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New improved Poisson and negative binomial item count 
techniques for eliciting truthful answers to sensitive questions  

Barbara Kowalczyk1, Robert Wieczorkowski2 

ABSTRACT 

Item count techniques (ICTs) are indirect survey questioning methods designed to deal with 
sensitive features. These techniques have gained the support of many applied researchers 
and undergone further theoretical development. Latterly in the literature, two new item 
count methods, called Poisson and negative binomial ICTs, have been proposed. However, 
if the population parameters of the control variable are not provided by the outside source, 
the methods are not very efficient. Efficiency is an important issue in indirect methods of 
questioning due to the fact that the protection of respondents’ privacy is usually achieved at 
the expense of the efficiency of the estimation. In the present paper we propose new 
improved Poisson and negative binomial ICTs, in which two control variables are used in 
both groups, although in a different manner. In the paper we analyse best linear unbiased 
and maximum likelihood estimators of the proportion of the sensitive attribute in the 
population in the introduced new models. The theoretical findings presented in the paper 
are supported by a comprehensive simulation study. The improved procedure allowed the 
increase of the efficiency of the estimation compared to the original Poisson and negative 
binomial ICTs. 

Key words: sensitive questions, indirect questioning methods, item count techniques, 
Poisson ICT, negative binomial ICT, EM algorithm 

1.  Methodology and questionnaire design 

Reliable data on stigmatizing, socially unaccepted or illegal features are very hard 
to obtain in direct questioning. Many indirect methods of questioning have been 
developed to help in eliciting honest answers to sensitive questions and to eliminate the 
social desirability bias. Among them two methods are predominant: randomised 
response techniques (Warner 1965, Chaudhuri 2011, Imai 2015, Dihidar and 
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Bhattacharya, 2017) and item count techniques (Miller, 1984, Blair and Imai, 2012, 
Chaudhuri and Christofides, 2007, Imai, 2011, Holbrook and Krosnick, 2010, Comsa 
and Postelnicu, 2013, Wolter and Laier, 2014, Kuha and Jackson, 2014, Trappman et 
al., 2014, Kowalczyk and Wieczorkowski, 2017, Krumpal et al., 2018). Item count 
techniques have many practical advantages (Tourangeau and Yan, 2007). They are very 
easy to implement, they do not require the use of any randomize device, and they are 
very easy to understand so the respondents realize how their privacy is being protected.  

Latterly Tian et al. (2017) proposed new item count techniques, called Poisson and 
negative binomial ICTs. In their method (if the population parameters of the control 
variable are not given from the outside source) a sample of n elements is divided into a 
control group and a treatment group, of 𝑛  and 𝑛  elements respectively. Respondents 
in the control group are asked one neutral question with possible count outcomes 
0,1,2,… An exemplary questionnaire might look like the following: 

𝑄: How many times did you use an Uber last month?  Your answer is …. 
Respondents in the treatment group are presented with two questions: one exactly 

the same as in the control group, and one sensitive with possible outcomes 0 or 1. 
Respondents in the treatment group are asked to report only the sum of the two 
questions. An exemplary questionnaire might look like the following: 

𝑄: How many times did you use an Uber last month? 

S: Have you ever bribed an official? Assign number 1 if ‘yes’ (YES = 1) and number 
0 if ‘not’ (NOT = 0).  

Please report ONLY the sum of the two numbers. The sum is … 

To increase efficiency of the estimation we propose a new item count method, 
which draws on the idea of the Poisson and negative binomial ICTs introduced by Tian 
et al. (2017) and advances the original method in order to attain greater efficiency of 
the estimation. Our improved technique incorporates the sensitive question in two 
groups and combines it with two different neutral questions. Below we describe the 
newly proposed methodology.  

We divide the sample of n elements into the first and second treatment groups, of 
𝑛  and 𝑛  elements respectively. In the first group respondents are asked one neutral 
question 𝑄  with possible count outcomes 0,1,2,… Then respondents are presented 
with two questions, one neutral 𝑄  with possible count outcomes 0,1,2,…, and one 
sensitive 𝑆 with possible outcomes 0 or 1. To protect their privacy respondents are 
asked to report only the sum of their answers to questions 𝑄  and 𝑆. They are never 
asked to report their answer to the sensitive question S. Below we give an exemplary 
questionnaire for the first treatment group. 

𝑄 : How many times did you use a taxi last month?  Your answer is …. 
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Now, we show you two questions. Do not answer them until you read the end.  
𝑄 : How many times were you at the cinema last month? 
S: Have you ever bribed an official? Assign number 1 if ‘yes’ (YES = 1) and number 

0 if ‘not’ (NOT = 0).  
Please report ONLY the sum of the two numbers. The sum is … 

In the second treatment group neutral questions are switched. Therefore, an 
exemplary questionnaire for the second group is given below.  

𝑄 : How many times were you at the cinema last month? Your answer is …. 
Now, we show you two questions. Do not answer them until you read the end.  
𝑄 : How many times did you use a taxi last month? Remember your number but do 

not reveal it. 
S: Have you ever bribed an official? Assign number 1 if ‘yes’ (YES = 1) and number 

0 if ‘not’ (NOT = 0).  
Please report ONLY the sum of the two numbers. The sum is … 

It is very important that the sensitive question is mentioned only once in each group 
and the respondents are never asked to answer the sensitive question directly. To assure 
complete privacy the two neutral questions should be unrelated with each other and 
unrelated with the sensitive question. It also ensures that the privacy protection level in 
the newly proposed methods is exactly the same as in the original Poisson and negative 
binomial ICTs. 

2.  Statistical model and estimation 

2.1.  Notation 

Let 𝑋 , 𝑋  denote control variables being the answers to the neutral questions 
𝑄  and  𝑄  respectively, and let 𝑍 denote a Bernoulli distributed variable being the 
answer to the sensitive question S. To assure complete protection of the privacy we 
assume that  𝑋 , 𝑋 , 𝑍 are independent. Let 𝑃 𝑍 1 𝜋 be an unknown sensitive 
proportion under study. Let 𝑌  denote an observed variable indicating the sum of 
answers to questions 𝑄  and S in the first treatment group, i.e. 𝑌 𝑋 𝑍.  
Analogously, let 𝑌  be an observed variable indicating the sum of answers to questions 
𝑄  and S in the second treatment group, i.e. 𝑌 𝑋 𝑍. In the first treatment 
group we have two vectors of observed variables: 𝑋 , … ,𝑋  and 𝑌 , … ,𝑌 . 

In the second group vectors of observed variables are 𝑋 , … ,𝑋  and 

𝑌 , … ,𝑌 . Sensitive variable under study Z is not directly observable in this 
model. Z is a latent variable, which is in line with the principle of privacy protection.  
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2.2.  Best linear unbiased estimator 

We consider a linear estimator of the form 

𝜋 ∑ 𝛼 𝑋 ∑ 𝛽 𝑌 ∑ 𝛾 𝑋 ∑ 𝛿 𝑌 ,        (1) 
where 𝛼,𝛽, 𝛾, 𝛿 are constants weight factors. We determine 𝛼,𝛽, 𝛾, 𝛿 so as to minimize 
variance 𝑉𝑎𝑟 𝜋  of the estimator 𝜋 subject to the condition that this estimator is 
unbiased.   

Conditions for unbiasedness are 

⎩
⎨

⎧∑ 𝛼 ∑ 𝛿 0

∑ 𝛽 ∑ 𝛾 0

∑ 𝛽 ∑ 𝛿 1

                                           (2) 

To achieve the smallest variance, the expression to be minimized is 

            𝑉𝑎𝑟 𝜋 𝜆 ∑ 𝛼 ∑ 𝛿 𝜆 ∑ 𝛽 ∑ 𝛾      

𝜆 ∑ 𝛽 ∑ 𝛿 1                                        (3) 

The minimization leads to the best linear unbiased estimator (BLUE) of the 
sensitive population proportion 𝜋, which can be written in the final form  

𝜋 𝑤 𝑌 𝑋 1 𝑤 𝑌 𝑋                             (4)  
where 

𝑤                                   (5) 

Variance of the BLUE estimator is 

𝑉𝑎𝑟 𝜋          (6) 

For 𝑛 𝑛 0.5𝑛 and for 𝑉𝑎𝑟 𝑋 𝑉𝑎𝑟 𝑋  formula (6) simplifies to the 
form 

𝑉𝑎𝑟 𝜋 2𝑉𝑎𝑟 𝑋 𝜋 1 𝜋                (7) 

For 𝑛 𝑛 0.5𝑛 variance of the method of moment estimator in original Tian 
et al. (2017) Poisson and negative binomial ICTs with one neutral variable 𝑋  is  

𝑉𝑎𝑟 𝜋 2𝑉𝑎𝑟 𝑋 𝜋 1 𝜋              (8) 

From (7) and (8) it can be easily seen that for 𝑛 𝑛 0.5𝑛 and for 𝑉𝑎𝑟 𝑋
𝑉𝑎𝑟 𝑋  we get 

𝑉𝑎𝑟 𝜋 0.5𝑉𝑎𝑟 𝜋                                              (9) 
and the theoretical BLUE estimator in the improved model is more efficient than the 
method of moment estimator in the original model. Due to the fact that variances that 
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appear in formula (5) are not known in advance the theoretical BLUE estimator cannot 
be used directly. Therefore, we propose to use in practice the empirical BLUE estimator 
(EBLUE) of the form 

𝜋 𝑤  𝑌 𝑋 1 𝑤  𝑌 𝑋             (10) 

where 

𝑤                          (11) 

and 𝑠 𝑋 , 𝑠 𝑋 , 𝑠 𝑌 , 𝑠 𝑌  are sample variances of observed variables  
𝑋 , 𝑋 , 𝑌 , 𝑌  respectively. Properties of the proposed EBLUE estimator of the 
sensitive proportion 𝜋 are analyzed in Section 3.  

2.3.  Maximum likelihood estimation via EM algorithm 

In our model, the sensitive variable under study 𝑍~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜋  is not directly 
observable. In order to obtain maximum likelihood estimators in models with latent 
variables it is convenient to use expectation maximization (EM) algorithm introduced 
by Dempster et al. (1977) and further developed by, e.g. McLachlan and Krishnan 
(2008). EM algorithm has also become a standard tool for determining ML estimators 
when dealing with item count techniques, see, e.g. Imai (2011), Kuha and Jackson 
(2014), Tian et al. (2017). Complete log-likelihood function in our model is 

𝑙𝑛𝐿 𝜋,𝜃 ,𝜃 ; 𝑥 , 𝑥 , 𝑥 ,𝑦 ,𝑦 , 𝑧  

                            ∑ 𝑙𝑛𝑝 𝑥 ∑ 𝑙𝑛𝑝 𝑥   

                            ∑ 𝑧 𝑙𝑛𝑝 𝑦 1 ∑ 𝑧 𝑙𝑛𝑝 𝑦 1   

                            ∑ 1 𝑧 𝑙𝑛𝑝 𝑦 ∑ 1 𝑧 𝑙𝑛𝑝 𝑦     

∑ 𝑧 ln 𝜋 ∑ 1 𝑧 ln 1 𝜋 ,                                   (12) 

where 𝑝 𝑥  and 𝑝 𝑥  are probability mass functions of the control variables 𝑋  
and 𝑋  respectively. Conditional expectation computed in E-step of the EM algorithm 
is 

                           𝐸 , , 𝑙𝑛𝐿 𝜋,𝜃 ,𝜃 ;𝑦,𝑍|𝑌 𝑦      

                           ∑ 𝑙𝑛𝑝 𝑥 ∑ 𝑙𝑛𝑝 𝑥     

                           ∑ �̆� 𝑙𝑛𝑝 𝑦 1 ∑ �̆� 𝑙𝑛𝑝 𝑦 1   

                           ∑ 1 �̆� 𝑙𝑛𝑝 𝑦 ∑ 1 �̆� 𝑙𝑛𝑝 𝑦   

∑ �̆� ln 𝜋 ∑ 1 �̆� ln 1 𝜋                        (13) 
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where 

 �̆� 𝐸 , 𝑍 𝑌 𝑦  for 𝑖 1, … ,𝑛              (14) 

�̆� 𝐸 , 𝑍 𝑌 𝑦  for 𝑗 𝑛 1, … ,𝑛 𝑛   

(15) 
To represent distribution of the count data Poisson and negative binomial 

distributions are commonly used. Therefore we consider three different cases: when 
both neutral variables follow Poisson distribution, when one neutral variable follows 
Poisson and the other neutral variable follows negative binomial distribution, and the 
last case, when both neutral variables follow negative binomial distributions.  

Consider the first case where both neutral variables follow Poisson distribution. In 
this case we have 𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆 , 𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆 . Based on (12-15) we derive 
final iterative formulas for ML estimators via E-step and M-step of the EM algorithm 
as below. 
E Step: 

 �̆� 𝐸 𝑍 |𝑌   for 𝑖 1, … ,𝑛                           (16) 

�̆� 𝐸 𝑍 |𝑌  for 𝑗 𝑛 1, … ,𝑛 𝑛               (17) 

M step: 
𝜋 ∑  �̆� ∑ �̆�                                       (18) 

𝜆 ∑ 𝑥 ∑ 𝑦 �̆�                           (19) 

𝜆 ∑ 𝑦  �̆� ∑ 𝑥                           (20) 

When one variable follows Poisson distribution and the other one follows negative 
binomial distribution, say 𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆 , 𝑋 ~𝑁𝐵 𝑟,𝑝 , first we assess  parameter 
𝑟 based on the second treatment group  

�̂�
̅

̅
                                                        (21) 

and then we derive iterative formulas for the ML estimators via E-step and M-step of 
the EM algorithm as below. 
E Step: 

𝐸 𝑍 |𝑌  for 𝑖 1, … ,𝑛                    (22) 

𝐸 𝑍 |𝑌  for 𝑗 𝑛 1, … ,𝑛 𝑛                  (23) 
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M step: 

𝜋 ∑ 𝑧 ∑ 𝑧                                          (24) 

𝜆 ∑ 𝑥 ∑ 𝑦 𝑧                        (25) 

𝒑
∑ 𝒚𝒊

𝟏 𝒛𝒊
𝒏𝟏
𝒊 𝟏 ∑ 𝒙𝒋

𝟐𝒏𝟏 𝒏𝟐
𝒋 𝒏𝟏 𝟏

𝒏𝟏 𝒏𝟐 𝒓 ∑ 𝒚𝒊
𝟏 𝒛𝒊

𝒏𝟏
𝒊 𝟏 ∑ 𝒙𝒋

𝟐𝒏𝟏 𝒏𝟐
𝒋 𝒏𝟏 𝟏

                                 (26) 

When both neutral variables follow negative binomial distribution, say 
𝑋 ~𝑁𝐵 𝑟 ,𝑝  and 𝑋 ~𝑁𝐵 𝑟 ,𝑝 , we first assess  parameters 𝑟 , 𝑟  based on the 
first and second treatment groups respectively by:  

�̂�
̅

̅
                                                  (27) 

�̂�
̅

̅
                                                  (28) 

Next we derive formulas necessary to implement the EM algorithm. 
E Step: 

For 𝑖 1, … ,𝑛 : 

𝐸 𝑍 |𝑌                                 (29) 

For 𝑗 𝑛 1, … ,𝑛 𝑛 : 

𝐸 𝑍 |𝑌                                (30) 

M step: 

𝜋 ∑ 𝑧 ∑ 𝑧                                            (31) 

�̂�
∑ ∑

∑ ∑
                             (32) 

 �̂�
∑ ∑

∑ ∑
                              (33) 

 

3.  Simulation studies 

To examine properties of the proposed improved Poisson and negative binomial 
ICTs and compare them with original Tian et al. (2017) design we conduct 
a comprehensive simulation study. For each set of model parameters separately, namely 
for 𝑛 500, 1000, 2000 and for 𝜋 0.05, 0.1, 0.2, 0.3, we generate n independent 
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variables 𝑍 ,𝑍 , … ,𝑍  from Bernoulli 𝜋  distribution. We use these once generated 
variables for all models considered in this section. Next, for each set of model 
parameters we generate 0.5𝑛 independent variables  𝑋 , … ,𝑋 .  from 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆 ) 
distribution. These variables are used for both improved and original Poisson ICTs. For 
the improved Poisson ICT (Poisson-Poisson model) we additionally generate 0.5𝑛 
independent variables 𝑋 . , … ,𝑋  from 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆 ) distribution. Next, we 
generate 0.5𝑛 independent variables  𝑋 , … ,𝑋 .  from 𝑁𝐵 𝑟 ,𝑝  distribution. We 
use these variables for both improved and original negative binomial ICTs. For the 
improved negative binomial ICT (NB-NB model) we additionally generate 0.5𝑛 
independent variables 𝑋 . , … ,𝑋  from 𝑁𝐵 𝑟 ,𝑝  distribution. Last but not least 
we generate 0.5𝑛 independent variables  𝑋 , … ,𝑋 .  from 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆 ) and 0.5𝑛 
independent variables 𝑋 . , … ,𝑋  from 𝑁𝐵 𝑟,𝑝  distribution for the improved 
Poisson-NB model. 

Based on the generated values we obtained n realizations of the two dimensional 
observable variables 𝑋,𝑌  in the new models 

𝑋 ,𝑌
 𝑋 ,𝑋 𝑍            𝑓𝑜𝑟 𝑗 1, … ,0.5𝑛

𝑋 ,𝑋 𝑍   𝑓𝑜𝑟 𝑗 0.5𝑛 1, … ,𝑛
, 

and in the original Tian et al. (2017) models 

𝑌
𝑋                    𝑓𝑜𝑟 𝑗 1, … ,0.5𝑛

𝑋 𝑍   𝑓𝑜𝑟 𝑗 0.5𝑛 1, … ,𝑛
. 

Finally, we calculated EBLUE and ML estimators via EM algorithm according to 
formulas obtained in Section 2 and analogous MM and ML estimators according to 
formulas given in Tian et al. (2017). This process was replicated for each set of model 
parameters independently 10 000 times. In the simulation study we consider values 𝜋
0.3. This corresponds to applications as the proportion of individuals  possessing the 
sensitive feature is usually not very high in the general population.   

The R codes used in our simulations are available at 
https://github.com/rwieczor/ICT_Poisson_Negativebinomial. 
In Table 1 root mean square error and bias of empirical best linear unbiased 

estimator is presented for different overall sample sizes, different sensitive proportions, 
and different models. It should be noted that obtained values of the RMSE of the EBLUE 
estimators are very close to the theoretical values 𝑉𝑎𝑟 𝜋 , where 𝑉𝑎𝑟 𝜋  is the 
variance of the theoretical BLUE estimator given in formula (7). RMSE and bias of 
maximum likelihood (ML) estimator is presented in Table 2. Naturally efficiency of the 
estimation increases (RMSE decreases) with the increase of the sample size. By 
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comparing Tables 1 and 2 it can be easily seen that ML estimators are more efficient 
than the corresponding EBLUE estimators. Advantage of ML over EBLUE estimators 
in terms of efficiency is especially highly visible for the small sample sizes and small 
values of 𝜋. Bias of the EBLUE estimators is very small. For ML estimators bias is visible 
for small values of 𝜋 and small values of 𝑛. 

Table 1. RMSE and BIAS (in parenthesis) of the EBLUE for different model parameters in the new 
model 

Sample size 𝜋 0.05 𝜋 0.1 𝜋 0.2 𝜋 0.3 

𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 2 , 𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 2  
n = 500 0.089 (0.001) 0.090 (-0.001) 0.091 (-0.001) 0.091 (0.000) 
n = 1000 0.063 (0.001) 0.065 (0.001) 0.064 (0.001) 0.064 (0.000) 
n = 2000 0.045 (0.000) 0.045 (0.000) 0.046 (0.000) 0.046 (0.001) 

𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 2 , 𝑋 ~𝑁𝐵 𝑟 2, 𝑝 0.4  
n = 500 0.092 (0.000) 0.093 (0.000) 0.093 (-0.001) 0.093 (0.001) 
n = 1000 0.065 (0.000) 0.065 (0.000) 0.067 (0.000) 0.066 (0.000) 
n = 2000 0.046 (0.000) 0.046 (0.000) 0.046 (0.000) 0.046 (0.000) 

𝑋 ~𝑁𝐵 𝑟 2, 𝑝 0.4 , 𝑋 ~𝑁𝐵 𝑟 2,𝑝 0.4  
n = 500 0.096 (0.001) 0.095 (0.001) 0.097 (0.001) 0.096 (-.002) 
n = 1000 0.068 (0.000) 0.067 (-0.001) 0.068 (0.001) 0.068 (0.001) 
n = 2000 0.047 (0.000) 0.048 (-0.001) 0.048 (0.000) 0.048 (0.000) 

 

Table 2. RMSE and BIAS (in parenthesis) of the ML estimators in the new model 

Sample size  𝜋 0.05 𝜋 0.1 𝜋 0.2 𝜋 0.3 

𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 2 , 𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 2  
n = 500 0.070 (0.017) 0.079 (0.006) 0.087 (-0.001) 0.086 (0.000) 
n = 1000 0.052 (0.008) 0.061 (0.002) 0.062 (0.001) 0.060 (0.000) 
n = 2000 0.040 (0.003) 0.044 (0.000) 0.044 (0.000) 0.043 (0.001) 

𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 2 , 𝑋 ~𝑁𝐵 𝑟 2, 𝑝 0.4  
n = 500 0.067 (0.015) 0.076 (0.006) 0.080 (-0.002) 0.077 (-.002) 
n = 1000 0.052 (0.007) 0.057 (0.002) 0.058 (-0.001) 0.054 (-.002) 
n = 2000 0.039 (0.003) 0.043 (0.000) 0.041 (0.000) 0.038 (-.001) 

𝑋 ~𝑁𝐵 𝑟 2, 𝑝 0.4 , 𝑋 ~𝑁𝐵 𝑟 2, 𝑝 0.4  
n = 500 0.062 (0.013) 0.071 (0.004) 0.074 (-0.003) 0.070 (-.005) 
n = 1000 0.049 (0.007) 0.054 (0.001) 0.054 (-0.001) 0.050 (-.002) 
n = 2000 0.037 (0.003) 0.040 (-0.001) 0.038 (-0.001) 0.035 (-.001) 
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In Tables 3-4 we present RMSE of moments and ML estimators in original Tian et. 
al (2017) Poisson and negative-binomial ICTs. It should be noted that obtained values 
of the RMSE of moments estimators are very close to the theoretical values 
𝑉𝑎𝑟 𝜋 , where 𝑉𝑎𝑟 𝜋  is given in formula (8). By determining sample sizes 

and the privacy protection level at the same level we can see that the new proposed 
models are more efficient. Gain in efficiency is achieved for all sample sizes and all 
values of 𝜋 when comparing ML estimators in original and improved techniques and 
also when comparing MM with EBLUE estimators. It has to be emphasized that the 
new models resulted also in smaller bias when ML estimators are concerned.  

Table 3. RMSE and BIAS (in parenthesis) of moments estimators in original Tian et al. (2017) 
Poisson and negative-binomial ICTs  

Sample size 𝜋 0.05 𝜋 0.1 𝜋 0.2 𝜋 0.3 

𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 2  
n = 500 0.128 (-.001) 0.128 (0.000) 0.128 (-0.002) 0.129 (-.001) 
n = 1000 0.091 (0.001) 0.092 (0.000) 0.090 (0.001) 0.091 (0.000) 
n = 2000 0.064 (0.000) 0.064 (0.000) 0.065 (0.000) 0.065 (0.001) 

𝑋~𝑁𝐵 𝑟 2,𝑝 0.4  
n = 500 0.136 (0.003) 0.135 (0.002) 0.137 (-0.001) 0.136 (-.002) 
n = 1000 0.094 (0.000) 0.095 (0.000) 0.096 (0.001) 0.096 (0.001) 
n = 2000 0.068 (-0.001) 0.069 (-0.002) 0.069 (0.001) 0.068 (-.001) 

 

Table 4. RMSE and BIAS (in parenthesis) of ML estimators in original Tian et. al (2017) Poisson and 
negative-binomial ICTs  

Sample size 𝜋 0.05 𝜋 0.1 𝜋 0.2 𝜋 0.3 

𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 2  
n = 500 0.095 (0.030) 0.105 (0.016) 0.117 (0.000) 0.120 (-.002) 
n = 1000 0.071 (0.018) 0.081 (0.006) 0.086 (0.001) 0.086 (-.001) 
n = 2000 0.052 (0.008) 0.06 (0.001) 0.063 (-0.001) 0.060 (0.001) 

𝑋~𝑁𝐵 𝑟 2,𝑝 0.4  
n = 500 0.083 (0.024) 0.091 (0.008) 0.101 (-0.006) 0.098 (-.008) 
n = 1000 0.063 (0.014) 0.071 (0.002) 0.075 (-0.002) 0.070 (-.004) 
n = 2000 0.048 (0.005) 0.055 (-0.001) 0.055 (-0.001) 0.050 (-.002) 

 

For further investigation let us consider succeeding model parameters and compare 
ML estimators in the improved and original Tian et al. (2017) Poisson ICT. Results of 
the simulation studies are given in Tables 5 and 6. In all cases both RMSE and BIAS of 
the ML estimators are visibly smaller when using newly proposed models.  
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Table 5. RMSE and BIAS (in parenthesis) of the ML estimators in the new model and original 
Poisson ICT 

Sample size  𝜋 0.05 𝜋 0.1 𝜋 0.2 𝜋 0.3 

New model 𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 1 , 𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 1  
n = 500 0.053 (0.009) 0.06 (0.002) 0.063 (-0.001) 0.060 (0.000) 
n = 1000 0.040 (0003) 0.045 (0.000) 0.044 (-0.001) 0.042 (-.001) 
n = 2000 0.030 (0.001) 0.032 (-0.001) 0.031 (0.000) 0.030 (0.000) 

Original model 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 1  
n = 500 0.070 (0.017) 0.079 (0.006) 0.087 (-0.001) 0.084 (0.000) 
n = 1000 0.053 (0.007) 0.060 (0.001) 0.062 (-0.001) 0.060 (-.001) 
n = 2000 0.040 (0.003) 0.044 (0.000) 0.044 (-0.001) 0.042 (-.0010 

New model 𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 3 , 𝑋 ~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 3  
n = 500 0.083 (0.024) 0.093 (0.011) 0.106 (0.001) 0.106 (-.001) 
n = 1000 0.062 (0.013) 0.071 (0.004) 0.076 (-0.002) 0.076 (-.001) 
n = 2000 0.047 (0.005) 0.053 (0.001) 0.054 (0.000) 0.054 (0.000) 

Original model 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 3  
n = 500 0.116 (0.043) 0.124 (0.026) 0.141 (0.007) 0.146 (0.000) 
n = 1000 0.084 (0.024) 0.093 (0.010) 0.104 (0.000) 0.108 (-.001) 
n = 2000 0.061 (0.012) 0.070 (0.004) 0.076 (0.000) 0.075 (0.000) 

 

Table 6. RMSE and BIAS (in parenthesis) of the ML estimators in the new model and original 
negative-binomial ICT 

Sample size  𝜋 0.05 𝜋 0.1 𝜋 0.2 𝜋 0.3 

New model  𝑋 ~𝑁𝐵 𝑟 2,𝑝 0.6 , 𝑋 ~𝑁𝐵 𝑟 2, 𝑝 0.6  
n = 500 0.094 (0.029) 0.102 (0.012) 0.115 (-0.002) 0.112 (-.007) 
n = 1000 0.072 (0.017) 0.080 (0.004) 0.087 (-0.003) 0.081 (-.005) 
n = 2000 0.055 (0.009) 0.062 (0.000) 0.062 (-0.002) 0.057 (-.002) 

Original model  𝑋~𝑁𝐵 𝑟 2, 𝑝 0.6  
n = 500 0.124 (0.046) 0.131 (0.026) 0.147 (0.004) 0.153 (-.010) 
n = 1000 0.096 (0.031) 0.103 (0.013) 0.116 (-0.003) 0.114 (-.009) 
n = 2000 0.071 (0.016) 0.080 (0.003) 0.086 (-0.002) 0.082 (-.003) 

New model  𝑋 ~𝑁𝐵 𝑟 3,𝑝 0.5 , 𝑋 ~𝑁𝐵 𝑟 3, 𝑝 0.5  
n = 500 0.098 (0.033) 0.108 (0.018) 0.118 (-0.001) 0.118 (-.004) 
n = 1000 0.074 (0.019) 0.083 (0.008) 0.089 (-0.001) 0.085 (-.002) 
n = 2000 0.056 (0.010) 0.064 (0.002) 0.064 (-0.001) 0.060 (-.001) 

Original model  𝑋~𝑁𝐵 𝑟 3, 𝑝 0.5  
n = 500 0.133 (0.052) 0.139 (0.034) 0.153 (0.005) 0.160 (-.004) 
n = 1000 0.101 (0.033) 0.108 (0.017) 0.118 (0.000) 0.120 (-.003) 
n = 2000 0.073 (0.018) 0.083 (0.007) 0.089 (-0.001) 0.085 (-.003) 
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It is worth mentioning that in all comparisons we have set the overall sample size 
and privacy protection at the same level. Privacy protection is usually measured by the 
probability that the respondent possesses the sensitive attribute conditional on his or 
her answer. This probability was set to be the same in both compared methods by 
attaching the identical parameters to the control neutral variable associated with the 
sensitive one. In some surveys, however, asking a sensitive question – even indirectly – 
can be slightly more costly than asking the neutral one. In the new methods an indirect 
question about the sensitive variable is asked in the two groups and also two neutral 
questions are asked. Therefore, the newly proposed techniques can be slightly more 
costly in some situations, which also should be mentioned. However, this does not seem 
to apply to all surveys. Nevertheless, evident advantages of the newly proposed 
techniques in terms of efficiency and privacy protection should initiate its further 
development and application.     

4.  Conclusions 

Item count techniques have attracted much attention among applied researchers. 
Methodology and theory of this method is still being developed, with a significant 
contribution by Tian et al. (2017), who introduced Poisson and negative binomial item 
count techniques. The two techniques allow for eliciting honest answers to sensitive 
questions, simplify the questionnaire design and theory. But this effect is achieved at 
the expense of the efficiency of the estimation, which is not high in the proposed 
techniques. In the paper three new models are proposed: Poisson-Poisson neutral 
questions ICT, Poisson-negative binomial neutral questions ICT, and negative 
binomial-negative binomial neutral questions ICT. Newly proposed methods maintain 
privacy of respondents at the same level regarding the sensitive question. At the same 
time the three newly proposed techniques increase efficiency of the estimation, which 
is very important in indirect methods of questioning.  

References 

Blair, G., Imai, K., (2012). Statistical Analysis of List Experiments. Polit Anal 20, pp. 47–77.  

Chaudhuri, A., (2011). Randomized response and indirect questioning techniques 
in surveys, CRC Press, Boca Raton, FL. 

Chaudhuri, A., Christofides, T. C., (2007). Item Count Technique in estimating the 
proportion of people with a sensitive feature. J Stat Plann Inference 137,  
pp. 589–593. 



STATISTICS IN TRANSITION new series, March 2022 

 

87

Comsa, M., Postelnicu C., (2013). Measuring Social Desirability Effects on Self-
Reported Turnout Using the Item-Count Technique. Int J Public Opin Res 25, 
pp. 153–172.  

Dempster, A.P., Laird, N. M., Rubin, D. B., (1977). Maximum-likelihood from 
incomplete data via the em algorithm, Journal of the Royal Statistical Society 
Series B, Vol. 39, pp. 1–37.   

DIHIDAR, K., BHATTACHARYA, M., (2017). Estimating sensitive population 
proportion using a combination of binomial and hypergeometric randomized 
responses by direct and inverse mechanism, Statistics in Transition new series, 
Vol. 18, No. 2, pp. 193–210. 

Holbrook, A. L., Krosnick, J. A., (2010). Social Desirability  Bias in Voter Turnout 
Reports: Tests Using the Item Count Technique. Public Opin Quart 74, pp. 37–67.   

Imai, K., (2011). Multivariate regression analysis for the item count technique, Journal 
of the American Statistical Association, Vol. 206, pp. 407–416.  

Imai, K., (2015). Design and Analysis of the Randomized response Technique, Journal 
of the American Statistical Association, Vol. 110, No. 511, pp. 1304–1319. 

Kowalczyk, B., Wieczorkowski, R., (2017). Comparing Proportions of sensitive Items 
in Two Populations when Using Poisson and Negative Binomial Item Count 
Techniques, Quantitative Methods in Economics, Vol. 18, pp. 68–77. 

Krumpal, I., Jann, B., Korndörfer, M., Schmukle, S., (2018). Item Sum Double-List 
Technique: An Enhanced Design for Asking Quantitative Sensitive Questions, 
Survey Research Methods, Vol. 12, pp. 91–102.  

Kuha, J., Jackson, J., (2014). The item count method for sensitive survey questions: 
modeling criminal behavior, Journal of the Royal Statistical Society Series C, 
Vol. 63, pp. 321–341. 

Mclachlan, G. J., Krishnan, T., (2008). EM Algorithm and Extensions, Wiley Series 
in Probability and Statistics.  

Miller Jd. (1994). A new survey technique for studying deviant behavior. PhD Thesis, 
The George Washington University, USA, 1984. 

R Core Team (2020). R: A language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna. URL  https://www.R-project.org/. 

Tian, G-L., Tang, M-L., Wu., Q, Liu Y., (2017). Poisson and negative binomial item 
count techniques for surveys with sensitive question, Statistical Methods in Medical 
Research, Vol. 26, pp. 931–947. 



88                                             B. Kowalczyk , R. Wieczorkowski: New improved Poisson and negative… 

 

 

Tourangeau, R., Yan, T., (2007). Sensitive questions in surveys. Psychol Bull 133, 
pp. 859–883. 

Trappman, M., Krumpal, I., Kirchner, A., Jann, B., (2014). Item Sum: A New Technique 
for Asking Quantitative Sensitive Questions, Journal of Survey Statistics and 
Methodology, Vol. 2, pp. 58–77.  

Warner, S. L., (1965). Randomized response: a survey technique for eliminating evasive 
answer bias. Journal of the American Statistical Association, 60, pp. 63–69. 

Wolter, F., Laier, B., (2014). The Effectiveness of the Item Count Technique in Eliciting 
Valid Answers to Sensitive Questions. An Evaluation in the Context of Self-
Reported Delinquency, Survey Research Methods, Vol. 8, pp. 153–168.   

 


