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Scaled Fisher consistency for the partial likelihood
estimation in various extensions of the Cox model
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ABSTRACT

The Cox proportional hazards model has become the most widely used procedure in survival
analysis. The theoretical basis of the original model has been developed in various exten-
sions. In the recent years, vital research has been undertaken involving the incorporation of
random effects to survival models. In this setting, the random effect is a variable (frailty)
which embraces a variation among individuals or groups of individuals which cannot be ex-
plained by observable covariates. The right choice of the frailty distribution is essential for
an accurate description of the dependence structure present in the data. In this paper, we
aim to investigate the accuracy of inference based on the primer Cox model in the existence
of unobserved heterogeneity, that is, when the data generating mechanism is more complex
than presumed and described by the kind of an extension of the Cox model with undefined
frailty. We show that the conventional partial likelihood estimator under the considered ex-
tension is Fisher-consistent up to a scaling factor, provided symmetry-type distributional
assumptions on covariates. We also present the results of simulation experiments that reveal
an exemplary behaviour of the estimators.
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1. Introduction

Statistical analysis of time-to-event data through survival regression models has become
common practise in a variety of disciplines including mainly demography and medicine but
also economics, actuarial science, reliability research and others. The regression framework
allows for the inclusion of relevant factors, like gender, socio-economic status, or received
treatment, which explain variation among the individuals or items being studied. However,
such an analysis is nearly always susceptible to the omission of influential covariates and
leaves unexplained variation. In some cases, the unobserved heterogeneity may cause in-
ferential perturbations that are beyond the control of the researcher. One way of accounting
for this estimation problem is to extend the model by including an unobserved random ef-
fect - a frailty variable, which allowed heterogeneity in longevity endowment. The notion
of frailty was introduced and applied to the population data by Vaupel et al. (1979). The
term frailty indicates that some individuals are frailer than others, that is, the event under
consideration is more likely to happen for them. In its classical and mostly applied form, a
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frailty model assumes proportional hazards and includes an unobservable random variable
acting multiplicatively on the baseline hazard function. In recent years a number of papers
and textbooks have appeared discussing extensions of common survival models to a wide
variety of frailty models that are suitable to handle more complex survival data. A com-
prehensive review of frailty modelling in survival data analysis can be found in Hougaard
(2000) and Wienke (2011). Kalbfleisch and Prentice (2002) give detailed theoretical treat-
ments using the counting process theory. More applied presentations are given by Klein
and Moeschberger (2003), and Therneau and Grambsch (2000). Aalen et al. (2008) pro-
vide an insight into the theoretical and applied structure of frailty models used in survival
and event history analysis on the counting processes basis. Henderson and Oman (1999)
investigate the consequences of ignoring frailty in analysis and fitting misspecified Cox
proportional hazards models to the marginal distributions. The usual approach to statistical
inference with unobserved frailty assumes a parametric family of distributions for frailty,
usually gamma but also inverse Gaussian, positive stable, compound Poisson, or more gen-
eral the power variance function family. For particular types of parametric frailty models the
maximisation of the marginal likelihood leads to estimates of the parameters in the model,
but for semiparametric frailty models more complex estimation techniques are needed (see
Duchateau and Janssen, 2008). Certainly, modelling the frailty distribution is a remedy
for biased estimation of regression parameters, but its limited choice relies mainly on their
mathematical tractability.

Our objective is to investigate whether the traditionally used partial likelihood estima-
tion method can be worthwhile when the model is misspecified, more precisely, the existing
heterogeneity is neglected. In our considerations we apply the approach taken by Bednarski
and Skolimowska-Kulig (2018, 2019) and Bednarski and Nowak (2021). They focused
on the fundamental requirement needed in sound statistical inference about parameters, the
Fisher consistency of estimators. They studied the behaviour of the standard estimators, like
maximum likelihood for the exponential model or partial likelihood for the Cox model un-
der extended models, with no assumption about distributional structure of frailty. Then, of
course, the Fisher consistency condition need not be true, but it is shown that the commonly
used procedures for the estimation of regression parameters in certain hazard-based survival
models generate consistent up-to-scale estimators for extensions of these models. In the ar-
ticle we demonstrate that the partial likelihood estimator for the Cox regression model is
Fisher consistent up to a scaling factor under an extended model with unobserved gener-
alised frailty. The limitation we make is the distribution of covariates, which is assumed
to be elliptically symmetric. In our approach to the scaled Fisher consistent estimation, we
adapt the general ideas of Ruud (1983) and Stoker (1986) who studied regression coefficient
estimators in particular regression models with assumed misspecification, and showed their
up-to-scale consistency.

2. Maximisation criterion for the Cox estimator

In this part we remind the criterion that yields the regression parameter estimator in the
Cox proportional hazards model (Cox, 1972). We assume that the survival time T , given
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the covariate vector X , has the conditional distribution function

F(t|x) = 1− exp
(
−Λ(t)eβ ′x

)
,

where Λ(t) =
∫ t

0 λ (u)du, λ is the baseline hazard function and β is the parameter vector.
Suppose that we observe a sample (Ti ∧Ci,Xi), i = 1,2, . . . ,n, where the censoring variable
C is independent of the survival time T given the covariate vector X . To formulate the
partial likelihood let us denote by t(1) < t(2) < ... < t(m) the unique failure times. The partial
likelihood for the Cox model can be written as

L(β ) =
m

∏
i=1

eβ ′X(i)

∑ j∈Ri eβ ′X j
,

where the risk set Ri = {k : Tk ∧Ck ≥ t(i)} consists of subjects that have not failed or been
censored by time t(i) and X(i) is the covariate vector for the subject that fails at t(i).

The Cox estimator maximises L(β ), or equivalently(
m

∏
i=1

eβ ′X(i)

1
n ∑ j∈Ri eβ ′X( j)

)1/n

.

Thus, it is given as

argmax
β

1
n

n

∑
i=1

(
β
′Xi − ln

1
n ∑

Tj≥Ti

eβ ′X j

)
I{Ti≤Ci}.

If Fn(t,c,x) denotes the empirical distribution function of the sample (Ti,Ci,Xi), i= 1,2, . . . ,n,
and sums are replaced by empirical integrals, then the above expression can be stated as

argmax
β

∫ (
β
′y− ln

∫
t∧b≥w

eβ ′xdFn(t,b,x)
)
I{w≤c}dFn(w,c,y).

Since Fn converge uniformly in probability to a true distribution F we can expect that under
sufficiently stringent conditions, the maximising β̂n converge in probability to

argmax
β

∫ (
β
′y− ln

∫
t∧b≥w

eβ ′xdF(t,b,x)
)
I{w≤c}dF(w,c,y),

if the latter solution exists.

3. Fisher consistency and scaled Fisher consistency

Since the right time censoring present in the Cox regression model plays no essential
role in the argumentation presented in the paper we skip it in order to make the notation more
concise. If the underlying cumulative distribution F comes from the Cox model, that is there
is a parameter vector β0 and a nonnegative baseline hazard λ yielding Λ(t) =

∫ t
0 λ (s)ds such
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that
F(t|x) = 1− exp

(
−Λ(t)eβ ′

0x
)
,

then

β0 = argmax
β

∫ (
β
′y− ln

∫
t≥w

eβ ′xdF(t,x)
)

dF(w,y) (1)

for every parameter vector β0. The last property means that the Cox estimator is Fisher
consistent at the model. The consistency is independent of the baseline hazard λ and it
holds under censoring independent of survival time T given the covariate values X .

In general, all statistical estimators based on random samples are defined by explicit
or implicit functionals of the corresponding empirical distribution functions. If values of
such a functional coincide with true parameters when the empirical distribution is replaced
by the true model distribution then we say that the functional is Fisher consistent. Without
Fisher consistency the estimator cannot even be consistent asymptotically. Therefore, when
studying estimation proposals we would put its Fisher consistency property in the first place.
In practice, Fisher-consistent functionals (estimators) associated with a given parametric
family are used even if we think the family imperfectly describes a real distribution and
the discrepancy is deeper than the one resulting from occasional influential errors. It may
therefore be justified in some instances to study what happens when the estimator-functional
is used under reasonable nonparametric extensions of the original model. We make it precise
in the case of the partial likelihood estimator. Define then a Cox model with generalised
frailty and regression parameter β0 via cumulative distribution function of time, conditional
on covariates X = x and frailty A = a as

F(t|x,a) = 1− exp
(
−Λ(t,a)eβ ′

0x
)
, (2)

where the cumulated hazard Λ(t,a) =
∫ t

0 λ (t,a)dt takes now into account possibly complex
individual changes in time to event distribution. To simplify forthcoming notations we will
use the same letter F for model distributions from the Cox model with extended frailty as in
the case of the strict Cox model. The scaled Fisher consistency of the Cox estimator means
here that for each parameter value β0 there exists c > 0, possibly depending on β0, such that

cβ0 = argmax
β

∫ (
β
′y− ln

∫
t≥w

eβ ′xdF(t,x,a)
)

dF(w,y,b) (3)

for F(t,x,a) = F(t|x,a)G(x)H(a), where G and H are the distributions of covariates and
frailty respectively, and the random variables X and A are assumed independent.

4. Results

Consider the extended Cox model with generalised frailty independent on the covariates,
given by (2) and the problem of maximisation of∫ (

β
′y− ln

∫
t≥w

eβ ′xdF(t|x,a)dG(x)dH(a)
)

dF(w|y,b)dG(y)dH(b) (4)
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with respect to β . Since the above expression can be written as∫ (
− ln

∫
t≥w

eβ ′xdF0(t|x,a)dG0(x)dH(a)
)

dF0(w|y,b)dG0(y)dH(b),

where F0(t|x,a) = 1− exp
(
−Λ0(t,a)eβ ′

0x
)

, Λ0(t,a) = Λ(t,a)eβ ′
0EX and G0 is the distri-

bution of centred covariates X −EX , the maximisation can be reduced to covariates with
expectation zero.

Lemma 1. Let β0 be the true parameter value and the covariate vector with zero mean be
such that for every vector β the conditional expectation E((β − pro jβ0β )X |β ′

0X) is almost
surely zero. Then β maximising (4) equals cβ0 for some real c.

Proof. For F with centred covariates the maximisation of (4) is equivalent to the minimisa-
tion of ∫ (

ln
∫

t≥w
eβ ′xdF(t|x,a)dG(x)dH(a)

)
dF(w|y,b)dG(y)dH(b),

which in turn can be stated as∫ (
ln
∫

t≥w
eβ ′xdF(t|x,a)dG1(x|β ′

0x)dG2(β
′
0x)dH(a)

)
dF(w|y,b)dG(y)dH(b), (5)

where β0 denotes the true parameter value, G1 is the conditional distribution of X given β ′
0X

while G2 is the distribution of β ′
0X .

Notice that for any nonzero parameter vector β we can write β = cβ0 +β1, where cβ0 =

pro jβ0β is the orthogonal projection of β on β0. Then (5) becomes

∫ (
ln
∫

t≥w
ecβ ′

0xdF(t|β ′
0x,a)

∫
eβ ′

1xdG1(x|β ′
0x)dG2(β

′
0x)dH(a)

)
dF(w|y,b)dG(y)dH(b) =∫ (

ln
∫

t≥w
ecβ ′

0xdF(t|β ′
0x,a)E

(
eβ ′

1X |β ′
0X = β

′
0x
)

dG2(β
′
0x)dH(a)

)
dF(w|y,b)dG(y)dH(b)≥∫ (

ln
∫

t≥w
ecβ ′

0xdF(t|β ′
0x,a)eE(β ′

1X |β ′
0X=β ′

0x)dG2(β
′
0x)dH(a)

)
dF(w|y,b)dG(y)dH(b). (6)

If for every vector β the conditional expectation E(β ′
1X |β ′

0X) is almost surely zero then the
right side of the inequality (6) equals∫ (

ln
∫

t≥w
ecβ ′

0xdF(t|x,a)dG(x)dH(a)
)

dF(w|y,b)dG(y)dH(b)

and we can conclude that the minimising value of β , if it exists, must be equal to cβ0.

The following theorem is an immediate consequence of the above lemma and the scaled
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Fisher consistency condition (3).

Theorem 1. If β0 is the true parameter value and E(X |β ′
0X) ∈ lin(β0) almost surely then

the partial likelihood estimator is scaled Fisher consistent under the Cox model with gen-
eralised frailty.

Proof. Notice that for X such that E(X |β ′
0X)∈ lin(β0) almost surely and for any β = cβ0+

β1, where cβ0 is the orthogonal projection of β on lin(β0), we have E(β ′
1X |β ′

0X) = 0 almost
surely.

There are important cases when the condition assumed in the above theorem holds. One
of them is when X is spherically symmetric, that is if for every orthogonal matrix Γ the
random vector ΓX is distributed as X .

Corollary 1. If X has a spherically symmetric distribution then the partial likelihood esti-
mator is scaled Fisher consistent under the Cox model with generalised frailty.

The following conclusion results directly from the preceding considerations.

Corollary 2. If β0 is the true parameter value, M a nonsingular matrix, X = MZ and
E(Z|γ ′0Z)∈ lin(γ0) almost surely for γ0 = β ′

0M then the partial likelihood estimator is scaled
Fisher consistent under the Cox model with generalised frailty.

It is also quite straightforward to show that if X = MZ, where M is a nonsingular matrix
and Z is spherically symmetric, then again we have the scaled Fisher consistency of the
partial likelihood estimator.

Corollary 3. If X =MZ and Z has a spherically symmetric distribution then the partial like-
lihood estimator is scaled Fisher consistent under the Cox model with generalised frailty.

Another special case covered by Theorem 1 is considered below.

Corollary 4. Let the random vector X =(X1, . . . ,Xk)
′ be exchangeable, i.e. (Xπ(1), . . . ,Xπ(p))

′

and X have the same distribution for any permutation π of the set {1,2, . . . ,n}. If β ′
0 =

(b,b, . . . ,b), b ̸= 0, then the partial likelihood estimator is scaled Fisher consistent under
the Cox model with generalised frailty.

Proof. The exchangeability of X implies that E(X1|β ′
0X) = · · ·= E(Xk|β ′

0X). On the other
hand E(X1 + · · ·+ Xk|β ′

0X) = X1 + · · ·+ Xk and finally E(X1|β ′
0X) = (X1 + · · ·+ Xk)/k.

Therefore E(X |β ′
0X) ∈ lin(β0) and the Fisher consistency holds.

5. Simulation studies

In this section we present the results of simulation studies conducted to investigate how
the violation of the symmetry assumption on the regressors distribution or the omission of
the covariates may affect properties of the partial likelihood estimation of the regression
parameters. The experiments also show exemplary up-to-scale estimation under the Cox
model with various choices of generalised frailty. All simulations were run with the R

programming language.
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Example 1. Estimation under non-symmetric covariates

The sample of size 500 was generated from model (2) with Λ(t,a) = ta and frailty
given as a mixture of two gamma distributions. The covariates are from a two-dimensional
uniform distribution mixed with a two-dimensional independent chi-square χ2(2) (see the
left panel of Figure 1). The curve shown in the right-hand panel of Figure 1 represents the
distance d(α) between the true beta β ′

0 = (cos(α),sin(α)) and the normalized averaged of
estimates for α ∈ [0,2π]. The values on x axis are angles between the horizontal axis and
true betas.

From the above description it follows that the density of the covariate vector X =

(X1,X2)
′ has the form

f (x1,x2) =
1
2
· I(−0.5,0.5)2(x1,x2)+

1
2

exp(−(x1 + x2)/2) · I(0,∞)2(x1,x2).

Obviously X is not elliptically symmetric, however, since f (x1,x2) = f (x2,x1), it is ex-
changeable. Thus, for β ′

0 = (
√

2/2,
√

2/2) and β ′
0 = (−

√
2/2,−

√
2/2) by Corollary 4 the

partial likelihood estimation is scaled Fisher consistent. Hence, we can see that function
d(α) attains minimum for α = π/4 and α = 5/4π .

Figure 1: Typical covariates and distance between true parameter and average estimates.
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Example 2. Up-to-scale estimation for various types of generalised frailty

This example provides Monte Carlo simulations for different choices of generalised
frailty Λ(t,a). Five forms of generalised frailty for A distributed as shifted binomial dis-
tribution binom(1,0.5)+ 1 are considered (see Table 1). Observe that all functions Λ(t,a)
have the following properties: for a ∈ {1,2} Λ(0,a) = 0 and Λ(t,a) > 0 for every posi-
tive t, limt→∞ Λ(t,a) = ∞ and they are continuously differentiable and strictly increasing
on t ∈ (0,∞). The conditional distribution of the survival time T given [X = x,A = a] was
generated using the formula Λ−1(− ln(U)exp(−β ′

0x),a), where U follows the uniform dis-
tribution on the interval [0,1]. The true parameter value was taken as β ′

0 = (1,0.5,0.2)
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and the regressors X = (X1,X2,X3)
′ were used: either with standard normal or exponential

distributions and Cor(Xi,X j) = 0.7 for i ̸= j. Estimations were repeated 5000 times for a
sample size of 500. For each combination of the covariates and the generalised frailty two
vectors are given as a result. The first one refers to scales - the means of ratios of estimates
and the true parameters. Under normally distributed regressors the scaled Fisher consis-
tency holds, so we expect the scales to be the same. The second vector in each cell consists
of standard deviations of estimates. Simulations indicate good asymptotic behaviour of the
estimators in the model with normal regressors as the differences in scales are very slight.
Other choices of elliptically symmetric regressors, not presented in this example, lead to
similar results. In the case of non-symmetric covariates the estimation brings worse results.

Table 1: Results of simulation experiment for different choices of generalised frailty. The
first vector in each cell refers to the means of ratios of components of estimates and the true
parameters. The second one refers to the standard deviations of the vector estimates of true
parameter values.

Generalised frailty Normal regressors Nonormal regressors

Λ(t,a) = a
√

t
(0.9361, 0.9398, 0.9324) (0.9260, 0.9357, 0.9434)
(0.0791, 0.0756, 0.0729) (0.0865, 0.0739, 0.0728)

Λ(t,a) = a
√

t + t
(0.6228, 0.6228, 0.6122) (0.2747, 0.3125, 0.3886)
(0.0770, 0.0700, 0.0676) (0.0864, 0.0784, 0.0761)

Λ(t,a) = t2 +at − t
(0.8855, 0.8817, 0.8839) (0.6628, 0.6889, 0.7401)
(0.0781, 0.0726, 0.0704) (0.0835, 0.0784, 0.0731)

Λ(t,a) = t3a/2−1
(0.7588, 0.7589, 0.7572) (0.4612, 0.5104, 0.5937)
(0.0775, 0.0733, 0.0708) (0.0924, 0.0844, 0.0792)

Λ(t,a) = t3a/2−1 + t2
(0.8560, 0.8520, 0.8498) (0.4799, 0.5271, 0.6110)
(0.0804, 0.0726, 0.0695) (0.0949, 0.0844, 0.0817)

Example 3. The effect of variable’s omission in the Cox model

The above considerations show a wide range of distributional possibilities for the ex-
planatory variables for which the estimation of regression parameters in the Cox model is
scale Fisher consistent under the extended model with generalised frailty. As a particular
case of Λ(t,a) assume that Λ(t,a) = aΛ(t). The frailty variable A has a special interpreta-
tion in survival analysis for the Cox model, where it is supposed to describe proportional
changes of cumulated hazard Λ(t) for individual units within the population. Since

P(T > t|x,a) = exp
(
−Λ(t)aexp(β ′

0x)
)
= exp

(
−Λ(t)exp(β ′

0x+ ln(a)
)

it can as well be interpreted as a missing (independent) covariate. In practical data analysis
it would be difficult to specify in any reasonable way the distributional form of the missing
covariate.
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A Monte Carlo experiment was conducted to investigate properties of the partial like-
lihood estimation when variables are omitted and data are generated from the true Cox
model. In order to demonstrate the effect of variable’s omission the following Cox model
was taken: β ′

0 = (−1,−1,0.5,1), Λ(t) = t2 and X = (X1,X2,X3,X4)
′ where: (X1,X2) has the

distribution described in Example 1, (X3,X4) has the two dimensional normal distribution
with correlation of 1/

√
2 and vectors (X1,X2) and (X3,X4) are independent.

The sample size of n = 500 was taken and the estimation was repeated 5000 times.
Simulation results, given by the means of ratios of estimates and parameters, and by standard
deviations of estimates, are presented in Table 2. The up-to-scale consistent estimation
of the corresponding regression coefficients is revealed for covariates vector (X1,X2) and
(X3,X4). For the estimation based on the entire set of regressors the estimation is consistent
with the scale of one. For other regressor vectors it can be observed that departure from the
elliptically symmetric distribution implies the lack of scaled consistency in estimation.

Table 2: Results of simulation experiment. The first and the second vector in each cell refers
to mean scales and standard deviations of estimates of true parameter values corresponding
to the subset of regressors.

Subsets of X Scales \Sd Subsets of X Scales\Sd

(X1,X2)
(0.4299, 0.4228)

(X1,X2,X3)
(0.6637, 0.6611, 1.9944)

(0.0774, 0.0816) (0.0856, 0.0844, 0.0328)

(X1,X3)
(0.7613, 1.9430)

(X1,X2,X4)
(0.9226, 0.9330, 1.1621)

(0.0895, 0.0330) (0.0824, 0.0840, 0.0257)

(X1,X4)
(1.0396, 1.1299)

(X1,X3,X4)
(1.1106, 0.9455, 0.9476)

(0.0841, 0.0247) (0.0795, 0.0336, 0.0303)

(X3,X4)
(0.8820, 0.8854)

(X1,X2,X3,X4)
(1.0060, 1.0001, 1.0007, 1.0020)

(0.0345, 0.0301) (0.0775, 0.0765, 0.0327, 0.0295)

Example 4. Mayo Clinic Primary Biliary Cirrhosis Data

The example is based on the data from the Mayo Clinic trial in PBC, available in the
package survival of R program. In this example we consider four explanatory variables:

- age
- edema (0 for no edema, 0.5 for moderate and 1 for severe edema)
- bili (serum bilirunbin mg/dl)
- protime (standardised blood clotting time)

Before fitting the Cox model we logarithmically transformed variables bili and protime. The
assumption of elliptical symmetry was checked by three tests implemented in the package
ellipticalsymmetry in R program. We chose test MPQ by Manzottii et al. (2002) (Test
1), test by Schott (2002) (Test 2) and test by Huffer and Park (2007) (Test 3). The results are
summarized in Table 3. Let β̂0 denote the estimate of the coefficients in the Cox model for
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Table 3: Fitting the Cox model for PBC data with dropped regressors.

Subsets of regressors

P-values of tests

Scalesfor elliptical symmetry

Test 1 Test 2 Test 3

age, edema <2.2e-16 <2.2e-16 <2.2e-16 (0.7585, 1.7932)

age, ln(bili) 0.1412 0.3712 0.0024 (1.0506, 1.1204)

age, ln(protime) 0.0078 0.0954 0.0008 (0.9026, 1.5432 )

edema, ln(bili) <2.2e-16 <2.2e-16 <2.2e-16 (1.1993, 0.9885)

edema, ln(protime) <2.2e-16 0.0118 <2.2e-16 (1.6157, 1.2628)

ln(bili), ln(protime) 0.6853 0.0600 0.6400 (1.0273, 1.1492)

age, edema, ln(bili) <2.2e-16 <2.2e-16 <2.2e-16 (1.0126, 1.1380, 1.0403)

age, edema, ln(protime) <2.2e-16 0.0002 <2.2e-16 (0.7483, 1.5422, 1.2809)

edema, ln(bili), ln(protime) <2.2e-16 0.0004 <2.2e-16 (1.0657, 0.9487, 0.9526)

age, ln(bili), ln(protime) 0.0015 0.0933 4.8e-05 (1.0335, 1.0550, 1.2253)

regressors: age, edema, ln(bili), ln(protime) and let β̂ denote the estimate of the coefficients
in the Cox model based on the subset of this regressors. For each subset of regressors
we computed scales as ratios of the coefficients for corresponding variables in β̂0 and β̂ .
All tests detect correctly the lack of elliptical symmetry when regressors include discrete
variable edema. The lack of elliptical symmetry of explanatory variables may imply the
scales not being the same after omitting regressors. For the regressors (age, ln(bili)) and
(ln(bili), ln(protime)) the differences in the scales are slight. They seem to be elliptical
symmetric (see p-values in Table 3).

6. Concluding discussion

An important property of the Cox model is that the baseline hazard is an unspecified
function and makes the Cox model of a semiparametric type. A key reason for the popular-
ity of the Cox model is that even though the baseline hazard is not specified, reasonably good
estimates of regression coefficients, hazard ratios of interest, and adjusted survival curves
can be obtained for a wide variety of data situations. Frailty models arise naturally from
the Cox model with unobserved covariates, which form the frailty parameter and handle
right-censoring and left-truncation, which is crucial in time-to-event analysis. Frailty gives
way to explain additional time variability that could not be grasped by the original Cox
model. The usual investigation of the partial likelihood estimator for the Cox regression
model involved an interest in the consistency of the partial likelihood estimator under the
Cox model with frailty, which presumes the time distribution dependent on a single baseline
hazard λ , multiplied by a positive random variable A called frailty. Fisher consistency of the
Cox estimator was studied under the independence of frailty A from the covariates X and
under analytically convenient frailty distributions. Nevertheless, attributing to population
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individuals the same baseline up to a proportionality factor (frailty) and making consistent
estimation dependent on purely analytic properties of frailty distribution seemed far from
satisfactory. In fact studies show that the Fisher consistency does not hold under arbitrary
frailty. What we could naturally hope for then, would be the so-called scaled Fisher con-
sistency - regression parameters could be estimated consistently up to an unknown scaling
factor. In the paper we demonstrate that this is attainable, the classical partial likelihood
procedure leads to the estimator satisfying this condition up to a scaling factor under the ex-
tended Cox model with generalised frailty and an elliptically symmetric distribution of the
covariates. The simulation studies indicate the lack of this property in the case of violating
the assumption. The Cox model with generalised frailty is of great importance in various
analyses of time-to-event data. However, it should be noted that the omission of an influ-
ential variable or misspecification of the frailty distribution may lead to severe estimation
errors. In this light, considering estimation consistent up to scale may result in meaningful
comparisons of impact of covariates on hazards.
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