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ABSTRACT 

The confidence interval is an important statistical estimator of population location and 
dispersion parameters. The paper considers a robust modified confidence interval, which is 
an adjustment of the Student’s t confidence interval based on the decile mean and decile 
standard deviation for estimating the population mean of a skewed distribution. The 
efficiency of the proposed interval estimator is evaluated on the basis of an extensive Monte 
Carlo simulation study. The coverage ratio and average width of the proposed confidence 
interval are compared with certain existing and widely used confidence intervals. 
The simulation results show that, in general, the proposed interval estimator’s performance 
is highly effective. For illustrative purposes, three real-life data sets are analyzed, which, to 
a certain extent, support the findings obtained from the simulation study. Thus, we 
recommend that practitioners use the robust modified confidence interval for estimating the 
population mean when the data are generated by a normal or skewed distribution. 

Key words: robust confidence interval, decile mean, decile mean standard deviation, decile 
mean standard error, Monte Carlo simulation 

1.  Introduction 

The normality assumption is the basis for many developed statistical theories. One 
of these theories is the estimation theory for constructing the confidence interval 
developed by Neyman (1937). However, in real life a lot of the data do not follow 
normality assumption and data are not mound shaped, rather they are skewed; that is, 
there is a lack of symmetry of the distribution about the mean. Skewed data may harm 
our results. Skewness is considered either positive or negative based on the direction 
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and nature of the distribution. It has long been known that when sampling from 
a skewed population, with small sample sizes, the usual frequentist confidence intervals 
for the population mean (𝜇) have poor coverage properties (Meeden, 1999). The 
positively skewed data, for example, are common in various fields of modelling such as 
in psychology (Cain et al., 2016), health science (Baklizi and Kibria, 2009; Banik and 
Kibria, 2010; Ghosh and Polansky, 2016), environmental science (Mudelsee and Alkio, 
2007), biological science (McDonald, 2014), engineering science and others. 
A confidence interval is an interval estimator that will capture the true parameter value 
in repeated samples. Abu-Shawiesh et al. (2019) defined confidence interval as a range 
of values that provides the user with an understanding of how precise the estimates of 
a parameter are. In practice, it is usual to use normal theory to construct a confidence 
interval for making inferences about the population mean (𝜇). Unfortunately, the 
confidence interval based on this theory suffers when samples come from skewed or 
non-normal populations. Therefore, it is important to construct a confidence interval 
of a population mean (𝜇) that is not limited by the assumption of population normality 
(Miller and Penfield, 2005). Several other methods have been described in the literature, 
such as transformation methods and bootstrap methods, to obtain an acceptable 
coverage rate and small interval width with skewed distribution and small sample sizes 
(Meeden, 1999; Shi and Kibria, 2007; Ghosh and Polansky, 2016). There are various 
methods in the literature in which confidence intervals are obtained for the population 
mean (𝜇). In practice, it is often possible to work with smaller sample sizes. In such 
cases, Student’s t confidence interval can be preferred instead of the classical confidence 
interval, but it requires an assumption of normality. Luh and Guo (2001) argued that 
“since violation of the normality assumption may be fairly common in applied research, 
robust and efficient alternatives to deal with the problem are needed”. Therefore, it is 
essential to use robust estimators which are less affected by outliers or small departures 
from the model assumptions (Sindhumol et al., 2016). Johnson (1978) proposed 
a modification of the Student’s t confidence interval for skewed distributions. Since 
Johnson (1978), many researchers have obtained confidence intervals for population 
mean of a skewed distribution (Chen, 1995; Meeden, 1999; Kibria, 2006; Shi and Kibria, 
2007; Baklizi, 2008; Abu-Shawiesh et al., 2009; Baklizi and Kibria, 2009; Abu-Shawiesh 
et al., 2011; Pek et al., 2017; Abu-Shawiesh et al., 2018; Abu-Shawiesh and Saghir, 2019; 
Akyuz and Abu-Shawiesh, 2020; Sinsomboonthong et al., 2020).  

In this paper, we compare various methods for constructing a confidence interval 
for the population mean (𝜇) when data are normally or non-normally distributed and 
propose a new robust confidence interval. This proposed confidence interval is an 
adjustment of the Student’s t confidence interval based on the decile mean and the 
decile mean standard deviation. Since a theoretical comparison is not possible, we 
investigate the performance of the proposed confidence interval by using a Monte Carlo 
simulation study and its implementation with three real-life data sets. 
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2.  The decile mean (DM) and the decile mean standard deviation (SDDM) 

The sample mean (�̅�) and sample standard deviation (s) are the most popular and 
frequently used classical estimators of the location and scale parameters of a probability 
distribution. However, they are unreliable in the presence of skewed distributions. 
In this paper, we estimate them with well-known and simple robust estimators of 
location and scale. They are the decile mean (DM) for location and the decile mean 
standard deviation (SDDM) for scale. Furthermore, the standard error of the decile mean 
standard deviation (SDDM) is defined.  

2.1.  The Deciles (Dm) 

The central tendency of a data set is a measure of the location or most typical value 
of the data set. There are various types of descriptive statistics, such as sample mean, 
sample median and sample trimmed mean that can be chosen as a measure of the 
central tendency; under a well-behaved normal distribution, they possess some 
desirable properties. But there is evidence that they may perform poorly and not as well 
as expected in the presence of skewed distributions. Rana et al. (2012) proposed a new 
measure of central tendency based on deciles called the decile mean (DM). This 
measure is fairly robust as it automatically discards extreme observations or outliers 
from both tails but at the same time is more informative than the sample median 
in every respect. Let 𝑋ଵ,𝑋ଶ, … ,𝑋௡ be independent identically distributed (𝑖𝑖𝑑) 
observations from a given population with mean (µ) and standard deviation (𝜎); then 
the deciles, which are a measure of position, are the values (nine in number) of the 
variable that divide any ordered data set 𝑋ሺଵሻ,𝑋ሺଶሻ, … ,𝑋ሺ௡ሻ into ten equal parts so that 
each part represents ଵ

ଵ଴
 of the sample or population, and are denoted by 𝐷ଵ,𝐷ଶ, … ,𝐷ଽ . 

The fifth decile (𝐷ହ) is equal to the sample median (MD). The deciles determine the 
values for 10%, 20% … and 90% of the data set. Now assume that 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ be the 
sample observations of the random sample  𝑋ଵ,𝑋ଶ, … ,𝑋௡ , then the deciles can be 
calculated as follows: 

(1) Order the observations 𝑥ଵ, 𝑥ଶ, … , 𝑥௡ according to the magnitude of the values to get 
the ordered data set 𝑥ሺଵሻ, 𝑥ሺଶሻ, … , 𝑥ሺ௡ሻ. 

(2) To find the value of the 𝑚௧௛ sample decile where 𝑚 ൌ 1, 2, … , 9 , the following 
simple formula can be used: 

 𝐷௠ ൌ 𝑥
ቀቂ೘ ሺ೙శభሻ

భబ
ቃቁ

 observation                                                  (1) 

where 𝑛 is the total number (sample size) of observations. 
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2.2.  The Decile Mean (DM) 

The decile mean, denoted by DM for the random sample 𝑋ଵ,𝑋ଶ, … ,𝑋௡, can be 
calculated by summing all the deciles 𝐷ଵ,𝐷ଶ, … ,𝐷ଽ and dividing the sum by the number 
of deciles. Thus, the formula to find the decile mean (DM) from 9 deciles is as follows: 

            𝐷𝑀 ൌ
∑ ஽೔
వ
೔సభ

ଽ
ൌ  

஽భା ஽మା⋯ା ஽వ
ଽ

                                                  (2) 

The main advantage of the decile mean (DM) is that it is less sensitive to extreme 
values than any other existing measures; also, it depends on 80% of a sample. Let 𝑋 
distributed like 𝑋ଵ,𝑋ଶ, … ,𝑋௡. Then 𝐷௠ is a number for which 𝑃ሺ𝑋 ൏ 𝐷௠ሻ  ൑  

௠

ଵ଴
 ൑

𝑃ሺ𝑋 ൑ 𝐷௠ሻ. If 𝑋 has absolutely continuous distribution function 𝐹ሺ𝑥ሻ ൌ 𝑃ሺ𝑋 ൑ 𝑥ሻ 
then 𝐹ሺ𝐷௠ሻ ൌ 𝑃ሺ𝑋 ൑ 𝐷௠ሻ ൌ

௠

ଵ଴
. It is termed a robust estimator in this regard. Rana et 

al. (2012) used the bootstrap method to investigate the sampling distribution of the 
newly proposed decile mean (DM) with three other popular and commonly used 
measures of location, i.e., the sample mean, median and trimmed mean, and found that 
the newly proposed decile mean (DM) has the following properties: 

(i) The distribution of the sample decile is quite normal in shape and irrespective of 
the presence of outliers. 

(ii) The bias and standard error of sample decile mean (DM) are very small, and 
among the four compared estimators, this estimator appears to be the best in every 
respect. 

(iii) The results presented show that all four estimators are biased, but this bias is the 
least for the sample decile mean (DM).  

Both the bootstrap and simulation study demonstrate that the sample decile mean 
(DM) is a more accurate measure of central tendency or location in terms of possessing 
smaller bias and lower standard errors in a variety of situations, and hence can be 
recommended to be used as an effective measure of central tendency or location. 

2.3.  Decile Mean Standard Deviation (SDDM) and Standard Error ሺ𝐒𝐄𝐃𝐌ሻ 

Decile mean standard deviation (SDDM) is a robust measure of dispersion proposed 
by Doullah (2018) as an alternative to the sample standard deviation (S). Let 
𝑋ଵ,𝑋ଶ, … ,𝑋௡ be a random sample of size 𝑛 from a given population with mean (µ) and 
standard deviation (𝜎); then the decile mean standard deviation (SDDM) can be 
calculated by using the following formula: 

         SDୈ୑ ൌ   ට ୘୦ୣ ୱ୳୫ ୭୤ ୲୦ୣ ଽ ୢୣୡ୧୪ୣୱ ୭୤ ሺଡ଼౟ିୈ୑ሻమ 

ଽ ି ଵ
ൌ ටଵ

଼
 ∑ ሺ𝐷௜ െ 𝐷௠ሻଶଽ

௜ୀଵ                  (3) 
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Doullah (2018) also defined the standard error of the decile mean standard deviation 
(SDDM), denoted by 𝑆𝐸஽ெ , to be computed as follows:  

                                             𝑆𝐸஽ெ ൌ
ௌ஽ವಾ
√௡

                                                          (4) 

3.  Methods for estimation the confidence interval for the population mean 

In this section, the used methods and the proposed robust method for confidence 
interval of the population mean (𝜇) for normal and non-normal distributions are 
introduced. Let 𝑋ଵ,𝑋ଶ, … ,𝑋௡ be 𝑖𝑖𝑑 random sample of size 𝑛 from a population with 
mean (µ) and standard deviation (𝜎). Our purpose is to find an interval estimate for the 
population mean (μ) with a specific level of confidence. Several methods have been 
suggested in the literature to find the confidence interval for 𝜇. These are (a) the 
parametric approach, (b) the modified t approach, (c) the nonparametric approach and 
(d) the bootstrap approach, among others. In this study, we concentrate on (a) and (b) 
approaches only. The (1 – α) 100% confidence intervals for the population mean (μ) by 
different approaches are presented below. 

3.1. The Parametric t-Approach 

The parametric method to construct the (1 – α) 100% confidence interval  for the 
population mean (μ) is the most used approach because it is well understood, simple 
and widely used to construct such the confidence interval. Under this approach, we 
consider two confidence interval methods. Let 𝑋ଵ,𝑋ଶ, … ,𝑋௡ be a random sample of size 
𝑛 from a normal distribution with mean (µ) and variance (𝜎ଶ); that is, 
𝑋ଵ,𝑋ଶ, … ,𝑋௡~𝑁ሺ𝜇, 𝜎ଶሻ. Then, the (1 – α) 100% confidence interval for the population 
mean (𝜇) given by Student (1908) and known as the Student’s t confidence interval for 
a small sample size 𝑛 (𝑛 ൑ 30) and unknown population standard deviation (𝜎) can be 
constructed as follows: 

                                     𝐶. 𝐼.ൌ 𝑋ത േ 𝑡ሺ ഀ
మ 

,   ௡ିଵሻ  
ௌ

√௡
                                                   (5) 

 

where 𝑋ത ൌ 𝑛ିଵ ∑ 𝑋௜
௡
௜ୀଵ  , 𝑆 ൌ ටሺ𝑛 െ 1ሻିଵ ∑ ሺ𝑋௜ െ 𝑋തሻଶ௡

௜ୀଵ  and 𝑡ሺఈ ଶ⁄ ,௡ିଵሻ is the upper 

𝛼/2 percentage point of the Student’s t-distribution with (𝑛 െ  1) degrees of freedom. 
Now, since the Student’s t confidence interval depends on the normality assumption, it 
may not be the best confidence interval and may not perform as well as expected in the 
presence of skewed distributions. DiCicco and Efron (1996) and Boos and Hughes-
Oliver (2000) stated that the Student’s t confidence interval is not very robust and can 
be quite inaccurate in practice for non-normal data.  
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3.2. The Modified Parametric t-Approach 

If the 𝑖𝑖𝑑 random sample 𝑋ଵ,𝑋ଶ, … ,𝑋௡ is from a non-normal distribution, the 
distribution of the t-statistic is not a Student’s t distribution. In particular, the skewness 
of a non-normal distribution has a large impact on the validity of the Student’s t-
distribution; see, for example, Yanagihara and Yuan (2005). Several methods for 
constructing the (1 – α) 100% confidence interval for the population mean (𝜇) have 
been proposed to remove the effect of skewness by modifying the t-statistic. Here, we 
briefly review the most important of these methods. 

3.2.1. The Johnson t-Approach 

Based on the first term of the inverse Cornish–Fisher expansion, Johnson (1978) 
proposed the following confidence interval estimator for the population mean (𝜇): 

                                     𝐶. 𝐼.ൌ ቂ𝑋ത ൅
ఓෝయ
଺௡ௌమ

ቃ േ 𝑡ሺ ഀ
మ 

,௡ିଵሻ  
ௌ

√௡
                                                   (6) 

where  �̂�ଷ ൌ
∑ ሺ௑೔ି௑തሻయ
೙
೔సభ

௡
  is the estimator of the third central moment of the population 

(𝜇ଷ). Kibria (2006) concluded it appears that the width of the Student’s t and Johnson-
t confidence intervals is the same. 

3.2.2.  The Chen t-Approach  

Using the Edgeworth expansion, Chen (1995) modified the CLT approach and 
proposed the following confidence interval estimator for the population mean (𝜇): 

    𝐶. 𝐼.ൌ 𝑋ത േ  ቎ 𝑡ሺ ഀ
మ 

,௡ିଵሻ ൅
ఊෝ ቆଵାଶ௧

ቀ
ഀ
మ ,೙షభቁ
మ ቇ

଺ √௡
൅

ఊෝమ ቆ௧
ሺ 
ഀ
మ ,೙షభሻ

ା ଶ௧
ቀ
ഀ
మ ,೙షభቁ
మ ቇ

ଽ ௡
቏  

ௌ

√௡
                    (7) 

where 𝛾ො ൌ ఓෝయ
ௌయ

 is the estimate of the coefficient of skewness. 

3.2.3.  The Yanagihara and Yuan t-Approach 

To reduce the effect of the mean bias as well as population skewness, Yanagihara 
and Yuan (2005) proposed the following confidence interval estimator for the 
population mean (𝜇): 

                                  𝐶. 𝐼.ൌ ൥𝑋ത ൅  
ሺௌ ௞෠యሻ

൬ሺସ௡ሻቀଶାభఱ
೙
ቁ൰
൩ േ 𝑡ሺ ഀ

మ 
,௡ିଵሻ  

ௌ

√௡
                                   (8) 

 

where 𝑘෠ଷ ൌ
൫∑ ሺ௑೔ି௑തሻయ

೙
೔సభ ௡⁄ ൯

൫∑ ሺ௑೔ି௑തሻమ
೙
೔సభ ௡⁄ ൯

య మ⁄  . 
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3.2.4.  The Shi and Kibria Mad t-Approach 

In terms of using the sample median (MD) rather than the sample mean (𝑋ത) for 
defining the sample standard deviation, Shi and Kibria (2007) proposed another 
confidence interval estimator for the population mean (μ), as follows: 

                                    𝐶. 𝐼.ൌ 𝑋ത േ 𝑡ሺ ഀ
మ 

,௡ିଵሻ  
ௌሚమ
√௡

                                                              (9) 

where 𝑆ሚଶ ൌ
ଵ

௡
 ∑ |𝑋௜ െ 𝑋ത|௡

௜ୀଵ  is the sample mean absolute deviation (Mad). 

3.2.5.  The Abu-Shawiesh, Banik and Kibria AADM t-Approach 

Abu-Shawiesh et al. (2018) proposed a modification of the Student’s t confidence 
interval for the population mean (μ) of a skewed distribution, called AADM-t 
confidence interval estimator and expressed as follows: 

 

                                    𝐶. 𝐼.ൌ 𝑋ത േ 𝑡ሺ ഀ
మ 

,௡ିଵሻ  
஺஺஽ெ

√௡
                                                     (10) 

where 𝐴𝐴𝐷𝑀 ൌ
ඥగ ଶ⁄

௡
 ∑ |𝑋௜ െ 𝑀𝐷|௡

௜ୀଵ  is the average absolute deviation from the 
sample median (Gastwirth, 1982). Gastwirth (1982) stated that the AADM is an 
asymptotically normally distributed, consistent estimator of the population standard 
deviation (σ) and almost surely converges to it. 

3.3.  The Confidence Interval Based on Resampling Approach  

Efron and Tibshirani (1993) recommended resampling approach to generate a 
large number of independent bootstrap samples 𝑥∗ଵ,  𝑥∗ଶ, … ,  𝑥∗஻ for a random sample 
from an unknown distribution with population mean. A bootstrap sample 𝑥∗ ൌ
ሺ𝑥ଵ

∗, 𝑥ଶ
∗, … , 𝑥௡∗ሻ  is obtained by randomly resampling n times with replacement from the 

original data sample 𝑥ଵ, 𝑥ଶ, … , 𝑥௡. Then, the (1 – α) 100% confidence interval based on 
bootstrap percentile for the population mean (𝜇) can be constructed as follows: this 
approach performs resampling technique B times and let  �̂�∗ଵ, �̂�∗ଶ, … , �̂�∗஻  be the 
estimator of parameter 𝜇 for each independent bootstrap sample  𝑥∗ଵ,  𝑥∗ଶ, … ,  𝑥∗஻. If 
�̂�∗ is a random variable drawn from the normal distribution with mean �̂�  and variance 
𝜎ොଶ, then the (1 – α) 100% bootstrap percentile confidence interval estimator for the 
population mean (𝜇) can be expressed in the form of equation (11) and (12) as follows: 

 

    𝐶𝐿   ൌ 100 ∙ α 2ൗ
௧௛  𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 �̂�∗′𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛                               (11)

   𝑈𝐶𝐿 ൌ 100 ∙ ሺ1 െ α
2ൗ ሻ௧௛ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑜𝑓 �̂�∗′𝑠 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛                    (12) 
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The bootstrap confidence interval produce a good coverage ratio for interval 
estimation as shown in the study by DiCiccio and Efron (1996), Marinho et al. (2018), 
Ghosh and Polansky (2016). 

3.4.  The Proposed Robust DMSDDM t-Approach 

In this section, we propose a robust modification of the Student’s t confidence 
interval for the population mean (𝜇) of a skewed population. It is a simple adjustment 
of the Student’s t confidence interval and can be obtained with the following steps:  
Step 1: Select a random sample of size (𝑛), 𝑋ଵ, 𝑋ଶ, . . . ,𝑋௡ , from the probability 

distribution of the random variable 𝑋. 

Step 2:   Calculate the sample decile mean (DM), which is given by equation (2).  

Step 3:   Calculate the decile mean standard deviation (SDDM) and the standard error of 
the decile mean standard deviation (𝑆𝐸஽ெ), which are given by equations (3) 
and (4). 

Step 4:  The lower confidence limit (LCL) and the upper confidence limit (UCL) for the 
ሺ1 െ 𝛼ሻ100% proposed robust confidence interval estimator–DMSDDM-t 
confidence interval–of the population mean (𝜇) for the skewed distribution 
can be calculated as follows: 

                                𝐿𝐶𝐿 ൌ 𝐷𝑀 െ 𝑡ሺ ഀ
మ 

,௡ିଵሻ  
ௌ஽ವಾ
√௡

                                                   (13) 

                               𝑈𝐶𝐿 ൌ 𝐷𝑀 ൅ 𝑡ሺ ഀ
మ 

,௡ିଵሻ  
ௌ஽ವಾ
√௡

                                                    (14) 

where 𝒕ሺ 𝜶
𝟐 

,𝒏ି𝟏ሻ is the upper α/2 percentage point of the Student’s t-distribution with 
(𝒏 െ 𝟏) degrees of freedom. 

4. The simulation study 

Since a theoretical comparison among these confidence intervals is not possible, a 
simulation study is conducted. All the simulation results are performed by SAS 
programming version 9.4.  

4.1.  Performance Evaluation 

A Monte Carlo simulation study is presented in this section to compare the 
performance of eight confidence interval estimators for the population mean of three 
distributions. We consider a set of possible useful confidence intervals and compare 
them with the proposed robust method, aiming to confirm that it is appropriate for 
estimating the population mean (μ) of a skewed distribution. To make comparisons 



STATISTICS IN TRANSITION new series, March 2022 

 

117

among confidence intervals, the coverage ratio (CR) and average width (AW) of the 
confidence intervals are considered as the performance criteria. A smaller width 
indicates a better confidence interval when the coverage ratios are the same level. 
Further, the higher coverage ratio indicates a better confidence interval when the 
widths of intervals are the same level. The sample sizes of 𝑛 = 10, 20, 30, 40, 50 and 100 
were randomly generated 100,000 times. For each set of samples, 95% confidence 
intervals were constructed for the considered methods and the construction of 
bootstrap percentile confidence intervals for the population mean are generated 
resampling 1,000 times for each situation. The coverage ratio (CR) and the average 
width (AW) of the confidence intervals are obtained using the following two formulas: 

                     𝐶𝑅 ൌ
#ሺ௅ ஸ ఏ ஸ ௎ሻ

ଵ଴଴,଴଴଴
         and      𝐴𝑊 ൌ

∑  ሺ௎೔ ି ௅೔ሻ
భబబ,బబబ
೔సభ

ଵ଴଴,଴଴଴
                      (15) 

4.2.  Probability Distributions for the Simulation Study 

To study the effect of skewness and compare the performance of the eight 
confidence interval estimators for the population mean (μ) of the distribution, two 
cases for the simulation observations, namely normal and skewed distributions, are 
considered in this study. 

Case (a): Normal Distribution 

The normal distribution is symmetric and has no skewness. The probability density 
function (𝑝𝑑𝑓) of a normal distribution with mean μ and standard deviation σ, 
𝑁ሺ𝜇,𝜎ଶሻ, is given as follows: 

𝑓ሺ𝑥;  𝜇,𝜎ሻ ൌ
ଵ

ఙ √ଶగ
 𝑒ି

భ
మ

 ቀೣషഋ
഑
ቁ
మ

 ;   െ∞ ൏ 𝑥 ൏ ∞ , െ∞ ൏ 𝜇 ൏ ∞ ,   𝜎 ൐ 0          (16) 

In the simulation algorithm of this study, the population mean μ and the 
population standard deviation σ are set as 𝜇 ൌ 20 and 𝜎 ൌ 5, 10, 20. 

Case (b): Skewed Distributions 

The skewness of a probability distribution refers to the departure of the distribution 
from symmetry. A distribution with longer tail on the left is negative skewed, and a 
distribution with longer tail on the right is positive skewed (Sharma et al., 2009). For 
skewed distributions, we simulate observations from two probability distributions with 
varying degrees of skewness as follows: 

(i) The chi-square distribution, 𝜒ሺ௞ሻଶ , where 𝑘 is the number of degrees of freedom 
with probability density function (𝑝𝑑𝑓), is given as follows: 

                          𝑓ሺ𝑥;  𝑘ሻ ൌ ቊ
ଵ

Гሺ௞ ଶ⁄ ሻ ଶೖషభ
 𝑥ሺ௞ ଶ⁄ ሻିଵ 𝑒ି௫/ଶ , 𝑥 ൐ 0  

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                 (17) 
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The mean and the variance of the chi-square distribution are given by 𝜇 ൌ
𝑘 and 𝜎ଶ ൌ 2𝑘. The coefficient of skewness of the distribution is ඥ8/𝑘 . In the 
simulation algorithm of this study, the parameter 𝑘 for the chi-square distribution is 
set as 𝑘 = 5, 10, 50. 

(ii) The triangular distribution, 𝑇𝑟ሺ𝑎, 𝑏, 𝑐ሻ, involves parameters a, b and c, where a is 
the minimum value, b is the maximum value and c is the most likely value (mode). 
The triangular distribution is selected for this study as it can be used to model both 
positive and negative skewed distributions. The probability density function 
(𝑝𝑑𝑓) for the triangular distribution is given as follows: 

              𝑓ሺ𝑥;𝑎, 𝑏, 𝑐ሻ ൌ

⎩
⎪
⎨

⎪
⎧

0 , 𝑥 ൏ 𝑎
ଶሺ௫ି௔ሻ

ሺ௕ି௔ሻሺ௖ି௔ሻ
, 𝑎 ൑ 𝑥 ൑ 𝑐

ଶሺ௕ି௫ሻ

ሺ௕ି௔ሻሺ௕ି௖ሻ

0

,
,
𝑐 ൏ 𝑥 ൑ 𝑏
𝑥 ൐ 𝑏

                                          (18) 

The mean and variance of the triangular distribution, 𝑇𝑟ሺ𝑎, 𝑏, 𝑐ሻ, are given by 𝜇 ൌ
௔ା௕ା௖

ଷ
   and  𝜎ଶ ൌ

௔మା௕మା௖మି௔௕ି௔௖ି௕௖

ଵ଼
. The skewness coefficient of the triangular 

distribution is given by √ଶሺ௔ା௕ିଶ௖ሻሺଶ௔ି௕ି௖ሻሺ௔ିଶ௕ା௖ሻ
ହሺ௔మା௕మା௖మି௔௕ି௔௖ି௕௖ሻయ మ⁄  . In the simulation algorithm of this 

study, we simulate observations from 𝑇𝑟ሺ0, 1, 0.05ሻ, 𝑇𝑟ሺ0, 1, 0.5ሻ and 𝑇𝑟ሺ0, 1, 0.95ሻ to 
represent the positive, symmetric and negative cases of the triangular distribution, 
respectively. Table 4.1 shows the specific distributions and their skewness coefficients 
used in this simulation study. 

Table 4.1. Coefficients of skewness for the studied simulation probability distributions 

Probability Distributions Parameters Coefficients of Skewness 

𝑁ሺ𝜇,𝜎ଶሻ 𝜇 ൌ 20, 𝜎 ൌ 5, 10, 20 0 

𝜒ሺ௞ሻ
ଶ  

𝑘 ൌ 5 1.2649 
𝑘 ൌ 10 0.8944 
𝑘 ൌ 50 0.4000 

𝑇𝑟ሺ0, 1, 𝑐ሻ 
𝑐 ൌ 0.05 0.5607 
𝑐 ൌ 0.50 0 
𝑐 ൌ 0.95 -0.5607 

4.3.  The Simulation Study Results 

The simulation results for all studied cases are shown in Tables 4.2 to 4.10. The 
performance of 95% confidence intervals of the population mean for the eight methods 
are as follows: in the case of normally distributed data as shown in Tables 4.2 to 4.4, it is 
observed that the coverage ratio of DMSDDM-t confidence interval is slightly under 



STATISTICS IN TRANSITION new series, March 2022 

 

119

0.95 for all sample sizes. However, the coverage ratio of Bootstrap-percentile 
confidence interval is only slightly under 0.95 for a small sample size, but it close to 0.95 
for the large sample sizes. In addition, the coverage ratios of five intervals–Student’s t, 
Johnson-t, Chen-t, YY-t and AADM-t–are close to 0.95 for all sample sizes. Further, 
the coverage ratio of Mad-t confidence interval is more under than the nominal level 
when compared with the proposed interval. When the performance of confidence 
intervals is compared in terms of the average width, the five methods in which the 
coverage ratio is close to 0.95 tend to have no difference in average width for any sample 
size or any of the normal distributed data. Although, the coverage ratio of the proposed 
method is slightly lower than that of the five methods, the average width of this 
proposed interval is smaller than that of the five intervals for all sample sizes and it is 
smaller than the average width of Bootstrap-percentile for the large sample size.  

Table 4.2.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of normal distribution with 𝜇 ൌ 20 and 𝜎 ൌ 5 

n 
Performance 

Measures 
Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9506 0.9506 0.9477 0.9505 0.8855 0.9438 0.9260 0.9013 
AW 7.0 7.0 7.1 7.0 5.4 6.8 6.2 5.7 

20 CR 0.9496 0.9495 0.9482 0.9495 0.8826 0.9459 0.9174 0.9266 
AW 4.6 4.6 4.6 4.6 3.6 4.6 4.1 4.2 

30 CR 0.9494 0.9495 0.9489 0.9495 0.8819 0.9464 0.9142 0.9345 
AW 3.7 3.7 3.7 3.7 2.9 3.7 3.3 3.5 

40 CR 0.9499 0.9499 0.9493 0.9499 0.8820 0.9481 0.9138 0.9382 
AW 3.2 3.2 3.2 3.2 2.5 3.2 2.8 3.0 

50 CR 0.9501 0.9502 0.9499 0.9501 0.8818 0.9483 0.9129 0.9409 
AW 2.8 2.8 2.8 2.8 2.2 2.8 2.5 2.7 

100 CR 0.9501 0.9501 0.9501 0.9501 0.8818 0.9490 0.9119 0.9449 
AW 2.0 2.0 2.0 2.0 1.6 2.0 1.8 1.9 

Table 4.3.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of normal distribution with 𝜇 ൌ 20 and 𝜎 ൌ 10 

n 
Performance 

Measures 
Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9506 0.9506 0.9477 0.9505 0.8855 0.9437 0.9260 0.9013 
AW 13.9 13.9 14.1 13.9 10.8 13.6 12.5 11.4 

20 CR 0.9496 0.9495 0.9482 0.9495 0.8826 0.9458 0.9173 0.9266 
AW 9.2 9.2 9.3 9.2 7.3 9.1 8.2 8.4 

30 CR 0.9494 0.9494 0.9489 0.9495 0.8820 0.9464 0.9142 0.9345 
AW 7.4 7.4 7.4 7.4 5.9 7.3 6.6 7.0 

40 CR 0.9499 0.9500 0.9493 0.9499 0.8821 0.9481 0.9138 0.9381 
AW 6.4 6.4 6.4 6.4 5.0 6.3 5.6 6.1 

50 CR 0.9501 0.9502 0.9499 0.9501 0.8819 0.9483 0.9129 0.9409 
AW 5.7 5.7 5.7 5.7 4.5 5.6 5.0 5.5 

100 CR 0.9501 0.9501 0.9500 0.9501 0.8818 0.9490 0.9119 0.9449 
AW 4.0 4.0 4.0 4.0 3.1 3.9 3.5 3.9 
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Table 4.4.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of normal distribution with 𝜇 ൌ 20 and 𝜎 ൌ 20 

n Performance 
Measures 

Confidence Interval Methods 

Student-t Johnson-t Chen-t Student-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 
CR 0.9506 0.9506 0.9477 0.9506 0.8856 0.9437 0.9260 0.9013 

AW 27.8 27.8 28.3 27.8 21.7 27.1 25.0 22.8 

20 
CR 0.9496 0.9495 0.9482 0.9495 0.8826 0.9458 0.9173 0.9266 

AW 18.5 18.5 18.6 18.5 14.6 18.2 16.4 16.8 

30 
CR 0.9494 0.9494 0.9489 0.9495 0.8819 0.9464 0.9142 0.9345 

AW 14.8 14.8 14.9 14.8 11.7 14.7 13.1 13.9 

40 
CR 0.9499 0.9500 0.9493 0.9499 0.8821 0.9481 0.9138 0.9382 

AW 12.7 12.7 12.7 12.7 10.1 12.6 11.3 12.1 

50 
CR 0.9501 0.9502 0.9499 0.9501 0.8818 0.9483 0.9129 0.9409 

AW 11.3 11.3 11.3 11.3 9.0 11.2 10.0 10.9 

100 
CR 0.9501 0.9502 0.9500 0.9501 0.8818 0.9490 0.9119 0.9449 

AW 7.9 7.9 7.9 7.9 6.3 7.9 7.0 7.8 

In the case of data are generated from two skewed probability distributions–chi-square 
and triangular distributions–with varying degrees of skewness, the performance of 95% 
confidence intervals of the population means are shown in Tables 4.5 to 4.10. If the 
coefficient of skewness for chi-square distribution is equal to 1.2649 or 0.8944, then the 
coverage ratio of DMSDDM-t tends to decrease when the sample size increases. However, if 
the coefficient of skewness for this distribution is equal to 0.4000, then the coverage ratio of 
DMSDDM-t is slightly under 0.95, and it tends to be at the same level irrespective of the 
sample size. Moreover, the coverage ratio of five intervals – Student’s t, Johnson-t, Chen-t, 
YY-t and AADM-t – is close to the specified confidence coefficient level, while that of the 
Mad-t confidence interval is more under than the nominal level for all sample sizes when it 
is compared with the proposed method. For both positive and negative coefficients of 
skewness for triangular distribution, the coverage ratio of DMSDDM-t tends to decrease for 
a large sample size. Moreover, this coverage ratio of DMSDDM-t tends to be the same level 
and slightly under 0.95 for each sample size when coefficient of skewness equals zero. 
Additionally, the coverage ratio of five intervals – Student’s t, Johnson-t, Chen-t, YY-t and 
AADM-t – is close to 0.95 for all sample sizes and all coefficients of skewness for triangular 
distributions. When considering all of the distributions in this study, it is found that the 
coverage ratios of the proposed confidence interval are close to the nominal level and greater 
than this of the Bootstrap-percentile confidence interval for a small sample size, and the 
average width of these two methods tends to be no difference for all sample sizes. 
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Table 4.5.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of Chi-square distribution with df = 5 

n 
Performance 

Measures 
Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9299 0.9311 0.9445 0.9306 0.8670 0.9233 0.8959 0.8869 
AW 4.3 4.3 5.2 4.3 3.3 4.2 3.8 3.5 

20 CR 0.9366 0.9379 0.9563 0.9375 0.8687 0.9305 0.8650 0.9159 
AW 2.9 2.9 3.4 2.9 2.2 2.8 2.4 2.6 

30 CR 0.9406 0.9417 0.9601 0.9413 0.8683 0.9350 0.8481 0.9281 
AW 2.3 2.3 2.7 2.3 1.8 2.2 1.9 2.2 

40 CR 0.9420 0.9429 0.9619 0.9426 0.8669 0.9358 0.8288 0.9322 
AW 2.0 2.0 2.3 2.0 1.5 1.9 1.6 1.9 

50 CR 0.9433 0.9440 0.9621 0.9437 0.8693 0.9364 0.8181 0.9353 
AW 1.8 1.8 2.0 1.8 1.4 1.7 1.4 1.7 

100 CR 0.9472 0.9477 0.9633 0.9477 0.8685 0.9404 0.7580 0.9429 
AW 1.2 1.2 1.4 1.2 1.0 1.2 1.0 1.2 

Table 4.6.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of Chi-square distribution with df = 10 

n 
Performance 

Measures 

Confidence Interval Methods 

Student-t Johnson-t 
Chen-

t 
YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9391 0.9397 0.9483 0.9393 0.8749 0.9325 0.9099 0.8926 
AW 6.2 6.2 7.1 6.2 4.8 6.0 5.5 5.0 

20 CR 0.9423 0.9430 0.9566 0.9428 0.8750 0.9376 0.8894 0.9200 
AW 4.1 4.1 4.6 4.1 3.2 4.0 3.5 3.7 

30 CR 0.9452 0.9458 0.9599 0.9456 0.8755 0.9410 0.8801 0.9313 
AW 3.3 3.3 3.7 3.3 2.6 3.2 2.8 3.1 

40 CR 0.9458 0.9461 0.9611 0.9459 0.8764 0.9424 0.8715 0.9357 
AW 2.8 2.8 3.1 2.8 2.2 2.8 2.4 2.7 

50 CR 0.9460 0.9462 0.9606 0.9462 0.8741 0.9418 0.8643 0.9374 
AW 2.5 2.5 2.8 2.5 2.0 2.5 2.1 2.4 

100 CR 0.9475 0.9476 0.9596 0.9475 0.8742 0.9441 0.8349 0.9434 
AW 1.8 1.8 1.9 1.8 1.4 1.7 1.5 1.7 

Table 4.7.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of Chi-square distribution with df = 50 

n Performance 
Measures 

Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9469 0.9470 0.9494 0.9471 0.8831 0.9397 0.9213 0.8985 
AW 13.9 13.9 14.9 13.9 10.8 13.5 12.4 11.3 

20 CR 0.9487 0.9488 0.9546 0.9488 0.8822 0.9452 0.9121 0.9257 
AW 9.2 9.2 9.8 9.2 7.3 9.1 8.1 8.4 

30 CR 0.9502 0.9503 0.9569 0.9502 0.8813 0.9465 0.9087 0.9349 
AW 7.4 7.4 7.8 7.4 5.8 7.3 6.5 7.0 

40 CR 0.9504 0.9504 0.9571 0.9505 0.8825 0.9476 0.9063 0.9389 
AW 6.4 6.4 6.6 6.4 5.0 6.3 5.6 6.1 

50 CR 0.9485 0.9484 0.9555 0.9484 0.8806 0.9465 0.9028 0.9389 
AW 5.7 5.7 5.9 5.7 4.5 5.6 5.0 5.5 

100 CR 0.9483 0.9484 0.9540 0.9484 0.8795 0.9470 0.8946 0.9431 
AW 4.0 4.0 4.1 4.0 3.1 3.9 3.5 3.9 
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Table 4.8.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of triangular distribution with a = 0, b = 1 and c = 0.05  

n 
Performance 

Measures 
Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9405 0.9420 0.9528 0.9412 0.8848 0.9361 0.9063 0.9030 
AW 0.3 0.3 0.4 0.3 0.3 0.3 0.3 0.3 

20 CR 0.9450 0.9464 0.9597 0.9458 0.8898 0.9465 0.8920 0.9275 
AW 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

30 CR 0.9466 0.9477 0.9601 0.9473 0.8935 0.9505 0.8865 0.9357 
AW 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 

40 CR 0.9489 0.9500 0.9614 0.9496 0.8964 0.9543 0.8829 0.9406 
AW 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 

50 CR 0.9472 0.9478 0.9584 0.9475 0.8951 0.9533 0.8766 0.9401 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

100 CR 0.9493 0.9498 0.9584 0.9496 0.8978 0.9576 0.8600 0.9460 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Table 4.9.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of triangular distribution with a = 0, b = 1 and c = 0.50 

n 
Performance 

Measures 
Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9474 0.9479 0.9452 0.9477 0.8880 0.9432 0.9201 0.9025 
AW 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.2 

20 CR 0.9502 0.9509 0.9495 0.9507 0.8900 0.9501 0.9140 0.9294 
AW 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

30 CR 0.9491 0.9497 0.9486 0.9494 0.8881 0.9503 0.9114 0.9362 
AW 0.2 0.2 0.2 0.2 0.1 0.2 0.1 0.1 

40 CR 0.9492 0.9497 0.9490 0.9496 0.8886 0.9513 0.9107 0.9393 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

50 CR 0.9500 0.9504 0.9502 0.9503 0.8895 0.9528 0.9102 0.9420 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

100 CR 0.9501 0.9503 0.9502 0.9502 0.8914 0.9541 0.9113 0.9458 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Table 4.10.  Coverage ratio (CR) and average width (AW) of the 95% confidence intervals for the 
population mean of triangular distribution with a = 0, b = 1 and c = 0.95 

n 
Performance 

Measures 
Confidence Interval Methods 

Student-t Johnson-t Chen-t YY-t Mad-t AADM-t DMSDDM-t Bootstrap 

10 CR 0.9411 0.9429 0.9249 0.9420 0.8858 0.9371 0.9062 0.9033 
AW 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

20 CR 0.9451 0.9464 0.9280 0.9460 0.8906 0.9462 0.8923 0.9281 
AW 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

30 CR 0.9466 0.9478 0.9310 0.9474 0.8921 0.9503 0.8847 0.9358 
AW 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 

40 CR 0.9487 0.9496 0.9344 0.9492 0.8944 0.9538 0.8816 0.9411 
AW 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 

50 CR 0.9491 0.9501 0.9362 0.9497 0.8969 0.9553 0.8790 0.9424 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

100 CR 0.9493 0.9500 0.9403 0.9497 0.8979 0.9580 0.8609 0.9461 
AW 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
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5.  Real data applications 

In this section, three real-life examples from normal and skewed distributions are 
analyzed to illustrate the applications of the proposed robust confidence interval. 

5.1.  Load at failure data 

The first data set was obtained from Berndt (1989). The data describe the results of 
tensile adhesion tests (in megapascals) on 22 U-700 alloy specimens: 19.8, 10.1, 14.9, 
7.5, 15.4, 15.4, 15.4, 18.5, 7.9, 12.7, 11.9, 11.4, 11.4, 14.1, 17.6, 16.7, 15.8, 10.5, 8.8, 13.6, 
11.9, and 11.4. The Kolmogorov-Smirnov (K-S) goodness-of-fit test for normality for 
this data set has a p-value (p-value > 0.150) greater than α = 0.05. We conclude that the 
data are in excellent agreement with a normal distribution with skewness = 0.07, 
kurtosis = -0.68, mean = 13.305 and standard deviation = 3.369.  

Table 5.1.  The 95% confidence intervals for the population mean of load at failure  

Methods 
Estimated Confidence Interval Limits 

Width 
Lower Limit Upper Limit 

Student-t 11.8108 14.7983 2.9875 
Johnson-t 11.8125 14.7999 2.9874 

Chen-t 11.7948 14.8143 3.0195 
YY-t 11.8118 14.7992 2.9874 

Mad-t 12.0611 14.5480 2.4869 
AADM-t 11.7461 14.8630 3.1169 

DMSDDM-t 11.9306 14.6138 2.6832 
Bootstrap 12.0159 14.6750 2.6591 

The 95% CI for the population mean (𝜇) for load specimen failure is studied. The 
considered confidence intervals and their corresponding width have been given 
in Table 5.1. From Table 5.1, the 95% estimated confidence interval for population 
mean (𝜇) of load specimen failure, which is constructed using AADM-t method, gives 
the largest width, whereas the 95% of Mad-t confidence interval gives the smallest width 
and the secondary width is constructed for the 95% confidence interval using the 
DMSDDM-t and Bootstrap-percentile methods. Therefore, the results from this real-life 
example as shown in Table 5.1 support the simulation study in Section 4. 

5.2.  Psychotropic drug exposure data 

To study the average use of psychotropic drugs among non-antipsychotic drug 
users, the number of psychotropic drug users was reported for a random sample of 𝑛 ൌ
20  from different categories of drugs. The following data represent the number of users 
(Johnson and McFarland, 1993): 43.4, 24, 1.8, 0, 0.1, 170.1, 0.4, 150, 31.5, 5.2, 35.7, 27.3, 
5, 64.3, 70, 94, 61.9, 9.1, 38.8, and 14.8. The data are checked and found to be positively 
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skewed with skewness = 1.57, kurtosis = 2.06, mean = 42.37 and standard deviation = 
48.43. The considered confidence intervals and their corresponding width are given in 
Table 5.2. 

Table 5.2.  The 95% confidence intervals for the average use of psychotropic drugs 

Methods 
Estimated Confidence Interval Limits 

Width 
Lower Limit Upper Limit 

Student-t 19.8445 64.8955 45.0509 

Johnson-t 20.3850 65.4359 45.0509 

Chen-t 13.4694 71.2706 57.8013 

YY-t 20.1629 65.2139 45.0509 

Mad-t 25.7607 58.9793 33.2185 

AADM-t 22.7839 61.9561 39.1722 

DMSDDM-t 19.3406 50.2838 30.9432 

Bootstrap 23.7750 66.1800 42.4050 

From Table 5.2, the 95% estimated confidence interval for the average use of 
psychotropic drugs, which is constructed by using the Chen-t method, gives the largest 
width and differs from other methods, whereas the 95% of DMSDDM-t confidence 
interval gives the shortest width, followed by Mad-t and AADM-t confidence intervals. 
Since this data set is positively skewed, we conclude that the results in Table 5.2 support 
the simulation results in the case of positively skewed distribution of this study. 

5.3.  Long jump distance data 

The following data represent the results of the final points scores reported for 40 
players in long jump distance in meters (International Olympic Committee, 2019): 8.11, 
8.11, 8.09, 8.08, 8.06, 8.03, 8.02, 7.99, 7.99, 7.97, 7.95, 7.92, 7.92, 7.92, 7.89, 7.87, 7.84, 
7.79, 7.79, 7.77, 7.76, 7.72, 7.71, 7.66, 7.62, 7.61, 7.59, 7.55, 7.53, 7.5, 7.5, 7.42, 7.38, 7.38, 
7.26, 7.25, 7.08, 6.96, 6.84, 6.55. The data are checked and found to be negatively skewed 
with skewness = −1.16, kurtosis = 1.20, mean = 7.6745 and standard deviation = 0.37. 
The considered confidence intervals and their corresponding width have been given in 
Table 5.3. From Table 5.3, the 95% estimated confidence interval for the population 
mean (𝜇) of the final points scores in long jump distance in meters, which is constructed 
by using Student’s t, Johnson-t and YY-t methods, gives the same value of the largest 
width, whereas the 95% of DMSDDM-t confidence interval gives the smallest width and 
the secondary width is constructed by using the Mad-t confidence interval. Since this 
data set is negatively skewed, we conclude that the results in Table 5.3 support the 
simulation results in the case of negatively skewed distribution of this study. 
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Table 5.3.  The 95% confidence intervals for the population mean of the final scores for long jump 
distance in meters 

Methods 
Estimated Confidence Interval Limits 

Width 
Lower Limit Upper Limit 

Student-t 7.5528 7.7962 0.2434 
Johnson-t 7.5512 7.7945 0.2434 

Chen-t 7.5668 7.7822 0.2154 
YY-t 7.5517 7.7951 0.2434 

Mad-t 7.5793 7.7697 0.1903 
AADM-t 7.5587 7.7903 0.2316 

DMSDDM-t 7.6242 7.8029 0.1787 
Bootstrap 7.5553 7.7798 0.2245 

6.  Summary and concluding remarks 

The proposed confidence interval, DMSDDM-t, is an adjustment of the Student’s t 
confidence interval based on the decile mean and the decile mean standard deviation. 
In addition, the simulation results show that in many cases the proposed confidence 
interval performs better than the existing estimators when observations are sampled 
from both normal and skewed distributions. Even though the Mad-t confidence 
interval tends to provide the smallest average width in the case of observations sampled 
from the normal distribution, the coverage ratio of this tends to be more under the 
nominal level when compared with the proposed confidence interval. That is, the 
performance of the DMSDDM-t method is better than the Mad-t method for both 
coverage ratio and average width because the coverage ratio of the DMSDDM-t 
confidence interval tends to be slightly below the nominal level. Although the coverage 
ratio of the proposed interval is slightly lower than that of the five intervals – Student’s 
t, Johnson-t, Chen-t, YY-t and AADM-t – and the average width of this proposed 
interval is smaller than that of the five intervals, especially for a small sample size and 
observations sampled from the normal distribution. In the case of skewed distributions, 
such as observations sampled from chi-square distribution with a small coefficient of 
skewness, the average width of the proposed interval is also smaller than that of the five 
intervals – Student’s t, Johnson-t, Chen-t, YY-t and AADM-t – even though the 
coverage ratio of the proposed interval is slightly lower than that of the five intervals. 
The bootstrap estimator for a confidence interval is reliable at least for n not very small.  
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