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On the nonparametric estimation of the conditional hazard
estimator in a single functional index

Abdelmalek Gagui1, Abdelhak Chouaf2

ABSTRACT

This paper deals with the conditional hazard estimator of a real response where the variable
is given a functional random variable (i.e it takes values in an infinite-dimensional space).
Specifically, we focus on the functional index model. This approach offers a good com-
promise between nonparametric and parametric models. The principle aim is to prove the
asymptotic normality of the proposed estimator under general conditions and in cases where
the variables satisfy the strong mixing dependency. This was achieved by means of the kernel
estimator method, based on a single-index structure. Finally, a simulation of our methodol-
ogy shows that it is efficient for large sample sizes.

Key words: single functional index, conditional hazard function, nonparametric estimation,
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1. Introduction

The nonparametric estimation of the hazard function plays a crucial role in statistical
analyses. This subject can be approached from multiple perspectives depending on the
complexity of the problem. Many techniques have been studied in the literature to treat these
various situations but all treat only real or multidimensional explanatory random variables.
We refer to Watson and Leadbetter (1964), who were the first to study the nonparametric
estimation of the hazard function. In the sequel, many authors have been interested in the
study of such a function (see, for example Tanner and Wong (1983), Delecroix and Yazourh
(1992), Collomb et al. (1985) and Youndjé et al. (1996)).

Focusing on functional data, the first results on the nonparametric estimate of this model,
were achieved by Ferraty et al. ( 2000). They have studied the almost complete convergence
of an estimator with kernel for the function of a chance of a real random variable conditioned
by a functional explanatory variable. For instance, Masry (2005) showed the asymptotic
normality of the estimator for the function of regression, Ferraty et al. (2007) studied the
mean squared convergence, Burba et al. (2008) are interested in the estimate of the function
of regression by using the method of k-nearest neighbours, Quintela-del-Rio (2008) ob-
tained the asymptotic normality of the non-parametric estimation of the conditional hazard
function. Ferraty et al. (2010) they etablished the almost complete convergence uniform on
the functional component of this nonparametric model.
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The modelling of the spatial data was also considered in nonparametric estimation for
functional data. On this subject, Dabo-Niang et al. (2012) studied the almost convergence
of an estimator with kernel for the function of regression. Laksaci et al. (2009) treated the
almost complete convergence of the estimator with a kernel of the function of conditional
distribution and the conditional quantiles. Li and Tran (2007) obtained the asymptotic nor-
mality of a kernel estimator of the hazard function. The study of the kernel estimator of
the conditional hazard function when the covariates take values in functional statistic was
treated by Lakssaci et al. (2010).

Our goal in this work is devoted to the study of the single functional index model.
This approach consists of making a projection between the explanatory variable Y on the
functional response variable X to the non-parametric context on a function directly θ . In
the finite-dimensional, random variables have been widely studied, see for example Hardle
et al. (1993), Hristache et al. (2001). Furthermore, when the case is infinite dimensions
or when the explanatory variable is functional, the first work which was interested in the
single-index model for the nonparametric estimation is Ferraty et al. (2003). They stated
for i.i.d. variables and obtained the almost complete convergence under some conditions.
In the same context Ait Saidi et al. (2005) studied the dependent case of these estimators,
Ait Saidi et al. (2008) proposed cross-validated estimation where the functional index is
an unknown, Attaoui et al. (2011) obtained the uniform almost complete convergence of
conditional density in the functional single index. More recently Tabti et al. (2017) obtained
the pointwise almost complete convergence and the uniform almost complete convergence
of a kernel estimator of the hazard function with the quasi-association condition in a single-
index approach.

In the present paper, we obtain, under some conditions, the asymptotic normality of
the conditional hazard function estimator. This result enables us to obtain the confidence
intervals of this estimator. In practice, this study has great importance because it permits
us to construct a prediction method based on the maximum risk estimation with a single
functional index.

In Section 2, we introduce the estimator of our model in the single-functional index.
Section 3 we introduce assumptions and asymptotic properties are given. Practical aspects
are discussed in Section 4. Simulations are given in Section 5. Finally, Section 6 is devoted
to the proofs of the results.

2. The model

Let {(Xi,Yi), 1 ≤ i ≤ n} be n random variables, identically distributed as the random
pair (X ,Y ) with values in H×R, where H is a separable real Hilbert space with the norm
∥ . ∥ generated by an inner product < ., . >. We consider the semi-metric dθ associated with
the single index θ ∈H defined by ∀x1,x2 ∈H : dθ (x1,x2) :=|< x1 − x2,θ >|. Assume that
the explanation of Y given X is done through a fixed functional index θ in H. In the sense
that there exists a θ in H (unique up to a scale normalization factor) such that: E[Y |X ] =

E[Y | < θ ,X >]. The conditional cumulative distribution function of Y given < X ,θ > is
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denoted by

Fx(θ ,y) := F(y|< θ ,x >) = P(Y ≤ y |< X ,θ >=< θ ,x >), ∀y ∈ R

Clearly we have for all x ∈H ,

F1(.|< x,θ1 >) = F2(.|< x,θ2 >)⇒ F1 ≡ F2 and θ1 = θ2.

The natural kernel estimator of F(θ ,y,x) is defined as

F̂(θ ,y,x) =
∑

n
i=1 K(h−1

K dθ (x,Xi))H(h−1
H (y−Yi))

∑
n
i=1 K(h−1

K dθ (x,Xi))
, ∀y ∈ R (1)

We suppose that the conditional density of Y given X = x denoted by f (.|x) exists and
is given by ∀y ∈ R, fθ (y|x) := f (y| < x,θ >). In the following, we denote by f (θ , .,x),
the conditional density of Y given < x,θ > and we define the kernel estimator f̂ (θ , .,x) of
f (θ , .,x) by:

f̂ (θ ,y,x) =
h−1

H ∑
n
i=1 K(h−1

K dθ (x,Xi))H ′(h−1
H (y−Yi))

∑
n
i=1 K(h−1

K dθ (x,Xi))
, ∀y ∈ R (2)

with the convention 0/0 = 0, where K and H are kernels function (H ′ is the derivate of H)
and hK := hn,K (resp hH := hn,H ) is a sequence of bandwidths that decrease to zero as n goes
to infinity.

We are interested in estimating non parametrically the conditional hazard function λ

defined by:

λ̂ (θ ,y,x) =
f̂ (θ ,y,x)

1− F̂(θ ,y,x)
, ∀y ∈ R.

3. Main results

We begin with introducing some notations. Let (Xi,Yi)
∞
i=1 be a sequence of random

variables and α(n) be a sequence of real numbers. A stationary process (Xi,Yi)
∞
i=1 is called

α-mixing or strongly mixing, if
α(n) = sup

A∈A k
1

sup
B∈A ∞

n+k

|P(A ∩ B)− P(A)P(B)| → 0, as n → ∞, where F b
a is the σ -algebra

generated by (X j,Yj)
b
j=a.

In this section, we give some obtained results on the asymptotic normality of the esti-
mator λ̂ (θ ,y,x), which require the following additional hypotheses. All along the paper,
when no confusion is possible, we will denote by C and C′ some strictly positive generic
constants. We put, for any x ∈ H, and i = 1, ...,n Ki(θ ,x) := K(h−1

K dθ (x,Xi)) and, for all
y ∈ R, H j

i := H j(h−1
H (y−Yi)) for j = 0,1 In the following, for any x ∈H and y ∈ R, let Nx

be a fixed neighbourhood of x in H, SR will be a fixed compact subset of R,and we will use
the notation Bθ (x,h) := {x1 ∈ H : 0 < | < x− x1,θ > | < h}, the ball centered at x, with
radius h. All along the paper, when no confusion will be possible, we will denote by C, C′
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and Cθ ,x some generic constant in R∗
+

(H1) P(X ∈ Bθ ,x(h)) = φθ ,x(h) > 0. Moreover, there exists a function βθ ,x(.) such that:

∀s ∈ [−1,1], lim
n−→∞

βθ ,x(shK)

βθ ,x(hK)
= βθ ,x(s).

(H2) For l ∈{0,2}, the functions ψl(s)=E
[

∂ l f (θ ,y,X)

∂yl − ∂ l f (θ ,y,x)
∂yl

∣∣dθ (x,X = s)
]

and

Ψl(s) = E
[

∂ lF(θ ,y,X)

∂yl − ∂ lF(θ ,y,x)
∂yl

∣∣dθ (x,X = s)
]

are differentiable at s = 0.

(H3) The kernel K is a differentiable function and its derivative K′ exists and is such that
there exist two constants C and C′ with −∞ <C < K′(t)<C′ < 0, for t ∈ [0,1].

(H4) The kernels K and H are an even bounded function .

(H5) The bandwidths hK and hH satisfy

(1*) lim
n−→∞

1
nhHφθ ,x(hK)

= 0,

(2*) lim
n−→∞

nh5
Hφθ ,x(hK) = 0 and lim

n−→∞
nhHh2

kφθ ,x(hK) = 0,

(3*) lim
n−→∞

hH = 0, lim
n−→∞

hK = 0, and lim
n−→∞

logn
nφθ ,x(hK)

= 0,

(4*) lim
n−→∞

h2b1
K φθ ,x(hK) = 0, and lim

n−→∞
h2b1

H φθ ,x(hK) = 0.

(H6) (Xi,Yi)i∈N is a strongly mixing sequence, whose mixing coefficient α(n) satisfies
∃a > (5+

√
17)/2, ∃C > 0 : ∀n ∈ N, α(n)≤Cn−a.

(H7) 0 < sup
i ̸= j

P((Xi,X j) ∈ Bθ (x,hK)×Bθ (x,hK)) = O

(
φθ ,x(hK)

(a+1)/a

n1/a

)
.

(H8) ∃β0 > 0, C1, C2 > 0, such that: C1n
3−a
a+1+β0 ≤ φθ ,x(hK)≤C2n

1
1−a .

Comments on the assumptions

Assumptions (H1)-(H4) are technicals and permit to give an explicit asymptotic vari-
ance. The function βθ ,x(.) will play a major role in our results, it intervenes to compute the
exact constant terms involved in our asymptotic expansions (for more of this assumptions,
see Ferraty et al. 2007). Finally (H5)-(H8) permits to remove the bias term in the asymp-
totic normality result.
Now, we give our main result.

Theorem 3.1. Assume that (H1)-(H5) hold, and (H6)-(H8) hold, as n goes to infinity, we
have

(nhHφθ ,x(hK))
1/2(λ̂ (θ ,y,x)−λ (θ ,y,x)−Bn(θ ,y,x))

D−→ N (0,σ2
h (θ ,y,x)),
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where

Bn(θ ,y,x) =
1

1−F(θ ,y,x)

(
(B f

H −λ (θ ,y,x)BF
H)h

2
H +((B f

K −λ (θ ,y,x)BF
K)hK)

)
with

σ
2
h (θ ,y,x) =

M2λ (θ ,y,x)
M2

1(1−F(θ ,y,x))

M0 = K(1)−
∫ 1

0 sK′(s)βθ ,x(s)ds, M j = K j(1)−
∫ 1

0 (K
j)

′
(s)βθ ,x(s)ds

for j = 1,2

and

B f
H(θ ,y,x) =

1
2

∂ 2 f (θ ,y,x)
∂y2

∫
t2H ′(t)dt,

B f
K(θ ,y,x) = hkψ

′
0(0)

M0

M1
hK .

BF
H(θ ,y,x) =

1
2

∂ 2F(θ ,y,x)
∂y2

∫
t2H ′(t)dt,

BF
K(θ ,y,x) = hkΨ

′
0(0)

M0

M1
hK .

and D means the convergence in distribution.

Corollary 3.1. Under the hypotheses of Theorem 3.1,and if the bandwidth parameters (hK

and hH ) satisfies (H5) and if the function φθ ,x(hK) satisfies :

lim
n−→∞

(h2
H +hK)(nφθ ,x(hK))

1/2 = 0,

we have

(nhHφθ ,x(hK))
1/2(λ̂ (θ ,y,x)−λ (θ ,y,x)) D−→ N (0,σ2

h (θ ,y,x)),

The proof of Theorem 3.1 is based on the following decomposition:

λ̂ (θ ,y,x)−λ (θ ,y,x) =
1

F̂D(θ ,x)− F̂N(θ ,y,x)

(
f̂N(θ ,y,x)−E[ f̂N(θ ,y,x)]

)
+

1

F̂D(θ ,x)− F̂N(θ ,y,x)

{
λ (θ ,y,x)

(
E[F̂N(θ ,y,x)]−F(θ ,y,x)

)
+

(
E[ f̂N(θ ,y,x)]− f (θ ,y,x)

)}
+

ĥ(θ ,y,x)

F̂D(θ ,x)− F̂N(θ ,y,x)

{
1−E[F̂N(θ ,y,x)]

−
(

F̂D(θ ,x)− F̂N(θ ,y,x)
)}
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Lemma 3.1. Under the Assumptions of Theorem 3.1, as n goes to infinity, we have

(nhHφθ ,x(hK))
1/2( f̂N(θ ,y,x)−E[ f̂N(θ ,y,x)])

D−→ N (0,σ2
f (θ ,y,x)).

Proof of lemma 3.1 First, we define that

Zi(θ ,y,x) =

√
φθ ,x(hK)√

nhHE[K1(θ ,x)]
(ζi(θ ,y,x)−E[ζi(θ ,y,x)]),

and

Tn :=
n

∑
i=1

Zi(θ ,y,x).

where ζi(θ ,y,x) = H ′
i (θ ,x)Ki(θ ,x),

Thus,
Tn =

√
nhHφθ ,x(hK)( f̂N(θ ,y,x)−E[ f̂N(θ ,y,x)]).

So, our claimed result is now

Tn −→ N (0,σ2
f (θ ,x)). (3)

Therefore, we have

Var(Tn) = nhHφθ ,x(hK)Var( f̂N(θ ,y,x)−E[ f̂N(θ ,y,x)])

= nhHφθ ,x(hK)Var( f̂N(θ ,y,x)) (4)

Now, we need to evaluate the variance of f̂N(θ ,y,x). For this we have for all 1 ≤ i ≤ n, :

Var( f̂N(θ ,y,x)) =
1

(nhHE[K1(θ ,x)])2

n

∑
i=1

n

∑
j=1

Cov(ζi(θ ,y,x),ζ j(θ ,y,x))

= I1,n + I2,n.

where

I1,n =
1

n(hHE[K1(θ ,x)])2 Var(ζ1(θ ,y,x))

I2,n =
1

(nhHE[K1(θ ,x)])2

n

∑
i=1

n

∑
j=1i̸= j

Cov(ζi(θ ,y,x),ζ j(θ ,y,x)).
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First, for the quantity I1,n, we have

Var(ζ1(θ ,y,x)) ≤ E
[
H ′2

1(y)K
2
1 (θ ,x)

]
≤ E

[
K2

1 (θ ,x)E
[
H ′2

1(y)|< θ ,X1 >
]]

.

|E
[
H ′2

1(y)|< θ ,X1 >
]
| =

∣∣∣∣∫R H ′2(h−1
H (y− z)) f (θ ,z,x)dz

∣∣∣∣
≤ hH

∫
R

H ′2| f (θ ,y−hHt,x) f (θ ,y,x)|dt

+ hH f (θ ,y,x)
∫
R

H ′2dt

≤ h1+b2
H

∫
R
|t|b2H ′2dt +hH f (θ ,y,x)

∫
R

H ′2dt

= hH

(
o(1)+ f (θ ,y,x)

(∫
R

H ′2dt
))

.

As n −→ ∞, E[K2
1 (θ ,x)]−→ M2φθ ,x(hK), one gets

Var(ζ1(θ ,y,x)) = M2φθ ,x(hK)hH

(
o(1)+ f (θ ,y,x)

(∫
R

H ′2dt
))

.

So, using (H5-1*), we get

I1,n =
M2φθ ,x(hK)

n(M1hHφθ ,x(hK))2 hH

(
o(1)+ f (θ ,y,x)

(∫
R

H ′2dt
))

= o
(

1
nhHφθ ,x(hK)

)
+

M2 f (θ ,y,x)
M2

1 nhHφθ ,x(hK)

(∫
R

H ′2dt
)

−→ M2 f (θ ,y,x)(
∫
R H ′2dt)

M2
1 nhHφθ ,x(hK)

, as n −→ ∞. (5)

Second, for the quantity I2,n, we will use the following decomposition:

I2,n =
n

∑
i=1

n

∑
j=1

0<|i− j|≤mn

Cov(ζi(θ ,y,x),ζ j(θ ,y,x))+
n

∑
i=1

n

∑
j=1

|i− j|>mn

Cov(ζi(θ ,y,x),ζ j(θ ,y,x)).

Similarly to Attaoui said (2014), we can easily write

I2,n = O(nh2
Hφθ ,x(hK)).

It yields,

1
nhHφθ ,x(hK)

I2,n −→ 0, as n −→ ∞. (6)
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Finally, the proof of the Lemma is completed, to get

Var(Tn)−→
M2 f (θ ,y,x)

M2
1

(∫
R

H ′2dt
)
=: σ

2
f (θ ,x).

Lemma 3.2. Under the Assumptions (H1)-(H4), and (H7), as n goes to infinity, we have

E[F̂N(θ ,y,x)]−F(θ ,y,x) = BF
H(θ ,y,x)h

2
H +BF

K(θ ,y,x)hK +o(h2
H)+o(hK)

Proof of lemma 3.2 First, for E[F̂(θ ,y,x)] , we start by writing

E[F̂N(θ ,y,x)] =
1

E[K1(θ ,x)]
E
[
K1(θ ,x)E[h−1

H H ′
1(y)|X ]

]
with

h−1
H E[H ′

1(y)|X ] =
∫
R

H ′(t)F(θ ,y−hHt,X)dt

The latter can be re-written, using a Taylor expansion under (H4), as follows:

h−1
H E[H ′

1(y)|X ] = F(θ ,y,X)+
h2

H
2

(∫
t2H ′(t)dt

)
∂ 2F(θ ,y,X)

∂ 2y
+o(h2

H).

Thus, we get

E[F̂N(θ ,y,x)] =
1

E[K1(θ ,x)]

(
E[K1(θ ,x)F(θ ,y,X)]+

(∫
t2H ′(t)dt

)
× E

[
K1(θ ,x)

∂ 2F(θ ,y,X)

∂ 2y

]
+o(h2

H)

)
.

Let Ψl(.,y) := ∂ lF(.,y,.)
∂ ly : for l ∈ {0,2}, since Ψl(0) = 0, we have

E[K1(θ ,x)ψ(X ,y)] = Ψl(x,y)E[K1(θ ,x)]+E[K1(θ ,x)(Ψl(X ,y)−Ψ(x,y))]

= Ψ(x,y)E[K1(θ ,x)]+E[K1(θ ,x)(Ψl(dθ (x,X)))]

= Ψl(x,y)E[K1(θ ,x)]+Ψ
′
l(0)E[dθ (x,X)K1(θ ,x)]

+ o(E[dθ (x,X)K1(θ ,x)]).

So
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E[F̂N(θ ,y,x)] = F(θ ,y,x)+
h2

H
2

∂ 2F(θ ,y,X)

∂ 2y

∫
t2H ′(t)dt +o

(
h2

H
E[dθ (x,X)K1(θ ,x)]

E[K1(θ ,x)]

)
+ Ψ

′
0(0)

E[dθ (x,X)K1(θ ,x)]
E[K1(θ ,x)]

+o
(
E[dθ (x,X)K1(θ ,x)]

E[K1(θ ,x)]

)
.

Similarly to Ferraty et al. (2007), we show that

1
φθ ,x(hK)

E[dθ (x,X)K1(θ ,x)] = M0hK +o(hK)

and

1
φθ ,x(hK)

E[K1(θ ,x)]−→ M1.

Hence,

E[F̂N(θ ,y,x)] = F(θ ,y,x)+
h2

H
2

∂ 2F(θ ,y,X)

∂ 2y

∫
t2H ′(t)dt +Ψ

′
o(0)

M0

M1
hK +o(h2

H)+o(hK)

Lemma 3.3. Under the Assumptions (H1)-(H4), and (H7), as n goes to infinity, we have

E[ f̂N(θ ,y,x)]− f (θ ,y,x) = B f
H(θ ,y,x)h

2
H +B f

K(θ ,y,x)hK +o(h2
H)+o(hK)

Proof of lemma 3.3. The proof of this lemma follows the steps as for proving lemma 3.2,
to study E[ f̂N(θ ,y,x)] it suffices to write by an integration by part

E[ f̂N(θ ,y,x)] =
1

E[K1]
E[K1E[H1 | X ]] with E[K1E[H1 | X ]] =

∫
R

H ′(t) f X (y−hHt)dt

Then we can follow to prove that

E[ f̂N(θ ,y,x)] = f (θ ,y,x)+
h2

H
2

∂ 2 f (θ ,y,X)

∂ 2y

∫
t2H ′(t)dt +ψ

′
0(0)

M0

M1
hK +o(h2

H)+o(hK)

Lemma 3.4. Under the hypotheses of Theorem 3.1

F̂D(θ ,x)− F̂N(θ ,y,x)−→ 1−F(θ ,y,x), in probability.

And (
nhHφθ ,x(hK)

σ2
h (θ ,y,x)

)1/2(
F̂D(θ ,x)− F̂N(θ ,y,x)−1+E[F̂N(θ ,y,x)

)
= op(1).



98 A. Gagui, A. Chouaf: On the nonparametric estimation of the conditional...

Proof of lemma 3.4. It is clear that

E
[
F̂D(θ ,x)− f̂ (θ ,y,x)−1+F(θ ,y,x)

]
−→ 0,

and

Var
[
F̂D(θ ,x)− f̂ (θ ,y,x)−1+F(θ ,y,x)

]
−→ 0,

then

F̂D(θ ,x)− f̂ (θ ,y,x)−1+F(θ ,y,x) P−→ 0.

Moreover, the asymptotic variance of F̂D(θ ,x)− f̂N(θ ,y,x) (see Djebbouri et al.(2015)),
allows to obtain

nhHφθ ,x(hK)

σ2
h (θ ,y,x)

Var
[
F̂D(θ ,x)− f̂N(θ ,y,x)−1+E[ f̂N(θ ,y,x)]

]
−→ 0.

By combining the result with the fact that

E
[
F̂D(θ ,x)− f̂N(θ ,y,x)−1+E[ f̂N(θ ,y,x)]

]
−→ 0,

we obtain the claimed result.

4. Simulation study

We first construct the simulation of the explanatory functional variables. In the second
part, we focus on the ability of the nonparametric functional regression to predict responses
variable from functional predictors. Finally we illustrated the Monte Carlo methodology and
we will test the efficiency of the asymptotic normality results in parallel with the practical
experiment.

For this purpose, we consider the following process explanatory functional variables for
n = 350:

Xi(t) = 1− sin(2Ωit)αi +Ωit , ∀t ∈ [0,π]

where αi and Ωi are n independent real random variables (r.r.v.) uniformly distributed over
[0.3;2] (resp.[1;3]), t is assumed that these curves are observed on a discretization grid of
100 points in the interval. These functional variables are represented in the Figure 1
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Figure 1. The curves Xi=1,...,200

For response variables Yi, we consider the following model for all i = 1, . . .n and l =
1, . . .n:

Y = λ (< Xi,θl >)+ ε

where λ (X ) =
∫ t j

0

1
1−Xi(v)2 dv and ε is a centred normal variable and it is assumed to

be independent of (Xi)i . Our goal in this illustration is to show the usefulness of conditional
density in the context of forecasting.

Now, we precise the different parameters of our estimators. Indeed, first of all, it is clear
that the shape of the curves allows us to use

d(x1,x2) =

√∫ 1

0
(x1(t)− x2(t))2 ; ∀x1,x2 ∈ H where H is semi-metric
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We choose particularly the quadratic kernels defined by

K(x) =
3
2
(1− x2) x ∈ [0,1] ; K0(x) =

3
4
(1− x2) x ∈ [−1,1] and H(x) =

∫ x

−∞

K0(u)du.

In this illustration, we select the functional index θ on the set of eigenvectors of the
empirical covariance operator.

1
200

200

∑
i=1

(Xi − X̄)t((Xi − X̄)).

Indeed, we recall that the ideas of Aitsaidi (2007) can be adapted to find a method of
practical selection for θ . However, this adaptation in the case of the conditional density
requires tools and additional preliminary results (see the discussion Attaoui et al. (2010)
and Attaoui (2014)).

For this purpose, we divide our observations into two packets: learning sample
(Xi,Yi)i=1,...200 and test sample and (Xi,Yi)i=201,...250(see, Ferraty et al. (2006)). For the
choice of smoothing parameters hK and hH , we will adopt the selection criterion used by
Ferraty and Vieu (2006) in the case of the kernel method for which hK and hH are obtained.
by minimizing the next criterion

for each Xi in the sample of the test err(hK ,hH) = |Yi∗ −θ(Xi∗)| (7)

where i∗ denotes the index of the nearest curve Xi from all the curves of the learning sample.

Figure 2. Predicted functional responses (solid lines); observed functional responses (dashed lines).
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In this simulation study, we assume the quality of prediction by comparing the predicted
functional responses (i.e. λ̂ (θ ,y,x) for any X in the testing sample) and the true functional
operator (i.e. λ (θ ,y,x)) as in Figure. 2. However, if one wishes to assess the quality
of prediction for the whole testing sample, it is much better to see what happens direc-
tion by direction. In other words, displaying the predictions onto the direction θl amounts
to plotting the 50 points (λ (< Xi,θl >), λ̂ (< Xi,θl >))i=201,...,250. Figure. 3 proposes a
componentwise prediction graph for the two first components (i.e.l = 1,2). The quality of
componentwise predictions is quite good for each component.

Figure 3. Representation of the prediction quality for each component.

For the next simulation algorithm we used:

• Simulate a sample of size n

• Calculate the smoothing parameters hK and hH that are varied over an interval [0,1]
and which minimizes in 7

• We compute the quantities

(nhHφθ ,x)
1/2(λ̂ (θ ,y,x)−λ (θ ,y,x))
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where λ̂ (θ ,y,x) is the functional hazard kernel estimator from the
sample (Xi,Yi)i=1,...,200,

• compute a standard hazard function estimator by the kernel method .

• compare the estimated λ̂ (θ ,y,x) with the corresponding estimated λ (θ ,y,x) .

The obtained results are shown in Figure. 4.

Figure 4. Representation of the asymptotic distribution of the hazard function estimator.

It can be seen that, both are very close and have good behaviours with respect to the
standard normal distribution.

5. Conclusions

In this paper, we are mainly interested in the nonparametric estimation of the conditional
hazard function estimator for a variable explanatory functionally conditioned to an actual
response variable via a functional single index model. We show that the estimator provides
good predictions under this model. One of the main contributions of this work is the choice
of a semi-metric. Indeed, it is well known that, in non-parametric functional statistics, the
semi-metric of the projection type is very important for increasing the concentration prop-
erty. The functional index model is a special case of this family of semi-metrics because it is
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based on the projection on a functional direction which is important for the implementation
of our method in practice.

Acknowledgements

The authors thank the associate editor and the anonymous reviewers for their valuable
comments and suggestions, which substantially improved the quality of an earlier version
of this article.

References

Ait Saidi, A., Ferraty, F., Kassa, P. and Vieu, P., (2005). Single functional index model
for a time series. Rev. Roumaine Math. Pures Appl. 50, pp. 321–330.

Ait Saidi, A., Ferraty, F., Kassa, P. and Vieu, P., (2008). Cross-validated estimations in
the single functional index model. Statistics. Vol. 42, No. 6, pp. 475–494.

Ait Saidi, A. and Mecheri, K., (2016). The conditional cumulative distribution function in
single functional index model. Comm. Statist. Theory Methods. 45, pp. 4896–4911.

Arfi, M., (2013). Nonparametric Estimation for the Hazard Function. Communications in
Statistics - Theory and Methods 42, pp. 2543–2550.

Attaoui, S., (2014). Strong uniform consistency rates and asymptotic normality of condi-
tional density estimator in the single functional index modeling for time series data.
AStA - Advances in Statistical Analysis 98, pp. 257–286.

Attaoui, S., laksaci, A. and Ould Said, F., (2011). A note on the conditional density esti-
mate in the single functional index model. Statist. Probab. Lett., 81, pp. 45–53.

Bagkavos, D., (2011). Local linear hazard rate estimation and bandwidth selection . Annals
of the Institute of Statistical Mathematics 63, pp. 1019–1046.

Bouraine, M., Ait Saidi, A., Ferraty, F. and Vieu, P., (2010). Choix optimal de l’indice
Multi-fonctionnel: Methode de validation croisée. Rev. Roumaine Math.Pures Appl..
55, pp. 355–367.

Burba, F., Ferraty, F. and Vieu, P., (1996). Convergence of k nearest neighbor kernel esti-
mator in nonparametric functional regression. Comptes Rendus Mathematique. 346,
pp. 339–342.



104 A. Gagui, A. Chouaf: On the nonparametric estimation of the conditional...

Collomb, G., Hassani, S., Sarda, P. and Vieu, P., (1985). Estimation non parametrique de
la fonction de hasard pour des observations dependentes. Statistique et Analyse des
Données 10, pp. 42–49.

Dabo-Niang, S., Kaid, Z. and Laksaci, A., (2012). On spatial conditional mode estimation
for a functional regressor. Statistics and probability letters,. 82, pp. 1413–1421.

Delecroix, M. , Yazourh , O., ( 1992 ). Estimation de la fonction de hazard en présence
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