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ABSTRACT 

In many applications of the multivariate analyses of variance, the classic parametric 
solutions for testing hypotheses of equality in population means or multisample and 
multivariate location problems might not be suitable for various reasons. Multivariate 
multisample location problems lack a comparative study of the power behaviour of the 
most important combined permutation tests as the number of variables diverges. 
In particular, it is useful to know under which conditions each of the different tests is 
preferable in terms of power, how the power of each test increases when the number of 
variables under the alternative hypothesis diverges, and the power behaviour of each test as 
the function of the proportion of true alternative hypotheses. The purpose of this paper is 
to fill the gap in the literature about combined permutation tests, in particular for big data 
with a large number of variables. A Monte Carlo simulation study was carried out to 
investigate the power behaviour of the tests, and the application to a real case study was 
performed to show the utility of the method. 
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1. Introduction

In many applications of the multivariate analyses of variance (MANOVA), the
classic parametric solutions for testing hypotheses of equality in population means or 
multisample and multivariate location problems might not be suitable for various 
reasons. For instance, the strong and implausible assumptions of iid observations and 
multivariate normality are the main reasons for considering parametric methods 
neither flexible nor robust and consequently often unsuitable. Moreover, in the 
presence of big data with a high number of response variables, great attention should 
be paid when the number of response variables is larger than the sample sizes, because 
of the loss of degrees of freedom.  
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Even if there is not a unique definition, in statistics, a dataset is usually classified 
as “big data” if it represents a collection of informative data, extensive in terms of 
volume, velocity and variety, such that specific analytical technologies and methods 
are required for the extraction of value or knowledge (Baro et al., 2015). Big data are 
typical of many empirical disciplines such as biomedicine, economics, biology, ICT, 
education and research, financial services, social media, automotive industries, etc. 
(Özköse et al., 2015). Frequently, the high volume of big data depends on the 
multivariate nature of the dataset, due to the large number of variables. In addition, 
the variety of big data, due to the presence of different types of variables (quantitative 
and qualitative) and to the variability and heterogeneity of data, makes inferential 
problems more complex and requires robust and valid techniques to make inferences. 
For instance, in studies focused on social media, text, video, audio, and image data are 
jointly analysed. Hence, tests of hypotheses for big data must be addressed with 
appropriate methods that lead to reliable decisions, in short times and taking into 
account the variability and heterogeneity of the information. 

A typical approach to variable oriented multivariate problems consists in the 
application of exploratory methods based on the dimensionality reduction such as 
principal component analysis (PCA) or factor analysis (FA) (Johnson and Wichern, 
2007; Farcomeni and Greco, 2016). For two-sample multivariate testing problems, 
in the presence of numeric data, a typical solution is the Hotelling T-square test. These 
methods are based on strong assumptions such as the linearity of the relationships 
between variables or normality.  

Linearity is a very strong and often unrealistic assumption. Normality is 
a reasonable assumption only with large sample sizes due to asymptotic properties of 
the statistics. Nevertheless, even in cases where linearity and normality are reasonable 
assumptions, especially in inferential problems, in the presence of many variables the 
estimation of a large number of unknown parameters, such as covariances or 
correlations, is required. Moreover, when the sample size is less than the number of 
variables, a problem related to the degrees of freedom arises and some typical 
parametric methods, such as the Hotelling T-square test, are not applicable.  

In such problems, nonparametric methods are preferable because they do not 
require that the underlying probability law belongs to a given family of distributions and 
no parameters need to be estimated. In particular, permutation tests follow 
a distribution-free approach and are almost as powerful as parametric methods based 
on normality when this assumption is true but much more powerful when the true 
underlying distribution deviates from the Gaussian (Pesarin, 2001; Anderson, 2001).  

Solutions for multivariate tests within the family of permutation methods 
consider the dependence between response variables without modelling it explicitly, 
and consequently without the need of estimating parameters or assuming linearity 
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(Pesarin and Salmaso, 2010a; Bonnini et al., 2014; Arboretti et al., 2018). Permutation 
solutions for multivariate location problems have been proposed and studied mainly 
in terms of power and robustness with respect to the underlying distribution, especially 
comparing their performance with that of the classic parametric tests (Pillar, 2013; 
Anderson, 2001; Pesarin, 2001). An interesting proposal is based on the combination of 
the univariate permutation tests of the marginal variables (Pesarin, 2001). Pesarin and 
Salmaso (2010a,b) proved that the power of the most commonly used combined 
permutation tests, with fixed sample size and divergent number of variables under the 
alternative hypothesis, tends to one in the two-sample problem.  

According to the type of the combining function used, a different combined test is 
obtained. Hence a deep study with the goal of comparing different combined tests, 
especially for big data with a large number of variables, is important and suitable, 
in order to find the most powerful test under different scenarios. To the best of our 
knowledge, for the multivariate multisample location problem, a comparative study of 
the power behaviour of the most important combined permutation tests as the number 
of variables diverges is missing. In particular, it is useful to know under which 
conditions each of the different tests is preferable in terms of power, how the power of 
each test increases when the number of variables under the alternative hypothesis 
diverges and the power behaviour of each test as a function of the proportion of true 
alternative hypotheses. 

The purpose of this paper is to fill this gap in the literature about combined 
permutation tests. The paper is organized as follows. Section 2 is dedicated to a review 
of the literature on the MANOVA problem. The method of combined permutation 
tests is described in Section 3. In Section 4 the results of a comparative simulation 
study are reported and discussed. In Section 5, the application of the method to a real 
case study is presented. Finally, the conclusions are in Section 6. 

2. Literature review 

The goal of several empirical studies is the comparison of two or more 
populations in the presence of multivariate response variables. Often, regardless of the 
number of factors, the problem consists in testing the significance of treatment effects 
or the presence of a shift in some location parameters. In what follows, the variation 
of population means is investigated using multivariate analysis of variance 
(MANOVA). To test whether there is a significant difference between group means, 
various parametric multivariate tests based on strong assumptions have been 
proposed. The most commonly used are the Hotelling T-square test (Hotelling, 1992), 
the test of Wilks (1932) and the proposal of Pillai (1955). The main assumptions of 
these tests are normality, constant variances and continuous responses. Moreover, 
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these methods cannot be applied for big datasets when the number of response 
variables is greater than the sample size. 

Nonparametric solutions have been proposed to overcome the limits of the tests 
mentioned above due to the lack of robustness with respect to the assumptions 
(Pesarin and Salmaso, 2010a; Bonnini et al., 2014; Pillar, 2013; Bonnini, 2016). For 
instance, Anderson (2001) introduced a nonparametric solution based on the 
permutation test for an ecological problem. The permutation test statistic was the 
Fisher F ratio obtained from a distance matrix, and the simulation results proved the 
appropriateness of the permutation test for both one-way and two-way MANOVA. 
Pillar studied the accuracy and power of permutation tests for MANOVA based on 
different test statistics. According to his study, the sum of squares between groups 
with the Euclidean distance was preferable to the Chord distance and the sum of Fs of 
univariate ANOVA. Moreover, the simulation study revealed that the permutation 
test was powerful also under heteroscedastic and with unbalanced samples.    

In the literature, several works concerning applications of permutation tests for one-
way and two-way MANOVA have been published. A non-exhaustive list includes the 
following papers: Mantel and Valand (1970), Mielke et al. (1976), Clarke (1993), Pillar and 
Orlóci (1996), Legendre and Anderson (1999), Mielke and Berry (1999), McArdle and 
Anderson (2001), Arboretti et al. (2018), Finch (2016). However, the extension of the 
permutation test for two-way MANOVA requires great attention in permuting the 
statistical units between groups. This is because the exchangeability condition is 
guaranteed only within the levels of one factor by considering the second factor as 
a block. Thus, constrained permutations are essential (Anderson, 2001). The two-
sample multivariate problem has been frequently considered. See for instance Pesarin 
and Salmaso (2010), Polko-Zajac (2020), Bonnini and Melak Assegie (2019). Instead, 
the multi-sample case has been addressed by fewer authors (see Bonnini, 2016). 
In some cases permutation solutions for complex problems such as multiaspect tests 
(Polko-Zajac, 2019), directional alternatives (Bonnini et al., 2014; Arboretti and 
Bonnini, 2009), tests for categorical data (Arboretti and Bonnini, 2008; Bonnini, 2014) 
have been developed. In this paper, we focus on multi-sample location problems for 
numeric variables and nondirectional alternative hypotheses.  

3. Methods 

3.1.  Multivariate permutation test 

The permutation test is a distribution-free test based on the assumption of 
exchangeability under the null hypothesis (Pesarin, 2001). To apply the permutation 
principle, the sample data are partitioned into groups based on the treatment levels 
in an experimental study and pseudogroups in an observational study. To this end, 
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the structure of the dataset for 𝑆 ൒ 2 independent samples and V-dimensional 
response is represented by: 

 
𝒀 ൌ ൛𝑌௜௚௤ห𝑖 ൌ 1,2, … ,𝑛௚,𝑔 ൌ 1,2, … , 𝑆, 𝑞 ൌ 1,2, … ,𝑉ൟ                     (1) 

 
The dataset 𝒀 takes values on the 𝑉-dimensional sample space Ω for which  

a 𝜎-algebra 𝒜 and a nonparametric family 𝒫 of non-degenerate unknown 
distributions are defined, and supposed to be exchangeable.  

Hypothesis testing based on the permutation approach requires a clear 
formulation of the null hypothesis. The null hypothesis in the MANOVA problem is 
defined as the equality of S multivariate (unknown) distributions: 

 
𝐻௢ ∶ ሼ𝑃ଵ ൌ 𝑃ଶ ൌ ⋯ ൌ 𝑃ௌሽ ൌ ሼ𝒀𝟏  ൌௗ 𝒀𝟐  ൌௗ … ൌௗ 𝒀𝑺ሽ.                   (2) 

 
Under homoscedasticity, the difference between the groups is due to a shift 

in location. Thus, the null hypothesis could be formulated as equality of group means 
for each response variable. Let 𝒀𝒈 be a 𝑉-variate numeric random variable such that 
𝒀𝒈 ൌ 𝝁 ൅ 𝜹𝒈 ൅ 𝜺𝒈, with 𝝁  vector of 𝑉 unknown location parameters, 𝜹𝒈, 𝑔 ൌ
1, … , 𝑆, vectors of 𝑉 treatment effects and 𝜺𝒈, 𝑔 ൌ 1, … , 𝑆, exchangeable 𝑉-
dimensional random vectors that follow an unknown probability distribution with 
equal variance-covariance matrix 𝚺 and such that 𝐸൫𝜺𝒈൯ ൌ 𝟎.    

The null hypothesis is: 
 

                         𝐻௢ ∶  ሼ𝜹𝟏 ൌ 𝜹𝟐 ൌ, … ,ൌ 𝜹𝑺 ൌ 𝟎ሽ                                            (3) 
 
A further decomposition of the null hypothesis with respect to the marginal 

distributions of the multivariate response can be considered. The multivariate 
hypothesis can be broken down into 𝑉 partial null hypotheses: 
 

      𝐻௢ ∶  ⋂ ൫𝛿ଵ௤ ൌ, . . ,ൌ 𝛿ௌ௤ ൌ 0൯ ≡ ⋂ 𝐻௢௤
௏
௤ୀଵ                               ௏

௤ୀଵ (4) 
 

where the intersection symbol means that the null hypothesis of the overall problem is 
true if all the 𝑉 partial null hypotheses are true. Accordingly, with a similar approach, 
the alternative multivariate hypothesis 𝐻ଵ of inequality in distribution may be 
represented as follows: 

 
      𝐻ଵ ∶ ⋃ 𝐻ഥ௢௤

௏
௤ୀଵ                                                           (5) 
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where the union symbol indicates that the alternative hypothesis is true if at least one 
partial null hypothesis is false and 𝐻ഥ௢௤ denote the negation of the 𝑞-th partial null 
hypothesis. It is worth noting that directional alternatives are also possible but the 
purpose of this paper is to focus on two-tailed multi-sample multivariate problems.   

When the overall null hypothesis is true and the equality in distribution holds, the 
vector of 𝑉 observations concerning a generic statistical unit comes from any of the 𝑆 
populations with equal probability. In other words, the exchangeability of units with 
respect to the populations/samples is satisfied. In order to determine the null 
distribution of the test statistic, all the possible assignments of the 𝑛 units to the 𝑆 
samples can be considered. Without loss of generality, let us assume that the 𝑛ଵ units 
of the first sample correspond to the first 𝑛ଵ rows of the observed dataset 𝒀, the 𝑛ଶ 
units of the second sample correspond to the next 𝑛ଶ rows of the dataset, and so on, 
until the 𝑛ௌ units of the 𝑆-th sample that correspond to the last 𝑛ௌ rows of the dataset. 
Each possible assignment is equivalent to a permutation of the rows of the dataset or 
to resampling without replacement the 𝑛 units with 𝑛 ൌ 𝑛ଵ ൅ 𝑛ଶ ൅ ⋯൅ 𝑛ௌ.     

For computational convenience, instead of considering the exact test, based on all 
the ௡!

∏ ௡೒!ೄ
೒సభ

 possible assignments of the 𝑛 units to the 𝑆 groups, a random sample of 

permutations is used according to the Conditional Monte Carlo method.  

3.2. Partial tests 

The application of the method of Combined Permutation Test to the permutation 
MANOVA presented above consists in carrying out one univariate permutation test 
for each partial hypothesis and in combining the 𝑝-values of the univariate tests. The 
dependence between the univariate partial test statistics, according to the permutation 
distribution, is taken into account in the resampling strategy by permuting the rows of 
the observed dataset instead of permuting the elements of each column independently 
of the other columns. 

A suitable test statistic for each partial permutation test is the so-called Treatment 
Sum of Squares (𝑆𝑆்௥௘௔௧), which depends on the deviations of the within-group 
sample means from the total sample mean. Hence, the 𝑞௧௛ partial test statistic or 
equivalently the test statistic of the 𝑞௧௛ partial test, with 𝑞 ൌ 1,2, … ,𝑉, is 

 
𝑇௤ ൌ ∑ 𝑛௚൫𝑌ത௚௤ െ 𝑌ത∙௤൯

ଶ
                                                   ௌ

௚ୀଵ (6) 
 

with 𝑌ത∙௤ ൌ
∑ ௡೒௒ത೒೜೒

∑ ௡೒೒
ൌ

∑ ௡೒௒ത೒೜೒

௡
, where 𝑌ത௚௤ represents the mean of the values of the 𝑞-th 

variable observed in the 𝑔-th sample.     
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The multivariate permutation distribution of the test statistic 𝑻 ൌ ሺ𝑇ଵ,𝑇ଶ, … ,𝑇௏ሻ 
under the null hypothesis is obtained through the following procedure: 

1) compute the vector of observed values of 𝑻 from the dataset 𝒀: 
 

𝑻𝒐𝒃𝒔 ൌ 𝑻ሺ𝒀ሻ ൌ ሺ𝑇ଵ,௢௕௦,𝑇ଶ,௢௕௦, … ,𝑇௏,௢௕௦ሻ 
 
2) randomly permute the rows of the dataset (or reassign statistical units to 

groups) and compute the values of the test statistics as a function of the 
permuted dataset: 𝑻௣ ൌ 𝑻ሺ𝒀௣ሻ   

3) repeat step (2) 𝑅 times independently and compute the permutation test 
statistics. Let 𝑇௤,௥

௣  be the value of the 𝑞-th partial test statistic related to 
the 𝑟-th permutation of the dataset 𝒀𝒓

𝒑. Hence  
 

𝑻𝒓
𝒑 ൌ 𝑻൫𝒀𝒓

𝒑൯ ൌ ሺ𝑇ଵ,௥
௣ ,𝑇ଶ,௥

௣ , … ,𝑇௏,௥
௣ ሻ 

  
4) estimate the significance level function of the partial tests  

 

𝜆መ௤,௥
௣ ൌ 𝜆൫𝑇௤,௥

௣ ൯ ൌ   
∑ ஁ቀ ೜்,ೕ

೛ ஹ ೜்,ೝ
೛ ቁା଴.ହೃ

ೕసభ

ோାଵ
                                     (7) 

 
with 𝑟 ൌ 1, 2, … ,𝑅, 𝑞 ൌ 1, 2, … ,𝑉, and 𝐼ሺ𝐸ሻ indicator function of 𝐸, which 
takes value 1 if 𝐸 is true and 0 otherwise. The 𝑝-value of the 𝑞-th partial test 
is 𝜆መ௤,௢௕௦

௣ ൌ 𝜆൫𝑇௤,௢௕௦
௣ ൯. 

3.3.  Combination 

According to the method based on the combination of dependent permutation 
tests, the test statistic for the overall problem is obtained by combining the p-values of 
the partial tests. The synthesis of the information provided by the partial tests 
regarding the marginal variables is provided by the application of a suitable 
combining function 𝜑. Hence, the test statistic useful for the overall test, the 
multivariate analysis of variance, is 

 
𝑇௖௢௠௕ ൌ 𝜑ሺ𝜆ଵ, 𝜆ଶ, … , 𝜆௏ሻ. 

  
The proposal of combining 𝑝-values of partial tests in order to solve multivariate, 

multi-aspect, multi-strata tests, or other complex testing problems that can be broken 
down into partial univariate tests, appeared for the first time in the literature twenty 
years ago in Pesarin (2001) and was later studied and developed by several authors. 
For extended but not exhaustive reviews, see Pesarin and Salmaso (2010a) and 
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Bonnini et al. (2014). Since, for the combination of the partial tests, 𝜑ሺ∙ሻ must satisfy 
some simple, mild and easily attainable conditions, several different functions can be 
used and each of them corresponds to a different solution with specific properties 
within the family of combined permutation tests. 

A suitable combining function 𝜑: ሺ0,1ሻ௏ → ℝ must satisfy the following 
properties: 

1) ∀൫𝜆௤ᇱ , 𝜆௤ᇱᇱ൯ in ሺ0,1ሻ, 𝜆௤ᇱ ൏ 𝜆௤ᇱᇱ ⇔ 𝜑൫… , 𝜆௤ᇱ , … ൯ ൒ 𝜑൫… , 𝜆௤ᇱᇱ, … ൯ ceteris paribus 
(non-increasing monotony) 

2) ∃𝜆௤𝜖ሼ𝜆ଵ, 𝜆ଶ, … , 𝜆௏ሽ s.t. 𝜆௤ → 0 ⇔ 𝜑ሺ𝜆ଵ, 𝜆ଶ, … , 𝜆௏ሻ → 𝜑ത ൏ ∞ (finite 
supremum) 

3) ∀𝛼𝜖ሺ0,1ሻ, ∃𝑇௖௢௠௕,ఈ< 𝜑ത  where 𝑇௖௢௠௕,ఈ is the test critical value (finite critical 
value)  

 
The most popular combining functions in the literature of combined permutation 

tests are Fisher, Liptak and Tippett functions. The Fisher omnibus combining 
function is  

𝑇ி ൌ െ2∑ 𝑙𝑜𝑔൫𝜆௤൯௤                                                           (8) 

where 𝑙𝑜𝑔ሺ𝑥ሻ denotes the natural logarythm of 𝑥. Liptak`s combining function is 
based on the transformation of the complement to one of the 𝑝-values through the 
inverse of the cumulative distribution function (or the quantile function) of the 
standard normal distribution: 

𝑇௅ ൌ ∑ Φିଵሺ௤ 1 െ 𝜆௤ሻ                                                         (9) 

where Φሺ𝑥ሻ ൌ 𝑃ሺ𝑋 ൑ 𝑥ሻ with 𝑋~𝒩ሺ0,1ሻ. Tippett combination is based on an order 
statistic and considers, as observed value of the combined test statistic, the 
complement to one of the most significant 𝑝-value: 

𝑇் ൌ 𝑚𝑎𝑥௤൛1 െ 𝜆௤ൟ                                                          (10) 

Under the null distribution, if the 𝑉 partial tests are independent and continuous, 
the Tippett function follows the uniform distribution in ሺ0,1ሻ.  

Without loss of generality, let us assume that the null hypotheses of the overall 
and partial problems are rejected for large values of the respective test statistics. It is 
trivial to show that all three combination rules defined above satisfy this condition. 
Given that the observed value of the combined test statistic is  

𝑇௖௢௠௕,௢௕௦ ൌ 𝜑൫𝜆መଵ,௢௕௦
௣ , 𝜆መଶ,௢௕௦

௣ , … , 𝜆መ௏,௢௕௦
௣ ൯. 

the 𝑝-value of the permutation MANOVA with the combined permutation test is 
given by 

𝜆መ௖௢௠௕,௢௕௦ ൌ 𝜆൫𝑇௖௢௠௕,௢௕௦൯                                                       (11) 
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The three presented tests can have much different power behaviours under 
different conditions, hence a comparative analysis to deepen their properties, 
advantages and limits is important to support the analyst in the decision about which 
test to use based on the power. 

4. Simulation study  

The power behaviour of the three combined permutation tests defined in the 
previous section for the MANOVA problem was investigated through a Monte Carlo 
simulation study. Different scenarios, under the null and the alternative hypothesis, 
were considered in order to compare the power of the three proposals as a function of 
the sample sizes, of the number of samples, of the number of components of the 
multivariate response and of the proportion of true partial alternative hypotheses 
when 𝐻଴ is false.   

Data were simulated according to the one-way MANOVA model. We considered 
multivariate datasets with two different sizes from the point of view of the number of 
responses: 𝑉 ൌ 50 and 𝑉 ൌ 100. With regard to the number of compared samples, 
𝑆 ൌ 3 and 𝑆 ൌ 5 are the cases taken into account. Simulation study has been carried 
out generating data from 𝑉-variate normal random variables hence under the 
“probabilistic condition most favorable to the classic parametric tests” and under 
homoscedasticity. For all the 𝑆 populations, the variance of each of the 𝑉 components 
of the multivariate response and the correlation between any pair of variables was set 
equal to 1 and to 0.3 respectively. Hence, the 𝑉 ൈ 𝑉 covariance matrix of each 
population is Σ ൌ ൣ𝜎௞௤൧ with 𝜎௤௤ ൌ 1, 𝑞 ൌ 1,2, … ,𝑉, and 𝜎௞௤ ൌ 0.3, 𝑘 ്
𝑞𝜖ሼ1,2, … ,𝑉ሽ.  

The number of simulated datasets and the number 𝑅 of permutations were both 
equal to 1000. In the simulations, we considered the balanced design with size 
𝑛ଵ=𝑛ଶ ൌ ⋯ ൌ 𝑛ௌ ൌ 𝑛. The two sample sizes taken into account are 𝑛 ൌ 10 and 𝑛 ൌ
30. In the simulations,  𝝁 ൌ 𝟎. Let 𝑝 be the proportion of true partial alternative 
hypothesis. Then, the 𝑉-variate normal distribution of the random variable that 
simulates data for the 𝑔-th sample (𝑔 ൌ 1,2, … , 𝑆) has a vector of means with 
ሺ1 െ 𝑝ሻ 𝑉 zeros and 𝑝𝑉 values equal to 𝜏ሺ𝑔 െ 1ሻ. Formally 

 

𝜹𝒈 ൌ 𝜏ሺ𝑔 െ 1ሻ ቀ𝟏
𝟎
ቁ 

 
where 𝟏 is a vector of 𝑝𝑉 elements equal to 1 and 𝟎 is  a vector of ሺ1 െ 𝑝ሻ 𝑉 elements 
equal to 0. To consider different shifts in the population locations, the simulations 
were carried out with 𝜏 ൌ 0.5 and 𝜏 ൌ 1.0. Moreover, the different proportions 𝑝 of 
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true alternative hypotheses used in the scenarios are 0.00, 0.05/
0.06, 0.10, 0.20, 0.30, 0.40, 0.50, 0.70, 0.90, 1. The first positive proportion in the list is 
0.05 if 𝑞 ൌ 100 (5 true partial alternative hypotheses) and 0.06 if 𝑞 ൌ 50 (3 true 
partial alternative hypotheses). The significance level chosen in all the scenarios is 𝛼 ൌ
0.05. All simulations were carried out with the 𝑅 programming software version 4.1.0. 
Specific scripts were created by the authors for this purpose. 

Table 1 shows the rejection rates of the tests under all different cases when the 
number of variables 𝑉 is equal to 100. The performance of the tests under 𝐻଴ can be 
evaluated from the column corresponding to 𝑝 ൌ 0.00 (no true partial alternative 
hypotheses). It is evident that, in most cases, the rejection rates are either less than or 
very close to the nominal 𝛼 level 0.05. The test based on the Tippet combination 
exceeds 𝛼 more frequently than the others but the probability of wrong rejection of 
𝐻଴ seems to be not far from 0.05, hence we can say that all the tests are well 
approximated.         

When 𝑝 ൐ 0, the power behaviour of the tests can be assessed under 𝐻ଵ. 
Unbiasedness of all the tests is demonstrated because the rejection rates are greater 
under the alternative hypothesis than under the null hypothesis. Moreover, the greater 
the sample size the higher the power, thanks to the consistency of the tests. 
As expected, the power is increasing function of the shift of the population locations 
that depends on 𝜏. Finally, the greater the number of samples the higher the rejection 
rates of the tests. Focusing on the effect of 𝑝 on the estimated probability of rejecting 
𝐻଴ when it is false, the increasing monotonic relationship is evident for all the tests. 
The growth rate of the power with respect to 𝑝 is high and, when 100% of the partial 
alternative hypotheses is true, the rejection of 𝐻଴ is sure or almost sure.    

From the comparative analysis, it emerges that the Liptak test is always the worst, 
except in the case in which all the partial alternative hypotheses are true. As said, 
in this scenarios, the power of all the combined tests tends to one and the tests are 
equivalent. In general the lower performance of the test based on the Liptak 
combination is evident and it is uniformly less powerful than the other permutation 
MANOVAs. This is consistent with Pesarin’s (2001) statement about the preferability 
of other tests than Liptak, except for p=1. When the proportion of true partial 
alternative hypotheses is low, the combined test based on Tippett’s rule is by far the 
best. Also this conclusion is not surprising, according to Pesarin (2001) but, in our 
simulation study, the extent of the difference in performance of the test based on 
Tippet’s function can be evaluated. Moreover, according to this results, Tippet’s 
combination is never less performant than the others, except in the first setting, when 
𝑆 ൌ 3, 𝑛 ൌ 10 and 𝜏 ൌ 0.5 when 𝑝 ൒ 0.90, where the differences in the rejection 
rates of the various tests are negligible.          
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Table 1. Rejection rates of combined permutation tests for 𝑉 ൌ 100 and 𝛼 ൌ 0.05.  

 

𝐒 𝐧 𝛕 𝛗 
Proportion of true partial alternative hypotheses (p) 

0.00 0.05 0.10 0.20 0.30 0.40 0.50 0.70 0.90 1.00 

 

 

 

 

 

 

3 

 

 

 

10 

 

0.5 

F 0.047 0.082 0.108 0.250 0.462 0.642 0.776 0.870 0.918 0.924 

L 0.045 0.078 0.074 0.156 0.308 0.466 0.596 0.792 0.882 0.914 

T 0.050 0.426 0.546 0.640 0.752 0.798 0.846 0.858 0.898 0.928 

 

1.0 

F 0.036 0.106 0.310 0.918 1 1 1 1 1 1 

L 0.034 0.078 0.138 0.418 0.806 0.882 0.916 0.930 0.986 1 

T 0.054 0.988 1 1 1 1 1 1 1 1 

 

 

 

30 

 

0.5 

F 0.056 0.104 0.240 0.890 1 1 1 1 1 1 

L 0.056 0.080 0.132 0.340 0.822 0.884 0.902 0.938 0.988 1 

T 0.058 0.940 0.990 1 1 1 1 1 1 1 

 

1.0 

F 0.046 0.124 0.342 0.996 1 1 1 1 1 1 

L 0.046 0.086 0.160 0.432 0.872 0.870 0.878 0.956 0.984 1 

T 0.052 1 1 1 1 1 1 1 1 1 

 

 

 

 

 

 

5 

 

 

 

10 

 

0.5 

F 0.046 0.136 0.374 0.968 1 1 1 1 1 1 

L 0.042 0.100 0.180 0.486 0.812 0.904 0.956 0.965 0.986 1 

T 0.052 0.984 1 1 1 1 1 1 1 1 

 

1.0 

F 0.052 0.144 0.359 0.988 1 1 1 1 1 1 

L 0.054 0.104 0.168 0.502 0.838 0.862 0.924 0.934 0.984 1 

T 0.056 1 1 1 1 1 1 1 1 1 

 

 

 

30 

 

0.5 

F 0.050 0.130 0.370 0.994 1 1 1 1 1 1 

L 0.052 0.076 0.178 0.442 0.802 0.89 0.892 0.922 0.980 1 

T 0.054 1 1 1 1 1 1 1 1 1 

 

1.0 

F 0.044 0.124 0.352 0.996 1 1 1 1 1 1 

L 0.034 0.072 0.156 0.500 0.840 0.898 0.904 0.944 0.980 1 

T 0.050 1 1 1 1 1 1 1 1 1 

Source: author computations; F: Fisher, L: Liptak, T: Tippett, 𝜏: location shift, 𝜑:combining function 
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In Table 2, the rejection rates of the tests when the number of variables is 𝑉 ൌ 50 
are reported. Again the good performance of the tests under the null hypothesis (𝑝 ൌ
0.00) is proved by the values of the estimated power. These values are usually not 
greater than 𝛼 ൌ 0.05 even if sometimes they exceed the significance level, especially 
in the case of Tippet’s combination. Nevertheless, when greater than 0.05, the 
rejection rates under 𝐻଴ are not far from 𝛼 and then the tests are well approximated. 
Hence, this conclusion is valid regardless of the number of variables 𝑉.  

Table 2 confirms also that the probability of right rejection of the null hypothesis 
of MANOVA by the combined permutation tests increases with the sample size 𝑛, 
with the number of samples 𝑆, with the shift parameter 𝜏 and with the proportion of 
true partial alternative hypotheses 𝑝. Another empirical evidence of the simulation 
study is that in general the power is greater with 100 variables than with 50 variables. 
This statement seems obvious thinking to the tendency of the power to one when the 
number of variables diverges in the two-sample problem proved by Pesarin and 
Salmaso (2010b). They focus on the relationship between power of the overall test and 
non-centrality parameter in the case 100% of the variables are under the alternative 
hypothesis. According to our results, the power of the multi-sample tests in the case 
𝑉 ൌ 100 is much greater than in the case 𝑉 ൌ 50 only when the percentage of true 
partial alternative hypotheses is low, otherwise the difference seems not evident and 
always in the same direction. Hence, in our opinion, for the power behaviour, the 
proportion of true partial alternative hypothesis matters and it is more important than 
the absolute number of true partial alternatives. For instance, when 𝑉 ൌ 50 and 𝑝 ൌ
0.40, the number of true partial alternative hypothesis is 20, exactly as when 𝑉 ൌ 100 
and 𝑝 ൌ 0.20. But in the former case, when 𝑆 ൌ 3, 𝑛 ൌ 10 and 𝜏 ൌ 0.5, the rejection 
rates of the tests based on the Fisher, Liptak and Tippett combination are 0.626, 
0.490 and 0.636 respectively; instead in the latter case, under the same scenario, 
0.250, 0.156 and 0.640 respectively. Hence, even if the number of true alternative 
hypotheses is the same, the power of the tests based on the Fisher and Liptak 
combinations is much lower when the proportion of true partial alternative 
hypotheses is smaller. Tippett represents an exception. Consider, under the same 
scenario, the case 𝑉 ൌ 50 and 𝑝 ൌ 0.20 (rejection rate 0.466) and 𝑉 ൌ 100 and 𝑝 ൌ
0.10 (rejection rate 0.546). Hence, with the same proportion 𝑝, the power increases 
with 𝑉 only in the case of Tippett’s combination. 

In general, the case 𝑉 ൌ 50, confirms that the Liptak combination is the best 
choice only when 𝑝 ൌ 1 but in this situation the power of the other tests is very 
similar. In most of the considered settings, the Tippett combination is preferable 
because the power quickly tends to 1 as the proportion of true alternative hypotheses 
diverges. When 𝑆 ൌ 3, 𝑛 ൌ 10 and 𝜏 ൌ 0.5 this is the most powerful test up to 𝑝 ൌ
0.40. For larger values of 𝑝 it becomes the less powerful test.  
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Table 2. Rejection rates of combined permutation tests for 𝑉 ൌ 50 and 𝛼 ൌ 0.05. 

 

𝐒 𝐧 𝛕 𝛗 
Proportion of true partial alternative hypotheses (p) 

0.00 0.06 0.10 0.20 0.30 0.40 0.50 0.70 0.90 1.00 

 

 

 

 

 

 

3 

 

 

 

10 

 

0.5 

F 0.050 0.082 0.096 0.230 0.414 0.626 0.766 0.870 0.924 0.886 

L 0.054 0.066 0.074 0.142 0.258 0.490 0.668 0.828 0.912 0.888 

T 0.057 0.268 0.316 0.466 0.556 0.636 0.726 0.768 0.818 0.810 

 F 0.042 0.054 0.260 0.892 0.996 1 1 1 1 1 

 

1.0 

L 0.038 0.068 0.120 0.446 0.812 0.938 0.950 0.986 0.988 1 

T 0.050 0.094 0.966 1 1 1 1 1 1 1 

 

 

 

30 

 

0.5 

F 0.052 0.100 0.230 0.824 1 1 1 1 1 1 

L 0.054 0.070 0.138 0.348 0.756 0.936 0.954 0.974 0.992 1 

T 0.056 0.876 0.960 0.994 0.998 0.998 1 1 0.998 1 

 

1.0 

F 0.038 0.128 0.278 0.996 1 1 1 1 1 1 

L 0.040 0.092 0.140 0.424 0.846 0.938 0.948 0.974 0.980 1 

T 0.050 1 1  1 1 1 1 1 1 

 

 

 

 

 

 

5 

 

 

 

10 

 

0.5 

F 0.038 0.164 0.310 0.904 0.998 1 1 1 1 1 

L 0.044 0.132 0.162 0.408 0.798 0.944 0.952 0.970 0.988 1 

T 0.051 0.946 0.994 0.996 1 1 1 1 1 1 

 

1.0 

F 0.048 0.182 0.174 0.978 1 1 1 1 1 1 

L 0.052 0.114 0.356 0.452 0.826 0.950 0.948 0.970 0.994 1 

T 0.054 1 1 1 1 1 1 1 1 1 

 

 

 

30 

 

0.5 

F 0.052 0.126 0.316 0.990 1 1 1 1 1 1 

L 0.048 0.076 0.156 0.458 0.836 0.940 0.956 0.976 0.996 1 

T 0.054 1 1 1 1 1 1 1 1 1 

 

1.0 

F 0.051 0.136 0.348 0.986 1 1 1 1 1 1 

L 0.049 0.072 0.156 0.468 0.852 0.938 0.954 0.976 0.990 1 

T 0.053 1 1 1 1 1 1 1 1 1 

Source: author’s computations;  F: Fisher, L: Liptak, T: Tippett, 𝜏: location shift, 𝜑:combining 
function 
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5.  Case Study about organizational well-being of University Workers 

Organizational well-being is the first element that influences effectiveness, 
efficiency, productivity and development of a public organization. As part of objective 
3 of the 2014-2016 Positive Action Plan proposed by the Equality Opportunities 
Office of the University of Ferrara (UNIFE), the Rector's Delegate for Equal 
Opportunities presented a project in order to promote the improvement of the 
working well-being of the administrative-technical staff. This project consists in the 
definition of interventions aimed at improving quality of working life based on 
findings deriving from empirical surveys. 

A questionnaire was administered to a sample of 120 employees of UNIFE 
in order to assess the degree of work-related stress, to detect the opinions of 
employees with respect to the organization and the working environment and identify 
possible actions for the improvement of the general conditions of the public 
employees at UNIFE. One goal of the survey was also to test the existence of possible 
differences in organizational well-being among sub-groups of employees defined by 
gender and age. 

The 120 respondents represent a random sample of the population of the 
technical-administrative staff. In order to test for the joint effect of gender and age on 
the organizational well-being at UNIFE, a simple random sample of 30 employees was 
selected from each of the following four groups: 

 FU50: 50 years old or younger females, 
 FO50: over 50 years old females, 
 MU50: 50 years old or younger males, 
 MO50: over 50 years old males. 
The questionnaire, consisting of 79 questions, was administered to the 

respondents from the 4th to the 11th of December 2014. The questionnaire was 
designed by the Italian National Anti-Corruption Authority (ANAC) and the 
National Institute for Occupational Accident Insurance (INAIL) that decided to adopt 
a Likert scale, based on the first 6 integer values representing the level of agreement 
with respect to the 79 statements (1= not at all, …, 6=completely). It is worth noting 
that the permutation analysis of variance can be applied to numeric variables. The 
assumption of normality but not even that of continuity is required. Hence, it is 
a valid approach in the case of both interval and discrete scales. The results of the 
simulation study can be extended to testing problems for interval variables, and 
consequently applied to the case study. Even if, strictly speaking, the response 
variables in the considered application on organizational well-being are ordinal, it is 
common practice to treat them as interval data. In general, interval and discrete 
variables can be considered as the result of the discretization of continuous variables. 
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Furthermore, unlike the parametric approach, the permutation test does not require 
that a specific underlying family of distributions is known or assumed. The null 
permutation distribution of the test statistics can be determined regardless of whether 
the underlying distribution of the data is continuous or not. The 79 statements are 
reported in Appendix 1. 

Let 𝑌௩௚ be the random variable that represents the response concerning the 𝑣-th 
statement of an employee belonging to group 𝑔, with 𝑣 ൌ 1,2, … ,79 and 𝑔 ∈ 𝐺 ൌ
ሼ𝐹𝑈50,𝐹𝑂50,𝑀𝑈50,𝐹𝑂50ሽ. The testing problem can be represented by the following 
hypotheses: 

 

𝐻଴ : ሩൣ𝑌௩,ி௎ହ଴ ൌௗ 𝑌௩,ிைହ଴ ൌௗ 𝑌௩,ெ௎ହ଴ ൌௗ 𝑌௩,ெைହ଴൧

଻ଽ

௩ୀଵ

 

 
vs 

 

𝐻ଵ:ራൣ∃𝑔ᇱ,𝑔ᇱᇱ ∈ 𝐺 s. t.  𝑌௩,௚ᇲ ്
ௗ 𝑌௩,௚ᇲᇲ൧

଻ଽ

௩ୀଵ

 

 
The significance level is 𝛼 ൌ 0.05. According to the simulation study, the most 

suitable testing method seems to be the combined permutation test based on the 
Tippett combining function. The application of this test provides a p-value of 0.755, 
much greater than 𝛼. Hence the null hypothesis cannot be rejected. At the significance 
level 0.05, there is no empirical evidence to reject the null hypothesis of no difference 
of the organizational well-being between groups in favor of the hypothesis that the 
organizational well-being of the groups is not the same. In other words, we cannot 
conclude that there is a significance effect of gender and age on the employees’ well-
being. The analysis was carried out by the authors by creating specific R scripts for the 
implementation of the methodology.  

It is worth noting that the final p-value of the combined test is invariant with 
respect to the combination strategy. In other words, if we perform a two-level 
combination, i.e. the first within-domain combination of partial tests and the second 
combination with respect to the domains, the final result is the same as obtained by 
permuting the partial tests all together at the same time (see Pesarin, 2001). If we had 
significance in the overall test, it would be useful to identify the partial tests that 
contribute to the overall significance. This can be done with a suitable adjustment of 
the p-values of the partial tests for controlling the Family Wise Error rate and 
avoiding the inflation of the type I error of the final combined test. 
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In this case, an interesting two-stage combination strategy could be of interest, 
because the questionnaire is divided into sections corresponding to partial aspects of 
organizational well-being. Each aspect corresponds to a set of questions and 
consequently to a domain of variables (construct). In the case of significance of the 
overall combined test, the analysis of the adjusted p-values of the partial combined 
tests related to the constructs would make sense. Unfortunately, the overall null 
hypothesis is not rejected.              

This result proves that, in the University of Ferrara, the organizational well-being 
of the employees in terms of risks, working environment, respect, relationship with 
colleagues and office manager, transparency, motivation, etc. is not affected by age 
and gender. It could be considered as evidence of gender-age equality within the 
organization. 

6.  Conclusions 

The purpose of the work is to deepen the study of the power behaviour of 
combined permutation tests for MANOVA problems with big data. The assessment of 
the convergence rate of the power to one as the proportion of variables under the 
alternative hypothesis increases and a comparison between the three most commonly 
used members within this family of tests represent the main scientific added value of 
the paper.   

These nonparametric multi-sample location tests are well approximated, 
consistent, unbiased and powerful also for small sample sizes. The power is also an 
increasing function of the number of samples and of the number of variables of the 
dataset. The asymptotic behaviour of the tests when the number of variables diverges 
was studied and the simulations proved that the proportion of true partial alternative 
hypotheses is more important than the absolute number of variables of the dataset 
in explaining the increase of power. The test based on the Tippett combination 
represents an exception to this general rule.  

This test seems to be much more powerful than the others when the proportion of 
true partial alternative hypotheses is not large but competitive also when the 
proportions are close to one. This is the only condition in which the test based on 
Liptak combination is competitive but, for small proportions of true alternatives, this 
test is by far the least powerful.  

Definitely, it seems that, among the distribution free solutions to the multivariate 
analysis of variance in the family of combined permutation tests, the method based on 
the Tippet combination is in general preferable, especially if there are no preventive 
information about the possible percentage of variables (or marginal distributions) 
under the alternative hypothesis. Instead of the Tippett combination, the Fisher rule 
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can be applied when the percentage is close to 100%. The Liptak combination seems 
to be non-convenient in general.  

This methodological tool is an important and useful solution of testing problems 
for big data, especially when the number of variables is very large and the sample sizes 
are small. The usefulness and the effectiveness of the method is confirmed by the 
application to the case study concerning the survey on the organizational well-being 
at the University of Ferrara discussed in the paper. 
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Appendix 1 

Code Statement 
A.01 My working place is safe  
A.02 I have been informed about the risks connected to my job 
A.03 I am satisfied about the environment of my working place 
A.04 I have suffered harassment 
A.05 My dignity has been harmed at work  
A.06 At work the smoking ban is respected 
A.07 I usually take enough breaks 
A.08 I can work hard 
A.09 I am not comfortable when I am working 
A.10 The colleagues are not polite with me 
A.11 I am allowed to take a break when I wish 
A.12 I don't have the chance to take enough breaks 
B.10 At work I have suffered bullying 
B.01 In the workplace I am respected in my trade union membership  
B.02 In the workplace I am respected in my political orientation 
B.03 In the workplace I am respected in my religious faith 
B.04 My gender identity is an obstacle to my enhancement at work 
B.05 In the workplace I am respected in my ethnicity and race 
B.06 In the workplace I am respected in relation to my mother tongue 
B.07 My age is an obstacle to my enhancement at work  
B.08 In the workplace I am respected in relation to my mother tongue 
C.01 The workload is assigned with equity 
C.02 The responsibilities are assigned with equity 
C.03 My salary is proportional to the commitment 
C.04 The pay is differentiated according to quantity and quality of work 
C.05 My manager makes work decisions impartially 
D.01 At UNIFE the path of professional development of each employee is well defined and clear 
D.02 At UNIFE the career opportunities depend on merit 

D.03 
UNIFE gives the possibility to develop skills and aptitudes of individuals in relation to the 
requirements of the different roles 

D.04 My current role is appropriate to my professional profile 
D.05 I am satisfied with my professional path within UNIFE 
E.01 I know what is expected of my work 
E.02 I have the skills to do my job 
E.03 I have the resources and tools to do my job 
E.04 I have an adequate level of autonomy in my work 
E.05 My work gives me a sense of personal fulfilment 
E.06 I know how to do my job 
E.07 I understand what is expected of me at work 
E.08 I have freedom of choice in deciding how to do my job 
E.09 I have unattainable deadlines 
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Code Statement 
E.10 I have to work very hard 
E.11 I have a say in deciding how fast I can do my job 
E.12 I’m getting pressure to work overtime 
E.13 I have freedom of choice in deciding what to do at work 
E.14 I have to do my job very quickly 
E.15 I have deadlines impossible to meet 
E.16 I have a say in how to do my job 
E.17 My working hours can be flexible 
E.18 Job requests made to me by various people/offices are difficult to combine 
F.01 I feel part of a team 
F.02 I help colleagues even if it’s not my job 
F.03 I am esteemed and treated with respect by colleagues 
F.04 In my group, those who have information make it available to everyone 
F.05 The organization pushes to work in a group and to collaborate 
F.06 If the job becomes difficult, I can count on the help of my colleagues 
F.07 At work my colleagues show me the respect I deserve 
F.08 I receive support information that helps me in my work 
F.09 There are frictions or conflicts between colleagues 
F.10 My colleagues give me the help and support I need 
F.11 Colleagues are willing to listen to my work problems 
G.01 My organization invests in people, including through adequate training 
G.02 The rules of conduct are clearly defined 
G.03 Organisational tasks and roles are well defined 
G.04 The circulation of information within the organisation is appropriate 
G.05 My organisation promotes measures to reconcile working time and life time 
G.06 I have clear duties and responsibilities 
G.07 I must neglect some tasks because I have too much to do 
G.08 I know the goals of my department/office 
G.09 Staff are always consulted on changes in work 
G.10 I’m supported in emotionally challenging jobs 
G.11 Workplace relations are strained 
H.01 I am proud when I tell someone that I work at UNIFE 
H.02 I am proud when UNIFE achieves good results 
H.03 I am sorry if someone has a bad opinion of UNIFE 
H.04 Values and behaviours at UNIFE are similar to mine 
H.05 If possible, I would change company 
I.01 Relative and friends think that UNIFE is important for the collectivity 
I.02 Students think that UNIFE is important for the collectivity 
I.03 People think that UNIFE is important for the collectivity 

 


