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Estimation procedures for reliability functions of
Kumaraswamy-G Distributions based on Type II

Censoring and the sampling scheme of Bartholomew

Aditi Chaturvedi1, Surinder Kumar2

ABSTRACT

In this paper, we consider Kumaraswamy-G distributions and derive a Uniformly Minimum
Variance Unbiased Estimator (UMVUE) and a Maximum Likelihood Estimator (MLE) of
the two measures of reliability, namely R(t) = P(X > t) and P = P(X > Y ) under Type II
censoring scheme and sampling scheme of Bartholomew (1963). We also develop interval
estimates of the reliability measures. A comparative study of the different methods of point
estimation has been conducted on the basis of simulation studies. An analysis of a real data
set has been presented for illustration purposes.

Key words: interval estimation, Kumaraswamy-G distributions, Monte-Carlo simulation,
point estimation.

1. Introduction

The Kumaraswamy (Kum) distribution is widely applied to model the random phe-
nomenon having finite lower and upper bounds, e.g.-, the height of individuals, atmospheric
temperatures, hydrological data such as daily rain fall, daily stream flow, etc. The distribu-
tion was first defined by Kumaraswamy (1976, 1978). Nadarajah (2008) demonstrated that
the distribution may be viewed as a special case of three parameter Beta distribution. Sev-
eral other unimodal distributions can also be approximated by Kumaraswamy’s distribution
[See, Kumaraswamy (1980) and Ponnambalam et al. (2001)]. Garg (2009) studied the gen-
eralized order statistics from the Kum distribution. Jones (2009) explored the background
and genesis of the Kum distribution and demonstrated some similarities and differences
between the beta and Kum distributions. He highlighted several advantages of the Kum dis-
tribution over the beta distribution. In hydrology and related areas, the Kum distribution has
received considerable interest [See, Sundar and Subbiah (1989), Fletcher and Ponnambalam
(1996), Seifi et al. (2000), Ponnambalam et al. (2001) and Ganji et al. (2006)]. Sindhu et
al. (2013) focused on Bayesian and non-Bayesian estimation for the shape parameter of the
Kum distribution under Type-II censored samples.

Eldin et al. (2014) obtained the MLE’s and Bayes estimators for the parameters of the
Kum distribution under general progressive Type II censoring. Mameli (2015) propose a
new generalization of the skew-normal distribution, referred to as the Kum skew-normal
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distribution. He demonstrated that this new distribution is computationally more tractable
than the Beta skew-normal distribution proposed by Mameli and Musio (2013). Kızılaslan
and Nadar (2016) considered the Kum distribution, when the lower record values along with
the number of observations following the record values (inter-record times) were observed,
and derived the maximum likelihood and Bayes estimators for estimating the parameters
of the distribution as well as for the future record values prediction. Dey et al. (2017)
focussed on Bayesian and non-Bayesian estimation of multicomponent stress–strength reli-
ability when both step and strength follow the Kum distribution with common shape param-
eter. Dey et al. (2018) considered and investigated performance of ten different frequentist
approaches for estimation of parameters of Kum distribution, namely, maximum likelihood
estimators, moments estimators, L-moments estimators, percentile based estimators, least
squares estimators, weighted least squares estimators, maximum product of spacings esti-
mators, Cramér–von-Mises estimators, Anderson–Darling estimators and right tailed An-
derson–Darling estimators.

In recent years, a large amount of literature has been developed regarding the gener-
alization of classical distributions. For some of the citations, one may refer to Hassan et
al. (2020) and the references therein. Cordeiro and Castro (2011) introduced a new Ku-
maraswamy generalized (Kum-G) family of distributions and discussed its basic statistical
properties. They mentioned that the Kum-G family of densities has ability of fitting skewed
data and allows for greater flexibility of its tails. The distribution generalizes the modelling
ability of the Kumaraswamy distribution and can be widely applied in many areas of engi-
neering and biology. Nadarajah et al. (2012) derived simple representation for the Kum-G
family of distributions as a linear combination of exponentiated distributions and studied
its general properties. They obtained MLEs of its parameters and discussed its bivariate
extension as well. Tamandi and Nadarajah (2016) developed maximum spacing estimation
procedure for the parameters of Kum-G distribution. Kundu and Chowdhary (2018) com-
pared the minimums of two independent and heterogeneous samples each following Kum-G
distribution with respect to usual stochastic ordering and hazard rate ordering. They also
established likelihood ratio ordering between the minimum order statistics for heteroge-
neous multiple-outlier Kum-G random variables with the same parent distribution function.
Kumari et al. (2019) provided characterization ofthe Kum-G distribution based on record
values and obtained point and interval estimates of two measures of reliability function
R(t) = P(X > t) and P = P(X > Y ) based on records. They considered two types of point
estimators, namely UMVUE’s and MLE’s and developed procedures for testing hypotheses
related to various parametric functions. Chaturvedi and Bhatnagar (2020) developed clas-
sical and preliminary test estimators for measures of reliability of the Kum-G distribution
under progressive Type II censoring.

The purpose of the present paper is to extend the results of Kumari et al. (2019) for the
cases of Type II censoring and the sampling scheme proposed by Bartholomew. Consider-
ing the Kum-G distribution, we develop UMVUE’s and MLE’s for the reliability functions,
R(t) and P. For deriving UMVUE’s, we followed the approach proposed by Chaturvedi and
Tomer (2003), which saves tedious and time-consuming calculation of stress–strength func-
tion. The paper is organized as follows: In Section 2, we provide point estimators and exact
confidence intervals for the qth power of parameter α , for q ∈ (−∞,+∞), and for functions
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R(t) and P based on Type II censoring scheme. In Section 3, based on the sampling scheme
proposed by Bartholomew (1963), the point estimators for the αq, R(t) and P are provided.
In Section 4, we present findings of simulation studies followed by real data analysis in
Section 5. We end with a brief set of conclusions in Section 6. Proofs of some important
results can be found in the Appendix.

2. Estimation based on Type II Censoring Scheme

A random variable X is said to follow the Kumaraswamy (1980) distribution if its pdf is
given by

f (x;α,β ) = αβxβ−1(1− xβ )α−1; 0 < x < 1, α,β > 0. (1)

Considering the complete sample case, Nadar et al. (2014) have obtained the estimator
of P for the distribution given in (1) assuming the parameter ‘β ’ to be common for the two
distributions.

A random variable X follow Kumaraswamy-G distributions [Cordeiro and Castro (2011)],
if its pdf is of the form

f (x;α,β ) = αβg(x)Gβ−1(x)[1−Gβ (x)]α−1; x > 0, α,β > 0, (2)

where g(x) denotes the pdf of G(x), α and β are the shape parameters of the Kum-G
distribution.

It is to be noted that the distribution given in (2) reduces to the Kumaraswamy distribu-
tion when G(x) = x.

2.1. UMVUE’s and MLE’s of αq,R(t) and P Based on Type II Censoring

Suppose ‘n’ items are put on a test and the test is terminated after the first ‘r’ ordered
observations are recorded. Let us denote by 0 < X(1) ≤ X(2) ≤ ...≤ X(r), 0 < r < n, the life-
times of first r failures. Obviously (n− r) items survived until X(r). Here, we provide
an important lemma, which will be helpful in proving the main results of this section.

*Lemma 1 Let

S(r) =−

[
r

∑
i=1

ln
{

1−Gβ (xi)
}
+(n− r)ln

{
1−Gβ (xr)

}]
,

then, S(r) is complete and sufficient for the Kum-G distribution (2). Moreover, the pdf of
S(r) is given by

gS(r)(s;α) =
1

Γ(r)
sr−1

α
r exp{−αs} ,s > 0,α > 0,r > 0, (3)

*The proof of Lemma 1 is available from the corresponding author on request.
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where, Γ(·) denotes the Gamma function.
In the following theorems, we provide the UMVUEs of αq, R(t) and P, based on Type

II censoring scheme and under the assumption that β is known.

Theorem 1 For q ∈ (−∞,∞), the UMVUE of αq is given by:

α̃
q
II =

{
Γ(r)

Γ(r−q)S−q
(r) ; r−q > 0

0; otherwise.

Proof. From (3),

E
(

S−q
(r)

)
=

Γ(r−q)
Γ(r)

α
q,r > q, (4)

and the theorem follows from Lehmann-Scheffe theorem [see Rohatgi & Saleh(2012)].
Let us write the pdf (2) as follows

f (x;α,β ) =
αβg(x)Gβ−1(x)

1−Gβ (x)

∞

∑
i=0

(−1)i

i!

{
−ln(1−Gβ (x))

}i
α

i,

then the following Corollary straight away follows from Theorem 1.

Corollary 1 The UMVUE of the sampled pdf at a specified point x is:

f̃II(x;α,β ) =


βg(x)Gβ−1(x)

B(1,r−1)S(r)(1−Gβ (x))

(
1+ ln(1−Gβ (x))

S(r)

)r−2
;

−ln(1−Gβ (x))< S(r)
0; otherwise,

where B(a,b) = Γ(a)Γ(b)
Γ(a+b) is the Beta function.

Theorem 2 The UMVUE of R(t) at a specified point t is

R̃(t)II =


[

1+
ln(1−Gβ (t))

S(r)

]r−1

; −ln(1−Gβ (t))< S(r)

0; otherwise.

Proof. Using Corollary 1, we have

R̃(t)II =
∫

∞

t

βg(x)Gβ−1(x)
B(1,r−1)S(r)(1−Gβ (x))

(
1+

ln(1−Gβ (x))
S(r)

)r−2

dx,

and the result follows by substituting −ln(1−Gβ (x))
S(r)

=v.



STATISTICS IN TRANSITION new series, March 2022 133

Let X and Y be two independent random variables following the classes of distributions
f1(x;α1,β1) and f2(y;α2,β2), respectively, where

f1(x;α1,β1) = α1β1g(x)Gβ1−1(x)(1−Gβ1(x))α1−1; x > 0, α1,β1 > 0 (5)

and
f2(y;α2,β2) = α2β2h(y)Hβ2−1(y)(1−Hβ2(y))α2−1; y > 0, α2,β2 > 0. (6)

Let n items on X and m items on Y are put on a life test and the termination numbers for
X and Y are r and r′, respectively. Let us define

S(r) =−

[
r

∑
i=1

ln(1−Gβ1(xi))+(n− r)(ln(1−Gβ1(xr))

]

and

T(r′) =−

[
r′

∑
j=1

ln(1−Hβ2(y j))+(m− r′)(ln(1−Hβ2(yr′))

]
.

In the following theorem, we obtain the UMVUE of P.

*Theorem 3 The UMVUE of P, when X and Y belong to different family of distributions,
is given by

P̃II =



∫ c

z=0

1
B(1,r′−1)

1+
ln
{

1−G(H−1(1− e−zT(r′)))β1/β2
}

S(r)

r−1

(1− z)r′−2dz; i f G−1
{
(1− e−S(r))1/β1

}
≤ H−1

{
(1− e−T(r′))1/β2

}
∫ 1

z=0
1

B(1,r′−1)

[
1+

ln
{

1−G(H−1(1−e
−zT(r′) ))β1/β2

}
S(r)

]r−1

(1− z)r′−2dz;

i f G−1
{
(1− e−S(r))1/β1

}
> H−1

{
(1− e−T(r′))1/β2

}
,

where c =−T−1ln
[
1−H

{
G−1(1− e−S(r))β2/β1

}]
.

Along the lines of Theorem 3, we can easily prove the following Corollary.

Corollary 2 The UMVUE of P, when X and Y belong to same family of distributions, i.e.,
when G(·) = H(·) and β1 = β2, is given by

*The proof of Theorem 3 is available from the corresponding author on request.
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P̃II =


1

B(1,r′−1) ∑
r′−2
i=0 (−1)i

(r′−2
i

)( S(r)
T(r′)

)i
B(i+1,r); S(r) ≤ T(r′)

1
B(1,r′−1) ∑

r−1
j=0(−1) j

(r−1
j

)(T(r′)
S(r)

) j
B( j+1,r′−1); S(r) > T(r′).

Using (2), the joint pdf of x(1) ≤ x(2) ≤ ...≤ x(r) is given by

h(x(1),x(2), ...,x(r);α,β ) =
n!

(n− r)!
α

r
β

r
r

∏
i=1

g(x(i))Gβ−1(x(i))

1−Gβ (x(i))
exp(−αS(r)) (7)

It can be easily seen from (7) that the MLE of αq based on Type II censoring is

α̂
q
II =

(
r

S(r)

)q

. (8)

From (2) and invariance property of maximum likelihood estimators, the MLE of f (x) is
given by

f̂ (x)II =
r

S(r)
βg(x)Gβ−1(x)

[
1−Gβ (x)

] r
S(r)

−1
.

Similarly, using the invariance property of MLE, the MLE of R(t) is given by

R̂(t)II =
(

1−Gβ (t)
) r

S(r) . (9)

The MLE of P, when X and Y belong to different family of distributions, is given by

P̂II =
∫ 1

z=0

[
1−Gβ1

{
H−1(z1/β2)

}] r
S(r) r′

T(r′)
(1− z)

r′
T(r′)

−1
.

The MLE of P, when X and Y belong to same family of distributions, i.e.-, when G(·)=H(·)
and β1 = β2 is given by

P̂II =
r′S(r)

r′S(r)+ rT(r′)
. (10)

2.2. Exact Confidence Intervals for α , R(t) and P based on Type II Censoring

We consider the problem of constructing a two-sided confidence interval for α . The
confidence interval is obtained by using pivotal quantity 2αS(r). If we define χ2(ν) as the
value of χ2 such that

P(χ2 > χ
2(δ )) =

∫
∞

χ2(δ )
P(χ2)dχ

2 = δ , (11)
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where P(χ2) is the pdf of χ2 distribution with 2r degrees of freedom, then by using the fact
that 2αS(r) ∼ χ2

2r, the confidence interval is given by

P

χ2
(

1− δ

2

)
2S(r)

≤ α ≤
χ2
(

δ

2

)
2S(r)

= 1−δ , (12)

where χ2
(

δ

2

)
and χ2

(
1− δ

2

)
are obtained by using (11). Thus, for known β , 100(1−δ )%

confidence interval for α is given byχ2
(

1− δ

2

)
2S(r)

,
χ2
(

δ

2

)
2S(r)

 .

Further, for q < 0, the confidence interval for αq is given byχ2
(

δ

2

)
2S(r)

q

,

χ2
(

1− δ

2

)
2S(r)

q
and for q > 0, the confidence interval for αq is given byχ2

(
1− δ

2

)
2S(r)

q

,

χ2
(

δ

2

)
2S(r)

q .

The problem of obtaining the confidence interval for the reliability function R(t) =
(1−Gβ (t))α can be solved by noting that R(t◦;α) is a decreasing function of α . Thus,
Ψ1(x1,x2, ...,xn) ≤ (1−Gβ (t◦))α is equivalent to α ≤ lnΨ1(x1,x2, ...,xn)/ln(1−Gβ (t◦))
and Ψ2(x1,x2, ...,xn)≥ (1−Gβ (t◦))α is equivalent to α ≥ lnΨ2(x1,x2, ...,xn)/ln(1−Gβ (t◦)).
Therefore, the expression

P
(

Ψ1(x1,x2, ...,xn)≤ (1−Gβ (t◦))α ≤ Ψ2(x1,x2, ...,xn)
)
= 1−δ

is equivalent to

P
(

lnΨ2(x1,x2, ...,xn)

ln(1−Gβ (t◦))
≤ α ≤ lnΨ1(x1,x2, ...,xn)

ln(1−Gβ (t◦))

)
= 1−δ . (13)

Comparing (12) and (13), it immediately follows that χ2
(

1− δ

2

)
/2S(r) =

lnΨ2(x1,x2, ...,xn)/ln(1−Gβ (t◦)) and χ2
(

δ

2

)
/2S(r) = lnΨ1(x1,x2, ...,xn)/ln(1−Gβ (t◦)).
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Therefore,

Ψ1 = exp

ln(1−Gβ (t◦))
χ2
(

δ

2

)
2S(r)

and Ψ2 = exp

ln(1−Gβ (t◦))
χ2
(

1− δ

2

)
2S(r)

 .
Thus, for known β , (1−δ )100% confidence interval for R(t◦,α) is given byexp

ln(1−Gβ (t◦))
χ2
(

δ

2

)
2S(r)

 ,exp

ln(1−Gβ (t◦))
χ2
(

1− δ

2

)
2S(r)

 .

In order to obtain the confidence interval for P, we utilize the fact that
2α1S(r)/2r

2α2T(r′)/2r′ ∼ F2r,2r′ .

Thus, the confidence interval for P is given by

P

( rT(r′)F( δ

2 )

r′S(r)
+1

)−1

≤ α2

α1 +α2
≤

(
rT(r′)F(1− δ

2 )

r′S(r)
+1

)−1


= 1−δ .

Therefore, for known β , (1−δ )100% confidence interval for P is given by( rT(r′)F( δ

2 )

r′S(r)
+1

)−1

,

(
rT(r′)F(1− δ

2 )

r′S(r)
+1

)−1
 .

3. Estimation based on the Sampling Scheme of Bartholomew

Throughout this section, we assume that n items are put on a test and we terminate life-
testing experiment at a preassigned time t◦. Suppose we carry out time-censored test where
the items that fail are immediately replaced. Let X(1) ≤ X(2) ≤ ...≤ X(n) be the failure times
of n items under a test from (2). The test begins at time X(0) = 0 and the system operates
until X(1) = x1, when the first failure occurs. The failed item is replaced by a new one and the
system operates until the second failure occurs at time X(2) = x2 and so on. The experiment
is terminated at time t◦. Here, X(i) is the time until ith failure measured from time 0.

3.1. UMVUEs and MLEs of αq, R(t) and P, based on the Sampling Scheme of
Bartholomew

We, first provide an important lemma, which will be utilized in deducing UMVUE’s and
MLE’s of αq, R(t) and P.

*Lemma 2 Let N(t◦) be the number of failures during the interval [0; t◦]. Then,

*The proof of Lemma 2 is available from the corresponding author on request.
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P[N(t◦) = r|t◦] =
[−nα ln (1−Gβ (t◦))]r

r!
exp
{

nα ln (1−Gβ (t◦))
}
.

In the following theorems, we provide the UMVUEs of αq, R(t) and P, based on the sam-
pling scheme of Bartholomew (1963).

Theorem 4 For positive integer q, the UMVUE of αq is given by

α̃
q
I =

{
r!

(r−q)! [−n ln
{

1−Gβ (t◦)
}
]−q; r−q > 0

0; otherwise.

Proof. It follows from Lemma 2 and the Fisher-Neyman factorization theorem [see Rohatgi
and Saleh (2012), p. 341] that r is sufficient for α . Moreover, since the distribution of r
belongs to an exponential family, it is also complete [see Rohatgi and Saleh (2012), p. 347].
The theorem now follows from the result that the qth factorial moment of the distribution of
r is given by

E[r(r−1)(r−2)...(r−q+1)] =
[
−nα ln

{
1−Gβ (t◦)

}]q
.

Let us write the pdf (2) as follows:

f (x;α,β ) =
αβg(x)Gβ−1(x)

1−Gβ (x)

∞

∑
i=0

(−1)i

i!

{
−ln(1−Gβ (x))

}i
α

i.

Then, the Corollary 3 straight away follows from Theorem 4.

Corollary 3 The UMVUE of f (x;α,β ) at a specified point x is

f̃I(x;α,β ) =


rβg(x)Gβ−1(x)

[−n ln(1−Gβ (t◦))](1−Gβ (x))

(
1− ln(1−Gβ (x))

n ln(1−Gβ (t◦))

)r−1
;

ln(1−Gβ (x))< n ln(1−Gβ (t◦))

0; otherwise.

Theorem 5 The UMVUE of R(t) at a specified point t is given by

R̃(t) =


[
1− ln(1−Gβ (t))

n ln(1−Gβ (t◦))

]r
; ln(1−Gβ (t))< n ln(1−Gβ (t◦))

0; otherwise.

Proof. Using Corollary (3),

R̃(t) =
∫

∞

t

rβg(x)Gβ−1(x)[
−n ln(1−Gβ (t◦))

]
(1−Gβ (x))

(
1− ln(1−Gβ (x))

n ln(1−Gβ (t◦))

)r−1

dx,
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and the result follows by substituting ln(1−Gβ (x))
n ln(1−Gβ (t◦))

= z.

Let n items on X and m on Y be put on a life test, where X and Y are distributed as in
(5) and (6). Let t◦ and t◦◦ be the termination times for X and Y , respectively and r and r′

be the number of failures before t◦ and t◦◦, respectively. Obviously, using Corollary 3, the
UMVUEs of f1(x;α1,β1)and f2(y;α2,β2), based on the sampling scheme of Bartholomew
is given by

f̃1I(x;α1,β1) =
rβ1g(x)Gβ1−1(x)[

−n ln(1−Gβ1(t◦))
]
(1−Gβ1(x))

(
1− ln(1−Gβ1(x))

n ln(1−Gβ1(t◦))

)r−1

; (14)

ln(1−Gβ1(x))< n ln(1−Gβ1(t◦))

and

f̃2I(y;α2,β2) =
r′β2h(y)Hβ2−1(y)[

−m ln(1−Hβ2(t◦◦))
]
(1−Hβ2(y))

(
1− ln(1−Hβ2(y)

m ln(1−Hβ2(t◦◦))

)r′−1

;

(15)
ln(1−Hβ2(y))< m ln(1−Hβ2(t◦◦)).

*Theorem 6 The UMVUE of P is given by

P̃I =



r′
∫ c

z=0

[
1− ln{1−Gβ1 (H−1(1−(1−Hβ2 (t◦◦))mz))1/β2}

n ln{1−Gβ1 (t◦)}

]
(1− z)r′−1dz;

G−1
{

1− (1−Gβ1(t◦))n
} 1

β1 ≤ H−1
{

1− (1−Hβ2(t◦◦))m
} 1

β2

r′
∫ 1

z=0

[
1− ln{1−Gβ1 (H−1(1−(1−Hβ2 (t◦◦))mz))1/β2}

n ln{1−Gβ1 (t◦)}

]
(1− z)r′−1dz;

G−1
{

1− (1−Gβ1(t◦))n
} 1

β1 > H−1
{

1− (1−Hβ2(t◦◦))m
} 1

β2 ,

where c =
ln[1−Hβ2{G−1(1−(1−Gβ1 (t◦))n)1/β1}]

m ln{1−Gβ1 (t◦)} .

Corollary 4 The UMVUE of P, when X and Y belong to the same family of distributions,
i.e., G(·) = H(·) with β1 = β2 and t◦ = t◦◦ is given by

P̃I =

{
r′ ∑r′−1

i=0 (−1)i
(r′−1

i

)( n
m

)i+1 B(i+1,r+1); n ≤ m

r′ ∑r
j=0(−1) j

(r
j

)(m
n

) j B( j+1,r′); n > m.

*The proof of Theorem 6 is available from the corresponding author on request.
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It can be easily seen from Lemma 2 that the MLE of αq based on the sampling scheme
of Bartholomew (1963) is given by

α̂
q
I =

(
−r

n ln(1−Gβ (t◦))

)q

. (16)

Using (2), R(t) at point t is given by

R(t) = (1−Gβ (t))α . (17)

From (17) and invariance property of MLEs, the MLE of R(t) is given by

R̂(t)I = [1−Gβ (t)]
−r

n ln(1−Gβ (t◦)) . (18)

Similarly, using the invariance property of MLE, the MLE of f (x;α,β ) at a specified point
x is

f̂I(x;α,β ) =
−r

n ln
{

1−Gβ (t◦)
}g(x)Gβ−1(x)[1−Gβ (x)]

−r
n ln{1−Gβ (t◦)}−1

.

The MLE of P, when X and Y belong to a different family of distributions, is given by

P̂I =
∫ 1

z=0
[1−Gβ1

{
H−1(z1/β2)

}
]

−r
n ln(1−Gβ1 (t◦))

−rr′

m ln(1−Hβ2(t◦◦))
×

(1− z)
−r′

m ln(1−Hβ2 (t◦◦)) dz.

The MLE of P, when X and Y belongs to the same family of distributions, i.e-., G(·) = H(·),
β1 = β2 and t◦ = t◦◦, is given by

P̂ =
r′n

r′n+ rm
. (19)

4. Simulation Study

In order to validate the results obtained in Sections 2 and 3, we first consider the Kum
distribution as a particular case of the Kum-G distributions. The pdf and cdf of the Kum
distribution are given by:

f (x;α,β ) = αβxβ−1(1− xβ )α−1; 0 < x < 1, α,β > 0. (20)

F(x;α,β ) = 1− (1− xβ )α . (21)

respectively.

4.1. Simulation Based on Type II Censoring

For comparing the performances of estimators of αq based on Type II censoring scheme,
we have generated 1000 random samples from (20) each of size n = 50 for (α,β )=(2,0.5),
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(2,1), (2,2). For each sample we arranged the data in ascending order and considered a
sample of first r (≤ n) observations. For different values of r =10, 20, 30 and 50, we have
computed average values of α̃

q
II and α̂

q
II , their corresponding bias, MSE and approximate

95% confidence interval. For q = 1 and 2, results are reported in Table 1. It has been ob-
served that MSE obtained corresponding to UMVUE is much lower than MSE obtained
corresponding to MLE. Thus, the performance of UMVUE of αq for q = 1,2 based on Type
II censoring is much better than the performance of MLE of αq. From Table 1, we observe
that as r increases, the performance improves in the sense that their MSE decreases. It is
also interesting to note that, with increasing r, the two estimators come close to each other.

For comparing the performance of MLE and UMVUE of reliability function R(t), the
bias, MSE and 95% confidence intervals are presented in Table 2. Comparing the estimates
on the basis of MSE, we observe that the MLE of R(t) performs better than the UMVUE
for all parametric settings. As r increases, the performance of both the estimators improve
and both estimators come close to each other.

For investigating the performance of estimators of P , we have generated 1000 random
samples from each of the populations X and Y with sizes (n,m) with β1 = β2 = 2 and
(α1,α2) = (0.5,0.5),(0.5,1), (0.5, 1.5) and (1.5,2). Samples corresponding to both the pop-
ulations are arranged in ascending order and first (r,r′) observations are considered. For
(r,r′) = (10,10),(20,20),(30,25),(40,40) and (50,50), we have computed average values
of P̃ and P̂ , their corresponding bias, MSE and approximate 95% confidence interval and
results are presented in Table 3. We observe that for all selected values of (r,r′), the MLE
of P performs superior to the UMVUE of P in the sense that it has lower MSE.

4.2. Simulation Based on Sampling Scheme of Bartholomew

In order to obtain point estimates of R(t) based on the sampling scheme of Bartholomew, we
have generated 1000 random samples each of size 100 from (20) with α = 2 and β = 0.9.
By fixing the termination time at t◦, and replacing the failure by operating one, values of
r (the number of failures before time t◦) is computed. For different termination time t◦ =
0.20, 0.50, 0.65, 0.80 and 0.90, we have computed average values of R̃(t) and R̂(t), their
corresponding bias, MSE and approximate 95% confidence interval. For different values of
t results are presented in Table 4. It has been observed that for small values of t and small
values of t◦, MLE is more efficient than UMVUE of R(t). However, for large values of t◦,
UMVUE becomes more efficient than MLE of R(t). For large values of t and all values of
t◦, both the estimators become equally efficient. The best results are obtained for t◦ = 0.65
as bias and MSE are least for all values of t. This result shows the importance of termination
time t◦ in the sampling scheme of Bartholomew.

Now, to investigate the performance of estimators of P based on the sampling scheme
of Bartholomew, we have generated 1000 random samples from each of the population X
and Y with sizes (n,m) with β1 = β2 = 2 and (α1,α2) = (0.5,0.75), (0.5,1), (0.5, 1.5) and
(1.5,2.5). For each sample corresponding to both the population, fixing the termination time
at t◦ = t◦◦ and replacing the failure by operating one, values of r (no. of failures before time
t◦ in X) and values of r’ (no. of failures before time t◦◦ in Y ) are computed. For t◦ = t◦◦=
0.50, 0.70 and 0.80, we have computed average values of P̃I and P̂I , their corresponding
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bias, MSE and approximate 95% confidence interval for n > m and n < m, and results are
presented in Tables 5 and 6 respectively. From Table 5, for n > m, it is observed that for
small m when n = 50, UMVUE of P performs superior than MLE of P. As m increases both
the estimators are equally efficient. However, for n < m, the results given in Table 6 show
that for all n with m = 50, the MLE of P is superior than the UMVUE and, as n increases,
both the estimators become equally efficient.

5. Real Data Study

In this section, to illustrate the usefulness of our procedure, we present real data analysis.
We consider the real data set used by Kumari et al. (2019), originally taken from Proschan
(1963). The data represent the intervals between failures (in hours) of the air conditioning
system of a fleet of 13 Boeing 720 jet airplanes. Canavos and Tsokos (1971) observed that
the failure time distribution of the air conditioning system for each of the planes can be
well approximated by exponential distributions. We have considered the planes ‘7913’ and
‘7914’ for our illustrative purposes. The data are presented below:

x1 (Plane 7914): 3, 5, 5, 13, 14, 15, 22, 22, 23, 30, 36, 39, 44, 46, 50, 72, 79, 88, 97,102,
139, 188, 197, 210.

y1(Plane 7913): 1, 4, 11, 16, 18, 18, 18, 24, 31, 39, 46, 51, 54, 63, 68, 77, 80, 82, 97,
106, 111, 141, 142, 163, 191, 206, 216.

Before applying the Kolmogorov–Smirnov (KS) test, we transform the above given
two data sets in the range of unit interval by using the transformation Xi =

Xi
max(Xi)+1 and

Yi =
Yi

max(Yi)+1 .The two transformed data sets are given below:

First data set x: (0.0142, 0.0237, 0.0616, 0.0664, 0.0711, 0.1043, 0.1090, 0.1422,
0.1706, 0.1848, 0.2085, 0.2180, 0.2370, 0.3412, 0.3744, 0.4171, 0.4597, 0.4834, 0.6588,
0.8910, 0.9336, 0.9953).

Second data set y: (0.0046, 0.0184, 0.0507, 0.0737, 0.0829, 0.1106, 0.1429, 0.1797,
0.2120, 0.2350, 0.2488, 0.2903, 0.3134, 0.3548, 0.3687, 0.3779, 0.4470, 0.4885, 0.5115,
0.6498, 0.6544, 0.7512, 0.8802, 0.9493, 0.9954).

We first apply the KS test to check whether the Kum distribution (20), fits the given X
and Y populations. We obtain the following ML estimates of (α1,β1) and (α2,β2).

(α1,β1)complete data = (1.0728,0.6022), (α2,β2)complete data = (1.042,0.6658).

According to the KS test, we do not reject the null hypothesis that both the data observed
for X (KS = 0.18226; p = 0.4026) and the data observed for Y (KS = 0.1289; p = 0.7604)
are drawn from (20). Figure 1 confirms the good fit of (20), for these two data sets. In
order to obtain the MLE of R(t) and P based on Type II censoring, we first consider r = 16
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(a) Empirical and theoretical cdf of first
data set

(b) Empirical and theoretical cdf of sec-
ond data set

Figure 1: Plots of empirical and theoretical cdf

(a) Plot of ML Estimator of R(t) of first data set (b) Plot of ML Estimator of R(t) of second data set

Figure 2: Plots of MLE of R(t)

lifetimes from X population and the remaining 8 observations are considered as censored.
Similarly, we consider first r′ = 20 lifetimes from Y population and the remaining 7 obser-
vations are considered as censored. Considering the Kum distribution as a lifetime model
for X-population, the MLEs of α1II and β1II are obtained as α̂1II = 1.272 and β̂1II = 0.6659.
Similarly, considering the Kum distribution as a lifetime model for Y-population, the MLEs
of α2II and β2II are α̂2II = 1.4677 and β̂2II = 0.8128. To evaluate MLE of PII , we have
considered the first data set as X-population and second data set as Y-population. We get
P̂II = 0.5847. For different values of t, we have evaluated MLE of R(t) for X and Y popula-
tions, respectively. Results are plotted in Figure 2. In particular, for t = 0.8, R̂1II(t)= 0.1081
and R̂2II(t) = 0.127.

From Figure 2, it is clear that at initial time, the probability of survival is very high and
as time increases the probability of survival decreases.

6. Conclusions

In this article, we have developed the estimation procedures for the Kum-G family of dis-
tributions based on Type II censoring and Bartholomew censoring schemes. Considera-
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tions are given to both point and interval estimations. The finite sample performance of the
UMVUE’s and MLE’s of reliability functions and other parameters are investigated using
extensive Monte Carlo experiment. The comparisons are made on the basis of MSE of the
estimators. The main conclusions of the simulation experiments are as follows.

For Type II censoring, for all values of n, the UMVUE of αq performs better than MLE
of αq. On the contrary, the performance of MLE of R(t) is better than the performance of
UMVUE of R(t) for all selected values of t. However, for large values of r, the performance
of both the estimators is quite similar. Further, as r increases, MSE corresponding to both
the estimator decreases. Similarly, for estimating P, the MLE performs superior than the
UMVUE.

For the sampling scheme of Bartholomew, for small values of t and t◦, MLE is more
efficient than UMVUE of R(t). However, for large values of t◦, UMVUE becomes more
efficient than MLE of R(t). For large values of t and all values of t◦, both the estimators
are almost equally efficient. The best results are obtained for t◦ = 0.65 as the bias and MSE
are least for all values of t. This result shows the importance of termination time t◦ in the
sampling scheme of Bartholomew. For comparing the performance of MLE and UMVUE
of P, we observe that, when n = 50 and m < n, UMVUE outperforms MLE. As m increases
both the estimators become equally efficient. On the contrary, for n < m and m = 50 for
small n, MLE of P gives better performance than UMVUE. But as m increases both the
estimators become almost equally efficient.
The paper focuses on developing classical estimators for different parameters and reliability
functions of Kumaraswamy-G distributions under various sampling schemes and investi-
gating their properties. However, an interesting alternative to MLE and UMVU estimators
can be provided by the empirical Bayes approach or ML-II estimators based on the robust
Bayesian approach of Shrivastava et al. (2019). We leave exploration of this area for future
work.
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