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From the Editor   

The passing quarter was full of a series of events of great importance for the 
scientific life of the global community of statisticians. Two of them – the meeting of 
IAOS/International Association for Official Statistics and the 3rd Congress of Polish 
Statistics on the occasion of the 110th anniversary of the Polish Statistical 
Association/PSA – took place at the same time and in the same venue, in Krakow’s 
Convention Center, on April 25–28. Like previous congresses, this one also gave the 
opportunity to award the highest distinction, which the Polish Statistical Association 
awards to distinguished persons for an extraordinary contribution to the development 
of statistical sciences, which is the medal of Jerzy Spława-Neyman. This time, 
the Neyman medal was awarded to Prof. Partha Lahiri, Danny Pfeffermann and 
Wlodzimierz Okrasa. Along with congratulations to the laureates, their short bionotes 
are included in the first section of this issue. 

The June issue presents a set of 12 articles – there are 8 manuscripts in Research 
papers section, 3 conference papers from the 39th Multivariate Statistical Analysis 2021, 
which took place in November 2021 in Lodz, Poland provided as others articles, and 
1 paper published in the Research Communciates&Letters part. Our authors come 
from Egypt, Saudi Arabia, Pakistan, USA, Poland, India, Nigeria, Malesia, Algeria, and 
Italy. We are pleased to be recognized by such a respectable group of scientists. 

Research articles 

In the first paper, Abdelfattah Mustafa A. and M. I. Khan discuss The length-
biased power hazard rate distribution: some properties and applications. The authors 
show that this distribution reports an extension of several probability distributions, 
namely: exponential, Rayleigh, Weibull, and linear hazard rate. The procedure of 
maximum likelihood estimation was taken for parameters and derived. The 
applicability of the model was explored by three real data sets. Also, to examine the 
performance of the technique, a simulation study is extracted. The superiority of the 
new model has been exhibited by some real data sets. It has been seen that Power 
Hazard Rate Distribution can adequately provide better fits than other models. 

The article entitled Jackknife winsorized variance estimator under imputed data 
prepared by Muhammad Umair SohaiL, Fariha Sohil, Javid Shabbir, and Sat Gupta 
show the problem of missing and extreme values for the estimation of population 
variance. The presence of extreme values either in the study variable, or the auxiliary 
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variable, or in both of them, can adversely affect the performance of the estimation 
procedure. The authors have considered three different situations for the presence of 
extreme values and also have considered jackknife variance estimators for the 
population variance by handling these extreme values under stratified random 
sampling. Bootstrap technique ABB was carried out to understand the relative 
relationship more precisely. The authors also modified the linearized version of the 
jackknife variance estimator suggested by Rao (1996) for the precise estimation of 
winsorized variance, which is helpful with computer programs that use linearized 
methods for the estimation of variance. The stratified sampling scheme was discussed 
as it is commonly used in large scale socio-economic surveys. 

Maciej Jewczak and Magdalena Brudz in their manuscript Socio-economic 
development and quality of life of Nuts-2 units in the European Union examine the 
level of socio-economic development and quality of life in the European Union in the 
years 2004 and 2018. The analyses were conducted for a rarely used level of spatial data 
aggregation, i.e. for NUTS-2 units, but they cover only those European regions that 
were EU members in 2004. As the primary research tool, the two-dimensional 
development matrix was adopted, which enabled the verification of the hypothesis 
regarding the convergence of synthetic measures that indicate the levels of socio-
economic development and quality of life in the EU regions. For these indices, the 
development matrix was also used to identify the strengths and weaknesses as well as 
the opportunities and threats for selected spatial units, and, at the same time, to estimate 
the rates of change of the socio-economic development and quality of life levels. 
Depending on the criteria considered, the most common methods for determining the 
degree of the advancement of life quality or socio-economic development include 
taxonomical techniques and analyses of potential, which are based mainly on objective 
data sourced from official registers. A very important fact from this study is that the 
scientific analysis covered data at the regional level, while most studies focus only on 
quality of life or socio-economic development at the macro level. 

Arora S., Mahajan K. K., and Jangra V. present A Bayesian estimation of the Gini 
index and the Bonferroni index for the Dagum distribution with the application of 
different priors. The Bayesian estimators and highest posterior density credible 
intervals were obtained for two popular inequality measures, viz. the Gini index and 
the Bonferroni index in the case of the Dagum distribution. The study has considered 
the informative and non-informative priors, i.e. the Mukherjee-Islam prior and the 
extension of Jeffrey’s prior, respectively, under the presumption of the Linear 
Exponential (LINEX) loss function. The authors have carried out a Monte Carlo 
simulation study in order to obtain the relative efficiency of both the Gini and 
Bonferroni indices while taking into consideration different priors and loss functions. 
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It was observed that Mukherjee-Islam prior performs better than the extension of 
Jeffrey’s prior in terms of having smaller estimated loss. It was also observed that the 
LINEX loss function results in smaller loss as compared to squared error loss function 
(SELF) for small, medium and large sample sizes irrespective of the choice of prior. The 
expected loss decreases as the sample size increases. 

The paper by Sanusi Alhaji Jibrin and Rosmanjawati Abdul Rahman entitled 
ARFURIMA models: simulations of their properties and applications defines the 
Autoregressive Fractional Unit Root Integrated Moving Average (ARFURIMA) model 
for modelling ILM time series with fractional difference value in the interval of 1<𝑑𝑑<2. 
The performance of the ARFURIMA model was examined through a Monte Carlo 
simulation. Also, some applications were presented using the energy series, bitcoin 
exchange rates and some financial data to compare the performance of the ARFURIMA 
and the Semiparametric Fractional Autoregressive Moving Average (SEMIFARMA) 
models. The presented simulations studies confirmed superiority of the ARFURIMA 
over the ARIMA in simulating nonstationary and the FURI series and thus proved the 
ILM properties of the ARFURIMA model and its large sample properties too. Some 
applications of the model were presented and further confirmed a better fit of 
the ARFURIMA compared to the SEMIFARMA model. 

Abdelmalek Gagui’s and Abdelhak Chouaf’s article On the nonparametric 
estimation of conditional hazard estimator in the single functional index characterises 
the conditional hazard estimator of a real response where the variable is given 
a functional random variable (i.e. it takes values in an infinite-dimensional space). 
The authors focus on the functional index model as a good compromise between 
nonparametric and parametric models to prove the asymptotic normality of the 
proposed estimator under general conditions and in cases where the variables satisfy 
the strong mixing dependency. The means of the kernel estimator method, based on 
a single-index structure, were used. A simulation of the proposed methodology has 
shown that it is efficient for large sample sizes. It was also shown that the estimator 
provides good predictions under this model. In non-parametric functional statistics, 
the semi-metric of the projection type is very important for increasing the 
concentration property. The functional index model is a special case of this family of 
semi-metrics because it is based on the projection on a functional direction, which is 
important for the implementation of the method in practice. 

In the next paper Mateusz Borkowski focuses on Institutional equilibrium in EU 
economies in 2008 and 2018: SEM-PLS models to identify the strength and direction 
of the development of the relationship between formal and informal institutions and to 
assess the institutional equilibrium of modern economies. The article presents 
a comprehensive model of the institutional structure and a unique method of 
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measuring institutional equilibrium. The structural equations modelling based on 
partial least squares (SEM-PLS) was applied. The study included 27 EU economies and 
the research period covered the years 2008 and 2018. The results of the study 
demonstrate that the quality of informal institutions strongly, positively determines the 
quality of formal institutions. The conducted analyses indicate that modern economies 
are diversified in terms of the quality of informal and formal institutions and, 
consequently, in institutional equilibrium. 

Sakshi Kaushik, Alka Sabharwal, and Gurprit Grover present the manuscript 
entitled Extracting relevant predictors of the severity of mental illnesses from clinical 
information using regularisation regression models. The authors describe the relevant 
predictors of the severity of mental illnesses (measured by psychiatric rating scales) 
from a wide range of clinical variables consisting of information on both laboratory test 
results and psychiatric factors. The laboratory test results collectively indicate the 
measurements of 23 components derived from vital signs and blood tests results for the 
evaluation of the complete blood count. The 8 psychiatric factors known to affect the 
severity of mental illnesses are considered, viz. the family history, course and onset of 
an illness, etc. Retrospective data of 78 patients diagnosed with mental and behavioural 
disorders were collected from the Lady Hardinge Medical College & Smt. S.K, Hospital 
in New Delhi, India. The observations missing in the data were imputed using the non-
parametric random forest algorithm. This paper adds to the literature of medical 
research aimed at identifying the biomarkers for diagnosis and predictors of the severity 
status of mental disorders, and should be helpful in developing valid and efficient 
approaches to diagnose the disorders at an early stage The clinicians can use the 
relevant factors to build a profile of the patient and his needs, and also effective 
strategies for treatment planning. 

Other articles 

39th Multivariate Statistical Analysis 2021, Lodz. Conference Papers 

The section starts with the paper prepared by Czesław Domański and Robert 
Kubacki entitled Regression model of water demand for the city of Lodz as a function 
of atmospheric factors. The authors presented the results of the work on a statistical 
model which determined the influence of individual atmospheric factors on the 
demand for water in the city of Lodz, Poland, in 2010-2019. In order to build the model, 
the study used data from the Water Supply and Sewage System Company (Zakład 
Wodociągów i Kanalizacji Sp. z o.o.) in the city of Lodz complemented with data on 
weather conditions in the studied period. The analysis showed that the constructed 
models make it possible to perform a forecast of water demand depending on the 
expected weather conditions. The relation between daily weather variables and water 
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use in the city of Lodz, Poland were examined. It was confirmed that the maximum 
daily temperature is a good predictor of water demand, and that holidays are significant 
in decreasing the water demand. Moreover, wind speed is a good predictor of water 
demand. It is likely that higher wind speed increases evaporation of water, which 
induces a cooling effect and thus decreases daily water consumption. Together, all these 
variables explain between 65% of the variations in the city of Lodz.  

Stefano Bonnini’s and Getnet Melak Assegie’s article evaluates Advances on 
permutation multivariate analysis of variance for big data. Due to the gap in the 
literature about combined permutation tests, in particular for big data with a large 
number of variables, a Monte Carlo simulation study was carried out to investigate the 
power behaviour of the tests, and the application to a real case study was performed to 
show the utility of the method. It was provided that among the distribution free 
solutions to the multivariate analysis of variance in the family of combined permutation 
tests, the method based on the Tippet combination is in general preferable, especially if 
there is no preventive information about the possible percentage of variables 
(or marginal distributions) under the alternative hypothesis. Instead of the Tippett 
combination, the Fisher rule can be applied when the percentage is close to 100%. 
The Liptak combination seems to be non-convenient in general. This methodological 
tool is an important and useful solution of testing problems for big data, especially when 
the number of variables is very large and the sample sizes are small. The usefulness and 
the effectiveness of the method is confirmed by the application to the case study 
concerning the survey on the organizational well-being at the University of Ferrara. 

The paper by Tadeusz Bednarski, Piotr B. Nowak, and Magdalena Skolimowska-
Kulig examines Scaled Fisher consistency for the partial likelihood estimation 
in various extensions of the Cox model. The Cox proportional hazards model has 
become the most widely used procedure in survival analysis, and the theoretical basis 
of the original model has been developed in various extensions. The authors have 
investigated the accuracy of inference based on the primer Cox model in the existence 
of unobserved heterogeneity, that is, when the data generating mechanism is more 
complex than presumed and described by the kind of an extension of the Cox model 
with undefined frailty. It was shown that the conventional partial likelihood estimator 
under the considered extension is Fisher-consistent up to a scaling factor, provided 
symmetry-type distributional assumptions on covariates. The results of simulation 
experiments that reveal an exemplary behaviour of the estimators were presented. 

Research Communicates and Letters 

The Research Communicates & Letters section presents a paper prepared by 
Hemlata Joshi, S., Azarudheen, M. S. Nagaraja, and C. Singh entitled On the quick 
estimation of probability of recovery from COVID-19 during first wave of epidemic 
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in India: a logistic regression approach. Due to the fact that the COVID-19 became 
a threat all across the world with the new cases every day, and there is still a difficult 
situation with no effective medicine, it is very important to know if a patient with 
COVID-19 is going to recover or die. The study is based on the situation in India and 
the data published by the Ministry of Health and Family Welfare of India were used for 
the empirical analysis. The manuscript shows a model that has been developed to 
estimate the probability of recovery of a patient based on the demographic 
characteristics, as most of the Indian population is living in poor hygienic conditions. 
The probability model is developed using the indirect method of estimation based on 
some demographic factors, and it was found that the probability of recovery from 
coronavirus disease is statistically the same in both males and females. 

Włodzimierz Okrasa 
Editor  

© Włodzimierz Okrasa. Article available under the CC BY-SA 4.0 licence  
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The length-biased power hazard rate distribution: Some
properties and applications

Abdelfattah Mustafa1,2, M. I. Khan2

ABSTRACT

In this article, the length-biased power hazard rate distribution has introduced and investi-
gated several statistical properties. This distribution reports an extension of several prob-
ability distributions, namely: exponential, Rayleigh, Weibull, and linear hazard rate. The
procedure of maximum likelihood estimation is taken for parameters. Finally, the applica-
bility of the model is explored by three real data sets. To examine, the performance of the
technique, a simulation study is extracted.

Key words: length-biased, power hazard rate distribution, maximum likelihood estimation.

1. Introduction

Importance of the statistical distributions in different fields of studies, researchers have
shown their curiosity to suggest a new distribution via numerous methods. In pioneering
work, Cox (1962) proposed a model dealing with the unequal probability of sample obser-
vation termed as length-biased technique. This concept has many applications in biomedical
sciences, Lawless (2003).

Several papers have been arisen to investigate the performance of length-biased distri-
butions. For instance see Gupta and Keating (1985), Khattree (1989), Gupta and Tripathi
(1990), Oluyede (1999), Das and Roy (2011a,b), Ratnaparkhi and Nimbalkar (2012), Al-
Khadim and Hussain (2014), Nanuwong and Bodhisuwan (2014), Seenoi et al. (2014) ,
Modi (2015), Saghir et al. (2016), Saghir et al. (2017), Mudasir and Ahmad (2018) and
Parveen and Ahmad (2018), among others.

The lifetime distributions are always characterized by selecting a specific hazard rate
function (HRF). The power HRF is one of them. The HRF is used in many fields of study
(reliability analysis, actuarial sciences, demography, and economics). The inference on
hazard function for lifetime data has become a prevalent tool for researchers.

The power hazard function (PHF) was introduced by Mugdadi (2005).

h(x) = λxν , x > 0, λ > 0, ν >−1. (1)

In view of (1) cumulative distribution function (cdf) is given

F(x) = 1− e−
λ

ν+1 xν+1
, x > 0, λ > 0, ν >−1, (2)

1Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt. E-mail:
amelsayed@mans.edu.eg. ORCID: https://orcid.org/0000-0002-8551-6115.

2Department of Mathematics, Faculty of Science, Islamic University of Madinah, KSA. E-mail:
izhar.stats@gmail.com. ORCID: https://orcid.org/0000-0002-5793-9786.

© Abdelfattah Mustafa, M. I. Khan. Article available under the CC BY-SA 4.0 licence 
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and the probability density function (pdf) is

f (x) = λxν e−
λ

ν+1 xν+1
, x > 0, λ > 0, ν >−1. (3)

If X has pdf (3), we denote it by X ∼ PHRD(λ ,ν).
The PHF is very simple, and it could be increasing, decreasing, or constant. Therefore,

the PHR distribution contributes a better fit over two-parameter distributions when mod-
elling monotone hazard rates. More explorationon the PHR distribution can be seen in Is-
mail (2014), Mugdadi and Min (2009), Tarvirdizade and Nematollahi (2016) and Tarvirdizade
and Nematollahi (2020). It is important to note that some familiar distributions are special
case of (3) reported in Section 2.1.

The paper is organized as follows. The formulation of length-biased PHR distribution
(LBPHRD) and its structured properties are discussed in Section 2. Section 3 is devoted to
estimating the parameters via the maximum likelihood method. Section 4 reveals the useful-
ness of the new model and, also simulation study is evaluated to examine the performance
of MLEs. The conclusion is presented in Section 5.

2. Length-Biased Power Hazard Rate Distribution

The LBPHR distribution is proposed in this section. The shape of the pdf, hazard rate
and some sub-models are established also.
Definition 1. If the random variable X has a pdf f (x) and expected value E(X)< 0 then the
pdf of the length- biased distribution of X can be formulated as

g(x) =
x f (x)
E(X)

. (4)

From (3) and (4), the LBPHR distribution with two parameters λ (scale) and ν (shape) can
be obtained as follows

g(x) =
λxν+1e−

λ
ν+1 xν+1(

ν+1
λ

) 1
ν+1 Γ

(
ν+2
ν+1

) , x > 0, (5)

where Γ(n) =
∫

∞

0 un−1e−udu is gamma function.
The graph of the pdf of LBPHRD is shown in Figure 1, for various values of λ and ν .

Figure 1. The plot of gLBPHR(x) for λ = 0.73 and various values of ν .
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From Figure 1, the pdf of LBPHRD has one peak, so there is one mode.

The cdf of LBPHR distribution has the form

G(x) =
γ

(
ν+2
ν+1 ,

λ

ν+1 xν+1
)

Γ
(

ν+2
ν+1

) , x > 0, (6)

where γ(a,x) =
∫ x

0 ta−1e−tdt is an upper incomplete gamma function.

The survival (reliability) function of LBPHRD is given as

Ḡ(x) =
Γ

(
ν+2
ν+1 ,

λ

ν+1 xν+1
)

Γ
(

ν+2
ν+1

) , x > 0, (7)

where Γ(a,x) =
∫

∞

x ta−1e−tdt is an incomplete gamma function.

The hazard rate of LBPHRD takes the form

h(x) =
λxν+1e−

λ
ν+1 xν+1(

ν+1
λ

) 1
ν+1 Γ

(
ν+2
ν+1

) , x > 0. (8)

Derivative the h(x), w.r.t. x,

h
′
(x) =

1(
ν+1

λ

) 1
ν+1 Γ

(
ν+2
ν+1

) [λ (ν +1)−λ
2xν+1]xν e−

λ
ν+1 xν+1

,

by equating h
′
(x) by zero, we find x = 0 and x =

(
ν+1

λ

) 1
ν+1 are the critical points for h(x).

By using the second derivetives test, we can find

h
′′
(x) =

λ(
ν+1

λ

) 1
ν+1 Γ

(
ν+2
ν+1

) [ν(ν +1)−λ (3ν +2)xν+1 +λ
2x2(ν+1)

]
xν−1e−

λ
ν+1 xν+1

.

• At x = 0, h
′′
(x) = 0, then x = 0 is the inflection point.

• At x =
(

ν+1
λ

) 1
ν+1 ,

h
′′
(x) =− λ (ν +1)2xν−1(

ν+1
λ

) 1
ν+1 Γ

(
ν+2
ν+1

)e−
λ

ν+1 xν+1
< 0,

then h(x) has a local maximum at x0 =
(

ν+1
λ

) 1
ν+1 .

Some hazard rate plots of the LBPHR distribution with specific parameter values are
given in Figure 2.
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Figure 2. The HRF of the LBPHRD for λ = 0.73 and various values of ν .

Therefore, the function h(x) ↑ on the interval (0,x0) and h(x) ↓ on the interval (x0,∞).
From the Figure 2, the hazard function exhibits that proposed model becomes a major tool
to fit many lifetime data in (reliability, survival analysis, finance and economics).

2.1. Special cases of LBPHRD

The LBPHRD is very versatile distribution. It covers many noted distribution as follows.

1. Setting ν = λ − 1, we obtain the length-biased Weibull (LBW) distribution as ob-
tained by Shaban and Boudrissa (2007).

2. Setting ν = 1, we obtain the length-biased Rayleigh (LBR) distribution with parame-
ter 1

λ
as obtained by Ajami and Jahanshahi (2017).

3. Setting ν = 0, we obtain the length-biased exponential (LBE) distribution as obtained
by Mir et al. (2013).

4. Setting ν = 1, we obtain the length-biased linear failure rate (LBLFR) distribution.

The results obtained in this paper can be valid for these distributions and the other dis-
tributions which have a power hazard function.

2.2. Statistical properties

Some statistical properties of the LBPHRD are discussed in this section.
Theorem 1. If X ∼ LBPHRD(λ ,ν) then the rth moment is given as

E(X r) =

(
ν+1

λ

) r
ν+1 Γ

( r+ν+2
ν+1

)
Γ
(

ν+2
ν+1

) . (9)

Proof. The rth moments of LBPHRD can be attained by

E(X r) =
∫

∞

0
xrg(x)dx,
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from (5), then

E(X r) =
∫

∞

0

λxr+ν+1e−
λ

ν+1 xν+1(
ν+1

λ

) 1
ν+1 Γ

(
ν+2
ν+1

)dx. (10)

Let u = λ

ν+1 xν+1, du = λxν dx. Upon simplification, (10) leads to

E(X r) =

(
ν+1

λ

) r
ν+1 Γ

( r+ν+2
ν+1

)
Γ
(

ν+2
ν+1

) . (11)

The mean and variance for LBPHRD can be calculated from (11) as follows.
Setting r = 1, in (11),

E(X) =

(
ν+1

λ

) 1
ν+1 Γ

(
ν+3
ν+1

)
Γ
(

ν+2
ν+1

) . (12)

Putting r = 2, in (11),

E(X2) =

(
ν+1

λ

) 2
ν+1 Γ

(
ν+4
ν+1

)
Γ
(

ν+2
ν+1

) . (13)

Therefore, variance of LBPHRD is

Var(X) =

(
ν+1

λ

) 2
ν+1 Γ

(
ν+4
ν+1

)
Γ
(

ν+2
ν+1

) −

(
ν+1

λ

) 1
ν+1 Γ

(
ν+3
ν+1

)
Γ
(

ν+2
ν+1

)
2

. (14)

The shape characteristics of the probability distribution, skewness and kurtosis play an
important role.These can be derived from Theorem 1, using the following relations.

Sk =
µ

′
3 −3µ

′
1µ

′
2 +2µ

′
1

3

(µ
′
2 −µ

′
1)

3/2
, Ku =

µ
′
4 −4µ

′
1µ

′
3 +6µ

′
1

2
µ

′
2 −3µ

′
1

4

(µ
′
2 −µ

′
1)

2
,

where µ
′
r = E(X r).

The mode of the LBPHRD:

Taking the logarithm of (5), we have

lng(x) = ln(λ )+(ν +1) ln(x)− λ

ν +1
xν+1 − ln

[(
ν +1

λ

) 1
ν+1

Γ

(
ν +2
ν +1

)]
. (15)

Differentiate (15) w.r.t. x and equating it zero,

d
dx

lng(x) =
ν +1

x
−λxν = 0, (16)
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therefore

x =
(

ν +1
λ

) 1
ν+1

.

Again differentiate (16),

d2

dx2 lng(x) =−ν +1
x2 −λνxν−1 =− (ν +1)+λνxν+1

x2 ,

at x =
(

ν+1
λ

) 1
ν+1 , then

d2

dx2 lng(x) =− (ν +1)2

x2 < 0.

Therefore, the mode is x =
(

ν+1
λ

) 1
ν+1 .

Using the following relation, pth percentile can be obtained

G(xp;λ ,ν) = p. (17)

Substituting from (6) into (17), xp satisfies the equation

Γ

(
ν +2
ν +1

,
λ

ν +1
xν+1

)
− pΓ

(
ν +2
ν +1

)
= 0. (18)

The pth percentile can be calculated numerically by using Equation (18).
The median can be calculated from Equation (18), at p = 0.5.
For λ = 0.5, ν ∈ (0,5), the values of E(X), mode, Var(X), sk, ku and CV for LBPHRD

and PHRD, respectively are presented in Table 1.

Table 1. Some statistical measures for λ = 0.5,ν ∈ (0,5).
LBPHRD PHRD

ν E(X) Mode Var(X) Sk Ku CV E(X) Mode Var(X) Sk Ku CV
0.0 4.000 2.000 8.000 1.414 6.000 70.71 2.000 0.000 4.000 2.000 9.000 100.00
0.5 2.743 2.080 2.059 0.813 3.780 52.31 1.878 1.000 1.626 1.072 4.390 67.90
1.0 2.257 2.000 0.907 0.486 3.108 42.20 1.772 1.414 0.858 0.631 3.245 52.27
1.5 1.998 1.904 0.507 0.269 2.864 35.64 1.689 1.552 0.522 0.359 2.857 42.78
2.0 1.837 1.817 0.323 0.111 2.786 30.94 1.623 1.587 0.348 0.168 2.729 36.35
2.5 1.726 1.744 0.224 -0.012 2.784 27.42 1.569 1.584 0.246 0.025 2.713 31.61
3.0 1.644 1.682 0.164 -0.110 2.819 24.63 1.524 1.565 0.183 -0.087 2.748 28.07
3.5 1.582 1.629 0.125 -0.191 2.874 22.35 1.487 1.541 0.141 -0.178 2.808 25.25
4.0 1.532 1.585 0.099 -0.259 2.938 20.54 1.455 1.516 0.111 -0.254 2.880 22.90
4.5 1.491 1.546 0.080 -0.318 3.006 18.97 1.428 1.491 0.09 -0.318 2.957 21.01
5.0 1.456 1.513 0.066 -0.369 3.076 17.64 1.404 1.468 0.074 -0.373 3.035 19.38

From Table 1, we can conclude that:

1. the LBPHRD is positive skewed, for ν < 2.5, while PHRD is positive skewed, for
ν ≤ 2.5.

2. the LBPHRD is negative skewed, for ν ≥ 2.5, while PHRD is negative skewed, for
ν > 2.5

3. when ν = 0.0, the LBPHRD and PHR are highly skewed, (Sk > 1).
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4. when ν = 0.5, the LBPHRD is moderately skewed, (0.5 < Sk < 1), while PHRD is
highly skewed.

5. when ν = 1, the LBPHRD is approximately symmetric, (−0.5 < Sk < 0.5), while
PHRD is moderately skewed (0.5 < sk < 1).

6. when 1.5 ≤ ν ≤ 5, the LBPHRD and PHRD are approximately symmetric.

7. the dispersion for the distributions are decreasing for ν increasing.

8. for 0.0 ≤ ν ≤ 1.0 the LBPHRD and PHRD are leptokurtic (Sk > 3).

9. for 1.5 ≤ ν ≤ 4, the LBRHRD and PHRD are platykurtic (Sk < 3).

10. for 4.5 ≤ ν ≤ 5, the LBPHRD and PHRD are mesokurtic (Sk ∼= 3).

11. Since the coefficient of variation (Cv=
√

Var(X)

mean ×100) is larger for PHRD, the PHRD
are more variable than the LBPHRD, for all values of ν .

Therefore, the LBPHR model is more flexible than PHR model.

3. Estimation of Parameters

Consider X1,X2, · · · ,Xn be a random sample from LBPHRD, the Maximum likelihood
estimation (MLE) can be applied to estimate the parameters as follows. The likelihood
function is given by

L(λ ,ν ;x) =
λ n

(
∏

n
i=1 xν+1

i

)
e−

λ
ν+1 ∑

n
i=1 xν+1

i(
ν+1

λ

) n
ν+1

( 1
ν+1

)n
Γn

( 1
ν+1

) , x > 0. (19)

The log-likelihood function is

L = n ln(λ )+(ν +1)
n

∑
i=1

ln(xi)−
λ

ν +1

n

∑
i=1

xν+1
i − n

ν +1
ln
(

ν +1
λ

)
+n ln(ν +1)−n ln

[
Γ

(
1

ν +1

)]
. (20)

Differentiate Equation (20) w.r.t. λ and ν . Equating the derivatives to zero, we get the
normal equations as follows.

∂L

∂λ
=

n
λ

(
1+

1
ν +1

)
− 1

ν +1

n

∑
i=1

xν+1
i = 0, (21)

∂L

∂ν
=

n

∑
i=1

ln(xi)+
λ

(ν +1)2

n

∑
i=1

xν+1
i

[
1− (ν +1) ln(xi)

]
+

n
(ν +1)2 ln

(
ν +1

λ

)
+

nν

(ν +1)2 −nψ

(
1

ν +1

)
= 0, (22)
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where ψ(x) = d
dx lnΓ(x) be a digamma function.

The asymptotic normality of the MLEs can be applied to compute the confidence inter-
val (C.I.) for the parameters. The observed variance and covariance matrix of Θ = (λ ,ν)

is

I−1(Θ) =

[
− ∂ 2L

∂λ 2 − ∂ 2L
∂λ∂ν

− ∂ 2L
∂ν∂λ

− ∂ 2L
∂ν2

]−1

=

[
−I11 −I12

−I21 −I22

]−1

,

where

I11 = − n
λ 2

(
1+

1
ν +1

)
, (23)

I12 = − n
λ (ν +1)2 +

1
(ν +1)2

n

∑
i=1

xν+1
i − 1

ν +1

n

∑
i=1

xν+1
i ln(xi), (24)

I21 = I12, (25)

I22 = − λ

(ν +1)3

n

∑
i=1

xν+1
i

[
1− (ν +1) ln(xi)

][
2− (ν +1) ln(xi)

]
− λ

(ν +1)2 ×

n

∑
i=1

xν+1
i ln(xi)−

2n
(ν +1)3 ln

(
ν +1

λ

)
+

(2−ν)n
(ν +1)3 −nψ

′
(

1
ν +1

)
, (26)

and ψ
′
(x) = d2

dx2 lnΓ(x).

Asymptotic confidence interval can be derived by using observed variance and covari-

ance matrix. A 100(1−α)% C.I.s of Θ = (λ ,ν) have the form λ̂ ± zα/2

√
Var(λ̂ ) and

ν̂ ± zα/2
√

Var(ν̂). The zα/2 is upper (α/2)th percentile of the standard normal distribu-
tion.

4. Applications

4.1. Real data

In this section, an application of LBPHR distribution using three real data sets to illus-
trate that it provides significant improvements over its sub-model.

Example 4.1. The data of fatigue cycle of 6061–T6 aluminum coupons cut in the horizontal
direction of rolling, which is oscillated 18 rounds per second reported by Birnbaum and
Saunders (1969). The data set includes 100 observations having an optional stress per round
31×103 psi which is reported after reducing 65 as follows.
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5 25 31 32 34 35 38 39 39 40 42 43 43 43 44 44
47 47 48 49 49 49 51 54 55 55 55 56 56 56 58 59
59 59 59 59 63 63 64 64 65 65 65 66 66 66 66 66
67 67 67 68 69 69 69 69 71 71 72 73 73 73 74 74
76 76 77 77 77 77 77 77 79 79 80 81 83 83 84 86
86 87 90 91 92 92 92 92 93 94 97 98 98 99 101 103

105 109 136 147

In Table 2, MLEs of the unknown parameters of LBR, LBW, PHR and LBPHR distri-
butions are given along with criterion log-likelihood, AIC (Akaike’s information criterion)
and BIC (Bayesian information criterion).

Table 2. MLEs, L , AIC and BIC.
Model θ λ ν L AIC BIC
LBR 1.722×103 – – -874.485 1.751×103 1.754×103

LBW – 0.342 – -553.06 1.108×103 1.111×103

PHR – 1.303×10−5 1.85 -475.692 955.384 960.594
LBPHR – 1.028×10−4 1.425 -454.493 912.986 918.197

Table 2 indicates that the LBPHR is best than LBR, LBW and PHR distributions in
terms of model fitting for this data.

The variance and covariance matrix is given as

I−1 =

[
8.494×10−9 −1.991×10−5

−1.991×10−5 0.047

]
Then the 95% C.I. for λ and ν for LBPHRD are (0,2.83481×10−4) and (0.9993,1.84998),

respectively.
Figure 3 shows that the likelihood function has unique solution.

Figure 3. The outline of the L of λ and ν .

For λ̂ = 1.028× 10−4 and ν̂ = 1.425, some statistical measures can be calculated, see
Table 3.

Table 3. Some statistical measures for LBPHR at λ̂ and ν̂ .

Mean Mode Variance Skewness Kurtosis
67.283 63.585 602.188 0.297 2.887
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From Table 3, the LBPHR distribution has,

1. the distribution is right skewed (Sk > 0) and it is approximately symmetric(−0.5 <

Sk < 0.5).

2. the distribution is platykurtic (Ku < 3).

Example 4.2. We use data collected by Balakrishnan et al. (l2010). The behavioral and
emotional issues of children are scaled by GRASP (general rating of affective symptoms for
preschoolers). The data (with frequency in parenthesis is the score of GRASP measurement
of children) are:

19(16) 20(15) 21(14) 22(9) 23(12) 24(10) 25(6) 26(9) 27(8) 28(5) 29(6)
30(4) 31(3) 32(4) 33 34 35(4) 36(2) 37(2) 39 42 44

The MLEs and L , AIC and BIC are reported in Table 4.

Table 4. MLEs and L , AIC and BIC.
Model θ λ ν L AIC BIC
LBR 217.216 – – -884.464 1.771×103 1.774×103

LBW – 0.411 – -594.469 1.191×103 1.194×103

PHR – 8.275×10−5 2.234 -436.482 876.963 882.759
LBPHR – 1.216×10−5 2.929 -420.866 845.731 851.527

Table 4 indicates that the LBPHR is best than LBR, LBW and PHR distributions in
terms of model fitting for this data.

The variance and covariance matrix is given as

I−1 =

[
1.091×10−10 −2.797×10−6

−2.797×10−6 0.072

]
Then the 95% C.I. for λ and ν are (0,3.26336×10−5) and (2.40217,3.45613), respec-

tively.
Figure 4 shows that the likelihood function has unique solution.

Figure 4. The sketch of the log-likelihood function of λ and ν .

For λ̂ = 1.216× 10−5 and ν̂ = 2.929, some statistical measures can be calculated, see
Table 5.
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Table 5. Some statistical measures, for LBPHR at λ̂ and ν̂ .

Mean Mode Variance Skewness Kurtosis
24.716 25.244 38.138 -0.097 2.813

From Table 5,

1. the distribution is left skewed (Sk < 0) and it is approximately symmetric (−0.5 <

Sk < 0.5).

2. the distribution is platykurtic (Ku < 3).

Example 4.3. The following uncensored data is taken from Mahmoud and Mandouh (2013),
which comprises 100 observations(breaking the stress of carbon fibers in Gba) are:

0.92 0.928 0.997 0.9971 1.061 1.117 1.162 1.183 1.187 1.192 1.196
1.213 1.215 1.2199 1.22 1.224 1.225 1.228 1.237 1.24 1.244 1.259
1.261 1.263 1.276 1.31 1.321 1.329 1.331 1.337 1.351 1.359 1.388
1.408 1.449 1.4497 1.45 1.459 1.471 1.475 1.477 1.48 1.489 1.501
1.507 1.515 1.53 1.5304 1.533 1.544 1.5443 1.552 1.556 1.562 1.566
1.585 1.586 1.599 1.602 1.614 1.616 1.617 1.628 1.684 1.711 1.718
1.733 1.738 1.743 1.759 1.777 1.794 1.799 1.806 1.814 1.816 1.828
1.830 1.884 1.892 1.944 1.972 1.984 1.987 2.020 2.0304 2.029 2.035
2.037 2.043 2.046 2.059 2.111 2.165 2.686 2.778 2.972 3.504 3.863
5.306

The MLES, L , AIC and BIC are given in Table 6.

Table 6. MLEs of the parameters and L , AIC and BIC.
Model θ λ ν L AIC BIC
LBR 1.035 – – -131.653 265.306 267.911
LBW – 1.406 – -101.918 205.835 208.44
PHR – 0.521 1.632 -90.149 184.298 189.509

LBPHR – 0.877 1.237 -84.566 173.132 178.342

Table 6 indicates that the LBPHR is best than LBR, LBW and PHR distributions in
terms of model fitting for this data.

The variance and covariance matrix is given as

I−1 =

[
9.448×10−3 −0.011

−0.011 0.027

]
Then the 95% C.I. for λ and ν are (0.68651,1.06753) and (0.91431,1.55924), respec-

tively.
Figure 5 shows that the likelihood function has unique solution.
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Figure 5. The shape of the log-likelihood function of λ and ν .

For λ̂ = 0.877 and ν̂ = 1.237, some statistical measures can be calculated, see Table 7.

Table 7. Some statistical measures, for LBPHRD at λ̂ and ν̂ .
Mean Mode Variance Skewness Kurtosis
1.647 1.52 0.408 0.374 2.962

From Table 7, we observe that

1. the distribution is right skewed (Sk > 0) and it approximately symmetric skewed
(−0.5 < Sk < 0.5).

2. the distribution is platykurtic. (Ku < 3).

4.2. Simulation study

We evaluate the performance of MLE of the model through Monte-Carlo simulation.
The simulation’s steps are as follows.

1. Fix the vector of parameters Θ = (λ ,ν), and sample of size n.

2. From LBPHR(λ ,ν) distribution generate random observation with size n. Since CDF
for LBPHR has no closed form, the random observation can be generated by using
the Newton’s Raphson method.

xi+1 = xi −
F(xi,Θ)−ui

f (xi,Θ)
, i = 0,1, · · · ,n−1, (27)

where, u ∼ uni f orm(0,1).

3. Using step 2, estimate Θ̂ through MLE scheme.

4. Steps 2 and 3, repeated N times.

5. To enumerate MREs (mean relative estimates) and MSEs (mean square errors) using
Θ̂ and Θ through the following equations.
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MRE =
1
N

N

∑
j=1

Θ̂i, j

Θi
, MSE =

1
N

N

∑
j=1

(
Θ̂i, j −Θi

)2
,

Bias =
1
N

N

∑
j=1

Θ̂i j −Θi, i = 1,2.

Simulation results are obtained via MATHCAD 2007. The selected parameter values are
Θ = (0.5,2), N = 10000 and n = (10,20,30,40,50,75,100,150,200,250,300,400,500).

Table 8 contains the MLEs, Bias, MREs, and MSEs, for the estimators Θ̂i, i = 1,2, for
different values of n.

Table 8. The MLEs, MREs and MSEs, for different values of n.
λ ν

n MLE Bias MRE MSE MLE Bias MRE MSE
10 0.22357 -0.27643 0.44714 0.08764 3.56421 1.56421 1.78211 3.32282
20 0.49478 -0.00522 0.98956 0.00040 2.30885 0.30885 1.15443 0.15088
30 0.64100 0.14100 1.28200 0.02070 1.85722 -0.14278 0.92861 0.02979
40 0.49451 -0.00549 0.98902 0.00021 2.33661 0.33661 1.16830 0.17403
50 0.56267 0.06267 1.12535 0.00423 2.37851 0.37851 1.18926 0.14668
75 0.50153 0.00153 1.00306 0.00018 2.12308 0.12308 1.06154 0.01756
100 0.35535 -0.14465 0.71069 0.02103 2.42129 0.42129 1.21064 0.18009
150 0.39449 -0.10551 0.78898 0.01120 2.53190 0.53190 1.26595 0.30598
200 0.55981 0.05981 1.11963 0.00361 2.06537 0.06537 1.03269 0.00489
250 0.50780 0.00780 1.01559 0.00008 2.07485 0.07485 1.03743 0.00591
300 0.42144 -0.07856 0.84289 0.00618 2.16489 0.16489 1.08244 0.02738
400 0.54172 0.04172 1.08344 0.00175 1.90172 -0.09828 0.95086 0.00976
500 0.54186 0.04186 1.08372 0.00176 1.89278 -0.10722 0.94639 0.01154

Average 0.48004 -0.01996 0.96008 0.01223 2.27856 0.27856 1.13928 0.33749

MREs approximate to one when MSEs approaches to zero. Figures 6 – 9 display the
estimated MLs,Bias, MREs and MSEs.

Figure 6. The MLEs for λ and ν .

Figure 7. The Bias for λ and ν .
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Figure 8. The MREs for λ and ν .

Figure 9. The MSEs for λ and ν ,

We notice from Figures 6–9 as follows.

1. For large same size: (i) Estimate of MSE → 0, (ii) Expected (MRS) → 1, (iii) Biases
of (λ ,ν) → 0.

2. Biases of λ are positive/negative.

3. Biases of ν are approximately positive.

4. Estimates of parameters are asymptotically unbiased.

Therefore, the MLE is an suitable for estimating parameters of LBPHR distribution.
Similar results can be obtained for different parameters.

5. Conclusions

We propose the length-biased power hazard rate distribution and study its various char-
acteristics. The maximum likelihood estimate for parameters is derived. The superiority of
the new model has been exhibited by some real data sets. It has been seen that PHRD can
adequately provide better fits over other models.
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Jackknife winsorized variance estimator under imputed data 

Fariha Sohil1, Muhammad Umair Sohail2, Javid Shabbir3, Sat Gupta4 

ABSTRACT 

In the present study, we consider the problem of missing and extreme values for the 
estimation of population variance. The presence of extreme values either in the study 
variable, or the auxiliary variable, or in both of them, can adversely affect the performance 
of the estimation procedure. We consider three different situations for the presence of 
extreme values and also consider jackknife variance estimators for the population variance 
by handling these extreme values under stratified random sampling. Bootstrap technique 
ABB is carried out to understand the relative relationship more precisely. 

Key words: adjusted imputation, jackknife variance estimators, linearized jackknife, 
missing values, winsorized variance 
2000 AMS Classification: 62D05 

1. Introduction

In most social science studies, researchers often face the problem of non-response
due to sensitive or embarrassing issues. For example, in the case of student grade 
point surveys, the students may be reluctant to provide the information about grade 
point average. Basically, non-response is classified into two basic complete categories: 
(1) Unit non-response, which occurs when either the interviewee refuses to provide
the response regarding the variable of interest or the interviewee is not available. (2)
Item none-response, which occurs mainly due to the sensitive or embarrassing nature
of the study variable )(Y . Muhamad (2016) studied the imputation of missing
responses by using the higher order moments of the auxiliary variable.
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The main goal of our current work is to consider the problem of missing at 
random (MAR) values in the estimation of finite population variance. When the item 
non-response  occurs the missing values of the non-respondent class can be imputed 
by utilizing the available information from the respondent class. Many methods use 
the auxiliary information for imputing the missing value. 

Rubin (1976) gave a comprehensive concept of missing values by defining  terms 
such as missing completely at random (MCAR), missing at random (MAR) and not 
missing at random (NMAR) values. Rubin (1978) considered the problem of inflation 
in estimated variance by discussing the idea of multiple imputation (MI). The 
suggested procedure obtains 2)(  data sets by imputing the missing values under 
the same imputation procedure of times. To define the Multiple Imputation (MI) 

methodology by 
1 2
, , , ,

I I I
y y y


  the   imputed estimators for the population 

mean. The final imputed estimator for population mean is given by 
=1.

1
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ll Il
y y
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 (1.1) 
where 2

Ils  is the sample variance for the l th  imputed data set having n  sample 

and N  population size respectively. The variance estimator leads to  valid inference
about the parameter of interest, when the number of imputation is large, provided the 
imputation is proper in the sense that imputed values for the non-respondent group 
are obtained from the posterior distribution of the study variable (Rubin and 
Schenker, 1986; Mujtaba et al. 2014 ). The traditional imputation methods like hot 
deck (HD) may give the underestimate variance of 

.I
y . Rubin and Schenker (1986) 

provided the Approximate Bayesian Bootstrapping (ABB) approach for proper 
variance estimation. For = 1, 2, 3, ,l  ; we draw r  values randomly with 
replacement from the r  observed values and then obtain )( rn   missing values from 
the r  bootstrap donors. The resultant estimates based on the g  reference 
distribution performed well in terms of large sample selection probability, even for   
as small as 2 or 3. 

MI is a proper tool to handle the missing data but some of the major limitations 
are: (1) Cost for handling the multiple data sets is high as compared to single 
imputation, especially in complex surveys. (2) The general ABB approach for 
imputing the non-response, that has some issues regarding the clustering, 
stratification, unequal probabilities of selection, is not currently taken into account. 
(3) Sometimes the imputation is deterministic, missing values are obtained by the
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sample of donor set and the auxiliary data. (4) For smaller values of  , we may attain 
a low level of precision for the multiple imputation variance estimator (MIVE), 
because the last term in (1.1) approaches to zero for a small value of  . 

The main focus of this investigation is to consider the univariate statistics such as 
mean and total under imputation and provide some recent work on jackknife variance 
estimation to adjust the imputed values in the presence of extreme observations. We 
consider the problem of extreme values in the study variable, the auxiliary variable, or 
in both of them, before imputing the missing values. We consider the stratified 
random sampling design with commonly used imputation methods such as 
traditional ratio, classical linear regression method and hot deck within imputation. 
These imputation strategies are not proper in the sense of (Rubin and Schenker, 
1986), but all of them would have the valid design based on inference about the 
suggested variance estimator. Recently, Chen et al. (2107) suggested an approaches to 
improving survey-weighted estimates by precisely weighting the survey estimates. 
The aim of the study is to consider the problem of extreme values either at the upper 
or lower end for the precise imputation of missing responses. In present study, we 
proposed a jacknified Winsorized variance estimator under imputed data by 
discussing three different cases for the occurrence of extreme values in the field of 
survey sampling. These are given below:  

Case I: Extreme values in study variable 

Let the extreme values occur only in the study variable )(Y  but not in the 
auxiliary variable ( )X . These extreme values should lead to the low correlation with 
the auxiliary variable which will affect the performance of the estimation procedure.  

Case II: Extreme values in the auxiliary variable 
Let 

1 2, , , NX X X  be the values of the auxiliary variable having a population mean 
 X . Suppose the characteristics of the auxiliary information are not available but we 
have some relevant information. We want to utilize the auxiliary information 
in a significant manner for better inference. The one of the possible ways to handle 
this situation is to use the idea of winsorization for the valid inference about the 
population parameters. 

Case III: Extreme values in both variables 
Suppose that, extreme values occur both in the study and the auxiliary variable 

due to some natural or unnatural disturbance in the experiment. This irregular 
behaviour of the study and the auxiliary variables may lead to underestimation or 
overestimation of population parameters. Under such circumstances, we need to use 
some standard procedures for the valid inference. So, we truncate both variables by 
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using some specified standard procedures and the results by using a truncated set of 
values are more reliable as compared to the irregular observed values.  

We follow the standard truncation process, where low extreme values are 
truncated at the first quartile and high extreme values are truncated at the third 
quartile.  

2. Proposed procedure

Motivated by Rao (1996), we consider the problem of extreme values in both the
study and the auxiliary variables under stratified random sampling for the estimation 
of winsorized variance.  

2.1.  Complete response case 

Most of the daily life surveys based on well established frames are often used 
in stratified sampling. Let hn  be the number of sampled units selected from the

h th  stratum ( = 1, 2, 3, , )h L  such that 
1

.
L

h
h

n n


  For the complete

response case, the usual unbiased estimator of Y  is given by hh

L

h
W   1=

= , where 

hW  is the stratum weight and h  is  the sample mean of the h th  stratum after 
truncation. The variance of the winsorized set of values is  
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respondent in the h th  stratum.
The jackknife variance estimator of   after deleting the extreme values, is given 
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   and )(hj is sample mean obtained after deleting

the j th  response from the h th  stratum.  
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2.2.  Adjusted imputed value 

In the case of missing values in  , suppose hs  be the sample of size hn is selected

from the h th  stratum having h sampled units, let hr  be the respondents and hr
be the non-respondents units who refuse to provide the response regarding the 
variable of interest. So, '=

hrhrh sss  . Let rrh
  be the winsorized sample mean of 

hr
s

in h th  stratum. Suppose #  is the imputed value for the j th  unit in '
hr

s . 

The estimator for the population mean is then given by  

#

=1 '

= ,
L

h
I j jh h

h j s j sh h r h rh h

W

n  

 
     
 
 

  
 (2.3) 

With deterministic approach, the jackknife variance estimator of I  is obtained 

in the usual way by deleting the respondents 
hr

s , each of the imputed value in the

h th  stratum is adjusted in magnitude as  # #( )j jh h
hJ  , where  #

jh
hJ  is 

the imputed value for the j th  non-respondent unit in h th stratum, when hJ

respondent is deleted from hs . Then, the adjusted imputed missing value is equal  the
“correct” value )(# hJ

hj
  if rh

hJ s  and remaining values are unchanged, if the non-

respondent hJ  is deleted. In the case of stochastic imputation, each of the imputed
value is adjusted by ,####

hjhjhJ EE   when 
rh

hJ s , where #E denotes the 

expectation with respect to the imputation procedure given the donor class and #
hJE

is the expectation when the donor values are adjusted by removing hJ  units. Note 
that the adjusted imputation values reflect that the donor set is changed, when the 
respondent set is deleted from the sample. 

The imputed estimator based on the original and imputed values of the j th
sample units in the h th  stratum is expressed as )(@ hJI , after deleting the hJ
units. Then, the jackknife winsorized variance estimator, after ignoring the finite 
population correction factor, is given by (2.4)  

  2@
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= ( 1) ,
L

J I h h
h
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where        
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2.3.  Ratio imputation  

Suppose the auxiliary information is available on all the sampled units in hs . The
traditional ratio imputation procedure with winsorized data is defined as:  

# = ,
rh

j jh h
rh




 
 
 
       (2.5) 

for 
hh rj s  . Where 

hr  and 
hr

 are  the sample mean from the 
hr

s  respondent 

class in the h th  stratum respectively. This imputation procedure is motivated by 

the fact that #

hj
 is the best predictor of the units which are in '

hr
s  group, under the 

following ratio super population model, which is given by:  

     2= , = and Cov = 0,
h hj h j j h j j kh h h h

E b V     
 (2.6) 

This model also holds for hr
s

, if there is no selection bias. The probability of

response depends upon the .
hj

 Sarndal (1992) has shown (2.6) as an imputation 
model. 

Under such an approach, (2.3) will be written as:  

=
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Under (2.6), the estimator I  is a design based model,   = ,IE Y  provide 
that the model also holds for the respondent units. For the uniform response from all 
strata, the (2.8) has the same properties as the two-phase separate ratio estimators. 

It is readily seen that, #
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( ) =
( )
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j jh h
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h J
h J
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 , with the ratio imputation method 

hJ  respondent units are deleted, where
1
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hr r

r
hJ and similar for   

as 
1
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h

hjhr
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 . Using the values, the jackknife variance estimator for I is 

obtained from (2.4). The linearized version of the jackknife variance estimator is 
obtained under the model (2.6). 
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The linearized version of the jackknife variance estimator is helpful in estimating 
the variance through a computer program. This suggested method is helpful 
in obtaining the valid jackknife estimator under the uniform response from all strata. 

Let    @ @= ( )I I h I Ih h
hJ W hJ     be the adjusted imputed estimator for hY

. If hJ  units are deleted from 
thh  stratum, we have

   2
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Formula in (2.10) is obtained by using the following expression  
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Rao and Sitter (1992) have shown that (2.10) is a design consistent variance 
estimator under two phase sampling design. It shows that the jackknife variance 
estimator in (2.4) and linearized version of (2.4) are effective under the uniform 
response within each stratum. 
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Moreover Sarndal (1992) provided the following approximation under the model 
(2.4)  

2

( ) = 2 .h h h h h
s Ih

r h h hh h

r
v

r n n n

  


         
   
        (2.11) 

After the relative comparison of (2.10) and (2.11), it is noted that   = 0hE   for 

the large value of hr , which could lead the estimators in (2.4) and (2.10) to be
unbiased under the model of (2.6). Moreover, it is observed that  

   2=s I h s Ih h
v W v 

 (2.12) 

is not the consistent estimator under the uniform response within each stratum. The 
adjustment of the finite population correction (fpc) is shown by Rao (1996) 
comprehensively. There is no simple relation to adjust the finite correction in (2.4), 
but Rao and Sitter (1995) use some internal relationships to recover the finite 
population correction (fpc). The modified estimator in (2.4) can be used in two-phase 
sampling within strata, when imputation is used; that is, when the response of non-
sampled units of   is imputed using the first phase auxiliary information. Whitridge 
and Kovar (1990) considered the importance of mass imputation by utilizing it on 
business data. Kovar and Chen (1994) discussed the finite sample properties of (2.4) 
by the real life application to business survey data. 

Here, we discuss the stochastic counterpart of the traditional ratio imputation. In 

this approach the first donor is selected from 00ih  by using the simple random

sample with replacement for hs . Then, the ratio residual  *
jh

  is added to (2.5) to 

get the random imputation value as  

# *=
rh

j j jh h h
rh

 


 
  
 
   (2.13) 

Noting that  # * = 0jh
E  , the resultant ratio estimator is unbiased for Y  under 

the model (2.6) and uniform response from all the strata. 
With this ratio imputation procedure, we have  

# #
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and  

 # # =
rh

j jh h
rh
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   (2.15) 

Thus, the adjusted imputed values under the model (2.4) are, as: 

#
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If hJ  units are deleted and remaining units are unchanged. It is easy to express 
the linear version of jackknife variance estimator, is given by  

   2= ,L I h L Ih
h

v W v 
 (2.16) 

where  L Ih
v   is simply obtained by adding a term which is obtained due the 

random selection from a donor set to (2.10) under the ratio estimator. The extra terms 
are given by  

* *2 *2
2

2 ,
rh h h

h hh
h r hh
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where    * * *2 * *= , =j j h h j h hj s j sh h h h hh h h h
s n s n     

 
    and 

* *= .h j hj s hh h
n 

  

If auxiliary information regarding the variable of interest is unavailable then the 
traditional ratio imputation is reduced to the simple random imputation within each 
stratum. For these type of situations, Little and Rubin (1987) considered the 
approximate Bayesian Bootstrapping for handling it and discussed it in detail in their 
text in the chapter MI.  

2.4. Regression imputation 

Let   be observed on all the sampled units in hs . The classical linear 
regression estimator is defined as:  

 # ˆ= forj r r j r h hh h h h h
j s      

 (2.17) 
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where 
hr

̂  is a linear simple regression coefficient based on the respondent units in 

the 
thh  stratum. The imputed values #

hj
  are the best predictor for the unobserved 

units of 
hj

  under the following super population model: 

     2= , = , and cov = 0,j h h j jh h j kh h h h
E V       

 (2.18) 
 provided that the model holds 

hr
s , if there is no selection bias. 

Under regression imputation, (2.3) can be written as:  

  
=1

ˆ=
L

I h r r rh h h h
h

W      
  (2.19) 

The given estimator in (2.19) is YE I =)(  with a uniform response from strata. 

When the hJ  item is deleted, then, the estimator #

hj
  is written as: 

 # ˆ( ) = ( ) ( ) ( )j r r j rh h h h h
hJ hJ hJ hJ     

(2.20) 

where )(ˆ hJ
hr

  is the linear regression coefficient, obtained after deleting the hJ

units. 
Using (2.4), the linear version of )( IJv   is given by 
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where    ˆ=j j r r j rh h h h h h
       

,  2
2 1

=r j rj sh h hh rhh
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 2
2 1

= jj sh h hh nhh
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 . Following Rao and Shao (1992), we can say that both 
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the jackknife and its linear version for variance are approximately unbiased under the 
model (2.18). Sitter (1997) extended the results under multiple linear regression 
imputation. 

Now, we have to consider the stochastic counterpart of the regression imputation 
for the winsorized variance estimator. Under this approach, the first donor set 00 jh  is 

selected by simple random sample with replacement from the 
hr

s , independently 

from each stratum. Then, the regression residual 
00

* = jhhj
  are added to 

 ˆˆ =j r r r j rh h h h h h
       to get random imputed missing value

# *ˆ= , .j j nh h h
hJ s     Noting that  # * = 0jh

E  , the resultant imputed 

estimator would be I  is unbiased for Y  under model (2.18), as well as it is also
assumed that the probability of response is the same in all strata. So, we have  

 # # ˆˆ= ( ) = ( ) ( ) ( )hJ j jh r r j rh h h h h
E hJ hJ hJ hJ      

 (2.22) 

and .ˆ=##

hjhj
E   Thus the adjusted imputed values used (2.4) for variance

estimator by 
hjhjhj

hJ  ˆ)(ˆ# . If the hJ  respondent units are deleted,

)(ˆ hJ
hj

  is given by (2.22). 

A linear version of (2.4) under stochastic regression imputation is defined as:  

   2= ,L I h L Ih
h

v W v 
(2.23) 

where )( IhLv   is obtained by adding a term due to hot-deck imputation from the
given formula in (2.21) under linear regression imputation. The extra term is given by 

* *2 *2
2

ˆ2h h
r hh h

h h

m r
s s

n n  
 

  
 

, where *2* ,
hh

ss   and *2
h  are the regression 

residuals. 

If  jh
V   is not the same in each stratum, say   2=j h jh h

V    as in the ratio 

model (2.6), then the weighted linear regression is appropriate as compared to others. 

The resultant imputation estimator is unbiased for Y  but it is not consistent under 
the uniform response within strata.  
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3. Numerical study

In addition to our study, here, we discuss numerical results by using bootstrap
technique ABB on a real life data set. We obtained the data set from Rudolf et al. 
(2006), and modified the data using ABB technique and then applied the jackknife 
technique on the modified data set.  

Data Set: In FEV.DAT.csv, the strata are created using the age group of the 
patients. There are three strata, which are used as imputation classes. Two variables 
FEV status (Y) and  height (X)  in inches of the patients are considered. The 
summary statistics of Y and X  are given in Table 1. 

Table 1.  Summary statistics of the sample data set 

Stratum ( i ) hN  hY  hX  
2
yhC 2

xhC 2
yxhC 2

yxh

Stratum 1 300 2.0335 56.9610  0.0642 0.0060 0.8280 0.8280 

Stratum 2 300 3.0530 64.2746  0.0536 0.0037 0.0108  0.7556 

Stratum 3 54 3.6667 69.0909 0.0587 0.0026 0.0004  0.7795 

For the truncation of the available data set, the procedure is defined as follow: 

1 1 1 1

1 3 1 3

3 3 3

if < if <

= if < < , = if < <

if > if >

h jh h h jh h

jh jh h jh h jh jh h jh h

h jh h h jh jh

Q y Q Q x Q

y Q y Q x Q x Q

Q y Q Q x Q


 
   
 
 

(3.1) 

In Figure 1 we illustrate the original (O) behaviour of the study and the auxiliary 
variables respectively within each stratum. In the second row, the truncated (T) 
behaviour of the target study variable w.r.t the  auxiliary variable is expressed. After 
applying the above mentioned truncation procedure, we observed that the correlation 
coefficient in the first two strata is decreased but in the third stratum it improved 
significantly.  
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Figure 1.  Data illustration within strata 

Table 2.  Variance of the suggested estimators 

Response Rate 

Variances Strata  i
1 2 3 

1n 1r  2n
 2r  

3n 3r  .l
v y  j Iv   . .L rat Iv   s Iv   . .L reg Iv 

80 20  80 20  20 5  0.000000049 0.015270 0.002447 0.000271 0.000026 

 40 40  10  0.000000046 0.015039 0.000245 0.000063 0.000022 

 60 60  15  0.000000026 0.015019 0.000066 0.000037 0.000018 

160 40  160 40  30 10  0.000000180 0.010799 0.000246 0.000031 0.000017 

 80 80  15  0.000000159 0.010702 0.000063 0.000016 0.000011 

 120 120  20  0.000000145 0.010324 0.000024 0.000011 0.000008 

240 60  240 60  40 15  0.000000051 0.009220 0.000069 0.000010 0.000007 

 120 120  20  0.000000046 0.008899 0.000025 0.000006 0.000004 

 180  180  25  0.000000025 0.008031 0.000012 0.000005 0.000002 

Based on the sampled information with hot deck imputation for non-respondent, 
we consider jackknife winsorized variance estimation with imputed data by adjusting 
the imputed values. The winsorized variance of a given data set is 0.045130. 
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A different jackknife and its linearized version of estimators is considered under the 
ABB approach. In Table 2, the variance of the different versions of the jackknife 
estimator is given under a different response rate. It is clearly noticed that, the 
linearized version of the regression estimator under the jackknife technique 
outperforms as compared to others.    

4. Discussion

In our present study, we discussed jackknife winsorized variance estimation based
on the single imputed value. We also modified the linearized version of the jackknife 
variance estimator suggested by Rao (1996) for the precise estimation of winsorized 
variance, which is helpful for computer programs that use linearized methods for the 
estimation of variance. We discussed the stratified sampling scheme, because it is 
commonly used in large scale socio-economic surveys. We used the traditional ratio, 
classical linear regression and weighted hot deck imputation procedure within the 
classes. As we know, these imputation procedures are not reliable under multiple 
imputation but they could provide the valid design-based inference about the stated 
problem. For the practical application of this procedure, the available complete data 
set has information of the response status for each item and for the imputation group. 
The current existing computer algorithms are modified to implement these variance 
estimators without the permanent retention of the supplementary data. 

For the stratified random sampling the imputed estimator for the population 
characteristics (say mean) is unbiased, under the ratio estimators with the same 
probability of response from all strata and the design model is also unbiased under the 
ratio super population model. Similarly, our modified procedure under the guideline 
of Rao (1996) is also consistent for the estimation of winsorized variance under 
uniform response from all the strata as well as the unbiased estimator under the ratio 
model. In this study, we estimate the approximate unbiasedness of the jackknife 
estimator, when the weighted or hot deck imputation is used to impute the missing 
values. 

Our study is concentrated around the univariate estimation of the population 
parameters like mean and total under marginal imputation. For some complex 
population parameters like regression and correlation coefficient, marginal 
imputation is considered the association between variables. For the common donor 
hot deck imputation, we have the same donor set for this joint imputing of the non-
response values by handling those problems which are being faced in the marginal 
imputation. 

The current work can be extended under some modern methods like the Gibbs 
sampling for drawing the imputation values from the posterior distribution of the 
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non-observed values instead of common donor hot deck imputation, but we have 
mentioned earlier the modern methods for obtaining the significant imputation that 
take into account the design features which are currently under consideration. 
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ABSTRACT 

Analyses regarding socio-economic development and quality of life are an important 
aspect of research and discussion for many international organisations, states and local 
authorities. Due to the complexity and multidimensionality of these issues, conducting 
research can be problematic. The conclusions of various analytical centres indicate that 
there are many paths towards establishing a set of factors which affect quality of life and 
ways of assessing socio-economic development levels. Depending on the criteria 
considered, the most common methods for determining the degree of the advancement of 
life quality or socio-economic development include taxonomical techniques and analyses 
of potential, which are based mainly on objective data sourced from official registers. 
The main purpose of the paper is to investigate the level of socio-economic development 
and quality of life in the European Union in the years 2004 and 2018. The analyses were 
conducted for a rarely used level of spatial data aggregation, i.e. for NUTS-2 units. The 
analysis covers only those European regions that were EU members in 2004. As the 
primary research tool, the two-dimensional development matrix was adopted, which 
enabled the verification of the hypothesis regarding the convergence of synthetic measures 
that indicate the levels of socio-economic development and quality of life in the EU 
regions. For these indices, the development matrix is also used to identify the strengths and 
weaknesses as well as the opportunities and threats for selected spatial units, and, at the 
same time, to estimate the rates of change of the socio-economic development and quality 
of life levels. 
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1. Introduction

Dynamic economic and social progress forces people living in modern societies to
attach great importance not only to a better/higher quality of life, but also to the 
socio-economic development of their inhabitants. In the European Union (EU) and 
worldwide, it is possible to identify clusters of better/less developed regions, and when 
following the tendencies, their arrangement may change spatio-temporally. 

To make an objective analysis of both socio-economic development (SE) and the 
level of quality of life (QoL), it is necessary to use appropriate tools. As part of 
development research, some challenges may arise related to various aspects of 
everyday life that should be covered by the study. As a result, it is possible to identify 
better/weaker developed areas. Development is a term strictly connected with the 
issue of progress (PWN, 2021) and it is usually defined as a long-term process of 
directional change or as the transformation from simple, lower, less perfect forms to 
more complex and advanced solutions. In the socio-economic sciences, development 
is generally defined as the overall change or the transformations that affect both 
society and the economy. It is a multi-faceted and long-term process (Schumpeter, 
1960; Cyrson, 1997; Begg et al., 2007; Samuelson and Nordhaus, 2012). Therefore, 
it should not be assigned only with direct economic progress; it should also include 
important social, cultural or environmental factors. For this reason, various indicators 
become analytically useful, although all aspects are rarely, if ever, developed equally. 

Focusing solely on the assessment of the advancement of economic development, 
the literature most often uses gross domestic product (GDP) per  capita as 
a development measure (Stiglitz, Sen and Fitoussi, 2010). An  indicator of socio-
economic progress that is frequently used due to the provision of information about 
the health of the surveyed population is infant mortality per 1 000 live births (Robine, 
Romieu and Cambois, 1999), or the percentage of girls attending school. In addition 
to these indicators, the level of development is also estimated with energy 
consumption per person, research and development (R&D) expenditure, educational 
attainment or gender wage comparisons (Stiglitz, Sen and Fitoussi, 2018).  

By analysing the socio-economic development and the quality of life 
simultaneously, from the point of view of a single social unit, these phenomena are 
characterised by a subjective assessment and are not clearly defined or comprehended. 
In order to live better and/or happier, it is essential to consider many aspects of daily 
activity and discuss the issue from a broader perspective. Currently, a decent wage 
and a reliable occupation or a good socio-economic background are no longer 
sufficient (Tomkiewicz, 2018). For this reason, this type of research also involves 
qualitative indicators such as opinions that reflect an immeasurable element of 
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development. However, these indications are still subjective because each respondent 
has personal assessment criteria. 

The study analysed the regional results for 262 NUTS-2 regions of the European 
Union Member States according to the EU’s members composition in 2004. Reducing 
the research to a lower level of spatial data aggregation is justified by the increase 
in regional heterogeneity, which represents the statistical significance of the variability 
level (Đurović, Bigović and Milović, 2017). Considering the conditions of local 
economies makes it possible to identify inequalities in regional development (Annoni, 
Dominicis and Khabirpour, 2019). Ertur, Le Gallo and Baumont (2006) claim that the 
spatial distribution of areas characterised by high/low economic development tends to 
show constant decomposition over time. 

The data on both socio-economic development and quality of life were sourced 
from the Eurostat and the Organisation for Economic Co-operation and 
Development (OECD) databases. Several detailed statistics were unavailable for 
selected spatial data aggregation. Thus, to make the research database complete, 
comparable and reliable, the missing information was supported with data from the 
local Central Statistical Offices (CSOs). Based on the collected data, comparative 
research was conducted for 2004 and 2018, when the socio-economic differentiation 
and quality of life levels in the NUTS-2 units were assessed. The study estimated the 
synthetic indicators of socio-economic differentiation and the quality of life in each of 
the 262 analysed EU regions in order to obtain information on the quality of life and 
socio-economic condition of the spatial units. Additionally, as a result of the research, 
in the empirical part of the article, the analysed objects were further classified in the 
development matrix. Applying a combined and multidimensional approach to the 
analysed issue allowed to achieve the research goal concerning changes in the socio-
economic development in relation to the quality of life of the population at the 
provincial level. This approach allowed for the verification of the overall hypothesis of 
permanent positive changes in both spheres of life of every human being. 

2. Criteria for building life quality and socio-economic development indices

The aforementioned indicators illustrate only a fragment of reality. For this
reason, the United Nations Development Agency (UNDP) annually publishes the 
collective Human Development Index (HDI). It analyses the level of development of 
countries based on a long and healthy life, knowledge level and also standard of living. 
The highest value of the synthetic index for each analysed country is a unity, with zero 
as the lowest value. Since it was first developed, this indicator has been modified many 
times. In the 30th edition in 2020, a factor measuring the impact on the natural 
environment was also taken into account, which analysed countries and their 
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inhabitants’ impact on nature. As a result, the real situation of the analysed states has 
become much more realistic. This modification significantly influenced the 
classification of countries in the ranking. Some of them, previously considered worth 
following, fell to lower positions in the development hierarchy 
in 2020 (UNDP, 2020). 

In 1994, the World Health Organization (WHO) constituted its Quality of Life 
Department (identified by the acronym WHOQOL), which characterised the term 
quality of life as a subjective perception of individuals’ life. It takes into consideration 
cultural background and values assigned to personal ambitions, possibilities, rules and 
different obstacles (WHO, 1997). Quality of life has a huge impact on physical and 
mental health and relationships with others, which was assumed as a reference point 
in the study of theoretical and empirical considerations. Hawthorne and Osborne 
(2005) indicated that while constructing the quality-of-life measure, indications 
should always be explained from a personal perspective. However, it should be noted 
that each social unit makes a global assessment of the quality of its life differently, 
which is often influenced by the place of residence or position in the social structure.  

The selection of the most important criteria that allowed to determine the indices 
of life quality and socio-economic development in 262 EU spatial units were 
organised in accordance with the “Better Life Index” proposed by the OECD, and the 
applied methodology corresponds with the latest recommendations of the OECD and 
the Joint Research Centre (JRC) of the European Commission (EC), i.e. the 10-step 
system for constructing indicators (OECD, 2008). Some of the determinants specified 
by the OECD were not included, or they were replaced by other characteristics due to 
difficulties related to the data availability at the regional level. Only objective and 
accessible data sources were selected. While the quality of life is a multidimensional 
phenomenon when constructing the life quality (LQ) measure, indisputable intangible 
factors such as education, the state of the environment or digital and information 
development were taken into account, following Agénor and Lim (2018).  

The characteristics were initially compiled into subgroups, consistent with the 
classification of European statistics. The construction of the synthetic LQ indicator 
included 16 quantitative determinants that express various quality of life aspects. The 
measure representing the socio-economic background (SE index) was composed by 
analogy and based on 17 quantitative characteristics that illustrate numerous aspects 
of socio-economic development. Stanickova (2015) defined the main factors of 
socioeconomic development, listing six groups of characteristics that are crucial for 
EU economies. She focused on economic growth, infrastructure level, and everyday 
human life and education, although the interest of her research was national 
economies. After collecting all the studies conducted thus far, a list of summary 
factors was created and further applied in the analysis (Tab. 1). 
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Table 1. Factors applied in the construction of the synthetic LQ and SE 

Life Quality index Socioeconomic Development index 

Subgroup Determinants Subgroup Determinants 

Education 
Participation in education, 

and additional training rates 
by attainment level 

Economic 
accounts GDP in constant prices 

Health 
protection, 

environment and 
social welfare 

Health care conditioning; 
healthy life years and life 

expectancy; usage of 
resources, qualified medical 

staff; efficiency of health 
care; mortality rate; air 

pollution level of 2.5PM; 
subjective life satisfaction 

Labour market Employment level; 
other labour assets 

Poverty and social 
exclusion 

Poverty rate by type; 
households at risk of 

poverty 

Income household accounts Science and 
technology R&D expenditure 

Digital economy 
and information 

society 
Internet access; use of IT 

tools and solutions Transportation 

Public roads and 
railroads; vehicle stock; 
road safety – victims of 
road accidents by type 

and severity 

Source: own elaboration. 

2.1.  Method of building the life quality and socio-economic development indices, 
including the development matrix 

The variables listed in the previous section were initially standardised and used to 
estimate the indicators of life quality and socio-economic development for each 
NUTS-2 region and the selected period separately. As a result, it was possible to 
compare the variability of the quality-of-life indicators with the results of socio-
economic differentiation, i.e. with tendencies and indicators calculated for the 
analysed spatial objects. 

Many paths were considered regarding how these indicators should be estimated 
(pattern and non-pattern methods). One crucial condition for the construction of 
synthetic measures is data comparability (the additivity postulate). The normalisation 
process also includes the elimination of negative values from the calculations and the 
stability of the level of variability – the postulate of constant range or stability of 
extreme values. To maintain data comparability, the standardisation transformation 
with mean and standard deviation values was used according to the following 
formula: 

𝑧  
̅ , (1)
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where: 𝑥  – the factor’s value, �̅�  – the factor’s value, 𝑆  – the factor’s standard 
deviation. Ultimately, the calculation was based on the hierarchical taxonomic 
measure of development proposed by Hellwig (1968): 

𝑚  1
𝑑
𝑑

,    𝑖 1,2, … ,𝑛  (2) 

where: 𝒅𝒊𝟎 ∑ 𝒛𝒊𝒋 𝒛𝟎𝒋
𝟐𝒎

𝒋 𝟏  – the Euclidean distance between the i-th

observation from the pattern of development, 𝒅𝟎 ∑ 𝒛𝟎𝒋 𝒛 𝟎𝒋
𝟐𝒎

𝒋 𝟏 – the
Euclidean distance between the pattern 𝒛𝟎𝒋 and 𝒛 𝟎𝒋 anti-pattern of development, 
which are implemented in the multivariant analysis in accordance with the character 
of each individual variable. The method considers the stimulative or destimulative 
impact of a characteristic for the overall level of the mi taxonomic measure. 
In the case of model values, when a given factor has been defined as stimulating for 
the general level of a complex phenomenon, its maximum value is adopted as  𝒛𝟎𝒋; 
in the case of a destimulating effect, by contrast, it is adopted as its minimum value. 
For anti-model values 𝒛 𝟎𝒋 the completely opposite situation occurs, and the 
minimum value for the stimulating factor is accepted, and the maximum value in the 
case of a destimulant (Suchecki, 2010). 

The combined procedures make it possible to determine two objects (most often 
hypothetical) that represent the best and the worst possible alternatives. The pattern 
and anti-pattern perform two functions in the analysis. The first one is to assess the 
individual level of the phenomenon in the given i-th object; the second one is to 
provide a certain standardisation point of the size of the phenomenon.  

It is known from the properties of the taxonomic measure that the higher the level 
of a complex phenomenon, the higher the level of the mi development measure. The 
measure assumes values in the range [0,1]; for the model, it takes the value of unity, 
and for the anti-model, it takes the zero value.  

Due to the comparability of objects ordered inside the measure, it becomes 
intuitive to interpret, especially for assessing the development or deterioration in the 
quality of life or the socio-economic development in the NUTS-2 regions. The use of 
the uniform set of diagnostics features makes it possible to compare the tendencies of 
changes in the levels of the two indices for local populations for two periods 
(or moments). Therefore, it is possible to introduce a graphic summary of the 
numerical results based on the formula of a relative increase (rate of change), 
calculated as follows (Hydzik, 2012): 

𝒓𝑳𝑸𝑰 𝒕
𝒕 𝟏

 
𝑳𝑸𝑰𝒕 𝑳𝑸𝑰𝒕 𝟏

𝑳𝑸𝑰𝒕 𝟏
, 𝒓𝑺𝑬 𝒕

𝒕 𝟏
 
𝑺𝑬𝒕 𝑺𝑬𝒕 𝟏

𝑺𝑬𝒕 𝟏
 (3)
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where: 𝒓𝑳𝑸𝑰 𝒕
𝒕 𝟏

– regional rate of change of the mi indicator of life quality, and

𝒓𝑺𝑬 𝒕
𝒕 𝟏

– the regional rate of change of the mi indicator of socio-economic

development. 
The indications that result from the change rates allowed for an additional 

interpretation of observed tendencies, indicating regions of improvement and/or 
deterioration of the development of the analysed phenomena. This comparison also 
allowed for the assessment of the pace of the changes noted, which is important for 
the implementation of EU policy goals and for discussions about equalising 
opportunities for regions considered to be weakly developed compared to Western 
Europe or Scandinavian countries. 

Li
fe

 Q
ua

lit
y 

in
de

x 

High Missed 
opportunities 

Good basis for 
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development  
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Underinvestment 
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Low 
No basis for 
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Missed 
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Weak Average Good 
Socio-economic development index 

Figure 1.  Development matrix design 
Source: based on Jewczak and Korczak (2020). 
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The overall summary of the analysis carried out in the paper is based on the 
construction of a proposed development matrix, which is a classification technique 
that makes it possible to position two objects in a two-dimensional format that 
describes the relationship between two analysed phenomena, here: quality of life and 
the socio-economic development (Jewczak and Korczak, 2020). 

The development matrix consists of rows and columns that present the level of 
individual features that differentiate the positions of objects on a scale from 0 to 1. 
The matrix is divided into nine equal fields, each representing the characteristics of 
the phenomena’s development level, and they should be interpreted in accordance 
with the strategic field definition. From the interpretational perspective, the scatter 
plot design has the obvious advantage, which is connected with indicating the 
relationship between phenomena, the intensity and, when making temporal 
comparisons, indicating tendencies of change.  

3. Empirical analysis results for EU NUTS-2 regions

To establish the relationship between the quality of life of inhabitants and the
situation of socio-economic development of NUTS-2 regions in the selected EU 
countries, the quality of life LQI and socio-economic development SE indices were 
assessed. The spatio-temporal analysis for 2004 and 2018 adopted the reference object 
approach and further comparison in the ordered development matrix. On this basis, 
spatial objects were classified as illustrated in Fig. 2. The cloud image of the analysed 
objects in the 2004 development matrix allowed us to illustrate positive trends 
in quality of life. Meanwhile, the image for 2018 is more dispersed, and a significant 
part of the regions shifted to more positive strategic fields of greater development. 

The impact of the socio-economic development changes was less explicit. As the 
research tool indicated, for both of the analysed periods, most of the spatial units were 
counted as objects with “no basis for improvement”. Only one of the objects (the Île-
de-France region) recorded an improvement in SE development in 2018 compared to 
2014, moving to an average level. In both time points, the best situation in terms of 
quality of life and socio-economic development was recorded in the Swedish East 
Middle region, as shown by the highest coordinate in the development matrix. 
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Figure 2.   Results of the development matrices in 2004 and 2018 

Source: developed by the Authors based on EUROSTAT, OECD and local CSO’s LFS data. 
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From the properties of the proposed analytical tool of the development matrix 
and the positioning of individual strategic fields, it follows quite intuitively that the 
closer the object is to the origin of the coordinate system, the worse the situation of 
the object is, i.e. “no basis for improvement”. The objects’ movement over time 
towards strategic fields of higher values of complex phenomena should be assessed as 
positive changes that result from the improvement of one or both phenomena 
simultaneously in the direction of the (1,1) coordinate. Additionally, by analysing the 
shape of the cloud image of the distribution of points in the scatterplot in the 
development matrix, it is also possible to identify the relationship that occurs between 
the analysed phenomena. 

In 2004, the vast majority of spatial objects were characterised by an average level 
of intensity in the quality of life and a low level of socio-economic development. The 
result of such a two-dimensional classification is the concentration of coordinates 
within the “underinvestment and poor level of development” field. One object with 
the opposite relationship between the quality of life and socio-economic development 
was the Lithuania region. This unit recorded an average socio-economic development 
level with a low intensity level of the quality of life. The best positioned spatial unit 
in 2004 was Île de France, which noted the highest level of socio-economic 
development and quality of life; however, the intensity of the phenomena is 
considered to be an “average advancement”. 

When analysing the EU NUTS-2 regions in the final year of the analysis, it is 
possible to conclude that the situation of the objects generally improved over time. 
There was only one spatial unit (Lithuania) which was classified as “no basis for 
improvement” – it was also the worse-positioned object in 2004. Most objects were 
classified as “poor level of development”, characterised by an average level of quality 
of life and low levels of socio-economic development. By reversing the direction of the 
analysis, only two objects of “poor level of development” were identified (Pays de la 
Loire, Calabria), which were characterised by an average level of socio-economic 
development and a low intensity of quality of life.  

In 2018, objects indicating an “average advancement” in both quality of life and 
socio-economic development constituted quite a large group (more numerous than 
in 2004). However, the distribution of the coordinates clearly indicates that the 
position of the NUTS-2 objects is more stimulated by the intensity of the quality of 
life than by the socio-economic development. In the analysed period, only one object 
with a “good basis for improvement” was specified, and its position results from the 
noted high level of quality of life. Again, this was the region of Île de France.  

By analysing the overall perception of development, a positive tendency should be 
emphasised, as a significant number of regions mostly positioned in the field of 
“underinvestment – poor level of development” in 2004 shifted towards fields of 
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better assessment in 2018. The direction of the tendency of the frequency distribution 
of the measures indicated that the observable changes should be perceived as 
favourable – pushing objects towards the strategic field of an average level of 
advancement.  

When comparing the cloud images for the differentiation of distribution of points 
in the development matrix scatterplots, it can be easily noticed that the advancement 
of the condition of NUTS-2 regions is the result of changes in their levels of socio-
economic development more than an improvement in the quality of life. However, the 
analysis demonstrated that the life quality also advanced. 

This relationship between quality of life and socioeconomic development showed 
a positive empowerment relationship with the passage of time. In 2004, the strength of 
this association was established by the Rxy Spearman’s coefficient at (+0.503) level 
and advanced in 2018 to (+0.642) – this relationship was significant at p <0.05.  

The research indicated that there was an increase in the overall intensity of the life 
quality – this is noticeable in the extreme, minimum and maximum values of the 
complex phenomena. The highest levels of the recorded quality of life were observed 
in the Scandinavian area and Western Europe (Fig. 3).  

2004 2018

Figure 3.  Values of synthetic measures for Quality of Life in 2004 and 2018 

Source: developed by the Authors based on EUROSTAT, OECD and local CSO’s LFS data. 

This could be summarised by the statement that the regions located within the 
borders of the founding members of the EU were characterised by a high quality of 
life. These tendencies were convergent for both periods; however, it is clearly visible 
that the quality of life deteriorated in the regions of the United Kingdom, Germany, 
for most regions of Poland, Slovakia, the Czech Republic, and Romania, as well as the 
Balkan area. 



44       M. Jewczak , M. Brudz: Socio-economic development and quality…

In contrast to the LQ indicators, for the socio-economic development index, the 
intensity of the phenomenon decreased between 2004 and 2018. Again, this could be 
summarised by the extreme level of the maximum value of the synthetic measures 
(Fig. 4). The spatial arrangement in the selected periods is quite convergent, and the 
improvement in the intensity of the spatial distribution mostly concerned objects that 
noted a higher level in the first place. 

2004 2018

Figure 4.   Values of synthetic measures for socio-economic development in 2004 and 2018 

Source: developed by the Authors based on EUROSTAT, OECD and local CSO’s LFS data. 

This situation may suggest a general improvement in the socio-economic 
situation in most of the NUTS-2 regions (which was previously observed by the 
greater dispersion within the strategic fields in the development matrix). The socio-
economic development level improved in regions of the Iberian peninsula, France and 
Northern Italy, whereas in Poland, the level of socio-economic development for most 
of the analysed spatial units in 2018 was assessed at a lower intensity level compared 
to 2004. A positive conclusion of the analysis is the improvement in the situation of 
the Lithuania region, which advanced to a higher intensity group of socio-economic 
development in 2018. However, it should be remembered that this region was assessed 
as the worst for quality of life in both periods. 

4. Conclusions

The biggest advantage of the research is that the scientific analysis covered data at
the regional level, while most studies focus only on quality of life or socio-economic 
development at the macro level. It is hard to find studies that consider differences at 
the regional or even local level that do not focus on the internal differentiation within 
national borders. The study carried out in the article provided information on the 
quality of life and socio-economic development in 262 NUTS-2 regions in the EU 
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Member States. The research goal was achieved by measuring the improvement in the 
quality of life and the socio-economic development using a taxonomic measure of 
development. This allowed not only to evaluate each of the i-th objects in relation to 
the reference object, but also to obtain results taking into account the intensity of 
variability of phenomena. The proposed procedure solves the problem of the impact 
of individual components that were taken into account when constructing the indices 
to reflect more accurately both the quality of life and the socio-economic situation of 
the regions. However, due to the configuration of the assessed measures (although 
they are based on reliable information sourced in official registers), the resulting 
quality of life and socio-economic indicators should be treated as an information 
point. This is due to the limitations related to data availability at the lower spatial data 
aggregation level.  

One of the positive conclusions from the study is that the relationship between the 
two measures of LQ and SE was significant, in terms of non-parametrical Spearman’s 
correlation coefficient – for 2004, the Rxy amounted to 0.503 (significant at p <0.05), 
while in 2018, the Rxy was 0.642 (also significant). This connection indicates that the 
relationship between the phenomena is positive and strengthens over time. 
Considering the results based on the applied development matrices, the conclusion 
(supported by the graphical presentation of change rate tendencies (Fig. 5)) indicates 
that the arrangement of objects in the coordinate system shifted towards a more 
positive assessment, defined as an “average advancement” in both phenomena.  

rLQI rSE 

Figure 5.   Rates of change in LQI and SE measures 

Source: developed by Authors based on EUROSTAT, OECD and local CSO’s LFS data. 

For the life quality (rLQI), in particular, the improvement was observed within 
countries considered to be “more developed”, with the exception of Germany. The 
graphics of change rates also indicate that for most of the analysed regions, there was 
a positive change in terms of socio-economic development (rSE). Again looking at the 
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German NUTS-2 units, although they recorded an unfavourable change in terms of 
the quality of life, there was an improvement in socio-economic development.  

To summarise the results of the multivariate analysis, there was a positive 
relationship between the quality of life and socio-economic development, which 
strengthened over the analysed period. One should evaluate positively the regions that 
recorded favourable change rates in the levels of synthetic measures, which is 
consistent with the previously noted trends. For most of the NUTS-2 areas, the quality 
of life improved, except for the areas of Germany and Poland and neighbouring 
countries, which share a similar socio-economic background. For the regions 
identified with negative (unfavourable) rates of change, although the changes were 
not spectacularly low/high, these results might be a consequence of their migration 
policies of opening borders to residents of the countries admitted to the EU in the 
analysed period.  

The same may be true for some regions of France, Italy and Germany, which are 
seen as a constant target of migration movements in Europe. Changes in the levels of 
socio-economic development, which accelerated in Central and Eastern Europe, 
should be assessed positively, with simultaneous downward trends recorded in the 
regions of the “old Union” countries. However, this finding may support the 
previously-mentioned concept of underdeveloped countries catching up to highly 
developed countries rather than it being the case that, overall, the quality of life or 
socio-economic development in well-developed economies deteriorated significantly. 
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A Bayesian estimation of the Gini index and the Bonferroni index 
for the Dagum distribution with the application of different priors 
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ABSTRACT 

Bayesian estimators and highest posterior density credible intervals are obtained for two 
popular inequality measures, viz. the Gini index and the Bonferroni index in the case of the 
Dagum distribution. The study considers informative and non-informative priors, i.e. the 
Mukherjee-Islam prior and the extension of Jeffrey’s prior, respectively, under the 
presumption of the Linear Exponential (LINEX) loss function. A Monte Carlo simulation 
study is carried out in order to obtain the relative efficiency of both the Gini and 
Bonferroni indices while taking into consideration different priors and loss functions. The 
estimated loss proves lower when using the Mukherjee-Islam prior in comparison to the 
extension of Jeffrey’s prior and the LINEX loss function outperforms the squared error loss 
function (SELF) in terms of the estimated loss. Highest posterior density credible intervals 
are also obtained for both these measures. The study used real-life data sets for illustration 
purposes. 

Key words: Inequality measures, Bayes estimator, credible interval, LINEX loss function. 

1. Introduction

The Dagum distribution (also called the inverse Burr distribution; Dagum called
it a generalized Logistic-Burr distribution (Kleiber and Kotz, 2003) is a well-known 
distribution popularly used to model income distribution. Camilo Dagum proposed 
the Dagum distribution in 1970, which is a skewed and heavy tailed distribution and 
is appropriate to model the distribution of financial, income as well as wealth 
distribution. The Dagum distribution was developed as an alternative to the Pareto 
distribution and lognormal distribution and it performs better than other two/three 
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parameters income/wealth distribution models when applied to empirical data 
(Chotikapanich and Griffiths, 2006). One of the special cases of the Dagum 
distribution appeared for the first time in Burr (1942) as the third example (Burr III) 
of solutions of the Burr distribution system. The three parameter Dagum Type I 
distribution evolved from Dagum’s experimentation with a shifted log-logistic 
distribution (Chotikapanich, 2008). 

The probability density function of the Dagum distribution is given as 

    𝑓 𝑥; 𝑎, 𝑏,𝑝

⎩
⎨

⎧
,      𝑥 0;   𝑎, 𝑏,𝑝 0,   

 0,    𝑜𝑡ℎ𝑤𝑒𝑟𝑤𝑖𝑠𝑒.   

        (1) 

The plot of probability density function of the Dagum distribution for 
various 𝑝 3.5,4.5, 7.8 with 𝑎  2.5,𝑏 1.5 is shown in Figure 1.  

Figure 1.  Probability density function of the Dagum distribution 

The cumulative distribution function of the Dagum distribution is given by 

𝐹 𝑥;𝑎, 𝑏,𝑝 1 ,     𝑥 0;     𝑎, 𝑏,𝑝 0,      

0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,      
    (2) 

where 𝑎 and 𝑝 are shape parameters and 𝑏 is a scale parameter. For 𝑝 1, the Dagum 
distribution is also referred to as log-logistic distribution (Dagum, 1975).  
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Inequality is a vital characteristic of non-negative distribution. It is used to 
analyze data in socio-economic sciences, in the context of income distribution. In the 
context of income inequality, the Gini index (Gini, 1912; Foster et al., 1984) is 
generally defined as  

𝐺 1 2 𝐿 𝑝 𝑑𝑝 ,      0 𝑝 1,                                       (3) 

where 𝐿 𝑝 1/𝜇 𝐹 𝑡 𝑑𝑡 is the equation of the Lorenz curve and 𝜇
𝐹 𝑡 𝑑𝑡 is the mean of the distribution. 

The Bonferroni index is defined as  
𝐵 1 𝐵 𝑝 𝑑𝑝,  0 𝑝 1,  (4) 

where 𝐵 𝑝 𝐹 𝑡 𝑑𝑡 is the equation of the Bonferroni curve. 

The curve was introduced by Bonferroni (1930) and has been analysed and 
studied by various authors: see for instance De Vergottini (1940), Tarsitano (1990), 
Giorgi & Crescenzi (2001) and Zenga (2013). 

In the case of the Dagum distribution, the Gini index 𝐺  and the Bonferroni 
index (𝐵) are given by 

𝐺  
 

 
1,     𝑎,𝑝 0,      (5) 

where Γ .  is the Gamma function, 
and  𝐵 𝑝 𝜑 𝑝 𝜑 𝑝 ,   𝑎, 𝑝 0,   (6) 

where 𝜑 𝑥 𝑙𝑛√𝑥  



 , is the Digamma function. 

 Note that both values are independent of the scale-parameter 𝑏. 

A huge literature exists on the estimation of the Gini index and inequality 
measures using classical approach, i.e. parametric and non-parametric (Moothathu, 
1985; Sen, 1988; Dixon, 1987; Bansal et al., 2011). But in the case of Bayesian set up, 
a lot of work still needs attention (Sathar et al., 2009; Bhattacharya and Chaturvedi, 
1999) particularly in the context of income inequality. In the case of Pareto 
distribution Bayesian estimators of the Gini index (Kaur et al., 2015) are obtained 
using different priors under LINEX loss function. Some work regarding Bayesian 
estimation of the shape parameter 𝑝 of the Dagum distribution is available under 
different loss functions using informative and non-informative priors (Naqash et al., 
2017) while Layla et al. (2020) discussed the Bayesian estimation of the survival 
function using Gamma as informative and Jeffrey as non-informative prior, but the 
income inequality field still awaits the attention of researchers. In the present paper, 
Bayesian estimators for two famous inequality indices, viz. the Gini index and the 
Bonferroni index will be obtained for the Dagum distribution along with their 



52       S. Arora et al.: A Bayesian estimation of the Gini…

credible intervals. These inequality indices are not only used in the economic set up 
but have applications in other fields such as survival analysis, reliability and bio-
statistics. 

When the Bayesian approach is used, the selection of a suitable prior distribution 
plays a major role. Basically, priors can be divided into informative (an informative 
prior depends on elicitation of prior distribution based on pre-existing scientific 
knowledge in the area of investigation), non-informative (a non-informative prior is 
usually improper,  𝑖. 𝑒. it does not have a proper density function but the resulting 
posterior distribution is a proper density function), and conjugate prior (if the 
posterior distribution 𝑝 𝜃|𝑥  is from the same family of probability distributions as 
the prior probability distribution 𝑝 𝜃 ) (Kass and Wasserman, 1996; Berger, 2006). 
In the Bayesian estimation, the benchmark for quality (good) estimator for the 
parameters of interest is the selection of the proper loss function. A squared error loss 
function is the simplest loss function among all the loss functions. It is also known as 
a quadratic loss function, defined as 

𝐿 𝜃 𝜃 𝜃 ,   (7) 
where 𝜃 is the estimator of 𝜃. 

The squared error loss function (SELF) is symmetrical and shows equal 
importance to losses due to overestimation and underestimation of equal magnitude. 
One disadvantage of using the squared error loss function is that it penalizes 
overestimation or underestimation. Overestimation of a parameter can lead to more 
severe or less severe consequences than underestimation, or vice versa. In the case of 
income inequality under-estimation is more serious as compared to overestimation 
(Kaur et al., 2015). For this reason, the use of an asymmetrical loss function, which 
can provide greater importance to overestimation or underestimation, can be 
considered for the estimation of the parameters. Many asymmetrical loss functions 
are available in the statistical literature and one such Linear exponential loss function 
(LINEX) has been proposed by Varian (1975) as 

𝐿 𝜃 𝜃 𝑒 𝑏 𝜃 𝜃 1,  𝑏 0.    (8) 
The posterior expectation of the LINEX loss function is  

𝐸 𝐿 𝜃 𝜃 𝑒 𝐸 𝑒 𝑏 𝜃 𝐸 𝜃 1, 

where  𝐸 .  denotes posterior expectation with respect to the posterior density of 𝜃. 
By a result of Zellner (1986) the Bayes estimator of 𝜃 denoted by 𝜃 under the 

LINEX loss function is the value which minimizes posterior expectation and is given by 
  𝜃 ln 𝐸 𝑒 ,                                                (9) 

provided the expectation 𝐸 𝑒 ) exists and is finite. 
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The LINEX loss function  is approximately equal to the squared error loss 
function for the small values of  𝑏.  

In this paper, the LINEX loss function is used for obtaining Bayesian estimators 
for two popular inequality indices, i.e. the Gini index and the Bonferroni index in the 
case of the Dagum distribution using Mukherjee-Islam prior (informative prior) and 
the extension of Jeffrey’s prior (non-informative prior). The plan of the paper is as 
follows. In Section 2, prior and posterior distributions are discussed in the case of the 
Dagum distribution. In Section 3, Bayesian estimators are obtained for the Gini index 
and the Bonferroni index for the Dagum distribution under the assumption of the 
LINEX loss function. In Section 4, using simulation, relative efficiency of Bayesian 
estimates is obtained for both the Gini and Bonferroni index taking into consideration 
different priors and two loss functions, LINEX and SELF. In Section 5, the credible 
intervals are defined and highest posterior density credible intervals are carried out 
for both the Gini index and the Bonferroni index. Two real life examples to illustrate 
the method of Bayesian setup are given in Section 6.  

2. Prior and posterior distribution

2.1. Case 1: Shape parameter 𝒑 is unkown and 𝒂,𝒃 are known 

Let 𝑋 𝑥 ,𝑥 ,….,𝑥n) be a random sample from the Dagum distribution with 
shape parameters 𝑝 and 𝑎 and scale parameter 𝑏, i.e. 𝑋~𝐷 𝑎, 𝑏,𝑝 , then the 
likelihood function for the Dagum distribution as a function of 𝑝 (keeping 𝑎 and 𝑏 
fixed) is given by  

   𝐿 ∏ 𝑥 ∏ 1  (10) 

𝐿 𝑎, 𝑏,𝑝 ∝ 𝑝
𝑥
𝑏

1
𝑥
𝑏

𝑝 𝑒 ∑ 𝑒
∑

⇒ 𝐿 𝑝|𝑥 ∝  𝑝 𝑒
∑

  =  𝑝 𝑒  

where    𝑇 ∑ ln 1 .     (11) 

Posterior distribution under Mukherjee-Islam prior 

Mukherjee Islam (1983) is a well-known probability distribution used by many 
researchers to model a failure distribution for the purpose of reliability and Bayesian 
analysis.  
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Assume that  𝑝 has a Mukherjee-Islam prior with hyper parameters 𝛼,𝜎 0, 
defined by 

𝜋 𝑝 𝛼𝜎 𝑝   ;  𝑝 0,𝛼 0,𝜎 0.      (12) 

Then, the posterior distribution of 𝑝 under Mukherjee-Islam prior is given by 

𝜋 𝑝|𝑥  
∗  

∗  

𝜋 𝑝|𝑥 ∝  𝑝 𝑒   

        ℎ𝑝 𝑒   

where ℎ is the normalized constant given by 

ℎ 𝑝 𝑒 𝑑𝑝  

= Γ 𝑛 𝛼 /𝑇  .  

Thus, the posterior distribution of 𝑝 is given by     

𝜋 𝑝|𝑥 𝑝 𝑒 ,               (13) 

which is gamma density with parameters 𝑇 𝑎𝑛𝑑 𝛽 𝑛 𝛼. 

Posterior distribution under extension of Jeffreys’ prior 

Jeffreys’ prior is a particular case of the extension of Jefferys’ prior proposed by 
Kutubi and Ibrahim (2009). The extension of Jeffreys’ prior is defined as 

𝜋 𝑝 ∝ 𝐼 𝑝  ;𝑚 0, 

where 𝐼 𝑝  is the Fisher Information given by 

𝐼 𝑝 𝐸
𝜕 𝑙
𝜕𝑝

𝑛
𝑝

, 

where 𝑙 is the log-likelihood function. For 𝑚  0.5, it reduces to Jeffreys’ prior. Thus, 
the extension of Jeffreys’ prior is given by  

𝜋 𝑝 ∝ ,𝑚 0.     (14) 

The posterior distribution is defined by  
𝜋 𝑝|𝑥 ∝ 𝑝 𝑒 𝐾𝑝 𝑒 , 

where 𝑘 is the normalized constant given by 

𝐾 𝑝 𝑒 𝑑𝑝 .  

Thus, the posterior distribution of 𝑝/𝑥 is given by 

𝜋 𝑝|𝑥 𝑝 𝑒 ,     (15) 

which is a gamma density with parameters 𝑇𝑎𝑛𝑑 𝛽 𝑛 2𝑚 1. 
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2.2. Case 2: Shape parameter 𝒂 is unkown and 𝒑,𝒃 are known 

Let 𝑋 𝑥 ,𝑥 ,….,𝑥n) be a random sample from 𝐷 𝑎, 𝑏,𝑝  Dagum distribution. 
Then, the likelihood function of the scale parameter 𝑎 (keeping 𝑝 and 𝑏 fixed) is given 
by   

𝐿 ∏ 𝑥 ∏ 1 .       

Posterior distribution under Mukherjee-Islam prior 

Assume that 𝑎 has a Mukherjee-Islam prior with hyper parameters 𝛼,𝜎 0 
defined by 

𝑔 𝑎 𝛼𝜎 𝑎   ; 𝛼 0,𝜎 0.                                     (16) 

The posterior distribution of 𝑎 is 

𝜋 𝑎|𝑥
∏

∏
                       (17) 

Posterior distribution under extension of Jeffreys’ prior 

The extension of Jeffreys’ prior is given by 

𝑔 𝑎 ∝ ,𝑚 0.                                                (18) 

The posterior distribution of 𝑎 is 

𝜋 𝑎|𝑥
∏

∏
                       (19) 

3. Bayesian estimation under Linear Exponential (LINEX) loss function 
using different priors 

3.1. Case 1: Shape parameter 𝒑 is unkown and 𝒂,𝒃 are known 

Bayesian estimators using Mukherjee-Islam prior 

Using the posterior distribution given in (13) the Bayesian estimator 𝐺  of the 
Gini index 𝐺 using Mukherjee-Islam prior is 

𝐺 log  𝐸 𝑒        

               log 𝑒

 

 𝑝 𝑒 𝑑𝑝  
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  log 𝑒

 

 𝑝 𝑑𝑝  .               (20) 

The Bayesian estimator 𝐵  of the Bonferroni index 𝐵 using Mukherjee-Islam 
prior is 

𝐵 log  𝐸 𝑒    

   log 𝑒 𝑝 𝑒 𝑑𝑝    

 log 𝑒 𝑝 𝑑𝑝 .      (21) 

Bayesian estimators using extension of Jeffreys’ Prior  

Using the posterior distribution given in (15) the Bayesian estimator 𝐺  of the 
Gini index 𝐺 using the extension of Jeffreys’ prior is 

𝐺 log  𝐸 𝑒    

        log 𝑒

 

 𝑝 𝑒 𝑑𝑝   

 log 𝑒

 

 𝑝 𝑑𝑝 .         (22) 

The Bayesian estimator 𝐵  of the Bonferroni index 𝐵 using the extension of 
Jeffreys’ prior is 

𝐵 log  𝐸 𝑒    

 log 𝑒 𝑝 𝑒 𝑑𝑝   

        log 𝑒 𝑝 𝑑𝑝 .       (23) 

3.2. Case 2: Shape parameter 𝒂 is unkown and 𝒑,𝒃 are known  

Bayesian estimators using Mukherjee-Islam prior 

Using the posterior distribution given in (17) the Bayes estimator 𝐺  of the Gini 
index 𝐺 using Mukherjee-Islam prior is 

𝐺 log  𝐸 𝑒   

      log 𝑒

 

 
∏

∏
.   

(24)
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The Bayes estimator 𝐵  of the Bonferroni index 𝐵 using Mukherjee-Islam prior is 

𝐵 log  𝐸 𝑒

   log 𝑒
∏

∏
.    

      (25) 

Bayesian estimators under extension of Jeffreys’ prior 

The Bayes estimator 𝐺  of the Gini index 𝐺 using the extension of Jeffreys’ prior is 

𝐺 log  𝐸 𝑒    

 log 𝑒

 

 
∏

∏
.            (26) 

The Bayes estimator 𝐵  of the Bonferroni index 𝐵 using the extension of Jeffreys’ 
prior is 
𝐵 log  𝐸 𝑒    

  log 𝑒
∏

∏
          (27) 

Remark  As all these expressions cannot be simplified further, the Bayesian estimators 
have been obtained using simulation techniques in R software. 

4. Simulation study

In order to assess the statistical performance of these estimators for the Gini index
and the Bonferroni index, a simulation study is conducted. The 𝑉𝐺𝐴𝑀 package in R 
software is used to draw the sample from the Dagum distribution and using 
simulation the Bayes estimates and their corresponding losses are computed. 
Theprocess is replicated 10000 times and the average of the results has been presented 
in the tables below (Tables 1-4). The estimated losses are computed for both LINEX 
and the squared error loss function (SELF) using generated random samples from the 
Dagum distribution and by considering three sample sizes, (i) small sample size 𝑛
25, (ii) moderate sample size 𝑛 50, (iii) large sample size 𝑛 100. The estimated 
losses are repeated for Mukherjee-Islam prior and the extension of Jeffreys’ prior 
using different configuration of scale and shape parameters, viz. 𝑏 𝑘𝑛𝑜𝑤𝑛 1.5, 1.3, 
1.2,  𝑎 𝑘𝑛𝑜𝑤𝑛 2.5, 1.75, 1.6, 𝑝 𝑢𝑛𝑘𝑜𝑤𝑛 7.8, 4.5, 3.5 and  𝑏 𝑘𝑛𝑜𝑤𝑛 1.2, 2.2, 
3.2, 𝑝 𝑘𝑛𝑜𝑤𝑛 1.4, 1.7, 1.9, 𝑎 𝑢𝑛𝑘𝑜𝑤𝑛 5.8, 2.5, 1.5. The hyper parameters values 
are 𝛼 = 2.2, 3.5 and 𝑚  1, 1.7 are chosen using MLE values in R software. 
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Table 1.  Bayesian Estimates under LINEX loss function and  Estimated loss (in parenthesis) for 
Gini Index and Bonferroni Index under Mukherjee-Islam prior (when 𝑝 is unknown, 
𝑎 and 𝑏 are known) 

n b a p 
α 2.2 α 3.5 

G B G B
25 1.5 2.5 7.8 0.14119 

(0.03647, 0.03848) 
0.17720 

(0.05690,0.05817)  
0.14053 

(0.03672,0.03825) 
0.17590 

(0.05748,0.05950) 
1.3 1.75 4.5 0.141006 

(0.03654, 0.03789) 
0.25390 

(0.08675,0.08836) 
0.14177 

(0.03626,0.03798) 
0.25368 

(0.08785,0.08837) 
1.2 1.6 3.5 0.14341 

(0.03566, 
0.036148) 

0.27770 
(0.06531,0.06661) 

0.14179 
(0.03625,0.03775) 

0.27523 
(0.06627,0.06819) 

50 1.5 2.5 7.8 0.14139 
(0.03640, 0.03715) 

0.17759 
(0.05686,0.05739) 

0.14063 
(0.03668,0.03799) 

0.17684 
(0.05706,0.05874) 

1.3 1.75 4.5 0.14121 
(0.03647, 0.03718) 

0.25448 
(0.08648,0.08739) 

0.14205 
(0.03616,0.03701) 

0.25394 
(0.08673,0.08735) 

1.2 1.6 3.5 0.14404 
(0.03543, 0.03608) 

0.27925 
(0.06472,0.06597) 

0.14376 
(0.03553,0.03691) 

0.27860 
(0.06497,0.06691) 

100 1.5 2.5 7.8 0.14152 
(0.03638, 0.03699) 

0.17746 
(0.05522,0.05669) 

0.14088 
(0.03660,0.03709) 

0.17722 
(0.05688,0.05797) 

1.3 1.75 4.5 0.14292 
(0.03584,0.03615) 

0.25450 
(0.08531,0.08649) 

0.14235 
(0.03605,0.03700) 

0.25447 
(0.08548,0.08646) 

1.2 1.6 3.5 0.14587 
(0.03481,0.03513) 

0.27879 
(0.06390,0.06459) 

0.14519 
(0.03501,0.03611) 

0.27933 
(0.06369,0.06479) 

Notation used:  Estimated loss (under LINEX, under SELF) 

Table 2.  Bayesian Estimates under LINEX loss function and Estimated loss (in parenthesis) for 
Gini and Bonferroni index under the extension of Jeffreys’ prior (when 𝑝 is unknown, 
𝑎 and 𝑏 are known) 

n b a p 
m 1 m 1.7 

G B G B
25 1.5 2.5 7.8 0.14072 

(0.036684,0.03801) 
0.17732 

(0.05741,0.05964) 
0.14007 

(0.03689,0.03816) 
0.17682 

(0.05707,0.05936) 
1.3 1.75 4.5 0.21439 

(0.06362,0.06560) 
0.25300 

(0.08727,0.08902) 
0.21493 

(0.06339,0.06549) 
0.25368 

(0.08685,0.08894) 
1.2 1.6 3.5 0.24123 

(0.06760,0.06996) 
0.17982 

(0.20488,0.22827) 
0.23999 

(0.06808,0.06971) 
0.18100 

(0.20398,0.22873) 
50 1.5 2.5 7.8 0.14098 

(0.03655,0.03715) 
0.17735 

(0.05683,0.05806) 
0.14070 

(0.03665,0.03793) 
0.17737 

(0.05682,0.05815) 
1.3 1.75 4.5 0.21519 

(0.06366,0.06499) 
0.25428 

(0.08657,0.08748) 
0.21505 

(0.06335,0.06499) 
0.25449 

(0.08647,0.08764) 
1.2 1.6 3.5 0.24176 

(0.06739,0.06861) 
0.18305 

(0.20241,0.21953) 
0.24153 

(0.06748,0.06879) 
0.18294 

(0.20149,0.22238) 
100 1.5 2.5 7.8 0.14103 

(0.03643,0.03709) 
0.17806 

(0.05583,0.05696) 
0.14088 

(0.03659,0.03704) 
0.17727 

(0.05586,0.05619) 
1.3 1.75 4.5 0.21478 

(0.06346,0.064185) 
0.25431 

(0.08556,0.08602) 
0.21471 

(0.06320,0.06435) 
0.25471 

(0.08546,0.08675) 
1.2 1.6 3.5 0.24193 

(0.06720,0.06818) 
0.18424 

(0.20006,0.21174) 
0.24098 

(0.06700,0.06861) 
0.18328 

(0.20106,0.21352) 

Notation used:  Estimated loss (under LINEX, under SELF) 
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Table 3.  Bayesian Estimates under LINEX loss function and Estimated loss (in parenthesis) for 
Gini Index and Bonferroni Index under Mukherjee-Islam prior (when 𝑎 is unknown, 
𝑝 and 𝑏 are known) 

n b p a 
α 2.2 α 3.5 

G B G B
 25 1.2 1.4 5.8 0.41101 

(0.00324,0.00349) 
0.37029 

(0.00260,0.00277) 
0.41738 

(0.00325,0.00344) 
0.37936 

(0.00261,0.00285) 
2.2 1.7 2.5 0.48465 

(0.00558,0.00582) 
0.53917 

(0.00362,0.00382) 
0.49700 

(0.00564,0.00595) 
0.53748 

(0.00377,0.00390) 
3.2 1.9 1.5 0.50321 

(0.00665,0.00683) 
0.55357 

(0.00161,0.00187) 
0.50791 

(0.00655,0.00689) 
0.55153 

(0.00167,0.00185) 
50 1.2 1.4 5.8 0.41186 

(0.00324,0.00341) 
0.37684 

(0.00251,0.00268) 
0.41071 

(0.00322,0.00340) 
0.37579 

(0.00261,0.00275) 
2.2 1.7 2.5 0.49196 

(0.00557,0.00579) 
0.53931 

(0.00361,0.00379) 
0.49994 

(0.00556,0.00590) 
0.53254 

(0.00362,0.00382) 
3.2 1.9 1.5 0.50789 

(0.00654,0.00680) 
0.55070 

(0.00160,0.00179) 
0.51258 

(0.00654,0.00681) 
0.55503 

(0.00161,0.00176) 
100 1.2 1.4 5.8 0.41284 

(0.00320,0.00333) 
0.38057 

(0.00244,0.00255) 
0.41004 

(0.00322,0.00331) 
0.38513 

(0.00241,0.00263) 
2.2 1.7 2.5 0.49897 

(0.00555,0.00569) 
0.54934 

(0.00358,0.00362) 
0.49148 

(0.00555,0.00586) 
0.54864 

(0.00350,0.00371) 
3.2 1.9 1.5 0.51124 

(0.00641,0.00679) 
0.56258 

(0.00157,0.00165) 
0.51245 

(0.00644,0.00677) 
0.56856 

(0.00158,0.00160) 

Notation used:  Estimated loss (under LINEX, under SELF) 

Table 4.  Bayesian Estimates under LINEX loss function and Estimated loss (in parenthesis) for 
Gini and Bonferroni index under the extension of Jeffreys’ prior (when 𝑎 is unknown, 
𝑝 and 𝑏 are known) 

n b p a m 1 m 1.7 
G B G B

25 1.2 1.4 5.8 0.38574 
(0.00347,0.00365) 

0.35028 
(0.00275,0.00288) 

0.38974 
(0.00351,0.00369) 

0.35525 
(0.00268,0.00279) 

 2.2 1.7 2.5 0.46251 
(0.00562,0.00581) 

0.50124 
(0.00367,0.00379) 

0.46925 
(0.00573,0.00588) 

0.502173 
(0.00368,0.00379) 

3.2 1.9 1.5 0.48196 
(0.00667,0.00679) 

0.45218 
(0.00179,0.00183) 

0.48202 
(0.00660,0.00671) 

0.45869 
(0.00172,0.00189) 

50 1.2 1.4 5.8 0.38159 
(0.00349,0.00350) 

0.35585 
(0.00267,0.00271) 

0.38874 
(0.00342,0.00359) 

0.35968 
(0.00258,0.00266) 

2.2 1.7 2.5 0.46095 
(0.00560,0.00579) 

0.50143 
(0.00366,0.00370) 

0.46748 
(0.00563,0.00571) 

0.50147 
(0.00367,0.00372) 

3.2 1.9 1.5 0.47259 
(0.00659,0.00661) 

0.45748 
(0.00168,0.00176) 

0.47179 
(0.00659,0.00669) 

0.45321 
(0.00167,0.00170) 

100 1.2 1.4 5.8 0.39561 
(0.00335,0.00341) 

0.35249 
(0.00259,0.00266) 

0.39095 
(0.00335,0.00349) 

0.35648 
(0.00249,0.00251) 

2.2 1.7 2.5 0.47259 
(0.00558,0.00561) 

0.50852 
(0.00359,0.00362) 

0.47125 
(0.00559,0.00569) 

0.50357 
(0.00359,0.00368) 

3.2 1.9 1.5 0.50014 
(0.00649,0.00656) 

0.45354 
(0.00158,0.00163) 

0.50934 
(0.00649,0.00655) 

0.45258 
(0.00158,0.00166) 

Notation used:  Estimated loss (under LINEX, under SELF) 
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Comments: One can observe that 
1) The estimated loss in each case decreases as sample size 𝑛  increases for all the

configurations of various parameters.
2) The estimated loss using the LINEX loss function is smaller as compared with the

squared error loss function (SELF) for both Mukherjee-Islam prior and the
extension of Jeffrey’s prior.

3) The estimated loss is also lower using Mukherjee-Islam prior than the extension of
Jeffrey’s prior.

5. Credible interval

According to Eberly and Casella (2003), the 100 1 γ % equal tail credible
interval for the exact posterior distribution can be defined as  

𝑃 𝜃 𝐿 𝜋 𝜃/𝑥 𝑑𝜃
γ
2

,              𝑃 𝜃 𝑈 𝜋 𝜃/𝑥 𝑑𝜃
γ
2

 

where 𝜋 𝜃/𝑥  is the posterior distribution of 𝜃 and 𝐿,𝑈  are the lower and upper 
limits of the credible interval respectively for the specified value of γ level of 
significance. 

Highest Posterior Density (HPD) Credible Intervals  

Chen and Shao (1999) introduced the algorithm to find the HPD credible intervals. 
100 1 γ %  HPD credible interval is the 100 1 γ % credible interval with smallest 
width among all possible 100 1 γ % credible intervals. Once the posterior sample is 
generated for parameter 𝜃  𝑖 1,2, … , 𝑁 𝑁 , then 𝜃 𝜃 ⋯
𝜃 denote the ordered values of θ , θ , … , θ . The 100 1 γ % HPD interval 
for θ is defined by 𝜃 ,𝜃 , where j is chosen such that  

 𝜃 𝜃 min 𝜃 𝜃 , j 1,2, … , N N , 

where 𝑥  denotes to greatest integer less than or equal to 𝑥. 

Table 5.   95% HPD Credible Intervals, width of the interval and Bayesian estimates (in 2nd row) for 
Gini Index under Mukherjee–Islam Prior 

n b a p α 2.2 α 3.5 

(Credible interval)
(width) (Bayes Estimate) 

(Credible interval) 
(width) (Bayes Estimate) 

25 1.5 2.5 7.8 (0.08764,1.159667)
(1.072027) (0.141195) 

(0.098866,1.418709) 
(1.319843)(0.140532) 

1.3 1.75 4.5 (0.034647,1.065941) 
(1.031294) (0.1410067) 

(0.090902,1.285003) 
(1.194101)(0.141778) 

1.2 1.6 3.5 (0.086689,1.750493) 
(1.663804)(0.1434128) 

(0.029834,1.230873) 
(1.201039)(0.141793) 
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Table 5.   95% HPD Credible Intervals, width of the interval and Bayesian estimates (in 2nd row) for 
Gini Index under Mukherjee–Islam Prior  (cont.) 

n b a p α 2.2 α 3.5 

50 1.5 2.5 7.8 (0.04379,1.016813)
(0.973023)(0.1413926) 

(0.079860,1.239483) 
(1.159623) (0.1406394) 

1.3 1.75 4.5 (0.010254,1.01777)
(1.007516)(0.1412134) 

(0.006467,1.069109) 
(1.062642)(0.1420578) 

1.2 1.6 3.5 (0.072973,1.210653)
(1.13768)(0.1440414) 

(0.094263,1.058927) 
(0.964664)(0.1437612) 

100 1.5 2.5 7.8 (0.050407,1.00031)
(0.949903) (0.1415200) 

(0.046396,1.091680) 
(1.045284) (0.1408886) 

1.3 1.75 4.5 (0.259496,1.00071)
(0.741214)(0.1429269) 

(0.001569,1.031742) 
(1.030173) (0.1423524) 

(0.047262,1.007538) 
(0.960276) (0.1451941) 

1.2 1.6 3.5 (0.005600,1.000285)
(0.994685) (0.1458737) 

Table 6.   95% Credible Intervals, width of the interval and Bayesian estimates for Bonferroni Index 
under Mukherjee–Islam Prior 

n b a p α 2.2 α 3.5 
(Credible interval)

    (width) (Bayes Estimate) 
(Credible interval) 

(width) (Bayes Estimate) 
25 1.5 2.5 7.8 (0.155791,1.996669) 

(1.840878)(0.1772007) 
(0.118866, 1.907854) 

(1.788988)(0.1759073) 
1.3 1.75 4.5 (0.134647,1.901148) 

(1.766501)(0.2539019) 
(0.110902,1.903905) 

(1.793003)(0.2536816) 
1.2 1.6 3.5 (0.116897,1.537517) 

(1.42062)(0.2777098) 
(0.129834,1.986688) 

(1.856854)(0.2752306) 
50 1.5 2.5 7.8 (0.11965,1.743861)

(1.624211)(0.1775938) 
(0.109801,1.618079) 

(1.508278)(0.1768471) 
1.3 1.75 4.5 (0.103105,1.349774) 

(1.246669)(0.2544812) 
(0.106467,1.322476) 

(1.216009)(0.2539437) 
1.2 1.6 3.5 (0.102973,1.182072) 

(1.079099)(0.2792508) 
(0.194236,1.460026) 

(1.26579)(0.2786031) 
100 1.5 2.5 7.8 (0.045070,1.109478) 

(1.064408)(0.1774652) 
(0.054969,1.535899) 

(1.48093)(0.1772273) 
1.3 1.75 4.5 (0.059796,1.179001) 

(1.119205)(0.2545054) 
(0.043519,1.017423) 

(0.973904)(0.2544711) 
1.2 1.6 3.5 (0.006575,1.000118) 

(0.993543)(0.2787902) 
(0.004072,1.087538) 

(1.083466)(0.279333) 
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Table 7.   95% HPD Credible Intervals, width of the interval and Bayesian estimates for the Gini 
index under the extension of Jeffreys’ Prior 

𝐧 𝐛 𝐚 𝐩 𝐦 1 𝐦 1.7 
    (Credible interval) 

    (width) (Bayes Estimate) 
(Credible interval) 

(width) (Bayes Estimate) 
25 1.5 2.5 

 
7.8 (0.102227,1.930575) 

(1.828348)(0.1407223) 
(0.17144,1.901145) 

(1.729705)(0.1400771) 
1.3 1.75 

 
4.5 (0.140647,1.674105) 

(1.533458)(0.2143965) 
(0.16113,1.693517) 

(1.532387)(0.2149375) 
1.2 1.6 

 
3.5 (0.166116,1.744702) 

(1.578586)(0.2412356) 
(0.147876,1.842412) 

(1.694536)(0.239996) 
50 1.5 2.5 

 
7.8 (0.113269,1.459546) 

(1.346277)(0.1409815) 
(0.154915,1.654938) 

(1.500023)(0.1407081) 
1.3 1.75 

 
4.5 (0.10900,1.310285) 

(1.201285)(0.2151987) 
(0.174812,1.450959) 

(1.276147)(0.2150537) 
1.2 1.6 

 
3.5 (0.131304,1.105901) 

(0.974597)(0.2417637) 
(0.135988,1.437119) 

(1.301131)(0.2415304) 
100 

 
1.5 2.5 

 
7.8 (0.176421,1.111614) 

(0.935193)(0.1410336) 
(0.13556,1.147504) 

(1.011944)(0.140881) 
1.3 1.75 

 
4.5 (0.157634,1.133661) 

(0.976027)(0.2147873) 
(0.139321,1.037455) 

(0.898134)(0.2147116) 
1.2 1.6 

 
3.5 (0.103214,1.057451) 

(0.954237)(0.2419366) 
(0.035624,1.098726) 

(1.063102)(0.240987) 

Table 8.   95% HPD Credible Intervals, width of the interval and Bayesian estimates for Bonferroni 
Index under the extension of Jeffreys’ Prior 

n b a p m 1 m 1.7 
    (Credible interval) 

(width) (Bayes Estimate) 
(Credible interval) 

(width) (Bayes Estimate) 
25 1.5 2.5 

 
7.8 (0.115489,1.799312) 

(1.683823)(0.1773219) 
(0.109144,1.86549) 

(1.756346)(0.1768241) 
1.3 1.75 

 
4.5 (0.180611,1.841856) 

(1.661245)(0.2530068) 
(0.150197,1.699720) 

(1.549523)(0.2536889) 
1.2 1.6 

 
3.5 (0.13116,1.971017) 

(1.839857)(0.1798252) 
(0.132148,1.360320) 

(1.228172)(0.1810069) 
50 1.5 2.5 

 
7.8 (0.113269,1.272277) 

(1.159008)(0.1773576) 
(0.134027,1.590231) 

(1.456204)(0.1773717) 
1.3 1.75 

 
4.5 (0.150900,1.479691) 

(1.328791)(0.2542884) 
(0.168629,1.265633) 

(1.097004)(0.2544995) 
1.2 1.6 

 
3.5 (0.113309,1.698651) 

(1.585342)(0.1830509) 
(0.145988,1.243351) 

(1.097363)(0.1829449) 
100 

 
1.5 2.5 

 
7.8 (0.169611,1.029145) 

(0.859534)(0.1780651) 
(0.16900,1.080353) 

(0.911353)(0.1772798) 
1.3 1.75 4.5 (0.163091,1.154255) (0.122073,1.105629) 

    (0.991164)(0.2543103) (0.983556)(0.2547158) 
       1.2 1.6 3.5 (0.136478,1.175373) 

(1.038895)(0.1842456) 
(0.118012,1.006210) 

(0.888198)(0.1832878) 
Comment: One can further infer that as sample sizes increases, the width of the credible interval 
decreases for 95% credible intervals for both Mukherjee-Islam prior and the extension of Jeffreys’ 
prior. The width of HPD is smaller in the case of Mukherjee-Islam prior. 
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6. For illustration, two real data sets are taken up in this section

Example 1. A real data is considered for the illustration of the proposed study.
This data (Daren et al. (2014)) set represents the degree of reading power (DRP) 
scores for a sample of 30 third grade students. 

40, 26, 39, 14, 42, 18, 25, 43, 46, 27, 19, 47, 19, 26, 35, 34, 15, 44, 40, 38, 31, 46, 52, 
25, 35, 35, 33, 29, 34, 41. By using easy fit software, it is seen that data fit well to the 
Dagum distribution and 𝑝-value for the Kolmogorov-Smirnov test is 0.87284 at 5% 
level of significance. The value of shape parameters and scale parameter 𝑝
0.14,𝑎 18.5,  𝑏 45.7 are obtained using easy fit software and the Bayes estimates 
are obtained along with HPD credible intervals for the Gini and Bonferroni Index 
using both Mukherjee and the extension of Jeffrey' Priors. The results have been 
presented in the table below (Table 9). 

Table 9:   Bayesian estimates along with 95% HPD Credible Intervals under LINEX loss function 
and Estimated loss under LINEX and SELF (in parenthesis) for Gini index and Bonferroni 
index under Mukherjee-Islam prior and the extension of Jeffrey’s Prior 

Priors 𝐆𝐌𝐋 𝐁𝐌𝐋

Mukherjee-
Islam prior 

α  2.2 0.11480 
(0.04757,0.06558) 

0.06611 
(0.0026,0.00277) 

95% HPD Credible Intervals 
(width) 

(0.07145,1.54261) 
(1.47115) 

 (0.00483,0.01642) 
  (0.01159) 

Extension of 
Jeffrey’s prior 

m 1 0.12146 
(0.08620,0.1982) 

0.06919 
(0.07093,0.14253) 

95% HPD Credible Intervals 
(width) 

(0.0531,1.8642) 
(1.8111) 

   (0.0015,0.9631)  
   (0.9616) 

Figure 2. Comparison of Posterior density with Empirical density under Mukherjee-Islam Prior 
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Figure 3.  Comparison of Posterior density with Empirical density under Extension of Jeffreys’s Prior 

From the above findings of graph, we can see the posterior density and empirical 
density under Mukherjee-Islam prior and the extension of Jeffreys’ prior are nearly 
the same. 

Example 2. The data (Sanku et al. (2017)) set consists of 30 observations on 
breaking stress of carbon fibres (in Gba). The data are: 3.7, 2.74, 2.73, 3.11, 3.27, 2.87, 
4.42, 2.41, 3.19, 3.28, 3.09, 1.87, 3.75, 2.43, 2.95, 2.96, 2.3, 2.67, 3.39, 2.81, 4.2, 3.31, 
3.31, 2.85, 3.15, 2.35, 2.55, 2.81, 2.77, 2.17. By using easy fit software, it is seen that 
data fit well to the Dagum distribution and the 𝑝-value for the Kolmogorov-Smirnov 
test is 0.99668 at 5% level of significance. The values of shape parameters and scale 
parameter  𝑝 0.97,𝑎 9.7,  𝑏 2.9 are obtained using easy fit software and the 
Bayes estimates are obtained along with HPD credible intervals for the Gini and 
Bonferroni Index using both Mukherjee and Uniform Prior. The results have been 
presented in the table below (Table 10). 

Table 10.  Bayesian estimates along with 95% HPD Credible Intervals under LINEX loss function 
and Estimated loss under LINEX and SELF (in parenthesis) for Gini index and Bonferroni 
index. 

Priors  𝐆𝐌𝐋 𝐁𝐌𝐋

Mukherjee-
Islam prior 

α  1.2 0.02634 
(0.03926,0.07219) 

0.01152 
(0.0011,0.00161) 

95% HPD Credible Intervals 
(width) 

(0.00926,1.12018) 
(1.11092) 

 (0.00916,0.01849) 
  (0.00933) 

Extension of 
Jeffrey’s prior 

m 1 0.18001 
(0.04165,0.21013) 

0.04629 
(0.06282,0.09932) 

95% HPD Credible Intervals 
(width) 

(0.01406,1.50674) 
(1.49268) 

   (0.00132,1.73965)  
   (1.73833) 
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Figure 4. Comparison of Posterior density with Empirical density under Mukherjee-Islam Prior. 

Figure 5. Comparison of Posterior density with Empirical density under Extension of Jeffrey’s Prior. 

From the above findings of the graph, we can see the posterior density and 
empirical density under Mukherjee-Islam prior and the extension of Jeffrey’s prior are 
nearly the same. 

As seen above, the findings from real life examples are in accordance with those of 
the simulation study. One can see that in the case of the real data set also Mukherjee-
Islam prior results in smaller estimated loss in comparison with the extension of 
Jeffrey’s prior. Even the width of HPD credible interval is smaller in the case of 
Mukherjee prior. The estimated loss is also smaller in the case of LINEX than SELF 
irrespective of the prior being used. The findings from the real life example are in 
accordance with those of the simulation study. 

7. Conclusion

Bayes estimates of two inequality indices are obtained in the case of the Dagum
distribution, an important income distribution. As seen from the simulation study 
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it is observed that Mukherjee-Islam prior performs better than the extension of 
Jeffrey’s prior in terms of having smaller estimated loss. It is also observed that the 
LINEX loss function results in smaller loss as compared to SELF for small, medium 
and large sample sizes irrespective of the choice of prior. One can further see that the 
expected loss decreases as the sample size increases. The real data set is also 
in conformity with above results.     
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ARFURIMA models: simulations of their properties  
and application 

Sanusi Alhaji Jibrin1, Rosmanjawati Abdul Rahman2 

ABSTRACT 

This article defines the Autoregressive Fractional Unit Root Integrated Moving Average 
(ARFURIMA) model for modelling ILM time series with fractional difference value in the 
interval of 1 𝑑 2. The performance of the ARFURIMA model is examined through 
a Monte Carlo simulation. Also, some applications were presented using the energy series, 
bitcoin exchange rates and some financial data to compare the performance of the 
ARFURIMA and the Semiparametric Fractional Autoregressive Moving Average 
(SEMIFARMA) models. Findings showed that the ARFURIMA outperformed the 
SEMIFARMA model. The study’s conclusion provides another perspective in analysing 
large time series data for modelling and forecasting, and the findings suggest that the 
ARFURIMA model should be applied if the studied data show a type of ILM process with 
a degree of fractional difference in the interval of 1 𝑑 2.  

Key words: interminable long memory, autocorrelation, fractional unit root integrated 
series, fractional unit root differencing, ARFURIMA model. 

1. Introduction

Long Memory (LM) is a statistical property that may arise in time series data. The
information of its occurrence in financial and economic variables can be exploited by 
investors and policy makers to predict equity prices, quantify market’s risk, inflation 
and economic growth of the country. There are past and recent works that have 
discovered degree of long memory also called fractional differencing value in the 
interval of 0 𝑑 1 (see Granger and Joyeux (1980), Hosking (1981), Ballie et al., 
(2014), Boubaker et al. (2016) and Pumi et al., (2019)).  
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Furthermore, according to Rahman and Jibrin (2018), when the ACF of time series 
exhibits decays more slowly and have fractional difference value in the interval of 1
𝑑 2, the series are said to be having an Interminable LM (ILM) process. In view of 
this, we need a family of models that can simulate a very strong dependent 
relationship (autocorrelation) between distance observations, at the same time being 
flexible enough to model both the integrated, 𝐼 1  and Fractional Unit Root 
Integrated (FURI), I(1 𝑑 2) process.  

The Autoregressive Fractional Unit Root Integrated Moving Average 
(ARFURIMA) model, suggested by Rahman and Jibrin (2019), provides a method for 
modelling FURI time series with fractional difference value in the interval of 1 𝑑
2. Therefore, in this paper, some of the basic properties of the ARFURIMA model
were derived and presented as follows. In Section 2 we state the basic properties of the
ARFURIMA(0,d,0) process. This is followed by the general ARFURIMA(p,d,q) family,
its properties, and some special cases of ARFURIMA(p,d,q) in Section 3. A short
introduction of SEMIFARMA(p,d,q)  model is given in Section 4. Then some
simulations by using the ARFURIMA are carried out in Section 5 to assess its
properties. Finally, its applications by using the energy series, Bitcoin exchange rate
and financial data in are presented in Section 6.

2. Methodology

Dolado and Marmol (1997) named the Data Generating Process (DGP) of 𝑦  to
be Nonstationary Fractionally Integrated (NFI) process and defined it as: 

1 𝐿 𝑦 𝜀 ,      (1) 
where d  , 𝜀 ~𝑖𝑖𝑑 0,𝜎  and 𝑑 is decomposed as 𝑑 ∝ 𝛿, where ∝
1,2,3, … … … and |𝛿| . In this case, 𝑑 can be in the range of 1 𝑑 ∞ while most 
time series usually have a fractional difference value, d, in the interval of 1 𝑑 2 
(see Gil-Alana et al., (2018) and Sabzikar et al. (2019)). However, Hurvich and Chen 
(2000) and Erfani and Samimi (2009) have highlighted the repercussion of over-
differencing including loss of information, negative values of differenced series, 𝑑

0.5 and estimation of complex models. In view of these, Rahman and Jibrin (2019) 
resolved that the possible highest value of fractional difference is in the interval of 1
𝑑 2. Also, this type of time series exhibits very slow decaying ACF, which is slower 
than usual decay seen in the literature of time series and LM analysis. Having said 
this, Rahman and Jibrin (2019) named the DGP of 𝑦  to be the FURI process and 
defined its operator as: 

1 𝐿 1 𝑑∗ 1 𝐿 𝑦 𝜀 ,      (2) 
where 𝑑∗ 𝑑 1, 0 𝑑∗ 1 and 1 𝑑 2. 

Details of the derivation and its R algorithm can be found in Rahman and Jibrin 
(2019).  
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2.1. The ARFURIMA(p,d,q) models 

In a similar way on how Granger and Joyeux (1980) and Hosking (1981) 
introduced ARFIMA model due to FI(d) process, Porte-Hudak (1990) introduced 
SARFIMA model due to seasonal FI(d) process and ARTFIMA model of 
Meerschaert et al. (2014) was introduced due to tempered FI(d) process. Rahman and 
Jibrin (2019) introduced the ARFURIMA model due to the FURI(d) processes. 
In order to obtain the ARFURIMA model, the lag representation of the proposed non 
power operator is incorporated as: 

𝜑 𝐿 1 𝐿 1 𝑑∗ 1 𝐿 𝑌 𝜃 𝐿 𝜀 ,      (3) 

where 𝜑 𝐿  and 𝜃 𝐿  are stationary and invertible. 𝐿 is the backward shift operator, 
𝜀  represents a white noise process and 1 𝐿 1 𝑑∗ 1 𝐿  is the proposed 
non-power operator. The operator fractionally differenced is a process that exhibits a 
very slow decaying (unusual decay) ACF. Here, 𝑑∗ 𝑑 1 such that 0 𝑑∗ 1 and 
1 𝑑 2 and both 𝑑∗ and d are the LM and ILM parameters respectively. The 
identification of the ARFURIMA(p,d,q) model followed the Box and Jenkins 
approach and  was discussed in detail in Rahman and Jibrin (2019).  

2.2.  The ARFURIMA(0,d,0) process 

The ARFURIMA(0,d,0) process was defined to be a discrete time series 𝑌 , 
which was presented as: 

   ∇ 𝑑∗∇ 1 𝐿 𝑌 𝜀  (4) 

where ∇ 1 𝐿 , 𝐿 is the backward-shift operator and 𝑌  represents the FURI series. 
The fractional differencing parameter 𝑑 was estimated by applying GPH (1983) semi-
parametric method defined by:   

ln 𝐼 𝜑 𝑎 𝑑 ln 4 sin 𝜀 ,                                  (5) 

where 𝑗 1, … ,𝑛, and 𝐼 𝜑 ∑ 𝑦 𝑒𝑥𝑝 𝑖𝜑 𝑡 was the periodogram at the

frequency 𝜑 . The following theorems were some of the derived properties of 
𝜀 . 
Theorem 1 

For 0 𝑑∗ 1 such that 𝑑∗ 𝑑 1 and 1 𝑑 2, 𝑌  is  

a. stationary, causal and has infinite Moving Average (MA) function written as

𝑌 𝜓 𝐿 𝜀 𝜓 𝐿 𝜀 𝜓 𝜀 .     6  
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The fractional differencing operator 1 𝐿 , 0 𝑑 1 in Granger and Joyeux 
(1980), Hosking (1981), Dolado and Marmol (1997), Meerschaert et al., (2014), 
Boubaker et al., (2016) and Pumi et al., (2019), is defined as an infinite binomial series 
expansion in powers of the backward-shift operator  

1 𝐿 𝑌 𝜓 𝐿 𝑌 𝜓 𝑌 ,                                         7  

where the coefficient, 𝜓 , is expanded by: 

𝜓
𝑘 𝑑 1

𝑘
Γi d

Γd Γi 1
, 𝑖 1,2, …                                     8  

However, 𝜓  can be expanded as:  
𝜓 𝐿 𝐿 𝑑∗ 𝐿 𝐿 .                                          9  

So, 
𝜓 ~ 1 𝐿 1 𝑑∗ 1 𝐿 ,                                                    10  

and hence, (6) can be re-written as:  

𝑌 𝜓 𝐿 𝜀 𝜓 𝐿 𝜀 𝐿 𝐿 𝑑∗ 𝐿  𝐿 𝜀 ,    11  

where 𝐿, 𝜀  and 𝑑∗is as defined in (4). Also,  

     ∑ |𝜓 | ∞                                                              (12) 

satisfied the causality condition, where it stated that 𝑌  depended on past residuals 
𝜀  and the dependency was gradually decreasing asymptotically for a long time.  

Proof. 

Using 𝑌 𝜓 𝐿 𝜀 , we have 𝜓 𝐿 𝐿 𝐿 𝑑∗ 𝐿 𝐿 . When 
1 𝑑 2, the expansion of 𝜓 𝐿  converged for |𝐿| 1 and so 𝑌  is stationary. 
The expansion of 𝐿 𝐿 𝑑∗ 𝐿 𝐿   resulted in (10) when 𝑛 → ∞, that 
was 𝐿 𝐿 𝑑∗ 𝐿 𝐿 ~ 1 𝐿 1 𝑑∗ 1 𝐿 .       
b. 𝑌  is invertible and has infinite AR function writen as: 

Φ 𝐿 𝑌 ∑ Φ 𝐿 𝑌 ∑ Φ 𝑌 𝜀 ,                              (13) 

where Φ  is defined similar to  𝜓   in (9) with the invertibility 

∑ |Φ | ∞                                                               (14) 
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Proof. 

The proof was similar to (a). 
c. The spectral density function of 𝑌  is

𝑓 𝜆 ∑ 𝑒 𝛾 𝑘     (15) 
where 𝛾 𝑘  was the autocovariance function of 𝑌 . 𝑓 ~|𝜆| 𝐶  described the pole 
at the zero frequency of the spectral density as 𝐶 0 and 1 𝑑 2.  

d. The autocovariance function of 𝑌  is

𝛾 𝑘 𝐸 𝑌 𝑌
∗

∗ ,      (16) 

where 𝛾 ~𝐾 ,  1 𝑑 2 described the very slow decay in the autocorrelation 
function of 𝑌  as 𝑘 → ∞. 

Proof. 

Using  
𝛾 𝐸 𝑌 𝑌 𝑌 𝑌 𝑌 𝑑∗ 𝑌 𝑌  

   𝛾 𝛾 𝑑∗ 𝛾 𝛾  

 𝛾 1 𝑑∗ 𝛾 𝑑∗𝛾 , 

and re-arranging the equation as 𝛾 1 𝑑∗ 𝑑∗𝛾 𝛾 , we get 𝛾 𝑑∗

𝑑∗𝛾 𝛾  and therefore,  

𝛾
∗

∗ . 

e. The autocorrelation function of 𝑌  is

𝜌
∗

∗       (17) 

where 𝑑∗ is as defined in (4). 

Proof. 

Using  
𝛾 𝐸 𝑌 𝑌 𝑌 𝑌 𝑌 𝑑∗ 𝑌 𝑌  

     𝛾 𝛾 𝑑∗ 𝛾 𝛾  

 𝛾 1 𝑑∗ 𝛾 𝑑∗𝛾 . 

Re-arranging the equation will get 𝛾 𝛾 1 𝑑∗ 𝑑∗𝛾 𝛾 . 
Therefore, 

𝛾
∗

∗ .     (18) 

Therefore, (17) is resulted from substituting (16) and (18). 
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2.3.  The Nonstationary ARFURIMA(p,d,q) model 

Consider the stationary ARFURIMA(p,d,q) model, written as: 

𝜑 𝐿 1 𝐿 1 𝑑∗ 1 𝐿 𝑌 𝜇 𝜃 𝐿 𝜀 ,      19) 

where 𝜑 𝐿 1 𝜑 𝐿 𝜑 𝐿 ⋯ 𝜑 𝐿  and 𝜃 𝐿 1 𝜃 𝐿 𝜃 𝐿 ⋯
𝜃 𝐿 . For (19) to be stationary and invertible, each zero of 𝜑 𝐿  and 𝜃 𝐿  must be 
outside the unit circle respectively. Noticed that when 𝑑∗ 0, the ARFURIMA is 
reduced to the ARIMA model.  

Theorem 2 

The ARFURIMA(p,d,q) model as mentioned by (19) is 

a. stationary if

𝑌 1 𝐿 1 𝑑∗ 1 𝐿 𝜑 𝐿 𝜃 𝐿 𝜀 .   (20) 

b. It is invertible when

  𝜑 𝐿 𝜃 𝐿 1 𝐿 1 𝑑∗ 1 𝐿 𝑌 𝜀 .      (21) 

c. Its spectral density function is given by

𝑓 𝜔 1 𝐿 1 𝑑∗ 1 𝐿 𝑒 .  (22) 

d. Then, the non-stationary ARFURIMA model can be represented as

𝜑 𝐿 1 𝐿 1 𝑑∗ 1 𝐿 𝑌 𝜐 𝜃 𝐿 𝜀           (23) 

where  𝜐 is a constant. 

2.4.  Maximum Likelihood Estimation Method for ILM Model and Its Hybrid 

Consider series 𝑌 𝑦 , … ,𝑦 ʹ, where 𝑦 , … ,𝑦 was the FURI process. In order 
to obtain the estimates of the ARFURIMA, the series 𝑌 was filtered by the non-power 
operator, 𝜀 , where 

𝜀 1 𝐿 1 𝑑∗ 1 𝐿 𝑌 .                                     (24) 
Following Kang and Yoon (2013), 𝜀  in equation (24) was assumed to be normal. 

The parameters of the ARFURIMA (p,d,q) model were estimated by using the 
Maximum Likelihood Estimation (MLE) and nonlinear optimization procedures. The 
maximized of the logarithm of the normal likelihood function was given in equation 
(25). 

ln 𝐿 𝜇,𝑑,𝜑,𝜃,𝜎 ln 2𝜋 ln|Σ| 𝑌ʹΣ 𝑌,   (25)
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where 𝑛 is the number of observations, Σ represents the n x n covariance matrix of 𝑌 
dependent on 𝜇,𝑑,𝜑,𝜃,𝜎  and |Σ|is the determinant of Σ. 

2.5.  The SEMIFARMA(p,d,q) model 

With reference to the Semiparametric Fractional Autoregressive Moving Average 
(SEMIFARMA) model by Beran and Feng (2002), we used the definition of the 
SEMIFARMA(p,d,q) model as:   

 𝜑 𝐿 1 𝐿 1 𝐿 𝑌 𝜇 𝜃 𝐿 𝜀      (26) 

where 𝜇 is the mean of 𝑌 , 𝜑 𝐿 1 𝜑 𝐿 𝜑 𝐿 ⋯𝜑 𝐿 , 𝜃 𝐿 1 𝜃 𝐿
𝜃 𝐿 ⋯𝜃 𝐿 , 𝑚 and 𝑑 defined as 𝛿  𝑚  𝑑 such that 𝑑 ∈ 0.5,0.5  and 𝑚 ∈
0,1 . 

3. Simulation properties of ARFURIMA (p,d,q) model

This section discusses the simulation to assess the ILM, large sample, conceptual
and unbiased properties of the ARFURIMA models. The simulated models are 
summarized in Table 1.  

Table 1.  Different models with their different selection of d,𝜑 𝜃  and 𝑛 

Model d 𝝋𝟏 𝜽𝟏 Sample size, n 

ARFURIMA(1,d,0) 1.1
0.5 to 0.9 

- 6000
ARIMA(1,1,0) 1 - 6000

ARFURIMA(1,d,0) 

1.1,1.5,1.9 
-0.9,0.7,0,0.7,0.9

- 6000
ARFURIMA(1,d,0) - 375

ARFURIMA(1,d,1) 0.4 0.6 375, 750, 1500, 
3000, 6000 

Referring to Figure 1, all the ACF indicate a very strong hyperbolic decay, 
implying evidence of ILM. Therefore, on average, all the simulated series are not 
stationary. Also, the degree of dependency between observations may produce 
fractional differencing value in interval of 1  𝑑  2.  
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Figure 1. ACF for simulated series using ARFURIMA (1,d,1) based on 𝜑 0.4, 𝜃 0.6, 𝑑
1.1,1.5,1.9  and sample size 𝑛  375, 750, 1500, 3000, 6000 . 

Table 2.  Autocorrelation of ARFURIMA (1,1.1,0) and ARIMA (1,1,0) process for different values 
of 𝜑 with n=6000 

k of ARFURIMA(1, 1.1, 0) k of ARIMA(1, 1, 0) 

k 0.5   0.6   0.7  0.8   0.9   0.5   0.6   0.7  0.8   0.9   

1 1 1 1 1 1 0.999 0.999 1 1 1 
2 0.999 0.999 1 1 1 0.998 0.998 0.999 1 1 
3 0.999 0.999 0.997 0.999 1 0.997 0.997 0.998 0.999 0.999 
4 0.999 0.999 0.996 0.999 0.999 0.995 0.995 0.997 0.999 0.999 
5 0.999 0.999 0.994 0.999 0.999 0.994 0.994 0.996 0.999 0.998 

The autocorrelation values of ARFURIMA (1,d,0) and ARIMA (1,1,0), as shown 
in Table 2, indicated a perfect relationship and strong dependency between 
observations. On the average, the dependence degrees captured by ARFURIMA was 
higher compared to the ARIMA models. Therefore, the simulations have provided 
adequate explanations about the quality of the proposed ARFURIMA model 
in simulating ILM and FURI series and thus proved the ILM properties of the model. 

Meanwhile, for 𝑘 3, the autocorrelation values of ARFURIMA (1,1.1,0) when 
𝜑 0.9, as shown, indicate that both the large theoretical fractional difference and 𝜑 
parameter value have influenced the degree of dependence among the simulated 
series. Also, for 𝑘 3, the autocorrelation values of ARFURIMA (1,d,0) for 𝑑 1.9 
and 𝜑 0.9, as shown in Table 3, was perfect indicating that the large theoretical 
fractional difference and 𝜑 parameter value has influenced the degree of dependence 
among the simulated series. Meanwhile, by comparing Table 3 and 4, the occurrence 
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of perfect autocorrelations among simulated series with 𝑛 6000 was found higher 
compared to 𝑛 375. This implied the existence of large sample size properties of 
the ARFURIMA model.  

Table 3. Autocorrelation of the ARFURIMA (1,d,0) process for various values of 𝑑 and 𝜑 , with 
n=6000 

k d 0.9    0.7   0  0.7  0.9   
1

1.1 

0.999 0.999 0.999 0.999 0.999
2 0.999 0.999 0.999 0.999 0.999
3 0.999 0.999 0.997 0.999 0.999
4 0.998 0.999 0.996 0.999 0.999
5 0.997 0.999 0.994 0.999 0.999
1

1.5 

0.999 0.999 0.999 1 1
2 0.999 0.999 0.999 0.999 1
3 0.999 0.999 0.999 0.999 1
4 0.999 0.999 0.999 0.999 0.999
5 0.998 0.999 0.999 0.999 0.999
1

1.9 

0.999 0.999 0.999 1 1
2 0.999 0.999 0.999 1 1
3 0.999 0.999 0.999 0.999 1
4 0.998 0.999 0.999 0.999 0.999
5 0.998 0.998 0.999 0.999 0.999

The results of the simulation for ARFURIMA(p,d,q) with various settings 
mentioned in Table 1 showed that means and variances of all the estimated 
ARFURIMA models confirmed and supported the assumption that the residuals are 
normally distributed since all the means are zero with variances in the interval of 
0.5 𝜎 1.2 specifically for  𝑛 1000. Again, this proves the large sample and 
also the conceptual properties of the proposed ARFURIMA model. The authors can 
be contacted for a complete result of these simulations. 

4. The application

This section presents the application of the proposed ARFURIMA model by using
data of energy series, bitcoin exchange rates and some financial data. 

4.1.  Data  

The description of nine series of data consisted of energy prices series, bitcoin 
exchanged rates, a financial index and few currencies exchange rates, which are 
displayed in Table 4. As shown in Figure 1-3, the time series plots of the studied series 
exhibited nonlinearity deterministic trends. All the ACF showed a very slow decay 
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in the long term with positive autocorrelations, which provided evidence of the LM 
process. In view of this, there exists LM in the studied series, and it can be described 
as an ILM. On average, all the nine series are not stationary.  

Table 4.  Daily Time Series Used for Analysis 

S/No. Type of Data Abbreviation Sample Size Date 

1 Brazil Diesel Distributors BRLLTR 
Prices  BDDP 3915 26/01/04 - 

25/01/19 

2 Dubai Crude Oil Prices DBCP 3896 26/01/04 - 
25/01/19 

3 WTI Crude Oil Prices WTCP 3896 26/01/04 - 
25/01/19 

4 Bitcoin to 1000 Euro Exchange Rate BEUR 1056 15/12/14 - 
31/12/18 

5 Bitcoin to 1000 Pound Exchange Rate BPOU 1056 15/12/14 - 
31/12/18 

6 Bitcoin to 1000 US Dollar Exchange 
Rate 

BDOL 1056 15/12/14 - 
31/12/18 

7 ATHEX Composite Index ATIN 7891 03/10/98 - 
31/12/18 

8 Kuwait Dinar to US Dollar Exchange 
Rate KUSD 5196 01/02/99 - 

31/12/18 

9 
Uruguay Peso to UK Pound Exchange 
Rate   UUKP 5196

01/02/99 - 
31/12/18 

Source: datastream of Thomson Reuters and Morgan Stanley Capital International (MSCI). 

Table 5 presented the descriptive statistics, serial correlation, and normality test 
for the nine series. It showed that the mean for the Brazil Diesel, Dubai and WTI price 
each is 2.05, 71.97 and 71.06 respectively. Meanwhile, the standard deviation, which 
measured the variability or volatility of bitcoin exchange rate for each Euro, British 
pound sterling, United State (U.S) dollar and Japan Yen is 1.68, 2.32 and 1.50 
respectively. The skewness and kurtosis for all the series indicated non-normality. 
Similarly, the Ljung-Box Q-statistic at lag 50 and Jarque-Bera statistic showed that for 
all the studied series, the null hypotheses of no serial correlation and normality were 
rejected at the 0.05 significance level respectively.   

In testing and estimating the LM, the bandwidth was chosen between 0 and 1 
(GPH, 1983). Hurvich et al. (1998) suggests that the best bandwidth (bw) is 0.8, 
however, Baillie and Morana (2012) uses 0.6 and as for this study, we considered the 
bw as 0.5, the average of all possible fractional values in interval 0 𝑑 1. For the 
purpose of comparison, we also produced the estimations based on the bw suggested 
in Baillie and Morana (2012) and Hurvich et al. (1998) and results were presented 
in Table 6. The GPH and LWE confirmed the incidence of ILM at level among the 
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studied series. The null hypothesis of no ILM was rejected due to the p-values are less 
than the significant level of 0.05. Besides, notice that the two estimators, GPH and 
LWE with bandwidth of 0.5 and 0.8 respectively, produced inconsistent results at level 
series, with 0 𝑑 1 and 1 𝑑 2. Also, on average, the GPH produced higher 
fractional differencing values that can adequately eliminate the unwanted noise 
signals across the nine series.  

Figure 1.  Time Series Plot and ACF for Brazil Diesel, Dubai and WTI Crude Oil Prices  (in Dollar 
per barrel) 

Consequently, we suggest that using GPH estimator with a bandwidth equal to 
0.5 will produce an adequate fractional differencing value. The adequate fractional 
differencing value would eliminate the deterministic trend and help in producing 
a series with less variability. Table 7 presents standard errors of the means of the 
series. The series were differenced using the 1 𝐿 1 𝑑∗ 1 𝐿 𝑌 , 1 𝐿 𝑌  
and 1 𝐿 ∝ 𝑌  operators or fractional filters of Rahman and Jibrin (2019), Granger 
and Joyuex (1981) and Dolado and Marmol (1997) respectively.  

Note that the filters of Dolado and Marmol (1997) and Beran and Feng (2002), shown 
in the last two columns respectively, produced almost the same standard errors and 
can be considered to be similar to the current operator used in this study.  
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A comparison of the standard errors of the mean produced by these three 
differenced series have shown evidence of a better performance of the fractional unit 
root difference filter, in which it gave the most minimum standard errors of mean 
compared to the other two filters. Although the KUSD series indicated that the three 
filters produced the same standard error, there is a reason to believe that the fractional 
unit root differenced filter procedure used in this study for fractionally differencing 
FURI time series was the most appropriate among the three filters because it has 
reduced the volatility, dependency and linearity structures in all the considered series.  

Figure 2.  Time Series Plot and ACF for Daily Bitcoin Exchange Rate to 1000 Euro, USD and USP 

4.2.  Models identification 

The AIC values for ARFURIMA and SEMIFARMA models were presented 
in Table 8 and 9 respectively. The best model according to the least AIC value 
(the values were bold) was identified for each series among the candidate models of 
ARFURIMA and SEMIFARMA.  
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4.3.  Estimation, diagnostic tests and forecast 

In this section, the estimated parameters of the mean model ARFURIMA and 
SEMIFARMA for each studied series are presented. 

4.3.1.  Estimation of the ARFURIMA and SEMIFARMA Model 

The results of the estimated parameters of both models ARFURIMA(1,d,1) and 
SEMIFARMA(1,d,1) for each series and their log-likelihood values are reported 
in Table 10. All the parameters of the ARFURIMA models were found significant due 
to their minimum standard errors. Furthermore, the ARFURIMA had larger log-
likelihood values compared to the SEMIFARMA model, implying that the 
ARFURIMA have fitted the data well. Also, the proposed non power operator 
in ARFURIMA had successfully eliminated large inherent noise signals in all the 
considered series.  

Figure 3.  Time Series Plot and ACF for Daily ATHEX Index, Kuwait, and Uruguay Exchange Rate 
to USD and UKP 
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Table 5.  Descriptive Statistics 

Variables Minimum Maximum Mean SD Skewness Kurtosis Q-Test (50) JB Test 

BDDP 1.22 3.40 2.05 0.49 0.76 -0.30 185894.69*** 387.62 

DBCP 22.79 140.56 71.97 26.17 0.31 -1.08 177008.13*** 250.34 

WTCP 26.19 145.31 71.06 22.88 0.38 -0.66 170140.41*** 162.49 

BEUR 0.06 6.58 1.78 1.68 0.67 -0.93 46627.64*** 117.96 

BPOU 0.07 8.51 2.34 2.32 0.75 -0.89 47436.33*** 132.84 

BDOL 0.05 5.59 1.60 1.50 0.65 -0.98 47423.24*** 115.83 

ATIN 269.45 6633.90 1825.10 1334 1.15 0.40 382594.01*** 1793.57 

KUSD 0.26 0.31 0.29 0.01 -0.48 -0.70 250067.39*** 310.36 

UUKP 17.36 56.03 36.10 9.71 -0.43 -0.59 248247.15*** 237.57 

Notes: SD=Standard Deviation, the Jarque–Bera test corresponds to the test statistic for the null 
hypothesis of normality in the distribution of sample data. The Ljung–Box statistic, Q(n), check for 
serial correlation of the series up to the nth order.  

Table 6.  Tests and Estimation of ILM and LM 
Average bw, 

bw=0.5 
BM (2012), 

bw=0.6 
H (1998), 

bw=0.8 
Average of 
bw, bw=0.5 

BM (2012), 
bw=0.6 

H (1998), 
bw=0.8 

Energy Data LWE GPH 
BDDP 1.1202(0.000) 1.1202(0.000) 0.9945(0.000) 1.1182(0.000) 1.1182(0.000) 1.0077(0.000) 
DBCP 1.2667(0.000) 1.0885(0.000) 1.0170(0.000) 1.2613(0.000) 1.0983(0.000) 1.0469(0.000) 
WTCP 1.2348(0.000) 1.0635(0.000) 1.0095(0.000) 1.2294(0.000) 1.0582(0.000) 1.0220(0.000) 
BEUR 1.1463(0.000) 0.9809(0.000) 1.0011(0.000) 1.2872(0.000) 1.0002(0.000) 1.0257(0.000) 
BPOU 1.1756(0.000) 0.9940(0.000) 1.0061(0.000) 1.3156(0.000) 1.0229(0.000) 1.0187(0.000) 
BDOL 1.1832(0.000) 1.0019(0.000) 1.0074(0.000) 1.3150(0.000) 1.0275(0.000) 1.0215(0.000) 
ATIN 1.1695(0.000) 1.0750(0.000) 1.0775(0.000) 1.1738(0.000) 1.0592(0.000) 1.0229(0.000) 
KUSD 1.2580(0.000) 1.1486(0.000) 0.9875(0.000) 1.2523(0.000) 1.1376(0.000) 0.9858(0.000) 
UUKP 1.1184(0.000) 1.0682(0.000) 0.9816(0.000) 1.1020(0.000) 1.1112(0.000) 0.9751(0.000) 

Note: p-values are in parenthesis (.), bw denotes the bandwidth for the LWE and GPH tests. BM is 
Bailie and Morana, meanwhile H is Hurvich) 

Table 7.  Standard Errors of the Mean for Fractional Unit Root and Fractional Differenced of the 
Studied Series 

Variables 𝟏 𝑳 𝟏 𝒅∗ 𝟏 𝑳 𝒀𝒕 𝟏 𝑳 𝒅𝒀𝒕 𝟏 𝑳 ∝ 𝜹𝒀𝒕 
BDDP 0.00015 0.00027 0.00028
DBCP 0.01926 0.02633 0.02842
WTCP 0.02036 0.02657 0.02830
BEUR 0.00226 0.00343 0.00366
BPOU 0.00291 0.00442 0.00476
BDOL 0.00191 0.00284 0.00306
ATIN 0.36372 0.47519 0.48515
KUSD 0.00001 0.00001 0.00001
UUKP 0.00405 0.00573 0.00582
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Table 8.  AIC Values for ARFURIMA(p,d,q) Models 

Variables ARFURIMA(1,d,0) ARFURIMA(1,d,1) ARFURIMA(2,d,0) 

BDDP -25616.84 -25618.43 -25616.48

DBCP 11716.44 11584.88 11607.83

WTCP 12444.65 12379.17 12378.06 

BEUR -2618.18 -2639.72 -2627.75

BPOU -2111.12 -2150.71 -2130.78

BDOL -2998.07 -3038.86 -3019.29

ATIN 77220.03 77208.76 77212.13

KUSD -66159.66 -66206.75 -66369.59 

UUKP 1915.799 1905.627 1916.047

Table 9.  AIC Values for SEMIFARMA(p,d,q) Models 

Variables SEMIFARMA(1,d,0) SEMIFARMA(1,d,1) SEMIFARMA(2,d,0) 

BDDP -24550.76 -24573.65 -24564.02

DBCP 14170.81 14007.84 14071.67

WTCP 14589.55 14473.07 14507.58

BEUR -1870.80 -1918.11 -1880.35

BPOU -1283.53 -1345.28 -1297.33

BDOL -2173.91 -2237.29 -2189.36

ATIN 80076.43 79966.76 80018.9

KUSD -65401.79 -65787.28 -65691.27

UUKP 3066.39 3017.78 3050.02

Table 10.  Estimation of ARFURIMA(p,q) and SEMIFARMA(p,q) with their Log-likelihood Values 

Variables Candidate Models 𝝋𝟏 𝝋𝟐 𝜽𝟏 Log-Likelihood 
BDDP ARFURIMA(1,d,1) 0.09(0.0003) ------- 0.27(0.0005) 12813.22 

SEMIFARMA(1,d,1) 0.41(0.0821) ------- -0.54(0.0757) 12290.81 
DBCP ARFURIMA(1,d,1) -0.09(0.0003) ------- 0.53(0.0007) -5788.442

SEMIFARMA(1,d,1) 0.24(0.0412) ------- -0.62(0.0345) -7031.430
WTCP ARFURIMA(2,d,0) -0.37(0.0006) -0.14(0.0004) ------- -6185.031

SEMIFARMA(1,d,1) 0.40(0.0532) ------- -0.68(0.0443) −7263.33
BEUR ARFURIMA(1,d,1) 0.13(0.0004) ------- 0.48(0.0007) 1323.859

SEMIFARMA(1,d,1) 0.65(0.0568) ------- -0.87(0.0391) 963.440
BPOU ARFURIMA(1,d,1) 0.13(0.0003) ------- 0.55(0.0007) 1079.354

SEMIFARMA(1,d,1) 0.63(0.0531) ------- -0.88(0.0352) 676.159



84                                                                     S. A. Jibrin, R. A. Rahman: ARFURIMA models: simulations… 

 

 

Table 10.  Estimation of ARFURIMA(p,q) and SEMIFARMA(p,q) with their Log-likelihood Values 
(cont.) 

Variables Candidate Models 𝝋𝟏 𝝋𝟐 𝜽𝟏 Log-Likelihood 
BDOL ARFURIMA(1,d,1)    0.12(0.0004) ------- 0.54(0.0007) 1523.427 

SEMIFARMA(1,d,1) 0.61(0.0562) ------- -0.87(0.0383) 1121.097 
ATIN ARFURIMA(1,d,1)   0.59(0.0008) ------- 0.69(0.0008) -38600.380 

SEMIFARMA(1,d,1)  0.84(0.0202) ------- -0.90(0.0157) −39979.420 
KUSD ARFURIMA(2,d,0)   -0.12(0.0003) 0.2(0.0004) ------- 33188.790 

SEMIFARMA(1,d,1)  0.12(0.0265) ------- -0.62(0.0213) 32897.460 
UUKP ARFURIMA(1,d,1)   0.43(0.0007) ------- 0.59(0.0007)   -948.814 

SEMIFARMA(1,d,1)  0.68(0.0521) ------- -0.77(0.0454) −1504.901 

Note: standard errors are in ∙  except in the second column 

4.3.2.  The Diagnostic Test 

Tests based on the residual’s normality test of Jarque-Bera, the Ljung-Box and 
ARCH-LM tests were applied, and the results showed evidence of non-normality, 
serial correlation, and heteroscedasticity in both the ARFURIMA and SEMIFARMA 
models due to large statistic and p-values less than 0.05. However, a comparison of the 
statistics from the three tests showed that the ARFURIMA model performed better 
due to larger test statistic for each test. A table of this analysis can be provided by the 
author on request. 

4.3.3.  Forecasting accuracy 

The Mean Absolute Error (MAE), Mean Percentage Error (MPE) and Mean 
Absolute Percentage Error (MAPE) were used to evaluate the forecast performance. 
The results are presented in Table 11 and showed that the ARFURIMA model 
produced a better forecast with minimum MAE, MPE and MAPE.  

Table 11.  Forecasts Accuracy Values of ARFURIMA and SEMIFARMA Model 

Variables Candidate Models MAE MPE MAPE 

BDDP ARFURIMA(1,d,1) 0.001542 0.021271 0.063209 
SEMIFARMA(1,d,1) 0.001953 123.7131 149.1917 

DBCP ARFURIMA(1,d,1) 1.045593  -0.028338 1.598621 
SEMIFARMA(1,d,1) 1.046859 59.90192 193.3132 

WTCP ARFURIMA(2,d,0) 1.079942  -0.043681 1.625366 
SEMIFARMA(1,d,1) 1.084338 117.8703 221.0361 

BEUR ARFURIMA(1,d,1) 0.040129 1.028172 3.097527 
SEMIFARMA(1,d,1) 0.049917 108.1391 397.9863 
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Table 11.  Forecasts Accuracy Values of ARFURIMA and SEMIFARMA Model  (cont.) 

Variables Candidate Models MAE MPE MAPE

BPOU ARFURIMA(1,d,1) 0.032087 1.044535 3.116316
SEMIFARMA(1,d,1) 0.054838 49.77582 222.7510

BDOL ARFURIMA(1,d,1)    0.006603 -0.923786 3.006184 
SEMIFARMA(1,d,1) 0.036540 89.33419 188.2536

ATIN ARFURIMA(1,d,1) 11.91682  -0.039669 1.227970 
SEMIFARMA(1,d,1)    19.86253 72.46209 153.1615 

KUSD ARFURIMA(2,d,0) 0.000223  -0.000138 0.076933 
SEMIFARMA(1,d,1) 0.137226 800.8632 1001.293 

UUKP ARFURIMA(1,d,1) 0.007133 0.002391 0.568356
SEMIFARMA(1,d,1)    0.296838 122.9570 154.4095 

Similarly, Diebold and Mariano (1995) accuracy tests indicated that the 
ARFURIMA was better in forecasting all the series at 0.05 level of significance. A table 
of this analysis can be provided by the author on request. 

5. Conclusions

In this work, we defined the family of the ARFURIMA (p,d,q) model and the
stationarity, invertibility and basic properties of the models were derived and 
presented. The presented simulations studies confirmed superiority of the 
ARFURIMA over the ARIMA in simulating nonstationary and the FURI series and 
thus proved the ILM properties of the ARFURIMA model and its large sample 
properties too. Besides, some applications of the model were presented and further 
confirmed a better fit of the ARFURIMA compared to the SEMIFARMA model. 

In conclusion, this study provided another perspective in analysing large time 
series data for modelling and forecasting, and the findings suggested that the 
ARFURIMA model should be considered if the data show a type of the ILM process 
with a degree of fractional difference in the interval of 1 𝑑 2.  
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On the nonparametric estimation of the conditional hazard
estimator in a single functional index

Abdelmalek Gagui1, Abdelhak Chouaf2

ABSTRACT

This paper deals with the conditional hazard estimator of a real response where the variable
is given a functional random variable (i.e it takes values in an infinite-dimensional space).
Specifically, we focus on the functional index model. This approach offers a good com-
promise between nonparametric and parametric models. The principle aim is to prove the
asymptotic normality of the proposed estimator under general conditions and in cases where
the variables satisfy the strong mixing dependency. This was achieved by means of the kernel
estimator method, based on a single-index structure. Finally, a simulation of our methodol-
ogy shows that it is efficient for large sample sizes.

Key words: single functional index, conditional hazard function, nonparametric estimation,
α-mixing dependency, asymptotic normality, functional data.

1. Introduction

The nonparametric estimation of the hazard function plays a crucial role in statistical
analyses. This subject can be approached from multiple perspectives depending on the
complexity of the problem. Many techniques have been studied in the literature to treat these
various situations but all treat only real or multidimensional explanatory random variables.
We refer to Watson and Leadbetter (1964), who were the first to study the nonparametric
estimation of the hazard function. In the sequel, many authors have been interested in the
study of such a function (see, for example Tanner and Wong (1983), Delecroix and Yazourh
(1992), Collomb et al. (1985) and Youndjé et al. (1996)).

Focusing on functional data, the first results on the nonparametric estimate of this model,
were achieved by Ferraty et al. ( 2000). They have studied the almost complete convergence
of an estimator with kernel for the function of a chance of a real random variable conditioned
by a functional explanatory variable. For instance, Masry (2005) showed the asymptotic
normality of the estimator for the function of regression, Ferraty et al. (2007) studied the
mean squared convergence, Burba et al. (2008) are interested in the estimate of the function
of regression by using the method of k-nearest neighbours, Quintela-del-Rio (2008) ob-
tained the asymptotic normality of the non-parametric estimation of the conditional hazard
function. Ferraty et al. (2010) they etablished the almost complete convergence uniform on
the functional component of this nonparametric model.

1Djillali Liabes University, Algeria. E-mail: gagui.abdelmalek@gmail.com. ORCID: https://orcid.org/0000-
0002-2715-4304.

2Djillali Liabes University, Algeria. E-mail: abdo stat@yahoo.fr.
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The modelling of the spatial data was also considered in nonparametric estimation for
functional data. On this subject, Dabo-Niang et al. (2012) studied the almost convergence
of an estimator with kernel for the function of regression. Laksaci et al. (2009) treated the
almost complete convergence of the estimator with a kernel of the function of conditional
distribution and the conditional quantiles. Li and Tran (2007) obtained the asymptotic nor-
mality of a kernel estimator of the hazard function. The study of the kernel estimator of
the conditional hazard function when the covariates take values in functional statistic was
treated by Lakssaci et al. (2010).

Our goal in this work is devoted to the study of the single functional index model.
This approach consists of making a projection between the explanatory variable Y on the
functional response variable X to the non-parametric context on a function directly θ . In
the finite-dimensional, random variables have been widely studied, see for example Hardle
et al. (1993), Hristache et al. (2001). Furthermore, when the case is infinite dimensions
or when the explanatory variable is functional, the first work which was interested in the
single-index model for the nonparametric estimation is Ferraty et al. (2003). They stated
for i.i.d. variables and obtained the almost complete convergence under some conditions.
In the same context Ait Saidi et al. (2005) studied the dependent case of these estimators,
Ait Saidi et al. (2008) proposed cross-validated estimation where the functional index is
an unknown, Attaoui et al. (2011) obtained the uniform almost complete convergence of
conditional density in the functional single index. More recently Tabti et al. (2017) obtained
the pointwise almost complete convergence and the uniform almost complete convergence
of a kernel estimator of the hazard function with the quasi-association condition in a single-
index approach.

In the present paper, we obtain, under some conditions, the asymptotic normality of
the conditional hazard function estimator. This result enables us to obtain the confidence
intervals of this estimator. In practice, this study has great importance because it permits
us to construct a prediction method based on the maximum risk estimation with a single
functional index.

In Section 2, we introduce the estimator of our model in the single-functional index.
Section 3 we introduce assumptions and asymptotic properties are given. Practical aspects
are discussed in Section 4. Simulations are given in Section 5. Finally, Section 6 is devoted
to the proofs of the results.

2. The model

Let {(Xi,Yi), 1 ≤ i ≤ n} be n random variables, identically distributed as the random
pair (X ,Y ) with values in H×R, where H is a separable real Hilbert space with the norm
∥ . ∥ generated by an inner product < ., . >. We consider the semi-metric dθ associated with
the single index θ ∈H defined by ∀x1,x2 ∈H : dθ (x1,x2) :=|< x1 − x2,θ >|. Assume that
the explanation of Y given X is done through a fixed functional index θ in H. In the sense
that there exists a θ in H (unique up to a scale normalization factor) such that: E[Y |X ] =

E[Y | < θ ,X >]. The conditional cumulative distribution function of Y given < X ,θ > is
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denoted by

Fx(θ ,y) := F(y|< θ ,x >) = P(Y ≤ y |< X ,θ >=< θ ,x >), ∀y ∈ R

Clearly we have for all x ∈H ,

F1(.|< x,θ1 >) = F2(.|< x,θ2 >)⇒ F1 ≡ F2 and θ1 = θ2.

The natural kernel estimator of F(θ ,y,x) is defined as

F̂(θ ,y,x) =
∑

n
i=1 K(h−1

K dθ (x,Xi))H(h−1
H (y−Yi))

∑
n
i=1 K(h−1

K dθ (x,Xi))
, ∀y ∈ R (1)

We suppose that the conditional density of Y given X = x denoted by f (.|x) exists and
is given by ∀y ∈ R, fθ (y|x) := f (y| < x,θ >). In the following, we denote by f (θ , .,x),
the conditional density of Y given < x,θ > and we define the kernel estimator f̂ (θ , .,x) of
f (θ , .,x) by:

f̂ (θ ,y,x) =
h−1

H ∑
n
i=1 K(h−1

K dθ (x,Xi))H ′(h−1
H (y−Yi))

∑
n
i=1 K(h−1

K dθ (x,Xi))
, ∀y ∈ R (2)

with the convention 0/0 = 0, where K and H are kernels function (H ′ is the derivate of H)
and hK := hn,K (resp hH := hn,H ) is a sequence of bandwidths that decrease to zero as n goes
to infinity.

We are interested in estimating non parametrically the conditional hazard function λ

defined by:

λ̂ (θ ,y,x) =
f̂ (θ ,y,x)

1− F̂(θ ,y,x)
, ∀y ∈ R.

3. Main results

We begin with introducing some notations. Let (Xi,Yi)
∞
i=1 be a sequence of random

variables and α(n) be a sequence of real numbers. A stationary process (Xi,Yi)
∞
i=1 is called

α-mixing or strongly mixing, if
α(n) = sup

A∈A k
1

sup
B∈A ∞

n+k

|P(A ∩ B)− P(A)P(B)| → 0, as n → ∞, where F b
a is the σ -algebra

generated by (X j,Yj)
b
j=a.

In this section, we give some obtained results on the asymptotic normality of the esti-
mator λ̂ (θ ,y,x), which require the following additional hypotheses. All along the paper,
when no confusion is possible, we will denote by C and C′ some strictly positive generic
constants. We put, for any x ∈ H, and i = 1, ...,n Ki(θ ,x) := K(h−1

K dθ (x,Xi)) and, for all
y ∈ R, H j

i := H j(h−1
H (y−Yi)) for j = 0,1 In the following, for any x ∈H and y ∈ R, let Nx

be a fixed neighbourhood of x in H, SR will be a fixed compact subset of R,and we will use
the notation Bθ (x,h) := {x1 ∈ H : 0 < | < x− x1,θ > | < h}, the ball centered at x, with
radius h. All along the paper, when no confusion will be possible, we will denote by C, C′
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and Cθ ,x some generic constant in R∗
+

(H1) P(X ∈ Bθ ,x(h)) = φθ ,x(h) > 0. Moreover, there exists a function βθ ,x(.) such that:

∀s ∈ [−1,1], lim
n−→∞

βθ ,x(shK)

βθ ,x(hK)
= βθ ,x(s).

(H2) For l ∈{0,2}, the functions ψl(s)=E
[

∂ l f (θ ,y,X)

∂yl − ∂ l f (θ ,y,x)
∂yl

∣∣dθ (x,X = s)
]

and

Ψl(s) = E
[

∂ lF(θ ,y,X)

∂yl − ∂ lF(θ ,y,x)
∂yl

∣∣dθ (x,X = s)
]

are differentiable at s = 0.

(H3) The kernel K is a differentiable function and its derivative K′ exists and is such that
there exist two constants C and C′ with −∞ <C < K′(t)<C′ < 0, for t ∈ [0,1].

(H4) The kernels K and H are an even bounded function .

(H5) The bandwidths hK and hH satisfy

(1*) lim
n−→∞

1
nhHφθ ,x(hK)

= 0,

(2*) lim
n−→∞

nh5
Hφθ ,x(hK) = 0 and lim

n−→∞
nhHh2

kφθ ,x(hK) = 0,

(3*) lim
n−→∞

hH = 0, lim
n−→∞

hK = 0, and lim
n−→∞

logn
nφθ ,x(hK)

= 0,

(4*) lim
n−→∞

h2b1
K φθ ,x(hK) = 0, and lim

n−→∞
h2b1

H φθ ,x(hK) = 0.

(H6) (Xi,Yi)i∈N is a strongly mixing sequence, whose mixing coefficient α(n) satisfies
∃a > (5+

√
17)/2, ∃C > 0 : ∀n ∈ N, α(n)≤Cn−a.

(H7) 0 < sup
i ̸= j

P((Xi,X j) ∈ Bθ (x,hK)×Bθ (x,hK)) = O

(
φθ ,x(hK)

(a+1)/a

n1/a

)
.

(H8) ∃β0 > 0, C1, C2 > 0, such that: C1n
3−a
a+1+β0 ≤ φθ ,x(hK)≤C2n

1
1−a .

Comments on the assumptions

Assumptions (H1)-(H4) are technicals and permit to give an explicit asymptotic vari-
ance. The function βθ ,x(.) will play a major role in our results, it intervenes to compute the
exact constant terms involved in our asymptotic expansions (for more of this assumptions,
see Ferraty et al. 2007). Finally (H5)-(H8) permits to remove the bias term in the asymp-
totic normality result.
Now, we give our main result.

Theorem 3.1. Assume that (H1)-(H5) hold, and (H6)-(H8) hold, as n goes to infinity, we
have

(nhHφθ ,x(hK))
1/2(λ̂ (θ ,y,x)−λ (θ ,y,x)−Bn(θ ,y,x))

D−→ N (0,σ2
h (θ ,y,x)),



STATISTICS IN TRANSITION new series, June 2022 93

where

Bn(θ ,y,x) =
1

1−F(θ ,y,x)

(
(B f

H −λ (θ ,y,x)BF
H)h

2
H +((B f

K −λ (θ ,y,x)BF
K)hK)

)
with

σ
2
h (θ ,y,x) =

M2λ (θ ,y,x)
M2

1(1−F(θ ,y,x))

M0 = K(1)−
∫ 1

0 sK′(s)βθ ,x(s)ds, M j = K j(1)−
∫ 1

0 (K
j)

′
(s)βθ ,x(s)ds

for j = 1,2

and

B f
H(θ ,y,x) =

1
2

∂ 2 f (θ ,y,x)
∂y2

∫
t2H ′(t)dt,

B f
K(θ ,y,x) = hkψ

′
0(0)

M0

M1
hK .

BF
H(θ ,y,x) =

1
2

∂ 2F(θ ,y,x)
∂y2

∫
t2H ′(t)dt,

BF
K(θ ,y,x) = hkΨ

′
0(0)

M0

M1
hK .

and D means the convergence in distribution.

Corollary 3.1. Under the hypotheses of Theorem 3.1,and if the bandwidth parameters (hK

and hH ) satisfies (H5) and if the function φθ ,x(hK) satisfies :

lim
n−→∞

(h2
H +hK)(nφθ ,x(hK))

1/2 = 0,

we have

(nhHφθ ,x(hK))
1/2(λ̂ (θ ,y,x)−λ (θ ,y,x)) D−→ N (0,σ2

h (θ ,y,x)),

The proof of Theorem 3.1 is based on the following decomposition:

λ̂ (θ ,y,x)−λ (θ ,y,x) =
1

F̂D(θ ,x)− F̂N(θ ,y,x)

(
f̂N(θ ,y,x)−E[ f̂N(θ ,y,x)]

)
+

1

F̂D(θ ,x)− F̂N(θ ,y,x)

{
λ (θ ,y,x)

(
E[F̂N(θ ,y,x)]−F(θ ,y,x)

)
+

(
E[ f̂N(θ ,y,x)]− f (θ ,y,x)

)}
+

ĥ(θ ,y,x)

F̂D(θ ,x)− F̂N(θ ,y,x)

{
1−E[F̂N(θ ,y,x)]

−
(

F̂D(θ ,x)− F̂N(θ ,y,x)
)}
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Lemma 3.1. Under the Assumptions of Theorem 3.1, as n goes to infinity, we have

(nhHφθ ,x(hK))
1/2( f̂N(θ ,y,x)−E[ f̂N(θ ,y,x)])

D−→ N (0,σ2
f (θ ,y,x)).

Proof of lemma 3.1 First, we define that

Zi(θ ,y,x) =

√
φθ ,x(hK)√

nhHE[K1(θ ,x)]
(ζi(θ ,y,x)−E[ζi(θ ,y,x)]),

and

Tn :=
n

∑
i=1

Zi(θ ,y,x).

where ζi(θ ,y,x) = H ′
i (θ ,x)Ki(θ ,x),

Thus,
Tn =

√
nhHφθ ,x(hK)( f̂N(θ ,y,x)−E[ f̂N(θ ,y,x)]).

So, our claimed result is now

Tn −→ N (0,σ2
f (θ ,x)). (3)

Therefore, we have

Var(Tn) = nhHφθ ,x(hK)Var( f̂N(θ ,y,x)−E[ f̂N(θ ,y,x)])

= nhHφθ ,x(hK)Var( f̂N(θ ,y,x)) (4)

Now, we need to evaluate the variance of f̂N(θ ,y,x). For this we have for all 1 ≤ i ≤ n, :

Var( f̂N(θ ,y,x)) =
1

(nhHE[K1(θ ,x)])2

n

∑
i=1

n

∑
j=1

Cov(ζi(θ ,y,x),ζ j(θ ,y,x))

= I1,n + I2,n.

where

I1,n =
1

n(hHE[K1(θ ,x)])2 Var(ζ1(θ ,y,x))

I2,n =
1

(nhHE[K1(θ ,x)])2

n

∑
i=1

n

∑
j=1i̸= j

Cov(ζi(θ ,y,x),ζ j(θ ,y,x)).
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First, for the quantity I1,n, we have

Var(ζ1(θ ,y,x)) ≤ E
[
H ′2

1(y)K
2
1 (θ ,x)

]
≤ E

[
K2

1 (θ ,x)E
[
H ′2

1(y)|< θ ,X1 >
]]

.

|E
[
H ′2

1(y)|< θ ,X1 >
]
| =

∣∣∣∣∫R H ′2(h−1
H (y− z)) f (θ ,z,x)dz

∣∣∣∣
≤ hH

∫
R

H ′2| f (θ ,y−hHt,x) f (θ ,y,x)|dt

+ hH f (θ ,y,x)
∫
R

H ′2dt

≤ h1+b2
H

∫
R
|t|b2H ′2dt +hH f (θ ,y,x)

∫
R

H ′2dt

= hH

(
o(1)+ f (θ ,y,x)

(∫
R

H ′2dt
))

.

As n −→ ∞, E[K2
1 (θ ,x)]−→ M2φθ ,x(hK), one gets

Var(ζ1(θ ,y,x)) = M2φθ ,x(hK)hH

(
o(1)+ f (θ ,y,x)

(∫
R

H ′2dt
))

.

So, using (H5-1*), we get

I1,n =
M2φθ ,x(hK)

n(M1hHφθ ,x(hK))2 hH

(
o(1)+ f (θ ,y,x)

(∫
R

H ′2dt
))

= o
(

1
nhHφθ ,x(hK)

)
+

M2 f (θ ,y,x)
M2

1 nhHφθ ,x(hK)

(∫
R

H ′2dt
)

−→ M2 f (θ ,y,x)(
∫
R H ′2dt)

M2
1 nhHφθ ,x(hK)

, as n −→ ∞. (5)

Second, for the quantity I2,n, we will use the following decomposition:

I2,n =
n

∑
i=1

n

∑
j=1

0<|i− j|≤mn

Cov(ζi(θ ,y,x),ζ j(θ ,y,x))+
n

∑
i=1

n

∑
j=1

|i− j|>mn

Cov(ζi(θ ,y,x),ζ j(θ ,y,x)).

Similarly to Attaoui said (2014), we can easily write

I2,n = O(nh2
Hφθ ,x(hK)).

It yields,

1
nhHφθ ,x(hK)

I2,n −→ 0, as n −→ ∞. (6)
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Finally, the proof of the Lemma is completed, to get

Var(Tn)−→
M2 f (θ ,y,x)

M2
1

(∫
R

H ′2dt
)
=: σ

2
f (θ ,x).

Lemma 3.2. Under the Assumptions (H1)-(H4), and (H7), as n goes to infinity, we have

E[F̂N(θ ,y,x)]−F(θ ,y,x) = BF
H(θ ,y,x)h

2
H +BF

K(θ ,y,x)hK +o(h2
H)+o(hK)

Proof of lemma 3.2 First, for E[F̂(θ ,y,x)] , we start by writing

E[F̂N(θ ,y,x)] =
1

E[K1(θ ,x)]
E
[
K1(θ ,x)E[h−1

H H ′
1(y)|X ]

]
with

h−1
H E[H ′

1(y)|X ] =
∫
R

H ′(t)F(θ ,y−hHt,X)dt

The latter can be re-written, using a Taylor expansion under (H4), as follows:

h−1
H E[H ′

1(y)|X ] = F(θ ,y,X)+
h2

H
2

(∫
t2H ′(t)dt

)
∂ 2F(θ ,y,X)

∂ 2y
+o(h2

H).

Thus, we get

E[F̂N(θ ,y,x)] =
1

E[K1(θ ,x)]

(
E[K1(θ ,x)F(θ ,y,X)]+

(∫
t2H ′(t)dt

)
× E

[
K1(θ ,x)

∂ 2F(θ ,y,X)

∂ 2y

]
+o(h2

H)

)
.

Let Ψl(.,y) := ∂ lF(.,y,.)
∂ ly : for l ∈ {0,2}, since Ψl(0) = 0, we have

E[K1(θ ,x)ψ(X ,y)] = Ψl(x,y)E[K1(θ ,x)]+E[K1(θ ,x)(Ψl(X ,y)−Ψ(x,y))]

= Ψ(x,y)E[K1(θ ,x)]+E[K1(θ ,x)(Ψl(dθ (x,X)))]

= Ψl(x,y)E[K1(θ ,x)]+Ψ
′
l(0)E[dθ (x,X)K1(θ ,x)]

+ o(E[dθ (x,X)K1(θ ,x)]).

So
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E[F̂N(θ ,y,x)] = F(θ ,y,x)+
h2

H
2

∂ 2F(θ ,y,X)

∂ 2y

∫
t2H ′(t)dt +o

(
h2

H
E[dθ (x,X)K1(θ ,x)]

E[K1(θ ,x)]

)
+ Ψ

′
0(0)

E[dθ (x,X)K1(θ ,x)]
E[K1(θ ,x)]

+o
(
E[dθ (x,X)K1(θ ,x)]

E[K1(θ ,x)]

)
.

Similarly to Ferraty et al. (2007), we show that

1
φθ ,x(hK)

E[dθ (x,X)K1(θ ,x)] = M0hK +o(hK)

and

1
φθ ,x(hK)

E[K1(θ ,x)]−→ M1.

Hence,

E[F̂N(θ ,y,x)] = F(θ ,y,x)+
h2

H
2

∂ 2F(θ ,y,X)

∂ 2y

∫
t2H ′(t)dt +Ψ

′
o(0)

M0

M1
hK +o(h2

H)+o(hK)

Lemma 3.3. Under the Assumptions (H1)-(H4), and (H7), as n goes to infinity, we have

E[ f̂N(θ ,y,x)]− f (θ ,y,x) = B f
H(θ ,y,x)h

2
H +B f

K(θ ,y,x)hK +o(h2
H)+o(hK)

Proof of lemma 3.3. The proof of this lemma follows the steps as for proving lemma 3.2,
to study E[ f̂N(θ ,y,x)] it suffices to write by an integration by part

E[ f̂N(θ ,y,x)] =
1

E[K1]
E[K1E[H1 | X ]] with E[K1E[H1 | X ]] =

∫
R

H ′(t) f X (y−hHt)dt

Then we can follow to prove that

E[ f̂N(θ ,y,x)] = f (θ ,y,x)+
h2

H
2

∂ 2 f (θ ,y,X)

∂ 2y

∫
t2H ′(t)dt +ψ

′
0(0)

M0

M1
hK +o(h2

H)+o(hK)

Lemma 3.4. Under the hypotheses of Theorem 3.1

F̂D(θ ,x)− F̂N(θ ,y,x)−→ 1−F(θ ,y,x), in probability.

And (
nhHφθ ,x(hK)

σ2
h (θ ,y,x)

)1/2(
F̂D(θ ,x)− F̂N(θ ,y,x)−1+E[F̂N(θ ,y,x)

)
= op(1).
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Proof of lemma 3.4. It is clear that

E
[
F̂D(θ ,x)− f̂ (θ ,y,x)−1+F(θ ,y,x)

]
−→ 0,

and

Var
[
F̂D(θ ,x)− f̂ (θ ,y,x)−1+F(θ ,y,x)

]
−→ 0,

then

F̂D(θ ,x)− f̂ (θ ,y,x)−1+F(θ ,y,x) P−→ 0.

Moreover, the asymptotic variance of F̂D(θ ,x)− f̂N(θ ,y,x) (see Djebbouri et al.(2015)),
allows to obtain

nhHφθ ,x(hK)

σ2
h (θ ,y,x)

Var
[
F̂D(θ ,x)− f̂N(θ ,y,x)−1+E[ f̂N(θ ,y,x)]

]
−→ 0.

By combining the result with the fact that

E
[
F̂D(θ ,x)− f̂N(θ ,y,x)−1+E[ f̂N(θ ,y,x)]

]
−→ 0,

we obtain the claimed result.

4. Simulation study

We first construct the simulation of the explanatory functional variables. In the second
part, we focus on the ability of the nonparametric functional regression to predict responses
variable from functional predictors. Finally we illustrated the Monte Carlo methodology and
we will test the efficiency of the asymptotic normality results in parallel with the practical
experiment.

For this purpose, we consider the following process explanatory functional variables for
n = 350:

Xi(t) = 1− sin(2Ωit)αi +Ωit , ∀t ∈ [0,π]

where αi and Ωi are n independent real random variables (r.r.v.) uniformly distributed over
[0.3;2] (resp.[1;3]), t is assumed that these curves are observed on a discretization grid of
100 points in the interval. These functional variables are represented in the Figure 1
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Figure 1. The curves Xi=1,...,200

For response variables Yi, we consider the following model for all i = 1, . . .n and l =
1, . . .n:

Y = λ (< Xi,θl >)+ ε

where λ (X ) =
∫ t j

0

1
1−Xi(v)2 dv and ε is a centred normal variable and it is assumed to

be independent of (Xi)i . Our goal in this illustration is to show the usefulness of conditional
density in the context of forecasting.

Now, we precise the different parameters of our estimators. Indeed, first of all, it is clear
that the shape of the curves allows us to use

d(x1,x2) =

√∫ 1

0
(x1(t)− x2(t))2 ; ∀x1,x2 ∈ H where H is semi-metric
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We choose particularly the quadratic kernels defined by

K(x) =
3
2
(1− x2) x ∈ [0,1] ; K0(x) =

3
4
(1− x2) x ∈ [−1,1] and H(x) =

∫ x

−∞

K0(u)du.

In this illustration, we select the functional index θ on the set of eigenvectors of the
empirical covariance operator.

1
200

200

∑
i=1

(Xi − X̄)t((Xi − X̄)).

Indeed, we recall that the ideas of Aitsaidi (2007) can be adapted to find a method of
practical selection for θ . However, this adaptation in the case of the conditional density
requires tools and additional preliminary results (see the discussion Attaoui et al. (2010)
and Attaoui (2014)).

For this purpose, we divide our observations into two packets: learning sample
(Xi,Yi)i=1,...200 and test sample and (Xi,Yi)i=201,...250(see, Ferraty et al. (2006)). For the
choice of smoothing parameters hK and hH , we will adopt the selection criterion used by
Ferraty and Vieu (2006) in the case of the kernel method for which hK and hH are obtained.
by minimizing the next criterion

for each Xi in the sample of the test err(hK ,hH) = |Yi∗ −θ(Xi∗)| (7)

where i∗ denotes the index of the nearest curve Xi from all the curves of the learning sample.

Figure 2. Predicted functional responses (solid lines); observed functional responses (dashed lines).
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In this simulation study, we assume the quality of prediction by comparing the predicted
functional responses (i.e. λ̂ (θ ,y,x) for any X in the testing sample) and the true functional
operator (i.e. λ (θ ,y,x)) as in Figure. 2. However, if one wishes to assess the quality
of prediction for the whole testing sample, it is much better to see what happens direc-
tion by direction. In other words, displaying the predictions onto the direction θl amounts
to plotting the 50 points (λ (< Xi,θl >), λ̂ (< Xi,θl >))i=201,...,250. Figure. 3 proposes a
componentwise prediction graph for the two first components (i.e.l = 1,2). The quality of
componentwise predictions is quite good for each component.

Figure 3. Representation of the prediction quality for each component.

For the next simulation algorithm we used:

• Simulate a sample of size n

• Calculate the smoothing parameters hK and hH that are varied over an interval [0,1]
and which minimizes in 7

• We compute the quantities

(nhHφθ ,x)
1/2(λ̂ (θ ,y,x)−λ (θ ,y,x))
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where λ̂ (θ ,y,x) is the functional hazard kernel estimator from the
sample (Xi,Yi)i=1,...,200,

• compute a standard hazard function estimator by the kernel method .

• compare the estimated λ̂ (θ ,y,x) with the corresponding estimated λ (θ ,y,x) .

The obtained results are shown in Figure. 4.

Figure 4. Representation of the asymptotic distribution of the hazard function estimator.

It can be seen that, both are very close and have good behaviours with respect to the
standard normal distribution.

5. Conclusions

In this paper, we are mainly interested in the nonparametric estimation of the conditional
hazard function estimator for a variable explanatory functionally conditioned to an actual
response variable via a functional single index model. We show that the estimator provides
good predictions under this model. One of the main contributions of this work is the choice
of a semi-metric. Indeed, it is well known that, in non-parametric functional statistics, the
semi-metric of the projection type is very important for increasing the concentration prop-
erty. The functional index model is a special case of this family of semi-metrics because it is
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based on the projection on a functional direction which is important for the implementation
of our method in practice.
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Youndjé, É., Sarda, P. and Vieu, P., (1996). Optimal smooth hazard estimates. Test. 5, pp.
379–394.





STATISTICS IN TRANSITION new series, June 2022 
Vol. 23, No. 2 pp. 107–127, DOI 10.2478/stattrans-2022-0019 
Received – 22.07.2021; accepted – 21.03.2022 

Institutional equilibrium in EU economies in 2008 and 2018: 
SEM-PLS models 

Mateusz Borkowski1 

ABSTRACT 

The aim of the research is to identify the strength and direction of the development of the 
relationship between formal and informal institutions and to assess the institutional equilib-
rium of modern economies. The structural equations modelling based on partial least 
squares (SEM-PLS) is applied to achieve the purpose of the article. It is an econometric 
method that allows the measurement and analysis of the dependencies between latent vari-
ables (measures that cannot be directly observed). The study included 27 EU economies and 
the research period covered the years 2008 and 2018. The results of the study demonstrate 
that the quality of informal institutions strongly, positively determines the quality of formal 
institutions. The conducted analyses indicate that modern economies are diversified 
in terms of the quality of informal and formal institutions and, consequently, in institutional 
equilibrium. Considerable institutional disparities also translate into a large diversification 
in economic development. The article proposes a different meaning of institutional equilib-
rium, understood as the achieved state of institutional structure characterised by high quality 
informal institutions which interact with each other to improve the efficiency of formal in-
stitutions. The article presents a comprehensive model of the institutional structure and 
a unique method of measuring institutional equilibrium. 

Key words: institutional equilibrium, SEM-PLS, economic growth and development. 

1. Introduction

The institutional approach is gaining popularity today. For many years, institutions 
in macroeconomic models have been covered by the ceteris paribus assumption, or 
treated as an undoubted pro-development factor. However, an increasing number of 
researchers have taken up the topic of institutional structure in search of the sources of 
economic failures. It turns out that the inefficiency of the system may be the cause of 
development disparities and their increase in the world. 

1  Doctoral School in the Social Sciences (economics and finance), University of Bialystok, Bialystok, Poland,  
E-mail: m.borkowski@uwb.edu.pl, ORCID: https://orcid.org/0000-0003-0644-4764. 

© Mateusz Borkowski. Article available under the CC BY-SA 4.0 licence 



108                                                                         M. Borkowski: Institutional equilibrium in EU economies… 

 

 

In modern economic theory there is a noticeable gap in the modelling of institu-
tions. Existing models that take into account institutional variables are based mainly on 
simple correlation and regression analyses. Most often they concern the quality of only 
one selected institution. There is a noticeable lack of econometric models of the entire 
institutional system in the social literature. Moreover, the measurement of institutional 
equilibrium is rare. This article is an attempt to complement institutional theory with 
tools measuring institutional quality and levels of institutional equilibrium. 

The problem of institutional equilibrium is gaining interest among scholars from all 
over the world. Interestingly, the understanding of institutional equilibrium varies. The 
most common assumption is that institutions themselves are a kind of equilibrium in 
a game (Hindriks & Guala, 2015). This paper proposes that institutional equilibrium can 
be understood as an achieved state of institutional structure that is characterized by high 
quality informal institutions that interact to improve the efficiency of formal institutions.  

The purpose of the research is to identify the strength and direction of the relation-
ship between formal and informal institutions and to assess the institutional equilib-
rium of modern economies. The problem addressed is the differentiation of EU econ-
omies in terms of the quality of institutional systems. The paper adopts three research 
hypotheses: 

H1: Informal institutions positively and strongly influence the quality of formal 
institutions in the EU countries. 

H2: The relationship between informal and formal institutions is getting weaker 
over the time (from 2008 to 2018). 

H3: Countries of a higher level institutional equilibrium feature economies with 
a higher level of GDP per capita. 

This paper applies structural equation modelling using the partial least squares 
method (SEM-PLS). The years 2008 and 2018 were selected as the period of research, as 
these are the most recent statistical data available. The study covered 27 EU economies. 

2.  Literature review 

Defining institutions is not a simple task. The reason for the difficulty in conceptu-
alizing this term is its multidimensional and interdisciplinary nature. Differences in ex-
plaining the meaning of institutions arise not only in different social science disciplines, 
but also within those disciplines (Godłów-Legiędź, 2010, p. 65). Within the economic 
sciences there are three main approaches to defining institutions (Gancarczyk, 2002, p. 82). 
The first assumes that institutions are norms or customs that are embedded in the econ-
omy (processes). Second, institutions are identified with organizations. The third one 
equates institutions with a state of equilibrium in a game – a strictly model-based ap-
proach.  



STATISTICS IN TRANSITION new series, June 2022 109

This article uses the definition by G. M. Hodgson. Institutions are a system of em-
bedded and well-established both formal and informal norms, rules, customs, which 
influence economic, social and political interactions among individuals in the economy 
(Hodgson, 2006, p. 18). The work uses a process approach, which means that institu-
tions (processes) and organizations (entities) are related concepts, although not identi-
cal. 

Institutions are characterized by the following features: 
 universality (Vitola & Šenfelde, 2015, p. 278) – they are universal in nature, affect-

ing all relations in the economy, 
 variability over time – they change, evolve; changes depend on the type of institution 

and the elasticity of the institutional system; change can take the form of: complete 
displacement, layering, drift or conversion (Mahoney & Thelen, 2010, p. 16), 

 immateriality and direct immeasurability – the quality of institutions cannot be 
directly observed, institutions cannot be seen (Ostrom, 2008, p. 822), 

 heterogeneity – each institution is unique, original, 
 endogenous nature – they arise within the society/economy – either created by 

people consciously or unconsciously, 
 internal complexity – the institutional system consists of many institutions, which 

also have components, and components have elements and so on, 
 internal interdependence, which can take the form of: 

a) complementary relationships – institutions function in the environment of
other institutions, they can complement and strengthen each other (Höpner,
2005, p. 333),

b) mutual exclusion, competitive relationships (Amable, 2016, p. 79) – institu-
tions can also be an obstacle for the functioning of other institutions, they
can mutually limit each other, weaken incentives for interaction (Helmke &
Levitsky, 2004, p. 729),

c) relationships of substitutability – outdated institutions are replaced by new
ones, better suited to the conditions of the present (Gruszewska, 2011, p. 55),

 dependence on the past – new institutions are the product of past socio-economic 
processes, they are ideally suited to past conditions, but will never be in line with 
the conditions of the present (Veblen, 2016, s. 88). 

Institutions are of undeniable importance in the economy. All relations, whether 
economic, social or political, are regulated by institutions. They give a sense of action 
to all units in the economy, create a safe area for functioning, and thus contribute to 
increasing the predictability of participants in socio-economic processes. It would seem 
that the most important task of institutions in modern economies is to determine the 
possible solutions, create opportunities, and also to set the rules for all units in the econ-
omy (Gruszewska, 2013, p. 136). 
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When studying the institutions in modern world economies, one should focus on 
the analysis of the institutional system. In institutional theory there are many divisions 
of the institutional system of the economy. The most widely used in the literature is the 
division proposed by D. C. North (1992; 1994), according to which the institutional 
system consists of three elements: formal institutions, informal institutions and the 
mechanisms for their enforcement. It is this view of the institutional system that was 
applied in this paper. Special attention has been paid especially to formal and informal 
institutions. 

Formal institutions have a statutory character, and are the result of the activities of 
the governance. Most often they are written down in the form of normative acts. They 
can also take the form of actions – for example, markets’ regulations. Their specificity 
makes their variability over time much greater than in the case of informal construc-
tions (Fuentelsaz et al., 2019, pp. 6–8). Their boundaries of change are determined by 
informal institutions, which are the core of the entire institutional system. The compo-
nents of the formal institutional environment include the institutions of (Rodrik, 2007, 
pp. 150–161): legal order, property rights, macroeconomic stability, regulation, social 
security, and conflict management. 

Informal institutions are the second main component of the institutional system. 
In contrast to formal ones, they arise spontaneously, endogenously (Seidler, 2011). 
They are not written down, but deeply rooted in the mentality of society. They change 
very slowly, thus conditioning changes in the entire institutional system (Mohmand, 
2015, p. 7). Changes in formal rules, which can be introduced by the governance in a 
relatively short time, are limited by informal institutions. New formal norms are not 
immediately aligned with social norms. There is a dissonance between formal and in-
formal institutions. The community, only after some time, adapts to the new formal struc-
tures (Gruszewska, 2017, p. 41). The informal institutions include (Fiedor, 2015, p. 94): 
culture (including economic culture), attitudes towards religion, behavioural patterns, 
social trust, and the so-called "mental models", i.e. established behavioural patterns. 

The continuous adjustment processes of formal institutions to informal ones show 
that the institutional system is in a constant disequilibrium. The degree of institutional 
disequilibrium varies. As J. Wilkin points out, institutional equilibrium is a state, not 
a point, at which: various needs of the members of society are balanced; there is an in-
clination of the members of society to follow the established rules of conduct, which 
have been considered socially beneficial, with the possibility of choosing to achieve their 
goals; the continuity of prevailing rules and social mechanisms is guaranteed and a high 
degree of predictability of other members of society is ensured (Wilkin, 2011, p. 32). 

The relationship between informal and formal institutions and the enforcement 
mechanisms that support them can be the basis for defining institutional equilibrium. 
B. Fiedor (2019, p. 176) defines institutional equilibrium as a state in which informal 
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institutions strengthen and positively influence the enforcement of formal rules, and 
strengthen the enforcement mechanisms. Institutional equilibrium is of a higher im-
portance than other equilibrium found in the economy. Institutions are considered to 
be the foundations of the economy, they are a form of security and a stabilizer for the 
economy (Wilkin et al., 2019, p. 662–663). J. Platje distinguishes five levels of institu-
tional equilibrium depending on the efficiency of formal and informal institutions and 
enforcement mechanisms (Table 1). 

Table 1. Levels of institutional equilibrium according to J. Platje 

No. 
Efficiency of*: 

Level of institutional equilibrium formal 
institutions 

informal 
institutions 

institutional 
governance 

1. + + + ideal institutional equilibrium
2. + + − weak institutional equilibrium
3. + − +

institutional disequilibrium 4. + − − 
5. − + + 
6. − + −
7. − − + strong institutional disequilibrium 
8. − − − ideal institutional disequilibrium

* “+” – high, “−“ – low.

Source: own work on the basis of: (Platfje, 2008, p. 147).

This paper applies the institutional equilibrium matrix, proposed and then empir-
ically used by C. R. Williamson (2009, p. 373), to assess the institutional balance of 
modern economies. The institutional system is divided into formal and informal insti-
tutions. Their quality determines the level of institutional equilibrium. Strong informal 
and formal rules create conditions, which allow obtaining benefits to be obtained by all 
individuals functioning in society. 

This paper assumes that institutional equilibrium is defined by the quality of both 
formal and informal institutions. The state of institutional equilibrium can take three 
forms: strong institutional equilibrium (high quality of both formal and informal rules); 
weak formal institutional equilibrium (high quality of formal institutions, low of infor-
mal ones) and weak informal institutional balance (low quality of formal institutions, 
high of formal ones). When both formal and informal institutions are characterized by 
low quality, this implies institutional disequilibrium. 

3. Research method – SEM-PLS

The assumptions of the paper were met using partial least squares structural equa-
tion modelling (SEM-PLS or PLS-SEM), which was created by H. Wold (1980). SEM-
PLS is an econometric method for studying phenomena that are not directly observable 
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(Ciborowski & Skrodzka, 2020, p. 1355). SEM-PLS is one of two structural equation 
modelling techniques  the other, a more restrictive one, is covariance-based structural 
equation modelling (CB-SEM). SEM modelling strongly combines empirics with the-
ory (Skrodzka, 2016, p. 283). The use of SEM-PLS, rather than CB-SEM, seems appro-
priate for the topic under study. Several arguments support this, including (Hair et al., 
2011, pp. 139–141): (1) institutions do not have an elaborated theory of econometric 
modelling, so the aim of the study is not to test theory but to create a new one; (2) the 
number of observations is rather small (27 EU countries); (3) the data do not follow 
a normal distribution (characteristics of macroeconomic data); (4) it is planned to use 
the values of latent variables to linearly order the objects in terms of the level of directly 
unobservable phenomena. 

Each SEM-PLS model consists of two sub-models: an internal (structural) one and 
an external (measurement) one (Skrodzka, 2016, pp. 282–283). The first one describes 
the relationships between latent variables, while the second one presents the relation-
ships between latent variables and their diagnostic variables. The general form of the 
internal model is presented in Formula 1. 

ξ α ∑ α ξ→ ε        (1) 

where: ξj –j-th endogenous latent variable; ξq –q-th exogenous latent variable; α0j – lo-
cation parameter of the internal relationship for the endogenous variable; αqj – struc-
tural parameter of the internal model showing the link between the q-th exogenous 
variable and the j-th endogenous variable; εj – random error of the internal relation for 
j-th endogenous variable.

There are two types of relationships between latent structures and their explanatory 
variables in the external model: weighting (2) and reflective (3). The first one assumes 
that the latent variables are linear combinations of their explanatory indicators. Reflec-
tive relations represent the strength of the "reflection" of an unobservable feature by its 
explanatory variables (Rogowski, 1990, pp. 36–37). 

ξ ∑ w x          (2) 

where: ξjt – t-th value of the j-th latent variable; xijt – t-th value of i-th indicator explain-
ing j-th latent variable; wij – weight of i-th indicator explaining j-th latent variable. 

x π π ξ μ  (3) 

where: πij0 – location parameter of reflective relationship; πij – factor loading, the rela-
tionship of reflecting the j-th latent variable by the i-th indicator; μij – random element 
whose expected value is equal to zero. 

Latent variables can be determined in two ways: deductively and inductively. In the 
deductive approach, the explanatory indicators are reflective, whereas in the inductive 
analysis they are formative. The reflective indicators should be highly correlated with 
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each other, while the formative ones are not (Hair et. al., 2014, pp. 46–47). Depending 
on the approach used, different measures of statistical validation are used. SEM-PLS 
proceeds in steps (Lohmöller, 1989, pp. 30–31): (1) First, the values of the weights are 
estimated. The estimation of weights is iterative. Estimation of internal values of 
weights can be done using the centroid, factorial or path scheme (preferred, used in this 
article). (2) Next, the values of the latent variables are calculated according to Formula 
2. (3) The next step is to calculate the values of factor loadings for the external model
and the parameters of the internal model using OLS. (4) The final step is to determine
the location parameters for the reflective and internal relationships (optional step
in cross-sectional models).

The estimated SEM-PLS model needs to be verified. The validation starts with the 
substantive analysis. It is assessed whether the model is consistent with the initial as-
sumptions and theory. It is also necessary to check the signs of the model parameters. 
Statistical verification involves the use of appropriate measures to assess specific prop-
erties of the model. Table 2 presents the measures and verification criteria divided into 
those appropriate for a structural model, an external model defined inductively (form-
ative indicators) and an external model defined deductively (reflective indicators). 

Table 2. Verification measures and criterions of SEM-PLS model 

Versification measure Brief description
Verification 

criterion 
validation of structural model 

variance  inflation   
factor (VIF) 

By using the VIF measure, collinearity of exogenous 
variables is checked.  

VIF < 5.00 

coefficient  of   
determination (R2) 

A classic measure of econometrics, it determines 
how much of the variation in an endogenous latent 
variable is explained by exogenous latent structures. 

lack of  
standard 

standard  deviation of 
parameter (Sα) 

The standard errors of the parameters are obtained 
using the bootstrapping procedure. The full evaluation 
of the significance of the parameters proceeds as in 
classical econometrics - t-student test. Alternative 
measure: standard deviations calculated using Tukey’s 
Jackknifing method - the “2s” rule for significance test-
ing. 

p-value < sig-
nificance level

Stone-Gaisser test 
value (S-G) 

Assessment of predictive ability. The S-G test value 
is obtained from the blindfolding procedure. Data for 
the model are blindfolded L times. Every L-th element 
is blindfolded and replaced by, for example, the arith-
metic mean of the others. Based on the substitution re-
lationships, predictions are determined from the 
SEM-PLS model, which can be used to calculate S-G 
test value. (L should belong to the interval <5,10>). 

S-G ≥ 0.00



114        M. Borkowski: Institutional equilibrium in EU economies…

Table 2. Verification measures and criterions of SEM-PLS model  (cont.) 

Versification measure Brief description
Verification 

criterion 
validation of outer model (formative approach) 

variance  inflation  fac-
tor  (VIF) 

In formative outer models indicators forming a la-
tent variable should not be highly correlated with each 
other. 

VIF < 5.00 

standard  deviation of 
weight (Sα) 

Same as for testing the significance of the internal relationship pa-
rameter. 

validation of outer model (reflective approach) 
Cronbach’s α 

composite reliability 
(pc) 

Internal consistency verification. Reflective indica-
tors should be highly correlated with each other. 

0,95 > Cb’s α 
and pc > 0.70 

πij – factor loading 
value 

average variance ex-
tracted (AVE) 

Convergent reliability validation. Variables that 
have less than 0.40 strength of correlation with the la-
tent variable should be removed. Latent construct 
should extract more than 50% of total variability. 

πij ≥ 0.40 
AVE ≥ 0.50 

standard  deviation of 
factor loading (Sα) 

Same as for testing the significance of the internal relationship pa-
rameter and weights. 

cross loadings analysis 

Discriminatory validity assessment. Indicators of a 
given latent variable should be the ones that correlate 
most strongly with that variable. Alternatives: Fornell-
Larcker criterion or Heterotrait-monotrait ratio 
(HTMT). 

- 

Source: own work on the basis of: (Hair et al., 2014; Rogowski, 1990). 

Two computational packages from the R environment will be used to estimate the 
SEM-PLS model: cSEM (Rademaker & Schuberth, 2021) and SEMpls (Monecke & 
Leisch, 2012). 

4. Data

A precise quantitative analysis of the quality of institutions is, and probably will
always be, impossible. This is mainly because institutions are deeply embedded in soci-
ety. Contemporary attempts to assess the quality of institutions are based on measures 
prepared by inter-national statistical organizations. Many institutional researchers 
deny the use of such indicators. They believe that the study of institutions can only have 
a qualitative dimension (Skarbek, 2020, p. 409).  
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Table 3. Selected measures of quality of institutions 

Statistical 
organization Report/ roup of measures Formal or 

informal 
Range 
values 

World Bank The Worldwide Governance Indicators (WGI) formal <-2.5;2.5> 
Doing Business (DB) formal varied 

Heritage  
Foundation Index of Economic Freedom mainly 

informal <0;100> 

Fraser Institute Economic Freedom in the World (EFW) formal <0;10> 
Fraser Institute  
& Cato Institute Human Freedom in the World (HFW) informal <0;10> 

Freedom  
House Freedom in the World (FIW) mainly 

informal varied 

Source: own work. 

Doubts about the use of these types of metrics seem justified. The greatest objec-
tions arise for methodological reasons. Institutional indicators are more often created 
on the basis of surveys or experts' opinions rather than on the basis of "hard" data. Alt-
hough such measures do not reflect the reality in a one-to-one ratio, they give some 
general approximation of the quality of institutions. However, in the opinion of many 
researchers of institutions (Balcerzak, 2020; Miłaszewicz & Nermend, 2020; Nifo & 
Vecchione, 2015), such measures can be used to assess the quality of institutions. Nev-
ertheless, the interpretation of the results should be approached carefully. Table 3 pre-
sents a brief description of the indicators used. 

5. Specification of the SEM-PLS model

Figure 1 shows the specification of the SEM-PLS model that will be estimated in this
paper. The model consists of two latent variables: quality of informal institutions (INF) 
and quality of formal institutions (FOR). The explanatory variables of the latent con-
structs are defined deductively (reflective indicators). 

Figure 1. Specification of SEM-PLS model applied in the article 
Source: own work. 

INF FOR 

IF1 

IF6 

F1 

F5 

outer model outer model

inner model
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The selected explanatory indicators for each latent variable are presented in Table 
4. The FOR variable (quality of formal institutions) is reflected by five variables, which
represent the quality of law system, property rights, regulatory institutions and institu-
tions for macroeconomic stabilization. While INF (quality of informal institutions) is
explained by six variables pertaining to freedom (personal, political and economic) and
culture (religion, social behaviour).

Table 4. Measures of the quality of institutions (outer model specification) 

Symbol Variable Source of data

the quality of formal institutions (FOR) 
F1 Rule of Law World Bank (WGI) 

F2 Legal enforcement of contracts 

Fraser Institute (EFW) F3 Business regulations 

F4 Regulation 

F5 Property Rights Heritage Foundation 

the quality of informal institutions (INF) 
IF1 Media Freedom 

Fraser Institute & Cato Institute 
(HFW) 

IF2 Expression & Information 

IF3 Association, Assembly, & Civil Society 

IF4 Freedom of Expression and Belief 
Freedom House  

(FIW) IF5 
Personal Autonomy and Individual 
Rights 

IF6 Business Freedom Heritage Foundation 

Source: own work. 

The presented set of diagnostic variables was selected on the basis of substantive 
and statistical (classical coefficient of variation higher than 5% and positively verified 
SEM-PLS model) evaluation. Variables: IF2 and IF3 are characterized by a slightly lower 
coefficient of variation than 5%. Nevertheless, the variables remained in the study be-
cause of their substantive relevance. 

The internal sub-model is in the form of a single equation (Formula 4). The formula 
represents the dependence of informal institutions (INF) on formal ones (FOR). The 
relationship was determined on the basis of theoretical analysis. It is the informal norms 
that are of fundamental importance in the economy, they affect the entire institutional 
system, but also are the basis for the establishment of formal institutions. 

FOR α INF α ε  (4)



STATISTICS IN TRANSITION new series, June 2022 117 

The values of the latent variables will be used to construct an institutional equilib-
rium matrix to divide economies into four typological groups of equilibrium levels 
(Figure 2). Countries will be divided into those with: institutional equilibrium, weak 
formal equilibrium, weak informal equilibrium and institutional disequilibrium. 

Figure 2. Institutional equilibrium matrix 
Source: own work. 

6. Research findings and discussion

6.1.  Institutional equilibrium in the EU countries in 2008 – SEM-PLS results 

Table 5 presents the estimates of the external sub-model of SEM-PLS model for 
2008. The significance of the factor loadings was checked using the bootstrapping pro-
cedure. The number of samples was set at 5 000. At a significance level of 5% (p < 5%), 
it can be concluded that all parameters are significantly different from zero. All indica-
tors, both of the INF and FOR latent variables, are consistent in sign – they are all stim-
ulants, which is consistent with the initial assumptions and economic theory.  

Post-measurement convergent reliability is also observed – the values of factor 
loadings are greater than 0.4000. In addition, variables with a loading factor value of 
less than 0.7000 were examined in detail. Moreover, latent variables explain over 50% 
of total variability of unobservable phenomena. Based on the results, the internal con-
sistency of the latent variables can be concluded (internal consistency measures takes 
values above 0.7000 and under 0.9500).  

The strongest correlated indicator with the latent variable INF is IF1 (0.9212), which 
is the media freedom variable. The least correlated is IF3 (0.5530) – an indicator de-
scribing Association, Assembly & Civil Society in the economy. The values of the FOR 
variable are most strongly reflected by F1 (0.9412) – a synthetic measure of the rule of 
law. The lowest factor loading of the FOR variable is found with F4 (0.4027), a variable 
describing the general quality of regulation. 

0.00 INF 

FOR 

institutional equilibrium 
FOR + 

NFOR + 

weak informal equilibrium  
FOR − 

NFOR + 

institutional disequilibrium  
FOR − 

NFOR −

weak formal equilibrium  
FOR + 

NFOR − 



118                                                                         M. Borkowski: Institutional equilibrium in EU economies… 

 

 

Table 5. Parameters of the outer sub-model (SEM-PLS model for 2008) 

Symbol Factor loading (st. dev.) t stat p-value AVE α-Cb pc 

the quality of formal institutions (FOR) 

F1 0.9412 (0.0231) 40.6819 0.0000 

0.6437 0.8485 0.8947 

F2 0.8134 (0.0697) 11.6706 0.0000 

F3 0.8005 (0.0880) 9.0936 0.0000 

F4 0.4027 (0.1963) 2.0513 0.0402 

F5 0.9318 (0.0187) 49.8499 0.0000 

the quality of informal institutions (INF) 

IF1 0.9212 (0.0237) 38.9112 0.0000 

0.5716 0.8440 0.8859 

IF2 0.6619 (0.1040) 6.3661 0.0000 

IF3 0.5530 (0.1932) 2.8620 0.0042 

IF4 0.8049 (0.0679) 11.8502 0.0000 

IF5 0.8721 (0.0427) 20.4331 0.0000 

IF6 0.6545 (0.1198) 5.4634 0.0000 

Source: own work. 

Table 6 presents cross loadings between FOR and INF variables in SEM-PLS model 
for 2008. The model has good discriminative abilities - the indicators were properly 
assigned to the latent structures in the model. The measurement model is considered 
to be positively validated. 

Table 6. Cross loadings between latent variables in SEM-PLS model (2008) 

Symbol FOR INF  Symbol FOR INF 

F1 0.9412 0.8833  IF1 0.8371 0.9212 

F2 0.8134 0.6162  IF2 0.4458 0.6619 

F3 0.8005 0.6182  IF3 0.3873 0.5531 

F4 0.4028 0.3077  IF4 0.6765 0.8049 

F5 0.9317 0.9003  IF5 0.7886 0.8721 

    IF6* 0.6834 0.6546 

* Variable IF6 – Business Freedom – correlates a bit stronger with FOR than INF. Nevertheless, this 
variable remained in the modelling due to its substantive relevance 
Source: own work. 

The quality of informal institutions strongly, positively determine (0.8771) the 
quality of formal institutions (Formula 5). This is consistent with theory. Informal in-
stitutions are the core of every institutional system. The parameter at the latent variable 
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INF is statistically significant at the 1% level (p < 1%). The variability of FOR is ex-
plained in more than 77% by the variability of INF – the result should be considered 
satisfactory. The SEM-PLS (2008) model also has fairly good predictive ability (S-G test 
for the FOR variables at 10 folds is equal to 0.45). 

FOR
0.8771∗∗∗

0.0376 INF 8.7850   (5) 

The SEM-PLS model estimated for data from 2008 is considered to be positively 
verified both substantively and statistically. The estimated SEM-PLS model allowed to 
estimate the values of the latent variables of the quality of formal institutions (FOR) and 
informal institutions (INF) for the 27 EU economies. Figure 3 presents the institutional 
equilibrium matrix for the EU economies in 2008. Countries were divided into four 
typological groups ac-cording to the level of institutional equilibrium. Institutional 
equilibrium was recorded in 11 economies, weak informal equilibrium in 5, institu-
tional disequilibrium in 11. There was no countries with weak formal institutional equi-
librium in 2008. 

Figure 3. Institutional equilibrium matrix in 27 EU economies in 2008 
Source: own work. 

The results show that researched economies are diversified in terms of the quality 
of institutional equilibrium. In 2008, institutional equilibrium was mainly found 
in highly developed EU countries (e.g. Denmark, Sweden, Finland, Luxemburg, Ger-
many), while institutional disequilibrium was recorded mainly in underdeveloped 
countries (Bulgaria, Romania, Greece). 
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Figure 4. Institutional equilibrium and GDP per capita in 2008 (27 EU economies) 
Source: own work. 

Analysis of the statistical data may allow one to conclude that as institutional equi-
librium improves, the level of GDP per capita in the economy rises. The average level 
of GDP per capita in economies with an observed institutional equilibrium is more than 
$51 thousand, while the average level of GDP per capita in countries with institutional 
imbalances is the lowest, at about $19 thousand. Figure 4 presents the institutional equi-
librium matrix and GDP per capita in 2008 for 27 researched EU economies. As it turns 
out, institutional systems in developed economies are in institutional equilibrium. 

6.2.  Institutional equilibrium in the EU countries in 2018 – SEM-PLS results 

The parameter estimates of the outer sub-model of the SEM-PLS model of the de-
pendence of the quality of formal institutions on the quality of informal ones was pre-
sented in Table 7. All parameters are statistically significant at the p < 1% level. More-
over, outer sub-model is coincident. Cronbach’s α and composite reliability values in-
dicate the internal consistency of the latent variables. There is also convergent validity 
noted. 

The strongest changes in the value of the latent variable informal institutions (INF) 
are reflected by the synthetic indicator representing media freedom (IF1, 0.9066). 
The Association, Assembly & Civil Society (IF3, 0.7879) variable is the least correlated 
with the latent variable INF. The formal institutions (FOR) variable is reflected by the 
rule of law measure (F1, 0.9480) in the strongest way, while the general regulation in-
dictor (F4, 0.5935) has the lowest factor loading value. The results are similar compared 
to the sub-model estimated for data from 2008. 
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Table 7. Parameters of the outer sub-model (SEM-PLS model for 2018) 

Symbol Factor loading (st. dev.) t stat p-value AVE α-Cb pc 
the quality of formal institutions (FOR) 

F1 0.9480 (0.0162) 58.4582 0.0000 

0.7305 0.9031 0.9297 

F2 0.8351 (0.0640) 13.0567 0.0000 
F3 0.9258 (0.0179) 51.8289 0.0000 
F4 0.5935 (0.1299) 4.5685 0.0000 
F5 0.9203 (0.0234) 39.2777 0.0000 

the quality of informal institutions (INF) 
IF1 0.9066 (0.0280) 32.3694 0.0000 

0.7147 0.9198 0.9375 

IF2 0.8278 (0.0570) 14.5295 0.0000 
IF3 0.7879 (0.0960) 8.2037 0.0000 
IF4 0.8805 (0.0456) 19.3152 0.0000 
IF5 0.7911 (0.0531) 14.9022 0.0000 
IF6 0.8713 (0.0648) 13.4453 0.0000 

Source: own work. 

Table 8 contains a cross loadings between latent variables in SEM-PLS model esti-
mated for data from 2018. Cross loadings values indicate that the variables were cor-
rectly assigned to the latent structures. The discriminant ability of the external model 
can be positively validated. 

Table 8. Cross loadings between latent variables in SEM-PLS model (2018) 

Symbol FOR INF Symbol FOR INF 
F1 0.9480 0.7694 IF1 0.7232 0.9066 
F2 0.8351 0.4930 IF2 0.6404 0.8278 
F3 0.9259 0.8188 IF3 0.4787 0.7879 
F4 0.5935 0.3909 IF4 0.6494 0.8805 
F5 0.9203 0.7571 IF5 0.7563 0.7911 

IF6 0.6885 0.8713 

Source: own work. 

Latent variable FOR is strongly, positively (0.7891) determined by INF latent vari-
able (Formula 6). The relationship is statistically significant at the level of 1%. Again, 
the thesis that informal institutions are the core of the institutional system is confirmed. 
The coefficient of determination is at the level of 0.62, which indicated quite good, but 
satisfactory, model fit. S-G test value (10 folds) is equal to 0.43 – SEM-PLS model has 
fairly good abilities to predict blindfolded observations. 

FOR
0.7891∗∗∗

0.0543 INF 1.8568 (6)
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The analysed SEM-PLS model for 2018 is considered to be positively verified both 
in terms of substantial and statistical criterions. The consequence is that the latent var-
iable values can be used for the institutional equilibrium designation. 

Figure 5 shows the institutional equilibrium matrix for the 27 EU economies 
in 2018. Institutional equilibrium was recorded in 11 economies, weak informal equi-
librium in 2, weak formal equilibrium in 2. The remaining EU countries (12) were clas-
sified into the group of countries with institutional disequilibrium. 

 

 
Figure 5.  Institutional equilibrium matrix in 27 EU economies in 2018 
Source: own work. 

Institutional equilibrium is characteristic of highly developed countries (e.g. Fin-
land, Denmark, Sweden, Ireland, Netherlands or Germany) in the European Union, 
while institutional disequilibrium occurs in economies of a low level of economic de-
velopment (e.g. Bulgaria, Romania, Slovakia). 

 
Figure 6.  Institutional equilibrium and GDP per capita in 2018 (27 EU economies) 
Source: own work. 
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The mean level of GDP per capita in the EU countries with institutional equilib-
rium is more than $53 thousand in 2018. As institutional equilibrium gets worse, the 
level of GDP per capita in the economy falls down. Countries with institutional dise-
quilibrium achieve relatively low levels of GDP per capita on average (approximately 
$21 thousands in 2018). Figure 6 presents the equilibrium matrix and GDP per capita 
in 2018 for EU economies. Sustainable institutional systems imply higher levels of eco-
nomic development. It turns out that institutional equilibrium is an important factor 
of economic development of modern world economies. 

7. Conclusions

The main aim of the article was to identify the relationship between formal and
informal institutions, as well as to measure and assess the institutional equilibrium of 
EU economies. The aim of the paper was achieved using SEM-PLS modelling. 

Three research hypotheses are considered to be positively verified. As it turned out, 
the efficiency of informal institutions strongly, positively determines the quality of for-
mal institutions. This is evidenced by the parameter of the internal relationship, which 
is equal to 0.8771 in 2008 and 0.7891 in 2018. The obtained results are consistent with 
economic and institutional theory. Informal institutions, which are the "core" of the 
institutional system, interact with formal ones. They strengthen their operation, but 
also set certain limits of their change. The strength of the relation between informal and 
formal rules is getting weaker over time. It seems that there is a trend in the EU econo-
mies towards disintegration rather than integration of the institutional structure. More-
over, institutional equilibrium positively influences the dynamics of economic devel-
opment processes. The higher the level of institutional equilibrium, the higher, on av-
erage, the level of earned income. 

The constructed models allowed for the assessment of the quality of formal and 
informal institutions, which enabled the construction of the institutional equilibrium 
matrix. In 2008, the highest efficiency of formal institutions was in Denmark and the 
lowest in Romania. In 2008, informal institutions were the strongest in Sweden and the 
weakest in Croatia. In 2018, Finland led the classification in terms of the FOR latent 
variable, while Greece closed the ranking. Sweden was characterised by the strongest 
informal institutions in 2018. The lowest quality of informal institutions in 2018 was 
observed in Hungary (this was also the largest fall in the ranking - from 16th place 
in 2008 to 27th place in 2018). Changes in the level of institutional equilibrium were 
not major. Noteworthy is the improvement in Lithuania, where institutional disequi-
librium was in 2008 and institutional equilibrium in 2018 (the largest improvement 
among the EU countries in 2018, compared to 2008).  
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The proposed research method can be a beneficial tool for monitoring the relation-
ship between formal and informal institutions. Moreover, the concept of measuring 
institutional equilibrium, admittedly very simple, can be a useful mechanism for insti-
tutional analysis.  

The analyses carried out in this paper indicate that EU economies are diversified 
in terms of the quality of informal and formal institutions and, consequently, in insti-
tutional equilibrium. Large institutional disparities also translate into a large diversifi-
cation in economic development. This problem would still appear to be still relevant 
and topical. 
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ABSTRACT 

Mental disorders are common non-communicable diseases whose occurrence rises at 
epidemic rates globally. The determination of the severity of a mental illness has important 
clinical implications and it serves as a prognostic factor for effective intervention planning 
and management. This paper aims to identify the relevant predictors of the severity of 
mental illnesses (measured by psychiatric rating scales) from a wide range of clinical 
variables consisting of information on both laboratory test results and psychiatric factors . 
The laboratory test results collectively indicate the measurements of 23 components 
derived from vital signs and blood tests results for the evaluation of the complete blood 
count. The 8 psychiatric factors known to affect the severity of mental illnesses are 
considered, viz. the family history, course and onset of an illness, etc. Retrospective data of 
78 patients diagnosed with mental and behavioural disorders were collected from the Lady 
Hardinge Medical College & Smt. S.K, Hospital in New Delhi, India. The observations 
missing in the data are imputed using the non-parametric random forest algorithm. 
The multicollinearity is detected based on the variance inflation factor. Owing to the 
presence of multicollinearity, regularisation techniques such as ridge regression and 
extensions of the least absolute shrinkage and selection operator (LASSO), viz. adaptive 
and group LASSO are used for fitting the regression model. Optimal tuning parameter λ is 
obtained through 13-fold cross-validation. It was observed that the coefficients of the 
quantitative predictors extracted by the adaptive LASSO and the group of predictors 
extracted by the group LASSO were comparable to the coefficients obtained through ridge 
regression. 
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1. Introduction

Mental disorders are common non-communicable diseases rising with epidemic
rates globally with over one third of people in most countries reporting sufficient 
criteria to be diagnosed at some point in their life (World Health Organization, 2000). 
The determination of the severity of mental illness has important clinical 
implications. Measures of severity help in the evaluation of outcome in treatment 
studies and may be used as a meaningful endpoint in clinical practice (Zimmerman, 
Morgan, & Stanton, 2018). It serves as an important prognostic factor for effective 
intervention planning and management. 

Blood has been regarded as a source of information on illness and health since 
ancient times. With the emergence of experimental medical techniques in the mid-
1800s, studies of blood have been carried out to identify physical characteristics that 
could be used to diagnose a psychiatric illness or assess the severity of its symptoms 
(Bahn et al. (2013)). In recent years, studies have increasingly been made on reports of 
blood tests such as platelets to understand psychiatric disorders, assess their impact 
on the severity of illness and evaluate the pharmacological properties of psychiatric 
drugs. Canan et al. (2012) showed that mean platelet volume (MPV) values were high 
in patients with major depression and decreased treatment.  

Various general psychiatric aspects (such as family history, onset and course of 
illness, number of episodes, etc.) commonly observed across all mental disorders 
significantly impact the diagnosis, prognosis, severity, and remission of mental illness. 
Various studies in the past have identified family history as a potential risk factor for 
developing a mental illness and have associated it with seriousness indicators of illness 
such as recurrence, impairment, and age at onset (Laursen et al. (2005); Milne et al. 
(2009)). The number of episodes plays a cardinal role in determining the severity of 
illness. It has been observed that patients with a higher number of episodes have 
a more severe outcome (Marzo et al. (2006)). Such patients are more likely to relapse 
than those with fewer episodes. The onset of illness refers to how the symptoms of the 
disease begin to appear in a patient. The onset of symptoms in mental illness is known 
to be a prognostic indicator of its severity. The course of illness refers to the usual 
trajectory the disease follows from the onset of the first symptom until recovery or 
death.  The course reflects the different grades of the severity of the illness. It has been 
observed that the chronic course of illness is associated with higher levels of 
depressive and somatic symptoms and greater mental dysfunction (Stegenga et al. 
(2010)). Studies in the past have shown that a higher amount of alcohol and tobacco 
consumption is found to be associated with greater severity of illness (Goldstein, 
Velyvis, & Parikh (2006); Krishnadas et al. (2012); Dwivedi, Chatterjee, & Singh 
(2017)). Further, Brådvik (2018) suggested that suicidal ideation and self-harm are 
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related to mental illness. Insight of an illness is defined as a patient's capacity to 
understand the nature, significance, and severity of his or her illness. Literature 
suggests that insight interacts with the trajectory of the person's illness and predicts 
outcome in psychosis. It is found that the severity of illness increases with 
a progressive loss of insight (McDaniel, Edland, & Heyman (1995); Jacob (2016)). 
Although each mental disorder has its own complications and risks involved, a certain 
illness is considered to be more severe than others owing to the level of disability 
caused by them. These illnesses include disorders that produce psychotic symptoms, 
such as schizophrenia, and severe forms of other disorders, such as major depression 
and bipolar disorder (World Health Organization (2003)). Thus, different types of 
mental disorders have different severity levels. These worsen the symptoms and the 
course of mental illness. 

Missing values are commonly encountered in medical datasets, especially mental 
disorders. Performing analysis with only complete patient datasets leads to a smaller 
sample size resulting in a loss of statistical power and bias in the estimation of 
parameters. Multiple imputation is a robust technique for handling missing data. 
In this approach, a prediction of the missing data is made using the existing data from 
other variables. There are several imputation methods available based on different 
statistical models such as regression, Random Forest, etc.  

The inclusion of a large number of variables in a regression model often results 
in multicollinearity. Multicollinearity refers to high inter-correlations or inter-
associations among the independent variables. The existence of multicollinearity 
affects the estimation of the model as well as the interpretation of the results. It leads 
to biased coefficient estimation and a loss of power. The regression models based on 
regularization techniques such as l1 (Least Absolute Shrinkage and Selection Operator 
(LASSO) Regression; Tibshirani (1996)), l2 (Ridge Regression; Hoerl and Kennard 
(1970)) and elastic net (Zou and Hastie (2005)) model, can solve this problem by 
adding a penalty to model parameters (except intercept) so the model generalizes the 
data instead of overfitting. Both ridge and LASSO regression belong to the class of 
penalised regression models. The key difference between these two techniques lies 
in the penalty that is imposed on the model. LASSO selects features that are predictive 
of the outcome by penalizing irrelevant features’ weights to zeros while the ridge 
regression penalizes the irrelevant features by converging their weights to zero but 
never exactly equal to zero. Thus, both LASSO and ridge identify relevant predictors, 
however, LASSO is considered to be advantageous over ridge since it performs 
variable selection as well.  

 Many previous studies have used regularization regression models with multiply 
imputed data to determine relevant predictors from a class of independent variables 
(Jain (1985)). Brewer et al. (2009) used ridge and LASSO regression to predict an 
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individual’s score on the Unified Parkinson Disease Rating Scale based on Advanced 
Sensing for Assessment of Parkinson’s disease (ASAP) data. Haenisch et al. (2016) 
identified protein analytes from a blood-based panel as potential biomarkers for 
diagnosing bipolar disorder using LASSO regression. Upadhya & Cheeran (2018) 
compared six regression techniques including ridge and LASSO to predict the 
Parkinson disease severity score using speech features. 

Although, LASSO is an oracle procedure for simultaneously achieving consistent 
variable selection and optimal estimation (prediction), however, there are many solid 
arguments against the LASSO oracle statement (Zou (2006)). Further, Zhao and Yu 
(2006) showed that variable selection with LASSO could be consistent if the model 
satisfies some irrepresentable conditions. These conditions are restrictive and for data 
sets that fail to satisfy them, LASSO may not select the correct model. Therefore, to 
recognize relevant predictors some improvements of LASSO model have been 
proposed. The adaptive LASSO is a new version of the LASSO, in which adaptive 
weights (data driven) are used for penalizing different coefficients in the l1 penalty. 
It also enjoys the oracle properties (Zou (2006)). 

In some problems, when the predictors belong to pre-defined groups or factors; 
for example, collections of indicator (dummy) variables for representing the levels of a 
multiple categorical predictor such as onset and course of illness, LASSO and the 
adaptive LASSO are not suitable for variable selection as they are designed for 
selecting individual input variables. When directly applied to model they tend to 
select based on the strength of individual derived input variables rather than the 
strength of groups of input variables, often resulting in selecting more factors than 
necessary. In this situation it may be desirable to shrink and select the members of 
a group together. The group LASSO is a generalization of the LASSO for doing group-
wise variable selection by introducing a suitable extension in the penalty of LASSO 
(Yuan & Lin (2006)).  

This paper aims to identify relevant predictors for estimating the severity of 
mental illness (measured by psychiatric rating scales) from a wide range of clinical 
variables consisting of information on both laboratory test results and psychiatric 
aspects. The laboratory test results collectively indicate measurements on 
23 components derived from vital signs and blood tests (complete blood count 
(CBC)) results such as diastolic and systolic blood pressure (DBP, SBP), pulse rate, 
haemoglobin (hb), red blood cell (RBC), etc. Further, 8 psychiatric factors known to 
affect severity of mental illness are considered, viz. family history (fh), number of 
episodes experienced by the patient (epi), onset and course of illness (onset), etc. 
The impact of covariates age and gender is also studied.  

To achieve our aim, firstly missing values in the data consisting of 34 variables are 
imputed using the non-parametric random forest algorithm. Secondly, the problem of 
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multicollinearity between explanatory variables is detected based on variance inflation 
factor (VIF). Since coefficients estimated from linear regression are biased in the 
presence of multicollinearity, thus, regularization techniques are used for fitting the 
regression model. Thirdly, prior to application of regularized regression models to the 
data, the dummy coding is applied to the 8 categorical variables consisting of clinical 
information on psychiatric factors related to mental disorders. These 8 categorical 
variables transform into 26 dichotomous variables with each variable representing 
each category. Fourthly, the ridge regression is applied to a total of 51 regressors 
including 25 quantitative and 26 binary variables with response variable being 
psychiatric rating scale score (RSS). Next, the adaptive LASSO is applied to the 
25 quantitative variables including clinical variables consisting of information on vital 
signs and laboratory test result reports, age and number of episodes to extract the 
relevant predictors of RSS. Finally, the group LASSO is applied to the 26 dichotomous 
variables representing 8 groups of psychiatric variables to extract the relevant groups. 

To the best of our knowledge, none of the previous studies has attempted to assess 
the relationship of such diverse and wide range of predictors with the severity of 
mental illness. The outline of the rest of the paper is as follows: Section 2 describes the 
dataset used for the application of methods discussed in Section 3. In Section 4, 
the application of the model to the dataset along with the results is discussed. 
The paper is concluded with a discussion in Section 5. 

2. Data description

The retrospective data considered for this study consisted of 146 patients
diagnosed with mental and behavioural disorders as per DSM-V (American 
Psychiatric Association (2013)) and ICD-10 (World Health Organization (1992)), 
collected from the Department of Psychiatry, Lady Hardinge Medical College & Smt. 
S.K, Hospital, New Delhi, India for the calendar year 2013-2014. The patients were
diagnosed with Bipolar Affective Disorder (BPAD), schizophrenia, depression, and
other disorders. The others category includes disorders, viz. Acute Transient
Psychotic Disorder (ATPD), dementia, psychotic disorder: Not otherwise Specified
(NOS), and alcohol abuse. Out of these 146 patients, only 78 patients could be
included in the study as the clinical information on psychiatric variables as well as
laboratory test result reports were available for them. The dataset of the remaining
68 patients was completely unavailable with respect to the variables considered in the
study (i.e. either complete information on psychiatric variables and/or laboratory test
reports were unavailable or both) and hence they were excluded.

The severity of mental disorders considered in this study is measured by various 
psychiatric rating scales recommended for each disorder. Since rating points as well as 
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range of total scores vary in different psychiatric rating scales, thus, to maintain 
homogeneity, the total scores of these psychiatric rating scales are scaled down to 
100 and denoted as RSS. RSS is the response variable under consideration. 
The regressors considered suitable for the study are classified into two categories: 1) 
clinical information related to vital signs and laboratory test result reports consisting 
of 23 variables, viz. Diastolic Blood Pressure (DBP) (mmHg), Systolic Blood Pressure 
(SBP) (mmHg), Pulse Rate (pulse per min), Haemoglobin (hb) (g/dL), Red Blood Cell 
(RBC) (million/L), Mean Corpuscular Hemoglobin (MCH) (pg), Mean Corpuscular 
Volume (MCV) (fL), Mean Corpuscular Hemoglobin Concentration (MCHC) (g/dL), 
Total Leukocyte Count (TLC) (cells/L), Platelet (thousand/L), Blood Urea (b.urea) 
(mg/dL), Serum Creatinine (sr.cr) (mg/dL), Sodium (NA) (mEq/L), Potassium (K) 
(mEq/L), Serum Bilirubin (S.Bil) (mg/dL), Alanine Aminotransferase (ALT) (IU/L), 
Aspartate Aminotransferase (AST) (IU/L), Alkaline Phosphatase (ALP) (IU/L), Total 
Cholesterol (TCHOL) (mg/dL), High-Density Lipoprotein (HDL) (mg/dL), 
Triglycerides (S.TG) (mg/dL), Haematocrit or Packed-Cell Volume (PCV) (%) and 
Random Blood Sugar (RBS) (mg/dL). 2) The second category consists of clinical 
information on 8 psychiatric variables, viz. family history (fh), number of episodes 
experienced by the patient (epinew), onset of illness (onset), course of illness (course), 
alcohol or tobacco abuse (abuse), type of disorder (discode), suicidal ideation or self-
harm (sui_sharm) and insight of illness (insight). The codes used for categorical 
variables are defined as follows: 

i. Family history (fh): ‘0’ and ‘1’ indicate absence and presence of family 
history, respectively. 

ii. Onset of illness (onset): ‘1’, ‘2’, ‘3’, ‘4’ and ‘5’ indicate abrupt/sudden, acute, 
chronic, insidious, and sub-acute, respectively. 

iii. Course of illness (course): ‘1’, ‘2’, ‘3’ and ‘4’ indicate continuous and 
progressive, continuous, episodic, and fluctuating, respectively. 

iv. Abuse: ‘1’ and ‘2’ indicate absence and presence of alcohol or tobacco abuse, 
respectively. 

v. Type of disorder (discode): ‘1’, ‘2’, ‘3’ and ‘4’ indicate Bipolar affective 
disorder (BPAD), Depression/Depressive disorder, Others, and 
Schizophrenia, respectively. 

vi. Suicidal ideation or self-harm (sui_sharm): ‘1’ implies absence while ‘2’ 
indicates presence of suicidal ideation and/or self-harm in the patient. 

vii. Insight: The grades of insight are as suggested by Sadock (2009).  

Two other covariates considered are: age and gender. For gender, categories ‘1’ 
and ‘2’ indicate female and male, respectively.  
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3. Methods

Let there be  observations of a response variable and 𝑝 associated predictor 
variables . In this study, the response variable  indicates the severity 
of illness quantified in terms of the total score of the psychiatric rating scale, denoted 
as RSS. (Here,  and ). Out of these 33 predictors, 

 
represent 

23 features of laboratory test results and vital signs, viz. 𝑋 ~𝐷𝐵𝑃, 
 
𝑋 ~𝑆𝐵𝑃,  

𝑋 ~𝑃𝑢𝑙𝑠𝑒 𝑅𝑎𝑡𝑒, … ,𝑋 ~𝑃𝐶𝑉,
 
X

24
, X

25
 and X

26
represent covariates age, gender and 

number of episodes while the remaining 7 variables represent thecategorical predictors 
of psychiatric factors, i.e.

  X27
~ family  history( fh), X

28
~onset  of  il lness(onset),...., X

33
~ Insight . 

3.1.  Method of imputation of missing observations  

For imputing the missing values in the predictors, the imputation method given 
by Stekhoven and Bühlmann (2012) is used. Under this method, the missing values 
are predicted using a Random Forest (RF) trained on the observed parts of the dataset. 
The performance of the imputation method is assessed using the normalized root 
mean squared error (NRMSE) (Oba et al. (2003)) for the continuous variables and the 
proportion of falsely classified entries (PFC) over the categorical missing values. For 
both continuous as well as categorical variables, a value close to 0 indicates good 
performance.  

3.2.  Multicollinearity detection 

Amongst the numerous approaches to detect multicollinearity in the data, namely 
determinant approach, Farrar and Glauber test (Farrar & Glauber (1967)), condition 
index (Belsley (1991)), Leamer’s method (Greene (1993)) and variance inflation factor 

(VIF), the VIF is the most commonly used method. Let  
R
i
2  denote the coefficient of

multiple determination of  regressed on the remaining  	(p1) explanatory

variables. For the , VIF is defined as 

VIF
i


1
(1R

i
2)

. (1) 

A VIF of 5 or more indicates serious or excessive multicollinearity (Akinwande, 
Dikko and Samson (2015); Jongh et al. (2015)). 

3.3.  Dummy coding  

Dummy coding is a method of representing a categorical variable into a series of 
dichotomous variables. For the categorical/qualitative predictors with K-levels, 

K indicator dummy/binary variables are created. Suppose Xi  is a K-level factor
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input, then let
 
X
ij
 ( j 1,2,...,K ) be such that X

ij
 I X

i
 j . Together this group of X

ij

represents the effect of Xi  (Hastie, Tibshirani & Friedman (2009)).

3.4.  Regularization techniques  

Regularization is the process of penalizing the coefficients of predictor variables 
so that the resulting model has better predictive power.  In this paper, the following 
types of regularization techniques, viz. ridge, group LASSO and adaptive LASSO are 
used to identify the predictors of severity of illness (Hoerl and Kennard (1970), 
Hastie, Tibshirani, & Wainwright (2015); James et al. (2013); Yuan and Lin (2006); 
Zou (2006)).  

3.4.1.  Ridge regression  

Ridge regression is a variant of least squares regression in which the sum of 
squared errors is minimized, with an upper bound on the sum of squared values of the 
model parameters. In particular, the ridge regression coefficient estimates are 

obtained by solving the  optimization problem 

subject to (2)

This equation is equivalent to solving  

 (3) 

where , known as the tuning parameter, controls the strength of the penalty. 
The larger the value of , the greater the amount of shrinkage. The second term, 

 is called shrinkage penalty.  

3.4.2.  Least absolute shrinkage and selection operator (LASSO) regression 

LASSO is a regularization and variable selection method for statistical models. 
Under this technique, the sum of squared errors is minimized, with an upper bound 
on the sum of the absolute values of the model parameters. The LASSO estimate is 

defined by the solution to the  optimization problem  
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where  is the norm of  and  is a user-specified parameter. 

This optimization problem is equivalent to the parameter estimation that follows  

                 (5) 

where is as defined in section 3.4.1. When the optimization problem is minimized, 

some coefficients shrink to zero, i.e. , for some values of , resulting 
in exclusion of some predictors.  

Zhao and Yu (2006) showed that variable selection with LASSO could be 
consistent if the underlying model satisfies some irrepresentable conditions. 
The irrepresentable condition that should be satisfied is defined as follows: 

Let 𝑿 𝑿𝟏,𝑿𝟐 , where 𝑿𝟏 and 𝑿𝟐 is the subset of 𝑿 that contains the relevant 
and irrelevant predictor variables, respectively. Let 𝜷𝟏be the coefficients of 𝑿𝟏. 
The covariance matrix of 𝑿 can be computed as 𝚺 𝑛 𝑿 𝑿, which is a symmetric 
matrix. Let 𝑪𝟏𝟏 𝑛 𝑿𝟏 𝑿𝟏 and 𝑪𝟐𝟐 𝑛 𝑿𝟐 𝑿𝟐 be the covariance matrix of 
relevant and irrelevant predictor variables, respectively. Let 𝑪𝟏𝟐 𝑛 𝑿𝟏 𝑿𝟐 and 
𝑪𝟐𝟏 𝑛 𝑿𝟐 𝑿𝟏 be the covariances between relevant and irrelevant variables. Then, 
𝚺 can be expressed in block-wise form as 

𝚺
𝑪𝟏𝟏 𝑪𝟏𝟐
𝑪𝟐𝟏 𝑪𝟐𝟐

 

Assuming 𝑪𝟏𝟏 is invertible, the irrepresentable condition can be defined as: 

𝑪𝟐𝟏𝑪𝟏𝟏
𝟏𝑠𝑖𝑔𝑛 𝜷𝟏 1 , and the inequality holds elementwise.   (6) 

These conditions are restrictive and may not hold for all datasets. Thus, the 
adaptive LASSO model, which is an improvement over LASSO, is used. 

3.4.3.  Adaptive LASSO 

The adaptive LASSO is an extension of LASSO, in which adaptive weights are 

used for penalizing different coefficients in the 
 
l
1  penalty (Zou (2006)). Suppose that 

𝛽 is a root- n–consistent estimator to 𝛽. Let 𝛽  be the ordinary least square estimate, 
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3.4.4.  Group LASSO 

The group LASSO is a generalization of LASSO for performing group-wise 
variable selection (Yuan and Lin (2006)). Suppose that u predictors are divided into L 
groups, with u

l
 being the number in group l. Let 𝑋  represent the predictors 

corresponding to lth group, with corresponding coefficient vector 
l
. The group 

LASSO minimizes the convex criterion 


argmin
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, (8) 

where the u
l

terms account for the varying group sizes. This procedure encourages
sparsity at both the group and individual levels. That is, for some values of λ, an entire 
group of predictors may drop out of the model (Hastie, Tibshirani & Friedman 
(2009)).  

Figure 1 presents the steps followed during the course of this study. 

Figure 1.  Flowchart of steps followed during the course of the study  

4. Results

This section displays the results obtained on stepwise application of methods
(discussed in previous section) to the dataset considered.  

Step 1: Imputation of Missing Observations

Step 2: Multicollinearity Detection

Step 3: Dummy Coding of Categorical Variables

Step 4: Application of ridge Regression on all quantitative and 
dichotomous variables  (resulting from dummy coding)

Step 5: Application of adaptive Lasso on quantitative variables

Step 6: Application of group Lasso on group of dichotomous 
variables  (resulting from dummy coding)
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4.1.  Imputation of missing observations 

The missingness in the data can be visualized graphically in Figure 2. 

Figure 2.  Visual representation of missingness in data. 

In Figure 2, black colour shows the location of missing values with respect to each 
variable. The information on the percentage of missing values overall (in the legend), 
and in each variable is also provided. Missing observations are imputed using 
the non-parametric random forest algorithm described in section 3.1. Table 1 presents 
the Out-of-bag (OOB) error associated with imputation of missing observations.   

Table 1.  Estimated Out-of-bag (OOB) imputation error 

Error type Result 
NRMSE 0.2921

PFC 0.3278

The NRMSE and PFC are not far from zero, indicating not much error is 
committed in imputing data. The descriptive statistics of quantitative variables and 
the summary of frequencies for categorical variables after imputation are presented 
in Tables 2 and 3. 
Table 2.  Descriptive statistics of quantitative variables after imputation 

S. no. Variable Min Max Median Mean Stdev 
1 DBP (mmHg) 81.60 141.00 118.21 117.78 9.63
2 SBP (mmHg) 13.60 96.50 76.16 76.08 9.16
3 Pulse rate (per min) 70.00 89.60 81.94 81.42 2.78 
4 Hb (g/dL) 7.45 17.00 13.20 13.14 2.07
5 RBC (million/L) 2.69 6.21 4.61 4.60 0.65
6 MCH (pg) 20.80 101.80 32.60 49.55 27.53
7 MCV (fL) 8.78 120.00 75.60 66.32 27.49 
8 MCHC (g/dL) 12.60 40.60 32.47 32.13 3.27
9 TLC (cells/L) 2305.25 12600.00 6850.00 6981.77 2121.81 

10 Platelet (thousand/L) 1.11 11.90 1.99 2.30 1.48
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Table 2.  Descriptive statistics of quantitative variables after imputation (cont.) 

S. no. Variable Min Max Median Mean Stdev 
11 b.urea (mg/dL) 1.80 46.00 21.71 22.23 7.25 
12 sr.cr (mg/dL) 0.60 1.70 1.00 1.01 0.18 
13 Na (mEq/L) 131.50 154.00 140.63 141.03 4.11 
14 K (mEq/L) 3.36 6.40 4.28 4.27 0.47 
15 S.Bil (mg/dL) 0.30 2.60 0.70 0.78 0.38 
16 ALT (IU/L) 12.00 170.75 27.00 35.37 26.89 
17 AST (IU/L) 16.00 175.00 34.00 42.22 28.26 
18 ALP (IU/L) 1.00 358.00 154.90 161.35 69.13 
19 RBS (mg/dL) 59.00 273.50 106.88 114.28 38.50 
20 TCL (mg/dL) 102.00 221.00 158.87 161.04 26.66 
21 HDL (mg/dL) 27.00 282.00 48.44 58.82 37.87 
22 S.TG (mg/dL) 32.00 426.50 123.35 126.87 59.94 
23 PCV (%) 2.22 77.00 40.13 39.52 9.00 
24 Age (years)* 20.00 70.00 40.50 41.94 10.48 
25 Number of episodes * 1.00 5.00 2.00 2.08 0.98 
26 RSS* 4.48 68.75 37.50 36.53 13.99 

Note: *There were no missing values for these quantitative variables: age, RSS and episodes. 

Table 3.  Summary of frequencies of categorical variables after imputation 

Variable Category Frequency % Total 
Gender* Female 42 53.85 

Male 36 46.15 
Family History (fh) Absent  22 28.21 

Present 56 71.79
Onset Abrupt 17 21.79

Acute 25 32.05
Chronic 1 1.28
Insidious 32 41.03
Sub-Acute  3 3.85 

Course Continuous and Progressive  30 38.46
Continuous  12 15.38 
Episodic 22 28.21
Fluctuating 14 17.95

Abuse Absent 46 58.97
Present 32 41.03

Type of Disorder (discode)* BPAD  17 21.79 
Depression 5 6.41
Others 17 21.79
Schizophrenia 39 50

Suicidal ideation or self-harm 
(sui_sharm)* 

Absent 62 79.49
Present 16 20.51

Insight Grade 1 29 37.18
Grade 2 12 15.38 
Grade 3 20 25.64 
Grade 4 14 17.95 
Grade 5 3 3.85 

Note: *There were no missing values for these categorical variables: gender, discode and sui_sharm. 
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4.2.  Multicollinearity detection 

The inclusion of a large number of variables, which are also observed to be 
interdependent and correlated, lead to the problem of multicollinearity. Thus, a check 
for detection of multicollinearity among regressors is performed using Variance 
Inflation Factor (VIF). Table 4 presents VIF for each regressor. 

Table 4. Variance Inflation Factor (VIF) for regressors 

S. no. Variables VIF S no. Variables VIF 

1 DBP (mmHg) 7.18 18 ALP (IU/L) 1.77 
2 SBP (mmHg) 5.19 19 RBS (mg/dL) 2.89 
3 Pulse rate (per min) 1.54 20 TCL (mg/dL) 2.67 
4 Hb (g/dL) 7.23 21 HDL (mg/dL) 2.10 
5 RBC (million/L) 5.30 22 S.TG (mg/dL) 3.38
6 MCH (pg) 9.77 23 PCV (%) 2.53 
7 MCV (fL) 10.77 24 Age (years) 2.51 
8 MCHC (g/dL) 2.66 25 Number of Episodes 2.97 
9 TLC (cells/L) 1.67 26 Gender 5.51 

10 Platelet (thousand/L) 1.57 27 Family History (fh) 2.03 
11 b.urea (mg/dL) 1.82 28 Onset 1.93 
12 sr.cr (mg/dL) 1.73 29 Course 2.52 
13 Na (mEq/L) 1.67 30 Abuse 4.73 
14 K (mEq/L) 1.51 31 Type of disorder (discode) 1.95 

15 S.Bil (mg/dL) 2.21 32 
Suicidal ideation or self-harm 
(sui_sharm) 1.35 

16 ALT (IU/L) 3.26 33 Insight 1.88 
17 AST (IU/L) 3.42 

A VIF of 5 or more indicates serious or excessive multicollinearity. Thus, the 
problem of multicollinearity exists in the data due to high values of VIF for regressors 
DBP, SBP, Hb, RBC, MCH, MCV and gender. 

4.3.  Dummy coding 

The dummy coding is applied to the 8 categorical variables consisting of clinical 
information on psychiatric factors related to mental disorders. These 8 categorical 
variables are transformed into 26 dichotomous variables with each variable 

representing each category. For example, if Xonset  represents the variable onset with
5 categories, then it is transformed into 5 binary/dichotomous variables 
X
onsetj

 ( j 1,2,...,5)  such that Xonsetj  I Xonset  j 
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4.4.  Ridge regression 

The ridge regression is applied to a total of 51 regressors including 25 quantitative 
and 26 binary variables with response variable being psychiatric rating scale score 
(RSS). The quantitative variables include 23 variables representing clinical 
information related to vital signs and laboratory test result reports (defined in Section 
2), age and number of episodes. The binary variables represent categories of 
psychiatric variables obtained as a result of dummy coding. The model space is 
searched using 13-fold cross-validation to obtain the optimum value of the 
tuning/regularization parameter   21.2001 . Figure 3 presents the mean absolute 
cross validation error curve plotted as function of  log() along with the upper and 
lower standard deviation curves. It is evident from the figure that the mean absolute 
cross-validation error is minimum when log 𝜆  is approximately 3. 

Figure 3. Mean absolute cross validation error curve plotted as function of  log()for ridge 
regression 

The coefficients derived on applying the ridge regression to the variables under 
consideration are presented in Table 5.  

Table 5.  Regression coefficients estimated from ridge regression 

Regressor Coefficient Regressor Coefficient 
Intercept 37.8463 Gender: Female  0.3749 
DBP (mmHg) -0.0434 Gender: Male -0.3742
SBP (mmHg) -0.0511 Family History: Absent -2.3078
Pulse rate (per min)  0.1400 Family History: Present  2.3071 
Hb (g/dL) -0.0600 Onset: Abrupt -0.4918
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Table 5.  Regression coefficients estimated from ridge regression  (cont.) 

Regressor Coefficient Regressor Coefficient 
RBC (million/L) -1.3414 Onset: Acute -0.1071
MCH  (pg) -0.0095 Onset: Chronic  2.0362 
MCV (fL)  0.0125 Onset: Insidious  0.2534 
MCHC (g/dL)  0.1158 Onset: Sub Acute  0.5442 
TLC (cells/L) -0.0003 Course: Continuous and Progressive -2.5869
Platelet (thousand/L) -0.0334 Course: Continuous -0.5289
b.urea (mg/dL) -0.0209 Course: Episodic  1.1966 
sr.cr (mg/dL)  6.6989 Course: Fluctuating  2.9792 
Na (mEq/L) -0.0097 Abuse: Absent  0.6838 
K (mEq/L)  0.9443 Abuse: Present -0.6838
S.Bil (mg/dL) -1.9304 Type of Disorder: BPAD -0.6246
ALT (IU/L)  0.0081 Type of Disorder: Depression  2.6030 
AST (IU/L) -0.0120 Type of Disorder: Others -2.8586
ALP (IU/L)  0.0063 Type of Disorder: Schizophrenia  1.7502 
RBS (mg/dL) -0.0015 Suicidal ideation or self-harm: Absent -0.3341
TCL (mg/dL) -0.0239 Suicidal ideation or self-harm: Present  0.3341 
HDL (mg/dL)  0.0007 Insight: Grade 1  1.6457 
S.TG (mg/dL) -0.0053 Insight: Grade 2  0.9930 
PCV (%) -0.0786 Insight: Grade 3 -1.4074
Age (years) -0.0728 Insight: Grade 4 -1.3659
Number of Episodes  1.2645 Insight: Grade 5 -1.1939

It is evident from Table 5 that the coefficients estimated by the ridge regression 
for 18 regressors out of 51 have values close to 0 indicating that they do not have 
much effect on the severity of illness.  

4.5.  LASSO regression 

In this study, the LASSO model is applied to the quantitative and categorical 
predictors separately. The group LASSO is applied to the categorical variables while 
the adaptive LASSO is used for quantitative regressors.  

4.5.1.  Adaptive LASSO 

The adaptive LASSO is applied to the 25 quantitative variables including 
23 variables consisting of clinical information related to vital signs and laboratory test 
result reports (defined in Section 2), age and number of episodes. The optimum value 
of the regularization parameter   2.4328 is obtained using 13-fold cross-validation. 
Figure 6 presents the mean absolute cross validation error curve plotted as function of 

 log() along with the upper and lower standard deviation curves. It is evident from 
the figure that the mean absolute cross-validation error is minimum when log 𝜆  
is approximately 0.9. 
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Figure 4.  Mean absolute cross validation error curve plotted as function of  log()for adaptive 
LASSO model  

The predictors selected from the adaptive LASSO along with their coefficients are 
presented in Table 6.   

Table 6.  Regression coefficients estimated from adaptive LASSO regression 

The adaptive LASSO selected only 3 relevant predictors out of a total of 
25 variables by shrinking the coefficients of less other regressors to zero. All of these 
predictors have coefficients far from 0. Thus, laboratory test results on Red Blood Cell 
(RBC), serum creatinine (sr.cr), and number of episodes are found to be the relevant 
predictors of severity of mental illness as measured by the psychiatric rating scales.  

S. no. Regressor (Unit) Coefficient S. no. Regressor (Unit) Coefficient 
1 Intercept  40.8275 14 Na (mEq/L) 0.0000 
2 DBP (mmHg)  0.0000 15 K (mEq/L) 0.0000 
3 SBP (mmHg)  0.0000 16 S.Bil (mg/dL) 0.0000 
4 Pulse rate (per min)  0.0000 17 ALT (IU/L) 0.0000 
5 Hb (g/dL)  0.0000 18 AST (IU/L) 0.0000 
6 RBC (million/L) -2.1370 19 ALP (IU/L) 0.0000 
7 MCH  (pg)  0.0000 20 RBS (mg/dL) 0.0000 
8 MCV (fL)  0.0000 21 TCL (mg/dL) 0.0000 
9 MCHC (g/dL)  0.0000 22 HDL (mg/dL) 0.0000 

10 TLC (cells/L)  0.0000 23 S.TG (mg/dL) 0.0000 
11 Platelet (thousand/L)  0.0000 24 PCV (%) 0.0000 
12 b.urea (mg/dL)  0.0000 25 Age (years) 0.0000 
13 sr.cr (mg/dL)  3.1596 26 Number of Episodes 2.7509 
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4.5.2. Group LASSO 

The group LASSO is applied to the 26 dichotomous variables obtained from 
8 psychiatric variables after applying dummy coding with each binary variable 
representing each category. The optimum value of   0.4829is obtained using 
13-fold cross-validation. Figure 5 presents the mean absolute cross validation error
curve plotted as function of  log() along with the upper and lower standard deviation
curves. It is evident from the figure that the mean absolute cross-validation error is
minimum when log 𝜆  is approximately -0.7.

Figure 5.  Mean absolute cross validation error curve plotted as function of  log() for group 
LASSO model. 

The predictors selected by the group LASSO along with their coefficients are 
presented in Table 7.   

Table 7.  Regression coefficients estimated from group LASSO regression 
S. no. Regressor Category Coefficient

1 Intercept 34.6398 
2 

Gender 
Female  0.0585

3 Male -0.0585
4 

Family History (fh) 
Absent -3.6916

5 Present  3.6918
6 

Onset 

Abrupt  0.0000
7 Acute 0.0000
8 Chronic 0.0000
9 Insidious 0.0000

10 Sub-Acute 0.0000
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Table 7.  Regression coefficients estimated from group LASSO regression  (cont.) 
S. no. Regressor Category Coefficient
11 

Course 

Continuous and Progressive -3.7530 
12 Continuous -1.2243
13 Episodic  2.0239
14 Fluctuating  2.9536
15 

Abuse 
Absent  0.0241

16 Present -0.0241
17 

Type of Disorder (discode) 

Bipolar affective disorder (BPAD)  -0.0389
18 Depression  1.1385
19 Others -3.4340
20 Schizophrenia  2.3347
21 Suicidal ideation or self-

harm (sui_sharm) 
Absent  0.0000

22 Present 0.0000
23 

Insight 

Grade 1  2.1232 
24 Grade 2  0.4696 
25 Grade 3 -1.3771 
26 Grade 4 -1.0185 
27 Grade 5 -0.1970

The group LASSO selected 6 groups of predictors out of a total of 8 groups of 
psychiatric variables. Thus, gender, family history, course, alcohol and/or tobacco 
abuse, type of disorder and insight of illness are found to be relevant predictors of 
severity of mental illness. 

All the calculations were performed in R software using adalasso, coefplot, 
gglasso, glmnet, mctest, missForest, pastecs and summarytools packages. 

5. Discussion

Recently, a large number of research studies have focused on establishing
diagnostic tests for mental disorders based on reports of blood tests and psychiatric 
factors. Richards et al. (2016) predicted severity of depression based on gender, age, 
employment status, marital status, previous diagnosis of depression, recent experience 
of life stressors using multiple linear regression. Huang et al. (2014) predicted the 
diagnosis and severity of depression based on a large sample of electronic health 
record (EHR) data consisting of information on demographic variables, structured 
variables such as ICD diagnosis codes, prescription codes, and unstructured variables 
such as progress notes, pathology reports, radiology reports, and transcription 
reports. This motivated us to predict the severity of illness based on the laboratory 
and pathological reports and certain psychiatric aspects. Further, the information on 
these basic variables is generally readily available for all mental disorders.  
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Missingness is a commonly encountered problem in medical data. However, 
ignoring or removing missing data leads to an important loss of information and 
results in biased estimation. We have used multiple imputation to deal with 
missingness since in addition to restoring the natural variability of the missing values, 
it incorporates the uncertainty due to the missing data, which results in valid 
statistical inference (Kang (2013)). Multicollinearity is commonly observed in datasets 
with large number of regressors. Variance Inflation factor (VIF) is the most common 
approach for detecting multicollinearity. There is no set VIF threshold available in the 
literature to be used as a standard rule. In this study, we employed a VIF threshold of 
5 for collinearity diagnostics since a VIF value that is near or above 5, indicates that 
the regressors may be highly correlated (Akinwande, Dikko and & Samson (2015); 
Jongh et al. (2015)).  

When there are a large number of predictors, the correlation between them 
(multicollinearity) generally limits the usefulness of classic regression 
methods. Regularization techniques such as ridge, LASSO, and elastic net are 
particularly useful in such cases. In this study, we applied both ridge and extensions of 
LASSO viz. the adaptive and group LASSO models on the data and observed that 
adaptive and the group LASSO models did not extract any of the 18 regressors for 
which the coefficients were estimated to be close to 0 by the ridge regression. Further, 
we compared the ridge and the LASSO models using the Bayesian Information 
Criterion (BIC) and observed that the BIC values for the group LASSO 
(BIC=1057.617) and the adaptive LASSO (BIC=1131.936) were lower than the ridge 
regression model (BIC=1148.786). Thus, in this study, the group and adaptive LASSO 
models performed better than the ridge model. 

The LASSO (l1) penalty function performs variable selection and dimension 
reduction by shrinking coefficients, while the ridge (l2) penalty function shrinks the 
coefficients of correlated variables towards their average (Kim et al. (2017)). 
In general, LASSO is preferred over the ridge model in terms of interpretability since 
it extracts the relevant predictors. However, in medical data, it is not advisable to 
completely ignore or remove the less relevant predictors due to their clinical 
implication. Even if the objective of a study is to extract relevant predictors, it is 
suggested to perform both LASSO and the ridge regression since the ridge regression 
supports the results of the LASSO regression and will help to make a decision 
depending upon the clinical relevance of the regressor based on a chosen level of 
significance. 

In the adaptive LASSO, the weights are based on the ordinary least square 
estimates. The weights are data-dependent and adaptively chosen from the data with 
large coefficients receiving small weights and small coefficients receiving large 
weights. 
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In this study, it was observed that from a wide range of clinical variables 
consisting of information on both laboratory test results and psychiatric aspects, 
the following are the relevant predictors of the severity of mental illness: Red Blood 
Cells (RBC), Serum Creatinine (Sr.Cr), number of episodes, gender, family history, 
course of illness, alcohol and tobacco abuse, type of disorder and insight of an illness. 
Our results are in accordance with previous studies. Setoyama et al. (2016) found that 
serum creatinine is commonly associated with severity of depression in three 
independent cohort sets regardless of the presence or absence of medication and 
diagnostic difference. Barbato (1998), Häfner (2005) and Richards et al. (2016) have 
identified gender as one of the relevant predictors of severity of mental illness. Lu et 
al. (2018) found that positive family history is a strong predictor of schizophrenia. 
Marzo et al. (2006) showed that patients with multi-episode bipolar disorder would be 
more prone to have higher levels of cognitive impairment suggesting that patients 
with a higher number of episodes and recurring or episodic course result in severe 
outcomes. Studies in the past showed that a higher amount of alcohol and tobacco 
consumption is found to be associated with greater severity of illness (Goldstein, 
Velyvis, & Parikh (2006); Krishnadas et al. (2012); Dwivedi, Chatterjee, & Singh 
(2017)). Jacob (2016) showed that patients with good insight have a less severe 
disease.  

This paper adds to the literature of medical research aimed at identifying 
the biomarkers for diagnosis and predictors of the severity status of mental disorders. 
The clinicians can use the relevant factors to build a profile of the patient and his 
needs. This work will help in developing valid and efficient approaches to diagnose 
the disorders at an early stage. It will also aid clinicians in devising effective strategies 
for treatment planning. 

Generally, the predictive accuracy of the regularization method is tested on a test 
dataset after fitting the regression model on the training dataset. This procedure could 
not be adopted in this paper due to the small sample size. To maintain consistent 
selection of predictors, the tuning parameter for fitting regularization models is 
selected using 13-fold cross-validation. However, a limitation of using the cross 
validation method in the case of a small sample size could suffer from overfitting. 
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Regression model of water demand for the city of Lodz  
as a function of atmospheric factors 

Czesław Domański1, Robert Kubacki2

ABSTRACT 

One of the Sustainable Development Goals (Goal 6) set by the United Nations is to provide 
people with access to water and sanitation through sustainable water resources 
management. Water supply companies carrying out tasks commissioned by local 
authorities ensure there is an optimal amount of water in the water supply system. The aim 
of this study is to present the results of the work on a statistical model which determined 
the influence of individual atmospheric factors on the demand for water in the city of 
Lodz, Poland, in 2010-2019. In order to build the model, the study used data from the 
Water Supply and Sewage System Company (Zakład Wodociągów i Kanalizacji Sp. z o.o.) 
in the city of Lodz complemented with data on weather conditions in the studied period. 
The analysis showed that the constructed models make it possible to perform a forecast of 
water demand depending on the expected weather conditions. 

Key words: water demand, atmospheric factors, regression model. 

1. Introduction

As the global climate changes and the urban population continues to grow, water
resources in many of the world's cities are likely to be under increasing stress from 
reduced water supply and increased demand (Bates et al., 2008).  

There have been several studies investigating the role of weather and climate 
variables in municipal water consumption (e.g. Balling and Gober, 2006; Ghiassi et al., 
2008). 

Previous studies used maximum and minimum temperatures and precipitation as 
explanatory variables to estimate water consumption. In addition, the interactions 
among different weather and climate variables that influence water use are not well 
understood (Praskievicz and Chang, 2009).  
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The aim of this study is an attempt to verify the hypothesis as to whether weather 
factors can better describe the phenomenon of water demand for the city of Lodz, 
Poland. Water is needed by everyone. Correctly predicting its demand is important to 
achieve two opposing objectives. Firstly, its quantity should be sufficient to satisfy the 
city's needs. Secondly, it should not be wasted. The data obtained clearly show that 
daily water demand varies from day to day, week to week and month to month. This 
is compounded by trends related to changing behaviour of the population and other 
users of the water supply system. In this study it was possible to obtain the total 
number of cubic metres pumped per day into the system. Data on individual 
consumers (households, industry, education, health) are only available in an 
aggregated form. Nevertheless, when reading this study, we should be aware that 
households are responsible for the consumption of 69% of the total volume of water 
in the city.  

2. Regression models

2.1. Multiple regression 

A multiple regression model is written as: 

𝑦 β ∑ 𝑥 𝛽 𝜀 ,   𝑖 1,2, …𝑛, 𝑥 ∈ 𝑹        𝜀 ~𝑁 0,𝜎 ,  (1) 

where β  corresponds to the intercept,  β , … , β  correspond to the model 
coefficients, 𝑥  to the observation/measurement data, and ε to the residuals. 

The objective function for the residual sum of squares is written as 

ℒ ∑ 𝜀 ∑ 𝑦 𝑓 𝑥 ;𝛽 ,  (2) 

By plugging in the regression model equation from above we get 

ℒ ∑ 𝑦 β ∑ 𝑥 𝛽 , (3)

where n corresponds to the number of observations and d corresponds to the number 
of features of the data set (Walesiak and Gatnar, 2009). 

𝑅𝑀𝑆𝐸  
∑ (4) 

The RMSE is the square root of the sum of the squared difference between the 
observed and predicted values, normalized by the number of observations 𝑛. 

The lower RMSE the better the model fits the data (Géron, 2017). 
Overfitting reduces the generalization properties of a model. When there are 

many correlated variables in a linear regression model, their coefficients can become 
poorly determined and exhibit high variance; hence, the values of the coefficients 
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become huge. A wildly large positive coefficient on one variable can be canceled by 
a similarly large negative coefficient on its correlated cousin. By imposing a size 
constraint on the coefficients, this problem is alleviated (Harrington, 2012). 
Regularization methods constrain the model parameters in some way and thus are 
suitable to prevent overfitting. 

In many regularization models an additional term is added to the optimization 
function for the optimal parameter estimates 𝛽 . 

 𝛽 𝑎𝑟𝑔min‖𝒚 𝑿𝛽‖ 𝜆𝑔 𝛽       (5) 

where 𝑔 is a function of the coefficients 𝛽, which encourages the desired properties of 
𝛽, and 𝜆 is a regularization parameter. 

2.2. Ridge regression 

Ridge regression, sometimes referred to as ℒ  - regularized regression, is a 
method to shrink the regression coefficients by imposing a penalty on their size. The 
Ridge regression uses a squared penalty on the regression coefficient vector β 
(Patterson and Gibson, 2018). 

 𝛽 arg  min‖𝒚 𝑿𝛽‖ 𝜆‖𝛽‖       (6) 

Here, λ 0 is a regularization parameter that controls the amount of shrinkage: 
the larger the value of λ 0, the greater the amount of shrinkage. The coefficients are 
shrunk toward zero but do not reach zero. If 𝜆 → 0 the parameter estimates 𝛽  
approach the parameter estimates of the least-square solution 𝛽 . 

 𝐶𝑎𝑠𝑒 𝜆 → 0 ∶ 𝛽 → 𝛽   (7) 

 𝐶𝑎𝑠𝑒 𝜆 → ∞ ∶ 𝛽 → 0⃗  (8) 

We can solve the ridge regression problem using exactly the same procedure as 
for least squares, 

 ℒ ‖𝒚 𝑿𝛽‖ 𝜆‖𝛽‖ 𝒚 𝑿𝛽 𝒚 𝑿𝛽 𝜆𝛽 𝛽     (9) 

First, take the gradient of ℒ with respect to β and set to zero, 

 𝛻ℒ 2𝑿 𝒚 2𝑿 𝑿𝛽 2𝜆𝛽 0   (10) 

Then, solve for β to find that 

 β 𝐗 𝐗 λ𝐈 𝐗 𝐲, (11) 

where 𝐈 corresponds to the identity matrix. 
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2.3. LASSO regression 

The LASSO (least absolute shrinkage and selection operator), also referred to as 
ℒ -regularized regression, is a shrinkage method like the ridge regression, with subtle 
but important differences. The LASSO estimate is defined by 

β arg min‖𝐲 𝐗β‖ λ‖β‖     (12) 
where 

λ 0, (13)
‖β‖ ∑ β (14)

The LASSO method performs both regularization and variable selection. During 
the LASSO model fitting process only a subset of the provided features is selected for 
the use in the final model. The LASSO forces certain coefficients to be set to zero, 
effectively choosing a simpler model that does not include those coefficients. 
In contrast to the ridge regression, which can be solved analytically, numerical 
optimization (e.g. coordinate descent) is warranted to find the solution for the LASSO 
regression (Grus, 2018). 

The degree of regularization depends on the regularization parameter 𝜆. Thus, 
it is useful to evaluate the regression function for a sequence of 𝜆. 

3. Reference data

For the water demand analysis, data obtained from the Water Supply and
Sewerage Works in the city of Lodz were used. The data from the period 2010-2019 
included the amount of water injected into the water supply system each day. The set 
contains 3652 observations. Weather data obtained from www.ogimet.com were used 
as explanatory variables. The data contain a summary of the weather condition for all 
weather stations available on the website. Data from the station closest to the place of 
water intake for the city of Lodz were used for the study. The features comprising the 
weather description included: temperature (maximum, minimum, average), dew 
point temperature, humidity, wind direction, intensity and gust, atmospheric 
pressure, precipitation, cloud cover, sunshine, horizontal visibility and snow cover. 
Weather data can be obtained free of charge, but obtaining a complete set of data 
required writing a program in VBA to retrieve data cyclically after 50 observations. 

4. The model estimation

Raw data on pumping volumes and weather factors were combined and subjected
to preliminary analysis. Missing data were filled in. Filling in data gaps to preserve as 
many observations as possible for modelling concerned only weather data. 
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In addition, this concerned, e.g. the amount of snowfall during holiday periods, which 
were marked with a "-" and were replaced with a value of 0. From the preliminary 
observation of the data it can be concluded that the amount of water pumped to the 
water supply systems in the city of Lodz is decreasing every year. The variable 
describing YEAR takes the values 1, 2, 3, ..., 10 for successive years of observation 
2010, 2011, 2012, ..., 2019. Moreover, it was possible to observe that the amount of 
pumped water changes depending on the month. The lowest average value of pumped 
water per month is observed in August. For this purpose, a set of zero-one variables 
was created for each month of the year with August omitted to prevent collinearity 
between the variables. Also for the days of the week it was observed that the average 
amounts of pumped water differ. On Sundays, on average, the least water is pumped 
into the system. This resulted in dedicated zero-one variables describing the days of 
the week except Sundays. When observing the outlier variables, it was possible to 
observe that the lowest amounts of pumped water fall on public holidays. For this 
purpose, the variable SWIETO was created, which takes the value 1 if the following 
holidays were celebrated on that day: 1st of January, Easter and Easter Monday 
(movable holidays), 1st and 3rd of May, 15th of August, 1st and 11th of November, 
25th and 26th of December. 

Other variables used to build the models are presented in Table 1. 

Table 1. Other variables used to estimate the models 

Variable name Description 
T_MAX maximum temp. obs. over a 24h period for a given weather station 
T_MIN minimum temp. obs. over a 24h period for a given weather station 
T_AVG average temp. obs. over a 24h period for a given weather station 
DEW_POINT dew point – temp. below which water vapour starts condensing. 

Expressed in degrees Celsius 
HUMIDITY humidity of the air; it takes values from 0 to 100 
WIND_SPEED wind speed (km/h) 
WIND_GUST wind gusts (km/h) 
ATM_PRESSURE atmospheric pressure, at sea level (hPa) 
PRECIPITATION total precipitation in the last 24 hours (mm) 
CLOUD_COVER total cloud cover 
CLOUD_LOW low cloud cover 
SUNSHINE number of hours of sunshine in the last 24 hours (hours) 
VISIBILITY visibility expressed in km 
SNOW total snowfall in centimetres in the last 24 hours 
T_MAX4 zero-one variable taking value 1 for a max. temperature greater than 

29 degrees Celsius 
HOLIDAY_M1 zero-one variable with value 1 if the day before was a holiday 
HOLIDAY_M2 a zero-one variable with value of 1 if there was a holiday two days before 

Source: own calculations. 
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The dataset was split into two subsets. The 2019 data were left as a test set (it was 
not used in any of the model building stages). Data from 2010-2018 were used for 
model estimation. 

Five competing predictive models were built. The first containing only intercept. 
The second model with explanatory variables produced only from calendar and 
holiday variables. The third model was enriched with weather variables. The fourth 
model used type-one regularization (ridge regression) and the fifth model with type-
two regularization (lasso regression). The use of regularisation methods still ensures 
an easy interpretation of the results while reducing the variance of the random 
component. 

All estimated models were compared with a common measure of RMSE. 
The results for the first model with intercept are presented in Table 2. 

Table 2. Estimated parameter of model (1) with intercept 

Parameter Estimate Std. error P(>|t|) 

(Intercept) 111 150 159.3 <2E-16 

Source: own calculations. 

All estimated parameters in other models are statistically significant and the sign 
of the estimate is as expected. 

RSME measure was used to compare the forecasting performance of the models. 
The calculated RMSE values for the learning set and the test set for all models are 
shown in Table 3. 

Table 3. The calculated RMSE values for the learning set and the test set in the constructed models 

Model Train RMSE Test RMSE 

Model 1 (Intercept) 9127 8318 

Model 2 (Calendar & Holiday) 6083 8899 

Model 3 (Weather) 5608 7892 

Model 4 (Ridge regression) 5326 7258 

Model 5 (Lasso regression) 5329 7294 

Source: own calculations. 

Comparing the data presented in Table 4, we can conclude that model 1 predicts 
water demand better than model 2. The inclusion of weather variables in model 
3 improves RSME on both the learning set and the test set. Even better results are 
obtained when using regularization methods (lasso and ridge). Finally, model 4 (ridge 
regression) was selected as the best model. 

The results for the fourth model (ridge regression) are presented in Table 4. 
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Table 4. Estimated parameters of model (4) – ridge regression 

Parameter Description Estimate 
(Intercept) (Intercept) 80767.520942 
YEAR Year -2147.757928 
JANUARY January 9010.219430 
FEBRUARY February 10145.548916 
MARCH March 10397.937947 
APRIL April 8995.271739 
MAY May 7495.161123 
JUNE June 8566.800711 
JULY July 1604.157143 
SEPTEMBER September 5924.705100 
OCTOBER October 8775.879775 
NOVEMBER November 9511.791982 
DECEMBER December 10101.703019 
HOLIDAY Holiday -11239.859751 
MO Monday 4687.873426 
TU Tuesday 5558.797385 
WE Wednesday 5992.229451 
TH Thursday 6114.855399 
FR Friday 5087.399054 
SA Saturday 4227.928486 
T_MAX Max. temperature -209.509809 
T_MIN Min. temperature -215.081234 
T_AVG Avg. temperature 1098.767247 
DEW_POINT Dew point -554.396231 
HUMIDITY Humidity 70.395127 
WIND_SPEED Wind speed -26.091345 
WIND_GUST Wind gust -7.264865 
ATM_PRESSURE Atmospheric pressure 20.991359 
PRECIPITATION Precipitation -31.693193 
CLOUD_COVER Cloud cover -474.172728 
CLOUD_LOW Low Cloud cover 46.187129 
SUNSHINE Sunshine -14.184110 
VISIBILITY Visibility 121.005270 
SNOW Snow 259.730182 
T_MAX4 1 if temp. exceeds 29 Celsius degrees 4266.155406 
HOLIDAY_M1 Holiday (day before) -6052.783226 
HOLIDAY_M2 Holliday (2 days before) -3259.093499 

Source: own calculations. 
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The best performance of the objective function in the ridge regression model was 
obtained for parameter 𝜆 0.1. 𝑅  coefficient in this model is 0.6594. 

Best 𝜆 estimation, which minimizes the residuals (difference between 
observations and predicions), was achieved by recalculating 100 models with different 
values of  𝜆. 

In Figure 1 we observe calculated mean square error values for selected log 𝜆  values. 

Figure 1.  Mean square error values for log 𝜆  values used in the ridge regression model 

5. Conclusions

This study examined the relation between daily weather variables and water use in
the city of Lodz, Poland. Similar to previous studies, we found that maximum daily 
temperature is a good predictor of water demand. We also found that holidays are 
significant in decreasing the water demand. Moreover, like wind speed is a good 
predictor of water demand. It is likely that higher wind speed increases evaporation of 
water, which induces a cooling effect and thus decreases daily water consumption. 
Together, all these variables explain between 65% of the variations in the city of Lodz. 
Relatively similar results (up to 61% of the variations explained) were achieved by 
other authors using ARIMA model (Praskievicz and Chang, 2009).  

Further models will also incorporate non-climatic variables such as 
sociodemographic, prices or structural variables (Zhang and Brown, 2005), which 
provide our models with greater explanatory power.  
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Advances on Permutation Multivariate Analysis of Variance  
for big data 

Stefano Bonnini1, Getnet Melak Assegie2

ABSTRACT 

In many applications of the multivariate analyses of variance, the classic parametric 
solutions for testing hypotheses of equality in population means or multisample and 
multivariate location problems might not be suitable for various reasons. Multivariate 
multisample location problems lack a comparative study of the power behaviour of the 
most important combined permutation tests as the number of variables diverges. 
In particular, it is useful to know under which conditions each of the different tests is 
preferable in terms of power, how the power of each test increases when the number of 
variables under the alternative hypothesis diverges, and the power behaviour of each test as 
the function of the proportion of true alternative hypotheses. The purpose of this paper is 
to fill the gap in the literature about combined permutation tests, in particular for big data 
with a large number of variables. A Monte Carlo simulation study was carried out to 
investigate the power behaviour of the tests, and the application to a real case study was 
performed to show the utility of the method. 

Key words: big data, MANOVA, permutation test, multivariate analysis. 

1. Introduction

In many applications of the multivariate analyses of variance (MANOVA), the
classic parametric solutions for testing hypotheses of equality in population means or 
multisample and multivariate location problems might not be suitable for various 
reasons. For instance, the strong and implausible assumptions of iid observations and 
multivariate normality are the main reasons for considering parametric methods 
neither flexible nor robust and consequently often unsuitable. Moreover, in the 
presence of big data with a high number of response variables, great attention should 
be paid when the number of response variables is larger than the sample sizes, because 
of the loss of degrees of freedom.  
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Even if there is not a unique definition, in statistics, a dataset is usually classified 
as “big data” if it represents a collection of informative data, extensive in terms of 
volume, velocity and variety, such that specific analytical technologies and methods 
are required for the extraction of value or knowledge (Baro et al., 2015). Big data are 
typical of many empirical disciplines such as biomedicine, economics, biology, ICT, 
education and research, financial services, social media, automotive industries, etc. 
(Özköse et al., 2015). Frequently, the high volume of big data depends on the 
multivariate nature of the dataset, due to the large number of variables. In addition, 
the variety of big data, due to the presence of different types of variables (quantitative 
and qualitative) and to the variability and heterogeneity of data, makes inferential 
problems more complex and requires robust and valid techniques to make inferences. 
For instance, in studies focused on social media, text, video, audio, and image data are 
jointly analysed. Hence, tests of hypotheses for big data must be addressed with 
appropriate methods that lead to reliable decisions, in short times and taking into 
account the variability and heterogeneity of the information. 

A typical approach to variable oriented multivariate problems consists in the 
application of exploratory methods based on the dimensionality reduction such as 
principal component analysis (PCA) or factor analysis (FA) (Johnson and Wichern, 
2007; Farcomeni and Greco, 2016). For two-sample multivariate testing problems, 
in the presence of numeric data, a typical solution is the Hotelling T-square test. These 
methods are based on strong assumptions such as the linearity of the relationships 
between variables or normality.  

Linearity is a very strong and often unrealistic assumption. Normality is 
a reasonable assumption only with large sample sizes due to asymptotic properties of 
the statistics. Nevertheless, even in cases where linearity and normality are reasonable 
assumptions, especially in inferential problems, in the presence of many variables the 
estimation of a large number of unknown parameters, such as covariances or 
correlations, is required. Moreover, when the sample size is less than the number of 
variables, a problem related to the degrees of freedom arises and some typical 
parametric methods, such as the Hotelling T-square test, are not applicable.  

In such problems, nonparametric methods are preferable because they do not 
require that the underlying probability law belongs to a given family of distributions and 
no parameters need to be estimated. In particular, permutation tests follow 
a distribution-free approach and are almost as powerful as parametric methods based 
on normality when this assumption is true but much more powerful when the true 
underlying distribution deviates from the Gaussian (Pesarin, 2001; Anderson, 2001).  

Solutions for multivariate tests within the family of permutation methods 
consider the dependence between response variables without modelling it explicitly, 
and consequently without the need of estimating parameters or assuming linearity 
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(Pesarin and Salmaso, 2010a; Bonnini et al., 2014; Arboretti et al., 2018). Permutation 
solutions for multivariate location problems have been proposed and studied mainly 
in terms of power and robustness with respect to the underlying distribution, especially 
comparing their performance with that of the classic parametric tests (Pillar, 2013; 
Anderson, 2001; Pesarin, 2001). An interesting proposal is based on the combination of 
the univariate permutation tests of the marginal variables (Pesarin, 2001). Pesarin and 
Salmaso (2010a,b) proved that the power of the most commonly used combined 
permutation tests, with fixed sample size and divergent number of variables under the 
alternative hypothesis, tends to one in the two-sample problem.  

According to the type of the combining function used, a different combined test is 
obtained. Hence a deep study with the goal of comparing different combined tests, 
especially for big data with a large number of variables, is important and suitable, 
in order to find the most powerful test under different scenarios. To the best of our 
knowledge, for the multivariate multisample location problem, a comparative study of 
the power behaviour of the most important combined permutation tests as the number 
of variables diverges is missing. In particular, it is useful to know under which 
conditions each of the different tests is preferable in terms of power, how the power of 
each test increases when the number of variables under the alternative hypothesis 
diverges and the power behaviour of each test as a function of the proportion of true 
alternative hypotheses. 

The purpose of this paper is to fill this gap in the literature about combined 
permutation tests. The paper is organized as follows. Section 2 is dedicated to a review 
of the literature on the MANOVA problem. The method of combined permutation 
tests is described in Section 3. In Section 4 the results of a comparative simulation 
study are reported and discussed. In Section 5, the application of the method to a real 
case study is presented. Finally, the conclusions are in Section 6. 

2. Literature review

The goal of several empirical studies is the comparison of two or more
populations in the presence of multivariate response variables. Often, regardless of the 
number of factors, the problem consists in testing the significance of treatment effects 
or the presence of a shift in some location parameters. In what follows, the variation 
of population means is investigated using multivariate analysis of variance 
(MANOVA). To test whether there is a significant difference between group means, 
various parametric multivariate tests based on strong assumptions have been 
proposed. The most commonly used are the Hotelling T-square test (Hotelling, 1992), 
the test of Wilks (1932) and the proposal of Pillai (1955). The main assumptions of 
these tests are normality, constant variances and continuous responses. Moreover, 
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these methods cannot be applied for big datasets when the number of response 
variables is greater than the sample size. 

Nonparametric solutions have been proposed to overcome the limits of the tests 
mentioned above due to the lack of robustness with respect to the assumptions 
(Pesarin and Salmaso, 2010a; Bonnini et al., 2014; Pillar, 2013; Bonnini, 2016). For 
instance, Anderson (2001) introduced a nonparametric solution based on the 
permutation test for an ecological problem. The permutation test statistic was the 
Fisher F ratio obtained from a distance matrix, and the simulation results proved the 
appropriateness of the permutation test for both one-way and two-way MANOVA. 
Pillar studied the accuracy and power of permutation tests for MANOVA based on 
different test statistics. According to his study, the sum of squares between groups 
with the Euclidean distance was preferable to the Chord distance and the sum of Fs of 
univariate ANOVA. Moreover, the simulation study revealed that the permutation 
test was powerful also under heteroscedastic and with unbalanced samples.    

In the literature, several works concerning applications of permutation tests for one-
way and two-way MANOVA have been published. A non-exhaustive list includes the 
following papers: Mantel and Valand (1970), Mielke et al. (1976), Clarke (1993), Pillar and 
Orlóci (1996), Legendre and Anderson (1999), Mielke and Berry (1999), McArdle and 
Anderson (2001), Arboretti et al. (2018), Finch (2016). However, the extension of the 
permutation test for two-way MANOVA requires great attention in permuting the 
statistical units between groups. This is because the exchangeability condition is 
guaranteed only within the levels of one factor by considering the second factor as 
a block. Thus, constrained permutations are essential (Anderson, 2001). The two-
sample multivariate problem has been frequently considered. See for instance Pesarin 
and Salmaso (2010), Polko-Zajac (2020), Bonnini and Melak Assegie (2019). Instead, 
the multi-sample case has been addressed by fewer authors (see Bonnini, 2016). 
In some cases permutation solutions for complex problems such as multiaspect tests 
(Polko-Zajac, 2019), directional alternatives (Bonnini et al., 2014; Arboretti and 
Bonnini, 2009), tests for categorical data (Arboretti and Bonnini, 2008; Bonnini, 2014) 
have been developed. In this paper, we focus on multi-sample location problems for 
numeric variables and nondirectional alternative hypotheses.  

3. Methods

3.1.  Multivariate permutation test 

The permutation test is a distribution-free test based on the assumption of 
exchangeability under the null hypothesis (Pesarin, 2001). To apply the permutation 
principle, the sample data are partitioned into groups based on the treatment levels 
in an experimental study and pseudogroups in an observational study. To this end, 
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the structure of the dataset for 𝑆 2 independent samples and V-dimensional 
response is represented by: 

𝒀 𝑌 𝑖 1,2, … ,𝑛 ,𝑔 1,2, … , 𝑆, 𝑞 1,2, … ,𝑉     (1) 

The dataset 𝒀 takes values on the 𝑉-dimensional sample space Ω for which 
a 𝜎-algebra 𝒜 and a nonparametric family 𝒫 of non-degenerate unknown 
distributions are defined, and supposed to be exchangeable.  

Hypothesis testing based on the permutation approach requires a clear 
formulation of the null hypothesis. The null hypothesis in the MANOVA problem is 
defined as the equality of S multivariate (unknown) distributions: 

𝐻 ∶ 𝑃 𝑃 ⋯ 𝑃 𝒀𝟏  𝒀𝟐  … 𝒀𝑺 .       (2) 

Under homoscedasticity, the difference between the groups is due to a shift 
in location. Thus, the null hypothesis could be formulated as equality of group means 
for each response variable. Let 𝒀𝒈 be a 𝑉-variate numeric random variable such that 
𝒀𝒈 𝝁 𝜹𝒈 𝜺𝒈, with 𝝁  vector of 𝑉 unknown location parameters, 𝜹𝒈, 𝑔
1, … , 𝑆, vectors of 𝑉 treatment effects and 𝜺𝒈, 𝑔 1, … , 𝑆, exchangeable 𝑉-
dimensional random vectors that follow an unknown probability distribution with 
equal variance-covariance matrix 𝚺 and such that 𝐸 𝜺𝒈 𝟎.    

The null hypothesis is: 

  𝐻 ∶  𝜹𝟏 𝜹𝟐 , … , 𝜹𝑺 𝟎      (3) 

A further decomposition of the null hypothesis with respect to the marginal 
distributions of the multivariate response can be considered. The multivariate 
hypothesis can be broken down into 𝑉 partial null hypotheses: 

 𝐻 ∶  ⋂ 𝛿 , . . , 𝛿 0 ≡ ⋂ 𝐻     (4) 

where the intersection symbol means that the null hypothesis of the overall problem is 
true if all the 𝑉 partial null hypotheses are true. Accordingly, with a similar approach, 
the alternative multivariate hypothesis 𝐻  of inequality in distribution may be 
represented as follows: 

 𝐻 ∶ ⋃ 𝐻 (5)
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where the union symbol indicates that the alternative hypothesis is true if at least one 
partial null hypothesis is false and 𝐻  denote the negation of the 𝑞-th partial null 
hypothesis. It is worth noting that directional alternatives are also possible but the 
purpose of this paper is to focus on two-tailed multi-sample multivariate problems.   

When the overall null hypothesis is true and the equality in distribution holds, the 
vector of 𝑉 observations concerning a generic statistical unit comes from any of the 𝑆 
populations with equal probability. In other words, the exchangeability of units with 
respect to the populations/samples is satisfied. In order to determine the null 
distribution of the test statistic, all the possible assignments of the 𝑛 units to the 𝑆 
samples can be considered. Without loss of generality, let us assume that the 𝑛  units 
of the first sample correspond to the first 𝑛  rows of the observed dataset 𝒀, the 𝑛  
units of the second sample correspond to the next 𝑛  rows of the dataset, and so on, 
until the 𝑛  units of the 𝑆-th sample that correspond to the last 𝑛  rows of the dataset. 
Each possible assignment is equivalent to a permutation of the rows of the dataset or 
to resampling without replacement the 𝑛 units with 𝑛 𝑛 𝑛 ⋯ 𝑛 .     

For computational convenience, instead of considering the exact test, based on all 
the !

∏ !
 possible assignments of the 𝑛 units to the 𝑆 groups, a random sample of 

permutations is used according to the Conditional Monte Carlo method.  

3.2. Partial tests 

The application of the method of Combined Permutation Test to the permutation 
MANOVA presented above consists in carrying out one univariate permutation test 
for each partial hypothesis and in combining the 𝑝-values of the univariate tests. The 
dependence between the univariate partial test statistics, according to the permutation 
distribution, is taken into account in the resampling strategy by permuting the rows of 
the observed dataset instead of permuting the elements of each column independently 
of the other columns. 

A suitable test statistic for each partial permutation test is the so-called Treatment 
Sum of Squares (𝑆𝑆 ), which depends on the deviations of the within-group 
sample means from the total sample mean. Hence, the 𝑞  partial test statistic or 
equivalently the test statistic of the 𝑞  partial test, with 𝑞 1,2, … ,𝑉, is 

𝑇 ∑ 𝑛 𝑌 𝑌∙   (6) 

with 𝑌∙
∑

∑

∑ , where 𝑌  represents the mean of the values of the 𝑞-th 

variable observed in the 𝑔-th sample.    
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The multivariate permutation distribution of the test statistic 𝑻 𝑇 ,𝑇 , … ,𝑇  
under the null hypothesis is obtained through the following procedure: 

1) compute the vector of observed values of 𝑻 from the dataset 𝒀:

𝑻𝒐𝒃𝒔 𝑻 𝒀 𝑇 , ,𝑇 , , … ,𝑇 ,  

2) randomly permute the rows of the dataset (or reassign statistical units to
groups) and compute the values of the test statistics as a function of the
permuted dataset: 𝑻 𝑻 𝒀

3) repeat step (2) 𝑅 times independently and compute the permutation test
statistics. Let 𝑇 ,  be the value of the 𝑞-th partial test statistic related to
the 𝑟-th permutation of the dataset 𝒀𝒓

𝒑. Hence

𝑻𝒓
𝒑 𝑻 𝒀𝒓

𝒑 𝑇 , ,𝑇 , , … ,𝑇 ,

4) estimate the significance level function of the partial tests

𝜆 , 𝜆 𝑇 ,   
∑ , , .

 (7) 

with 𝑟 1, 2, … ,𝑅, 𝑞 1, 2, … ,𝑉, and 𝐼 𝐸  indicator function of 𝐸, which 
takes value 1 if 𝐸 is true and 0 otherwise. The 𝑝-value of the 𝑞-th partial test 
is 𝜆 , 𝜆 𝑇 , .

3.3.  Combination 

According to the method based on the combination of dependent permutation 
tests, the test statistic for the overall problem is obtained by combining the p-values of 
the partial tests. The synthesis of the information provided by the partial tests 
regarding the marginal variables is provided by the application of a suitable 
combining function 𝜑. Hence, the test statistic useful for the overall test, the 
multivariate analysis of variance, is 

𝑇 𝜑 𝜆 , 𝜆 , … , 𝜆 . 

The proposal of combining 𝑝-values of partial tests in order to solve multivariate, 
multi-aspect, multi-strata tests, or other complex testing problems that can be broken 
down into partial univariate tests, appeared for the first time in the literature twenty 
years ago in Pesarin (2001) and was later studied and developed by several authors. 
For extended but not exhaustive reviews, see Pesarin and Salmaso (2010a) and 



170        S. Bonnini, G. Melak Assegie: Advances on Permutation Multivariate…

Bonnini et al. (2014). Since, for the combination of the partial tests, 𝜑 ∙  must satisfy 
some simple, mild and easily attainable conditions, several different functions can be 
used and each of them corresponds to a different solution with specific properties 
within the family of combined permutation tests. 

A suitable combining function 𝜑: 0,1 → ℝ must satisfy the following 
properties: 

1) ∀ 𝜆 , 𝜆  in 0,1 , 𝜆 𝜆  ⇔ 𝜑 … , 𝜆 , … 𝜑 … , 𝜆 , …  ceteris paribus
(non-increasing monotony)

2) ∃𝜆 𝜖 𝜆 , 𝜆 , … , 𝜆  s.t. 𝜆 → 0 ⇔ 𝜑 𝜆 , 𝜆 , … , 𝜆 → 𝜑 ∞ (finite
supremum)

3) ∀𝛼𝜖 0,1 , ∃𝑇 , < 𝜑 where 𝑇 ,  is the test critical value (finite critical
value)

The most popular combining functions in the literature of combined permutation 
tests are Fisher, Liptak and Tippett functions. The Fisher omnibus combining 
function is  

𝑇 2∑ 𝑙𝑜𝑔 𝜆   (8) 

where 𝑙𝑜𝑔 𝑥  denotes the natural logarythm of 𝑥. Liptak`s combining function is 
based on the transformation of the complement to one of the 𝑝-values through the 
inverse of the cumulative distribution function (or the quantile function) of the 
standard normal distribution: 

𝑇 ∑ Φ 1 𝜆       (9) 

where Φ 𝑥 𝑃 𝑋 𝑥  with 𝑋~𝒩 0,1 . Tippett combination is based on an order 
statistic and considers, as observed value of the combined test statistic, the 
complement to one of the most significant 𝑝-value: 

𝑇 𝑚𝑎𝑥 1 𝜆   (10) 

Under the null distribution, if the 𝑉 partial tests are independent and continuous, 
the Tippett function follows the uniform distribution in 0,1 .  

Without loss of generality, let us assume that the null hypotheses of the overall 
and partial problems are rejected for large values of the respective test statistics. It is 
trivial to show that all three combination rules defined above satisfy this condition. 
Given that the observed value of the combined test statistic is  

𝑇 , 𝜑 𝜆 , , 𝜆 , , … , 𝜆 , .

the 𝑝-value of the permutation MANOVA with the combined permutation test is 
given by 

𝜆 , 𝜆 𝑇 ,  (11)
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The three presented tests can have much different power behaviours under 
different conditions, hence a comparative analysis to deepen their properties, 
advantages and limits is important to support the analyst in the decision about which 
test to use based on the power. 

4. Simulation study

The power behaviour of the three combined permutation tests defined in the
previous section for the MANOVA problem was investigated through a Monte Carlo 
simulation study. Different scenarios, under the null and the alternative hypothesis, 
were considered in order to compare the power of the three proposals as a function of 
the sample sizes, of the number of samples, of the number of components of the 
multivariate response and of the proportion of true partial alternative hypotheses 
when 𝐻  is false.   

Data were simulated according to the one-way MANOVA model. We considered 
multivariate datasets with two different sizes from the point of view of the number of 
responses: 𝑉 50 and 𝑉 100. With regard to the number of compared samples, 
𝑆 3 and 𝑆 5 are the cases taken into account. Simulation study has been carried 
out generating data from 𝑉-variate normal random variables hence under the 
“probabilistic condition most favorable to the classic parametric tests” and under 
homoscedasticity. For all the 𝑆 populations, the variance of each of the 𝑉 components 
of the multivariate response and the correlation between any pair of variables was set 
equal to 1 and to 0.3 respectively. Hence, the 𝑉 𝑉 covariance matrix of each 
population is Σ 𝜎  with 𝜎 1, 𝑞 1,2, … ,𝑉, and 𝜎 0.3, 𝑘
𝑞𝜖 1,2, … ,𝑉 .  

The number of simulated datasets and the number 𝑅 of permutations were both 
equal to 1000. In the simulations, we considered the balanced design with size 
𝑛 =𝑛 ⋯ 𝑛 𝑛. The two sample sizes taken into account are 𝑛 10 and 𝑛
30. In the simulations,  𝝁 𝟎. Let 𝑝 be the proportion of true partial alternative
hypothesis. Then, the 𝑉-variate normal distribution of the random variable that
simulates data for the 𝑔-th sample (𝑔 1,2, … , 𝑆) has a vector of means with
1 𝑝  𝑉 zeros and 𝑝𝑉 values equal to 𝜏 𝑔 1 . Formally

𝜹𝒈 𝜏 𝑔 1 𝟏
𝟎

 

where 𝟏 is a vector of 𝑝𝑉 elements equal to 1 and 𝟎 is  a vector of 1 𝑝  𝑉 elements 
equal to 0. To consider different shifts in the population locations, the simulations 
were carried out with 𝜏 0.5 and 𝜏 1.0. Moreover, the different proportions 𝑝 of 
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true alternative hypotheses used in the scenarios are 0.00, 0.05/
0.06, 0.10, 0.20, 0.30, 0.40, 0.50, 0.70, 0.90, 1. The first positive proportion in the list is 
0.05 if 𝑞 100 (5 true partial alternative hypotheses) and 0.06 if 𝑞 50 (3 true 
partial alternative hypotheses). The significance level chosen in all the scenarios is 𝛼
0.05. All simulations were carried out with the 𝑅 programming software version 4.1.0. 
Specific scripts were created by the authors for this purpose. 

Table 1 shows the rejection rates of the tests under all different cases when the 
number of variables 𝑉 is equal to 100. The performance of the tests under 𝐻  can be 
evaluated from the column corresponding to 𝑝 0.00 (no true partial alternative 
hypotheses). It is evident that, in most cases, the rejection rates are either less than or 
very close to the nominal 𝛼 level 0.05. The test based on the Tippet combination 
exceeds 𝛼 more frequently than the others but the probability of wrong rejection of 
𝐻  seems to be not far from 0.05, hence we can say that all the tests are well 
approximated.        

When 𝑝 0, the power behaviour of the tests can be assessed under 𝐻 . 
Unbiasedness of all the tests is demonstrated because the rejection rates are greater 
under the alternative hypothesis than under the null hypothesis. Moreover, the greater 
the sample size the higher the power, thanks to the consistency of the tests. 
As expected, the power is increasing function of the shift of the population locations 
that depends on 𝜏. Finally, the greater the number of samples the higher the rejection 
rates of the tests. Focusing on the effect of 𝑝 on the estimated probability of rejecting 
𝐻  when it is false, the increasing monotonic relationship is evident for all the tests. 
The growth rate of the power with respect to 𝑝 is high and, when 100% of the partial 
alternative hypotheses is true, the rejection of 𝐻  is sure or almost sure.    

From the comparative analysis, it emerges that the Liptak test is always the worst, 
except in the case in which all the partial alternative hypotheses are true. As said, 
in this scenarios, the power of all the combined tests tends to one and the tests are 
equivalent. In general the lower performance of the test based on the Liptak 
combination is evident and it is uniformly less powerful than the other permutation 
MANOVAs. This is consistent with Pesarin’s (2001) statement about the preferability 
of other tests than Liptak, except for p=1. When the proportion of true partial 
alternative hypotheses is low, the combined test based on Tippett’s rule is by far the 
best. Also this conclusion is not surprising, according to Pesarin (2001) but, in our 
simulation study, the extent of the difference in performance of the test based on 
Tippet’s function can be evaluated. Moreover, according to this results, Tippet’s 
combination is never less performant than the others, except in the first setting, when 
𝑆 3, 𝑛 10 and 𝜏 0.5 when 𝑝 0.90, where the differences in the rejection 
rates of the various tests are negligible.         
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Table 1. Rejection rates of combined permutation tests for 𝑉 100 and 𝛼 0.05.  

𝐒 𝐧 𝛕 𝛗 
Proportion of true partial alternative hypotheses (p) 

0.00 0.05 0.10 0.20 0.30 0.40 0.50 0.70 0.90 1.00 

3 

10 

0.5 

F 0.047 0.082 0.108 0.250 0.462 0.642 0.776 0.870 0.918 0.924 

L 0.045 0.078 0.074 0.156 0.308 0.466 0.596 0.792 0.882 0.914 

T 0.050 0.426 0.546 0.640 0.752 0.798 0.846 0.858 0.898 0.928 

1.0 

F 0.036 0.106 0.310 0.918 1 1 1 1 1 1 

L 0.034 0.078 0.138 0.418 0.806 0.882 0.916 0.930 0.986 1 

T 0.054 0.988 1 1 1 1 1 1 1 1 

30 

0.5 

F 0.056 0.104 0.240 0.890 1 1 1 1 1 1 

L 0.056 0.080 0.132 0.340 0.822 0.884 0.902 0.938 0.988 1 

T 0.058 0.940 0.990 1 1 1 1 1 1 1 

1.0 

F 0.046 0.124 0.342 0.996 1 1 1 1 1 1 

L 0.046 0.086 0.160 0.432 0.872 0.870 0.878 0.956 0.984 1 

T 0.052 1 1 1 1 1 1 1 1 1 

5 

10 

0.5 

F 0.046 0.136 0.374 0.968 1 1 1 1 1 1 

L 0.042 0.100 0.180 0.486 0.812 0.904 0.956 0.965 0.986 1 

T 0.052 0.984 1 1 1 1 1 1 1 1 

1.0 

F 0.052 0.144 0.359 0.988 1 1 1 1 1 1 

L 0.054 0.104 0.168 0.502 0.838 0.862 0.924 0.934 0.984 1 

T 0.056 1 1 1 1 1 1 1 1 1 

30 

0.5 

F 0.050 0.130 0.370 0.994 1 1 1 1 1 1 

L 0.052 0.076 0.178 0.442 0.802 0.89 0.892 0.922 0.980 1 

T 0.054 1 1 1 1 1 1 1 1 1 

1.0 

F 0.044 0.124 0.352 0.996 1 1 1 1 1 1 

L 0.034 0.072 0.156 0.500 0.840 0.898 0.904 0.944 0.980 1 

T 0.050 1 1 1 1 1 1 1 1 1 

Source: author computations; F: Fisher, L: Liptak, T: Tippett, 𝜏: location shift, 𝜑:combining function 
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In Table 2, the rejection rates of the tests when the number of variables is 𝑉 50 
are reported. Again the good performance of the tests under the null hypothesis (𝑝
0.00) is proved by the values of the estimated power. These values are usually not 
greater than 𝛼 0.05 even if sometimes they exceed the significance level, especially 
in the case of Tippet’s combination. Nevertheless, when greater than 0.05, the 
rejection rates under 𝐻  are not far from 𝛼 and then the tests are well approximated. 
Hence, this conclusion is valid regardless of the number of variables 𝑉.  

Table 2 confirms also that the probability of right rejection of the null hypothesis 
of MANOVA by the combined permutation tests increases with the sample size 𝑛, 
with the number of samples 𝑆, with the shift parameter 𝜏 and with the proportion of 
true partial alternative hypotheses 𝑝. Another empirical evidence of the simulation 
study is that in general the power is greater with 100 variables than with 50 variables. 
This statement seems obvious thinking to the tendency of the power to one when the 
number of variables diverges in the two-sample problem proved by Pesarin and 
Salmaso (2010b). They focus on the relationship between power of the overall test and 
non-centrality parameter in the case 100% of the variables are under the alternative 
hypothesis. According to our results, the power of the multi-sample tests in the case 
𝑉 100 is much greater than in the case 𝑉 50 only when the percentage of true 
partial alternative hypotheses is low, otherwise the difference seems not evident and 
always in the same direction. Hence, in our opinion, for the power behaviour, the 
proportion of true partial alternative hypothesis matters and it is more important than 
the absolute number of true partial alternatives. For instance, when 𝑉 50 and 𝑝
0.40, the number of true partial alternative hypothesis is 20, exactly as when 𝑉 100 
and 𝑝 0.20. But in the former case, when 𝑆 3, 𝑛 10 and 𝜏 0.5, the rejection 
rates of the tests based on the Fisher, Liptak and Tippett combination are 0.626, 
0.490 and 0.636 respectively; instead in the latter case, under the same scenario, 
0.250, 0.156 and 0.640 respectively. Hence, even if the number of true alternative 
hypotheses is the same, the power of the tests based on the Fisher and Liptak 
combinations is much lower when the proportion of true partial alternative 
hypotheses is smaller. Tippett represents an exception. Consider, under the same 
scenario, the case 𝑉 50 and 𝑝 0.20 (rejection rate 0.466) and 𝑉 100 and 𝑝
0.10 (rejection rate 0.546). Hence, with the same proportion 𝑝, the power increases 
with 𝑉 only in the case of Tippett’s combination. 

In general, the case 𝑉 50, confirms that the Liptak combination is the best 
choice only when 𝑝 1 but in this situation the power of the other tests is very 
similar. In most of the considered settings, the Tippett combination is preferable 
because the power quickly tends to 1 as the proportion of true alternative hypotheses 
diverges. When 𝑆 3, 𝑛 10 and 𝜏 0.5 this is the most powerful test up to 𝑝
0.40. For larger values of 𝑝 it becomes the less powerful test.  
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Table 2. Rejection rates of combined permutation tests for 𝑉 50 and 𝛼 0.05. 

𝐒 𝐧 𝛕 𝛗 
Proportion of true partial alternative hypotheses (p) 

0.00 0.06 0.10 0.20 0.30 0.40 0.50 0.70 0.90 1.00 

3 

10 

0.5 

F 0.050 0.082 0.096 0.230 0.414 0.626 0.766 0.870 0.924 0.886 

L 0.054 0.066 0.074 0.142 0.258 0.490 0.668 0.828 0.912 0.888 

T 0.057 0.268 0.316 0.466 0.556 0.636 0.726 0.768 0.818 0.810 

 F 0.042 0.054 0.260 0.892 0.996 1 1 1 1 1 

1.0 

L 0.038 0.068 0.120 0.446 0.812 0.938 0.950 0.986 0.988 1 

T 0.050 0.094 0.966 1 1 1 1 1 1 1 

30 

0.5 

F 0.052 0.100 0.230 0.824 1 1 1 1 1 1 

L 0.054 0.070 0.138 0.348 0.756 0.936 0.954 0.974 0.992 1 

T 0.056 0.876 0.960 0.994 0.998 0.998 1 1 0.998 1 

1.0 

F 0.038 0.128 0.278 0.996 1 1 1 1 1 1 

L 0.040 0.092 0.140 0.424 0.846 0.938 0.948 0.974 0.980 1 

T 0.050 1 1  1 1 1 1 1 1 

5 

10 

0.5 

F 0.038 0.164 0.310 0.904 0.998 1 1 1 1 1 

L 0.044 0.132 0.162 0.408 0.798 0.944 0.952 0.970 0.988 1 

T 0.051 0.946 0.994 0.996 1 1 1 1 1 1 

1.0 

F 0.048 0.182 0.174 0.978 1 1 1 1 1 1 

L 0.052 0.114 0.356 0.452 0.826 0.950 0.948 0.970 0.994 1 

T 0.054 1 1 1 1 1 1 1 1 1 

30 

0.5 

F 0.052 0.126 0.316 0.990 1 1 1 1 1 1 

L 0.048 0.076 0.156 0.458 0.836 0.940 0.956 0.976 0.996 1 

T 0.054 1 1 1 1 1 1 1 1 1 

1.0 

F 0.051 0.136 0.348 0.986 1 1 1 1 1 1 

L 0.049 0.072 0.156 0.468 0.852 0.938 0.954 0.976 0.990 1 

T 0.053 1 1 1 1 1 1 1 1 1 

Source: author’s computations;  F: Fisher, L: Liptak, T: Tippett, 𝜏: location shift, 𝜑:combining 
function 
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5. Case Study about organizational well-being of University Workers

Organizational well-being is the first element that influences effectiveness,
efficiency, productivity and development of a public organization. As part of objective 
3 of the 2014-2016 Positive Action Plan proposed by the Equality Opportunities 
Office of the University of Ferrara (UNIFE), the Rector's Delegate for Equal 
Opportunities presented a project in order to promote the improvement of the 
working well-being of the administrative-technical staff. This project consists in the 
definition of interventions aimed at improving quality of working life based on 
findings deriving from empirical surveys. 

A questionnaire was administered to a sample of 120 employees of UNIFE 
in order to assess the degree of work-related stress, to detect the opinions of 
employees with respect to the organization and the working environment and identify 
possible actions for the improvement of the general conditions of the public 
employees at UNIFE. One goal of the survey was also to test the existence of possible 
differences in organizational well-being among sub-groups of employees defined by 
gender and age. 

The 120 respondents represent a random sample of the population of the 
technical-administrative staff. In order to test for the joint effect of gender and age on 
the organizational well-being at UNIFE, a simple random sample of 30 employees was 
selected from each of the following four groups: 

 FU50: 50 years old or younger females,
 FO50: over 50 years old females,
 MU50: 50 years old or younger males,
 MO50: over 50 years old males.
The questionnaire, consisting of 79 questions, was administered to the

respondents from the 4th to the 11th of December 2014. The questionnaire was 
designed by the Italian National Anti-Corruption Authority (ANAC) and the 
National Institute for Occupational Accident Insurance (INAIL) that decided to adopt 
a Likert scale, based on the first 6 integer values representing the level of agreement 
with respect to the 79 statements (1= not at all, …, 6=completely). It is worth noting 
that the permutation analysis of variance can be applied to numeric variables. The 
assumption of normality but not even that of continuity is required. Hence, it is 
a valid approach in the case of both interval and discrete scales. The results of the 
simulation study can be extended to testing problems for interval variables, and 
consequently applied to the case study. Even if, strictly speaking, the response 
variables in the considered application on organizational well-being are ordinal, it is 
common practice to treat them as interval data. In general, interval and discrete 
variables can be considered as the result of the discretization of continuous variables. 
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Furthermore, unlike the parametric approach, the permutation test does not require 
that a specific underlying family of distributions is known or assumed. The null 
permutation distribution of the test statistics can be determined regardless of whether 
the underlying distribution of the data is continuous or not. The 79 statements are 
reported in Appendix 1. 

Let 𝑌  be the random variable that represents the response concerning the 𝑣-th 
statement of an employee belonging to group 𝑔, with 𝑣 1,2, … ,79 and 𝑔 ∈ 𝐺
𝐹𝑈50,𝐹𝑂50,𝑀𝑈50,𝐹𝑂50 . The testing problem can be represented by the following 

hypotheses: 

𝐻 : 𝑌 , 𝑌 , 𝑌 , 𝑌 ,  

vs 

𝐻 : ∃𝑔 ,𝑔 ∈ 𝐺 s. t.  𝑌 , 𝑌 ,  

The significance level is 𝛼 0.05. According to the simulation study, the most 
suitable testing method seems to be the combined permutation test based on the 
Tippett combining function. The application of this test provides a p-value of 0.755, 
much greater than 𝛼. Hence the null hypothesis cannot be rejected. At the significance 
level 0.05, there is no empirical evidence to reject the null hypothesis of no difference 
of the organizational well-being between groups in favor of the hypothesis that the 
organizational well-being of the groups is not the same. In other words, we cannot 
conclude that there is a significance effect of gender and age on the employees’ well-
being. The analysis was carried out by the authors by creating specific R scripts for the 
implementation of the methodology.  

It is worth noting that the final p-value of the combined test is invariant with 
respect to the combination strategy. In other words, if we perform a two-level 
combination, i.e. the first within-domain combination of partial tests and the second 
combination with respect to the domains, the final result is the same as obtained by 
permuting the partial tests all together at the same time (see Pesarin, 2001). If we had 
significance in the overall test, it would be useful to identify the partial tests that 
contribute to the overall significance. This can be done with a suitable adjustment of 
the p-values of the partial tests for controlling the Family Wise Error rate and 
avoiding the inflation of the type I error of the final combined test. 
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In this case, an interesting two-stage combination strategy could be of interest, 
because the questionnaire is divided into sections corresponding to partial aspects of 
organizational well-being. Each aspect corresponds to a set of questions and 
consequently to a domain of variables (construct). In the case of significance of the 
overall combined test, the analysis of the adjusted p-values of the partial combined 
tests related to the constructs would make sense. Unfortunately, the overall null 
hypothesis is not rejected.        

This result proves that, in the University of Ferrara, the organizational well-being 
of the employees in terms of risks, working environment, respect, relationship with 
colleagues and office manager, transparency, motivation, etc. is not affected by age 
and gender. It could be considered as evidence of gender-age equality within the 
organization. 

6. Conclusions

The purpose of the work is to deepen the study of the power behaviour of
combined permutation tests for MANOVA problems with big data. The assessment of 
the convergence rate of the power to one as the proportion of variables under the 
alternative hypothesis increases and a comparison between the three most commonly 
used members within this family of tests represent the main scientific added value of 
the paper.   

These nonparametric multi-sample location tests are well approximated, 
consistent, unbiased and powerful also for small sample sizes. The power is also an 
increasing function of the number of samples and of the number of variables of the 
dataset. The asymptotic behaviour of the tests when the number of variables diverges 
was studied and the simulations proved that the proportion of true partial alternative 
hypotheses is more important than the absolute number of variables of the dataset 
in explaining the increase of power. The test based on the Tippett combination 
represents an exception to this general rule.  

This test seems to be much more powerful than the others when the proportion of 
true partial alternative hypotheses is not large but competitive also when the 
proportions are close to one. This is the only condition in which the test based on 
Liptak combination is competitive but, for small proportions of true alternatives, this 
test is by far the least powerful.  

Definitely, it seems that, among the distribution free solutions to the multivariate 
analysis of variance in the family of combined permutation tests, the method based on 
the Tippet combination is in general preferable, especially if there are no preventive 
information about the possible percentage of variables (or marginal distributions) 
under the alternative hypothesis. Instead of the Tippett combination, the Fisher rule 
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can be applied when the percentage is close to 100%. The Liptak combination seems 
to be non-convenient in general.  

This methodological tool is an important and useful solution of testing problems 
for big data, especially when the number of variables is very large and the sample sizes 
are small. The usefulness and the effectiveness of the method is confirmed by the 
application to the case study concerning the survey on the organizational well-being 
at the University of Ferrara discussed in the paper. 
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Appendix 1 

Code Statement
A.01 My working place is safe  
A.02 I have been informed about the risks connected to my job 
A.03 I am satisfied about the environment of my working place 
A.04 I have suffered harassment 
A.05 My dignity has been harmed at work 
A.06 At work the smoking ban is respected 
A.07 I usually take enough breaks 
A.08 I can work hard 
A.09 I am not comfortable when I am working 
A.10 The colleagues are not polite with me 
A.11 I am allowed to take a break when I wish 
A.12 I don't have the chance to take enough breaks 
B.10 At work I have suffered bullying 
B.01 In the workplace I am respected in my trade union membership  
B.02 In the workplace I am respected in my political orientation 
B.03 In the workplace I am respected in my religious faith 
B.04 My gender identity is an obstacle to my enhancement at work 
B.05 In the workplace I am respected in my ethnicity and race 
B.06 In the workplace I am respected in relation to my mother tongue 
B.07 My age is an obstacle to my enhancement at work  
B.08 In the workplace I am respected in relation to my mother tongue 
C.01 The workload is assigned with equity 
C.02 The responsibilities are assigned with equity 
C.03 My salary is proportional to the commitment 
C.04 The pay is differentiated according to quantity and quality of work 
C.05 My manager makes work decisions impartially 
D.01 At UNIFE the path of professional development of each employee is well defined and clear 
D.02 At UNIFE the career opportunities depend on merit 

D.03
UNIFE gives the possibility to develop skills and aptitudes of individuals in relation to the 
requirements of the different roles 

D.04 My current role is appropriate to my professional profile 
D.05 I am satisfied with my professional path within UNIFE 
E.01 I know what is expected of my work 
E.02 I have the skills to do my job 
E.03 I have the resources and tools to do my job 
E.04 I have an adequate level of autonomy in my work 
E.05 My work gives me a sense of personal fulfilment 
E.06 I know how to do my job 
E.07 I understand what is expected of me at work 
E.08 I have freedom of choice in deciding how to do my job 
E.09 I have unattainable deadlines 
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Code Statement
E.10 I have to work very hard 
E.11 I have a say in deciding how fast I can do my job 
E.12 I’m getting pressure to work overtime 
E.13 I have freedom of choice in deciding what to do at work 
E.14 I have to do my job very quickly 
E.15 I have deadlines impossible to meet 
E.16 I have a say in how to do my job 
E.17 My working hours can be flexible 
E.18 Job requests made to me by various people/offices are difficult to combine 
F.01 I feel part of a team 
F.02 I help colleagues even if it’s not my job 
F.03 I am esteemed and treated with respect by colleagues 
F.04 In my group, those who have information make it available to everyone 
F.05 The organization pushes to work in a group and to collaborate 
F.06 If the job becomes difficult, I can count on the help of my colleagues 
F.07 At work my colleagues show me the respect I deserve 
F.08 I receive support information that helps me in my work 
F.09 There are frictions or conflicts between colleagues 
F.10 My colleagues give me the help and support I need 
F.11 Colleagues are willing to listen to my work problems 
G.01 My organization invests in people, including through adequate training 
G.02 The rules of conduct are clearly defined 
G.03 Organisational tasks and roles are well defined 
G.04 The circulation of information within the organisation is appropriate 
G.05 My organisation promotes measures to reconcile working time and life time 
G.06 I have clear duties and responsibilities 
G.07 I must neglect some tasks because I have too much to do 
G.08 I know the goals of my department/office 
G.09 Staff are always consulted on changes in work 
G.10 I’m supported in emotionally challenging jobs 
G.11 Workplace relations are strained 
H.01 I am proud when I tell someone that I work at UNIFE 
H.02 I am proud when UNIFE achieves good results 
H.03 I am sorry if someone has a bad opinion of UNIFE 
H.04 Values and behaviours at UNIFE are similar to mine 
H.05 If possible, I would change company 
I.01 Relative and friends think that UNIFE is important for the collectivity 
I.02 Students think that UNIFE is important for the collectivity 
I.03 People think that UNIFE is important for the collectivity 
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Scaled Fisher consistency for the partial likelihood
estimation in various extensions of the Cox model
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ABSTRACT

The Cox proportional hazards model has become the most widely used procedure in survival
analysis. The theoretical basis of the original model has been developed in various exten-
sions. In the recent years, vital research has been undertaken involving the incorporation of
random effects to survival models. In this setting, the random effect is a variable (frailty)
which embraces a variation among individuals or groups of individuals which cannot be ex-
plained by observable covariates. The right choice of the frailty distribution is essential for
an accurate description of the dependence structure present in the data. In this paper, we
aim to investigate the accuracy of inference based on the primer Cox model in the existence
of unobserved heterogeneity, that is, when the data generating mechanism is more complex
than presumed and described by the kind of an extension of the Cox model with undefined
frailty. We show that the conventional partial likelihood estimator under the considered ex-
tension is Fisher-consistent up to a scaling factor, provided symmetry-type distributional
assumptions on covariates. We also present the results of simulation experiments that reveal
an exemplary behaviour of the estimators.

Key words: frailty models, Cox model, Fisher consistency.

1. Introduction

Statistical analysis of time-to-event data through survival regression models has become
common practise in a variety of disciplines including mainly demography and medicine but
also economics, actuarial science, reliability research and others. The regression framework
allows for the inclusion of relevant factors, like gender, socio-economic status, or received
treatment, which explain variation among the individuals or items being studied. However,
such an analysis is nearly always susceptible to the omission of influential covariates and
leaves unexplained variation. In some cases, the unobserved heterogeneity may cause in-
ferential perturbations that are beyond the control of the researcher. One way of accounting
for this estimation problem is to extend the model by including an unobserved random ef-
fect - a frailty variable, which allowed heterogeneity in longevity endowment. The notion
of frailty was introduced and applied to the population data by Vaupel et al. (1979). The
term frailty indicates that some individuals are frailer than others, that is, the event under
consideration is more likely to happen for them. In its classical and mostly applied form, a
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2Institute of Economic Sciences, University of Wrocław, Poland. E-mail: magdalena.skolimowska-
kulig@uwr.edu.pl. ORCID:https://orcid.org/0000-0002-4748-7624.
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frailty model assumes proportional hazards and includes an unobservable random variable
acting multiplicatively on the baseline hazard function. In recent years a number of papers
and textbooks have appeared discussing extensions of common survival models to a wide
variety of frailty models that are suitable to handle more complex survival data. A com-
prehensive review of frailty modelling in survival data analysis can be found in Hougaard
(2000) and Wienke (2011). Kalbfleisch and Prentice (2002) give detailed theoretical treat-
ments using the counting process theory. More applied presentations are given by Klein
and Moeschberger (2003), and Therneau and Grambsch (2000). Aalen et al. (2008) pro-
vide an insight into the theoretical and applied structure of frailty models used in survival
and event history analysis on the counting processes basis. Henderson and Oman (1999)
investigate the consequences of ignoring frailty in analysis and fitting misspecified Cox
proportional hazards models to the marginal distributions. The usual approach to statistical
inference with unobserved frailty assumes a parametric family of distributions for frailty,
usually gamma but also inverse Gaussian, positive stable, compound Poisson, or more gen-
eral the power variance function family. For particular types of parametric frailty models the
maximisation of the marginal likelihood leads to estimates of the parameters in the model,
but for semiparametric frailty models more complex estimation techniques are needed (see
Duchateau and Janssen, 2008). Certainly, modelling the frailty distribution is a remedy
for biased estimation of regression parameters, but its limited choice relies mainly on their
mathematical tractability.

Our objective is to investigate whether the traditionally used partial likelihood estima-
tion method can be worthwhile when the model is misspecified, more precisely, the existing
heterogeneity is neglected. In our considerations we apply the approach taken by Bednarski
and Skolimowska-Kulig (2018, 2019) and Bednarski and Nowak (2021). They focused
on the fundamental requirement needed in sound statistical inference about parameters, the
Fisher consistency of estimators. They studied the behaviour of the standard estimators, like
maximum likelihood for the exponential model or partial likelihood for the Cox model un-
der extended models, with no assumption about distributional structure of frailty. Then, of
course, the Fisher consistency condition need not be true, but it is shown that the commonly
used procedures for the estimation of regression parameters in certain hazard-based survival
models generate consistent up-to-scale estimators for extensions of these models. In the ar-
ticle we demonstrate that the partial likelihood estimator for the Cox regression model is
Fisher consistent up to a scaling factor under an extended model with unobserved gener-
alised frailty. The limitation we make is the distribution of covariates, which is assumed
to be elliptically symmetric. In our approach to the scaled Fisher consistent estimation, we
adapt the general ideas of Ruud (1983) and Stoker (1986) who studied regression coefficient
estimators in particular regression models with assumed misspecification, and showed their
up-to-scale consistency.

2. Maximisation criterion for the Cox estimator

In this part we remind the criterion that yields the regression parameter estimator in the
Cox proportional hazards model (Cox, 1972). We assume that the survival time T , given
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the covariate vector X , has the conditional distribution function

F(t|x) = 1− exp
(
−Λ(t)eβ ′x

)
,

where Λ(t) =
∫ t

0 λ (u)du, λ is the baseline hazard function and β is the parameter vector.
Suppose that we observe a sample (Ti ∧Ci,Xi), i = 1,2, . . . ,n, where the censoring variable
C is independent of the survival time T given the covariate vector X . To formulate the
partial likelihood let us denote by t(1) < t(2) < ... < t(m) the unique failure times. The partial
likelihood for the Cox model can be written as

L(β ) =
m

∏
i=1

eβ ′X(i)

∑ j∈Ri eβ ′X j
,

where the risk set Ri = {k : Tk ∧Ck ≥ t(i)} consists of subjects that have not failed or been
censored by time t(i) and X(i) is the covariate vector for the subject that fails at t(i).

The Cox estimator maximises L(β ), or equivalently(
m

∏
i=1

eβ ′X(i)

1
n ∑ j∈Ri eβ ′X( j)

)1/n

.

Thus, it is given as

argmax
β

1
n

n

∑
i=1

(
β
′Xi − ln

1
n ∑

Tj≥Ti

eβ ′X j

)
I{Ti≤Ci}.

If Fn(t,c,x) denotes the empirical distribution function of the sample (Ti,Ci,Xi), i= 1,2, . . . ,n,
and sums are replaced by empirical integrals, then the above expression can be stated as

argmax
β

∫ (
β
′y− ln

∫
t∧b≥w

eβ ′xdFn(t,b,x)
)
I{w≤c}dFn(w,c,y).

Since Fn converge uniformly in probability to a true distribution F we can expect that under
sufficiently stringent conditions, the maximising β̂n converge in probability to

argmax
β

∫ (
β
′y− ln

∫
t∧b≥w

eβ ′xdF(t,b,x)
)
I{w≤c}dF(w,c,y),

if the latter solution exists.

3. Fisher consistency and scaled Fisher consistency

Since the right time censoring present in the Cox regression model plays no essential
role in the argumentation presented in the paper we skip it in order to make the notation more
concise. If the underlying cumulative distribution F comes from the Cox model, that is there
is a parameter vector β0 and a nonnegative baseline hazard λ yielding Λ(t) =

∫ t
0 λ (s)ds such



188 T. Bednarski et al.:Scaled Fisher consistency for the partial ...

that
F(t|x) = 1− exp

(
−Λ(t)eβ ′

0x
)
,

then

β0 = argmax
β

∫ (
β
′y− ln

∫
t≥w

eβ ′xdF(t,x)
)

dF(w,y) (1)

for every parameter vector β0. The last property means that the Cox estimator is Fisher
consistent at the model. The consistency is independent of the baseline hazard λ and it
holds under censoring independent of survival time T given the covariate values X .

In general, all statistical estimators based on random samples are defined by explicit
or implicit functionals of the corresponding empirical distribution functions. If values of
such a functional coincide with true parameters when the empirical distribution is replaced
by the true model distribution then we say that the functional is Fisher consistent. Without
Fisher consistency the estimator cannot even be consistent asymptotically. Therefore, when
studying estimation proposals we would put its Fisher consistency property in the first place.
In practice, Fisher-consistent functionals (estimators) associated with a given parametric
family are used even if we think the family imperfectly describes a real distribution and
the discrepancy is deeper than the one resulting from occasional influential errors. It may
therefore be justified in some instances to study what happens when the estimator-functional
is used under reasonable nonparametric extensions of the original model. We make it precise
in the case of the partial likelihood estimator. Define then a Cox model with generalised
frailty and regression parameter β0 via cumulative distribution function of time, conditional
on covariates X = x and frailty A = a as

F(t|x,a) = 1− exp
(
−Λ(t,a)eβ ′

0x
)
, (2)

where the cumulated hazard Λ(t,a) =
∫ t

0 λ (t,a)dt takes now into account possibly complex
individual changes in time to event distribution. To simplify forthcoming notations we will
use the same letter F for model distributions from the Cox model with extended frailty as in
the case of the strict Cox model. The scaled Fisher consistency of the Cox estimator means
here that for each parameter value β0 there exists c > 0, possibly depending on β0, such that

cβ0 = argmax
β

∫ (
β
′y− ln

∫
t≥w

eβ ′xdF(t,x,a)
)

dF(w,y,b) (3)

for F(t,x,a) = F(t|x,a)G(x)H(a), where G and H are the distributions of covariates and
frailty respectively, and the random variables X and A are assumed independent.

4. Results

Consider the extended Cox model with generalised frailty independent on the covariates,
given by (2) and the problem of maximisation of∫ (

β
′y− ln

∫
t≥w

eβ ′xdF(t|x,a)dG(x)dH(a)
)

dF(w|y,b)dG(y)dH(b) (4)
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with respect to β . Since the above expression can be written as∫ (
− ln

∫
t≥w

eβ ′xdF0(t|x,a)dG0(x)dH(a)
)

dF0(w|y,b)dG0(y)dH(b),

where F0(t|x,a) = 1− exp
(
−Λ0(t,a)eβ ′

0x
)

, Λ0(t,a) = Λ(t,a)eβ ′
0EX and G0 is the distri-

bution of centred covariates X −EX , the maximisation can be reduced to covariates with
expectation zero.

Lemma 1. Let β0 be the true parameter value and the covariate vector with zero mean be
such that for every vector β the conditional expectation E((β − pro jβ0β )X |β ′

0X) is almost
surely zero. Then β maximising (4) equals cβ0 for some real c.

Proof. For F with centred covariates the maximisation of (4) is equivalent to the minimisa-
tion of ∫ (

ln
∫

t≥w
eβ ′xdF(t|x,a)dG(x)dH(a)

)
dF(w|y,b)dG(y)dH(b),

which in turn can be stated as∫ (
ln
∫

t≥w
eβ ′xdF(t|x,a)dG1(x|β ′

0x)dG2(β
′
0x)dH(a)

)
dF(w|y,b)dG(y)dH(b), (5)

where β0 denotes the true parameter value, G1 is the conditional distribution of X given β ′
0X

while G2 is the distribution of β ′
0X .

Notice that for any nonzero parameter vector β we can write β = cβ0 +β1, where cβ0 =

pro jβ0β is the orthogonal projection of β on β0. Then (5) becomes

∫ (
ln
∫

t≥w
ecβ ′

0xdF(t|β ′
0x,a)

∫
eβ ′

1xdG1(x|β ′
0x)dG2(β

′
0x)dH(a)

)
dF(w|y,b)dG(y)dH(b) =∫ (

ln
∫

t≥w
ecβ ′

0xdF(t|β ′
0x,a)E

(
eβ ′

1X |β ′
0X = β

′
0x
)

dG2(β
′
0x)dH(a)

)
dF(w|y,b)dG(y)dH(b)≥∫ (

ln
∫

t≥w
ecβ ′

0xdF(t|β ′
0x,a)eE(β ′

1X |β ′
0X=β ′

0x)dG2(β
′
0x)dH(a)

)
dF(w|y,b)dG(y)dH(b). (6)

If for every vector β the conditional expectation E(β ′
1X |β ′

0X) is almost surely zero then the
right side of the inequality (6) equals∫ (

ln
∫

t≥w
ecβ ′

0xdF(t|x,a)dG(x)dH(a)
)

dF(w|y,b)dG(y)dH(b)

and we can conclude that the minimising value of β , if it exists, must be equal to cβ0.

The following theorem is an immediate consequence of the above lemma and the scaled
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Fisher consistency condition (3).

Theorem 1. If β0 is the true parameter value and E(X |β ′
0X) ∈ lin(β0) almost surely then

the partial likelihood estimator is scaled Fisher consistent under the Cox model with gen-
eralised frailty.

Proof. Notice that for X such that E(X |β ′
0X)∈ lin(β0) almost surely and for any β = cβ0+

β1, where cβ0 is the orthogonal projection of β on lin(β0), we have E(β ′
1X |β ′

0X) = 0 almost
surely.

There are important cases when the condition assumed in the above theorem holds. One
of them is when X is spherically symmetric, that is if for every orthogonal matrix Γ the
random vector ΓX is distributed as X .

Corollary 1. If X has a spherically symmetric distribution then the partial likelihood esti-
mator is scaled Fisher consistent under the Cox model with generalised frailty.

The following conclusion results directly from the preceding considerations.

Corollary 2. If β0 is the true parameter value, M a nonsingular matrix, X = MZ and
E(Z|γ ′0Z)∈ lin(γ0) almost surely for γ0 = β ′

0M then the partial likelihood estimator is scaled
Fisher consistent under the Cox model with generalised frailty.

It is also quite straightforward to show that if X = MZ, where M is a nonsingular matrix
and Z is spherically symmetric, then again we have the scaled Fisher consistency of the
partial likelihood estimator.

Corollary 3. If X =MZ and Z has a spherically symmetric distribution then the partial like-
lihood estimator is scaled Fisher consistent under the Cox model with generalised frailty.

Another special case covered by Theorem 1 is considered below.

Corollary 4. Let the random vector X =(X1, . . . ,Xk)
′ be exchangeable, i.e. (Xπ(1), . . . ,Xπ(p))

′

and X have the same distribution for any permutation π of the set {1,2, . . . ,n}. If β ′
0 =

(b,b, . . . ,b), b ̸= 0, then the partial likelihood estimator is scaled Fisher consistent under
the Cox model with generalised frailty.

Proof. The exchangeability of X implies that E(X1|β ′
0X) = · · ·= E(Xk|β ′

0X). On the other
hand E(X1 + · · ·+ Xk|β ′

0X) = X1 + · · ·+ Xk and finally E(X1|β ′
0X) = (X1 + · · ·+ Xk)/k.

Therefore E(X |β ′
0X) ∈ lin(β0) and the Fisher consistency holds.

5. Simulation studies

In this section we present the results of simulation studies conducted to investigate how
the violation of the symmetry assumption on the regressors distribution or the omission of
the covariates may affect properties of the partial likelihood estimation of the regression
parameters. The experiments also show exemplary up-to-scale estimation under the Cox
model with various choices of generalised frailty. All simulations were run with the R

programming language.
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Example 1. Estimation under non-symmetric covariates

The sample of size 500 was generated from model (2) with Λ(t,a) = ta and frailty
given as a mixture of two gamma distributions. The covariates are from a two-dimensional
uniform distribution mixed with a two-dimensional independent chi-square χ2(2) (see the
left panel of Figure 1). The curve shown in the right-hand panel of Figure 1 represents the
distance d(α) between the true beta β ′

0 = (cos(α),sin(α)) and the normalized averaged of
estimates for α ∈ [0,2π]. The values on x axis are angles between the horizontal axis and
true betas.

From the above description it follows that the density of the covariate vector X =

(X1,X2)
′ has the form

f (x1,x2) =
1
2
· I(−0.5,0.5)2(x1,x2)+

1
2

exp(−(x1 + x2)/2) · I(0,∞)2(x1,x2).

Obviously X is not elliptically symmetric, however, since f (x1,x2) = f (x2,x1), it is ex-
changeable. Thus, for β ′

0 = (
√

2/2,
√

2/2) and β ′
0 = (−

√
2/2,−

√
2/2) by Corollary 4 the

partial likelihood estimation is scaled Fisher consistent. Hence, we can see that function
d(α) attains minimum for α = π/4 and α = 5/4π .

Figure 1: Typical covariates and distance between true parameter and average estimates.
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Example 2. Up-to-scale estimation for various types of generalised frailty

This example provides Monte Carlo simulations for different choices of generalised
frailty Λ(t,a). Five forms of generalised frailty for A distributed as shifted binomial dis-
tribution binom(1,0.5)+ 1 are considered (see Table 1). Observe that all functions Λ(t,a)
have the following properties: for a ∈ {1,2} Λ(0,a) = 0 and Λ(t,a) > 0 for every posi-
tive t, limt→∞ Λ(t,a) = ∞ and they are continuously differentiable and strictly increasing
on t ∈ (0,∞). The conditional distribution of the survival time T given [X = x,A = a] was
generated using the formula Λ−1(− ln(U)exp(−β ′

0x),a), where U follows the uniform dis-
tribution on the interval [0,1]. The true parameter value was taken as β ′

0 = (1,0.5,0.2)
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and the regressors X = (X1,X2,X3)
′ were used: either with standard normal or exponential

distributions and Cor(Xi,X j) = 0.7 for i ̸= j. Estimations were repeated 5000 times for a
sample size of 500. For each combination of the covariates and the generalised frailty two
vectors are given as a result. The first one refers to scales - the means of ratios of estimates
and the true parameters. Under normally distributed regressors the scaled Fisher consis-
tency holds, so we expect the scales to be the same. The second vector in each cell consists
of standard deviations of estimates. Simulations indicate good asymptotic behaviour of the
estimators in the model with normal regressors as the differences in scales are very slight.
Other choices of elliptically symmetric regressors, not presented in this example, lead to
similar results. In the case of non-symmetric covariates the estimation brings worse results.

Table 1: Results of simulation experiment for different choices of generalised frailty. The
first vector in each cell refers to the means of ratios of components of estimates and the true
parameters. The second one refers to the standard deviations of the vector estimates of true
parameter values.

Generalised frailty Normal regressors Nonormal regressors

Λ(t,a) = a
√

t
(0.9361, 0.9398, 0.9324) (0.9260, 0.9357, 0.9434)
(0.0791, 0.0756, 0.0729) (0.0865, 0.0739, 0.0728)

Λ(t,a) = a
√

t + t
(0.6228, 0.6228, 0.6122) (0.2747, 0.3125, 0.3886)
(0.0770, 0.0700, 0.0676) (0.0864, 0.0784, 0.0761)

Λ(t,a) = t2 +at − t
(0.8855, 0.8817, 0.8839) (0.6628, 0.6889, 0.7401)
(0.0781, 0.0726, 0.0704) (0.0835, 0.0784, 0.0731)

Λ(t,a) = t3a/2−1
(0.7588, 0.7589, 0.7572) (0.4612, 0.5104, 0.5937)
(0.0775, 0.0733, 0.0708) (0.0924, 0.0844, 0.0792)

Λ(t,a) = t3a/2−1 + t2
(0.8560, 0.8520, 0.8498) (0.4799, 0.5271, 0.6110)
(0.0804, 0.0726, 0.0695) (0.0949, 0.0844, 0.0817)

Example 3. The effect of variable’s omission in the Cox model

The above considerations show a wide range of distributional possibilities for the ex-
planatory variables for which the estimation of regression parameters in the Cox model is
scale Fisher consistent under the extended model with generalised frailty. As a particular
case of Λ(t,a) assume that Λ(t,a) = aΛ(t). The frailty variable A has a special interpreta-
tion in survival analysis for the Cox model, where it is supposed to describe proportional
changes of cumulated hazard Λ(t) for individual units within the population. Since

P(T > t|x,a) = exp
(
−Λ(t)aexp(β ′

0x)
)
= exp

(
−Λ(t)exp(β ′

0x+ ln(a)
)

it can as well be interpreted as a missing (independent) covariate. In practical data analysis
it would be difficult to specify in any reasonable way the distributional form of the missing
covariate.
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A Monte Carlo experiment was conducted to investigate properties of the partial like-
lihood estimation when variables are omitted and data are generated from the true Cox
model. In order to demonstrate the effect of variable’s omission the following Cox model
was taken: β ′

0 = (−1,−1,0.5,1), Λ(t) = t2 and X = (X1,X2,X3,X4)
′ where: (X1,X2) has the

distribution described in Example 1, (X3,X4) has the two dimensional normal distribution
with correlation of 1/

√
2 and vectors (X1,X2) and (X3,X4) are independent.

The sample size of n = 500 was taken and the estimation was repeated 5000 times.
Simulation results, given by the means of ratios of estimates and parameters, and by standard
deviations of estimates, are presented in Table 2. The up-to-scale consistent estimation
of the corresponding regression coefficients is revealed for covariates vector (X1,X2) and
(X3,X4). For the estimation based on the entire set of regressors the estimation is consistent
with the scale of one. For other regressor vectors it can be observed that departure from the
elliptically symmetric distribution implies the lack of scaled consistency in estimation.

Table 2: Results of simulation experiment. The first and the second vector in each cell refers
to mean scales and standard deviations of estimates of true parameter values corresponding
to the subset of regressors.

Subsets of X Scales \Sd Subsets of X Scales\Sd

(X1,X2)
(0.4299, 0.4228)

(X1,X2,X3)
(0.6637, 0.6611, 1.9944)

(0.0774, 0.0816) (0.0856, 0.0844, 0.0328)

(X1,X3)
(0.7613, 1.9430)

(X1,X2,X4)
(0.9226, 0.9330, 1.1621)

(0.0895, 0.0330) (0.0824, 0.0840, 0.0257)

(X1,X4)
(1.0396, 1.1299)

(X1,X3,X4)
(1.1106, 0.9455, 0.9476)

(0.0841, 0.0247) (0.0795, 0.0336, 0.0303)

(X3,X4)
(0.8820, 0.8854)

(X1,X2,X3,X4)
(1.0060, 1.0001, 1.0007, 1.0020)

(0.0345, 0.0301) (0.0775, 0.0765, 0.0327, 0.0295)

Example 4. Mayo Clinic Primary Biliary Cirrhosis Data

The example is based on the data from the Mayo Clinic trial in PBC, available in the
package survival of R program. In this example we consider four explanatory variables:

- age
- edema (0 for no edema, 0.5 for moderate and 1 for severe edema)
- bili (serum bilirunbin mg/dl)
- protime (standardised blood clotting time)

Before fitting the Cox model we logarithmically transformed variables bili and protime. The
assumption of elliptical symmetry was checked by three tests implemented in the package
ellipticalsymmetry in R program. We chose test MPQ by Manzottii et al. (2002) (Test
1), test by Schott (2002) (Test 2) and test by Huffer and Park (2007) (Test 3). The results are
summarized in Table 3. Let β̂0 denote the estimate of the coefficients in the Cox model for
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Table 3: Fitting the Cox model for PBC data with dropped regressors.

Subsets of regressors

P-values of tests

Scalesfor elliptical symmetry

Test 1 Test 2 Test 3

age, edema <2.2e-16 <2.2e-16 <2.2e-16 (0.7585, 1.7932)

age, ln(bili) 0.1412 0.3712 0.0024 (1.0506, 1.1204)

age, ln(protime) 0.0078 0.0954 0.0008 (0.9026, 1.5432 )

edema, ln(bili) <2.2e-16 <2.2e-16 <2.2e-16 (1.1993, 0.9885)

edema, ln(protime) <2.2e-16 0.0118 <2.2e-16 (1.6157, 1.2628)

ln(bili), ln(protime) 0.6853 0.0600 0.6400 (1.0273, 1.1492)

age, edema, ln(bili) <2.2e-16 <2.2e-16 <2.2e-16 (1.0126, 1.1380, 1.0403)

age, edema, ln(protime) <2.2e-16 0.0002 <2.2e-16 (0.7483, 1.5422, 1.2809)

edema, ln(bili), ln(protime) <2.2e-16 0.0004 <2.2e-16 (1.0657, 0.9487, 0.9526)

age, ln(bili), ln(protime) 0.0015 0.0933 4.8e-05 (1.0335, 1.0550, 1.2253)

regressors: age, edema, ln(bili), ln(protime) and let β̂ denote the estimate of the coefficients
in the Cox model based on the subset of this regressors. For each subset of regressors
we computed scales as ratios of the coefficients for corresponding variables in β̂0 and β̂ .
All tests detect correctly the lack of elliptical symmetry when regressors include discrete
variable edema. The lack of elliptical symmetry of explanatory variables may imply the
scales not being the same after omitting regressors. For the regressors (age, ln(bili)) and
(ln(bili), ln(protime)) the differences in the scales are slight. They seem to be elliptical
symmetric (see p-values in Table 3).

6. Concluding discussion

An important property of the Cox model is that the baseline hazard is an unspecified
function and makes the Cox model of a semiparametric type. A key reason for the popular-
ity of the Cox model is that even though the baseline hazard is not specified, reasonably good
estimates of regression coefficients, hazard ratios of interest, and adjusted survival curves
can be obtained for a wide variety of data situations. Frailty models arise naturally from
the Cox model with unobserved covariates, which form the frailty parameter and handle
right-censoring and left-truncation, which is crucial in time-to-event analysis. Frailty gives
way to explain additional time variability that could not be grasped by the original Cox
model. The usual investigation of the partial likelihood estimator for the Cox regression
model involved an interest in the consistency of the partial likelihood estimator under the
Cox model with frailty, which presumes the time distribution dependent on a single baseline
hazard λ , multiplied by a positive random variable A called frailty. Fisher consistency of the
Cox estimator was studied under the independence of frailty A from the covariates X and
under analytically convenient frailty distributions. Nevertheless, attributing to population
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individuals the same baseline up to a proportionality factor (frailty) and making consistent
estimation dependent on purely analytic properties of frailty distribution seemed far from
satisfactory. In fact studies show that the Fisher consistency does not hold under arbitrary
frailty. What we could naturally hope for then, would be the so-called scaled Fisher con-
sistency - regression parameters could be estimated consistently up to an unknown scaling
factor. In the paper we demonstrate that this is attainable, the classical partial likelihood
procedure leads to the estimator satisfying this condition up to a scaling factor under the ex-
tended Cox model with generalised frailty and an elliptically symmetric distribution of the
covariates. The simulation studies indicate the lack of this property in the case of violating
the assumption. The Cox model with generalised frailty is of great importance in various
analyses of time-to-event data. However, it should be noted that the omission of an influ-
ential variable or misspecification of the frailty distribution may lead to severe estimation
errors. In this light, considering estimation consistent up to scale may result in meaningful
comparisons of impact of covariates on hazards.
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ABSTRACT 

The COVID-19 pandemic has recently become a threat all across the globe with the rising 
cases every day and many countries experiencing its outbreak. According to the WHO, 
the virus is capable of spreading at an exponential rate across countries, and India is now 
one of the worst-affected country in the world. Researchers all around the world are racing 
to come up with a cure or treatment for COVID-19, and this is creating extreme pressure 
on the policy makers and epidemiologists. However, in India the recovery rate has been far 
better than in other countries, and is steadily improving. Still in such a difficult situation 
with no effective medicine, it is essential to know if a patient with the COVID-19 is going 
to recover or die. To meet this end, a model has been developed in this article to estimate 
the probability of a recovery of a patient based on the demographic characteristics. 
The study used data published by the Ministry of Health and Family Welfare of India for 
the empirical analysis. 

Key words: COVID-19, epidemic, coronavirus disease, recovery estimation, logistic 
regression, logit analysis. 

1. Introduction

Coronaviruses are the group of related RNA viruses which has ribonucleic acid as
its genetic material. These viruses cause diseases in humans, other mammals and birds 
and sickness may range from common cold to severe respiratory diseases. COVID-19 
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is the most recent disease that has jumped off to humans. Initially the eruption of the 
novel coronavirus was documented in China's Wuhan at the beginning of December 
2019 and then circularized all across the world. Often during coughing or sneezing, 
the infection of coronavirus disease disseminates from one human to others via 
droplets raised from the respiratory system of the infected humans (WHO, 2020). The 
COVID-19 symptoms generally include fever, dry cough, tiredness, and in severe 
cases, infection can lead pneumonia, shortness of breath, chest pain, loss of speech or 
movement, kidney failure, and even death (WHO, 2020), but approximately 
20 percent of the cases have been deemed to be severe (Singh et al., 2020). The World 
Health Organization (WHO) announced this COVID-19 a pandemic on 11 March 
2020 and ingeminated the call for countries to take quick actions and scale up 
response to treat, detect and reduce transmission to save people’s lives. The developed 
countries such as the United States of America, Italy, Spain, France, UK, etc. are 
struggling to overcome the disease spreading by novel coronavirus. According to 
WHO, by the end of May 2020 it has spread in around 188 countries, the total 
number of cases have exceeded 6 million and approximately 3.7 lakh deaths 
worldwide. In India, the first case of coronavirus infection was observed in Kerela on 
30 January 2020 and for the two months, the spread of the coronavirus disease was 
extremely slow may be due to the strict nationwide lockdown. After that, the 
Government of India gave the conditional relaxation in the nationwide lockdown and 
during this period of lockdown, the coronavirus cases started increasing with the 
exponential rate. Although the incubation period for the coronavirus disease has not 
been confirmed yet, from the pooled analysis it is seen that the symptoms may appear 
in 2 days to 14 days (Singhal, 2020) and the Government of India has declared 
minimum 14 days quarantine period for the suspected cases. In the absence of any 
efficacious medicine or vaccination, the social distancing has been consented as 
a most efficient scheme for cutting the severity of this coronavirus disease all across 
the globe (Ferguson et al., 2020; Singh et al., 2020). 

As India is the second largest most populated country and majority of the 
population live under the inadequate hygiene and with insufficient medical facilities 
such as lack of testing kits, labs and health personnel, etc., and with the relaxation 
in lockdown, the coronavirus disease may start spreading at community level. In the 
middle of June, the total confirmed COVID-19 cases crossed 3.43 lakh with an 
increase of more than ten thousand cases in a single day and the new cases was rising 
at the record pace while the deaths have come up to 9900 with 380 fatalities. If the 
same rate continues, India will reach the sixth position in the most affected countries 
by COVID-19, and presently India is the 7th worst affected country after the USA, 
Brazil, Russia, UK, Spain and Italy (WHO), and in terms of the fatality rate, India is at 
the twelfth position while it is ranked 8th in terms of recovery rate from coronavirus 
disease currently. 
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The Prime Minister of India Mr. Narendra Modi stated that currently India is 
being listed amongst the countries with the least number of deaths due to coronavirus 
and also said that the death rate can still be reduced if we all follow all the guidelines 
suggested by WHO. PM Modi also said that the decision of nationwide lockdown on 
time served better in controlling the speed of spreading of coronavirus disease 
in India. According to the ICMR's serological survey, about 0.73% of the population 
was exposed to the virus by the mid-June and India could have 200 million COVID 
infected people by September. The Indian Council of Medical Research (ICMR) said 
that India was not in community transmission yet but a large chunk of the population 
is at risk and physical distancing and other similar measures need to continue. The 
return of millions of migrants to villages in Bengal, UP, Bihar, Orissa, Chhattisgarh, 
Jharkhand, etc. will lead to a surge of infections in these rural hinterlands. 

As COVID-19 is a new pandemic, it has become a challenging task in front of the 
scientists and researchers to fight with this coronavirus disease in the absence of 
vaccine. Thus, to know its behaviour and nature a lot of research is being done all 
across the globe, so that it could help the scientists or epidemiologists to possibly cure 
humans from its infections. The published data on COVID-19 pandemic are analysed 
by many researchers by using various mathematical modelling approaches (Rao et al., 
2020; Chen et al., 2020). Huang et al. (2020) worked on the clinical features of patients 
infected with 2019 novel coronavirus in Wuhan, China. Modelling and forecasting of 
the COVID-19 pandemic is done by Anastassopoulou et al. (2020), Corman et al. 
(2020), Rothe et al. (2020) and Gamero, J. et al. (2020) and many interesting results 
have been obtained using the principles of mathematical modelling. Nikolay et al. 
(2020) used the coronavirus data and compared the Verhult model with the half-
logistic curve of growth with polynomail variable transfer model. Further, they have 
compared the Verhulst growth model with Verhulst curve of growth with polynomail 
variable transfer model on the Covid-19 data and also have studied the intrinsic 
properties of some models of growth with polynomial variable transfer that give 
a very good approximation of the specific data on the pandemics in Cuba. Zaliskyi et 
al. (2020) built a mathematical model for COVID-19 data of European countries. 
In this article, an effort has been made to estimate the probability of recovery from the 
coronavirus disease using the indirect method of estimation. For this a logistic 
regression techniques has been used and for the empirical analysis, the available 
information about the demographic variables such as age and gender of the patients, 
which was published by the Ministry of Health and Family Welfare, Government of 
India, is utilized. 
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2. The Model and Methodology

Here, the variable of the interest is the status of the patient whether the patient
recovered or deceased after the infection of COVID-19. The status of the patient can 
take only two values – either 0  if the patient deceased due to COVID-19 or 1 if 
recovered, and we want to estimate the probability of dying or survived after getting 
the infection of COVID-19 as a function of the indicator variables such as gender 
(male or female) and various age groups (020, 2140, 4160 and 60  and over). 
Since the response variable is of a dichotomous type, the logistic regression modelling 
technique is applied for the estimation of the probability whether the patient will die 
or recover by using various age groups and gender of the patients. 

Let   denote the probability of recovery from the corona disease of a patient for 
the given values of p  predictor variables and the relationship between the probability 
 and p  predictors can be represented by the logistic model (see Chatterjee, S. and
Hadi, Ali S. (2006)), i.e.
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Here, the function )(logit in equation (4) is a linear function of explanatory 
variables xi (i=1,…,p) in terms and it is called the logit function and the range of   

in equation (1) is between 0  and 1 while the range of the values of )
1

(





log  is 

between   and  , which makes the logits more appropriate linear regression 
fitting, and the disturbance term   satisfies all the basic assumptions of ordinary least 
squares. 

Now, our predictor variables are categorical type so the dummy variables are 
created for each of the categorical predictors. If the regression model contains an 
intercept term, the number of dummies defined should always be one less than the 
number of categories of that variable. Let G  be the dummy variable for the gender of 
the patient which have only two categories (male and female), i.e. 1=G  if the patient 
is male, 0  otherwise. Similarly, the dummy variables for the age having four age 
groups is 1,2,3=; tAt

 and it can be defined as 
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Here, the female category in the dummy variable G  and the age group 020 
in the tA  dummy variable are taken in the reference category and the logit model can
be written as 
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3. Empirical Analysis

For the estimation of the probability of recovery of a patient infected by
coronavirus disease in India, the data issued by the Ministry of Health and Family 
Welfare (MoHFW, India) are utilized. In the analysis, 427 patients have been included 
due to the lack of availability of data on all the patients and the data on the patients’ 
status from all over India are taken from between 30 January 2020 to 30 May 2020, 
which is shown in Table 1. From the available data, an effort has been made to 
estimate the probability of recovery from coronavirus disease in India. For this, the 
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logistic regression technique is used and the developed model is shown in equation 
(6), where age group and gender of the patients are the indicator variables and   is 
the probability of recovery of a patient from coronavirus disease. The analysis is done 
using 𝑅𝑆𝑡𝑢𝑑𝑖𝑜 (R Core Team (2020)) and the results obtained are shown in Table 2. 
The estimated model is given as 
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Now, from Table 2, it can be seen that the age groups 4160 and 60 and over are 

significant at 0.05 level of significance as their p-values are smaller than the 0.05and 
the log odds of recovery from the corona disease are 1.5913 and 2.0101 for the age 
group 4160 and 60 and over respectively. For a better understanding of the results, 
the exponentiated terms of the regression coefficients has also been computed, which 
is shown in Table 3. If we look at the exponentiated terms of these log odds of 
significant variables, i.e. 0.20365=1.5913)(exp  and 0.13397=2.0101)(exp , these 
exponentiated terms show the odds of recovery from the coronavirus disease means 
that recovery odds for the patients in the age group 4160 years is equal to 0.2036 
times the recovery odds for the patients in the age group 020 years. Similarly, the 
patients aged 60 and over have 0.13397 times the odds of being recovered from Covid-
19 disease compared to the patients in the age group 020 years on average, holding 
all else constant. From these two odds ratios, it can also be discovered that the odds of 
recovery from the corona disease is higher in the patients aged between 4160 than 
the patients whose age is 60 and over. From Table 2, it can be assured that for the 
patients in the age group 020 and who are male, the probability of recovery from 
coronavirus disease is 0.6597 and the probability of recovery for the male patients 
aged between 4160 is 0.6818. Also, the predicted recovery probability from 
coronavirus disease of patients aged 60 and over is 0.6746, which is slightly lower than 
the patients aged between 4160 and higher than the patients of aged between 020. 
But on average, it can also be seen that the probability of recovery from coronavirus 
disease during the first wave of pandemic is almost same in all the patients and lies 
between the probability 0.65970.6818. If we look at the coefficient of gender (male) 
in Table 2, which is also statistically insignificant, it means there is no strong evidence 
for a gender difference in risk of dying due to coronavirus disease. This implies that 
the probability of recovery from coronavirus disease is same in males and females, 
keeping all else constant.  

To test the goodness of fit of the model to the data, the log likelihood ratio 2R , 
sometimes called McFadden R-squared, the C-Statistic (Concordance Statistic)  
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and Chi-Square goodness of fit test, has been used. The McFadden R-square is 
defined as: 

0

2 1=
LL

LL
R full

MF   (8) 

where fullLL  is the full log likelihood model and 0LL  is the log likelihood function of 
the model with the intercept only. Backhaus et al. (2000) suggested that a McFadden 

2R  value is in the range 0.20.4 indicates a good fit of the model and the obtained 
value of the 2

MFR  is 1-384.12/482.96= 0.20465463 and shows the model is sufficiently 
well fitted to the data and the C-statistics can be computed by considering all possible 
pairs consisting of one patients who recovered from the coronavirus disease and one 
patients who deceased. The obtained C-statistics is the proportion of such pairs 
in which the patients who experienced a recovery from coronavirus disease had 
a higher estimated probability of experiencing the recovery than the patients who did 
not experience the recovery from the coronavirus disease. The value of C-statistics can 
lie between 0.50 to 1.00 The closer the C-statistic is to 1, the better a model is able to 
classify outcomes correctly. The value of C-statistics between 0.70 and 0.80 signals the 
model is good fitted to the data and the value between 0.50 to 0.70 indicates poor 
models (Hosmer & Lemeshow, 2000). Here, the obtained C-statistic is 0.7599994, 
which also indicates that the model is good enough and is able to classify outcomes 
correctly. 

The Chi-square goodness of fit test is also used to test the goodness of fit of the 
model. For this, the standardized residuals are calculated as 

𝑟
𝑦 𝑦

𝑦 1 𝑦

And then the Chi-squared statistics is obtained as 

𝜒 𝑟  

The 𝜒  statistics follows a 𝜒  distribution with n-(p+1) degree of freedom, where 
p are the number of covariates. The obtained 𝜒  value is 427.228 with 422 degree of 
freedom and the corresponding p-values is 0.4199021. This indicates that we cannot 
reject the null hypothesis that the model is exactly correct and it shows that the model 
fits the data well. From Figures (1 and 2), it can also be seen that the observed and 
expected number of cases of recovered and deceased is almost same, which also 
indicates that the model fits the data well. 
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4. Conclusion

The coronavirus has wreaked havoc all across the world with the rising cases of
COVID-19 every day and with the absence of any effective treatment. In these 
gravedigger circumstances, the Government of India adopted many preventive steps 
such as lockdown, social distancing and urging people to live with extra cleanliness 
and India benefited somewhat from the strict lockdown but this nationwide lockdown 
cannot be continued for so long as it is not the solution for this pandemic, and it also 
not good for the country’s economy. Hence, it is necessary to estimate the probability 
of recovery from the coronavirus disease as most of the Indian population is living 
in poor hygienic conditions. In this article, a probability model is developed using the 
indirect method of estimation based on some demographic factors, and it is found 
that the probability of recovery from coronavirus disease is statistically same in both 
males and females. Also, the coronavirus patients in the age group 040 years have 
almost equal probability of being recovered from this disease. In the patients aged 
between 4160, the odds of recovery from the coronavirus disease is equal to 0.2036 
times the recovery odds of the patients of the age group 020 years, while the patients 
aged 60 and over have 0.13397 times the odds of recovery from coronavirus compared 
to the patients of the age group 0-20 years on average. Also, the odds of recovery from 
coronavirus is higher in the patients of the age group 4160 years than in the patients 
aged 60 and over. 
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Appendix 

Table 1.  Number of patients deceased or recovered from the corona disease in India during 30 
January 2020 to 30 May  2020 

Age Group 
Patient Status 

Total Deceased Recovered 
Female Male Female Male 

0-20 6 2 4 4 16
21-40 6 15 21 31 73
41-60 48 104 11 19 182

60 and over 51 87 6 12 156 
Total 111 208 42 66 427

Table 2.    Coefficients showing the log odds ratios of recovery from the coronavirus disease 

Deviance Residuals: 
Min 1Q Median 3Q Max
-1.61 -0.59 -0.51 0.8 2.1

Coefficients: 

Group Estimate Standard 
Error z value Pr(>|z|) 

Intercept 0.0401 0.5103 0.0790 0.9373
21-40 0.9346 0.5676 1.6470 0.0996
41-60 -1.5913 0.5441 -2.9250 0.0034*
60 and over -2.0101 0.5632 -3.5690 0.0003* 
Gender(Male) -0.1071 0.2695 -0.3970 0.6913
Null Deviance: 482.96 on 426 degree of freedom 
Residual 
Deviance: 

384.14 on 422 degree of freedom 

AIC: 394.14 
Number of Fisher scoring iterations: 4 

The p-values denoted by * are significant at 0.05 level of significance   

Table 3.  Exponentiated estimated coefficients showing the odds ratios and their respective 
confidence intervals  

Group Estimates
95% Confidence Interval 

Lower limit Upper limit 
 Intercept  1.04 0.38 2.89 
21-40 2.55 0.83 7.89 
41-60 0.20 0.07 0.60 
 60 and over 0.13 0.04 0.41 
 Gender (Male)  0.90 0.53 1.53 
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Figure 1.  Observed and expected number of cases recovered from the corona disease in groups  

Figure 2.  Observed and expected number of cases deceased from the corona disease in groups 
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Laureates of the Jerzy Spława-Neyman Medal 

The 3rd Congress of Polish Statistics, organized by Statistics Poland and the Polish 
Statistical Association, took place from 26 to 28 April 2022 in Cracow. This year's 
edition of the Congress commemorated the 110th anniversary of the Polish Statistical 
Association. 

The Congress of Polish Statistics was one of the most important scientific events 
and was attended by international academics, scientists, stakeholders of official 
statistics as well as by representatives of public administration and media. 

Its goal was to strengthen the multi-directional cooperation between the Polish and 
international community of statisticians – representing scientific and decision-making 
centres involved in the advancement of theoretical and application areas of broadly 
understood statistical sciences and related disciplines, with the intention of also 
improving the functioning of national systems of public statistics.  

During the Congress the Jerzy Spława-Neyman Medal, awarded by the Chapter of 
the Polish Statistical Society, was presented to honour the following eminent Professors: 
1. Danny Pfeffermann (University of Southampton, UK),
2. Partha Lahiri (University of Maryland, USA),
3. Włodzimierz Okrasa (Cardinal Stefan Wyszynski University (UKSW).

Pfeffermann Danny is a Professor of Statistics at the University of Southampton,
UK, and Professor Emeritus at the Hebrew University of Jerusalem, Israel. As of 2013, 
he has been the Government Statistician and Director General of the Central Bureau of 
Statistics in Israel. He is a past President of the Israel Statistical Society and a past 
President of the International Association of Survey Statisticians (IASS). For the last 
20 years, he has also served as a consultant for the US Bureau of Labor Statistics. Danny 
Pfeffermann is a Fellow of the American Statistical Association and an elected 
member of the International Statistical Institute (ISI). He has received a BA degree 
in Mathematics and Statistics and MA and PhD degrees in Statistics from the Hebrew 
University of Jerusalem. He is a recipient of numerous prestigious awards, including 
Waksberg award in 2011, the West Medal by the Royal Statistical Society in 2017, 
the Julius Shiskin Memorial Award for Economic Statistics in 2018, and the SAE 2018 
Award for his distinguished contribution to the SAE methodology and the 
advancement of Official Statistics in the Central Bureau of Statistics in Israel. 
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Lahiri Partha is a Professor of Survey Methodology and Mathematics at the 
University of Maryland College Park and an adjunct research professor at the Institute 
of Social Research, University of Michigan, Ann Arbor. His areas of research interest 
include data linkages, Bayesian statistics, survey sampling and small-area estimation. 
Dr. Lahiri has served on the editorial board of a number of international journals and 
on many advisory committees, including the U.S. Census Advisory committee and U.S. 
National Academy panel. He has also served as an advisor or consultant for various 
international organizations such as the United Nations and the World Bank. He is 
a Fellow of the American Statistical Association and the Institute of Mathematical 
Statistics and an elected member of the International Statistical Institute. Dr. Lahiri is 
the recipient of the 2020 SAE award for his outstanding contribution to the research, 
application, and education of small area estimation. 

Okrasa Włodzimierz is a Professor and Head of the Research Methods and 
Evaluation Department at the Institute of Sociological Sciences in Cardinal Stefan 
Wyszynski University in Warsaw, and also serves as an Advisor to the President of 
Statistics Poland, and as an Editor-in-Chief of the Statistics in Transition new series. 
He was teaching and researching in Polish and American universities and was an ASA 
Senior Research Fellow at the US Bureau of Labor Statistics (1990–1991), a Program 
Director for statistics and economics in the Social Science Research Council, New York 
(1991–1993). He then worked for the World Bank in Washington, D. C. (1994–2000), 
and was a Head of the Unit at the European Science Foundation (2000–2003, 
Strasbourg). Elected Member of the International Statistical Institute (ISI) actively 
participating in international scientific events; he is a Vice-President of the Polish 
Statistical Association; member of the State Scientific Council for Statistics, and of the 
Statistics Poland’s Methodological Committee. He is the author or co-author of over 
one hundred scientific publications. He is a laureate of research grants - international 
(e.g. US National Science Foundation; The British Academy, Ford Foundation, World 
Bank, UNDP, IRIS) and national, as well as numerous scientific awards (e.g. Medal of 
National Education Committee and Gold Medal for long-term service). 
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39th Conference Multivariate Statistical Analysis MSA 2021.  
Conference Review 

Marta Małecka1, Artur Mikulec2 

The 39th international scientific conference Multivariate Statistical Analysis MSA 
2021 was held on November 8–10, 2021 in Łódź, at the Faculty of Economics and 
Sociology of the University of Łódź (3/5 P.O.W. Street). The conference was 
organized by the Department of Statistical Methods of the University of Łódź and its 
co-organizers: the Institute of Statistics and Demography of the University of Łódź, 
the Committee of Statistics and Econometrics of the Polish Academy of Sciences and 
the Polish Statistical Association, branch in Łódź. The honorary patronage over the 
conference was taken by Elżbieta Żądzińska – Rector of the University of Łódź and 
Dominik Rozkrut – President of Statistics Poland.  

The conference was organized in cooperation with the MASEP conference 
(Measurement and Assessment of Social and Economic Phenomena), organized by 
the Department of Economic and Social Statistics of the University of Łódź. The 
conference received financial support from the Minister of Education and Science 
(MEiN) as part of the "Excellent Science" program (DNK/SP/515427/2021). 
Educational activities related to the conference were supported by the National Bank 
of Poland as part of an educational project (NBP-DEW-WPE-AB-0662-0226-2021), 
which corresponds to NBP's priority areas of economic education – "New horizons of 
economic thought". The company StatSoft Polska Sp. z o.o. was also the content 
partner of the conference. Prof. Czesław Domański was the chairman of the Scientific 
Committee and Alina Jędrzejczak, Assoc. Prof. of the University of Łódź was the 
chairman of the Organizing Committee. The scientific secretaries of the conference 
included Marta Małecka, Asst. Prof. of the University of Łódź, Artur Mikulec, Asst. 
Prof. of the University of Łódź and Aleksandra Baszczyńska, Assoc. Prof. of the 
University of Łódź. 

1  University of Lodz, Department of Statistical Methods, Poland. E-mail: marta.malecka@uni.lodz.pl. 
2  University of Lodz, Department of Statistical Methods, Poland. E-mail: artur.mikulec@uni.lodz.pl. 
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The main goal of the MSA 2021 conference was to organize an international 
forum for discussion and exchange of ideas and views on the development of statistics 
as a science. The specific objectives were:  
 presentation of the latest achievements in the field of multidimensional statistical

analysis,
 disseminating knowledge in the field of data analysis and the application of

statistical methods in other scientific disciplines, especially in economics,
sociology and finance, exchange of experiences,

 creating a bridge between science (statistics) and research practice (individual
users, business and administration).

The MSA 2021 conference was held in the hybrid formula: in-person and online.
84 people (62 in-person and 22 online) from various academic centres in Poland 
participated in the conference, including representatives from: Gdańsk, Katowice, 
Kraków, Lublin, Łódź, Poznań, Radom, Szczecin, Warsaw and Wrocław, 
representatives of Statistics Poland and the Statistical Office in Łódź. The conference 
hosted also representatives of academic society from abroad: Czech Republic, India, 
Iran and Italy. During the conference 15 sessions (plenary and parallel) were held, 
with 63 papers presented (41 stationary and 22 on-line). 

The conference was opened by the Chairperson of the Organizing Committee, 
Alina Jędrzejczak. On behalf of Elżbieta Żądzińska – Rector of the University of Łódź 
– the conference participants were welcomed by Agnieszka Kurczewska, Vice-Rector
for External Relations. Then the short welcome speeches were given by Ewa Kusideł,
Vice-Dean for Science (Faculty of Economics and Sociology, UŁ) and the Chairman
of the Scientific Committee – Czesław Domański (University of Łódź).

According to the tradition of the MSA conference, the first plenary session 
(PLENARY I, November 8th) was devoted to prominent representatives of the 
historical statistical thought and to the memories of recently deceased statisticians. 
This session was chaired by Bronisław Ceranka (Poznań University of Life Sciences). 
The first lecture devoted to the life and scientific work of Antoni Łomnicki (1881–
1941) – a probabilist and statistician – was given by Mirosław Krzyśko (Adam 
Mickiewicz University in Poznań). The next speaker was Czesław Domański 
(University of Łódź), who presented the memories of Józef Kleczyński (1841–1900) – 
a precursor of population estimation between censuses – and the memories of 
Kazimierz Władysław Kumaniecki (1880–1941) – the initiator of the Polish Statistical 
Society and of the first Statistical Yearbook – Polish Statistics. In this session, the 
profiles of three famous Polish statisticians who passed away last year were recalled: 
 "Dominik Szynal – creator of the probabilistic environment in Lublin" – Mariusz

Bieniek (Maria Curie-Skłodowska University),
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 "Daniel Kosiorowski – an outstanding Krakow statistician" – Józef Pociecha
(University of Economics in Krakow),

 "Ryszard Walkowiak – statistician and naturalist" – Małgorzata Graczyk
(University of Life Sciences in Poznań).

During the conference, there were four open lectures given by invited speakers.
Two of them were presented during the plenary session on the first day of the 
conference (PLENARY II, November 8th). This session was chaired by Czesław 
Domański (University of Łódź). The invited lectures included: 
 "Harnessing the power of Earth Observation for Official Statistics" – Dominik

Rozkrut (Statistics Poland),
 "About the sampling plans depending on the position statistics of the auxiliary

variable" – Janusz Wywiał (University of Economics in Katowice).

The other two invited lectures were given at the closing session on the last day of
the conference (PLENARY II, November 10th). This session was chaired by Alina 
Jędrzejczak (University of Łódź). The topics of these lectures were as follows: 
 "The Appearance of the Rawlsian Paradox when Neglecting Income Dependence

of the Random Equivalence Scales" – Stanisław Maciej Kot (Gdańsk University of
Technology),

 "Graphical and Computational Tools to Guide Parameter Choice for Robust
Clusterwise Regression" – Francesca Greselin (University of Milan).

Parallel sessions of the conference covered a broad area of topics related to the
theory and applications of mathematical statistics. The scope of the topics included 
in particular the following groups of issues: 
1. Theory of statistical methods. The papers presented at the conference covered

both the topics related to the estimation and statistical inference. There were
papers from the area of taxonomic issues. Topics related to dealing with outliers,
fuzzy numbers, Big Data, bootstrapping techniques and text recognition were also
discussed.

2. Macroeconomic applications. In this thematic group, there were issues related to
macroeconomic interventions, inflation and the use of modern data collection
methods such as scanner data on web-scraped data.

3. Demographic and social issues. An extensive group of papers concerned issues
related to the labour market. There were debates relating to many social issues
such as people with disabilities or elderly people, retirement benefits and the
quantification of poverty. In the area of demography, topics such as birth
dynamics and demography of cities were discussed. A number of papers dealt with
social issues related to the COVID-19 pandemic.
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4. Sustainable development. Among the social topics, a special place was taken by
discussions related to sustainable development, in particular: the impact of
economic activity on the environment, air quality, water demand depending on
weather conditions or the transformation of cities.

5. Business applications. In the field of business applications, the conference
discussions covered the following areas: energy consumption forecasts, logistics,
duration of business entities, micro-enterprise statistics, investment attractiveness
of voivodships, industrial transformation, identification of bid rigging,
organizational security culture.

6. Financial market. The use of statistical methods in financial market analysis was
a separate group of topics within statistical applications. Presented papers dealt
with issues such as: the relationship between the COVID-19 pandemic and
exchange rates, the cryptocurrency market, banking scoring models, financial
efficiency of insurance companies and modelling of systemic risk in the insurance
sector.

The parallel sessions were chaired by:
November 8th 
SESSION IIIA Jerzy Korzeniewski (University of Łódź) 
SESSION IIIB Sławomir Śmiech (Cracow University of Economics) 
SESSION IVA Andrzej Sokołowski (Cracow University of Economics) 
SESSION IVB Małgorzata Graczyk (Poznań University of Life Sciences) 
November 9th 
SESSION IA Jacek Białek (University of Łódź) 
SESSION IB Maria Grzelak (University of Łódź) 
SESSION IIA Sławomir Bukowski (Kazimierz Pulaski University of Technology 

   and Humanities in Radom) 
SESSION IIB Wojciech Zieliński (Warsaw University of Life Sciences) 
SESSION IIIA Beata Bieszk-Stolorz (University of Szczecin) 
SESSION IIIB Mirosław Krzyśko (Adam Mickiewicz University, Poznań) 
November 10th 
SESSION IA Grażyna Trzpiot (University of Economics in Katowice) 
SESSION IB Stanisław Maciej Kot (Gdańsk University of Technology) 

A detailed list of presenting authors and topics is available at: 
https://sites.google.com/view/msa2021pl/archiwum/msa-2021. 

The debates were summed up and the conference was closed by the Chairman of 
the Scientific Committee, Prof. Czesław Domański. He thanked all participants for 
their active participation in this year's edition of the conference. He also gave thanks 
to the co-organizers and partners, and all institutions cooperating in the organization 
of the conference. The chairman announced that the Multivariate Statistical Analysis 
MSA 2022 conference will be held at the Training and Conference Center of the 
University of Łódź in Łódź on November 7–9, 2022. 



STATISTICS IN TRANSITION new series, June 2022 
Vol. 23, No. 2, pp. 215–219, 

About the Authors 

Arora Sangeeta is working as a Professor in the Department of Statistics, Panjab 
University, Chandigarh-India. Her main research areas are applied statistics, income 
inequality & Lorenz dominance, statistical inference and Bayesian statistics, statistical 
quality control and environmental statistics. She has published over 50 publications 
in different national/ international journals of repute and has authored one book on 
Bayesian inference and is a life member of the Indian Society of Probability and 
Statistics, and the Indian Society for Medical Statistics. She is actively involved 
in teaching, research supervision and reviewing of various national and international 
journals.   
Assegie Getnet Melak is a PhD candidate (expected to be a graduate in May 26 2022) 
at Parma University, Italy in the department of economics and business sciences. His 
main areas of interest include: multivariate analysis, multivariate time series, 
longitudinal data analysis, survival analysis, nonparametric tests, permutation tests, big 
data, multivariate regression, panel regression, simulation, R programming, sustainable 
development goals, industrial policy, firm performance. Getnet has published 
7 research papers in international/national journals and conferences. 
Azarudheen S. is an Assistant Professor at the Department of Statistics, CHRIST 
(Deemed to be University), India. His research interests are statistical modelling, 
acceptance sampling, reliability analysis, statistical inference and data analysis 
in particular. Dr. Azarudheen S has published over 10 research papers 
in international/national journals and conferences. He is also an expert in R and SPSS. 
He has published few book chapters in reputed book series. Professor Azarudheen S. 
is an active member of many scientific professional bodies. 
Bonnini Stefano is an Associate Professor of Statistics at the Department of Economics 
and Management, University of Ferrara. His main areas of interest include: multivariate 
analysis, nonparametric statistics, permutation tests, categorical data analysis, 
composite indicators. Currently he is a member of the Italian Statistical Society, the 
Research Data Alliance (RDA) and CMStatistics (ERCIM Working Group on 
Computational and Methodological Statistics). Professor Bonnini is an Associate 
Editor of the Journal of Applied Statistics, an editorial board member of the Baltic 
Journal of Modern Computing and Guest Editor for a special issue of the journal 
Mathematics.  



216          About the Authors 

Borkowski Maeusz, MA in economics, currently he is a PhD attendee at Doctoral 
School in the Social Sciences (economics and finance discipline) at the University of 
Bialystok. His main areas of interest include: economic development, institutional 
economics and quantitative methods in economics (especially partial least squares 
structural equation modelling – PLS-SEM). 
Brudz Magdalena is an Assistant at the Department of Operational Research, Faculty 
of Economics and Sociology, University of Lodz. Simultaneously, at the same faculty, 
at the Department of Spatial Econometrics, she is finishing her doctoral dissertation 
entitled "The impact of IT solutions on the transformational processes of the labour 
market in Poland". Her main area of current research interests is regional research 
related to the labour market and quality of life. 
Domański Czesław is a Full Professor at the Department of Statistical Methods, Faculty 
of Economics and Sociology, University of Lodz. His research interests are: tests based 
on runs theory and order statistics, (multivariate) normality tests and non-classical 
methods of statistical inference. Currently, he is a member of the Scientific Statistical 
Council of the President of Statistics Poland, the main council of the Polish Statistical 
Association and Committee on Statistics and Econometrics at the Polish Academy of 
Sciences. 
Gagui Abdelmalek is an Associate Professor at the Department of Mathematics, 
Faculty of Sciences, University of Amar Telidji Laghouat Algeria. His research interests 
are nonparametric statistics estimation, functional data analysis, locally linear models. 
Gupta Sat is a Full Professor of Mathematics and Statistics. He is working in the field 
of sampling and a prominent figure in providing novel data collection and handling 
procedures. 
Grover Gurprit  is a Professor of Statistics and Head of Department of Statistics, 
University of Delhi. Her area of interest is in the field of biostatistics, demography, 
statistical quality control and reliability. She has over 35 years of research experience. 
She has supervised over 30 students for their PhD (Doctoral) theses and MPhil 
dissertations. She has published over 75 research papers in international and national 
journals and authored 3 books.  She can be contacted at: gurpritgrover@yahoo.com  
Jangra Vikas is a full time Research Scholar at the Department of Statistics, Panjab 
University Chandigarh. His main areas of interest include: income distribution, income 
inequality, poverty measurement, Bayesian inference.  
Jewczak Maciej is an Assistant Professor at the Department of Operational Research, 
Faculty of Economics and Sociology, University of Lodz. He is an author/co-author of 
nearly 45 scientific studies and an active participant in many scientific conferences, 
seminars, workshops and trainings. His research interests focus on the use of 



STATISTICS IN TRANSITION new series, June 2022  217

quantitative tools and techniques in analyses of various aspects of health, spatial 
econometrics and statistics, quality of life, social policy, welfare and logistics. 
Jibrin Sanusi A. is a Senior Lecturer of Statistics at Kano University of Science and 
Technology (KUST), Wudil, Kano-Nigeria. He is specialized in time series (interminable 
long memory), econometrics, R programming, statistical and mathematical software. 
He has published over 30 research papers in international/national journals and 
conferences. He has also published one book. He is a member of SLU Journal of Science 
and Technology editorial boards, the Proprietor of Elhaljibrin Consultancy Services 
and a member of Statistics and Mathematics Professional Associations in Nigeria. 
Joshi Hemlata is an Assistant Professor at the Department of Statistics, CHRIST 
(Deemed to be University), India. Her research areas are regression modelling and 
mathematical demography. She has published over 12 articles in international/national 
journals and conferences. Hemlata Joshi has achieved a young researcher award from 
the Institute of Scholars, India and she is also an active member of many scientific 
professional bodies. 
Kaushik Sakshi is a Team Lead, Biometrics, Biostatistics department in a leading 
Clinical Research Organisation (CRO) Veranex Solutions. She has over 6 years of 
clinical research experience. Her key areas of interest include biostatistics, statistical 
inference including both frequentist and Bayesian inference, adaptive clinical trial 
designs and missing data imputation methods. She has published 4 research papers and 
one accepted in international journals. 
Khan M. I. is an Assistant Professor at the Department of Mathematics, Faculty of 
Science, Islamic University of Madinah, Saudi Arabia. His research has been focused 
in the area of mathematical statistics and ordered random variables. Dr. Khan is a life 
member of the Indian Society for Probability and Statistics (ISPS), Indian Bayesian 
Society (IBS) and Kerala Statistical Association (KSA). Dr. Khan is also a reviewer of 
several statistics  journals. He has attended over 20 conferences and delivered invited 
talks presentations at various universities and institutions across the globe. 
Kubacki Robert is working as a Head of Analytical CRM in a Polish commercial bank. 
He completed his PhD in Economics from University of Lodz, in 2018. His research 
interests include machine learning and data mining. 
Mahajan Kalpana K. is a former Professor, Department of Statistics, Panjab University, 
Chandigarh. Her Research interests are: nonparametric inference, Bayesian inference, 
income inequality measurement and environmental statistics. She is a life member of a 
number of various societies including Indian Society of Probability and Statistics and 
Indian Medical Council of Statistics. She is currently engaged in research supervision 
and review of articles for various statistical journals. 



218          About the Authors 

Mustafa Abdelfattah is an Associate Professor at the Department of Mathematics, 
Faculty of Science, Mansoura University, Egypt.  Currently, he is a member of 
Mathematics Department, Faculty of Science, Islamic University of Madinah, KSA. His 
main areas of interest include: mathematical statistics, reliability engineering, lifetime 
distributions and estimation.  He has published over 50 research papers 
in international/national journals and conferences. He has also published one Arabic 
book in statistics to Princess Sattam Bin Abdul Aziz, KSA. 
Nagaraja M. S. is an Assistant Professor at the Department of Statistics, CHRIST 
(Deemed To Be University), Bangalore, India. His main areas of interest include: 
agricultural statistics, regression analysis and multivariate analysis. He has published 
14 research papers in international/national journals and conferences. 
Nowak Piotr Bolesław is an Assistant Professor in the Institute of Economic Sciences, 
University of Wroclaw. His research interests include mathematical statistics and its 
applications, in particular survival analysis, applied mathematics in economy and 
medicine. 
Rahman Rosmanjawati Abdul is a Senior Lecturer of Statistics at Universiti Sains 
Malaysia, USM, in Penang, Malaysia. Her research interests are Applied Statistics and 
Time Series Analysis, focusing on analyzing financial, economic, and environmental 
data. She has published various papers in international and national journals. 
Sabharwal Alka is a Professor of Statistics at Kirori Mal College, University of Delhi. 
Her areas of interest are in the field of stochastic processes and biostatistics. Previously 
she has published many research papers on problems related to diabetes and its 
complications, chronic kidney problems, mental disorders, and adolescent behavioural 
problems through statistical modelling. Currently, she is working on psychological and 
behavioural problems related to young adults. She can be contacted at: 
alkasabh@gmail.com 
Skolimowska-Kulig Magdalena is an Assistant Professor at the Institute of Economic 
Sciences, Faculty of Law, Administration and Economics, University of Wrocław. Her 
main research interests focus on mathematical statistics and probability models with 
their applications in the reliability theory and economics. 
Singh Chandraketu is an Assistant Professor at the Department of Statistics, CHRIST 
(Deemed to be University), Bengaluru, India. He obtained his PhD degree in 2021 from 
IIT (ISM), Dhanbad, Dhanbad, India. His research interests are survey sampling and 
statistical inference. He has published over 20 research papers in Indian and foreign 
journals of repute. He presented his research problems in international and national 
conferences. 



STATISTICS IN TRANSITION new series, June 2022  219

Sohail Umair is working as an Assistant Professor of Statistics in University of 
Narowal, Narowal, Pakistan. His research interests are missing values, data imputation, 
and randomized response. 
Sohil Fariha  is an Assistant Professor of Education. His research interests are statistical 
inference and data analysis in particular. Dr. Fariha has published several research 
papers in international/national journals and conferences. 
Shabbir Javid is a Full Professor of Statistics. His research interests are survey sampling 
and randomized responses. Professor Javid has published over 230 research papers 
in international/national journals and conferences. 

© Copyright by Polish Statistical Association, Statistics Poland  and the authors, some rights reserved. 
CC BY-SA 4.0 licence





GUIDELINES  FOR  AUTHORS 

We will consider only original work for publication in the Journal, i.e. a submitted paper must 
not have been published before or be under consideration for publication elsewhere. Authors should 
consistently follow all specifications below when preparing their manuscripts.  

Manuscript preparation and formatting 
The Authors are asked to use A Simple Manuscript Template (Word or LaTeX) for the Statistics 

in Transition Journal (published on our web page: http://stat.gov.pl/en/sit-en/editorial-sit/).  

 Title and Author(s). The title should appear at the beginning of the paper, followed by each
author’s name, institutional affiliation and email address. Centre the title in BOLD CAPITALS. 
Centre the author(s)’s name(s). The authors’ affiliation(s) and email address(es) should be given
in a footnote.

 Abstract. After the authors’ details, leave a blank line and centre the word Abstract (in bold), leave 
a blank line and include an abstract (i.e. a summary of the paper) of no more than
1,600 characters (including spaces). It is advisable to make the abstract informative, accurate, non-
evaluative, and coherent, as most researchers read the abstract either in their search for the main
result or as a basis for deciding whether or not to read the paper itself. The abstract should be self-
contained, i.e. bibliographic citations and mathematical expressions should be avoided.

 Key words. After the abstract, Key words (in bold) should be followed by three to four key words
or brief phrases, preferably other than used in the title of the paper.

 Sectioning. The paper should be divided into sections, and into subsections and smaller divisions
as needed. Section titles should be in bold and left-justified, and numbered
with 1., 2., 3., etc.

 Figures and tables. In general, use only tables or figures (charts, graphs) that are essential. Tables 
and figures should be included within the body of the paper, not at the end. Among other things,
this style dictates that the title for a table is placed above the table, while the title for a figure is
placed below the graph or chart. If you do use tables, charts or graphs, choose a format that is
economical in space. If needed, modify charts and graphs so that they use colours and patterns
that are contrasting or distinct enough to be discernible in shades of grey when printed without
colour.

 References. Each listed reference item should be cited in the text, and each text citation should be
listed in the References. Referencing should be formatted after the Harvard Chicago System – see 
http://www.libweb.anglia.ac.uk/referencing/harvard.htm. When creating the list of bibliographic
items, list all items in alphabetical order. References in the text should be cited with authors’ name 
and the year of publication. If part of a reference is cited, indicate this after the reference, e.g.
(Novak, 2003, p.125).




