.9138 0.9381 
AW 6.4 6.4 6.4 6.4 5.0 6.3 5.6 6.1 

50 CR 0.9501 0.9502 0.9499 0.9501 0.8819 0.9483 0.9129 0.9409 
AW 5.7 5.7 5.7 5.7 4.5 5.6 5.0 5.5 

100 CR 0.9501 0.9501 0.9500 0.9501 0.8818 0.9490 0.9119 0.9449 
AW 4.0 4.0 4.0 4.0 3.1 3.9 3.5 3.9 
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Table 4.4.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of normal distribution with 𝜇 ൌ 20 and 𝜎 ൌ 20 

n Performance 
Measures 

Confidence Interval Methods 

Student-t Johnson-t Chen-t Student-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 
CR 0.9506 0.9506 0.9477 0.9506 0.8856 0.9437 0.9260 0.9013 

AW 27.8 27.8 28.3 27.8 21.7 27.1 25.0 22.8 

20 
CR 0.9496 0.9495 0.9482 0.9495 0.8826 0.9458 0.9173 0.9266 

AW 18.5 18.5 18.6 18.5 14.6 18.2 16.4 16.8 

30 
CR 0.9494 0.9494 0.9489 0.9495 0.8819 0.9464 0.9142 0.9345 

AW 14.8 14.8 14.9 14.8 11.7 14.7 13.1 13.9 

40 
CR 0.9499 0.9500 0.9493 0.9499 0.8821 0.9481 0.9138 0.9382 

AW 12.7 12.7 12.7 12.7 10.1 12.6 11.3 12.1 

50 
CR 0.9501 0.9502 0.9499 0.9501 0.8818 0.9483 0.9129 0.9409 

AW 11.3 11.3 11.3 11.3 9.0 11.2 10.0 10.9 

100 
CR 0.9501 0.9502 0.9500 0.9501 0.8818 0.9490 0.9119 0.9449 

AW 7.9 7.9 7.9 7.9 6.3 7.9 7.0 7.8 

In the case of data are generated from two skewed probability distributions–chi-square 
and triangular distributions–with varying degrees of skewness, the performance of 95% 
confidence intervals of the population means are shown in Tables 4.5 to 4.10. If the 
coefficient of skewness for chi-square distribution is equal to 1.2649 or 0.8944, then the 
coverage ratio of DMSDDM-t tends to decrease when the sample size increases. However, if 
the coefficient of skewness for this distribution is equal to 0.4000, then the coverage ratio of 
DMSDDM-t is slightly under 0.95, and it tends to be at the same level irrespective of the 
sample size. Moreover, the coverage ratio of five intervals – Student’s t, Johnson-t, Chen-t, 
YY-t and AADM-t – is close to the specified confidence coefficient level, while that of the 
Mad-t confidence interval is more under than the nominal level for all sample sizes when it 
is compared with the proposed method. For both positive and negative coefficients of 
skewness for triangular distribution, the coverage ratio of DMSDDM-t tends to decrease for 
a large sample size. Moreover, this coverage ratio of DMSDDM-t tends to be the same level 
and slightly under 0.95 for each sample size when coefficient of skewness equals zero. 
Additionally, the coverage ratio of five intervals – Student’s t, Johnson-t, Chen-t, YY-t and 
AADM-t – is close to 0.95 for all sample sizes and all coefficients of skewness for triangular 
distributions. When considering all of the distributions in this study, it is found that the 
coverage ratios of the proposed confidence interval are close to the nominal level and greater 
than this of the Bootstrap-percentile confidence interval for a small sample size, and the 
average width of these two methods tends to be no difference for all sample sizes. 
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Table 4.5.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of Chi-square distribution with df = 5 

n 
Performance 

Measures 
Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9299 0.9311 0.9445 0.9306 0.8670 0.9233 0.8959 0.8869 
AW 4.3 4.3 5.2 4.3 3.3 4.2 3.8 3.5 

20 CR 0.9366 0.9379 0.9563 0.9375 0.8687 0.9305 0.8650 0.9159 
AW 2.9 2.9 3.4 2.9 2.2 2.8 2.4 2.6 

30 CR 0.9406 0.9417 0.9601 0.9413 0.8683 0.9350 0.8481 0.9281 
AW 2.3 2.3 2.7 2.3 1.8 2.2 1.9 2.2 

40 CR 0.9420 0.9429 0.9619 0.9426 0.8669 0.9358 0.8288 0.9322 
AW 2.0 2.0 2.3 2.0 1.5 1.9 1.6 1.9 

50 CR 0.9433 0.9440 0.9621 0.9437 0.8693 0.9364 0.8181 0.9353 
AW 1.8 1.8 2.0 1.8 1.4 1.7 1.4 1.7 

100 CR 0.9472 0.9477 0.9633 0.9477 0.8685 0.9404 0.7580 0.9429 
AW 1.2 1.2 1.4 1.2 1.0 1.2 1.0 1.2 

Table 4.6.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of Chi-square distribution with df = 10 

n 
Performance 

Measures 

Confidence Interval Methods 

Student-t Johnson-t 
Chen-

t 
YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9391 0.9397 0.9483 0.9393 0.8749 0.9325 0.9099 0.8926 
AW 6.2 6.2 7.1 6.2 4.8 6.0 5.5 5.0 

20 CR 0.9423 0.9430 0.9566 0.9428 0.8750 0.9376 0.8894 0.9200 
AW 4.1 4.1 4.6 4.1 3.2 4.0 3.5 3.7 

30 CR 0.9452 0.9458 0.9599 0.9456 0.8755 0.9410 0.8801 0.9313 
AW 3.3 3.3 3.7 3.3 2.6 3.2 2.8 3.1 

40 CR 0.9458 0.9461 0.9611 0.9459 0.8764 0.9424 0.8715 0.9357 
AW 2.8 2.8 3.1 2.8 2.2 2.8 2.4 2.7 

50 CR 0.9460 0.9462 0.9606 0.9462 0.8741 0.9418 0.8643 0.9374 
AW 2.5 2.5 2.8 2.5 2.0 2.5 2.1 2.4 

100 CR 0.9475 0.9476 0.9596 0.9475 0.8742 0.9441 0.8349 0.9434 
AW 1.8 1.8 1.9 1.8 1.4 1.7 1.5 1.7 

Table 4.7.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of Chi-square distribution with df = 50 

n Performance 
Measures 

Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9469 0.9470 0.9494 0.9471 0.8831 0.9397 0.9213 0.8985 
AW 13.9 13.9 14.9 13.9 10.8 13.5 12.4 11.3 

20 CR 0.9487 0.9488 0.9546 0.9488 0.8822 0.9452 0.9121 0.9257 
AW 9.2 9.2 9.8 9.2 7.3 9.1 8.1 8.4 

30 CR 0.9502 0.9503 0.9569 0.9502 0.8813 0.9465 0.9087 0.9349 
AW 7.4 7.4 7.8 7.4 5.8 7.3 6.5 7.0 

40 CR 0.9504 0.9504 0.9571 0.9505 0.8825 0.9476 0.9063 0.9389 
AW 6.4 6.4 6.6 6.4 5.0 6.3 5.6 6.1 

50 CR 0.9485 0.9484 0.9555 0.9484 0.8806 0.9465 0.9028 0.9389 
AW 5.7 5.7 5.9 5.7 4.5 5.6 5.0 5.5 

100 CR 0.9483 0.9484 0.9540 0.9484 0.8795 0.9470 0.8946 0.9431 
AW 4.0 4.0 4.1 4.0 3.1 3.9 3.5 3.9 
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Table 4.8.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of triangular distribution with a = 0, b = 1 and c = 0.05  

n 
Performance 

Measures 
Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9405 0.9420 0.9528 0.9412 0.8848 0.9361 0.9063 0.9030 
AW 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 

20 CR 0.9450 0.9464 0.9597 0.9458 0.8898 0.9465 0.8920 0.9275 
AW 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

30 CR 0.9466 0.9477 0.9601 0.9473 0.8935 0.9505 0.8865 0.9357 
AW 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 

40 CR 0.9489 0.9500 0.9614 0.9496 0.8964 0.9543 0.8829 0.9406 
AW 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 

50 CR 0.9472 0.9478 0.9584 0.9475 0.8951 0.9533 0.8766 0.9401 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

100 CR 0.9493 0.9498 0.9584 0.9496 0.8978 0.9576 0.8600 0.9460 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Table 4.9.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of triangular distribution with a = 0, b = 1 and c = 0.50 

n 
Performance 

Measures 
Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9474 0.9479 0.9452 0.9477 0.8880 0.9432 0.9201 0.9025 
AW 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.2 

20 CR 0.9502 0.9509 0.9495 0.9507 0.8900 0.9501 0.9140 0.9294 
AW 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

30 CR 0.9491 0.9497 0.9486 0.9494 0.8881 0.9503 0.9114 0.9362 
AW 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 

40 CR 0.9492 0.9497 0.9490 0.9496 0.8886 0.9513 0.9107 0.9393 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

50 CR 0.9500 0.9504 0.9502 0.9503 0.8895 0.9528 0.9102 0.9420 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

100 CR 0.9501 0.9503 0.9502 0.9502 0.8914 0.9541 0.9113 0.9458 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Table 4.10.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of triangular distribution with a = 0, b = 1 and c = 0.95 

n 
Performance 

Measures 
Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9411 0.9429 0.9249 0.9420 0.8858 0.9371 0.9062 0.9033 
AW 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

20 CR 0.9451 0.9464 0.9280 0.9460 0.8906 0.9462 0.8923 0.9281 
AW 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

30 CR 0.9466 0.9478 0.9310 0.9474 0.8921 0.9503 0.8847 0.9358 
AW 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 

40 CR 0.9487 0.9496 0.9344 0.9492 0.8944 0.9538 0.8816 0.9411 
AW 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 

50 CR 0.9491 0.9501 0.9362 0.9497 0.8969 0.9553 0.8790 0.9424 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

100 CR 0.9493 0.9500 0.9403 0.9497 0.8979 0.9580 0.8609 0.9461 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
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5.  Real data applications 

In this section, three real-life examples from normal and skewed distributions are 
analyzed to illustrate the applications of the proposed robust confidence interval. 

5.1.  Load at failure data 

The first data set was obtained from Berndt (1989). The data describe the results of 
tensile adhesion tests (in megapascals) on 22 U-700 alloy specimens: 19.8, 10.1, 14.9, 
7.5, 15.4, 15.4, 15.4, 18.5, 7.9, 12.7, 11.9, 11.4, 11.4, 14.1, 17.6, 16.7, 15.8, 10.5, 8.8, 13.6, 
11.9, and 11.4. The Kolmogorov-Smirnov (K-S) goodness-of-fit test for normality for 
this data set has a p-value (p-value > 0.150) greater than α = 0.05. We conclude that the 
data are in excellent agreement with a normal distribution with skewness = 0.07, 
kurtosis = -0.68, mean = 13.305 and standard deviation = 3.369.  

Table 5.1.  The 95% confidence intervals for the population mean of load at failure  

Methods 
Estimated Confidence Interval Limits 

Width 
Lower Limit Upper Limit 

Student-t 11.8108 14.7983 2.9875 
Johnson-t 11.8125 14.7999 2.9874 

Chen-t 11.7948 14.8143 3.0195 
YY-t 11.8118 14.7992 2.9874 

Mad-t 12.0611 14.5480 2.4869 
AADM-t 11.7461 14.8630 3.1169 

DMSDDM-t 11.9306 14.6138 2.6832 
Bootstrap 12.0159 14.6750 2.6591 

The 95% CI for the population mean (𝜇) for load specimen failure is studied. The 
considered confidence intervals and their corresponding width have been given 
in Table 5.1. From Table 5.1, the 95% estimated confidence interval for population 
mean (𝜇) of load specimen failure, which is constructed using AADM-t method, gives 
the largest width, whereas the 95% of Mad-t confidence interval gives the smallest width 
and the secondary width is constructed for the 95% confidence interval using the 
DMSDDM-t and Bootstrap-percentile methods. Therefore, the results from this real-life 
example as shown in Table 5.1 support the simulation study in Section 4. 

5.2.  Psychotropic drug exposure data 

To study the average use of psychotropic drugs among non-antipsychotic drug 
users, the number of psychotropic drug users was reported for a random sample of 𝑛 ൌ
20  from different categories of drugs. The following data represent the number of users 
(Johnson and McFarland, 1993): 43.4, 24, 1.8, 0, 0.1, 170.1, 0.4, 150, 31.5, 5.2, 35.7, 27.3, 
5, 64.3, 70, 94, 61.9, 9.1, 38.8, and 14.8. The data are checked and found to be positively 
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skewed with skewness = 1.57, kurtosis = 2.06, mean = 42.37 and standard deviation = 
48.43. The considered confidence intervals and their corresponding width are given in 
Table 5.2. 

Table 5.2.  The 95% confidence intervals for the average use of psychotropic drugs 

Methods 
Estimated Confidence Interval Limits 

Width 
Lower Limit Upper Limit 

Student-t 19.8445 64.8955 45.0509 

Johnson-t 20.3850 65.4359 45.0509 

Chen-t 13.4694 71.2706 57.8013 

YY-t 20.1629 65.2139 45.0509 

Mad-t 25.7607 58.9793 33.2185 

AADM-t 22.7839 61.9561 39.1722 

DMSDDM-t 19.3406 50.2838 30.9432 

Bootstrap 23.7750 66.1800 42.4050 

From Table 5.2, the 95% estimated confidence interval for the average use of 
psychotropic drugs, which is constructed by using the Chen-t method, gives the largest 
width and differs from other methods, whereas the 95% of DMSDDM-t confidence 
interval gives the shortest width, followed by Mad-t and AADM-t confidence intervals. 
Since this data set is positively skewed, we conclude that the results in Table 5.2 support 
the simulation results in the case of positively skewed distribution of this study. 

5.3.  Long jump distance data 

The following data represent the results of the final points scores reported for 40 
players in long jump distance in meters (International Olympic Committee, 2019): 8.11, 
8.11, 8.09, 8.08, 8.06, 8.03, 8.02, 7.99, 7.99, 7.97, 7.95, 7.92, 7.92, 7.92, 7.89, 7.87, 7.84, 
7.79, 7.79, 7.77, 7.76, 7.72, 7.71, 7.66, 7.62, 7.61, 7.59, 7.55, 7.53, 7.5, 7.5, 7.42, 7.38, 7.38, 
7.26, 7.25, 7.08, 6.96, 6.84, 6.55. The data are checked and found to be negatively skewed 
with skewness = −1.16, kurtosis = 1.20, mean = 7.6745 and standard deviation = 0.37. 
The considered confidence intervals and their corresponding width have been given in 
Table 5.3. From Table 5.3, the 95% estimated confidence interval for the population 
mean (𝜇) of the final points scores in long jump distance in meters, which is constructed 
by using Student’s t, Johnson-t and YY-t methods, gives the same value of the largest 
width, whereas the 95% of DMSDDM-t confidence interval gives the smallest width and 
the secondary width is constructed by using the Mad-t confidence interval. Since this 
data set is negatively skewed, we conclude that the results in Table 5.3 support the 
simulation results in the case of negatively skewed distribution of this study. 
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Table 5.3.  The 95% confidence intervals for the population mean of the final scores for long jump 
distance in meters 

Methods 
Estimated Confidence Interval Limits 

Width 
Lower Limit Upper Limit 

Student-t 7.5528 7.7962 0.2434 
Johnson-t 7.5512 7.7945 0.2434 

Chen-t 7.5668 7.7822 0.2154 
YY-t 7.5517 7.7951 0.2434 

Mad-t 7.5793 7.7697 0.1903 
AADM-t 7.5587 7.7903 0.2316 

DMSDDM-t 7.6242 7.8029 0.1787 
Bootstrap 7.5553 7.7798 0.2245 

6.  Summary and concluding remarks 

The proposed confidence interval, DMSDDM-t, is an adjustment of the Student’s t 
confidence interval based on the decile mean and the decile mean standard deviation. 
In addition, the simulation results show that in many cases the proposed confidence 
interval performs better than the existing estimators when observations are sampled 
from both normal and skewed distributions. Even though the Mad-t confidence 
interval tends to provide the smallest average width in the case of observations sampled 
from the normal distribution, the coverage ratio of this tends to be more under the 
nominal level when compared with the proposed confidence interval. That is, the 
performance of the DMSDDM-t method is better than the Mad-t method for both 
coverage ratio and average width because the coverage ratio of the DMSDDM-t 
confidence interval tends to be slightly below the nominal level. Although the coverage 
ratio of the proposed interval is slightly lower than that of the five intervals – Student’s 
t, Johnson-t, Chen-t, YY-t and AADM-t – and the average width of this proposed 
interval is smaller than that of the five intervals, especially for a small sample size and 
observations sampled from the normal distribution. In the case of skewed distributions, 
such as observations sampled from chi-square distribution with a small coefficient of 
skewness, the average width of the proposed interval is also smaller than that of the five 
intervals – Student’s t, Johnson-t, Chen-t, YY-t and AADM-t – even though the 
coverage ratio of the proposed interval is slightly lower than that of the five intervals. 
The bootstrap estimator for a confidence interval is reliable at least for n not very small.  
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Estimation procedures for reliability functions of
Kumaraswamy-G Distributions based on Type II

Censoring and the sampling scheme of Bartholomew

Aditi Chaturvedi1, Surinder Kumar2

ABSTRACT

In this paper, we consider Kumaraswamy-G distributions and derive a Uniformly Minimum
Variance Unbiased Estimator (UMVUE) and a Maximum Likelihood Estimator (MLE) of
the two measures of reliability, namely R(t) = P(X > t) and P = P(X > Y ) under Type II
censoring scheme and sampling scheme of Bartholomew (1963). We also develop interval
estimates of the reliability measures. A comparative study of the different methods of point
estimation has been conducted on the basis of simulation studies. An analysis of a real data
set has been presented for illustration purposes.

Key words: interval estimation, Kumaraswamy-G distributions, Monte-Carlo simulation,
point estimation.

1. Introduction

The Kumaraswamy (Kum) distribution is widely applied to model the random phe-
nomenon having finite lower and upper bounds, e.g.-, the height of individuals, atmospheric
temperatures, hydrological data such as daily rain fall, daily stream flow, etc. The distribu-
tion was first defined by Kumaraswamy (1976, 1978). Nadarajah (2008) demonstrated that
the distribution may be viewed as a special case of three parameter Beta distribution. Sev-
eral other unimodal distributions can also be approximated by Kumaraswamy’s distribution
[See, Kumaraswamy (1980) and Ponnambalam et al. (2001)]. Garg (2009) studied the gen-
eralized order statistics from the Kum distribution. Jones (2009) explored the background
and genesis of the Kum distribution and demonstrated some similarities and differences
between the beta and Kum distributions. He highlighted several advantages of the Kum dis-
tribution over the beta distribution. In hydrology and related areas, the Kum distribution has
received considerable interest [See, Sundar and Subbiah (1989), Fletcher and Ponnambalam
(1996), Seifi et al. (2000), Ponnambalam et al. (2001) and Ganji et al. (2006)]. Sindhu et
al. (2013) focused on Bayesian and non-Bayesian estimation for the shape parameter of the
Kum distribution under Type-II censored samples.

Eldin et al. (2014) obtained the MLE’s and Bayes estimators for the parameters of the
Kum distribution under general progressive Type II censoring. Mameli (2015) propose a
new generalization of the skew-normal distribution, referred to as the Kum skew-normal

1Corresponding Author. Department of Statistics, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
E-mail: caditic@gmail.com.

2Department of Statistics, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
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distribution. He demonstrated that this new distribution is computationally more tractable
than the Beta skew-normal distribution proposed by Mameli and Musio (2013). Kızılaslan
and Nadar (2016) considered the Kum distribution, when the lower record values along with
the number of observations following the record values (inter-record times) were observed,
and derived the maximum likelihood and Bayes estimators for estimating the parameters
of the distribution as well as for the future record values prediction. Dey et al. (2017)
focussed on Bayesian and non-Bayesian estimation of multicomponent stress–strength reli-
ability when both step and strength follow the Kum distribution with common shape param-
eter. Dey et al. (2018) considered and investigated performance of ten different frequentist
approaches for estimation of parameters of Kum distribution, namely, maximum likelihood
estimators, moments estimators, L-moments estimators, percentile based estimators, least
squares estimators, weighted least squares estimators, maximum product of spacings esti-
mators, Cramér–von-Mises estimators, Anderson–Darling estimators and right tailed An-
derson–Darling estimators.

In recent years, a large amount of literature has been developed regarding the gener-
alization of classical distributions. For some of the citations, one may refer to Hassan et
al. (2020) and the references therein. Cordeiro and Castro (2011) introduced a new Ku-
maraswamy generalized (Kum-G) family of distributions and discussed its basic statistical
properties. They mentioned that the Kum-G family of densities has ability of fitting skewed
data and allows for greater flexibility of its tails. The distribution generalizes the modelling
ability of the Kumaraswamy distribution and can be widely applied in many areas of engi-
neering and biology. Nadarajah et al. (2012) derived simple representation for the Kum-G
family of distributions as a linear combination of exponentiated distributions and studied
its general properties. They obtained MLEs of its parameters and discussed its bivariate
extension as well. Tamandi and Nadarajah (2016) developed maximum spacing estimation
procedure for the parameters of Kum-G distribution. Kundu and Chowdhary (2018) com-
pared the minimums of two independent and heterogeneous samples each following Kum-G
distribution with respect to usual stochastic ordering and hazard rate ordering. They also
established likelihood ratio ordering between the minimum order statistics for heteroge-
neous multiple-outlier Kum-G random variables with the same parent distribution function.
Kumari et al. (2019) provided characterization ofthe Kum-G distribution based on record
values and obtained point and interval estimates of two measures of reliability function
R(t) = P(X > t) and P = P(X > Y ) based on records. They considered two types of point
estimators, namely UMVUE’s and MLE’s and developed procedures for testing hypotheses
related to various parametric functions. Chaturvedi and Bhatnagar (2020) developed clas-
sical and preliminary test estimators for measures of reliability of the Kum-G distribution
under progressive Type II censoring.

The purpose of the present paper is to extend the results of Kumari et al. (2019) for the
cases of Type II censoring and the sampling scheme proposed by Bartholomew. Consider-
ing the Kum-G distribution, we develop UMVUE’s and MLE’s for the reliability functions,
R(t) and P. For deriving UMVUE’s, we followed the approach proposed by Chaturvedi and
Tomer (2003), which saves tedious and time-consuming calculation of stress–strength func-
tion. The paper is organized as follows: In Section 2, we provide point estimators and exact
confidence intervals for the qth power of parameter α , for q ∈ (−∞,+∞), and for functions
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R(t) and P based on Type II censoring scheme. In Section 3, based on the sampling scheme
proposed by Bartholomew (1963), the point estimators for the αq, R(t) and P are provided.
In Section 4, we present findings of simulation studies followed by real data analysis in
Section 5. We end with a brief set of conclusions in Section 6. Proofs of some important
results can be found in the Appendix.

2. Estimation based on Type II Censoring Scheme

A random variable X is said to follow the Kumaraswamy (1980) distribution if its pdf is
given by

f (x;α,β ) = αβxβ−1(1− xβ )α−1; 0 < x < 1, α,β > 0. (1)

Considering the complete sample case, Nadar et al. (2014) have obtained the estimator
of P for the distribution given in (1) assuming the parameter ‘β ’ to be common for the two
distributions.

A random variable X follow Kumaraswamy-G distributions [Cordeiro and Castro (2011)],
if its pdf is of the form

f (x;α,β ) = αβg(x)Gβ−1(x)[1−Gβ (x)]α−1; x > 0, α,β > 0, (2)

where g(x) denotes the pdf of G(x), α and β are the shape parameters of the Kum-G
distribution.

It is to be noted that the distribution given in (2) reduces to the Kumaraswamy distribu-
tion when G(x) = x.

2.1. UMVUE’s and MLE’s of αq,R(t) and P Based on Type II Censoring

Suppose ‘n’ items are put on a test and the test is terminated after the first ‘r’ ordered
observations are recorded. Let us denote by 0 < X(1) ≤ X(2) ≤ ...≤ X(r), 0 < r < n, the life-
times of first r failures. Obviously (n− r) items survived until X(r). Here, we provide
an important lemma, which will be helpful in proving the main results of this section.

*Lemma 1 Let

S(r) =−

[
r

∑
i=1

ln
{

1−Gβ (xi)
}
+(n− r)ln

{
1−Gβ (xr)

}]
,

then, S(r) is complete and sufficient for the Kum-G distribution (2). Moreover, the pdf of
S(r) is given by

gS(r)(s;α) =
1

Γ(r)
sr−1

α
r exp{−αs} ,s > 0,α > 0,r > 0, (3)

*The proof of Lemma 1 is available from the corresponding author on request.
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where, Γ(·) denotes the Gamma function.
In the following theorems, we provide the UMVUEs of αq, R(t) and P, based on Type

II censoring scheme and under the assumption that β is known.

Theorem 1 For q ∈ (−∞,∞), the UMVUE of αq is given by:

α̃
q
II =

{
Γ(r)

Γ(r−q)S−q
(r) ; r−q > 0

0; otherwise.

Proof. From (3),

E
(

S−q
(r)

)
=

Γ(r−q)
Γ(r)

α
q,r > q, (4)

and the theorem follows from Lehmann-Scheffe theorem [see Rohatgi & Saleh(2012)].
Let us write the pdf (2) as follows

f (x;α,β ) =
αβg(x)Gβ−1(x)

1−Gβ (x)

∞

∑
i=0

(−1)i

i!

{
−ln(1−Gβ (x))

}i
α

i,

then the following Corollary straight away follows from Theorem 1.

Corollary 1 The UMVUE of the sampled pdf at a specified point x is:

f̃II(x;α,β ) =


βg(x)Gβ−1(x)

B(1,r−1)S(r)(1−Gβ (x))

(
1+ ln(1−Gβ (x))

S(r)

)r−2
;

−ln(1−Gβ (x))< S(r)
0; otherwise,

where B(a,b) = Γ(a)Γ(b)
Γ(a+b) is the Beta function.

Theorem 2 The UMVUE of R(t) at a specified point t is

R̃(t)II =


[

1+
ln(1−Gβ (t))

S(r)

]r−1

; −ln(1−Gβ (t))< S(r)

0; otherwise.

Proof. Using Corollary 1, we have

R̃(t)II =
∫

∞

t

βg(x)Gβ−1(x)
B(1,r−1)S(r)(1−Gβ (x))

(
1+

ln(1−Gβ (x))
S(r)

)r−2

dx,

and the result follows by substituting −ln(1−Gβ (x))
S(r)

=v.
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Let X and Y be two independent random variables following the classes of distributions
f1(x;α1,β1) and f2(y;α2,β2), respectively, where

f1(x;α1,β1) = α1β1g(x)Gβ1−1(x)(1−Gβ1(x))α1−1; x > 0, α1,β1 > 0 (5)

and
f2(y;α2,β2) = α2β2h(y)Hβ2−1(y)(1−Hβ2(y))α2−1; y > 0, α2,β2 > 0. (6)

Let n items on X and m items on Y are put on a life test and the termination numbers for
X and Y are r and r′, respectively. Let us define

S(r) =−

[
r

∑
i=1

ln(1−Gβ1(xi))+(n− r)(ln(1−Gβ1(xr))

]

and

T(r′) =−

[
r′

∑
j=1

ln(1−Hβ2(y j))+(m− r′)(ln(1−Hβ2(yr′))

]
.

In the following theorem, we obtain the UMVUE of P.

*Theorem 3 The UMVUE of P, when X and Y belong to different family of distributions,
is given by

P̃II =



∫ c

z=0

1
B(1,r′−1)

1+
ln
{

1−G(H−1(1− e−zT(r′)))β1/β2
}

S(r)

r−1

(1− z)r′−2dz; i f G−1
{
(1− e−S(r))1/β1

}
≤ H−1

{
(1− e−T(r′))1/β2

}
∫ 1

z=0
1

B(1,r′−1)

[
1+

ln
{

1−G(H−1(1−e
−zT(r′) ))β1/β2

}
S(r)

]r−1

(1− z)r′−2dz;

i f G−1
{
(1− e−S(r))1/β1

}
> H−1

{
(1− e−T(r′))1/β2

}
,

where c =−T−1ln
[
1−H

{
G−1(1− e−S(r))β2/β1

}]
.

Along the lines of Theorem 3, we can easily prove the following Corollary.

Corollary 2 The UMVUE of P, when X and Y belong to same family of distributions, i.e.,
when G(·) = H(·) and β1 = β2, is given by

*The proof of Theorem 3 is available from the corresponding author on request.
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P̃II =


1

B(1,r′−1) ∑
r′−2
i=0 (−1)i

(r′−2
i

)( S(r)
T(r′)

)i
B(i+1,r); S(r) ≤ T(r′)

1
B(1,r′−1) ∑

r−1
j=0(−1) j

(r−1
j

)(T(r′)
S(r)

) j
B( j+1,r′−1); S(r) > T(r′).

Using (2), the joint pdf of x(1) ≤ x(2) ≤ ...≤ x(r) is given by

h(x(1),x(2), ...,x(r);α,β ) =
n!

(n− r)!
α

r
β

r
r

∏
i=1

g(x(i))Gβ−1(x(i))

1−Gβ (x(i))
exp(−αS(r)) (7)

It can be easily seen from (7) that the MLE of αq based on Type II censoring is

α̂
q
II =

(
r

S(r)

)q

. (8)

From (2) and invariance property of maximum likelihood estimators, the MLE of f (x) is
given by

f̂ (x)II =
r

S(r)
βg(x)Gβ−1(x)

[
1−Gβ (x)

] r
S(r)

−1
.

Similarly, using the invariance property of MLE, the MLE of R(t) is given by

R̂(t)II =
(

1−Gβ (t)
) r

S(r) . (9)

The MLE of P, when X and Y belong to different family of distributions, is given by

P̂II =
∫ 1

z=0

[
1−Gβ1

{
H−1(z1/β2)

}] r
S(r) r′

T(r′)
(1− z)

r′
T(r′)

−1
.

The MLE of P, when X and Y belong to same family of distributions, i.e.-, when G(·)=H(·)
and β1 = β2 is given by

P̂II =
r′S(r)

r′S(r)+ rT(r′)
. (10)

2.2. Exact Confidence Intervals for α , R(t) and P based on Type II Censoring

We consider the problem of constructing a two-sided confidence interval for α . The
confidence interval is obtained by using pivotal quantity 2αS(r). If we define χ2(ν) as the
value of χ2 such that

P(χ2 > χ
2(δ )) =

∫
∞

χ2(δ )
P(χ2)dχ

2 = δ , (11)



STATISTICS IN TRANSITION new series, March 2022 135

where P(χ2) is the pdf of χ2 distribution with 2r degrees of freedom, then by using the fact
that 2αS(r) ∼ χ2

2r, the confidence interval is given by

P

χ2
(

1− δ

2

)
2S(r)

≤ α ≤
χ2
(

δ

2

)
2S(r)

= 1−δ , (12)

where χ2
(

δ

2

)
and χ2

(
1− δ

2

)
are obtained by using (11). Thus, for known β , 100(1−δ )%

confidence interval for α is given byχ2
(

1− δ

2

)
2S(r)

,
χ2
(

δ

2

)
2S(r)

 .

Further, for q < 0, the confidence interval for αq is given byχ2
(

δ

2

)
2S(r)

q

,

χ2
(

1− δ

2

)
2S(r)

q
and for q > 0, the confidence interval for αq is given byχ2

(
1− δ

2

)
2S(r)

q

,

χ2
(

δ

2

)
2S(r)

q .

The problem of obtaining the confidence interval for the reliability function R(t) =
(1−Gβ (t))α can be solved by noting that R(t◦;α) is a decreasing function of α . Thus,
Ψ1(x1,x2, ...,xn) ≤ (1−Gβ (t◦))α is equivalent to α ≤ lnΨ1(x1,x2, ...,xn)/ln(1−Gβ (t◦))
and Ψ2(x1,x2, ...,xn)≥ (1−Gβ (t◦))α is equivalent to α ≥ lnΨ2(x1,x2, ...,xn)/ln(1−Gβ (t◦)).
Therefore, the expression

P
(

Ψ1(x1,x2, ...,xn)≤ (1−Gβ (t◦))α ≤ Ψ2(x1,x2, ...,xn)
)
= 1−δ

is equivalent to

P
(

lnΨ2(x1,x2, ...,xn)

ln(1−Gβ (t◦))
≤ α ≤ lnΨ1(x1,x2, ...,xn)

ln(1−Gβ (t◦))

)
= 1−δ . (13)

Comparing (12) and (13), it immediately follows that χ2
(

1− δ

2

)
/2S(r) =

lnΨ2(x1,x2, ...,xn)/ln(1−Gβ (t◦)) and χ2
(

δ

2

)
/2S(r) = lnΨ1(x1,x2, ...,xn)/ln(1−Gβ (t◦)).
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Therefore,

Ψ1 = exp

ln(1−Gβ (t◦))
χ2
(

δ

2

)
2S(r)

and Ψ2 = exp

ln(1−Gβ (t◦))
χ2
(

1− δ

2

)
2S(r)

 .
Thus, for known β , (1−δ )100% confidence interval for R(t◦,α) is given byexp

ln(1−Gβ (t◦))
χ2
(

δ

2

)
2S(r)

 ,exp

ln(1−Gβ (t◦))
χ2
(

1− δ

2

)
2S(r)

 .

In order to obtain the confidence interval for P, we utilize the fact that
2α1S(r)/2r

2α2T(r′)/2r′ ∼ F2r,2r′ .

Thus, the confidence interval for P is given by

P

( rT(r′)F( δ

2 )

r′S(r)
+1

)−1

≤ α2

α1 +α2
≤

(
rT(r′)F(1− δ

2 )

r′S(r)
+1

)−1


= 1−δ .

Therefore, for known β , (1−δ )100% confidence interval for P is given by( rT(r′)F( δ

2 )

r′S(r)
+1

)−1

,

(
rT(r′)F(1− δ

2 )

r′S(r)
+1

)−1
 .

3. Estimation based on the Sampling Scheme of Bartholomew

Throughout this section, we assume that n items are put on a test and we terminate life-
testing experiment at a preassigned time t◦. Suppose we carry out time-censored test where
the items that fail are immediately replaced. Let X(1) ≤ X(2) ≤ ...≤ X(n) be the failure times
of n items under a test from (2). The test begins at time X(0) = 0 and the system operates
until X(1) = x1, when the first failure occurs. The failed item is replaced by a new one and the
system operates until the second failure occurs at time X(2) = x2 and so on. The experiment
is terminated at time t◦. Here, X(i) is the time until ith failure measured from time 0.

3.1. UMVUEs and MLEs of αq, R(t) and P, based on the Sampling Scheme of
Bartholomew

We, first provide an important lemma, which will be utilized in deducing UMVUE’s and
MLE’s of αq, R(t) and P.

*Lemma 2 Let N(t◦) be the number of failures during the interval [0; t◦]. Then,

*The proof of Lemma 2 is available from the corresponding author on request.
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P[N(t◦) = r|t◦] =
[−nα ln (1−Gβ (t◦))]r

r!
exp
{

nα ln (1−Gβ (t◦))
}
.

In the following theorems, we provide the UMVUEs of αq, R(t) and P, based on the sam-
pling scheme of Bartholomew (1963).

Theorem 4 For positive integer q, the UMVUE of αq is given by

α̃
q
I =

{
r!

(r−q)! [−n ln
{

1−Gβ (t◦)
}
]−q; r−q > 0

0; otherwise.

Proof. It follows from Lemma 2 and the Fisher-Neyman factorization theorem [see Rohatgi
and Saleh (2012), p. 341] that r is sufficient for α . Moreover, since the distribution of r
belongs to an exponential family, it is also complete [see Rohatgi and Saleh (2012), p. 347].
The theorem now follows from the result that the qth factorial moment of the distribution of
r is given by

E[r(r−1)(r−2)...(r−q+1)] =
[
−nα ln

{
1−Gβ (t◦)

}]q
.

Let us write the pdf (2) as follows:

f (x;α,β ) =
αβg(x)Gβ−1(x)

1−Gβ (x)

∞

∑
i=0

(−1)i

i!

{
−ln(1−Gβ (x))

}i
α

i.

Then, the Corollary 3 straight away follows from Theorem 4.

Corollary 3 The UMVUE of f (x;α,β ) at a specified point x is

f̃I(x;α,β ) =


rβg(x)Gβ−1(x)

[−n ln(1−Gβ (t◦))](1−Gβ (x))

(
1− ln(1−Gβ (x))

n ln(1−Gβ (t◦))

)r−1
;

ln(1−Gβ (x))< n ln(1−Gβ (t◦))

0; otherwise.

Theorem 5 The UMVUE of R(t) at a specified point t is given by

R̃(t) =


[
1− ln(1−Gβ (t))

n ln(1−Gβ (t◦))

]r
; ln(1−Gβ (t))< n ln(1−Gβ (t◦))

0; otherwise.

Proof. Using Corollary (3),

R̃(t) =
∫

∞

t

rβg(x)Gβ−1(x)[
−n ln(1−Gβ (t◦))

]
(1−Gβ (x))

(
1− ln(1−Gβ (x))

n ln(1−Gβ (t◦))

)r−1

dx,
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and the result follows by substituting ln(1−Gβ (x))
n ln(1−Gβ (t◦))

= z.

Let n items on X and m on Y be put on a life test, where X and Y are distributed as in
(5) and (6). Let t◦ and t◦◦ be the termination times for X and Y , respectively and r and r′

be the number of failures before t◦ and t◦◦, respectively. Obviously, using Corollary 3, the
UMVUEs of f1(x;α1,β1)and f2(y;α2,β2), based on the sampling scheme of Bartholomew
is given by

f̃1I(x;α1,β1) =
rβ1g(x)Gβ1−1(x)[

−n ln(1−Gβ1(t◦))
]
(1−Gβ1(x))

(
1− ln(1−Gβ1(x))

n ln(1−Gβ1(t◦))

)r−1

; (14)

ln(1−Gβ1(x))< n ln(1−Gβ1(t◦))

and

f̃2I(y;α2,β2) =
r′β2h(y)Hβ2−1(y)[

−m ln(1−Hβ2(t◦◦))
]
(1−Hβ2(y))

(
1− ln(1−Hβ2(y)

m ln(1−Hβ2(t◦◦))

)r′−1

;

(15)
ln(1−Hβ2(y))< m ln(1−Hβ2(t◦◦)).

*Theorem 6 The UMVUE of P is given by

P̃I =



r′
∫ c

z=0

[
1− ln{1−Gβ1 (H−1(1−(1−Hβ2 (t◦◦))mz))1/β2}

n ln{1−Gβ1 (t◦)}

]
(1− z)r′−1dz;

G−1
{

1− (1−Gβ1(t◦))n
} 1

β1 ≤ H−1
{

1− (1−Hβ2(t◦◦))m
} 1

β2

r′
∫ 1

z=0

[
1− ln{1−Gβ1 (H−1(1−(1−Hβ2 (t◦◦))mz))1/β2}

n ln{1−Gβ1 (t◦)}

]
(1− z)r′−1dz;

G−1
{

1− (1−Gβ1(t◦))n
} 1

β1 > H−1
{

1− (1−Hβ2(t◦◦))m
} 1

β2 ,

where c =
ln[1−Hβ2{G−1(1−(1−Gβ1 (t◦))n)1/β1}]

m ln{1−Gβ1 (t◦)} .

Corollary 4 The UMVUE of P, when X and Y belong to the same family of distributions,
i.e., G(·) = H(·) with β1 = β2 and t◦ = t◦◦ is given by

P̃I =

{
r′ ∑r′−1

i=0 (−1)i
(r′−1

i

)( n
m

)i+1 B(i+1,r+1); n ≤ m

r′ ∑r
j=0(−1) j

(r
j

)(m
n

) j B( j+1,r′); n > m.

*The proof of Theorem 6 is available from the corresponding author on request.
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It can be easily seen from Lemma 2 that the MLE of αq based on the sampling scheme
of Bartholomew (1963) is given by

α̂
q
I =

(
−r

n ln(1−Gβ (t◦))

)q

. (16)

Using (2), R(t) at point t is given by

R(t) = (1−Gβ (t))α . (17)

From (17) and invariance property of MLEs, the MLE of R(t) is given by

R̂(t)I = [1−Gβ (t)]
−r

n ln(1−Gβ (t◦)) . (18)

Similarly, using the invariance property of MLE, the MLE of f (x;α,β ) at a specified point
x is

f̂I(x;α,β ) =
−r

n ln
{

1−Gβ (t◦)
}g(x)Gβ−1(x)[1−Gβ (x)]

−r
n ln{1−Gβ (t◦)}−1

.

The MLE of P, when X and Y belong to a different family of distributions, is given by

P̂I =
∫ 1

z=0
[1−Gβ1

{
H−1(z1/β2)

}
]

−r
n ln(1−Gβ1 (t◦))

−rr′

m ln(1−Hβ2(t◦◦))
×

(1− z)
−r′

m ln(1−Hβ2 (t◦◦)) dz.

The MLE of P, when X and Y belongs to the same family of distributions, i.e-., G(·) = H(·),
β1 = β2 and t◦ = t◦◦, is given by

P̂ =
r′n

r′n+ rm
. (19)

4. Simulation Study

In order to validate the results obtained in Sections 2 and 3, we first consider the Kum
distribution as a particular case of the Kum-G distributions. The pdf and cdf of the Kum
distribution are given by:

f (x;α,β ) = αβxβ−1(1− xβ )α−1; 0 < x < 1, α,β > 0. (20)

F(x;α,β ) = 1− (1− xβ )α . (21)

respectively.

4.1. Simulation Based on Type II Censoring

For comparing the performances of estimators of αq based on Type II censoring scheme,
we have generated 1000 random samples from (20) each of size n = 50 for (α,β )=(2,0.5),
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(2,1), (2,2). For each sample we arranged the data in ascending order and considered a
sample of first r (≤ n) observations. For different values of r =10, 20, 30 and 50, we have
computed average values of α̃

q
II and α̂

q
II , their corresponding bias, MSE and approximate

95% confidence interval. For q = 1 and 2, results are reported in Table 1. It has been ob-
served that MSE obtained corresponding to UMVUE is much lower than MSE obtained
corresponding to MLE. Thus, the performance of UMVUE of αq for q = 1,2 based on Type
II censoring is much better than the performance of MLE of αq. From Table 1, we observe
that as r increases, the performance improves in the sense that their MSE decreases. It is
also interesting to note that, with increasing r, the two estimators come close to each other.

For comparing the performance of MLE and UMVUE of reliability function R(t), the
bias, MSE and 95% confidence intervals are presented in Table 2. Comparing the estimates
on the basis of MSE, we observe that the MLE of R(t) performs better than the UMVUE
for all parametric settings. As r increases, the performance of both the estimators improve
and both estimators come close to each other.

For investigating the performance of estimators of P , we have generated 1000 random
samples from each of the populations X and Y with sizes (n,m) with β1 = β2 = 2 and
(α1,α2) = (0.5,0.5),(0.5,1), (0.5, 1.5) and (1.5,2). Samples corresponding to both the pop-
ulations are arranged in ascending order and first (r,r′) observations are considered. For
(r,r′) = (10,10),(20,20),(30,25),(40,40) and (50,50), we have computed average values
of P̃ and P̂ , their corresponding bias, MSE and approximate 95% confidence interval and
results are presented in Table 3. We observe that for all selected values of (r,r′), the MLE
of P performs superior to the UMVUE of P in the sense that it has lower MSE.

4.2. Simulation Based on Sampling Scheme of Bartholomew

In order to obtain point estimates of R(t) based on the sampling scheme of Bartholomew, we
have generated 1000 random samples each of size 100 from (20) with α = 2 and β = 0.9.
By fixing the termination time at t◦, and replacing the failure by operating one, values of
r (the number of failures before time t◦) is computed. For different termination time t◦ =
0.20, 0.50, 0.65, 0.80 and 0.90, we have computed average values of R̃(t) and R̂(t), their
corresponding bias, MSE and approximate 95% confidence interval. For different values of
t results are presented in Table 4. It has been observed that for small values of t and small
values of t◦, MLE is more efficient than UMVUE of R(t). However, for large values of t◦,
UMVUE becomes more efficient than MLE of R(t). For large values of t and all values of
t◦, both the estimators become equally efficient. The best results are obtained for t◦ = 0.65
as bias and MSE are least for all values of t. This result shows the importance of termination
time t◦ in the sampling scheme of Bartholomew.

Now, to investigate the performance of estimators of P based on the sampling scheme
of Bartholomew, we have generated 1000 random samples from each of the population X
and Y with sizes (n,m) with β1 = β2 = 2 and (α1,α2) = (0.5,0.75), (0.5,1), (0.5, 1.5) and
(1.5,2.5). For each sample corresponding to both the population, fixing the termination time
at t◦ = t◦◦ and replacing the failure by operating one, values of r (no. of failures before time
t◦ in X) and values of r’ (no. of failures before time t◦◦ in Y ) are computed. For t◦ = t◦◦=
0.50, 0.70 and 0.80, we have computed average values of P̃I and P̂I , their corresponding



STATISTICS IN TRANSITION new series, March 2022 141

bias, MSE and approximate 95% confidence interval for n > m and n < m, and results are
presented in Tables 5 and 6 respectively. From Table 5, for n > m, it is observed that for
small m when n = 50, UMVUE of P performs superior than MLE of P. As m increases both
the estimators are equally efficient. However, for n < m, the results given in Table 6 show
that for all n with m = 50, the MLE of P is superior than the UMVUE and, as n increases,
both the estimators become equally efficient.

5. Real Data Study

In this section, to illustrate the usefulness of our procedure, we present real data analysis.
We consider the real data set used by Kumari et al. (2019), originally taken from Proschan
(1963). The data represent the intervals between failures (in hours) of the air conditioning
system of a fleet of 13 Boeing 720 jet airplanes. Canavos and Tsokos (1971) observed that
the failure time distribution of the air conditioning system for each of the planes can be
well approximated by exponential distributions. We have considered the planes ‘7913’ and
‘7914’ for our illustrative purposes. The data are presented below:

x1 (Plane 7914): 3, 5, 5, 13, 14, 15, 22, 22, 23, 30, 36, 39, 44, 46, 50, 72, 79, 88, 97,102,
139, 188, 197, 210.

y1(Plane 7913): 1, 4, 11, 16, 18, 18, 18, 24, 31, 39, 46, 51, 54, 63, 68, 77, 80, 82, 97,
106, 111, 141, 142, 163, 191, 206, 216.

Before applying the Kolmogorov–Smirnov (KS) test, we transform the above given
two data sets in the range of unit interval by using the transformation Xi =

Xi
max(Xi)+1 and

Yi =
Yi

max(Yi)+1 .The two transformed data sets are given below:

First data set x: (0.0142, 0.0237, 0.0616, 0.0664, 0.0711, 0.1043, 0.1090, 0.1422,
0.1706, 0.1848, 0.2085, 0.2180, 0.2370, 0.3412, 0.3744, 0.4171, 0.4597, 0.4834, 0.6588,
0.8910, 0.9336, 0.9953).

Second data set y: (0.0046, 0.0184, 0.0507, 0.0737, 0.0829, 0.1106, 0.1429, 0.1797,
0.2120, 0.2350, 0.2488, 0.2903, 0.3134, 0.3548, 0.3687, 0.3779, 0.4470, 0.4885, 0.5115,
0.6498, 0.6544, 0.7512, 0.8802, 0.9493, 0.9954).

We first apply the KS test to check whether the Kum distribution (20), fits the given X
and Y populations. We obtain the following ML estimates of (α1,β1) and (α2,β2).

(α1,β1)complete data = (1.0728,0.6022), (α2,β2)complete data = (1.042,0.6658).

According to the KS test, we do not reject the null hypothesis that both the data observed
for X (KS = 0.18226; p = 0.4026) and the data observed for Y (KS = 0.1289; p = 0.7604)
are drawn from (20). Figure 1 confirms the good fit of (20), for these two data sets. In
order to obtain the MLE of R(t) and P based on Type II censoring, we first consider r = 16
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(a) Empirical and theoretical cdf of first
data set

(b) Empirical and theoretical cdf of sec-
ond data set

Figure 1: Plots of empirical and theoretical cdf

(a) Plot of ML Estimator of R(t) of first data set (b) Plot of ML Estimator of R(t) of second data set

Figure 2: Plots of MLE of R(t)

lifetimes from X population and the remaining 8 observations are considered as censored.
Similarly, we consider first r′ = 20 lifetimes from Y population and the remaining 7 obser-
vations are considered as censored. Considering the Kum distribution as a lifetime model
for X-population, the MLEs of α1II and β1II are obtained as α̂1II = 1.272 and β̂1II = 0.6659.
Similarly, considering the Kum distribution as a lifetime model for Y-population, the MLEs
of α2II and β2II are α̂2II = 1.4677 and β̂2II = 0.8128. To evaluate MLE of PII , we have
considered the first data set as X-population and second data set as Y-population. We get
P̂II = 0.5847. For different values of t, we have evaluated MLE of R(t) for X and Y popula-
tions, respectively. Results are plotted in Figure 2. In particular, for t = 0.8, R̂1II(t)= 0.1081
and R̂2II(t) = 0.127.

From Figure 2, it is clear that at initial time, the probability of survival is very high and
as time increases the probability of survival decreases.

6. Conclusions

In this article, we have developed the estimation procedures for the Kum-G family of dis-
tributions based on Type II censoring and Bartholomew censoring schemes. Considera-
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tions are given to both point and interval estimations. The finite sample performance of the
UMVUE’s and MLE’s of reliability functions and other parameters are investigated using
extensive Monte Carlo experiment. The comparisons are made on the basis of MSE of the
estimators. The main conclusions of the simulation experiments are as follows.

For Type II censoring, for all values of n, the UMVUE of αq performs better than MLE
of αq. On the contrary, the performance of MLE of R(t) is better than the performance of
UMVUE of R(t) for all selected values of t. However, for large values of r, the performance
of both the estimators is quite similar. Further, as r increases, MSE corresponding to both
the estimator decreases. Similarly, for estimating P, the MLE performs superior than the
UMVUE.

For the sampling scheme of Bartholomew, for small values of t and t◦, MLE is more
efficient than UMVUE of R(t). However, for large values of t◦, UMVUE becomes more
efficient than MLE of R(t). For large values of t and all values of t◦, both the estimators
are almost equally efficient. The best results are obtained for t◦ = 0.65 as the bias and MSE
are least for all values of t. This result shows the importance of termination time t◦ in the
sampling scheme of Bartholomew. For comparing the performance of MLE and UMVUE
of P, we observe that, when n = 50 and m < n, UMVUE outperforms MLE. As m increases
both the estimators become equally efficient. On the contrary, for n < m and m = 50 for
small n, MLE of P gives better performance than UMVUE. But as m increases both the
estimators become almost equally efficient.
The paper focuses on developing classical estimators for different parameters and reliability
functions of Kumaraswamy-G distributions under various sampling schemes and investi-
gating their properties. However, an interesting alternative to MLE and UMVU estimators
can be provided by the empirical Bayes approach or ML-II estimators based on the robust
Bayesian approach of Shrivastava et al. (2019). We leave exploration of this area for future
work.
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Long-term sovereign interest rates in Czechia, Hungary
and Poland: a comparative assessment with an affine term

structure model
Jakub Janus1

ABSTRACT

This paper provides a comparative evaluation of the behaviour of long-term sovereign yields
in Czechia, Hungary and Poland from 2001 to 2019. An affine term structure model de-
veloped by Adrian, Crump and Moench (2013) is used as an empirical framework for the
decomposition of the bond yields into term premium and risk-neutral components. We docu-
ment a substantial compression in term premia which started in Central European economies
around 2013 and played a decisive role in the changes that occurred in 10-year sovereign
yields. This pattern, however, was more prevalent in Czechia and Poland than in Hun-
gary. We show that long-term rates in all three economies remained higher than in Ger-
many due to relatively large risk-neutral components. Nevertheless, cross-country corre-
lations became increasingly dependent on term premium dynamics, both among Central
European economies and between each of them and Germany. These results are robust to
bias-correction in the baseline models and interpreted in the light of the general interest rates
decline in the global economy. Potential policy implications are also discussed.

Key words: long-term interest rates, affine term structure model, term premium, risk-neutral
rates, Central Europe.

1. Introduction

This paper investigates sovereign long-term interest rates in Czechia, Hungary, and
Poland in an attempt to provide a detailed account of their behaviour from 2001 to 2019.
Are the 10-year government rates mostly driven by a term premium component that in-
vestors demand for holding such securities, or by an expected path of short-term interest
rates (i.e. risk-neutral rates)? Why did they decline by so much from the early 2000s, and
so sharply after 2013? Is there a strong international comovement in long-term rates among
the three economies, and how do they depend on foreign bond yields? The answers to these
questions pose an empirical challenge but have weighty implications for both the broader
economy and policy-making. Long-term yields and their components convey rich infor-
mation about current and future states of an economy, for instance about expected trends in
investment and consumption. They are, at the same time, a key variable for governments and
central banks, with consequences for public debt management and monetary transmission
mechanism (Gürkaynak and Wright, 2012). Central European (CE) economies constitute
an interesting case study of long-term rates for two additional reasons. First, long-term
rates are an essential channel of cross-border propagation of shocks, and the case of CE

1Cracow University of Economics. Department of Macroeconomics, Poland.
E-mail: jakub.janus@uek.krakow.pl. ORCID: https://orcid.org/0000-0002-2131-6077.
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economies provides further evidence on the nature of comovement in interest rates and the
impact of the international financial factors on a small open emerging economy. Second,
10-year sovereign rates are among the benchmarks for convergence between CE economies
and the euro area. Hence, they remain relevant in the discussion on international economic
and financial integration of these countries.

The empirical strategy of this paper builds upon an affine term structure model devel-
oped by Adrian, Crump and Moench (2013) (henceforth: ACM), a tractable method to
perform a yield curve decomposition using a sequence of linear regressions. The estimation
of this model makes use of a set of sovereign bond yields of various maturities to disentan-
gle Czech, Hungarian, and Polish 10-year yields into risk-neutral components (expectations
of the short-term rate) and term premia. Next, we employ these estimates to assess changes
in long-term interest rates in each of the countries. Our study is among the first to provide
a comparative analysis of 10-year treasury yields in all three CE economies using structural
yield curve modelling and to present a comprehensive explanation of shifts in long-term
rates and their cross-border linkages. As an extension to the main part of the analysis, we
examine the small sample bias correction of the baseline ACM model.

We arrive at three main conclusions. First, we find a substantial term premium com-
pression that started around 2013 in all three economies and brought those components to
very low (Hungary) and possibly negative levels (Czechia and Poland). Second, we show
that shifts in term premia components played a decisive role in the behaviour of 10-year
sovereign yields. This pattern was more prevalent in Czechia and Poland than in Hungary
but post-2009 the relative importance of term premium components increased in all three
countries. Third, we demonstrate that long-term rates in CE economies were higher than in
Germany, their leading economic and financial partner, due to relatively larger risk-neutral
components. At the same time, cross-country correlations in the long-term yields were
increasingly more dependent on the term premium dynamics, both among the three CE
economies and between each of them and Germany.

The paper is organised as follows. The next section briefly discusses the research back-
ground and recent studies in the area. Section 3 presents the dataset of sovereign bond
yields. Section 4 provides an overview of the affine term structure model used in the paper.
The empirical outcomes are laid out in Section 5, while Section 6 discusses the results. The
final section concludes.

2. Related literature

After the period of "benign neglect" (Turner, 2013), the long-term interest rates entered
the centre of macroeconomic policy debate. Starting from the 2000s, sudden or unexpected
shifts in those rates, exemplified by Greenspan’s "conundrum" of 2004-2006 (Rudebusch,
Sack and Swanson, 2007), drove more of the attention to macroeconomic effects of changes
at the longer end of the yield curve. This concern intensified once new tendencies appeared
in the global economy: persistently low inflation rates and inflation expectations, looming
secular stagnation (Eggertsson, Mehrotra and Summers, 2016), prolonged quantitative eas-
ing and its subsequent tapering by the Federal Reserve (Kuttner, 2018), global shortages of
safe assets (Caballero, Farhi and Gourinchas, 2017), or constraints to fiscal policy (Blan-
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chard, 2019). As of more recently, markets got troubled with the dynamics of bond markets
during the COVID-19 pandemic crisis.

From the point of view of small and open CE economies, the importance of long-term
interest rates is further magnified by international linkages in bond yields (Obstfeld, 2015).
The global financial cycle, whereby shocks in "central" economies, i.e. the US or the euro
area, are transmitted to other countries, is consequential for capital flows, exchange rates, or
monetary spillovers to such countries (Rey, 2016). This may also produce externalities for
local bond markets and have an impact on domestic economies (Kolasa and Wesołowski,
2020). There is now accumulating evidence that a substantial part of spillovers from the
ECB’s monetary policy, both standard and non-standard one, is transmitted to CE economies
via sovereign bond yields (Grabowski and Stawasz-Grabowska, 2020; Janus, 2020). Hence,
the detailed evidence on the long-term interest rates is of sheer importance to policymakers
in the CE countries, because exogenous movements in these yields may hamper the ability
to influence interest rates on the longer end of the yield curve. As such, long-term rates
are also worth investigating in the context of Czech, Hungarian, and Polish monetary policy
effectiveness under financial globalization.

The empirical research on long-term bonds decomposition focuses mostly on the US and
other advanced economies. The studies in this area often use dynamic term structure models
and demonstrate that advanced economies exhibit similar patterns of changes in long-term
interest rates, mostly due to comovement in term premium components that are subject to
inflation shocks and international liquidity conditions (Wright, 2011). It is also shown that
changes in long-term yields are amplified by global risk factors and international effects of
monetary easing (Abbritti et al., 2018). Using international panel datasets that cover the CE
economies, Mehrotra, Moessner and Shu (2019) and Albagli et al. (2019) both find that risk-
neutral and term premium components of 10-year yields played a role in an intensification
of monetary policy spillovers from the US to the rest of the world post-2009. However, their
conclusions on the relative importance of those components for spillovers to advanced and
emerging economies are mixed.

To the best of our knowledge, there is a shortage of comparative analyses on the long-
term interest rates in Czechia, Hungary, and Poland that would employ empirical term
structure modelling. Several studies deal with long-term yields through the lens of such
a framework in individual CE economies. In the Czech case, Dvorák, Komárková and
Kucera (2019) use an affine model along with the CDS quotations to retrieve components
of long-term yields in Czechia. They attribute the post-crisis decline in these rates mostly
to the portfolio effects, such as flight to quality. Interest rate expectations and term pre-
mium components in Hungary are analysed by Horváth et al. (2014), who show that these
factors very often follow trends observed in emerging economies and international bond
markets. Jabłecki, Raczko and Wesołowski (2016) employ the ACM term structure model
for Poland and provide supporting evidence for a substantial decline in the term premium
on 10-year bonds, which dips into negative territory after 2014. They explain these changes
by the search-for-yield behaviour of foreign investors. Using an estimated DSGE model,
Wesołowski (2018) presents the outcomes of a term structure decomposition and shows that
term premium shocks have a significant impact on GDP in Poland, but their role in driving
inflation is limited. In a recent contribution, Dec (2021) provides a detailed investigation



156 J. Janus: Long-term sovereign interest rates ...

into the Polish sovereign bond market taking into account its limited liquidity and discusses
specific properties of this market.

3. Government bonds yield curve data

In this paper, we focus on sovereign bonds, securities that are issued by respective cen-
tral governments and remain comparable in terms of their risk properties. In an optimal set-
ting, we would prefer to use a yield-curve dataset containing zero-coupon government bond
price with as many maturities as possible, corresponding, for instance, to the acclaimed US
database developed by Gürkaynak, Sack and Wright (2007) and maintained by the New
York Fed. However, given the limited accessibility of such series, this study uses a dataset
that consists of benchmark bond yields, following the practice of Albagli et al. (2019). The
time series for each CE economy include securities with up to six maturities. For Czechia,
they consist of 2, 3, 4, 5, and 10-year bonds, since data on 1-year bonds for this economy are
not available until January 2009. Hungarian government bonds comprise those of 6 months,
1, 3, 5, and 10-year maturities. In this case, the time-series on 2-year bonds were not fully
available and were swapped for the 6-month rate. Interest-rate series that we use for Poland
have maturities of 1, 2, 3, 4, 5, and 10 years. Additionally, we include Germany as a bench-
mark case throughout the analysis, given the importance of this economy for CE countries.
The dataset of German sovereign bonds ranges from 1 to 10 years. Data are obtained from
Refinitiv Datastream.

Throughout the study, we use monthly frequency data, defined as the observation on
the last trading day of the month, ranging from June 2001 to December 2019. All of the
interest rates were firstly converted into continuously compounded rates. For each economy,
the yield curve was fitted using the Nelson-Siegel-Svensson (NSS) framework (Svensson,
1994). Next, the estimated NSS parameters were used to retrieve yield curves for maturities
from 1 to 120 months, which subsequently served as an input to the ACM term structure
model. The yield curves that we obtain for each economy (not reported here) are generally
upward-sloping. It must be noted, however, that their slope is inverted for the initial years
of the analysis, especially in Hungary and to some extent in Poland, most likely due to the
ongoing disinflation that still took place in these economies during that period, along with
high and variable short-term rates. Toward the end of the sample, there are clear signs of
the yield flattening, similar to the phenomena observed in the advanced economies (Joslin,
Priebsch and Singleton, 2014).

4. An outline of the ACM affine term structure model

There are several leading approaches to separate various components of bond yields
(see a comprehensive review by Rebonato, 2018). The essential decomposition breaks them
down into two chunks, the expected short-term interest rate and a time-varying term pre-
mium, requested by an investor to compensate for an additional risk of holding a security
for an extended period of time. However, given that bond components are not observable
and depend on the relationship between yields on assets of different maturities, we need
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a term structure model to capture the underlying factors driving bond yields. The modern
workhorse of the macro-financial literature that serves this purpose is a (Gaussian) affine
term structure model. This class of models is based on the assumption that observed yields
and their expectation components can be expressed as affine functions of several risk fac-
tors, which summarise the term structure of interest rates and possibly other economic or
financial variables. Interestingly enough, even though there is no uniform methodology to
conceptualize and estimate such models, competing approaches largely concur on trends
and dynamics of long-term interest rate components in the US and the euro area, as shown
by Cohen, Hördahl and Xia (2018).

An important example of the dynamic term structure model was introduced by ACM. It
is a computationally efficient and parsimonious technique to build a series of linear regres-
sions and estimate pricing factors, which, in turn, are used to retrieve ex-ante neutral rates
and term premia for various maturities of bonds. The ACM model is based on the notion
that arbitrage opportunities are absent in the bond market. Under no-arbitrage, the pricing
kernel Mt is defined through risk-adjusted future pay-offs generated by an asset:

P(n)
t = Et

[
Mt+1P(n−1)

t+1

]
(1)

where P(n)
t is a price of a security (bond) with maturity of n. In order to approximate the

prices of risk, K = 5 principal factors (i.e. risk factors) are extracted from demeaned yields.
This practice goes back to the work of Litterman and Scheinkman (1991), where the first
three factors are intuitively interpreted as level, slope, and curvature of the yield curve. The
factors are assumed to follow a VAR(1) process:

Xt+1 = µ +ΦXt + vt+1 (2)

with normally distributed shocks to the state variables, vt+1 ∼ N(0,Σ). The stochastic dis-
count factor, on the other hand, is expressed using rt , the continuously compounded risk-free
rate, and the price of risk, given by λt :

Mt+1 = exp(−rt −
1
2

λ
′
t λt −λ

′
t Σ

−1/2vt+1) (3)

What is important in this type of model is that the price of risk is assumed to have an affine
form, as in an influential work by Duffee (2002):

λt = Σ
−1/2(λ0 +λ1Xt), (4)

while ex-ante excess returns for a given yield of maturity n are given by:

rx(n−1)
t+1 = lnP(n−1)

t+1 − lnP(n)
t − rt , n = 2, . . . ,N, (5)

with rt also defined as an affine function of risk factors, rt = δ0 +δ1Xt .

The major contribution of ACM comes with a conceptual approach to the estimation
procedure of λt based on factors in Xt and innovations to the VAR process. This procedure
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consists of three steps. In the first step, the VAR system from Equation (2) is estimated by
OLS. Residuals are collected in matrix V̂ , and the variance-covariance matrix is calculated
as Σ̂ = V̂V̂ ′/T .

The second step starts by stacking the excess returns for all maturities and periods in
an N ×T matrix rx. Here, based on the fitted NSS curve, the n = 1 month yield is taken
as a risk-free rate (rt ) of the model, and excess returns are calculated for N = 12 maturities
of n = 6,12,18, . . . ,60,84,120 months. In this stage, the ACM approach makes use of the
basic assumption that eventually allows us to retrieve the neutral rate and term premium.
Namely, it states that the excess returns may be decomposed into four parts: (a) expected
return, (b) convexity adjustment, (c) priced return innovation, and (d) return pricing error.
Hence, using a form stacked across maturities and time, it is indicated to run the following
regression:

rx = α +β
′V + cX−+E, (6)

where α is a constant, V contains contemporaneous innovations to the VAR, and X− denotes
lagged factors. Next, the error variance is calculated as σ̂2 = tr(ÊÊ ′/NT ), based on an
N ×T matrix of errors, Ê.

In the third step of the procedure, we use the outcome we obtained so far and calculate
the market prices of risk from Equation (4). The first of them is given as:

λ̂0 = (β̂ β̂
′)−1

β̂

(
â+

1
2
(
B̂∗vec(Σ̂)+ σ̂

2)) , (7)

where B̂∗ = [vec(β (1)β (1′)) . . .vec(β (N)β (N′))] is an N ×K2 matrix. Each of its elements
β (n) come from a K ×N matrix β̂ (the matrix contains coefficients on V̂ in Equation (6) for
a given maturity n). The second price of risk is derived as:

λ̂1 = (β̂ β̂
′)−1

β̂ ĉ. (8)

Finally, once λ̂0 and λ̂1 are estimated, we retrieve the sovereign yield curve in a recur-
sive way. This part of the modelling strategy follows a general rule applied in affine term
structure models to perform yield decomposition (Rebonato, 2018). Each bond yield is ex-
pressed again as an affine process, ŷt(n) = − 1

n (An +B′
nXt), and we denote factor loadings

for excess returns as β̂ (n) = B′
n. Altogether the system takes the form of two recursions and

two initial conditions:

An = A′
n−1 +B′

n−1(µ −λ0)+
1
2
(B′

n−1ΣB′
n−1)−λ0, (9a)

B′
n = B′

n−1(Φ−λ1)−δ
′
1, (9b)

A0 = 0, B0 = 0. (9c)

The risk-neutral component, i.e. the expected short-term interest rate, is extracted by setting
both market prices of risk λt to zero, because it is best described as a yield that does not
include any compensation for risk. The term premium component, in turn, is defined as a
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difference between the bond yield implied by the model and the neutral rate:

yP
t (n) = ŷt(n)− yN

t (n). (10)

As we aim at studying in detail only the decomposition of 10-year bond yields, we denote
yP

t (120) = yP
t and yN

t (120) = yN
t in the remainder of the paper. It must be highlighted here

that yP
t may be treated in a sense broader than mere term premium (duration or interest-rate

risk), as it gathers deviation from the neutral rate that may originate from various financial
and economic shocks, such as shifts in consumption growth or inflation. Additionally, we
calculate a long- and short-term interest rate spread that approximates the yield curve slope,
yS

t , based on the difference between the observed 10-year and 2-year bond yields (1-year
rate for Hungary). We use the term spread as a simple reference point for our term premium
estimates.

5. Empirical results

This section presents empirical results of the study. First, we explore the outcome of the
estimated pricing models and examine changes in sovereign bond yields using the resulting
decompositions. Next, we investigate international comovement in long-term rate compo-
nents, both among the CE economies and between each of them and Germany. Finally, as a
robustness check, we consider the bias-corrected outcomes of the ACM model.

5.1. Term premium and risk-neutral rate measures

The actual and fitted 10-year treasury bond yields, along with their components in all
three CE economies and Germany, are depicted in Figure 1. It must first be noted that
the ACM models produce a high-quality fit to 10-year yields. The series of actual and
fitted yields are almost identical, which indicates small errors relative to the values of the
modelled interest rates, just as in the ACM study on the US data. Starting with the estimates
of the risk-natural rates, we observe notable differences in these components among the
three CE economies. In Hungary, the neutral rate was considerably higher, especially in the
2000s, and more variable than in Czechia and Poland. A significant downward movement
that began in 2009-2010 brought this rate in Hungary from around 9% in 2009 to 3% in
2015. Conversely, the initial neutral rate in Czechia was relatively low throughout the entire
timespan. The country experienced a noticeable decline in this component between June
2008 and September 2013 (from 2.77% to 1.20%), but the neutral rate increased again post-
2017. In Poland, the most prominent feature is the flattening of the neutral rate series in the
latter part of the sample. After a decline from around 6% in the early 2000s, it quickly hit
a plateau of around 4% in 2005, and by a slow downward movement it reached 3.22% in
December 2019. Finally, the German neutral rate moved between 2% and 3% before the
crisis. It approached 0.55% in March 2013, going down from the highest value of 3.31% in
June 2008.

Term premia, the differences between actual and neutral rates, exhibit similar patterns
in Czechia and Poland. First, the average value of this component throughout 2001-2019
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was equal to 1.84% in the former economy, and 1.71% in the latter. The term premium
in Poland, however, generally made up to a much smaller fraction of the 10-year yield.
For example, in January 2006 the premium was equal to around 24% of the actual rate in
this economy, while in Czechia this fraction stood at ca. 39%. Second, around 2008-2009
there was a clear upswing in premia in both economies (although a more pronounced one
in Czechia), which may be understood as an increase in compensation for risk of holding
Czech and Polish 10-year bonds during the onset of the financial and economic crisis. The
same is true for Germany in this period. The term premium remained relatively high and
positive in Czechia and Poland until 2012 when it started declining rapidly. In Poland, it hit
zero in July 2014, and in Czechia a month later. From 2015 to 2019, its mean values were
negative. Spreads between 10-year and 2-year bonds were generally lower than the term
premium before 2013 and higher afterwards. There are some periods, such as 2008-2009
and 2014-2015, when the term spread moved in the same direction as the model-implied
term premium.

0

2

4

6

2005 2010 2015 2020

p
er

 c
en

t

Czechia

0

5

10

2005 2010 2015 2020

p
er

 c
en

t

Hungary

0

4

8

12

2005 2010 2015 2020

p
er

 c
en

t

Poland

0

2

4

2005 2010 2015 2020

p
er

 c
en

t

Germany

10Y rate ACM fitted rate ACM neutral rate ACM term premium Term spread

Notes: risk-neutral rates and term premia estimated in the ACM term structure model; term spread
calculated as a difference between 10-year and 2-year bond yields.

Figure 1. 10-year sovereign yields and their risk-neutral and term premium components

Due to generally high natural rates, the picture is different for Hungary. Up to 2010,
the behaviour of the ACM term premium and the term spread was quite unlike in Poland
or Czechia. The expected path of short term rates in Hungary was higher than the 10-
year yield for most of the period from 2001 to 2009. Therefore, the term premium in this
economy remained predominantly negative, going as low as -1.5% in 2003, which must
be considered an anomaly. It may be a consequence of the fact that the sovereign yield
curve in this economy was inverted for a relativity long period, compared to Czechia and
Poland. In Czechia, this phenomenon did not occur, while in Poland, it was only detected
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at the very beginning of the sample. In models re-estimated using yield series covering the
post-2003 period, when inflation rates in CE economies further declined, the behaviour of
term premia is highly comparable to the baseline estimates for all economies (those results
are available upon request). The connections between term premium and observed rates in
Hungary became more similar to that in Czechia and Poland from 2009 onwards. The term
premium hiked to roughly 2.5% in 2008-2009, and then, around 2014-2015, it significantly
declined, reaching very low and negative values in the last five years of the analysis.

5.2. Changes in long-term yields and their components

To get a closer look into long-term yields dynamics in CE economies, we first obtain
month-to-month differences in long-term interest rates and their components. We next graph
average annualised changes in 10-year yields, decomposed into risk-neutral rates and term
premia (Figure 2). This decomposition indicates that in Czechia and Poland, changes in
actual yields revealed a stronger connection to term premium dynamics. Most of the time,
term premia were also decisive for the direction in which the 10-year rates moved in a given
year. In fact, large swings in those yields in Czechia and Poland, such as ones observed
between 2012 and 2014, were driven specifically by term premia. On the other hand, the role
of the neutral rates was more pronounced for Hungary and it became less evident only post-
2014. What seems distinct for Hungary among the CE economies, but also for Germany
before 2010, is that there were numerous periods when changes in both components had
inverse signs. For example, throughout 2002-2007 the risk-neutral rate and term premium
dragged Hungarian 10-year rate in opposite directions, largely offsetting their individual
contributions to the actual bond yield.
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Figure 2. Decomposition of annual changes in the 10-year sovereign yields
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The variance shares of respective 10-year yield components, calculated as in Moench
(2018), supplement our previous observations (Table 1). In Czechia and Poland, the ratio
of changes in neutral rates to 10-year rates (∆yN

t ,∆yt) in the entire sample equalled 12.82%
and 15.16%, respectively. This ratio decreased in the second subsample (2009-2019), and
for Czechia it went as low as 4.78%. At the same time, the variance shares of term premium
∆yP

t in ∆yt increased, and this component became a visibly stronger driver of interest rates.
In Czechia, the term premium variance shares were larger than the corresponding value for
neutral rate by the factor of 19.5, and in Poland by 11.5. However, the most evident shift
is observed for Hungary, where the variance ratio for term premium boosted from 21.86%
to 77.60%. The variance shares of the term spread in sovereign bond yields (∆yS

t ,∆yt)

were comparatively lower than their term premium counterparts. This ratio was highest
for Hungary in the second subperiod but generally low in the Polish bond market, which
speaks to the disconnect of those two series, especially before 2009. Post-2009, when the
term spread shares categorically increased, their behaviour confirms a stronger impact of
risk premia on bond yields.

Table 1. Changes in 10-year yields and their components: variance shares and correlations
Variance shares Correlations

∆yN
t , ∆yt ∆yP

t , ∆yt ∆yS
t , ∆yt ∆yN

t , ∆yP
t ∆yN

t , ∆yS
t ∆yP

t , ∆yS
t

20
01

-2
01

9 Czechia 0.1282 0.8527 0.4739 -0.0850 -0.5501*** 0.7937***
Hungary 0.4112 0.5784 0.3611 -0.0159 -0.4177*** 0.8846***
Poland 0.1516 0.8208 0.1651 0.5069*** -0.2878*** 0.3826***
Germany 0.3168 0.6754 0.3074 -0.0684 -0.5103*** 0.8149***

20
01

-2
00

8 Czechia 0.2843 0.6914 0.1457 0.2684** -0.5063*** 0.5574***
Hungary 0.7599 0.2186 -0.2027 -0.2347** -0.7011*** 0.8231***
Poland 0.1959 0.7658 -0.0368 0.6769*** -0.3877*** 0.0613
Germany 0.5404 0.4461 -0.0140 -0.1329 -0.6932*** 0.7245***

20
09

-2
01

9 Czechia 0.0478 0.9362 0.6421 -0.2217** -0.5483*** 0.8638***
Hungary 0.2220 0.7760 0.6735 0.1572* -0.0459 0.9563***
Poland 0.0792 0.9126 0.4894 0.2639*** -0.0771 0.7241***
Germany 0.1675 0.8263 0.5150 0.0414 -0.2156** 0.8862***

Notes: 10-year yields variance shares of the ACM natural rate, term premium, and 10-year over 2-year spread

are given as Cov(∆yt ,∆yN
t )

Var(∆yt )
, Cov(∆yt ,∆T P)

Var(∆yt )
, and Cov(∆yt ,∆yS

t )
Var(∆yt )

, respectively; ***, **, and * indicate significance of
Pearson linear correlation coefficient estimates at the 0.1, 0.05, and 0.01 levels, respectively.

As we turn to correlations of long-term interest rates components, it must first be noted
that in the entire sample coefficients calculated between changes in estimated risk-neutral
rates and term premia (∆yN

t ,∆yP
t ) are statistically significant only for Poland. In this case,

the term premium was typically decreasing while the neutral rate was also going down.
However, the opposite regularity of negative correlation between (∆yN

t and ∆yP
t ) entails in

Hungary in the first subsample and in Czechia post-2009. Neutral rates and yield spreads
(∆yN

t , ∆yS
t ) were generally inversely correlated, even though this correlation is not strong.

Negative correlations indicate in this case that downward shifts in the neutral rate were
connected to an increase in the slope of sovereign yield curves. Term premia and term
spreads (∆yP

t , ∆yS
t ) mostly changed in the same direction. This relationship, however, was

weaker pre-2009, for all economies but most notably for Poland.

5.3. International comovements in long-term interest rates

In order to investigate international linkages in long-term yields, we first calculate av-
erage cross-country differences in 10-year yields and their components pre- and post-2009
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(Table 2). The two-sided t-tests for differences in means indicate an interesting relationship.
Distances in actual bond yields between the CE economies remain almost the same in two
subsamples, with statistically insignificant differences in mean values. In Czechia, the 10-
year rate was on average ca. 3 points lower than in Hungary and ca. 1.9 points lower than in
Poland, while Hungarian yields were around 1.1 point higher than Polish ones. At the same
time, Hungary reduced its distance to Czechia and Poland both when it comes to the neutral
rate and the term premium. On the other hand, for Czechia and Poland, the differences
in term premium components vis-à-vis Germany decreased, but the distance between the
neutral rates significantly widened. For the Hungary-Germany pair, the opposite was true.

Table 2. Mean values of differences in 10-year bond yields and their components
yt yN

t yP
t yS

t

Czechia - Hungary
2001-2008 -3.0078 -5.1967 2.2842 2.3090
2009-2019 -3.0995 -3.0048 -0.0303 -0.7084

t-test 0.5333 0.0000 0.0000 0.0000

Czechia - Poland
2001-2008 -1.9189 -1.8369 -0.0072 1.1753
2009-2019 -1.8600 -2.0258 0.1944 0.2499

t-test 0.5859 0.0000 0.0076 0.0000

Czechia - Germany
2001-2008 0.3463 -0.0738 0.4015 0.1710
2009-2019 0.9730 0.7956 0.1618 0.1421

t-test 0.0000 0.0000 0.0000 0.5506

Hungary - Poland
2001-2008 1.0889 3.3598 -2.2913 -1.1337
2009-2019 1.2395 0.9791 0.2247 0.9583

t-test 0.4289 0.0000 0.0000 0.0000

Hungary - Germany
2001-2008 3.3541 5.1228 -1.8827 -2.1380
2009-2019 4.0725 3.8004 0.1922 0.8505

t-test 0.0000 0.0000 0.0000 0.0000

Poland - Germany
2001-2008 2.2652 1.7630 0.4086 -1.0043
2009-2019 2.8330 2.8214 -0.0326 -0.1078

t-test 0.0000 0.0000 0.0000 0.0000
Notes: yt , yN

t , yP
t , and yS

t denote country differences in average values of actual 10-year sovereign rates,
neutral rate, term premium, and term spread, respectively; p-values of the two-sided t-test; null hypothe-
sis: mean values are equal between subsamples.

Next, we analyse correlations in bond yields and their components among countries.
The rolling correlations that we obtain for changes in the term premia differ substantially,
both across pairs of countries and in time (Figure 3). The correlation coefficient between
Czechia and Poland was positive, fairly stable (in the whole sample: 0.49), and predom-
inantly significant in the rolling window of 24 months. In pairs Czechia-Hungary and
Hungary-Poland, we observe an upward trend in point estimates of the coefficient. In the
former case, however, its values were on average smaller and increased in two periods:
2009-2011 and 2016-2017. The whole-sample correlation in term premia was comparably
high and significant for Czechia-Germany (0.52) and Poland-Germany (0.39). In both cases,
the coefficient declined around the global financial crisis (GFC), although visibly earlier for
Czechia (around 2009) than for Poland (around 2011). Above all, developments in those
correlations are consistent with comovements in 10-year yields. For Hungary-Germany, the
correlation was hardly significant (in the whole sample, p-value of 0.089), and the confi-
dence band included zero right up to 2013-2015 when it moved into positive territory where
is stayed until 2018.

Figure 4 summarizes correlations of monthly changes in risk-neutral rates. In general,
when it comes to correlations among the CE economies, the estimates are notably lower
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than the previously reported values and range from 0.24 (Czechia-Hungary) to 0.33 (Poland-
Hungary; both p-values of 0.00). The rolling correlations became larger from 2005 to 2010
(Czechia-Hungary and Czechia-Poland), and from 2013 to 2015, with a brief period of sig-
nificantly negative values around 2015-2016 (Hungary-Poland). Corresponding correlation
coefficients with Germany were considerably smaller. In the entire sample, the point esti-
mate of the coefficient was highest for Poland (0.21, p-value 0.00), lower for Czechia (0.13,
p-value 0.06), and close to zero for Hungary. Additionally, there was a clear negative trend
in the rolling correlations for Czechia-Germany and Hungary-Germany pairs, at least until
2013-2014.
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Figure 3. Cross-country correlations: changes in term premia
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Figure 4. Cross-country correlations: changes in risk-neutral rates

5.4. Bias-corrected estimates

In the baseline ACM term structure model, the variables used to retrieve risk-neutral
rates are derived from principal components of bond yield series. These components, in
turn, are assumed to jointly follow an auto-regressive process given in Equation (2). How-
ever, as documented by Bauer and Hamilton (2012), such a VAR model estimated on a set of



STATISTICS IN TRANSITION new series, March 2022 165

interest rates may be subject to small-sample bias. This bias is mainly related to high persis-
tence – in our case, a downward trend – in interest rate series used to extract risk factors. In
consequence, the baseline procedure may overestimate the term premium components and,
equivalently, underestimate changes in neutral rates in the underlying bond yields. To ease
this problem, we employ the stationarity adjustment correction for VAR models developed
by Kilian (1998). In a nutshell, this procedure aims at eliminating unit or explosive roots in
auto-regressive models by discarding the estimated models that reveal such characteristics.
Based on this approach, we estimate the bias-corrected ACM model using 10000 bootstrap
replications. Resulting term premium estimates are depicted in Figure 5.

Noticeably, in the Polish case, the term premium series (and risk-neutral rates) obtained
from the bias-corrected model turn out to be almost identical to the one from the baseline
model. The bias-correction, however, has an impact on the decomposition of long-term
rates for all remaining economies. There are two main differences with respect to the initial
models. First, risk-neutral rates become somewhat lower and more variable for Czechia,
Hungary, and Germany, especially after 2009. On average, they decrease by 0.3 points for
Czechia, and by 1.1 points for Hungary. Interestingly, the negative values that we obtain for
Germany from 2015 are now more consistent with the evidence on the natural rate of interest
in the euro area presented by Holston, Laubach and Williams (2017). Second, the term
premium estimates are generally lower pre-2009 and higher afterwards. Even though they
are not necessarily negative after 2013, they still reach comparably low levels in Czechia
and Germany, and their general tendencies are unchanged relative to the baseline estimates.
In Hungary post-2013, the term premium fluctuates as much as 1.5 points above the baseline
outcomes.
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Figure 5. Model-implied term premium series: baseline and bias-corrected estimates
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Next, we inspect whether the correction of the ACM model substantially influences the
results on the international comovement in long-term interest rates (Table 3). As expected,
the role of term premia diminishes in the corrected model at the expense of neutral rates.
However, correlations in term premia remain visibly more important than comovements
in neutral rates for Czechia-Poland, Czechia-Germany, and Poland-Germany pairs. Corre-
sponding correlations between Hungary and Germany are even weaker than in the baseline
model. Correlations in pairs Hungary-Poland and Czechia-Hungary stay on similar levels
when it comes to the neutral rate, but are now lower for the term premium, again speak-
ing for a distinctive character of the Hungarian sovereign bond market. In sum, however,
these results suggest that our baseline estimates are subject to uncertainty, but the common
patterns in their comovements identified before remain uninterrupted.

Table 3. Cross-country correlations between the risk-neutral and term premia
components: baseline vs. bias-corrected ACM model

Baseline Bias-corrected
∆yN

t ∆yP
t ∆yN

t ∆yP
t

Czechia - Hungary 0.2368*** 0.2892*** 0.2320*** 0.1606**
Czechia - Poland 0.3006*** 0.4920*** 0.2821*** 0.4156***
Czechia - Germany 0.1288* 0.5215*** 0.1332** 0.3493***
Hungary - Poland 0.3255*** 0.4297*** 0.3412*** 0.2341***
Hungary - Germany -0.0904 0.1145* -0.1059 0.0400
Poland - Germany 0.2138*** 0.3898*** 0.1520** 0.2658***

Notes: see Table 1.

6. Discussion

Based on the empirical results reported in the previous section, this part of the paper
discusses our major findings. In the first place, our results signify the role played by term
premium components in the cross-border transmission of changes in long-term sovereign
rates. For all three CE economies, we show that a higher dependence of bond yields on
changes in term premia led the way to a more substantial influence of foreign factors on
domestic bond markets. This pattern was evident for Czechia and Poland, which supports
Kolasa and Wesołowski (2020), who demonstrate that in the Polish case, quantitative easing
policies in advanced economies generated large effects for domestic sovereign bond markets
precisely via term premia. In the case of Hungary, the situation seems to be more complex,
as the country differs from Czechia and Poland when it comes to international interdepen-
dencies in the long-term interest rates. A plausible explanation of such differences comes
from this country’s higher idiosyncratic risk. Orłowski and Tsibulina (2014), for example,
attribute Hungary’s relative financial disintegration with the euro area to its weaker macroe-
conomic fundamentals. There is, however, an indication of convergence in term premium
behaviour between Hungary and two remaining CE economies post-2012.

The role of the neutral rate as a driver of 10-year yields dynamics between the CE
economies and Germany proved to be of secondary importance in the period of 2001-2019.
It is worth noting that from around 2013, the decline of term premium in Germany coincided
with a negative trend in the risk-neutral rate in this economy. On the contrary, in Poland,
the neutral rate remained flat, and in Czechia it even increased in the last three years of
the analysis. Consequently, as of 2019, the actual 10-year rates in Czechia, Hungary, and
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Poland still stood 1.82, 2.27, and 2.25 points higher than German ones, respectively. The
differences in risk-neutral rates equalled 1.46, 2.23, and 2.89. If we agree that the yields
on German bunds are the lower-end reference point of bond yields in the European Union,
the way for the 10-year bonds in the CE economies to converge to the core euro area levels
must involve a reduction in the expected path of short-term interest rates. In this regard, the
monetary response of the CE central banks to the COVID-19-induced crisis may contribute
to a decrease in the risk-neutral component of bond yields in these economies, but this
warrants further research in the area.

The finding that the behaviour of long-term sovereign rates in the CE countries became
more reliant on factors other than the expected path of short term rates has important policy
implications. On the one hand, it indicates that between 2009 and 2019 monetary policies in
the CE economies were generally tighter and more passive than in the EMU, which accounts
for sluggish changes in the neutral rates. On the other hand, it may also imply a limited im-
pact of domestic monetary policy in these economies on the longer end of the yield curve
through changes in term premia. What is more, it has been shown that as term premium
components decline, they tend to become more sensitive to sudden decompressions, espe-
cially when they take unusually low values or fall below zero (Kopp and Williams, 2018).
An exogenous negative shock may boost risk premia by altering inflation expectations, an
outlook on future growth, or investors’ sentiments, and have an eventual impact on monetary
and macroeconomic conditions in CE economies.

In a broader sense, our results highlight the importance of international financial fac-
tors for the CE economies, and related susceptibility to shocks that originate in larger
economies (Rey, 2016). It is not the same as saying that central banks in CE economies
are entirely powerless in influencing long-term interest rates. However, in small economies
with open bond markets, this impact seems to be limited, especially following the GFC.
Even though Czechia, Hungary, and Poland avoided large spikes in 10-year yields during
the taper tantrum episode of 2013, the interdependencies we identify tend to increase their
exposure to sudden term premium shifts. For example, inflationary pressures or high levels
of public debt may force investors to demand higher premium on long-term bonds. Con-
versely, we do not find much evidence that would lend support to the widely discussed
secular stagnation hypothesis (Eggertsson, Mehrotra and Summers, 2016). As far as the
10-year sovereign yields go, the role of neutral rate in spreading a decline in interest rates
to CE economies was relatively small, to begin with, and it diminished after the GFC.

7. Conclusions

Long-term interest rates rank among the most important financial and macroeconomic
benchmarks, both from a domestic and international point of view. This paper aimed to
examine the sovereign 10-year bond yields in three Central European economies, Czechia,
Hungary, and Poland, from 2001 to 2019. We employed the ACM term structure to extract
time-varying risk-neutral and term premium components of bond yields. We discussed the
evolution of these components, along with their relative role in driving the actual interest
rates. In the next steps, we studied international comovements of 10-year yields between



168 J. Janus: Long-term sovereign interest rates ...

the CE economies and Germany. As an extension, we corrected the baseline term structure
model for a small sample bias.

In summary, three main points stand out. First, we find that Czechia and Poland, on
the one hand, and Hungary, on the other, exhibited different patterns of sovereign long-term
interest rates decomposition before 2009. Hungary experienced elevated neutral rates (the
expected path of short-term interest rates), while Poland and Czechia relatively high term
premia. Post-2009, both risk-neutral and term premium components declined substantially
in all three CE economies. In particular, term premia were considerably compressed and
approached zero (Hungary) and negative values (Czechia and Poland) around 2013, driving
10-year yields to historically low levels.

Second, we demonstrate that term premia played a larger role in the dynamics of 10-year
interest rates in all three CE economies throughout 2001-2019. After 2009, their contribu-
tion was even more pronounced. Shifts in term premia explained around 90% of changes
in long-term rates in Czechia and Poland, and over 80% in Hungary. At the same time, the
role of the risk-neutral rates widely diminished. This phenomenon resembles tendencies
observed in the last decade in the major advanced economies.

Third, we show that the 10-year rates in CE economies were higher than in Germany
due to relatively larger values of risk-neutral rates, rather than term premium components.
Cross-country correlations in 10-year yields were driven mostly by changes in term pre-
mia, and Czechia and Poland exhibited stronger ties with each other and with Germany.
Hungary’s connection to other economies was generally feeble but increased post-2012.
Additionally, we demonstrate that the bias-corrected term structure models often produce
higher estimates of term premia and lower neutral rates, especially in the second part of the
sample.

A major limitation of this study comes from the fact that it relies solely on information
embedded in the term structure of benchmark sovereign yields. In subsequent research, the
results may be enhanced by using different interest-rate datasets and extending the study to
include the COVID-19 period, e.g. by investigating the impact of non-standard monetary
policies implemented in CE economies on long-term bond yields (Rebucci, Hartley and
Jimenez, 2021). Also, it may be the case that macroeconomic risk factors, which could
help in obtaining more precise estimates of risk premia, are "unspanned" by the yield curve
(Joslin, Priebsch and Singleton, 2014). Some of those predictors may be directly included
in yield curve modelling to expand our understanding of long-term interest rates in CE
economies. As such, the results provided in this paper may serve as a useful yardstick for
future work in this area.
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Variance estimation in stratified adaptive cluster sampling 
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ABSTRACT 

In many sampling surveys, the use of auxiliary information at either the design or estimation 
stage, or at both these stages is usual practice. Auxiliary information is commonly used to 
obtain improved designs and to achieve a high level of precision in the estimation of 
population density. Adaptive cluster sampling (ACS) was proposed to observe rare units 
with the purpose of obtaining highly precise estimations of rare and specially clustered 
populations in terms of least variances of the estimators. This sampling design proved to be 
more precise than its more conventional counterparts, including simple random sampling 
(SRS), stratified sampling, etc. In this paper, a generalised estimator is anticipated for a finite 
population variance with the use of information of an auxiliary variable under stratified 
adaptive cluster sampling (SACS). The bias and mean square error expressions of the 
recommended estimators are derived up to the first degree of approximation. A simulation 
study showed that the proposed estimators have the least estimated mean square error under 
the SACS technique in comparison to variance estimators in stratified sampling. 

Key words: variance estimator, stratified sampling, stratified adaptive cluster sampling (SACS). 

Significance statement 

The stratified adaptive cluster sampling technique is an efficient technique used for 
the population of plants or animals in biological and ecological surveys, which are 
effective in estimating the population variance when the measurement of the variability 
of observations is difficult. The main task of this study is to develop a sampling 
technique and efficient estimators using auxiliary information for estimation of finite 
population variance. On the basis of a simulation study, the performance of the 
proposed variance estimators using the stratified adaptive cluster sampling technique 
is better than the competing variance estimators using stratified random sampling for 
clustered, hidden and patchy populations.          
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1. Introduction 

In the theory of survey sampling, it is well recognized at the estimation stage known 
information of auxiliary variables to increase the precision of the estimators of 
unknown population parameter(s) in different sampling techniques. Several authors 
have used information of auxiliary variates like population mean, population variance, 
kurtosis, skewness, etc., to estimate population mean and variance of the study variable. 
In our daily life, variation is present everywhere. According to the law of nature, no two 
things or individuals are the same. For instance, a manufacturer wants stable 
information about the level of variation in consumer’s response to his product to be 
able to know whether to increase or reduce his price, or improve the value of his 
product. For these reasons, several authors have done important work in this field such 
as Das and Tripathi [1], Isaki [2], Shabbir and Gupta [3], Tailor et al. [4] and Subramani 
and Kumarapandiyan [5] and Yasmeen et al. [8]. 

In ecological and environmental surveys, conventional sampling techniques are not 
frequently applicable as the consequences obtained from such sampling designs may 
not be reliable due to lack of information on characteristics of the population. Different 
types of population are needed in different sampling procedures according to their 
characteristics. Many populations of plants or animals have different types of cluster 
tendencies, often the size or the shape of the cluster cannot be recognized before the 
survey. Applications of sampling methods in real environmental sciences were 
discussed by Cormack [6]. He mentioned special designs and these designs are needed 
for environmental sciences. ACS is an efficient method for population which have 
cluster rare tendencies suggested by Thompson [7]. He suggested an unbiased 
estimator for the population mean by modifying the Hansen-Hurwitz estimator.  

The greatest challenge is the estimation of COVID-19 virus cases in all over the 
world. Many people do not like to come to laboratories for COVID-19 test or they do 
not have any symptoms. In such situations for the selection of a sample using simple 
random sampling or many other techniques for testing to estimate the actual number 
of COVID-19 cases in the different countries. But precise estimates are still a challenge. 
Chandra et al. (2021) recommended adaptive cluster sampling technique to provide 
precise estimates of the number of infected persons. So in real life, the adaptive cluster 
sampling, stratified adaptive cluster sampling and systematic adaptive cluster sampling 
technique might be a useful source in finding or tracing the distribution of COVID-19-
affected people, for developing the mathematical models for prediction and to get the 
efficient estimates of the number of COVID-19-affected cases.  

In the geographical survey area for the application of the stratified adaptive cluster 
sampling technique, the survey region can be divided into smaller but same regions 
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according to a recognized variable like plant species, habitat or soil type. While a large 
region seems to be homogeneous, the stratified sampling approach based on 
geographical locations can be used to produce a sample gathered over the whole area. 
The overall variability in the estimation can be reduced when stratification leads to 
reduced variability within a stratum with larger variation across strata. Moreover, the 
most precise estimator is obtained when the units in each stratum are as similar as 
possible Thompson [12]. 

By the motivation of many authors, we anticipated variance estimator utilizing 
midrange, kurtosis, the median, the tri-mean, the coefficient of correlation, the 
coefficient of variation, the coefficient of skewness and the quartile deviation with the 
help of single auxiliary variate information under stratified adaptive cluster sampling 
approach to estimate the finite population variance respectively. 

In this paper, variance estimators have been suggested under the stratified adaptive 
cluster sampling (SACS) design. Section 2 presents the sampling procedure to follow 
the SACS design. In Section 3, the proposed estimators for the estimation of population 
variance have been presented. The derivation of the bias and minimum mean square 
error (MSE) of each estimator are obtained. The simulation study of the  
proposed estimators and the existing ratio estimator is accomplished in Section 4. 
Section 5 concludes this paper. 

2. Stratified adaptive cluster sampling design for variance estimation  

Suppose a finite population Q of size N divided into L non-overlapping strata of 
size Nh. Let yhi  be the value of response varíate (y) and  xhi be the value of auxiliary varíate 
(x), for ith (i=1,2,…..,Nh) population unit Q in the hth stratum (h=1,2,….,L). Suppose 

a sample of size nh  from hth stratum is drawn by SRSWOR, where 
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For the SACS design, let N be denoted as the total number of units in the 
population. Associated with unit Thi , the ith unit of stratum h is a variable of interest yhi. 
For any unit Th of the population, the neighbourhood of unit  Thi is defined as a 
collection of units which includes Thi and with the property that ,if unit Th’i’ is in the 
neighbourhood of unit This, then unit Thi is in the neighbourhood of unit Th’i’. A unit Thi 
is said to fulfil pre-defined condition of interest if the y value associated with that unit 
is in a specified set C. 

The first sample of units is selected from a population using stratified random 
sampling technique, that is within stratum h, a simple random sample on nh units 
designated without replacement, the selection for separate strata being made 
independently. When a selected unit satisfies the condition, all units in its 
neighbourhood not already in the sample are added to the sample. Still further units 
may be added to the sample when any extra-added units satisfies the pre-defined 
condition, so that the final sample include every unit in the neighbourhood of some 
sample unit satisfying the condition.  

For the unit Thi, the new variate whi is the total of the y variate of the network to 
which belongs to Thi. Weighted by the stratum sampling fraction and divided by 
a weighted sum of the network-stratum intersection. 
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intersection of stratum h with the network which contains unit Thi. khi is the total value 
of the y-values in the intersection of stratum h with the network that consist of Thi unit 
and mkhi is the number of units in this intersection. The usual variance of  
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The variance  estimator for stratified sampling given in Shabbir and Gupta [3] is  
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3. Proposed estimator 

The following proposed estimator is suggested of finite population variance 
utilizing the coefficient of skewness, kurtosis, tri-mean, median, quartile deviation 
under stratified adaptive cluster sampling given by 
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By using the notations given in Section 2, the proposed variance estimator (3.1) can 
be written as    

 
   

 

22
2

2
1

(1 ) 1 .
L

wx h wx hh
G wywy h

h h wx h

S ew
t S e

n s



 

  
    

    
             (3.2) 

After simplifications of this estimator, applying expectations on both sides of (3.3), 
using the notation given in Section 2, the bias of the recommended variance estimator 
(3.1) is given by                 
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In order to derive mean square error of Gt , again using (3.3), ignoring the higher 
order power terms, we attain 
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We try these estimators but in this article we discussed three estimators which are 
most efficient among them. 

4.  Simulation study 

The stratified adaptive cluster sampling design is an efficient procedure and flexible 
technique for capturing more information for hidden and patchy clustered 
populations. It is a well recognized procedure and suitable a different choice to collect 
a sample from population. In the section of this study, we consider the performance of 
SACS design having single auxiliary variable with conventional and non-conventional 
measures for the variance estimation of population variance. Dryver and Chao [10] and 
Chao et al. [11] have generated the values for the study variable utilizing the models 
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(4.1) and (4.2) in such a procedure that there is a strong positive correlation between 
study variate and simulated variate at unit level. 

  4hi hi hiy x    ;      j ~ (0, )hiN x                                     (4.1) 

 4hi xhi xhiy w    ;      j ~ (0, )xhiN w                                  (4.2) 

In this system the population is simulated using the model (4.1) has recognized 
a clearly mentioned sign for strong correlation between variable of interest and 
auxiliary variable at unit level as well as network level. The model (4.2) has a clear sign 
for a strong correlation between auxiliary variate and response variable at the network 
level for simulated population. The population used for simulation is taken from 
Thompson [8]. The study area is divided into 2 strata and the stratum size is 20*10 = 
200, units formed from 20 rows and 10 columns. For each iteration, an initial sample is 
selected by simple random sampling without replacement in every stratum. 
A neighbouring unit is distinct as the spatially adjacent units (left, right, top, and 
bottom) of that unit. 10,000 iterations were performed for every estimator to attain an 
efficient estimate. The total of x values is 223 and the average value is 0.5575. The total 
of y values is 690 and the average value of y values is 1.725. The values of y are 
generated by model 5.1. The condition of interest  : 0c y y   for added units in the 
sample is used. In each stratum, initial simple random sample sizes were varied  

hn  = 2, 3, 4, 5, 10, 20, 25, 30, 40, 50, 100 and initial samples n = 4, 6, 8, 10, 20, 40, 50, 
60, 80, 100, 200 were used for all strata. The expected final sample of size n differs 
from sample to sample in SACS.  

Let  E v  = 7.89, 11.69, 15.41, 19.04, 36.08, 65.59, 78.64, 90.84, 113.31, 133.99, 
226.06 denote the final expected sample size in stratified adaptive cluster sampling. 

The expected sample size is the expected number of distinct units in the final 
sample, is the sum of the N inclusion probabilities of all the quadrants in the population. 
It is generally larger than the initial sample size and increases with the increase of the 
initial sample size. 

The comparison of the proposed variance estimator has been made with the 
variance estimator given in Shabbir and Gupta [3]. The expected final sample size varies 
from sample to sample in ACS. 

The estimated variances of all the suggested estimators considered in this paper 
have been computed and presented in Table 5.1. and Table 5.2. for population 
generated by model 4.1 and 4.2 respectively. The results obtained from Table 5.1. and 
Table 5.2. show that the variances of the proposed estimators are very low as compared 
to the variance estimator given in Shabbir and Gupta [3] estimator and the results of 
variances of all the suggested estimators are decreasing on different primary and 
expected final sample size. 
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Ten thousand iterations were used to generate samples from population to the 
achievement of the efficient estimates. In this paper, the variances of the proposed 
estimators better by increasing the length of the sample according to the results of the 
simulation study, which are shown in Table 5.1. and Table 5.2. The suggested stratified 
variance estimators have been developed using known population co-efficient of 
variation, population co-efficient of correlation, population tri-mean, median, quartile 
deviation, coefficient of skewness and coefficient of kurtosis with the information of 
interest variable and auxiliary variable. It is observed that the variances of the developed 
estimators are smaller than the variance estimator given in Shabbir and Gupta [3] 
estimator under the stratified adaptive cluster sampling procedure and as Figure 5.1. 
designates, the developed variance estimators perform better than the variance 
estimator given in Shabbir and Gupta [3] when the initial sample size is greater than 2 
or more.  

Hence, the class of stratified variance estimators developed in this paper can be used 
for enhanced results and preferred for hidden and patchy populations in practical 
location. Moreover, simulation studies reveal that the variances for the suggested 
estimators are lower than the variance estimator given Shabbir and Gupta [3] 
in conditions of population. 

5.  Concluding discussion 

The consequences of the study simulation are given in Table 5.1. with model 5.1 
and Table (5.2.) with model 5.2 for three proposed estimators from SACS procedure. 
The results of the simulation study are obtained from population provides efficient 
form of variances from SACS technique than the stratified simple random sampling 
technique for the highly clumped, patchy or hidden population. In this paper, three 
estimators have been proposed by using a number of conventional and non-
conventional measures for interest variable with single auxiliary variable. The variances 
have been shown in Tables 5.1. and Table 5.2. The developed estimators are found to 
be more efficient as compared to variance estimator given by Shabbir and Gupta [3] for 
estimation of finite population variance. The last conclusion obtained from the 
simulation study confirmed that the proposed estimators are most efficient than the 
estimator given by Shabbir and Gupta [3] in SACS design on population for different 
sizes of the sample. The results of variances have shown in Figure 5.1. indicate that the 
proposed estimators have been minimum variance compare than the existing 
estimator. The results of Table 5.2. have presented poorer performance of the estimator 
given in Shabbir and Gupta [3] paper using stratified simple random sampling because 
of the week correlation between interest variate and auxiliary variate at the network 
level. According to this study of simulation the 0/0 quantity is assumed to be zero 



STATISTICS IN TRANSITION new series, March 2022 

 

181

because Dryver and Chao [2] assumed 0/0 as 0 for the ratio estimator so that the 
suggested variance estimators using SACS technique returned the values for small 
sample sizes in population. The amount of estimated variance on population was found 
to decrease as well as the sample size increases. 

Finally, on the basis of the simulation study, the performance of the proposed 
variance estimators using SACS technique is better than the competing variance 
estimator given in Shabbir and Gupta [3] estimator using stratified random sampling 
for clustered, hidden and patchy populations. The results of simulation study supported 
that stratified adaptive cluster sampling scheme can be a cost effective and time-saving 
sampling scheme, and it is suitable for sampling in a spatially accumulated population. 

Table 5.1.  Variances for different suggested estimators under stratified adaptive cluster design 
 under simulated model 5.1 using population  

 

Table 5.2.  Variances for different suggested estimators under stratified  adaptive cluster design 
 under simulated model 5.2 using population  

 

Sample      
size s 

( )E v   var    1var t   2var t   3var t  

4 7.89 1157.959 226.426 217.049 219.604 
6 11.69 708.404 138.573 140.596 141.114 
8 15.41 504.876 97.2011 95.733 98.784 

10 19.04 373.676 70.459 70.898 69.946 
20 36.08 127.508 22.929 23.543 23.844 
40 65.59 28.111 5.131 5.159 5.119 
50 78.64 14.823 2.681 2.672 2.643 
60 90.84 8.303 1.468 1.464569 1.463 
80 113.31 2.732 0.468 0.448 0.459 

100 133.99 0.946 0.140 0.151 0.146 
200 226.06 0.016 0.000 0.000 0.000 

Sample      
size s 

( )E v   var    1var t   2var t   3var t  

4 7.89 13217511 240.646 218.97 216.392 
6 11.69 7393951 151.805 138.892 138.683 
8 15.41 5064571 102.362 94.193 98.191 

10 19.04 3959354 74.795 69.168 70.735 
20 36.08 1363876 24.810 23.598 23.677 
40 65.59 432186.7 5.202 5.145 5.131 
50 78.64 277516.3 2.706 2.686 2.694 
60 90.84 161725.8 1.463 1.465 1.454 
80 113.31 65089.37 0.462 0.466 0.452 

100 133.99 29852.82 0.143 0.142 0.144 
200 226.06 194.552 0.000 0.000 0.000 
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Figure 5.1.  Variances of developed estimators under SACS design to the variance estimator given 

 in Shabbir and Gupta [10] under stratified sampling with comparable sample sizes 
 under models. 
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APPENDIX 
 

Table C.1. x-population 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 14 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 36 34 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 3 63 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 16 3 0 0 0 2 12 12 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 2 57 65 17 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 5 14 5 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Interval Type-2 fuzzy Exponentially Weighted Moving  
Average Control Chart 

Akeem Ajibola Adepoju1, Sauta S. Abdulkadir2,  
Danjuma Jibasen3, Haruna Chiroma4 

ABSTRACT 

Some industrial data often come with uncertainty, which in some cases depends on the 
decision of those responsible for taking the measurement in the production process. While 
the fuzzy approach helps to tackle the ambiguity that arises in the measurement, an 
interval type-2 fuzzy set deals with such uncertainty better due to its flexibility over the 
control limits of its control chart. This paper aims to develop an Interval Type-2 fuzzy 
Exponentially Weighted Moving Average Control Chart (IT2FEWMA) under the fuzzy 
type-2 condition. This development will facilitate monitoring small and moderate shifts in 
the production process in conditions of uncertainty. 

Key words: Exponentially weighted moving average control chart, Fuzzy control chart, 
Fuzzy sets, Interval Type-2 fuzzy sets, Interval Type-2 fuzzy Exponentially Weighted 
Moving Average Control Chart, Statistical process control. 

1. Introduction  

The control chart scheme is made up of variable and attribute control charts, the 
former of which constitutes observations with continuous random variable while the 
later constitutes observations of a discrete random variable. The exponentially 
weighted moving average (EWMA) control chart was introduced by Roberts, (1959). 
Many studies have then been conducted to extend this methodology. The EWMA 
chart is known for its sensitivity on a small shift in the process mean. In classical 
statistical process control chart, data are defined in crisp value. However, gage, 
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environment conditions, operator’s discretion, which are the measurement 
determinants, can collect the measurement with “vagueness” or “uncertain”. These 
uncertainties about the measurements lead to difficult challenges while attempting to 
obtain a crisp result from the process. Human discretion is one of the significant 
factors used in defining the quality characteristics.  However, data from such 
discretion are bound with uncertainty and direct application of the classical control 
charts on such data may require further information and transformation of the 
classical control chart limits and the data points. In such a situation, evaluation of 
fuzzy data is best achieved using fuzzy control charts as a tool.  The fuzzy set theory 
was introduced by Zadeh (1965). Observations with uncertainty are handled 
mathematically with the fuzzy logic. A number of publications with many 
applications in Statistical Process Control (SPC) integrated with the fuzzy system has 
gained more efforts from many authors. The amalgamation of different SPC tools 
with the type-1 fuzzy theory, intuitionistic fuzzy theory, hesitant fuzzy theory, 
neurosophic fuzzy theory, type-2 fuzzy theory, and recently, the interval type-2 fuzzy 
theories have come into existence in recent publications. However, no publication 
exists in Interval Type-2 Exponentially Weighted Moving Average (IT2FEWMA) 
control chart. This paper is designed in a fuzzy environment for three-dimensional 
data, that is, the upper membership value, lower membership value and their 
respective representative value. The principal contribution of this research is to 
develop the theoretical foundation of the Interval Type-2 fuzzy Exponentially 
Weighted Moving Average Control Charts (IT2FEWMA) and their application. 

2. Literature review  

In a real life situation, vagueness and uncertainty occur as a result of human error 
usually due to judgmental decision based on qualitative measures, such as the weather 
is hot or too hot or cold is based on qualitative measurement which might not be 
presented with exact value. In most cases, one tends to ask what degree of the hotness 
or coldness of the weather is.  Zadeh (1965) proposed the conceptual idea of the fuzzy 
set theory. He proposed the type-1 fuzzy sets, with a degree of membership called 
crisp membership value, whose values are over the range 0 to 1. He also proposed the 
type-2 fuzzy sets, which is an extension of the type-1 fuzzy sets. This type-2 fuzzy set is 
three dimensional, that is, it comprises two membership functions, thus, the upper 
membership function and the lower membership function and the representative 
values.  The conception of the idea of the fuzzy control chart and application was 
firstly documented by Raz and Wang (1990), and Wang and Raz (1990). 
A considerable number of authors made various contributions to the extensional 
development in this area of research, which include but are not limited to Kanagawa 
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et al. (1993), El-shal and Moris (2000), Rowlands and Wang (2000), Gulbay et al. 
(2004), Karnik and Mendel (2001), Mendel and John (2002),  Cheng (2005), Gulbay 
and Kahraman (2006a), Mendel et al. (2006), Erginel (2008), Senturk and Erginel 
(2009), Senturk (2010), Senturk et al. (2010), Kaya and Kahraman (2011), Erginel et 
al. (2011), Senturk et al. (2014), Erginel (2014), Poongodi and Muthulakshmi (2015), 
Cervantes and Castillo (2015), Wang and Hyrniewicz (2015), Edmundas et al. (2015), 
Castillo et al. (2016), Chen and Huang (2016), Castillo et al.  (2016), Hou et al. 
(2016), Kaya et al. (2017), Senturk and Antucheviciene (2017), Erginel et al. (2018), 
Ontiveros-Robles et al. (2018), Adepoju (2018), Ercan and Anagun (2018), Adepoju et 
al. (2019a), Adepoju et al. (2019c), and Adepoju et al. (2019b).  

3. Methodology  

3.1. Type-2 fuzzy sets and Interval type-2 fuzzy sets 

Definition 1. A type-2 fuzzy set (T2 FS) denoted by  in a universe of discourse is 
characterized by a type-2 membership function given as , where and  

. Mathematically, this can be expressed as  

 

where  denotes an interval . This type-2 fuzzy set can be expressed as  

, 

where denotes union over all admissible and as given by Mendel et al. 

(2006) as well as Kahraman (2014). 

3.2. Interval type-2 fuzzy sets 

An interval type-2 fuzzy sets (IT2 FS) also known as closed interval type-2 fuzzy 

set (CIT2 FS) can be defined as a special case of type-2 fuzzy set represented by the 
type-2 membership function . If all . It follows that the 
interval type-2 fuzzy set is expressed as 

 

where , Ghorabaee  et al. (2016), 
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4. The proposed Interval Type-2 fuzzy Exponentially Weighted Moving 
Average Control Chart.  

4.1. Exponentially Weighted Moving Average Control Chart (EWMA) 

Exponentially Weighted Moving Average Control Chart (EWMA) was 
introduced by Roberts (1959). It is a better option to Shewhart control chart based on 
its sensitivity to a small shift in the process mean. It uses both current and historical 
data to monitor any slight shift in the mean of the process and its statistic is expressed 
as  

  11i i iz X z      

where  and iX  denote the  exponentially weighted moving average and  
sample average respectively, and 1, 2,3,...,i k ,  is the smoothing constant and it 
is given as . The starting value being the first sample mean is the process 

target such that 0z X , where X is the grand mean. 
The classical EWMA control chart limits are established as follows.  

 

        
 
 
 
 

 (1) 

where UCL, CL and LCL are upper control limit, centre line and lower control limit 
respectively, L is the width of the control limits,  is the smoothing constant and 
is the standard deviation.    

If is the variance of  independent random variables drawn from 

a population with known standard deviation , with sample size , then  
for a small sample number i   
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For a moderate and large sample size n, the statistic below can be used to obtaine 
the estimates of the upper control limit, center line and the lower control limit of the 
classical EWMA control chart.  

3
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3
2
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4.2. Interval Type-2 fuzzy Exponentially Weighted Moving Average Control Chart 
(IT2FEWMA) 

For a large sample number when the  is known, the IT2FEWMA control 
limits of the control chart is obtained by fuzzification and expressed as 
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4.3. Defuzzication of Interval Type-2 fuzzy Exponentially Weighted Moving 
Average Control Chart (IT2FEWMA) 
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Similarly, from the equation (4) the modified BNP technique is being transformed 
to the interval type-2 fuzzy exponentially moving average (IT2FEWMA) control chart 
limits as expressed below. 
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                    (5) 

 .           (6) 

 
For the upper control limit: 
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     (7)  
 
For the lower control limit: 
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For the centre line: 
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This transformation technique above can be used to defuzzify each sample, such 
that every defuzzified sample point is monitored with the defuzzified control limits. 
And the criterion for the in-control criteria expressed as  

. (10)  

The equation (10) above indicates the in-control process, otherwise the process is 
out of control. 

5. Application of the Interval Type-2 fuzzy Exponentially Weighted 
Moving Average Control Chart 

The application of the IT2FEWMA was conducted by simulating the data. Below 
is the data with 60 sample points with trapezium fuzzy number of measurement and 
the upper and lower membership values. 

Table 1.  Interval type-2 trapezoidal fuzzy number of measurement simulated from the parameters 
of the existing process data 

Sn 𝑋௔௨ 𝑋௕
௨ 𝑋௖௨ 𝑋ௗ

௨ 𝐻ଵሺ𝐴௜
௨ሻ 𝐻ଶሺ𝐴௜

௨ሻ 𝑋௔௟  𝑋௕
௟  𝑋௖௟  𝑋ௗ

௟  𝐻ଵሺ𝐴௜
௟ሻ 𝐻ଶሺ𝐴௜

௟ሻ 
1 3.62 3.81 3.99 4.21 1 1 3.50 3.69 3.90 4.12 0.7 0.5 
2 3.61 3.77 3.99 4.18 1 1 3.51 3.69 3.87 4.11 0.8 0.6 
3 3.62 3.81 4.00 4.20 1 1 3.50 3.69 3.88 4.11 0.7 0.6 
4 3.59 3.81 3.98 4.20 1 1 3.52 3.71 3.89 4.08 0.8 0.6 
5 3.60 3.81 4.00 4.20 1 1 3.52 3.70 3.91 4.09 0.6 0.5 
6 3.62 3.80 3.99 4.18 1 1 3.49 3.69 3.91 4.08 0.8 0.6 
7 3.60 3.78 4.00 4.21 1 1 3.51 3.72 3.90 4.11 0.9 0.8 
8 3.59 3.80 3.98 4.19 1 1 3.50 3.71 3.90 4.11 0.7 0.5 
9 3.59 3.80 4.00 4.21 1 1 3.49 3.70 3.90 4.09 0.8 0.6 

10 3.60 3.80 4.00 4.20 1 1 3.49 3.73 3.92 4.10 0.8 0.7 
11 3.61 3.81 3.97 4.21 1 1 3.52 3.69 3.91 4.10 0.6 0.5 
12 3.59 3.80 4.01 4.19 1 1 3.49 3.70 3.90 4.09 0.7 0.6 
13 3.61 3.79 4.00 4.18 1 1 3.50 3.70 3.91 4.10 0.7 0.5 
14 3.60 3.80 3.99 4.22 1 1 3.48 3.69 3.90 4.10 0.8 0.7 
15 3.58 3.81 3.99 4.20 1 1 3.50 3.71 3.92 4.11 0.9 0.8 
16 3.61 3.80 4.01 4.21 1 1 3.50 3.70 3.89 4.09 0.8 0.7 
17 3.62 3.80 4.01 4.20 1 1 3.51 3.72 3.91 4.10 0.9 0.8 
18 3.59 3.82 3.99 4.19 1 1 3.50 3.72 3.91 4.10 0.7 0.5 
19 3.60 3.80 4.00 4.21 1 1 3.50 3.70 3.91 4.08 0.8 0.6 
20 3.60 3.79 4.00 4.21 1 1 3.51 3.70 3.90 4.11 0.7 0.6 
21 3.61 3.80 3.98 4.21 1 1 3.50 3.71 3.91 4.12 0.8 0.6 
22 3.60 3.80 3.99 4.19 1 1 3.50 3.71 3.90 4.09 0.6 0.5 
23 3.60 3.80 4.00 4.21 1 1 3.51 3.71 3.91 4.09 0.8 0.6 
24 3.60 3.80 4.00 4.21 1 1 3.51 3.71 3.90 4.11 0.9 0.8 
25 3.61 3.79 4.00 4.19 1 1 3.49 3.71 3.93 4.11 0.7 0.5 

 ( 2 ) 2 ( 2 )iLCL DIT FEWMA DIT FEWMA UCL DIT FEWMA 
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Table 1.  Interval type-2 trapezoidal fuzzy number of measurement simulated from the parameters 
of the existing process data  (cont.) 

Sn 𝑋௔௨ 𝑋௕
௨ 𝑋௖௨ 𝑋ௗ

௨ 𝐻ଵሺ𝐴௜
௨ሻ 𝐻ଶሺ𝐴௜

௨ሻ 𝑋௔௟  𝑋௕
௟  𝑋௖௟  𝑋ௗ

௟  𝐻ଵሺ𝐴௜
௟ሻ 𝐻ଶሺ𝐴௜

௟ሻ 

26 3.61 3.81 4.00 4.22 1 1 3.51 3.69 3.90 4.10 0.8 0.6 
27 3.59 3.81 4.01 4.19 1 1 3.52 3.70 3.90 4.10 0.8 0.7 
28 3.60 3.80 4.01 4.21 1 1 3.51 3.71 3.89 4.09 0.6 0.5 
29 3.61 3.81 3.98 4.19 1 1 3.49 3.71 3.90 4.09 0.7 0.6 
30 3.61 3.81 4.00 4.20 1 1 3.50 3.69 3.91 4.08 0.7 0.5 
31 3.59 3.79 4.00 4.20 1 1 3.50 3.69 3.91 4.11 0.8 0.7 
32 3.59 3.80 3.97 4.20 1 1 3.50 3.70 3.91 4.10 0.9 0.8 
33 3.58 3.79 4.00 4.20 1 1 3.51 3.70 3.88 4.09 0.7 0.6 
34 3.61 3.81 4.00 4.19 1 1 3.50 3.71 3.92 4.09 0.7 0.5 
35 3.60 3.81 3.99 4.21 1 1 3.50 3.72 3.90 4.09 0.7 0.5 
36 3.61 3.79 4.01 4.20 1 1 3.49 3.70 3.91 4.09 0.8 0.6 
37 3.61 3.79 4.01 4.21 1 1 3.49 3.69 3.89 4.09 0.7 0.6 
38 3.61 3.80 4.01 4.17 1 1 3.51 3.72 3.90 4.10 0.8 0.6 
39 3.60 3.81 3.98 4.21 1 1 3.51 3.70 3.89 4.12 0.6 0.5 
40 3.61 3.81 4.00 4.20 1 1 3.50 3.70 3.89 4.10 0.8 0.6 
41 3.61 3.81 4.00 4.19 1 1 3.51 3.70 3.91 4.11 0.9 0.8 
42 3.60 3.79 4.00 4.20 1 1 3.48 3.70 3.90 4.10 0.7 0.5 
43 3.62 3.80 4.00 4.19 1 1 3.51 3.69 3.89 4.10 0.8 0.6 
44 3.60 3.80 4.01 4.19 1 1 3.50 3.71 3.91 4.09 0.8 0.7 
45 3.61 3.80 3.99 4.20 1 1 3.50 3.71 3.91 4.09 0.6 0.5 
46 3.58 3.79 4.00 4.20 1 1 3.49 3.71 3.89 4.08 0.7 0.6 
47 3.59 3.78 4.01 4.19 1 1 3.51 3.70 3.88 4.11 0.7 0.5 
48 3.59 3.81 3.99 4.19 1 1 3.49 3.69 3.88 4.10 0.8 0.7 
49 3.59 3.78 4.00 4.21 1 1 3.51 3.71 3.89 4.11 0.9 0.8 
50 3.59 3.79 4.01 4.19 1 1 3.50 3.70 3.90 4.11 0.7 0.5 
51 3.60 3.80 4.00 4.20 1 1 3.48 3.70 3.90 4.09 0.8 0.6 
52 3.61 3.80 4.00 4.18 1 1 3.50 3.71 3.89 4.10 0.8 0.7 
53 3.61 3.81 3.98 4.21 1 1 3.51 3.72 3.91 4.08 0.6 0.5 
54 3.61 3.80 4.00 4.20 1 1 3.49 3.68 3.90 4.11 0.7 0.5 
55 3.60 3.81 4.00 4.20 1 1 3.49 3.72 3.87 4.11 0.8 0.6 
56 3.61 3.81 4.00 4.20 1 1 3.50 3.72 3.89 4.10 0.7 0.6 
57 3.60 3.80 3.99 4.20 1 1 3.50 3.72 3.90 4.11 0.8 0.6 
58 3.59 3.80 4.00 4.20 1 1 3.50 3.70 3.89 4.08 0.6 0.5 
59 3.61 3.79 4.00 4.20 1 1 3.50 3.68 3.89 4.11 0.8 0.6 
60 3.59 3.79 3.99 4.20 1 1 3.51 3.71 3.89 4.09 0.9 0.8 
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5.1. Result and discussion  

The fuzzy numbers are modelled with the interval type-2 FEWMA control chart 
using trapezoidal membership functions. 

 

Table 2.  The representation of the result of the interval type-2 FEWMA control chart 

Table 2 above shows the limits of the FEWMA Control Chart and this include the 
upper control limit, centre line and lower control limit. This is obtained from 
equation 3. 

Table 3.  The representation of the defuzzification values of the IT2FEWMA control chart   
 3.906291  3.823862  3.741432 
 3.899944  3.817514  3.735085 
 3.893597  3.811167  3.728737 

 
Table 3 above shows the limits of the diffuzified IT2FEWMA Control Chart and 

this include the upper control limit, centre line and the lower control limit. It is 
obtained from equation 7, 8 and 9. 

Table 4.  The values of the defuzzification of each and every sample and its corresponding decision 
criteria  

( 2 )UCL DIT FEWMA  
( )2 iDIT FEWMA  ( 2 )LCL DIT FEWMA  

( )3.811167 2 3.823862iDIT FEWMA   

3.900753 3.818206 3.735658 In-control 
3.898874 3.816990 3.735105 In-control 
3.900749 3.817966 3.735183 In-control 
3.899352 3.817340 3.735328 In-control 
3.900304 3.818219 3.736135 In-control 
3.899481 3.816832 3.734183 In-control 
3.900007 3.817989 3.735971 In-control 
3.899131 3.817155 3.735178 In-control 
3.900071 3.817340 3.734610 In-control 
3.899979 3.817546 3.735113 In-control 
3.899754 3.817950 3.736145 In-control 
3.899773 3.817041 3.734309 In-control 
3.899344 3.817188 3.735031 In-control 
3.900413 3.817038 3.733664 In-control 
3.899769 3.817680 3.735590 In-control 
3.900462 3.817564 3.734666 In-control 

( )2 U
iDIT FEWMA  2 iUCL DIT FEWMA

( )2 L
iDIT FEWMA

( )2 U
iDIT FEWMA  2 iCL DIT FEWMA

( )2 L
iDIT FEWMA

( )2 U
iDIT FEWMA  2 iLCL DIT FEWMA

( )2 L
iDIT FEWMA

 3.606533 3.806300 4.006047 4.206225 1 1 3.506508 3.706719 3.906252 4.106251 0.6 0.5 
 3.600000 3.800000 4.000000 4.200000 1 1 3.500161 3.700372 3.899905 4.099904 0.6 0.5 
 3.593838 3.793660 3.993353 4.193530 1 1 3.493813 3.694024 3.893558 4.093557 0.6 0.5 

FEWMAUCL

FEWMACL

FEWMALCL



STATISTICS IN TRANSITION new series, March 2022 

 

195

Table 4.  The values of the defuzzification of each and every sample and its corresponding decision 
criteria  (cont.) 

( 2 )UCL DIT FEWMA  
( )2 iDIT FEWMA  ( 2 )LCL DIT FEWMA  

( )3.811167 2 3.823862iDIT FEWMA   

3.900647 3.818358 3.736069 In-control 
3.900034 3.817611 3.735188 In-control 
3.900183 3.817433 3.734683 In-control 
3.899973 3.817875 3.735776 In-control 
3.899969 3.817745 3.735522 In-control 
3.899457 3.817105 3.734754 In-control 
3.900235 3.817901 3.735567 In-control 
3.900266 3.818138 3.736009 In-control 
3.899793 3.817553 3.735314 In-control 
3.900891 3.818070 3.735249 In-control 
3.899879 3.817843 3.735806 In-control 
3.900303 3.817711 3.735119 In-control 
3.899988 3.817285 3.734583 In-control 
3.900272 3.817237 3.734202 In-control 
3.899423 3.817221 3.735018 In-control 
3.899181 3.817042 3.734902 In-control 
3.899181 3.817022 3.734862 In-control 
3.900298 3.817679 3.735061 In-control 
3.900225 3.817659 3.735093 In-control 
3.900152 3.817387 3.734623 In-control 
3.900463 3.817348 3.734233 In-control 
3.899939 3.817813 3.735687 In-control 
3.899884 3.817897 3.735911 In-control 
3.900545 3.817807 3.735069 In-control 
3.90005 3.818053 3.736056 In-control 

3.899764 3.817109 3.734455 In-control 
3.900386 3.817791 3.735196 In-control 
3.899959 3.817511 3.735062 In-control 
3.899905 3.817429 3.734952 In-control 
3.899195 3.816681 3.734167 In-control 
3.899326 3.817301 3.735277 In-control 
3.899648 3.816942 3.734237 In-control 
3.899549 3.817576 3.735603 In-control 
3.899507 3.81727 3.735033 In-control 
3.900055 3.816914 3.733773 In-control 
3.899708 3.817343 3.734979 In-control 
3.900194 3.817774 3.735353 In-control 
3.900445 3.817423 3.734401 In-control 
3.900095 3.817479 3.734863 In-control 
3.900643 3.818006 3.735369 In-control 
3.899956 3.817829 3.735702 In-control 
3.899821 3.817094 3.734366 In-control 
3.900089 3.817403 3.734717 In-control 
3.898954 3.817156 3.735358 In-control 
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Table 4 above show the results obtained from equation (10), which is the 
difuzzified values set against the difuzzified control limits. The results indicate that 
the process is in control, since all the sample points are within the control limits. 

6. Conclusion 

Several publications with great application surfaces in the literature recently on 
statistical process control incorporated with fuzzy system. Amalgamation of different 
SPC tools with type-1  fuzzy, intuitionistic fuzzy, hesitant fuzzy, type-2  fuzzy, and 
recently the interval type-2  fuzzy control chart has come into existence in recent 
publications. However, no publication exists in Interval Type-2 Exponentially 
Weighted Moving Average (IT2FEWMA) control chart.  

This paper extends the control limits of the classical control chart of the 
exponentially weighted moving average (EWMA). The IT2FEWMA is advantageous 
over the classical EWMA due to its flexibility over the control limits, but it is not 
capable of detecting a big shift in the process due to the fact that classical EWMA does 
not have such capacity too. This paper is a new addition to the existing Statistical 
Process Control Tools. It is useful when the process engineer needs to monitor 
a process whose measurement is obtained in fuzzy environment and a small shift 
needs to be detected.  

 

Future research: Multivariate IT2FEWMA  control chart, interval type-2 
intuitionistic FEWMA control chart and interval type-2 Hesitant FEWMA control 
chart can be developed, also comparative studies can be established between the 
IT2FEWMA and FEWMA control chart. 
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Estimating the confidence interval of the regression coefficient  
of the blood sugar model through a multivariable linear spline 

with known variance 

Anna Islamiyati1, Raupong2, Anisa Kalondeng3, Ummi Sari4 

ABSTRACT 

Estimates from confidence intervals are more powerful than point estimates, because there 
are intervals for parameter values used to estimate populations. In relation to global 
conditions, involving issues such as type 2 diabetes mellitus, it is very difficult to make 
estimations limited to one point only. Therefore, in this article, we estimate confidence 
intervals in a truncated spline model for type 2 diabetes data. We use a non-parametric 
regression model through a multi-variable spline linear estimator. The use of the model 
results from the irregularity of the data, so it does not form a parametric pattern. 
Subsequently, we obtained the interval from beta parameter values for each predictor. Body 
mass index, HDL cholesterol, LDL cholesterol and triglycerides all have two regression 
coefficients at different intervals as the number of the found optimal knot points is one. This 
value is the interval for multivariable spline regression coefficients that can occur  
in a population of type 2 diabetes patients. 

Key words: confidence interval, diabetes, known variance, spline. 

1. Introduction  

There are two commonly known regression coefficient estimates, namely point and 
interval estimation. Both are valid for all regression approaches, including 
nonparametric regression. Non-parametric regression is used when the assumption of 
the relationship between the predictor and the response is unknown, so we must 
estimate its function. Some estimators that have been developed include spline 
truncated (Aprilia, Islamiyati and Anisa, 2019), spline smoothing (Lestari, Budiantara 
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and Chamidah, 2019), spline penalized (Islamiyati, Fatmawati and Chamidah, 2019), 
local polynomial (Chamidah, Gusti, Tjahjono and Lestari, 2019), Kernel (Chamidah 
and Saifuddin, 2013), Fourier series (Mardianto, Tjahjono and Rifada, 2020), and 
Gaussian process (Saegusa, 2020) , and spline principal component analysis (Islamiyati, 
Kalondeng, Sunusi, Zakir and Amir, 2022). For this article, we use spline truncated to 
estimate multi-variable non-parametric regression functions. The flexibility of the 
estimator by involving the knot point causes easy visual interpretation. This has become 
one of the main advantages of spline truncated in real applications. In addition to the 
knot point, the spline also considers the optimal order, which works simultaneously in 
the estimation model. 

Confidence interval estimates are performed in cases of known or unknown 
variance. It depends on the available information related to population variance. We 
often find there is a case that was investigated by several researchers with different 
methods. These studies can provide information about the condition of the population 
variance. For example, diabetes data is a global disease that has been widely studied 
in various fields of study. Some studies consider the results of measurements of random 
blood sugar levels of patients using a penalized spline estimator of one smoothing 
parameter (Islamiyati, Fatmawati and Chamidah, 2020) and two smoothing parameters 
(Islamiyati, Sunusi, Kalondeng, Fatmawati and Chamidah, 2020). Also, some consider 
the patient's fasting blood sugar data (Islamiyati, Raupong and Anisa, 2019), the 
patient's calorie diet (Islamiyati, Fatmawati and Chamidah, 2020), and the detection of 
lifestyle of diabetic patients (Islamiyati, 2022). In the country of India, a Genome-Wide 
Association Scan study identified more than 65 common genetic variants associated 
with type 2 diabetes (Singh, 2015). In Indonesia, especially in Makassar City, blood 
sugar after meals has a variance based on the measurement results through weighted 
penalized spline (Islamiyati, Fatmawati and Chamidah, 2018). 

However, the studies still consider a single point estimate in the non-parametric 
regression approach. That can cause a large difference from the estimated value of the 
regression coefficients obtained for research at different locations and times. Some 
studies on estimating confidence intervals that provide wider tolerance values in non-
parametric regression coefficients, for example, a comparison of results of confidence 
interval estimates from spline smoothing with Bayesian (Wang and Wahba, 2003), 
estimation of confidence intervals with uniform distribution on non-parametric 
regression curves (David, Tom and Douglas, 2001) and the use of B spline estimators 
in polynomial spline (Mao and Zhao, 2003). Therefore, we reviewed the estimated 
confidence interval in diabetes data using a spline truncated. For application 
consideration, we use a linear spline on the dimensions of many predictor variables. 
The results of this article are expected to provide lower and upper limits of an interval 
of spline regression coefficient values from diabetes data. Diabetes data were obtained 
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from the Hasanuddin University Teaching Hospital in Makassar, Indonesia by taking 
factors in body mass index, HDL and LDL cholesterol, and triglycerides. 

Furthermore, the core content of this article discusses the theoretical form of the 
model and proceeds to the application of diabetes data using the linear spline. The knot 
point being tried is limited to the use of three knots with the optimal knot point 
selection method through Generalized Cross-Validation (GCV) values. Based on the 
theory that has been widely used by non-parametric regression that a regression model 
that provides a minimum GCV value means that the model is the optimal model used 
in interpreting data conditions. 

2.  Methodology 

2.1. Data source 

Data on patients with type 2 diabetes mellitus were obtained from the Hasanuddin 
University Teaching Hospital, Makassar, Indonesia. The data were recorded from the 
medical records of diabetic patients who were hospitalized from 2014-2018. We 
selected 84 people as samples in this study because they had complete media records 
according to the factors studied (Appendix 1). 

2.2. Multi-variable linear spline models in the non-parametric regression approach 

The non-parametric regression function that contains one response and several 
predictor variables is estimated with a linear spline so it is called a multi-variable linear 
spline model. Multi-variable non-parametric regression models can be stated as 
follows: 
  1 2, , ,i i i pi iy f t t t     (1) 

where iy  is the response in the i-samples, and  1 2, , ,i i pif t t t  is a function in the 

predictor 1 2, , , pt t t  and i  is an error in the i-samples.  

The function  1 2, , ,i i pif t t t  in equation (1) is estimated with a spline truncated 

estimator. Each function in each predictor can be stated as follows:  
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If equation (1) is expressed as a sum of the functions of each predictor, namely:  

      1 2i i i pi iy f t f t f t      ,  

then the multi-variable spline regression model can be stated as follows:  

  0 1 (1 )
1 1

h

h h

h

sp

i h hi h u hi hu i
h u

y t t k    
 

 
      

 
    (3) 

Equation (3) can be expressed in matrix form, namely: 
  y Tα ε   (4) 

where  1 2, , ,
T

ny y yy   is the response to 1,2, ,i n  ,  1 2, , , , pT 1 T T T  is 

a predictor matrix containing knots,  1 20 11 12 1 21 22 2 1 2, , , , , , , , , , , , ,
p

T

s s p p ps         α      

is regression coefficient of linear multi-variable spline, and  1 2, , ,
T

n  ε   is an error.   
As for 

               1 21 1 1 11 1 12 1 1 2 2 2 21 2 22 2 21,1, ,1 , , , , , , , , , , ,
T

s sk k k k k k        1 T t t t t T t t t t    

      1 2, , , , ,
pp p p p p p p psk k k   T t t t t  . 

Estimation of multi-variable spline regression parameter α  is obtained through the 
least square method by minimizing the sum of the squares of the error in equation (4). 
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T T T T T
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ε ε y Tα y Tα

y y α T y α T Tα
 (5) 

Next, equation (5) is derived from the vector α  and the resulting derivation is 
equated to zero. 
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If equation (6) is equated to zero, then we get: 

   1
ˆ T T
α T T T y   (7) 

From equation (7), the estimation of the multi-variable spline regression model is 
as follows: 
 ˆˆ y Tα    
where α̂  according to equation (7). The Generalized Cross-Validation (GCV) formula 
for the model is obtained as follows: 
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where     1T T
A k T T T T . 
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2.3. Estimates of confidence intervals with variance are known 

We use the pivotal quantity approach (Toulis, 2017) in estimating the confidence 
interval for the multi-variable spline regression coefficient. First, we determine the 
expected value of α̂ , namely: 
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  (9) 

Second, we determine the variance of α̂ , namely:  
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Based on equations (9) and (10), the estimate of α̂  follows the normal distribution 

  12ˆ , TN 


α α T T� , namely mean α  and variance   12 T


T T . 

Given a form of transformation from   1
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 
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hhuZ N� . This means that the expectation and variance values of 

hhuZ  are 0 and 

1. The effect 2  is known to cause  1 2, , ,
hhu nZ t t t  to be the pivotal quantity for 

parameter  , so the confidence interval can be stated as follows: 

   1 2, , , 1
hhu nP a Z t t t b     , (11) 

where a  and b  are real number elements, a b . 
Equation (11) can also be stated as: 
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Equation (12) can be worked on to become:  

 2ˆ
h hhu hu hha d     dan 2ˆ

h hhu hu hhb d    . (13) 

Based on equation (13), the confidence interval for the multi-variable linear spline 
regression parameters is: 

 2 2ˆ ˆ 1
h h hhu hh hu hu hhP b d a d            
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Furthermore, the shortest confidence interval is obtained from conditional 

optimization by the Lagrange method, namely     2

, ,
min , min hha b R a b R

a b b a d
 

   with 

the constraint function      1 0g b g a     , where g is the cumulative probability 

distribution  0,1N . Furthermore, the Lagrange function can be expressed as: 

           2, , 1hhF a b b a d g b g a           (14) 

where   is the Lagrange constant. From the results of the partial derivative of the 
parameter , ,a b  , we get a b  , which satisfies the equation. If it is substituted into 
equation (14), then it is obtained: 

  2 2ˆ ˆ 1
h h hhu hh hu hu hhP b d b d            (15) 

For /2b Z , equation (15) can also be stated as: 

 2 2
/2 /2ˆ ˆ 1

h h hhu hh hu hu hhP Z d Z d            , where   is the level of 

significance used in research that researchers usually use 0.05. 

3. Analysis and discussion 

Blood sugar data of type 2 DM patients were analysed using non-parametric 
regression, in this case, multi-variable linear spline regression. This is because changes 
in a person's blood sugar can change very quickly and do not follow a certain trend. The 
condition is also shown in Figure 1 through scatter plots between fasting blood sugar 
factor (y) with body mass index/BMI (t1), high-density lipoprotein/HDL cholesterol 
(t2), low-density lipoprotein/LDL cholesterol (t3), and triglycerides/TG (t4). Based on 
Figure 1, we can see a data plot that does not follow a certain parametric pattern, for 
example linear, quadratic, cubic, and others. Therefore, we analysed this data using 
a non-parametric multi-variable linear spline regression approach.  
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Figure 1. Scatter plot between blood sugar with body mass index, HDL cholesterol, LDL 
cholesterol, and triglycerides factors 

Spline regression is related to the optimal knot point and the number of knots, so we 
need to find the values of these parameters through the minimum GCV value. Here, we 
show a comparison of GCV values from the use of 1, 2, and 3-knot points as in Table 1. 

Table 1. GCV values at 1, 2, 3 knots 

Number of knots 1 2 3 

GCV value 10,552.75 11,033.11 10,568.35 

 
Based on Table 1, we can see that the number of knot points that give the minimum 

GCV value in the multi-variable linear spline model is one knot. Therefore, the blood 
sugar data of type 2 DM patients were modelled with a linear spline multi-variable 
approach through one knot on all the predictor variables involved. Next, we obtain 
a multi-variable linear spline regression model as follows: 

     
 
1 1 2 2 3 3

4 4

ˆ 76.58 6.95 12.60 28.76 3.91 4.27 35 0.38 1.47 145

0.36 593 167

i i i i i i i

i i

y t t t t t t

t t
  



          

 
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Figure 2. Estimation of multi-variable linear spline regression models with 1-knot point 

The regression curve according to the model is shown in Figure 2. The optimal 
number of knot points is obtained at one knot for each predictor. The relationship of 
fasting blood glucose with Body Mass Index (BMI) is optimal at the knot point of 
28.76 kg/m. These results indicate that there are two patterns of changes in fasting 
blood glucose based on that factor. We can see that it increases when the BMI is below 
the knot point, but after that, it decreases. This means that the increase based on BMI 
is in the pre-obesity stage. Excessive accumulation of fat in the body can cause insulin 
resistance which affects blood glucose levels. For variable t2, the optimal HDL 
cholesterol at the one-knot point is 35 mg/dL. This shows that when HDL cholesterol 
reaches the point of knot, there is the accumulation of fat in certain organs. The incident 
triggers an increase in fasting blood glucose which can cause atherosclerosis or 
narrowing of the blood vessels and heart. Furthermore, fasting blood glucose has 
decreased slowly, which indicates an attempt to decrease after HDL increases. This 
certainly shows a positive trend from patients in controlling their blood sugar. 

For variable t3, the optimal LDL cholesterol at the one-knot point is 145 mg/dL. 
The pattern that is formed is that fasting blood glucose decreases slowly until LDL 
reaches that point. This means that diabetes patients keep their fasting blood glucose to 
prevent other diseases. In the next pattern, we see that fasting blood sugar levels 
increase very sharply when LDL cholesterol is more than the knot point. These results 
indicate the need to evaluate the patient's efforts to lower blood sugar when LDL is high. 
Furthermore, the optimal model for the variable t4, namely triglycerides, is obtained at 
the knot point 167 mg/dL. These results indicate fasting blood glucose increases when 
the triglycerides are below the knot point, and after that, it decreases slowly. This means 
that for high triglycerides, there are patients' efforts to keep their blood sugar from 
rising. 
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Table 2. Estimated confidence intervals from spline regression coefficients for blood 
sugar data for type 2 DM patients at a confidence level of 95% 

 Variable Parameter 
Estimation of 

Parameter 
Lower limit Upper limit 

  𝛽଴ -76.58 -375.79  222.62   

t1   𝛽ଵଵ 6.95 -1.67 15.57 

t1   𝛽ଵଶ -12.60 -34.70 9.50 

t2   𝛽ଶଵ 3.91 -1.54 9.36  

t2   𝛽ଶଶ -4.27 -11.22  2.68  

t3   𝛽ଷଵ -0.38 -1.39 0.62  

t3   𝛽ଷଶ 1.47 -0.26 3.20  

t4   𝛽ସଵ 0.36 -0.44 1.16  

t4   𝛽ସଶ -0.59 -1.64 0.47 

 
Point estimation results that have been obtained, proceed to the estimation of the 

confidence interval so that estimation results can be more accurate to explain the 
condition of the population. However, we first test the residual assumptions, especially 
the normal distribution. The normality assumption test is based on the Kolmogorov 
Smirnov test (Steinskog, Tjostheim and Kvamsto, 2007). We get the p-value, 

0.06 0.05p    , which means the residual is normally distributed. Point 
estimation results from the best multi-variable spline model for fasting blood glucose 
at the Hasanuddin University Teaching Hospital were used to construct confidence 
intervals for regression parameters. The results of the estimated upper and lower limit 
obtained are in Table 2. The table shows the model regression coefficient interval that 
contains a lower limit and an upper limit. These interval values provide an overview of 
the condition of the diabetic patient population, especially for the patient's blood sugar 
model based on body mass index, HDL cholesterol, LDL cholesterol, and triglycerides. 

4. Conclusions 

The estimation results of the regression coefficient interval of the multi-variable 
spline model provide interval values from the lower limit to the upper limit at the 95% 
confidence level. Confidence intervals represent the possible values in a diabetic patient 
population related to fasting blood glucose, BMI, LDL cholesterol, HDL cholesterol, 
and triglycerides. For type 2 diabetes, the confidence interval of the regression 
coefficient in Table 2 can be used as reference material for further research. The 
influence of these four factors of changes in blood sugar is shown by the pattern of 
changes in each regression curve obtained from a multi-variable simultaneous model. 
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Body mass index, cholesterol, and triglyceride factors can all cause an increase in blood 
sugar due to the accumulation of fat and cholesterol. We can pay attention to the results 
of the analysis, which show not an upward trend that occurs in the regression curve, 
but there are variations in the pattern that occurs. Segmentation of pattern changes can 
be demonstrated by multi-variable spline due to the presence of optimal knot 
parameters obtained from the minimum GCV value. The up and down patterns that 
occur in one regression curve indicate that many factors do indeed affect blood sugar 
in DM type 2 patients. Therefore, we suggest that further research adds a higher 
dimension to the variable by taking into account assumptions that can be violated for 
the data dimensions the big one. 
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APPENDIX 

Data on patients with type 2 diabetes mellitus at the Hasanuddin University Teaching Hospital, 
Makassar, Indonesia, 2014-2018. 

Patient 
Number 

Blood Sugar BMI HDL LDL Triglycerides 

1 230 18.26 41 146 151 
2 414 23.11 35 191 165 
3 212 20 48 136 182 
4 229 28.89 38 162 118 
5 212 26.67 22 138 106 
6 352 26.67 32 170 100 
7 137 22.22 45 135 88 
8 150 24.44 79.8 112 391 
9 132 22.22 32 99 197 

10 420 19.11 64 169 166 
11 135 31.11 21 147 128 
12 368 20 56 118 143 
13 154 26.67 28 111 113 
14 225 35.11 29 174 247 
15 356 26.67 26 102 172 
16 132 21.33 34 154 207 
17 184 26.40 52 103 81 
18 157 23.80 38 207 203 
19 251 38.95 40 151 198 
20 324 21.35 47 308 294 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

83 109 32.97 23 165 126 
84 336 34 54 112 145 

Data sharing information statement. 

This study does not involve direct human interaction. Data were collected from patient 
medical records with the approval of hospital management. For the purposes of developing 
this study, the authors may share data through personal contacts. 
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Statistics Poland and the Polish Statistical Association    
are pleased to announce the organization of the 3rd Congress of Polish Statistics,  

which will take place from 26 to 28 April 2022 in Krakow. 
 

This year's Congress will commemorate the 110th anniversary  
of the Polish Statistical Association. 

 
 
For more information on this event look at: 
 
https://kongres2022.stat.gov.pl/en/ 
https://kongres2022.stat.gov.pl/en/programme 
 
 



 
 
 

 
  
 
 

On behalf of the IAOS authorities we are pleased to announce the organization  
of the conference which will take place from 26 to 28 April 2022 

at the Convention Center in Cracow, Poland 
 
 

The general theme of the IAOS-2022 Conference is:  
Worthy Information for Challenging Times. 

 
 

For more information on this event look at:  
https://www.iaos-isi.org/index.php/latestnews/288-announcing-the-iaos-2022-
conference  
https://www.iaos-isi.org/index.php/latestnews/289-more-information-on-the-
2022-iaos-conference-in-krakow  
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A New Role for Statistics:  
The Joint Special Issue of "Statistics in Transition New Series" (SiTns) 

and " Statystyka Ukraïny" (SU) is planned for June 2022 

On behalf of the SiTns’ Editorial Board and myself, and of Professor Oleksandr 
Osaulenko – Editor-in-Chief of the SU – I would like to invite interested researchers 
and practitioners to submit manuscripts on statistical production under war conditions 
and the role of statistics in describing the effects of foreign aggression on the 
functioning of the economy and society – with particular emphasis on humanitarian 
crisis and the degradation of people’s well-being. 

Inspired by the tragedy of the heroic Ukrainian nation currently experiencing war 
devastation, the interest in new challenges and tasks posed for statistics matches the 
demand for knowledge about consequences of barbarism that already seemed to be 
excluded from the civilized space, forever. It is not only about the European area but 
also about every other region or country that has similar experiences to Ukraine.   

Wishing in this way to demonstrate the contribution of statistics to such 
knowledge, we would also like to not only record the horrors of the outrageous 
aggression, but also to provide statistical evidence on the human empathy and cross-
border or transnational solidarity, as well as concern for the common values of all 
societies which want to live in peace. 

Manuscripts should be submitted by May 15, 2022 electronically to the Editorial 
Office: sit@stat.gov.pl 

More details will be provided on our web pages: 
https://sit.stat.gov.pl/Index  
https://su-journal.com.ua/index.php/journal 

 
Włodzimierz Okrasa 
Editor 
Statistics in Transition new series 

Oleksandr Osaulenko 
Editor 
Statystyka Ukraïny 
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