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Statistics in Transition new series (SiT) is an international journal published 
jointly by the Polish Statistical Association (PTS) and Statistics Poland, on a quarterly 
basis (during 1993–2006 it was issued twice and since 2006 three times a year). Also, it 
has extended its scope of interest beyond its originally primary focus on statistical issues 
pertinent to transition from centrally planned to a market-oriented economy through 
embracing questions related to systemic transformations of and within the national 
statistical systems, world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved in 
data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy makers 
and the general public – with a platform for exchange of ideas and for sharing best 
practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement – as 
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for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by internationally 
recognized experts, who are guided in their decisions about the publication by criteria 
of originality and overall quality, including its content and form, and of potential 
interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
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It is assumed, that the submitted manuscript has not been published previously and 
that it is not under review elsewhere. It should include an abstract (of not more than 
1600 characters, including spaces). Inquiries concerning the submitted manuscript, its 
current status etc., should be directed to the Editor by email, address above, or 
w.okrasa@stat.gov.pl.

For other aspects of editorial policies and procedures see the SiT Guidelines on its
Web site: https://sit.stat.gov.pl/ForAuthors.  



 

 

 



STATISTICS IN TRANSITION new series, March 2020 V 

STATISTICS IN TRANSITION new series, September 2022 
Vol. 23, No. 23, pp. V−VI 

Policy Statement 

The broad objective of Statistics in Transition new series is to advance the statistical and 
associated methods used primarily by statistical agencies and other research 
institutions. To meet that objective, the journal encompasses a wide range of topics 
in statistical design and analysis, including survey methodology and survey sampling, 
census methodology, statistical uses of administrative data sources, estimation 
methods, economic and demographic studies, and novel methods of analysis of socio-
economic and population data. With its focus on innovative methods that address 
practical problems, the journal favours papers that report new methods accompanied 
by real-life applications. Authoritative review papers on important problems faced by 
statisticians in agencies and academia also fall within the journal’s scope. 
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From the Editor   

It is with great pleasure that we present our readers with the September issue 
consisting of 12 articles arranged, as usual, in three sections: Original research articles, 
Other articles, and Research communicates and letters. A wide spectrum of topics is 
discussed in these papers by authors from a large group of countries: USA, India, Iran, 
Algeria, Saudi Arabia, Sri Lanka, Nigeria, Thailand, and Poland.  

Research articles 

The issue starts with the paper by Jacek Białek, Tomasz Panek, and Jan 
Zwierzchowski entitled  Assessing the effect of new data sources on the Consumer Price 
Index: a deterministic approach to uncertainty and sensitivity. The authors 
discuss the use of alternative sources of data about prices (scanned and scraped 
data) in the analysis of price dynamics with selecting the appropriate formula of the 
price index at the elementary group (5-digit) level as the one of the greatest 
challenges of the official statistics. The empirical study was based on data for 
February and March 2021, while scanner and scraped data about selected categories of 
food products were obtained from one retail chain operating hundreds of points of 
sale in Poland and selling products online. It was found that the choice of a data 
source has the most significant impact on the final value of the index at the 
elementary group level, while the choice of the aggregation formula used to 
consolidate different data sources is of secondary importance. The results 
indicate that consumer price indices calculated for the elementary groups of 
interest are characterised by a relatively low robustness to changes of a data source 
about consumer prices and by a relatively high robustness to changes of index 
formulas used for calculating price indices at the level of subgroups and 
elementary groups. For all elementary groups of interest, the first assumption, i.e. the 
choice of a given data source, has the biggest impact on the final value of the price index. 
Which index formula is used for aggregating indices for subgroups into elementary 
group indices has much less influence on the final results. The effect of choosing 
a particular index for aggregating indices derived from different sources is negligible. 

Yeil Kwon in the article entitled A comparison of the method of moments 
estimator and maximum likelihood estimator for the success probability in the 
Fibonacci-type probability distribution shows that a Fibonacci-type 
probability distribution provides the probabilistic models for establishing stopping 
rules associated with the number of consecutive successes. It can be interpreted as a 
generalized version 
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of a geometric distribution. After revisiting the Fibonacci-type probability distribution 
to explore its definition, moments and properties, the authors proposed numerical 
methods to obtain two estimators of the success probability: the method of moments 
estimator (MME) and maximum likelihood estimator (MLE). The ways both of them 
performed were compared in terms of the mean squared error. A numerical study 
demonstrated that MLE tends to outperform MME for most of the parameter space 
with various sample sizes. A Fibonacci-type probability distribution can be employed 
to determine the probabilistic behaviour of a random variable N defined by the number 
of Bernoulli trials with a success probability p until there are k-consecutive successes. 
To compare MME with MLE, the authors used the computational methods to obtain 
MLE by approximating the maximum likelihood function using the pmf of N defined 
recursively. The result of the simulation discloses that, for both MLE and MME, the 
biases are considerably smaller than the variances under all of the values of p and the 
sample sizes, indicating that the variance explains the majority of MSE.  

Mriganka Mouli Choudhury, Rahul Bhattacharya, and Sudhansu S. Maiti 
discuss Estimation of P(X ≤ Y) for discrete distributions with non-identical support. 
The Uniformly Minimum Variance Unbiased (UMVU) and the Maximum Likelihood 
(ML) estimations of R = P(X ≤ Y) and the associated variance are considered for 
independent discrete random variables X and Y. Assuming a discrete uniform 
distribution for X and the distribution of Y as a member of the discrete one parameter 
exponential family of distributions, theoretical expressions of such quantities are 
derived. Similar expressions are obtained when X and Y interchange their roles and 
both variables are from the discrete uniform distribution. A simulation study is carried 
out to compare the estimators numerically. A real application based on demand-supply 
system data is provided. The UMVU and ML estimations of P(X ≤ Y) considering a 
discrete uniform distribution to represent stress and/or strength were discussed. 
However, an assumption of equal (but unknown) probability for stress and/or strength 
is less practical. Consequently, the authors intend further development with a general 
class of distributions to model stress and/or strength, allowing non-identical and 
parameter dependent supports. 

In the next paper, Interval shrinkage estimation of parameter of exponential 
distribution in presence of outliers under loss functions, Parviz Nasiri examines 
estimators based on an interval shrinkage with equal weights point shrinkage 
estimators for all individual target points θ¯ ∈ (θ0,θ1) for exponentially distributed 
observations in the presence of outliers drawn from a uniform distribution. The 
estimators obtained from both shrinkage and interval shrinkage were compared, 
showing that the estimators obtained via the interval shrinkage method perform better. 
The symmetric and asymmetric loss functions were also used to calculate the 
estimators. Finally, a numerical study and illustrative examples were provided to 
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describe the results. It is shown that the interval shrinkage estimator is better than the 
shrinkage estimator. Using different loss functions can also improve the performance 
of the estimator. The proposed method can be extended for Bayesian interval shrinkage 
estimation and other positive data distributions as well as for the presence of outliers 
from other distributions. 

Adam Szulc focuses on Polish inequality statistics reconsidered: are the poor 
really that poor? The author critically analyses the data problem typically present 
in studies of income inequality. According to most empirical studies based on 
household surveys and considering the European standards, the recent income 
inequality in Poland is moderate and decreased significantly after reaching its peaks 
during the first decade of the 21st century. These findings were challenged by Brzeziński 
et al. (2022), who placed Polish income inequality among the highest in Europe. Such 
a conclusion was possible when the household survey data and information on personal 
income tax are analysed jointly. In this study the above-mentioned findings are 
explored using 2014 and 2015 data employing additional corrections to the household 
survey incomes. Incomes of the poorest people are replaced by their predictions made 
on a large set of well-being correlates, using the hierarchical correlation reconstruction. 
Applying this method together with the corrections based on Brzeziński’s et al. results 
reduces the 2014 and 2015 revised Gini indices, still keeping them above the values 
obtained with the use of the survey data only. It seems that the hierarchical correlation 
reconstruction offers more accurate proxies to the actual low incomes, while matching 
tax data provides better proxies to the top incomes. The results of the present study only 
partly confirm findings by Brzeziński et al. (2022) on the serious underestimation of 
the Polish inequality indices. Corrections of the 2014 and 2015 survey income data 
applied to both tails of the distribution also results in inequality growth, however not 
so high and not for all types of inequality measures.  

In their paper New polynomial exponential distribution: properties and 
applications, Abdelfateh Beghriche, Halim Zeghdoudi, Vinton Raman, and Sarra 
Chouia discuss  the  general concept of the XLindley distribution. Forms of density and 
hazard rate functions are investigated in the manuscript. Moreover, precise 
formulations for several numerical properties of distributions are derived. Extreme 
order statistics are established using stochastic ordering, the moment method, the 
maximum likelihood estimation, entropies and the limiting distribution. The authors 
demonstrate the new family's adaptability by applying it to a variety of real-world 
datasets, and a suggested family of distributions with only one parameter. Moments, 
distribution function, characteristic function, failure rate, stochastic order, maximum 
likelihood approach, and method of moments were among the properties studied. The 
Lindley and Zeghdoudi distributions lack the flexibility needed to examine and model 
many forms of data related to lifetime data and survival analysis. The NPED 
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distribution, on the other hand, is adaptable, straightforward, and simple to use. 
The novel distribution was used to evaluate two real data sets and was compared to 
existing distributions (Lindley, exponential, Zeghdoudi, Exponential Exponential and 
Xgamma). The comparison's findings support the NPED distribution's quality 
adjustment. The authors anticipate that the new distribution family will entice many 
additional life data, reliability analysis, and actuarial science applications, and it can 
employ a more general distribution with two parameters in future experiments. 

Varathan Nagarajah’s paper An improved ridge type of estimator for logistic 
regression demonstrates how to overcome the effect of multicollinearity in logistic 
regression. The proposed estimator is called a modified almost unbiased ridge logistic 
estimator (MAURLE). It is obtained by combining the ridge estimator and the almost 
unbiased ridge estimator. In order to assess the superiority of the proposed estimator 
over the existing estimators, theoretical comparisons based on the mean square error 
and the scalar mean square error criterion are presented. A Monte Carlo simulation 
study is carried out to compare the performance of the proposed estimator with the 
existing ones. Finally, a real data example is provided to support the findings. 
The superiority conditions for the proposed estimator with the existing MLE, LRE, and 
AURLE estimators are derived with respect to the MSE and SMSE criterions.  Further, 
from the real data application and the Monte Carlo simulation study the authors notice 
that the proposed estimator performs well compared to MLE, LRE, and AURLE when 
the multicollinearity among the explanatory variables is high. 

Sergiusz Herman examines Impact of restrictions on the COVID-19 pandemic 
situation in Poland focusing on the question of how the lockdown introduced 
in Poland affected the spread of the pandemic in the country. The study used the 
synthetic control method to this end. The analysis was carried on the basis of data from 
the Local Data Bank and a government website on the state of the epidemic in Poland. 
Results show that lockdown is an efficient tool that curbs the spread of the COVID-19 
pandemic in Poland. Thanks to it, the number of new cases in the analysed region 
(in Poland) has diminished significantly (a drop of 9500 cases in three weeks was 
observed). Such a conclusion can be drawn from the performance of the placebo-in-
space and placebo-in-time analyses. The research included the construction of the 
synthetic region that well illustrated the tendency of the pandemic development (in the 
Warmińsko-Mazurskie region) before the lockdown. After that the virus spread 
trajectories started to differ considerably.  

In the next paper, Wachirapond Permpoonsinsup and Rapin Sunthornwat 
present Modified exponential time series model with prediction of total Covid-19 cases 
in Belgium, Czech Republic, Poland, and Switzerland. The outbreaks in Belgium, the 
Czech Republic, Poland and Switzerland entered the second wave and was 
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exponentially increasing between July and November, 2020. Consequently, the authors 
estimated the compound growth rate, to develop a modified exponential time-series 
model compared with the hyperbolic time-series model, and the optimal parameters 
for the models based on the exponential least-squares, three selected points, partial-
sums methods, and the hyperbolic least-squares for the daily COVID-19 cases 
in Belgium, the Czech Republic, Poland and Switzerland. The speed and spreading 
power of COVID-19 infections were obtained by using derivative and root-mean-
squared methods, respectively. The optimal forecasting model with the estimated 
parameters was selected based on having the lowest RMSPE and the highest 2R. 
The results show that the exponential least-squares method was the most suitable for 
the parameter estimation. The compound growth rate of COVID-19 infection was the 
highest in Switzerland, and the speed and spreading power of COVID-19 infection 
were the highest in Poland between July and November, 2020. In conclusion, the 
authors maintain that the exponential least-squares method was relatively the most 
appropriate method for parameter estimation for the modified exponential time-series 
model for the daily COVID-19 cases, in all four countries.  

Ahmad Aijaz, S. Qurat ul Ain’s, Ahmad Afaq, and Rajnee Tripathi’s article 
Poisson area-biased Ailamujia Distribution with applications in environmental and 
medical science. The authors used compounding to develop a new distribution. A new 
Poisson area-biased Ailamujia distribution has been formulated to analyse count data. 
It was created by combining two distributions: the Poisson and area-biased Ailamujia 
distributions, using the compounding technique, to analyse count data. Several 
distributional properties of the formulated distribution have been studied. The 
distribution's ageing characteristics were determined and expressed explicitly. A variety 
of diagrams were used to demonstrate the characteristics of the probability mass 
function (pmf) and the cumulative distribution function (cdf). The parameter of the 
developed model was estimated using the well-known maximum likelihood estimation 
approach. Finally, two data sets were employed to demonstrate the effectiveness of the 
investigated distribution. It was shown that the Poisson area-biased Ailamujia 
distribution provides an appropriate fit for the two count data sets. 

Other articles 

The 38th Multivariate Statistical Analysis 2019, Lodz. Conference Papers. In the 
paper Triads or tetrads? Comparison of two methods for measuring the similarity 
in preferences under incomplete block design, Artur Zaborski compares two 
incomplete methods for measuring the similarity of preferences, i.e. the triad method 
and the tetrad method. These methods can be used whenever similarities are measured 
on an ordinal scale. They have been compared in terms of their labour intensity and 
ability to map the known structure of objects, even when all pairs of objects 
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in subgroups are not equal. The article indicates the possibility of reducing the number 
of sets presented to respondents in such a way that each pair of objects appears just as 
often, but less than their potential maximum number. In the example for 9 objects it 
was shown that scaling based on 8 tetrads gave a good solution.  It was also 
demonstrated that the choice of the incomplete sets has no significant effect on the 
results of nonmetric multidimensional preference scaling, even when all pairs of objects 
cannot be presented equally frequently. This conclusion is particularly relevant for the 
creation of reduced sets when the number of objects does not allow to fulfil the 
condition of an equal number of pairs. The analysis indicated that the tetrad method 
can be used if each pair of objects appears in sets at least once, while for the method of 
triads each pair should appear at least twice. 

Research Communicates and Letters 

The section presents the paper by Michael C. Ugwu and Mbanefo S. Madukaife 
entitled Two-stage cluster sampling with unequal probability sampling in the first 
stage and ranked set sampling in the second stage. The authors introduce a new 
sampling design, namely a two-stage cluster sampling, where probability proportional 
to size with replacement (PPSWR)  is used in the first stage unit and ranked set 
sampling in the second in order to address the issue of marked variability in the sizes 
of population units concerned with first stage sampling. An unbiased estimator of the 
population mean and total has been obtained, as well as the variance of the mean 
estimator. The authors calculated the relative efficiency of the new sampling design to 
the two-stage cluster sampling with simple random sampling in the first stage and 
ranked set sampling in the second stage. The results demonstrated that the new 
sampling design is more efficient as it produces a better estimator for estimating the 
population mean than a similar design built with simple random sampling in the first 
stage and ranked set sampling in the second stage units under the condition of 
significant variation in the sizes of the first stage units. 

 
 

Włodzimierz Okrasa 
Editor  
 
© Włodzimierz Okrasa. Article available under the CC BY-SA 4.0 licence   
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Assessing the effect of new data sources on the Consumer Price 
Index: a deterministic approach to uncertainty and sensitivity 

Jacek Białek1, Tomasz Panek2, Jan Zwierzchowski3 

ABSTRACT 

One of the greatest challenges facing official statistics in the 21st century is the use of 
alternative sources of data about prices (scanned and scraped data) in the analysis of price 
dynamics, which also involves selecting the appropriate formula of the price index at the 
elementary group (5-digit) level. When consumer price indices of goods and services are 
constructed, a number of subjective decisions are made at different stages, e.g. regarding the 
choice of data sources and types of indices used for the purpose of estimation. All of these 
decisions can affect the bias of consumer price indices, i.e. the extent to which they 
contribute to the overall uncertainty about the resulting index values. By measuring how 
robust consumer price indices are, one can assess the impact that the decisions made at the 
different stages of index construction have on the index values. This assessment involves 
analysing uncertainty and sensitivity. The purpose of the study described in the article was 
to determine how much and in which direction the consumer price index changes when 
including scanner and scraped data in the analysis, in addition to the data on prices collected 
by enumerators. The impact of these new data sources was assessed by analysing uncertainty 
and sensitivity under the deterministic approach. To the best of the authors’ knowledge, it is 
a novel application of robustness analysis to measure inflation using new data sources. The 
empirical study was based on data for February and March 2021, while scanner and scraped 
data about selected categories of food products were obtained from one retail chain 
operating hundreds of points of sale in Poland and selling products online.  It was found that 
the choice of a data source has the most significant impact on the final value of the index at 
the elementary group level, while the choice of the aggregation formula used to consolidate 
different data sources is of secondary importance. 

Key words: price indices, scraped data, scanner data, robustness analysis, inflation.  
JEL: C43, E31 
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1. Introduction  

Traditionally, data used to measure inflation are provided by enumerators who 
collect information about prices and characteristics of selected products in randomly 
selected shops located in the so-called price survey regions (there are 207 price survey 
regions in Poland, where enumerators visit about 35,000 shops).  Pandemic-related 
difficulties affecting the traditional method of price data collection, such as the 
requirement of social distancing and shop closures, and the growing volume of online 
shopping have provided stronger motivation to intensify work on the use of alternative 
data sources, such as scanner data and scraped data. 

For the purpose of this article, scanner data are defined as detailed data about 
consumer products obtained by scanning bar codes at electronic points of sale (CPI 
Manual, 2004).  The list of barcodes most commonly used by retail chains includes 
GTIN (Global Trade Item Number) or its European version – EAN (European Article 
Number), PLU (Price Look-Up) and SKU (Stock Keeping Unit). Product codes, 
including the code assigned by a given chain store, together with the product label, are 
used for classifying products using 5-digit ECOICOP codes and below this level of 
aggregation (Chessa, 2015; 2016, Białek and Beręsewicz, 2021). One of the benefits of 
using scanner data is that they contain information about the level of consumption even 
at the lowest level of aggregation. 

Scraped data are collected automatically from websites by a special computer 
programme called a scraper. The programme collects “raw” data, which are then 
cleaned and formatted to enable further analysis. Scraped data can be collected with 
greater frequency than data from other sources (usually they are collected daily), which 
is useful for understanding consumer behaviour patterns and data variability. One 
should bear in mind, however, that scanner data represent actual prices, while scraped 
data represent ‘merely’ offered prices, without providing any information about the 
level of consumption. 

One of the biggest challenges facing official statistics in the 21st century is the use of 
alternative sources of data about prices (scanner and scraped data) in the analysis of 
consumer price dynamics, which also involves choosing the appropriate formula of the 
price index at the elementary group (5-digit) level (Chessa, 2015; 2016, de Haan et. al., 
2021). Decisions about whether or not to include a given data source in the 
measurement of inflation, as well as the choice of a price index formula, can have 
a measurable impact on the bias of consumer price indices (Saisana, Saltelli and 
Tarantola, 2005; Sharpe and Salzman, 2004; Nardo et al., 2005 and Nardo et al., 2011), 
i.e. they contribute to the overall uncertainty about the resulting index values.  
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When applied to consumer price indices, robustness analysis can help to assess the 
impact of decisions made at different stages of index construction on the value of the 
index; the process involves uncertainty analysis and sensitivity analysis. 

The underlying idea of uncertainty analysis is to construct a model linking input 
variables representing sources of uncertainty (assumptions made at different stages of 
constructing a consumer price index), determine distribution functions of input 
variables, and, based on this information, determine the distribution of the consumer 
price index or output variables used for measuring the impact of changes in the 
underlying assumptions of the index on its value. Uncertainty analysis itself consists 
in analysing parameters of the distribution of the consumer price index.  

The goal of sensitivity analysis is to assess what share of the variance of the 
consumer price index is due to each of the identified sources of uncertainty (each initial 
assumption). This is achieved by decomposing the variance into variances explained by 
particular input variables representing types of assumptions made at different stages of 
index construction. Sensitivity analysis is therefore closely connected with uncertainty 
analysis. By combining these two types of analysis, one can measure how robust 
consumer price indices are when one changes assumptions regarding their 
construction, in other words, one can analyse the impact of these assumptions on the 
value of the consumer price index, which in turn affects estimates of consumer price 
fluctuations. In practice, steps taken during uncertainty and sensitivity analysis of 
consumer price indices depend on what sources of uncertainty (stages of index 
construction) and what assumptions concerning these sources (variants of solutions 
adopted at these stages) are made during a particular analysis.  

The purpose of the study described in the article was to determine how much and 
in which direction the consumer price index changes as a result of including scanner 
and scraped data, in addition to price data collected by enumerators. The impact of 
these new data sources was assessed by analysing uncertainty and sensitivity under the 
so-called deterministic approach. To the best of the authors’ knowledge, it is a novel 
application of robustness analysis to measure inflation using new data sources. The 
empirical study was based on data for February and March 2021, while scanner and 
scraped data about selected categories of food products were obtained from one retail 
chain operating hundreds of points of sale in Poland and selling products online.  It was 
found that the choice of a data source has the biggest impact on the final value of the 
index at the elementary group level, while the choice of the aggregation formula used 
to consolidate different data sources is of secondary importance. 

The article has the following structure: section 2 provides a description of the study 
sample and the main stages during which data scanned and scraped by Statistics Poland 
are prepared for the analysis of consumer price dynamics in cooperation with one retail 
chain. Section 3 presents a description of the research method, in particular uncertainty 
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and sensitivity analysis, and includes a list of index formulas used in the study.  Section 
4 is devoted to the analysis of the results, while section 5 contains a summary of the 
study and conclusions. 

2.  Study sample 

For the last three years, a consortium consisting of Statistics Poland, the Institute 
of Computer Sciences of the Polish Academy of Sciences and Warsaw School of 
Economics has been running a project called InstatCeny, with the goal of exploiting 
alternative sources of data to calculate Consumer Price Index (CPI). This article 
presents preliminary results of a study based on data about food products that have 
been obtained for the project. It may be treated as some continuation of the previously 
started research on these group of products (Białek et al., 2021). Given the reference 
period of available data (Statistics Poland has been scraping price data about food 
products only since the start of 2021), price indices were calculated using three sources 
of data about prices observed in February and March 2021. Seven elementary groups of 
food products were selected: rice, raw and whole milk, fresh low fat milk, yoghurt, 
beverages and other milk products, sugar and coffee. Data collected by enumerators in 
207 price survey regions included information about each representative of the selected 
elementary groups, in each case, the actual price was recalculated to a fixed unit of 
measurement (e.g. price per litre for milk, price per kilogram for rice, etc.). In the case 
of scanner and scraped prices, the list of product representatives used to create 
subcategories of elementary groups were extended to include 3 new items: yoghurt 
flavoured with chocolate and fruit, powdered sugar, ground coffee. As these 
subcategories were sufficiently well represented and homogenous, they were included 
in the estimation of price changes in the corresponding ECOICOP elementary groups, 
despite certain discrepancies with respect to the list of representatives in the 
classification.  

2.1.  Acquisition of scanner data  

The manner in which scanner data are acquired differs depending on the retail 
chain that supplies them.  Statistics Poland uses secure (encrypted) transfers and, in the 
case of one retail chain – direct downloads by means of an application programming 
interface (API).  What types of variables are provided also depends on the supplier; as 
regards scanner data used in the study, in addition to codes enabling product 
classification, the transferred csv data frame contained information about product ID, 
unit of sale, transaction date, selling price, total, a flag relating to discounts, sales and 
promotions and the amount of VAT.  The seven elementary groups of products 
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provided by the retail chain and used in the study amounted to 32MB of scanner data 
per month. 

2.2.  Acquisition of scraped data  

Data for the InstatCeny project are scraped using Python scripts that rely on the 
Selenium package (Białek et al., 2021). Scrapers developed by Statistics Poland have 
been running since the start of 2021 and scraped data are saved and archived in the 
form of JSON files.  The range of variables included in scraped data is very similar to 
that found in files transferred directly by the retail chain.  It turned out that products 
shown on the retail chain’s website represent between 40 and 90% of products of the 
same category that can be found in the chain’s stores. For example, at the start of 2021, 
33 products were classified as rice in scanner data, compared to 27 in scraped data. 
In the case of coffee, the ratio was 275 to 152.  The reason why not all products found 
on shelves are included in the online offering is that websites probably only feature the 
most popular products.  The elementary groups of products provided by the retail chain 
and used in the study amounted to 4MB of scraped data per month. 

2.3.  Preparation of data from alternative sources for processing 

After scanner and scraped data had been cleaned (i.e. standardising names, 
removing incorrect data and unusual prices), all products were classified into 
appropriate elementary groups and the 6-digit codes. Products found in both 
alternative sources were classified into categories on the basis of product labels and 
previously created dictionaries of key words and phrases.  The process was performed 
using the data_selecting and data_matching functions from the PriceIndices R package 
(Białek, 2021). Text labels were compared using the Jaro-Winkler distance (Jaro, 1989; 
Winkler, 1990), with the threshold distance (above which two labels were regarded as 
different) set to 0.02.  Next, the sample of scanned products was filtered in order to 
remove products with extreme price fluctuations (3% of cases) as well as those with 
relatively low levels of sales (up to 25% of products, depending on the category). In the 
case of scraped data, only extreme price changes were filtered out, with cut-off values 
equal to 0.25 and 3 for the ratio of March to February prices, which had a negligible 
effect on the sample size (only two products from the yoghurt category were removed). 
It should be noted that the “monthly price” is determined differently for each data 
source.  In the case of scanner data, it is defined as the ratio of total sales of a product 
in value to its total sales in quantity, which is known as unit sales. In the case of data 
scraped each month (regardless of whether or not the product was sold), the monthly 
price is calculated as the average of all observations scraped in a given month. 

Figure A.1 in the appendix shows an illustrative comparison of monthly prices for 
March 2021 from the three data sources regarding the four most numerously 
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represented product categories (coffee beans, natural yoghurt, long-grain rice, wheat 
flour). In general, scraped prices are characterised by the highest level of variability, 
while prices collected by enumerators are the least variable. However, this pattern does 
not hold for all categories of products: e.g. prices of long-grain rice from scanner data 
show the biggest fluctuations. The relatively smallest number of price outliers were 
observed in scanner data, which is not surprising given that these data were subjected 
to three kinds of filters, as described above.  The biggest amount of noise was found 
in scraped data, despite the application of the price outlier filter at the level of GTIN 
code. As regards price outliers in data collected by enumerators, three such cases were 
recorded with respect to long-grain rice, which is a kind of exception. There is no doubt, 
however, that differences in average prices obtained from the three sources can be 
considerable, with scraped prices, on average, tending to be higher than those from the 
other two sources (again with the exception of long-grain rice). 

3.  Method description  

The analysis of consumer price indices involved three sources of uncertainty, 
representing three kinds of decisions made during index construction: what data source 
with consumer prices is used, what formula is used for aggregating indices of 6-digit 
subgroups into 5-digit elementary groups within each data source, what formula is used 
for aggregating indices of price changes within elementary groups based on different 
data sources into total indices for each of the elementary groups. The purpose of the 
analysis was to assess the robustness of consumer price indices calculated for 
7 elementary groups of products within the food division of the COICOP classification. 

Consumer price indices for the selected elementary groups were estimated using 
six different sources of information about consumer prices of products classified into 
these elementary groups in February and March 2021: 
 consumer prices surveyed by enumerators, 
 data from the IT system of the retail chain (scanner data), 
 online prices of the retail chain (scraped data), 
 consumer prices surveyed by enumerators combined with retailer’s online prices, 
 consumer prices surveyed by enumerators combined with retailer’s scanner data,  
 all three data sources combined. 

Consumer price indices for the selected elementary groups are calculated by 
aggregating price indices of 6-digit subgroups within each elementary groups. Data 
collected by enumerators and those from online price listings do not contain 
information about quantities of products purchased within 6-digit categories of each 
subgroup (or about the share of each subgroup in the total value of products sold within 
each elementary group). As a result, consumer price indices for 6-digit subgroups were 
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aggregated into elementary groups’ indices (5-digit level) using unweighted geometric 
mean, known as the Jevons index (CPI Manual, 2004): 

𝐼௃ ீ ൌ ට∏ 𝐼
,௚೔

௡
௜ୀଵ

೙ ,   G=1,2,…,7,                     (1) 

where: 

𝐼
,௚೔ , - price indices for the i-th subgroup of the subgroup G-th elementary group, 

𝐼௃ ீ
   - the Jevons index for G-th elementary group. 

In contrast, scanner data contain information not only about prices but also about 
amounts of products purchased within particular subgroups of each elementary group. 
These amounts were also used as weights in the process of aggregating subgroups of 
elementary groups for the other data sources. In this way, in addition to using the 
unweighted Jevons formula, price indices for subgroups could also be aggregated by 
employing weighted indices, namely the Laspeyres, Paasche, Fisher and Törnqvist 
indices (CPI Manual, 2004): 

𝐼௅ ீ ൌ ∑ 𝑤
,ீ௚೔
଴ 𝐼

,௚೔
௡
௜ୀଵ ,  G=1,2,…,7,                                              (2) 

𝐼௉ ீ ൌ
ଵ

∑ ௪ಸ,೒೔
భ  భ

಺ಸ,೒೔

೙
೔సభ

,  G=1,2,…,7,                                              (3) 

𝐼ி ீ ൌ ට 𝐼௅ ீ ∙ 𝐼௉ ீ ,   G=1,2,…,7,                     (4) 

𝐼் ீ ൌ ∏ ሺ𝐼 ,௚೔ሻ
ೢಸ,೒೔
బ శೢಸ,೒೔

భ

మ௡
௜ୀଵ ,  G=1,2,…,7,                     (5) 

where: 

𝐼௅ ீ  , 𝐼௉ ீ  , 𝐼ி ீ  , 𝐼் ீ  - price indices proposed by Laspeyres (1871), Paasche (1874), 
Fisher (1922) and Törnqvist (1936), respectively, for the G-th elementary group, 

𝑤ீ,௚೔
଴ ,𝑤ீ,௚೔

ଵ  – weight of the i-th subgroup of the G-th elementary group in the base 
period (February 2021) and in the reference period (March 2021). 

The weight for a given subgroup in the base period is calculated by dividing the 
total value of products in this subgroup sold in the base period by the total value of sold 
products in all subgroups of a given elementary group.  The same method is used to 
calculate weights for subgroups in the reference period (weight values are presented 
in Table A.1 in the Appendix). 

When price indices are calculated using more than one source of data, the price 
index for each elementary group is calculated by aggregating price indices for these 
elementary groups that were calculated separately on the basis of each data source. This 
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aggregation was performed using the Young index or the geometric Young index 
(Białek, 2017): 

𝐼௒ ீ ൌ ሺ𝐼ேሻ௪ಿ
ഓ
൅ ሺ𝐼ௐሻ௪ೈ

ഓ
൅ ሺ𝐼ௌሻ௪ೄ

ഓ ,  G=1,2,…,7,                    (6) 

𝐼௒ீ ீ ൌ ሺ𝐼ேሻ௪ಿ
ഓ
ሺ𝐼ௐሻ௪ೈ

ഓ
ሺ𝐼ௌሻ௪ೄ

ഓ ,   G=1,2,…,7,                    (7) 

where: 

𝑤ே
ఛ  , 𝑤ௐఛ  , 𝑤ௌఛ – index weight for the G-th elementary group, established on the basis of 

a period more distant than the base period (in our case, it was 2020), calculated using 
prices surveyed by enumerators, scraped prices and scanner data, respectively. 

𝐼௒ ீ  , 𝐼௒ீ ீ   - the Young index or the geometric Young index for the G-th elementary 
group. 

In the case of price indices calculated on the basis of more than one data source, 
shares of purchases within particular elementary group from a given source in total 
sales from all sources combined were used as weights. Shares of products purchased 
online were estimated on the basis of information obtained from the Household Budget 
Survey conducted by Statistics Poland.  Shares of purchases in chain stores were 
obtained from databases maintained by Passport GMID, Euromonitor International as 
well as domestic market surveys conducted by Statistics Poland (Table A.2 in the 
Appendix). 

Price indices for the analysed subgroups are shown in Table A.3 in the Appendix. 
In the analysis, the consumer price index for a given elementary group is a composite 
index, based on consumer price indices for its subgroups using the different data 
sources.  When price data come from more than one source, the composite index is 
calculated in two steps. The first step consists in calculating price indices for each 
elementary group using data from each source.  In the second step, price indices for 
a given elementary group calculated in the first step are aggregated into a single price 
index for this particular elementary group, which takes into account information from 
all data sources. 

From a formal perspective, the dependence of the consumer price index for a given 
elementary group on input variables representing the assumptions made during index 
construction can be expressed using the following model:  

               𝐼 ൌ 𝑓௥௦൫𝑰ீ,௚
௓ ,𝒘ீ,௚

ௌ ,𝒘ீ
௓൯,    G=1,2,…,7,                      (8) 

where: 

IG – value of the consumer price index for the G-th elementary group, 

𝑰ீ,௚
௓  – a vector of price indices for subgroups of the G-th elementary group calculated 

on the basis of different sources of price data (Z=N,W,S),  
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𝒘ீ,௚
ௌ  – a vector of weights of price indices for subgroups of the G-th elementary group 

calculated on the basis of scanner data (Laspeyres, Paasche, Fisher and Törnqvist 
indices), 

𝒘ீ
௓  - a vector of weights of price indices for subgroups of the G-th  elementary group 

calculated on the basis of different sources of price data (Z=N,W,S), 

frs – a function transforming consumer price indices for subgroups calculated on the 
basis of sources of price data and by applying weights assigned to price indices for 
subgroups and elementary groups obtained from the s-th source of price information 
(s-th combination of sources of price data when data come from different sources) and 
the r-th index formula (the r-th combination of index formulas when data come from 
more than one source). 

The purpose of uncertainty and sensitivity analysis was to examine changes in the 
values of the composite index of consumer prices identified at the level of elementary 
groups, which result from changes of assumptions made during the estimation of the 
index. 

3.1.  The main idea of the analysis of uncertainty 

Uncertainty analysis aims at quantifying the variability of the output that is due to 
the variability of the input. One can distinguish two main groups of methods for 
analysing uncertainty, namely probabilistic and deterministic methods. Probabilistic 
methods involve simulations based on different assumptions regarding the 
construction of a composite index (in our study, the consumer price index for a given 
elementary group), which are treated as inputs of uncertainty. The simulation model 
should reflect the probabilistic nature of the phenomenon of interest (Saisana, Saltelli 
and Tarantola, 2005; OECD, 2008, Panek 2016). 

The most commonly used probabilistic method of uncertainty analysis is the Monte 
Carlo method (Saisana, Saltelli and Tarantola, 2005; OECD, 2008; Panek, 2016). The 
Monte Carlo approach involves a multivariate assessment of the proposed model with 
quasi-randomly selected parameters (input variables describing assumptions made 
during the construction of the composite index).  The procedure consists of a few steps. 
In the first step, we determine the probability distribution function of each input 
variable (each assumption) Xk, k=1,2,…,z.  In our study, the first input variable (X1) 
represents the choice of a source of data about consumer prices, the second input 
variable (X2) represents index formulas used for aggregating subgroup indices  within 
each data source into elementary group indices, and the third input variable (X3) refers 
to index formulas used for aggregating elementary group indices calculated on the basis 
of different data sources into composite indices for each elementary group. All these 
assumptions are random variables with discrete distributions. We then randomly 
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generate N combinations of independent input variables Xl, l=1,2,…,N. The set 𝑋௟ ൌ
𝑋ଵ
௟ ,𝑋ଶ

௟ , . . . ,𝑋௞
௟  of combinations of input variables constitutes a sample. Such a sample 

can be generated using different sampling methods, such as simple random sampling, 
stratified sampling, or quasi-random sampling (Saltelli, Chan and Scott, 2000). For each 
sample (combination of assumptions), the model is assessed by calculating values of 
input variables (in our study, values of the consumer price index).  The sequence Yl, can 
be used to estimate empirical probability distribution functions  of particular input 
variables and their In deterministic methods we do not use the simulation model. 
Instead of the simulation model, the value of a composite index (in our study, the 
consumer price index for a given elementary group) for all possible N combinations of 
independent assumptions Xl. for a given elementary group, is calculated (see Table A.4 
in the Appendix). Values of this index determine its distribution, which is used to assess 
how robust the consumer price index for a given elementary group is to changes of its 
underlying assumptions regarding the choice of data sources and index formulas used 
in the process of aggregation. 

3.2.  The main idea of the analysis of sensitivity 

The purpose of the analysis of sensitivity is to determine how particular 
assumptions (input variables) underlying a given price index values. 

When a few sources of uncertainty are simultaneously taken into account when 
modelling a composite index, a nonlinear model can be used. In the analysis of 
sensitivity, good results have been achieved by applying methods based on the analysis 
of variance (Chan et al., 2000; Saltelli et al., 2008; Panek, 2016). As in the case of 
uncertainty analysis, depending on data characteristics, sensitivity analysis can be 
performed by applying probabilistic or deterministic methods. In the probabilistic 
approach, sensitivity indices are usually estimated by means of Sobol’s method (1993), 
modified by A. Saltelli (2002). Sobol’s method, as already mentioned, uses quasi-
random sampling to determine distributions of input variables. Sensitivity of 
a composite index (the consumer price index for a given elementary group) to different 
parameters (input variables, i.e. assumptions made during its construction) is assessed 
on the basis of sensitivity indices, which are calculated after decomposing the total 
output variance 𝐷ଶሺ𝑌ሻ of the output variable Y (in our study, the consumer price 
index): 

               𝐷ଶሺ𝑌ሻ ൌ ∑ 𝑉௞ ൅ ∑ ∑ 𝑉௞,௞ᇱ൅. . .൅𝑉ଵ...௭
௭
௞ᇱୀଵ
௞ழ௞ᇱ

௭
௞ୀଵ

௭
௞ୀଵ ,                     (9) 

where: 

                        𝑉௞ ൌ 𝐷௑ೖ
ଶ ൣ𝐸௑షೖሺ𝑌|𝑋௞ሻ൧,                                     (10) 

    𝑉௞௞ᇱ ൌ 𝐷௑ೖ௑ೖᇲ
ଶ ൣ𝐸௑షೖೖᇲሺ𝑌|𝑋௞ ,𝑋௞ᇱሻ൧ െ 𝐷௑ೖ

ଶ ൣ𝐸௑షೖሺ𝑌|𝑋௞ሻ൧ െ 𝐷௑ೖᇲ
ଶ ൣ𝐸௑షೖᇲሺ𝑌|𝑋௞ᇱሻ൧      (11) 
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The first term of equation (11) provides assessment of the direct impact of the input 
variable Xk, (in our example the input variable represents the choice of a particular 
method at a given stage of constructing a composite index) on the total output variance 
of the Y output variable. The second term of equation (11) represents the impact of the 
interaction between the k-th and k’-th input variable on the total variance of the Y 
output variable (the indirect impact of variable Xk on the total output variance of the Y 
output variable).  

The direct impact of input variables on the values of a composite index (assuming 
there are no interactions between input variables) is measured by first-order sensitivity 
indices:  

                        𝑆௞ ൌ
௏ೖ
௏
ൌ

஽೉ೖ
మ ቂா೉షೖሺ௒|௑ೖሻቃ

஽మሺ௒ሻ
,  k=1,2,…,z.           (12) 

The model without interactions between input variables is known as an additive 
model.  In this case, the sum of all first-order sensitivity indices is equal to 1 
ሺ∑ 𝑆௞ ൌ 1௭

௞ୀଵ ሻ. 
In the case of a non-additive model, one needs to estimate higher-order sensitivity 

indices, which measure the interaction effects among the set of input variables. 
However, in practice, they are rarely calculated, since given a model with k input 
variables, the number of sensitivity indices that would have to be estimated equals 2k-1. 
For this reason, the impact of interactions between input variables on the variance of 
the output variable is calculated indirectly.  In the first step, we calculate total sensitivity 
indices which measure the total impact of the input variable Xk on the on the total 
output variance of the  Y output variable, i.e. the direct impact as well as that resulting 
from interactions between all possible combinations of other input variables: 

         𝑆௞் ൌ
஽మሺ௒ሻି஽೉షೖ

మ ቂா೉ೖሺ௒|௑షೖሻቃቂா೉ೖሺ௒|௑షೖሻቃ

஽మሺ௒ሻ
ൌ

ா೉షೖ൬஽೉ೖ
మ ሺ௒|௑షೖሻ൰

஽మሺ௒ሻ
.                    (13) 

The analysis of sensitivity takes into account three types of assumptions, which 
enable us to calculate three total sensitivity indices: 

          𝑆ଵ் ൌ
஽మሺ௒ሻି஽೉షೖ

మ ቂா೉ೖሺ௒|௑షೖሻቃቂா೉ೖሺ௒|௑షೖሻቃ

஽మሺ௒ሻ
ൌ  𝑆ଵ   ൅  𝑆ଵଶ   ൅  𝑆ଵଷ   ൅  𝑆ଵଶଷ   ,     (14) 

          𝑆ଶ் ൌ  𝑆ଶ   ൅  𝑆ଶଷ   ൅  𝑆ଶଷ   ൅  𝑆ଵଶଷ   ,                                                                      (15) 

        𝑆ଷ் ൌ  𝑆ଷ   ൅  𝑆ଵଷ   ൅  𝑆ଶଷ   ൅  𝑆ଵଶଷ   ,                                                                       (16) 

Ultimately, the impact of interactions between input variables (their indirect 
impact) on the variance of the output variable is calculated as a difference between their 
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indirect and indirect impacts (𝑆௞் െ  𝑆௞ሻ. Considerable differences between 𝑆௞் and Sk 
indicate the significant role of interactions between the k-th input variable in shaping 
the value of the Y output variable, which in turn indicates a high degree of correlation 
between input variables. The analysis of interactions between input variables helps to 
understand the model structure.  Variance-based methods of sensitivity analysis, both 
for independent and dependent input variables were described by Saltelli et al. (2008).    

Under the deterministic approach we do not use quasi-random sampling to 
determine distributions of input variables. Instead of applying quasi-random sampling, 
sensitivity indices are calculated using values of price indices for particular elementary 
groups, estimated for each combination of sources of price data and index formulas. 

4.  Results 

4.1.  Uncertainty analysis 

We opted for the deterministic approach because the number of assumptions used 
in the study was relatively small and it was possible to analyse all possible combinations. 

Values of price indices for particular elementary groups, which were calculated for 
each combination of each combination of sources of price data and index formulas are 
presented in Table A.4 in the Appendix. For each elementary group, Figure 1 shows:  

 the value of the index estimated by means of the method currently used by 
Statistics Poland (price data are surveyed by enumerators, consumer price 
indices for subgroups are aggregated using the Jevons index), 

 the value of the index estimated on the basis of combined data sources and 
preferred aggregation formulas (consumer price indices for subgroups were 
aggregated into the price index for their respective elementary groups using 
the Törnqvist index, consumer price indices for a given elementary group, 
calculated on the basis of different data sources were aggregated into a single 
index using the geometric Young index), 

 the minimum and maximum values of each index. 

It should be noted that, owing to the limited availability of data, the robustness 
analysis of consumer price indices includes changes that were observed over one month 
(between February and March 2021). However, in view of the short period covered by 
the analysis, obtained results cannot constitute a basis for drawing conclusion of 
a general nature.  For that purpose it is necessary  to base the analysis on a longer period.  

Given high levels of inflation in Poland both in 2000 and in 2021, differences in 
annual estimates of inflation based on price indices calculated from different sources of 
data are likely to be much higher than those calculated on the basis of monthly data 
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(assuming that the trend of changes observed between February and March 2021 was 
to continue throughout the year, annual price changes would be 12 times bigger).  

The biggest range of consumer price indices (difference between the maximum and 
minimum estimates of price indices), resulting from various combinations of different 
data sources and different formulas was obtained for the sugar elementary group – 5.1 
percentage points.  

 

Figure 1. Results of uncertainty analysis for consumer price indices 

Source: authors' work based on data in Table A.4. 

The smallest range of consumer price indices can be observed for the elementary 
group  of fresh low fat milk – 0.9 percentage point. 

4.2.  Sensitivity analysis 

In the study described above, the analysis of sensitivity was conducted using the 
deterministic approach in which sensitivity indices were calculated on the basis of 
values of consumer price indices for particular elementary groups, estimated for each 
combination of data sources and index formulas used.  The analysis involved seven 
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variants of data sources, five index formulas for aggregating subgroups into indices for 
elementary groups and two formulas for aggregating indices calculated from different 
data sources. This resulted in a total of 70 combinations of assumptions.   

In the deterministic model, total model variance V is estimated as variance from all 
calculated index values for all combinations of assumptions. In order to determine the 
variance component directly associated with a given assumption Vk (formula 10), it is 
necessary to calculate the mean index value for each possible value of this assumption. 
The number of mean values depends on the number of assumption variants. 
The variance of these means constitutes the estimator of Vk. 

In order to calculate 𝐸௑షೖ ቀ𝐷௑ೖ
ଶ ሺ𝑌|𝑋ି௞ሻቁ (formula 13) for the k-th assumption, one 

needs to consider all possible combinations of the remaining assumptions (denoted as 
k).  For each such combination, one calculates the variance of values obtained for the 
final index.  The construction of indices obtained from a given combination will differ 
only with respect to assumption k.  The mean value calculated from all these variances 
constitutes the estimator of 𝐸௑షೖ ቀ𝐷௑ೖ

ଶ ሺ𝑌|𝑋ି௞ሻቁ. 
Results of these calculations are presented in Table 1. The choice of a particular 

data source accounted directly for as much as 85% or more of total variability for all 
data sources, except for the yoghurt elementary group. The impact of the index formula 
used for aggregating indices for subgroups into elementary group indices accounted for 
only 0.09% of variability for fresh whole milk, 3% for beverages and other milk 
products, 4% for fresh low fat milk, 5.4% for coffee, 6.9% for rice, 9.3% for sugar and 
16.5% for yoghurt. For all elementary groups, the impact of the index formula used for 
aggregating indices derived from various data sources into one composite index was 
negligible – less than 0.0001% of total variance. 

For all elementary groups and all assumptions considered in the study, total 
impacts of interactions (13) are higher than their direct impacts (10). The bigger the 
differences between these two values, the more interactions between the assumptions 
contribute to the total variability of the final indices. The yoghurt elementary group is 
particularly noteworthy in this respect since the total impacts for the first two 
assumptions exceed 90%, while their direct impacts are equal to 21.9% and 16.5%, 
respectively, which implies that in the case of this elementary group these two 
assumptions strongly interact with each other. In other words, when one of them is 
replaced, values of the final index are not greatly affected. However, certain 
combinations of these assumptions can result in relatively disparate values of the index.  
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Table 1. Sensitivity indices of consumer price indices  

Product  
elementary 

groups 

Values of sensitivity indices in % 
price data  

source 
index formulas – 

subgroups 
index formulas –   

elementary groups 

S1 𝑆ଵ
் 𝑆ଵ

்- S1 S2 𝑆ଶ
் 𝑆ଶ

்- S2 S3 𝑆ଷ
் 𝑆ଷ

்- S3 

Rice 88.22 107.09 18.87 6.88 14.51 7.64 0.00004 0.00035 0.00031 

Raw and 
whole milk 99.82 114.89 15.07 0.09 0.22 0.13 0.00001 0.00008 0.00007 

Fresh low 
fat milk 93.44 110.34 16.89 4.06 8.08 4.02 0.00000 0.00000 0.00000 

Yoghurt 21.89 96.01 74.12 16.52 96.24 79.73 0.00000 0.00007 0.00007 

Beverages 
and other 
milk 
products 96.69 111.51 14.82 3.04 4.08 1.04 0.00006 0.00036 0.00031 

Sugar 85.45 104.28 18.83 9.32 17.93 8.61 0.00000 0.00001 0.00000 

Coffee 84.42 108.75 24.33 5.44 19.20 13.77 0.00001 0.00006 0.00005 

Source: authors' calculations based on data obtained from Statistics Poland and from a retail chain.  

5.  Conclusions 

In the case of four elementary groups (fresh low fat milk, yoghurt, sugar and coffee) 
inflation indicators obtained by applying the method currently used by Statistics Poland 
are higher than measures produced by applying the preferred method and lower in the 
case of the remaining three elementary groups (rice, fresh and whole milk and 
beverages and other milk products). In comparison with the preferred method, the 
official method underestimates the rate of inflation to the most (1 p.p.) in the 
elementary group of beverages and other milk products.  The maximum overestimation 
of the rate of inflation (0.6 p.p.) can be observed in the coffee elementary group. 

The results indicate that consumer price indices calculated for the elementary 
groups of interest are characterised by a relatively low robustness to changes of a data 
source about consumer prices and by a relatively high robustness to changes of index 
formulas used for calculating price indices at the level of subgroups and elementary 
groups.  

For all elementary groups of interest, the first assumption, i.e. the choice of a given 
data source, has the biggest impact on the final value of the price index. Which index 
formula is used for aggregating indices for subgroups into elementary group indices 



16                                                                                   J. Białek et al.: Assessing the effect of new data sources… 

 

 

has much less influence on the final results. The effect of choosing a particular index 
for aggregating indices derived from different sources is negligible. 

The authors are fully aware that the results are only a preliminary assessment of the 
impact of new data sources on the measurement of changes in consumer prices. These 
conclusions cannot be generalised because, for one thing, they are based on data from 
only two months and, secondly, they only refer to selected elementary groups of food 
products.  Nonetheless, the study is an important starting point for further, more 
comprehensive studies into the robustness of price indices in the measurement of 
inflation. 

The relatively low stability of price indices as a consequence of adopting different 
assumptions underlying their construction means that one needs to be very cautious 
when attempting to include new data sources in the measurement process.  The danger 
associated with such attempts is that changes manifested in price indices, rather than 
reflect actual price changes, may well be merely the result of including new data sources.  
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Appendix 

 

 

 

 
Figure A.1.  Box plots for prices of selected categories of food products (based on 3 data sources for 

 March 2021). 
Source: authors' calculations based on data obtained from Statistics Poland and from a retail chain.  
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Table A.1. Weights of subgroups (within their respective elementary groups)  

Elementary groups and subgroups 
Weights 

February 2021 March 2021 

RICE   
long grain rice 0.654 0.678 
white rice 0.346 0.322 

RAW AND  WHOLE MILK     

UHT whole milk 0.474 0.499 
pasteurised whole milk 0.526 0.501 

FRESH LOW FAT MILK     

UHT low fat milk 0.420 0.421 
goat milk  0.034 0.036 
pasteurised low fat milk 0.546 0.544 

YOGHURT     

Actimel 0.100 0.097 
fruit flavoured yoghurt 0.317 0.307 
chocolate and nuts flavoured yoghurt 0.006 0.006 
drinkable yogurt 0.282 0.294 
natural yoghurt 0.294 0.297 

BEVERAGES AND OTHER MILK 
PRODUCTS 

    

kefir 0.211 0.224 
buttermilk 0.096 0.101 
monte 0.229 0.201 
homogenised cheese 0.464 0.473 

SUGAR     

cane sugar 0.136 0.126 
white sugar 0.790 0.778 
powdered sugar 0.075 0.096 

COFFEE     

instant coffee 0.083 0.073 
coffee beans 0.546 0.512 
ground coffee 0.371 0.415 

Source: authors' calculations based on data obtained from a retail chain.  
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Table A.2. Elementary group weights depending on the place / mode of purchase  

 Elementary groups 

Weights 
price survey data 
(shops excluding 

chain stores) 

scanner data 
(chain stores) 

web scraped data  

Rice 34.65 64.36 0.99 
Fresh whole milk 34.86 64.73 0.41 
Fresh low fat milk 34.85 64.72 0.43 
Yoghurt 34.85 64.72 0.43 
Beverages and other milk 
products 34.84 64.71 0.45 
Sugar 39.82 59.72 0.46 
Coffee 41.28 57.00 1.72 

Source: authors' calculations based on data obtained from  databases maintained by Passport GMID, 
Euromonitor International and domestic market surveys conducted by Statistics Poland. 
 

 

 

Table A.3.  Price indices of consumer products by price data source and index formula,  
 February 2021-March 2021 

 Indices (February 2021=100) 
Data source and 
combinations of 
index formulas  

rice 
fresh 
whole 
milk 

fresh  
low fat  

milk 
yoghurt 

beverages 
and other 

milk 
products 

sugar coffee 

All data sources               
Jevons x Young 101.023 100.425 100.692 99.966 102.809 99.323 99.473 
Jevons x Geom. 
Young 101.017 100.424 100.692 99.964 102.802 99.323 99.472 

Laspeyres x Young 100.498 100.484 100.882 100.430 102.391 98.511 99.048 
Laspeyres x Geom. 
Young 100.495 100.483 100.882 100.430 102.383 98.511 99.046 

Paasche x Young 100.372 100.418 100.880 100.381 102.121 98.510 99.039 
Paasche x Geom. 
Young 

100.370 100.416 100.880 100.381 102.116 98.509 99.038 

Fisher x Young 100.435 100.451 100.881 100.406 102.256 98.511 99.043 
Fisher x Geom. 
Young 100.433 100.449 100.881 100.405 102.250 98.510 99.042 

Tornqvist x Young 100.434 100.451 100.881 100.405 102.252 98.510 99.043 
Tornqvist x Geom. 
Young 100.432 100.449 100.881 100.405 102.246 98.510 99.042 
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Table A.3.  Price indices of consumer products by price data source and index formula,  
 February 2021-March 2021  (cont.) 

 Indices (February 2021=100) 
Data source and 
combinations of 
index formulas  

rice 
fresh 
whole 
milk 

fresh  
low fat  

milk 
yoghurt 

beverages 
and other 

milk 
products 

sugar coffee 

Price survey data 
and scanner data  

              

Jevons x Young 101.034 100.421 100.695 99.966 102.821 99.333 99.501 
Jevons x Geom. 
Young 101.028 100.419 100.695 99.965 102.814 99.333 99.501 

Laspeyres x Young 100.504 100.480 100.885 100.432 102.403 98.530 99.061 
Laspeyres x Geom. 
Young 100.502 100.478 100.885 100.432 102.396 98.530 99.060 

Paasche x Young 100.378 100.413 100.883 100.383 102.132 98.528 99.052 
Paasche x Geom. 
Young 100.376 100.412 100.883 100.383 102.127 98.528 99.051 

Fisher x Young 100.441 100.446 100.884 100.407 102.267 98.529 99.056 
Fisher x Geom. 
Young 100.439 100.445 100.884 100.407 102.261 98.529 99.055 

Tornqvist x Young 100.441 100.446 100.884 100.407 102.264 98.529 99.056 
Tornqvist x Geom. 
Young 100.438 100.445 100.884 100.407 102.258 98.529 99.055 

Price survey data 
and web scraped 
data 

              

Jevons x Young 99.550 99.735 100.936 100.681 101.190 99.064 99.588 
Jevons x geom. 
Young 99.550 99.735 100.936 100.681 101.190 99.064 99.588 

Laspeyres x Young 99.530 99.718 100.948 100.200 100.754 98.715 99.528 
Laspeyres x geom. 
Young 99.530 99.718 100.948 100.200 100.754 98.714 99.527 

Paasche x Young 99.527 99.734 100.948 100.171 100.750 98.706 99.528 
Paasche x geom. 
Young 99.527 99.734 100.948 100.171 100.750 98.705 99.528 

Fisher x Young 99.529 99.726 100.948 100.185 100.752 98.711 99.528 
Fisher x geom. 
Young 99.529 99.726 100.948 100.185 100.752 98.709 99.527 

Tornqvist x Young 99.529 99.726 100.948 100.185 100.752 98.711 99.528 
Tornqvist x geom. 
Young 99.529 99.726 100.948 100.185 100.752 98.709 99.527 
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Table A.3.  Price indices of consumer products by price data source and index formula,  
 February 2021-March 2021  (cont.) 

 Indices (February 2021=100) 
Data source and 
combinations of 
index formulas  

rice 
fresh 
whole 
milk 

fresh  
low fat  

milk 
yoghurt 

beverages 
and other 

milk 
products 

sugar coffee 

Scanner and web 
scraped data  

              

Jevons x Young 101.809 100.806 100.556 99.577 103.667 99.482 99.341 
Jevons x geom. 
Young 101.808 100.806 100.556 99.577 103.666 99.482 99.340 

Laspeyres x Young 101.015 100.906 100.841 100.552 103.258 98.345 98.674 
Laspeyres x geom. 
Young 101.015 100.906 100.841 100.552 103.258 98.344 98.674 

Paasche x Young 100.825 100.795 100.838 100.492 102.847 98.347 98.661 
Paasche x geom. 
Young 100.825 100.795 100.838 100.492 102.847 98.346 98.661 

Fisher x Young 100.920 100.850 100.839 100.522 103.052 98.346 98.667 
Fisher x geom. 
Young 100.920 100.850 100.839 100.522 103.052 98.345 98.667 

Tornqvist x Young 100.919 100.850 100.839 100.522 103.048 98.346 98.667 
Tornqvist x geom. 
Young 100.919 100.850 100.839 100.522 103.047 98.345 98.667 

Price survey data               
Jevons x Young 99.540 99.714 100.947 100.692 101.204 99.084 99.660 
Jevons x geom. 
Young 99.540 99.714 100.947 100.692 101.204 99.084 99.660 

Laspeyres x Young 99.522 99.697 100.959 100.202 100.768 98.763 99.579 
Laspeyres x geom. 
Young 

99.522 99.697 100.959 100.202 100.768 98.763 99.579 

Paasche x Young 99.519 99.713 100.958 100.173 100.763 98.756 99.577 
Paasche x geom. 
Young 99.519 99.713 100.958 100.173 100.763 98.756 99.577 

Fisher x Young 99.520 99.705 100.958 100.188 100.765 98.760 99.578 
Fisher x geom. 
Young 99.520 99.705 100.958 100.188 100.765 98.760 99.578 

Tornqvist x Young 99.520 99.705 100.958 100.188 100.765 98.760 99.578 
Tornqvist x geom. 
Young 99.520 99.705 100.958 100.188 100.765 98.760 99.578 
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Table A.3.  Price indices of consumer products by price data source and index formula,  
 February 2021-March 2021  (cont.) 

 Indices (February 2021=100) 
Data source and 
combinations of 
index formulas  

rice 
fresh 
whole 
milk 

fresh  
low fat  

milk 
yoghurt 

beverages 
and other 

milk 
products 

sugar coffee 

Scanner data               
Jevons x Young 101.838 100.801 100.559 99.576 103.692 99.499 99.385 
Jevons x geom. 
Young 101.838 100.801 100.559 99.576 103.692 99.499 99.385 

Laspeyres x Young 101.033 100.901 100.846 100.556 103.283 98.374 98.685 
Laspeyres x geom. 
Young 101.033 100.901 100.846 100.556 103.283 98.374 98.685 

Paasche x Young 100.840 100.790 100.842 100.496 102.869 98.377 98.671 
Paasche x geom. 
Young 100.840 100.790 100.842 100.496 102.869 98.377 98.671 

Fisher x Young 100.937 100.846 100.844 100.526 103.076 98.376 98.678 
Fisher x geom. 
Young 100.937 100.846 100.844 100.526 103.076 98.376 98.678 

Tornqvist x Young 100.936 100.846 100.844 100.525 103.071 98.376 98.678 
Tornqvist x geom. 
Young 

100.936 100.846 100.844 100.525 103.071 98.376 98.678 

Web scraped data               
Jevons x Young 99.885 101.522 100.060 99.757 100.104 97.319 97.865 
Jevons x geom. 
Young 99.885 101.522 100.060 99.757 100.104 97.319 97.865 

Laspeyres x Young 99.831 101.562 100.098 99.987 99.715 94.493 98.292 
Laspeyres x geom. 
Young 99.831 101.562 100.098 99.987 99.715 94.493 98.292 

Paasche x Young 99.823 101.521 100.098 99.978 99.709 94.434 98.339 
Paasche x geom. 
Young 

99.823 101.521 100.098 99.978 99.709 94.434 98.339 

Fisher x Young 99.827 101.542 100.098 99.983 99.712 94.464 98.316 
Fisher x geom. 
Young 99.827 101.542 100.098 99.983 99.712 94.464 98.316 

Tornqvist x Young 99.827 101.542 100.098 99.983 99.712 94.462 98.316 
Tornqvist x geom. 
Young 99.827 101.542 100.098 99.983 99.712 94.462 98.316 

Source: authors' calculations based on data obtained from Statistics Poland and from a retail chain.  
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Table A.4.  Price indices of consumer products for subgroups, February 2021 – March 2021 

 
Elementary groups and subgroups  

Indices (February 2021=100) 

price survey 
data  

scanner data 
web scraped 

data 

RICE    

long grain rice 99.48 99.14 99.71 
white rice 99.60 104.61 100.06 

RAW AND MILK    

UHT whole milk 100.07 99.14 100.8 
pasteurised whole milk 99.36 102.49 102.25 

FRESH LOW FAT MILK    

UHT low fat milk 100.84 
 

100.57 100 

goat milk  100.95 100 100 
pasteurised low fat milk 101.05 

 
101.11 100.18 

YOGHURT    

Actimel 103.25 106.16 100.15 
fruit flavoured yoghurt 99.61 100.49 100.59 
chocolate and nuts flavoured yoghurt - 92.31 98.75 
drinkable yogurt 99.04 99.62 100.34 
natural yoghurt 100.92 99.79 98.97 

BEVERAGES AND OTHER MILK 
PRODUCTS 

   

kefir 101.90 101.45 100.01 
buttermilk 102.01 102.14 101.31 
monte 101.08 110.91 100 
homogenised cheese 99.84 100.59 99.11 

SUGAR 99.08 99.50 97.32 

cane sugar 99.54 100.83 101.17 
white sugar 98.63 97.81 93.02 
powdered sugar - 99.88 97.94 

COFFEE    

instant coffee 99.77 101.17 96.56 
coffee beans 99.55 98.27 98.13 
ground coffee - 98.74 98.92 

Source: authors' calculations based on data obtained from Statistics Poland and from a retail chain.  
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A comparison of the method of moments estimator and
maximum likelihood estimator for the success probability

in the Fibonacci-type probability distribution

Yeil Kwon1

ABSTRACT

A Fibonacci-type probability distribution provides the probabilistic models for establishing
stopping rules associated with the number of consecutive successes. It can be interpreted as
a generalized version of a geometric distribution. In this article, after revisiting the Fibonacci-
type probability distribution to explore its definition, moments and properties, we proposed
numerical methods to obtain two estimators of the success probability: the method of mo-
ments estimator (MME) and maximum likelihood estimator (MLE). The ways both of them
performed were compared in terms of the mean squared error. A numerical study demon-
srated that the MLE tends to outperform the MME for most of the parameter space with
various sample sizes.

Key words: Fibonacci probability distribution, generalized polynacci distribution, factorial
moment generating function, method of moments, maximum likelihood estimator.

1. Introduction

A geometric random variable is defined by the number of independent Bernoulli trials
until the first success with a success probability p. As a generalized version of the geo-
metric random variable, a negative binomial random variable is defined by the number of
independent Bernoulli trials until r successes. The negative binomial random variable does
not require the r successes to be consecutive. It seems natural to be interested in the case
in which we stop the Bernoulli trials after reaching r consecutive successes. For example,
what is the probability that we need 10 independent Bernoulli trials to have three consecu-
tive successes (Moivre, 1756)?

A Fibonacci-type probability distribution describes the behavior of a random variable N
defined by the number of independent Bernoulli trials until the k-th consecutive success with
a success probability p. Shane (1973) derived a probability mass function and distribution
function of N using polynacci polynomials, and Turner (1979) approached the same prob-
lem with the Pascal-T triangle. Philippou et al. (1982, 1983) developed a new formula for
the probability function for N in terms of the multinomial coefficient and Fibonacci polyno-
mials of order k. Philippou also made a significant contribution to deriving the convolutions
of Fibonacci-type polynomials (Philippou et al., 1985; Philippou & Makri, 1985; Philippou
& Georghiou, 1989) and the distribution of the multivariate Fibonacci-type polynomials of
order k (Philippou & Antzoulakos, 1990, 1991).

1University of Central Arkansas, USA. E-mail: ykwon1@uca.edu. ORCID: https://orcid.org/0000-0002-1663-
5401.
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A Fibonacci-type probability distribution potentially can be applied to numerous ar-
eas such as quality control, engineering, and transportation. For example, we can find the
direct applications of negative binomial distribution in quality control (Das, 2003; Ma &
Zhang,1996). Using a Fibonacci-type probability distribution can be an alternative way to
improve the quality control process. Suppose a production line supervisor wants to make a
stopping rule to control a defective rate. The supervisor can set a rule to stop the production
line for inspection when three consecutive defectives are observed. In general, “consecu-
tive defectives” indicate another type of hidden risk of the production line that cannot be
captured by a stopping rule based on the negative binomial distribution. Thus, the stop-
ping rule based on the Fibonacci-type probability distribution is an attractive method for
multi-dimensional quality control. We can find similar applications: the number of flight
operations until three successive accidents, the number of digital signals in specific data
transmission devices until five consecutive missing signals. Needless to say, when we have
the observations from the Fibonacci-type probability distribution, the precise estimation of
the success probability p is one of the most critical procedures in data analysis.

This paper aims to find the estimators for the success probability p and examine their
performances when we have observations from the Fibonacci-type probability distribution.
We revisit the important results on the Fibonacci-type probability distribution in Section
2 and find the estimators for the success probability p using the moments of N and the
likelihood function in Section 3. Although the moments of N are represented in an ex-
plicit function of p, the method of moment estimate for p is obtained using a numerical
method because it is the solution to the k-th degree polynomial in p. Furthermore, since
the Fibonacci-type probability distribution is defined as a recursive form, it is difficult to
find the maximum likelihood function in an explicit form. We propose a numerical method
to approximate the likelihood function to find the maximum likelihood estimate for p. In
Section 4, we provide the numerical results, illustrating the performances of the two esti-
mators in terms of the mean squared error (MSE). The simulation study demonstrates that
the maximum likelihood estimator (MLE) has a smaller MSE than the method of moment
estimator (MME) for p > 1/2 under various sample sizes.

2. Fibonacci-type Probability Distribution

2.1. Fibonacci Probability Distribution where k = 2 and p = 1/2

Let N be the number of coin flips until we have the first consecutive heads with p =

Pr(H)= 1/2. Examining a few cases, Pr(N = 2)=Pr(HH)= 1/4, Pr(N = 3)=Pr(T HH)=

1/8, Pr(N = 4) = Pr(HT HH)+Pr(T T HH) = 2/16, Pr(N = 5) = Pr(HT T HH)

+Pr(T HT HH)+Pr(T T T HH) = 3/32. In general, we can represent Pr(N = n), for a pos-
itive integer n ≥ 4, with the following structure:

Pr(N = n) = Pr(n−3 flips with no consecutive heads)Pr(T HH) =
Cn−3

2n ,

where Cn−3 stands for the number of arrangements of n− 3 coin flip results with no con-
secutive heads. It is evident that Cn−3 =Cn−4 +Cn−5. Let E be the event where n−3 flips
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occur with no consecutive heads. The event E can be split into two cases:

1⃝ n−3 flips with no consecutive heads with the last flip being tail (T ), or

2⃝ n−3 flips with no consecutive heads with the second last flip being tail (T )

Then, the number of arrangements for case 1⃝ is Cn−4, and the number of arrangements
for case 2⃝ is Cn−5, which implies that Cn forms the Fibonacci sequence. Therefore, the
probability mass function of the random variable N can be provided by the following:

Pr(N = n) = fn−1

(
1
2

)n

, n = 2,3,4, . . . , (1)

where fn is the n-th Fibonacci number with f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 =

5, f6 = 8, . . . . Shane (1973) named the probability mass function (1) as Fibonacci proba-
bility distribution because (1) contains Fibonacci numbers. Let s = ∑

∞
n=2

fn−1
2n , which is the

sum of all the probabilities of (1). Then, s = 1 due to the following:

s =
f1

22 +
∞

∑
n=3

(
fn−2

2n +
fn−3

2n

)
=

1
4
+

1
2

∞

∑
n=2

fn−1

2n +
1
4

(
f0

2
+

∞

∑
n=2

fn−1

2n

)
=

1
4
+

1
2

s+
1
4

s,

implying that s = 1. The next problem we are interested in is E(N), the expected value of
N. Proposition (1) plays an important role in computing E(N).

Proposition 1 Let m(y) be an infinite series of y defined by m(y) = ∑
∞
n=2 fn−1 yn. Then,

for |y|< 1/ϕ ,

m(y) =
y2

1− y− y2 ,

where ϕ = limn→∞ fn/ fn−1.

Proof:

m(y) = y2 +
∞

∑
n=3

fn−1 yn = y2 +
∞

∑
n=2

fn yn+1

= y2 + y

(
∞

∑
n=2

( fn−2 + fn−1) yn

)
= y2 + y

(
∞

∑
n=1

fn−1 yn+1 +
∞

∑
n=2

fn−1 yn

)

= y2 + y

(
y

∞

∑
n=2

fn−1 yn +
∞

∑
n=2

fn−1 yn

)
= y2 + y2m(y)+ ym(y).

The radius of convergence of m(y) is given by |y|< 1/ϕ since m(y) converges when

lim
n→∞

∣∣∣∣ fn yn+1

fn−1 yn

∣∣∣∣= lim
n→∞

∣∣∣∣ fn

fn−1

∣∣∣∣ |y|= ϕ |y|< 1.

□
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For a probability mass function of N in (1), we can also show ∑
∞
n=2 Pr(N = n) = 1 by

using Proposition (1) because ∑
∞
n=2 Pr(N = n) = ∑

∞
n=2

fn−1
2n ,= m(1/2) = 1. Next, we find a

way to calculate the mean and variance of N. From Proposition 1, we have

m′(y) =
∞

∑
n=2

n fn−1 yn−1 =
y(2− y)

(1− y− y2)2 ,

and

m′′(y) =
∞

∑
n=2

n(n−1) fn−1 yn−2 =
2(1+3y2 − y3)

(1− y− y2)3 .

As ym′(y) = ∑
∞
n=2 n fn−1 yn, the expected value of N can be obtained by

E(N) =
∞

∑
n=2

nPr(N = n) =
∞

∑
n=2

n fn−1

(
1
2

)n

= ym′(y)
∣∣∣
y=1/2

= 6.

Furthermore, by using simple algebra, we can find

y2 m′′(y) =
∞

∑
n=2

n2 fn−1 yn −
∞

∑
n=2

n fn−1 yn,

resulting in

∞

∑
n=2

n2 fn−1 yn = y2 m′′(y)+ ym′(y). (2)

Therefore, with y = 1/2 in (2),

E(N2) =
∞

∑
n=2

n2 fn−1

(
1
2

)n

=

(
1
2

)2

m′′
(

1
2

)
+

(
1
2

)
m′
(

1
2

)
= 52+6 = 58,

and
V (N) = E(N2)−E2(N) = 58−62 = 22.

The factorial moment generating function of a random variable X , with a probability
mass (or density) function f (x), is defined by

g(t) = E
(
tX) ,

if this expectation exists for all values of t ∈ (1−h,1+h). One of the well-known properties
of the factorial moment generating function is that it satisfies

g(r)(t)
∣∣∣∣
t=1

= E [X(X −1) · · ·(X − r+1)] ,

giving us factorial moments as we can infer from its name. For example, g′(1) = E(X),
g′′(1) = E [X(X −1)], and g(3)(1) = E [X(X −1)(X −2)]. In particular, V (X) = E(X2)−
E2(X) = g′′(1)+g′(1)− [g′(1)]2.
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From Proposition (1), the factorial moment generating function of random variable N
can be calculated using m(y) because

g(t) = E
(
tN)= ∞

∑
n=2

tn Pr(N = n) =
∞

∑
n=2

fn−1

( t
2

)n
= m

( t
2

)
=

t2

4−2t − t2 .

Moreover, since

g′(t) =
2t(4− t)

(4−2t − t2)2 and g′′(t) =
4(8+6t − t3)

(4−2t − t2)3 ,

we obtain E(N) = g′(1) = 6, E(N(N − 1)) = g′′(1) = 52, and V (N) = E(N(N − 1)) +
E(N)−E2(N) = 22, the same value of variance for N obtained by using (2).

2.2. Fibonacci Distribution Function where k = 2 and p ̸= 1/2

Next, we consider the case in which p = p(H) ̸= 1/2. Thus, in this subsection, N
is defined as the number of coin flips until we have the first consecutive heads with p =

Pr(H) ̸= 1/2. Let q = Pr(T ) = 1− p, then Pr(N = 2) = Pr(HH) = p2 and Pr(N = 3) =
Pr(T HH) = qp2. For a positive integer n ≥ 4, Pr(N = n) can be described as follows:

Pr(N = n) = Pr(n−3 flips with no consecutive heads)Pr(T HH)

= Pr(n−3 flips with no consecutive heads)qp2.

Let Gn(p,q) denote Pr(N = n) and examine the first several cases of Pr(N = n). Then

G2(p,q) = Pr(N = 2) = p2,

G3(p,q) = Pr(N = 3) = p2q(1),

G4(p,q) = Pr(N = 4) = p2q(q+ p),

G5(p,q) = Pr(N = 5) = p2q(q2 +2pq),

G6(p,q) = Pr(N = 6) = p2q(q3 +3pq2 + p2q),

G7(p,q) = Pr(N = 7) = p2q(q4 +4pq3 +3p2q2).

Unlike (1), each Pr(N = n) does not include a Fibonacci number. Shane (1973) used the
polynacci numbers and the polynacci polynomials to find the probability function of N for
p ̸= 1/2. However, we propose an alternative representation of Gn(p,q) by using Fibonacci-
type polynomials with a similar idea applied to (1). The probability mass function of N with
the success probability p, is obtained as follows:

f (n) = Pr(N = n) = Gn(p,q), n = 2, 3, 4, . . . . (3)

where Gn(p,q) is a Fibonacci-type polynomial defined as
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Gn(p,q) =


p/q, if n = 0,

0, if n = 1,

qGn−1(p,q)+ pqGn−2(p,q), if n ≥ 2.

(4)

Gn(p,q) in (3) is a valid probability mass function since ∑
∞
n=2 Pr(N = n) = 1:

∞

∑
n=2

Gn(p,q) = q
∞

∑
n=2

Gn−1(p,q)+ pq
∞

∑
n=2

Gn−2(p,q)

= q
∞

∑
k=1

Gk(p,q)+ pq
∞

∑
l=0

Gl(p,q)

= q
∞

∑
k=2

Gk(p,q)+qG1(p,q)+ pq
∞

∑
l=2

Gl(p,q)+ pqG0(p,q)+ pqG1(p,q)

= q
∞

∑
k=2

Gk(p,q)+ pq
∞

∑
l=2

Gl(p,q)+ p2.

Therefore,
∞

∑
n=2

Gn(p,q) =
p2

1−q− pq
= 1.

Theorem 1 Let N denote the number of coin flips until we have the first consecutive heads
with p = Pr(H) ̸= 1/2 and q = Pr(T ) = 1− p. The factorial moment generating function
of N, g(t), is given by

g(t) = E
(
tN)= p2t2

1−qt − pqt2 ,

where Gn(p,q) is a Fibonacci-type polynomials defined in (4).

Proof:

g(t) =
∞

∑
n=2

(
qGn−1(p,q)+ pqGn−2(p,q)

)
tn

=
∞

∑
n=2

qGn−1(p,q)tn +
∞

∑
n=2

(pq)Gn−2(p,q)tn

= qt
∞

∑
n=2

Gn−1(p,q)tn−1 + pqt2
∞

∑
n=2

Gn−2(p,q)tn−2 = qt
∞

∑
k=1

Gk(p,q)tk + pqt2
∞

∑
l=0

Gl(p,q)t l

= qt

(
∞

∑
k=2

Gk(p,q)tk +G1(p,q)t

)
+ pqt2

(
∞

∑
l=2

Gl(p,q)t l +G0(p,q)t0 +G1(p,q)t

)
= qtg(t)+ pqt2g(t)+ pqt2G0(p,q)

(
∵ G1(p,q) = 0

)
= qtg(t)+ pqt2g(t)+ p2t2.

Therefore, by solving the equation for g(t), we have g(t) = p2t2
/
(1−qt − pqt2). □
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In particular, when p = q = 1/2, we have g(t) = t2/(4−2t− t2), g′(t) = (8−2t2)/(4−
2t− t2)2, and g′′(t) = 4

(
8+6t2 − t3

)/
(4−2t− t2)3. Thus, E(N) = g′(1) = 6, and V (N) =

E (N(N −1))+E (N)−E2 (N)= g′′(1)+g′(1)−(g′(1))2 = 22, which are the same results as
we obtained in Section 2.1. From Theorem 1, we have the expected value and the variance
of N as

E(N) = g′(1) =
p2t(2−qt)

(1−qt − pqt2)2

∣∣∣∣
t=1

=
1+ p

p2 .

and
V (N) = g′′(1)+g′(1)−

(
g′(1)

)2
=

(1− p)(1+3p+ p2)

p4 ,

respectively, because E (N(N −1)) can be obtained by

E (N(N −1)) = g′′(1) =
2p2(1+3pqt2 − pq2t3)

(1−qt − pqt2)3

∣∣∣∣
t=1

=
2(1+2p− p2 − p3)

p4 .

2.3. Fibonacci-Type Probability Distribution with Order k

In this section, we discuss the most generalized version of the Fibonacci-type probability
distribution. Let N denote the number of Bernoulli trials until we have the first k consecutive
successes with the success probability p. It can be structured as follows:

Pr(N = n) =
(

1−Pr
(
(n− k−1) flips with k consecutive successes

))
Pr(F S · · ·S︸ ︷︷ ︸

k successes

)

=
(

1−Pr
(
(n− k−1) flips with k consecutive successes

))
qpk.

Cleary, Pr(N = k) = pk. If k+1 ≤ n ≤ 2k,
Pr
(
(n− k−1) flips with k consecutive successes

)
= 0, since n− k−1 < k.

Hence, Pr(N = n) = pkq, for k+1 ≤ n ≤ 2k. We examine several cases for n ≥ 2k+1,

H2k+1(p,q) = Pr(N = 2k+1) = pkq(1− pk),

H2k+2(p,q) = Pr(N = 2k+2) = pkq(1−2pkq− pk+1) = pkq(1− pk(1+q)),

H2k+3(p,q) = Pr(N = 2k+3) = pkq(1−3pkq2 −4pk+1q− pk+2) = pkq(1− pk(1+2q)),

H2k+4(p,q) = Pr(N = 2k+4) = pkq(1−4pkq3 −9pk+1q2 −6pk+2q− pk+3) =

pkq(1− pk(1+3q)).

Philippou et al. (1983) found that the probability mass function for N is given by

f (n) = Pr(N = n) = pnFn+1−k

(
q
p

)
, n = k, k+1, k+2, . . . , (5)

where

Fn(y) =


n, if n = 0, 1,

y∑
n
i=1 Fn−i(y), if 2 ≤ n ≤ k,

y∑
k
i=1 Fn−i(y), if n ≥ k+1,

(6)
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and (5) and (6) can be re-represented in a simpler form (Philippou & Makri, 1985) as

Pr(N = n) = Hn(p,q) =


pk, if n = k,

pkq, if k+1 ≤ n ≤ 2k,

Hn−1 − pkqHn−1−k, if n ≥ 2k+1.

(7)

It is easy to show ∑
∞
n=k Pr(N = n) = 1 based on (7) because

∞

∑
n=k

Hn(p,q) = pk +
2k

∑
n=k+1

pkq+
∞

∑
n=2k+1

(
Hn−1(p,q)− pkqHn−1−k(p,q)

)
= pk + kpkq+

∞

∑
m=2k

Hm(p,q)− pkq
∞

∑
l=k

Hl(p,q)

= pk + kpkq+
∞

∑
m=2k

Hm(p,q)+(k−1)pkq+ pk

− (k−1)pkq− pk − pkq
∞

∑
l=k

Hl(p,q)

= pkq+
∞

∑
m=k

Hm(p,q)− pkq
∞

∑
l=k

Hl(p,q),

which implies ∑
∞
n=k Hn(p,q) = 1.

Theorem 2 Let N denote the number of Bernoulli trials until we have the first k consecu-
tive successes with 0 < p = Pr(success)< 1, and q = Pr( f ail) = 1− p. Then, the factorial
moment generating function of N, h(t), is given by

h(t) = E
(
tN)= pktk(1− pt)

1− t + pkqtk+1 , (8)

where Hn(p,q) is a Fibonacci-type polynomials defined in (7).

Proof:

h(t) = tk pk +
2k

∑
n=k+1

tn pkq+
∞

∑
n=2k+1

tn
(

Hn−1(p,q)− pkqHn−1−k(p,q)
)

= tk pk + pkq
(

tk+1(1− tk)

1− t

)
+

∞

∑
m=2k

tm+1Hm(p,q)− pkq
∞

∑
l=k

t l+k+1Hl(p,q)

= tk pk + pkq
(

tk+1(1− tk)

1− t

)
+ t

(
∞

∑
m=2k

tmHm(p,q)+ tk pk + pkq
(

tk+1(1− tk−1)

1− t

))

− t
(

tk pk + pkq
(

tk+1(1− tk−1)

1− t

))
− pkqtk+1

∞

∑
l=k

t lHl(p,q)

= tk pk(1− t)+ pkqtk+1 +h(t)t −h(t)pkqtk+1,
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indicating

h(t) =
pktk(1− t +qt)
1− t + pkqtk+1 =

pktk(1− pt)
1− t + pkqtk+1 .

The expected value of N can be computed by using h(t) in (8). Moreover, since

h′(t) =
pktk

(
k(t −1)(p−1/t)+q− pkqtk

)
(1− t + pkqtk+1)2 ,

the expected value of N is given by

E(N) = h′(t)
∣∣∣∣
t=1

=
1− pk

pkq
. (9)

□

Corollary 1 Let N(k) be the number of Bernoulli trials until we have the first k consecu-
tive successes with 0 < p = Pr(success)< 1, and q = Pr( f ail) = 1− p. Then,

E
(

N(k+1)
)
=

1
p

E
(

N(k)+1
)
.

Proof: From (9), we have

E
(

N(k+1)
)
=

1− pk+1

pk+1q
=

1
p

(
1− pk

pkq
+

pk − pk+1

pkq

)
=

1
p

E
(

N(k)+1
)
,

since pk − pk+1 = pk(1− p) = pkq.
□

Corollary 1 indicates that the expected value of N(k) increases exponentially when k
increases with a growth factor of 1/p. Hence, it escalates dramatically as p is close to 0, for
example, when p = 1/2, E

(
N(2)

)
= 6, E

(
N(3)

)
= 14 and E

(
N(4)

)
= 30. For p = 1/10,

E
(

N(2)
)
= 110, E

(
N(3)

)
= 1110 and E

(
N(4)

)
= 11110.

3. Estimation Methods for p

3.1. Method of Moments Estimator (MME) for p

Assume a random sample with size m is given as

N1, N2, . . . , Nm
iid∼ f (n), (10)

where f (n) is a pmf defined in (7). The first sample moment (the sample mean) is given by
N̄ = ∑

m
i=1 Ni/m. By replacing E(N) with N̄ in (9), we have the following equation:
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N̄ pk+1 − (N̄ +1) pk +1 = (p−1)(N̄ pk − pk−1 −·· ·− p−1) = 0.

Thus, a positive root in (0,1] of the equation N̄ pk − pk−1 − ·· · − p− 1 = 0 becomes
the MME for p. Proposition 2 indicates that a unique p̂mme exists, and, in particular, if
N̄ = k, the MME for p becomes 1. We have N̄ = k only when all Ni’s (i = 1, . . . ,m) in (10)
are equal to k, and this event occurs with the probability pkm. For example, if p = 1/2, k = 2
and m = 10, Pr(N̄ = k) = 1/2048.

Proposition 2 Let N̄ = ∑
m
i=1 ni/m be a sample mean obtained from (10). Then, for N̄ > k,

r(p) = N̄ pk − pk−1 − ·· · − p−1 (11)

has only one zero in (0,1). When N̄ = k, the solution of the equation r(p) = 0 is given by
p = 1.

Proof:

First, suppose N̄ > k. We know r(0) = −1 < 0 and r(1) = N̄ − k > 0. Because r(p)
is a continuous function on [0,1], by the intermediate value theorem, it has at least one zero
in (0,1). Furthermore, from the Descartes’ rule (Albert, 1943), as there is one sign change
in the coefficients of r(p), the equation r(p) = 0 has exactly one positive root. Therefore,
r(p) has only one zero in (0,1). In particular, when N̄ = k, r(p) can be factored as

r(p) = (p−1)(kpk−1 +(k−1)pk−2 +(k−2)pk−3 + · · · +3p2 +2p+1).

In addition, it turns out kpk−1 +(k − 1)pk−2 +(k − 2)pk−3 + · · · + 3p2 + 2p+ 1 = 0
has no positive root by using the Descartes’ rule again. Hence, the only root of r(p) = 0 on
[0,1] is p = 1.

□

For instance, when k = 2, the MME for p is the solution to the quadratic equation
N̄ p2 − p−1 = 0, and it turns out to be

p̂mme =
1+

√
1+4N̄

2N̄
.

When p ≥ 3, p̂mme can be obtained by finding the root of (11) with the numerical methods
such as Newton’s method and Halley’s method.

3.2. Maximum Likelihood Estimator (MLE) for p

Under the same assumption of (10), the log-likelihood function l(p) is

l(p) =
m

∑
i=1

ln
[
Hni(p,q)

]
,
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and, the maximum likelihood estimator of p is given by

p̂mle = argmax
0<p<1

m

∑
i=1

ln
[
Hni(p,q)

]
.

However, because Hni(p,q) is not provided in a closed form but in a recursive form,
analytical derivation for the MLE of p is extremely challenging. Hence, a numerical method
is proposed as follows:

• (Step 1) Discretize the values of p∈ (0,1), for example, pd = 0.01,0.02, . . . ,0.98,0.99.

• (Step 2) Given n1, . . . ,nm, and k, calculate f (ni) = Hni(pd ,qd) based on (7) for all
i = 1, . . . ,m and all the discretized values of pd .

• (Step 3) Approximate the log-likelihood function l(p) by computing

l(pd) =
m

∑
i=1

ln
[
Hni(pd ,qd)

]
.

• (Step 4) Find the optimal value of p∗d , which maximizes l(pd).

4. Numerical Study

In this section, we compare the performance of the MME (p̂mme) and the computation-
ally driven MLE (p̂mle) for the success probability p in terms of the MSE. In general, the
MSE of an estimator θ̂ for a parameter θ is defined by E(θ̂ −θ)2, and it can be decomposed
as the sum of the variance of θ̂ and the squared bias of θ̂ . In this simulation study, the MSE
is estimated and decomposed by

M̂SE
(
θ̂ , θ

)
=

1
R

R

∑
r=1

(
θ̂r −θ

)2
= B̂ias

2
(θ̂)+V̂ar(θ̂),

where

B̂ias
2
(θ̂) =

1
R

R

∑
r=1

(
¯̂
θ −θ

)2
, V̂ar(θ̂) =

1
R

R

∑
r=1

(
θ̂r − ¯̂

θ

)2
, and ¯̂

θ =
1
R

R

∑
r=1

θ̂r,

with R the total number of simulations, and θ̂r the estimate for θ in the r-th repetition. Here,
θ̂ represents both p̂mme and p̂mle. We set the true success probability p= 0.1, 0.3, 0.5, 0.7, 0.9,
the sample size m = 5, 10, 20, 30, 50, and the number of simulation R = 500.

Table 1 displays the results of the simulation when k = 2. Table 2 is in the same format
as Table 1 but presents the results when k = 4. In other words, Table 1 illustrates the
results of the numerical study with a random variable N defined by the number of Bernoulli
trials until we have two consecutive successes. The estimated squared bias, variance, and
MSE for each estimator are reported with units in 10−3. Ratio columns display the ratios
of the estimated squared bias, variance, and MSE for p̂mme and p̂mle. Hence, the values
of the ratio that are greater than 1 imply that p̂mle outperforms p̂mme. For example, in
Table 1, for m = 10 and p = 0.7, the value in the ratio column of B̂ias

2
is computed as
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Table 1. Squared bias, variance, and mean squared error of p̂mme and p̂mle for k = 2 (unit:
10−3). The ratio columns represent the values of the squared bias (or variance) of p̂mme
divided by the squared bias (or variance) of p̂mle.

k = 2 B̂ias2 V̂ar M̂SE
Sample Size p p̂mme p̂mle Ratio p̂mme p̂mle Ratio p̂mme p̂mle Ratio
m = 5 0.1 0.0817 0.0819 0.997 0.800 0.804 0.994 0.884 0.886 0.997

0.3 0.4885 0.4767 1.025 6.494 6.396 1.015 6.982 6.873 1.016
0.5 1.9970 1.8523 1.078 14.11 13.84 1.019 16.11 15.70 1.026
0.7 0.7481 0.5482 1.365 13.79 13.21 1.043 14.54 13.76 1.056
0.9 0.0844 0.0514 1.642 6.963 6.676 1.043 7.047 6.728 1.047

m = 10 0.1 0.0455 0.0457 0.997 0.366 0.366 1.000 0.412 0.412 1.000
0.3 0.1191 0.1133 1.051 2.752 2.733 1.007 2.871 2.846 1.009
0.5 0.2651 0.2239 1.184 6.578 6.464 1.018 6.843 6.688 1.023
0.7 0.0467 0.0285 1.637 7.321 7.092 1.032 7.368 7.120 1.035
0.9 0.0015 0.0001 11.28 3.900 3.783 1.031 3.902 3.783 1.031

m = 20 0.1 0.0079 0.0079 1.012 0.141 0.141 0.999 0.149 0.149 1.000
0.3 0.0211 0.0206 1.025 1.267 1.264 1.002 1.288 1.285 1.003
0.5 0.0603 0.0561 1.075 2.703 2.684 1.007 2.763 2.741 1.008
0.7 0.0678 0.0464 1.461 3.600 3.429 1.050 3.668 3.475 1.055
0.9 0.0112 0.0086 1.294 2.134 2.036 1.048 2.145 2.045 1.049

m = 30 0.1 0.0034 0.0034 1.001 0.099 0.098 1.003 0.102 0.102 1.003
0.3 0.0034 0.0031 1.092 0.751 0.752 0.999 0.754 0.755 1.000
0.5 0.0430 0.0419 1.027 1.832 1.826 1.003 1.875 1.868 1.004
0.7 0.0294 0.0229 1.285 2.343 2.261 1.037 2.373 2.284 1.039
0.9 0.0103 0.0046 2.222 1.321 1.230 1.074 1.332 1.235 1.079

m = 50 0.1 0.0006 0.0006 1.003 0.060 0.059 1.002 0.060 0.060 1.002
0.3 0.0000 0.0000 2.376 0.530 0.531 0.998 0.531 0.531 1.000
0.5 0.0072 0.0074 0.972 1.167 1.165 1.002 1.175 1.172 1.002
0.7 0.0055 0.0029 1.926 1.456 1.411 1.032 1.461 1.414 1.034
0.9 0.0001 0.0013 0.109 0.803 0.752 1.068 0.803 0.753 1.066

(
0.0467×10−3

)
/
(
0.0285×10−3

)
= 1.637. This indicates the squared bias of p̂mme is

63.7% greater than that of p̂mle on average. We can interpret the numbers in the ratio
columns of V̂ar and M̂SE in the same manner. As for the decomposition of the MSE,
Tables 1 and 2 show the variance (compared with the squared bias) explains a major portion
of the MSE for both of the estimators. Except for the case with a small sample size m,

and a small success probability p, more than 95% of the MSE is explained by the variance
approximately. For the magnitude of the bias, the squared bias of p̂mle is smaller than that
of p̂mme for most cases. In the variance comparison, although the values in the ratio column
are not as large as the ratio values of the squared bias, the variance of p̂mle is smaller than
that of p̂mme for most of the values of p and sample sizes. The MSE ratio of p̂mme and
p̂mle exhibits a pattern similar to the variance ratio due to the substantial contribution of the
variance to the MSE. When p is small, the MSE difference between p̂mme and p̂mle is not
significantly large. However, for moderate and large values of p, the MSE of p̂mle is smaller
than that of p̂mme for all sample sizes. The improvement caused by p̂mle tends to be larger
when p is closer to 1.



STATISTICS IN TRANSITION new series, September 2022 39

Table 2. Squared bias, variance, and mean squared error of p̂mme and p̂mle for k = 4 (unit:
10−3). The ratio columns represent the values of the squared bias (or variance) of p̂mme
divided by the squared bias (or variance) of p̂mle.

k = 4 B̂ias2 V̂ar M̂SE
Sample Size p p̂mme p̂mle Ratio p̂mme p̂mle Ratio p̂mme p̂mle Ratio
m = 5 0.1 0.0166 0.0166 1.002 0.166 0.166 0.997 0.182 0.183 0.998

0.3 0.1365 0.1347 1.013 1.717 1.709 1.005 1.854 1.844 1.006
0.5 0.3298 0.3148 1.048 5.189 5.085 1.020 5.519 5.400 1.022
0.7 0.3761 0.3158 1.191 6.316 6.066 1.041 6.692 6.382 1.049
0.9 0.2024 0.1163 1.741 4.015 3.836 1.047 4.218 3.953 1.067

m = 10 0.1 0.0010 0.0010 0.993 0.075 0.075 1.005 0.076 0.076 1.005
0.3 0.0455 0.0454 1.004 0.698 0.697 1.001 0.743 0.743 1.001
0.5 0.0818 0.0791 1.034 2.133 2.119 1.007 2.215 2.198 1.008
0.7 0.0340 0.0194 1.754 2.852 2.745 1.039 2.886 2.765 1.044
0.9 0.0269 0.0117 2.311 2.022 1.908 1.060 2.049 1.920 1.067

m = 20 0.1 0.0011 0.0011 0.967 0.036 0.036 0.996 0.037 0.037 0.995
0.3 0.0091 0.0092 0.995 0.356 0.356 1.000 0.365 0.365 1.000
0.5 0.0136 0.0132 1.027 1.036 1.037 0.999 1.049 1.049 1.000
0.7 0.0067 0.0051 1.313 1.609 1.582 1.017 1.616 1.587 1.018
0.9 0.0014 0.0008 1.733 1.068 0.963 1.108 1.069 0.964 1.109

m = 30 0.1 0.0004 0.0004 0.994 0.022 0.023 0.991 0.023 0.023 0.991
0.3 0.0014 0.0014 0.983 0.249 0.250 0.999 0.251 0.250 1.000
0.5 0.0017 0.0017 0.996 0.622 0.622 1.001 0.624 0.623 1.001
0.7 0.0145 0.0123 1.180 0.926 0.896 1.034 0.941 0.908 1.036
0.9 0.0033 0.0016 2.033 0.638 0.577 1.107 0.642 0.578 1.110

m = 50 0.1 0.0001 0.0002 0.868 0.015 0.015 0.994 0.015 0.015 0.993
0.3 0.0002 0.0002 1.013 0.140 0.140 1.000 0.140 0.140 1.000
0.5 0.0013 0.0012 1.042 0.367 0.363 1.010 0.368 0.364 1.010
0.7 0.0061 0.0059 1.035 0.594 0.592 1.004 0.600 0.598 1.003
0.9 0.0013 0.0012 1.119 0.414 0.386 1.072 0.416 0.388 1.072

5. Conclusion

A Fibonacci-type probability distribution can be employed to determine the probabilis-
tic behavior of a random variable N defined by the number of Bernoulli trials with a success
probability p until we have k-consecutive successes. When p = 1/2, it can be expressed as
an implicit form with the Fibonacci numbers. When p ̸= 1/2, the Fibonacci-type probability
distribution is represented in terms of Fibonacci-type polynomials recursively. We calcu-
lated the first and second moments of N by using the factorial moment generating function.
In particular, the expected value of N increases exponentially with a growth factor of 1/p
when the number of consecutive successes k increases by 1, while the expected value of
a negative binomial random variable increases linearly for the unit increase of the number
of successes. To compare MME with MLE, we used the computational methods to obtain
the MLE by approximating the maximum likelihood function using the pmf of N defined
recursively. The result of the simulation discloses that, for both MLE and MME, the biases
are considerably smaller than the variances under all of the values of p and the sample sizes,
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indicating that the variance explains the majority of the MSE. Furthermore, we can see, in
terms of the MSE, the MLE performs better than MME for a wide range of p, especially
when p is greater than 1/2 for the various sample sizes.
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Estimation of P(X ≤ Y ) for discrete distributions with
non-identical support
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ABSTRACT

The Uniformly Minimum Variance Unbiased (UMVU) and the Maximum Likelihood (ML)
estimations of R = P(X ≤ Y ) and the associated variance are considered for independent
discrete random variables X and Y. Assuming a discrete uniform distribution for X and the
distribution of Y as a member of the discrete one parameter exponential family of distribu-
tions, theoretical expressions of such quantities are derived. Similar expressions are obtained
when X and Y interchange their roles and both variables are from the discrete uniform dis-
tribution. A simulation study is carried out to compare the estimators numerically. A real
application based on demand-supply system data is provided.

Key words: stress-strength model, uniformly minimum variance unbiased, maximum like-
lihood.

1. Introduction

In the stress-strength reliability literature, the quantity R = P(X ≤ Y ), where X defines
stress and Y defines strength, is the well-known reliability function, although a lot of devel-
opment was carried out in the last few decades to explore inferential aspects concerning R,
under the assumption of continuous X and Y. However, X and Y may be both discrete ran-
dom variables and inference on R is required in many situations. For example, in demand
analysis, if the number of demanded items is considered as the stress random variable X
and the corresponding number of items supplied is regarded as strength random variable Y,
then X and Y are both discrete and R represents the sensitivity of demand-supply system.
Another example considered is the working of regular life gadgets, like scanners and Xerox
machines, where measurable resistible voltage shocks are applied to the bulbs of the ma-
chines in a time interval. Then, the number of applied shocks may define stress (X) and the
number of shocks the machine can withstand may define strength (Y) and consequently R
measures the reliability of the system, where stress and strength random variables are both
discrete. A comprehensive account of the details of stress-strength reliability can be found
in the book-length coverage of Kotz et al. (2003).
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However, most of the authors considered identical distributions to represent stress and
strength random variables. For example, Maiti (1995) took Geometric distribution to cal-
culate UMVU and ML estimators of R, Ivshin and Lumelskii (1995) and Sathe and Dixit
(2001) considered Negative Binomial distribution to represent both stress and strength ran-
dom variables. Further, Balyaev and Lumelskii (1995) and Barbiero (2003) assumed Pois-
son distributions for both stress and strength random variables. On the contrary, Obradovic
et al. (2015) regarded two different distributions for stress and strength random variables
in a recent work. Specifically, Geometric distribution is used to model stress and Poisson
distribution is assumed for the strength random variable.

In all these works, supports of the stress and strength random variables are assumed to be
identical and the distributions are members of One Parameter Exponential Family (OPEF)
of distributions. Strength and/ or stress random variable may be uniform, that is, supports
may depend on the unknown parameters.

Assuming continuous uniform distributions, Ivshin (1996) and Ali et al. (2005) ex-
plored different inferential properties of R. But as far as our knowledge goes, no discrete
counterpart of such work is developed. A motivating example may be the following. Sup-
pose someone forgets his computer password. Now, if X denotes that he inputs the right
password in second draw, then X follows Discrete Uniform distribution. Again, if Y rep-
resents the number of attempts the computer allows, then Y follows Poisson random vari-
able. So R is the probability that he can open the computer successfully and hence Discrete
Uniform-Poisson model is more appropriate. Consequently, in this work, we derive theoret-
ical expressions of UMVU estimator of R and UMVU estimator of the associated variance
assuming different discrete distributions for stress and strength random variables. In partic-
ular, assuming Y to be a member of the discrete OPEF and X as discrete uniform, we derive
the UMVU estimator and then do the same when both X and Y are discrete uniform with
different supports. UMVU estimation of R and the derivation of the UMVU estimators of
the variances of the UMVU estimators are provided in Section 2. Section 3 gives the deriva-
tion of ML estimators of R for earlier mentioned combinations. In Section 4, we provide
simplified expressions of R, associated three dimensional plots and also UMVU and ML
estimators of R for specific members of OPEF. We compare efficiency of UMVU and ML
estimators of R numerically for various combinations in Section 5. A real application based
on demand-supply system data is discussed in Section 6. Finally, Section 7 concludes with
a discussion of the related issues.

2. UMVU estimation of R

Derivation of the UMVU estimator of R depends on the nature of the distributions of
stress (X) and strength (Y) random variables. Consequently, we start with the derivation for
regular family of discrete distributions and then extend the methodology to cover distribu-
tions with parameter dependent supports. But, if either of SX (i.e. support of X) and SY

(i.e. support of Y) involves an unknown parameter, we need to develop afresh. Although
a number of discrete distributions are available in the literature, we consider the Discrete
Uniform distribution to model stress and discrete OPEF to represent strength and derive
UMVU estimator of R. Similar expressions are also obtained for the combination (OPEF,
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Discrete Uniform). Further, considering (Discrete Uniform, Discrete Uniform) combination
for (X,Y), we develop UMVU estimation of R.

2.1. UMVU estimation of R for regular family of discrete distributions

Suppose stress and strength are independent random variables having distributions in
the regular family of discrete distributions with the supports (identical and/or non-identical)
SX and SY , respectively. Naturally, SX and SY are independent of the parameters and
SX

⋂
SY is non-empty. Further, assume that single but different parameters are involved

in the distributions of X and Y and complete sufficient statistics TX and TY exist for the
family of distributions of X and Y, respectively. Since we can write

R = P(X ≤ Y ) = ∑
j∈SY

P(X ≤ j)P(Y = j),

Blackwellisation (Rao, 1973) ensures that φ j(TY ) = P(Y1 = j/TY ) is the UMVU estima-
tor of P(Y = j) and φ j(TX ) = P(X1 ≤ j/TX ) is that of P(X ≤ j) for every fixed j ∈ SY .
Then, due to independence of the distributions of X and Y and the assumption of parameter
independent of supports SX and SY give the UMVU estimator of R as

R̂UMVUE = ∑
j∈SY

φ j(TY )φ j(TX ).

The available UMVU estimators of R (Kotz et al., 2003) can all be derived from the
above expression.

2.2. UMVU estimation of R for (Discrete Uniform, OPEF) combination

Suppose X has a Discrete Uniform distribution over {1,2, ....,N} with probability mass
function (PMF)

P(X = x) =
1
N

if x = 1, ...,N

= 0 otherwise

and Y has OPEF with PMF

P(Y = y) = c(θ)h(y)exp(q(θ)t(y)) if y = 0,1,2, ...

= 0 otherwise

where, c(θ) =
[
∑

∞
y=0 h(y)exp(q(θ)t(y))

]−1. Then, under the independence of X and Y, we
have

R = P(X ≤ Y ) = E
[

Y
N

]
.
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However, if the roles of X and Y are interchanged, we get the following expression:

R = P(X ≤ Y ) = 1−E
[

X −1
N

]
.

In order to facilitate UMVU estimation of R, we assume that (X1,X2, ......,Xn1) and
(Y1,Y2, ....,Yn2) are independent samples from the distributions of X and Y, respectively.
Then, it is well known that complete sufficient statistics for N and θ exist (Lehmann and
Casella, 1998) and are respectively, TX = X(n1) = max(X1,X2, ......,Xn1) and TY = ∑

n2
i=1 t(Yi)

with respective PMFs

P(X(n1) = tx) =
tn1
x − (tx −1)n1

Nn1
if tx = 1,2, ...,N

= 0 otherwise

and

P(TY = ty) = [c(θ)]n2h0(ty)exp(q(θ)ty) if ty = 0,1,2, ...

= 0 otherwise

where h0(ty) is the sum of ∏
n2
j=1 h(y j) over all (y1,y2, ......,yn2) for which ∑

n2
j=1 t(y j) = ty

(Ferguson, 1967).
Since the indicator function I[X1 ≤ Y1] is unbiased for R, the Rao-Blackwell theorem

coupled with Lehman-Scheffe theorem (Lehmann and Casella, 1998) expresses the UMVU
estimator of R as

R̂UMVUE = E(I[X1 ≤ Y1]|X(n1) = tx,TY = ty)

= P(X1 ≤ Y1|X(n1) = tx,TY = ty)

=
P(X1 ≤ Y1,X(n1) = tx,TY = ty)

P(X(n1) = tx,TY = ty)

=
∑

min(tx,ty)
y=1 P(X1 ≤ y,X(n1) = tx,TY = ty,Y1 = y)

P(X(n1) = tx)P(TY = ty)

=
∑

min(tx,ty)
y=1 P(X1 ≤ y,X(n1) = tx)P(Y1 = y,∑n2

i=1 t(Yi) = ty)

P(X(n1) = tx)P(TY = ty)

=
∑

min(tx,ty)
y=1 h(y)h0(ty − t(y))∑

y
x=1 P(X1 = x|X(n1) = tx)

h0(ty)
.

Further, using the fact that

P(X1 = x|X(n1) = tx) =
tn1−1
x − (tx −1)n1−1

tn1
x − (tx −1)n1

if x = 1,2, ...,(tx −1)

=
tn1−1
x

tn1
x − (tx −1)n1

if x = tx,
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R̂UMVUE can be simplified as

R̂UMVUE =
1

[T n1
X − (TX −1)n1 ]h0(TY )

×

min(TX ,TY )

∑
y=1

h(y)h0(TY − t(y))×

y

∑
x=1

{
T n1−1

X − (TX −1)n1−1I[x ̸= TX ]+T n1−1
X I[x = TX ]

}
.

However, for (OPEF, Discrete Uniform) combination), in a similar way, we derive the
UMVU estimator of R as

R̂UMVUE =
1

[T n2
Y − (TY −1)n2 ]h0(TX )

×

min(TX ,TY )

∑
y=1

{
(T n2−1

Y − (TY −1)n2−1)I[y ̸= TY ]+T n2−1
Y I[y = TY ]

}
×

y

∑
x=0

h(x)h0(TX − t(x)).

2.3. UMVU estimation of R for (Discrete Uniform, Discrete Uniform) combination

Now, assume that the distributions of both X and Y are Discrete Uniform with respective
parameters N1 and N2. Then, the expression of R takes the form:

R = P(X ≤ Y ) =
2N2 −N1 +1

2N2
if N1 < N2

=
N2 +1

2N1
if N1 ≥ N2.

It is well known that for such distributions, complete sufficient statistics exist and are
given by TX = X(n1) =max(X1,X2, ......,Xn1) and TY =Y(n2) =max(Y1,Y2, ......,Yn2), respec-
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tively. Thus the UMVU estimator of R takes the form

R̂UMVUE = E(I[X1 ≤ Y1]|X(n1) = tx,Y(n2) = ty)

= P(X1 ≤ Y1|X(n1) = tx,Y(n2) = ty)

=
P(X1 ≤ Y1,X(n1) = tx,Y(n2) = ty)

P(X(n1) = tx,Y(n2) = ty)

=
∑

min(tx,ty)
y=1 P(X1 ≤ y,X(n1) = tx,Y(n2) = ty,Y1 = y)

P(X(n1) = tx)P(Y(n2) = ty)

=
∑

min(tx,ty)
y=1 P(X1 ≤ y,X(n1) = tx)P(Y1 = y,Y(n2) = ty)

P(X(n1) = tx)P(Y(n2) = ty)

=
min(tx,ty)

∑
y=1

y

∑
x=1

P(X1 = x|X(n1) = tx)P(Y1 = y|Y(n2) = ty).

Now, using the expressions of the conditional PMF’s P(X1 = x|X(n1) = tx) and P(Y1 =

y|Y(n2) = ty), we derive the simplified expression

R̂UMVUE =
1{

T n1
X − (TX −1)n1

}{
T n2

Y − (TY −1)n2
} ×

min(TX ,TY )

∑
y=1

{
(T n2−1

Y − (TY −1)n2−1)I[y ̸= TY ]+T n2−1
Y I[y = TY ]

}
×

y

∑
x=1

{
(T n1−1

X − (TX −1)n1−1)I[x ̸= TX ]+T n1−1
X I[x = TX ]

}
.

2.4. UMVU estimation of Var(R̂UMVUE)

For the UMVU estimation of Var(R̂UMVUE), we consider the representation

Var(R̂UMVUE) = E([R̂UMVUE ]
2)−E2(R̂UMVUE)

= E([R̂UMVUE ]
2)−R2

Therefore, if we can derive the UMVU estimator Q̂UMVUE of Q = R2, then we can write

Var(R̂UMVUE) = E([R̂UMVUE ]
2)−E(Q̂UMVUE),

and hence obtain the UMVU estimator of Var(R̂UMVUE) as V̂ar(R̂UMVUE) = [R̂UMVUE ]
2 −

Q̂UMVUE . Consequently, we move our attention to deriving Q̂UMVUE .

For the relevant derivation, first of all, we note that the events (X1 ≤ Y1) and (X2 ≤ Y2)

are independent and so are the corresponding indicator functions I[X1 ≤ Y1] and I[X2 ≤ Y2].
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Then, naturally I[X1 ≤ Y1,X2 ≤ Y2] = I[X1 ≤ Y1]I[X2 ≤ Y2] is unbiased for Q = R2 and
corresponding to the (Discrete Uniform, One Parameter Exponential family) combination,
we derive

Q̂UMVUE = E(I[X1 ≤ Y1,X2 ≤ Y2]|TX = tx,TY = ty)

= P(X1 ≤ Y1,X2 ≤ Y2|TX = tx,TY = ty)

=
P(X1 ≤ Y1,X2 ≤ Y2,TX = tx,TY = ty)

P(TX = tx,TY = ty)

=
∑

min(tx,ty)
y1=1 ∑

y1
y2=1 P(X1 ≤ y1,X2 ≤ y2,TX = tx,TY = ty,Y1 = y1,Y2 = y2)

P(TX = tx)P(TY = ty)

=
∑

min(tx,ty)
y1=1 ∑

y1
y2=1 P(X1 ≤ y1,X2 ≤ y2,TX = tx)P(TY = ty,Y1 = y1,Y2 = y2)

P(TX = tx)P(TY = ty)
.

Since, for x2 ≤ x1,

P(X1 = x1,X2 = x2/X(n1) = tx) =
tn1−2
x − (tx −1)n1−2

tn1
x − (tx −1)n1

if x1 = 1,2, ...,(tx −1)

=
tn1−2
x

tn1
x − (tx −1)n1

if x1 = tx,

we get the simplified expression of Q̂UMVUE for the (Discrete Uniform, OPEF) combination
as

Q̂UMVUE =
1

h0(TY )[T
n1

X − (TX −1)n1 ]
×

min(TX ,TY )

∑
y1=1

y1

∑
y2=1

h(y1)h(y2)h0(TY − t(y1)− t(y2))×

y1

∑
x1=1

y2

∑
x2=1

{
T n1−2

X − (TX −1)n1−2I[x1 ̸= TX ]+T n1−2
X I[x1 = TX ]

}
I[x2 ≤ x1].

In a similar way, we derive the UMVU estimator of Q for (OPEF, Discrete Uniform)
combination as

Q̂UMVUE =
1

h0(TX )[T
n2

Y − (TY −1)n2 ]
×

min(TX ,TY )

∑
y1=1

y1

∑
y2=1

{
(T n2−2

Y − (TY −1)n2−2)I[y1 ̸= TY ]+T n2−2
Y I[y1 = TY ]

}
I[y2 ≤ y1]

×
y1

∑
x1=0

y2

∑
x2=0

h(x1)h(x2)h0(TX − t(x1)− t(x2)).
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Finally, replacing TY by Y(n2) and proceeding in a similar manner, we get the UMVU
estimator of Q for (Discrete Uniform, Discrete Uniform) combination as

Q̂UMVUE =
1

[T n1
X − (TX −1)n1 ][T n2

Y − (TY −1)n2 ]
×

min(TX ,TY )

∑
y1=1

y1

∑
y2=1

{
T n1−2

Y − (TY −1)n1−2I[y1 ̸= TY ]+T n1−2
Y I[y1 = TY ]

}
I[y2 ≤ y1]

×
y1

∑
x1=1

y2

∑
x2=1

{
T n1−2

X − (TX −1)n1−2I[x1 ̸= TX ]+T n1−2
X I[x1 = TX ]

}
I[x2 ≤ x1].

3. Maximum likelihood (ML) estimation of R

Suppose (X1,X2, .....,Xn1) and (Y1,Y2, .....,Yn2) are independent random samples from
the distribution of random variables X and Y respectively. It is well known that ML estima-
tor N̂MLE of N is X(n1) and ML estimator θ̂MLE of θ is obtained by solving

n2c(1)(θ)
c(θ)

+q(1)(θ)
n2

∑
i=1

t(yi) = 0,

where superscript indicate the first order derivative.

Then, by virtue of the invariance property of ML estimator we can obtain R̂MLE by
substituting values of θ and N by θ̂MLE and N̂MLE in the corresponding expression of R.
Similarly, ML estimator of R can be obtained for OPEF - Discrete Uniform combination.
R̂MLE for Discrete Uniform - Discrete Uniform combination can be written as

R̂MLE =
2Y(n2)−X(n1)+1

2Y(n2)
if X(n1) < Y(n2)

=
Y(n2)+1

2X(n1)
if X(n1) ≥ Y(n2).

4. Expressions of R and R̂UMVUE

Theoretical expressions of R and its UMVU estimators are derived for discrete OPEF
and Discrete Uniform (DU) distributions in the previous section. Now, we provide such
expressions in the simplified form for different members of OPEF. In particular, apart
from the well-known Binomial, Poisson, Negative Binomial (Neg Bin), Log Series dis-
tributions, we consider One Parameter Discrete Lindley (OPDL) distribution of Hussain
et al. (2016). OPDL is also a member of the discrete OPEF having the PMF, P(X =

x) = (1− φ)2(1+ x)φ x, where x = 0,1,2, ...., 0 < φ < 1 and complete sufficient statistic
TX = ∑

n
i=1 Xi.
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Further, for brevity, we provide three dimensional plots (Figure 1-4) of R for different
members of OPEF along with the concerned expressions of R. We also provide simplified
expressions of UMVU and ML estimators of R for different combinations of stress and
strength distributions in Tables 1-2.
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Figure 1: Plot of R for Discrete Uniform - Discrete Uniform and Discrete Uniform - Bino-
mial, Binomial - Discrete Uniform models
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Figure 2: Plot of R for and Discrete Uniform - Poisson, Poisson - Discrete Uniform and
Discrete Uniform - Negative Binomial, Negative Binomial - Discrete Uniform models
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Figure 3: Plot of R for Discrete Uniform - Geometric, Geometric - Discrete Uniform and
Discrete Uniform - Log series, Log series - Discrete Uniform models
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Figure 4: Plot of R for Discrete Uniform - OPDL and OPDL - Discrete Uniform model

5. Simulation study

In this section, it is of our interest to compare the efficiency of the estimates R̂UMVUE

and R̂MLE . Although estimators of Var(R̂UMVUE) have a closed form, neither MSE(R̂MLE)

nor its estimator is analytically tractable. Therefore for the purpose of comparison, we run a
simulation study with specific choices of (n1,n2) and different choices of stress and strength
distributions.

For each such choice, we estimate, R̂UMVUE and R̂MLE together with their MSE. Finally,
we report the empirical relative efficiency (ERE), defined by

ERE =
MSE(R̂MLE)

Var(R̂UMVUE)

for different choices of parameters and distributions. Naturally R̂UMVUE is better or worse
than R̂MLE as efficiency exceeds or does not exceed unity. Figure of Tables 3-8 reveal the
superiority of R̂MLE over R̂UMVUE for most of the assumed configuration.
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Table 3: Poisson(λ ) and DU(N)
Poisson−DU DU −Poisson

(n1, n2) (λ , N) R ERE R ERE
(15 , 30) (0.3 , 15) 0.064 0.430 0.015 0.006
(15 , 30) (0.5 , 15) 0.061 1.577 0.020 1.728
(15 , 30) (0.8 , 15) 0.054 0.523 0.024 0.359
(15 , 30) (0.3 , 30) 0.032 1.947 0.007 2.125
(15 , 30) (0.5 , 30) 0.030 0.040 0.010 0.403
(15 , 30) (0.8 , 30) 0.027 0.939 0.012 0.435
(30 , 30) (0.3 , 15) 0.064 0.041 0.015 1.922
(30 , 30) (0.5 , 15) 0.061 0.032 0.020 0.783
(30 , 30) (0.8 , 15) 0.054 0.956 0.024 0.005
(30 , 30) (0.3 , 30) 0.032 0.110 0.007 0.533
(30 , 30) (0.5 , 30) 0.030 4.819 0.010 0.829
(30 , 30) (0.8 , 30) 0.027 3.461 0.012 0.034
(45 , 30) (0.3 , 15) 0.064 0.246 0.015 0.432
(45 , 30) (0.5 , 15) 0.061 0.398 0.020 0.602
(45 , 30) (0.8 , 15) 0.054 0.102 0.024 0.205
(45 , 30) (0.3 , 30) 0.032 0.202 0.007 1.148
(45 , 30) (0.5 , 30) 0.030 1.701 0.010 0.015
(45 , 30) (0.8 , 30) 0.027 0.601 0.012 0.060
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Table 4: Binomial(m = 8, p) and DU(N)
Binomial −DU DU −Binomial

(n1 , n2) (p , N) R ERE R ERE
(15 , 30) (0.3 , 15) 0.017 0.077 0.013 0.013
(15 , 30) (0.5 , 15) 0.002 0.138 0.002 0.001
(15 , 30) (0.8 , 15) 1.84×10−6 0.415 5.46×10−6 1.096
(15 , 30) (0.3 , 30) 0.008 0.102 0.007 0.252
(15 , 30) (0.5 , 30) 0.001 0.001 0.001 0.726
(15 , 30) (0.8 , 30) 2.82×10−6 0.387 2.73×10−6 1.396
(30 , 30) (0.3 , 15) 0.017 1.604 0.013 1.923
(30 , 30) (0.5 , 15) 0.002 0.553 0.002 0.207
(30 , 30) (0.8 , 15) 5.63×10−6 0.859 5.46×10−6 0.487
(30 , 30) (0.3 , 30) 0.008 0.241 0.007 2.175
(30 , 30) (0.5 , 30) 0.001 0.598 0.001 0.330
(30 , 30) (0.8 , 30) 2.82×10−6 0.214 2.73×10−6 0.498
(45 , 30) (0.3 , 15) 0.017 0.002 0.013 2.436
(45 , 30) (0.5 , 15) 0.002 1.181 0.002 0.438
(45 , 30) (0.8 , 15) 5.63×10−6 0.642 5.46×10−6 1.456
(45 , 30) (0.3 , 30) 0.008 0.005 0.007 0.405
(45 , 30) (0.5 , 30) 0.001 0.072 0.001 0.162
(45 , 30) (0.8 , 30) 2.82×10−6 0.266 2.73×10−6 0.633
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Table 5: Geometric(θ ) and DU(N)
Geometric−DU DU −Geometric

(n1 , n2) (θ , N) R ERE R ERE
(15 , 30) (0.3 , 15) 0.034 0.041 0.014 0.664
(15 , 30) (0.5 , 15) 0.050 0.791 0.017 0.867
(15 , 30) (0.8 , 15) 0.064 0.290 0.011 0.731
(15 , 30) (0.3 , 30) 0.017 0.808 0.007 0.505
(15 , 30) (0.5 , 30) 0.025 0.001 0.008 2.873
(15 , 30) (0.8 , 30) 0.032 0.030 0.005 0.058
(30 , 30) (0.3 , 15) 0.034 2.547 0.014 2.256
(30 , 30) (0.5 , 15) 0.050 0.045 0.017 1.628
(30 , 30) (0.8 , 15) 0.064 0.102 0.011 0.567
(30 , 30) (0.3 , 30) 0.017 0.929 0.007 1.621
(30 , 30) (0.5 , 30) 0.025 0.469 0.008 0.879
(30 , 30) (0.8 , 30) 0.032 0.791 0.005 0.761
(45 , 30) (0.3 , 15) 0.034 2.036 0.014 0.120
(45 , 30) (0.5 , 15) 0.050 0.935 0.017 0.183
(45 , 30) (0.8 , 15) 0.064 0.519 0.011 1.833
(45 , 30) (0.3 , 30) 0.017 0.845 0.007 0.663
(45 , 30) (0.5 , 30) 0.025 0.122 0.008 0.984
(45 , 30) (0.8 , 30) 0.032 0.364 0.005 0.020
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Table 6: Neg Bin(r = 3, γ) and DU(N)
NegBin−DU DU −NegBin

(n1 , n2) (γ , N) R ERE R ERE
(15 , 30) (0.3 , 15) 0.006 0.014 0.004 0.085
(15 , 30) (0.5 , 15) 0.021 0.154 0.012 4.031
(15 , 30) (0.8 , 15) 0.055 4.173 0.020 0.118
(15 , 30) (0.3 , 30) 0.003 0.015 0.002 1.790
(15 , 30) (0.5 , 30) 0.010 2.942 0.006 2.391
(15 , 30) (0.8 , 30) 0.027 0.447 0.010 4.302
(30 , 30) (0.3 , 15) 0.006 0.630 0.004 1.851
(30 , 30) (0.5 , 15) 0.021 1.315 0.012 0.397
(30 , 30) (0.8 , 15) 0.055 0.828 0.020 0.209
(30 , 30) (0.3 , 30) 0.003 0.014 0.002 1.082
(30 , 30) (0.5 , 30) 0.010 0.003 0.006 0.031
(30 , 30) (0.8 , 30) 0.027 1.847 0.010 0.307
(45 , 30) (0.3 , 15) 0.006 0.543 0.004 0.443
(45 , 30) (0.5 , 15) 0.021 1.050 0.012 3.684
(45 , 30) (0.8 , 15) 0.055 0.313 0.020 0.076
(45 , 30) (0.3 , 30) 0.003 1.123 0.002 1.337
(45 , 30) (0.5 , 30) 0.010 0.006 0.006 2.508
(45 , 30) (0.8 , 30) 0.027 2.156 0.010 0.698
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Table 7: OPDL(φ ) and DU(N)
OPDL−DU DU −OPDL

(n1 , n2) (φ , N) R ERE R ERE
(15 , 30) (0.3 , 15) 0.013 0.004 0.007 0.003
(15 , 30) (0.5 , 15) 0.026 0.001 0.013 0.020
(15 , 30) (0.8 , 15) 0.041 0.089 0.017 0.031
(15 , 30) (0.3 , 30) 0.006 0.021 0.004 0.003
(15 , 30) (0.5 , 30) 0.013 0.033 0.006 0.041
(15 , 30) (0.8 , 30) 0.021 0.019 0.008 0.005
(30 , 30) (0.3 , 15) 0.013 0.026 0.007 0.017
(30 , 30) (0.5 , 15) 0.026 0.059 0.013 0.005
(30 , 30) (0.8 , 15) 0.041 0.832 0.017 0.045
(30 , 30) (0.3 , 30) 0.006 0.004 0.004 0.025
(30 , 30) (0.5 , 30) 0.013 0.009 0.006 0.065
(30 , 30) (0.8 , 30) 0.021 0.063 0.008 0.013
(45 , 30) (0.3 , 15) 0.013 0.001 0.007 0.003
(45 , 30) (0.5 , 15) 0.026 0.003 0.013 0.202
(45 , 30) (0.8 , 15) 0.041 0.886 0.017 0.090
(45 , 30) (0.3 , 30) 0.006 0.003 0.004 0.098
(45 , 30) (0.5 , 30) 0.013 0.012 0.006 0.103
(45 , 30) (0.8 , 30) 0.021 0.003 0.008 0.006
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Table 8: Log Series(δ ) and DU (N)
LogSeries−DU DU −LogSeries

(n1 , n2) (δ , N) R ERE R ERE
(15 , 30) (0.3 , 15) 0.080 0.115 0.056 0.023
(15 , 30) (0.5 , 15) 0.096 0.014 0.048 0.535
(15 , 30) (0.8 , 15) 0.165 0.192 0.033 0.143
(15 , 30) (0.3 , 30) 0.040 0.910 0.028 0.683
(15 , 30) (0.5 , 30) 0.048 0.004 0.024 3.074
(15 , 30) (0.8 , 30) 0.082 0.238 0.016 0.014
(30 , 30) (0.3 , 15) 0.080 0.666 0.056 1.627
(30 , 30) (0.5 , 15) 0.096 0.060 0.048 0.226
(30 , 30) (0.8 , 15) 0.165 0.073 0.033 1.028
(30 , 30) (0.3 , 30) 0.040 0.009 0.028 0.150
(30 , 30) (0.5 , 30) 0.048 0.021 0.024 3.418
(30 , 30) (0.8 , 30) 0.082 1.262 0.016 1.915
(45 , 30) (0.3 , 15) 0.080 0.004 0.056 1.156
(45 , 30) (0.5 , 15) 0.096 0.068 0.048 0.050
(45 , 30) (0.8 , 15) 0.165 0.323 0.033 0.235
(45 , 30) (0.3 , 30) 0.040 0.031 0.028 1.785
(45 , 30) (0.5 , 30) 0.048 0.041 0.024 3.425
(45 , 30) (0.8 , 30) 0.082 0.386 0.016 0.050

6. A real application

A uniform distribution may be used to model demand-supply system data [Hadley and
Whitin (1963), Wanke (2008)]. Here, we use a demand-supply system data (Naikan et al.
2014) of spare parts from an auto ancillary unit in India, reported in Table 9. We fit Discrete
Uniform with N̂1 = 56 for demand (X) and Discrete Uniform with N̂2 = 45 for supply (Y).
Now, by using expression of UMVU and ML estimators of R, we obtain R̂MLE = 0.409 and
R̂UMVUE = 0.411. Therefore, the expressions derived theoretically are well applicable in
real problems to estimate reliability (R) of demand-supply system data.
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Table 9: Demand and supply system data for spare parts
Week Demand Supply Week Demand Supply Week Demand Supply

1 25 30 12 50 43 23 27 31
2 38 37 13 27 31 24 36 36
3 2 16 14 19 21 25 25 30
4 28 32 15 27 31 26 30 33
5 23 29 16 18 27 27 27 31
6 7 21 17 18 27 28 17 26
8 23 29 18 34 35 29 22 29
9 56 45 19 34 35 30 12 24

10 48 41 20 34 35
11 6 21 21 26 31

7. Concluding Remarks

We have discussed so far the UMVU and ML estimation of P(X ≤ Y ) considering a
discrete uniform distribution to represent stress and/or strength. However, an assumption of
equal (but unknown) probability for stress and/or strength is less practical. Consequently,
we intend further development with a general class of distributions to model stress and/or
strength, allowing non-identical and parameter dependent supports.
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Interval shrinkage estimation of the parameter
of exponential distribution in the presence of outliers under

loss functions

Parviz Nasiri1

ABSTRACT

In this paper, we studied estimators based on an interval shrinkage with equal weights point
shrinkage estimators for all individual target points θ̄ ∈ (θ0,θ1) for exponentially distributed
observations in the presence of outliers drawn from a uniform distribution. Estimators ob-
tained from both shrinkage and interval shrinkage were compared, showing that the estima-
tors obtained via the interval shrinkage method perform better. Symmetric and asymmetric
loss functions were also used to calculate the estimators. Finally, a numerical study and
illustrative examples were provided to describe the results.

Key words: interval information, mean square error, shrinkage estimator, exponential dis-
tribution, uniform distribution, outliers, Linex loss function.

1. Introduction

We are interested in working on an exponential distribution due to its various applica-
tions in life testing in case we encounter some outliers. Suppose (X1,X2, ...,Xn)is a random
sample of size n whose k out of n observations seem to be outliers and taken from a uniform
distribution. Studying previous works shows that Epstein and Sobel (1954) obtained the
minimum variance unbiased estimator (MVUE) for scale parameter and location param-
eter of exponential distribution. Bhattacharia and Srivastava (1974) work on a shrinkage
estimator for scale parameter. Stein (1956) proposes non-sample information in shrinkage
estimation. The shrinkage estimation contents are an innovative combination of classical es-
timators of parameter and a guess value for it, which is called a shrinkage target. Based on
Hawkins (1980) an outlier is an observation that deviates so much from other observations
and it might have been generated by a different procedure. Dixit and Nasiri (2001) estimate
parameters of exponential distribution in the presence of outliers generated from uniform
distribution. Nasiri and Jabbari (2009) discuss estimation of parameters of the general-
ized exponential distribution in the existence of outliers. Finally, Golosnoy and Liesenfeld
(2011) obtain an interval for shrinkage estimators. Based of this review, we show that the
interval shrinkage estimator does better than another estimator. This paper is in some way
related to the investigation by Nasiri and Ebrahimi (2019), whenever now we consider the
outliers generated from uniform distribution.
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The LINEX loss function was introduced by Varian (1975), and several others including
Zellner (1986), Basu and Ebrahimi Rojo (1987) and Soliman (2000), who have used this
loss function in different estimation and prediction problems. The LINEX loss function is
given by:

L(∆) = ea∆ −a∆−1, a ̸= 0,

With ∆ = θ̂

θ
, where θ̂ is an estimate of θ and a represents the shape parameter of the

loss function. The behaviour of the LINEX loss function changes with the choice of a.
Particularly, if a is close to zero (see Pandey (1997)), this loss function is almost equivalent
to the Squared Error Loss Function(SELF) and therefore almost symmetric.

In shrinkage estimation when θg, a guess value of θ is available, the shrinkage estimator
and its properties following Thompson (1968) is defined as

θ̂sh = θg +ω(θ̂ −θg), 0 ≤ w < 1 (1)

To find ω we have to consider MSE of estimator as:

MSE(θ̂sh) = E[θ̂sh −θ ]2

In equation (1), to obtain MSE(θ̂sh), we consider θ̂sh as the shrinkage estimator, that
is θ̂sh = θg +ω(θ̂ − θ), where 0 ≤ ω < 1 and θg is our guess from parameter space (see
Thompson 1968). Hence, MSE(θ̂sh) = E(θ̂sh −θ)2 = E(θg +ω(θ̂ −θg)−θ)2, so

MSE(θ̂) = E[θg +ω(θ̂ −θg)−θ ]2 (2)

= E[ω(θ̂ −θ)+(ω −1)(θ −θg)]
2

= ω
2MSE(θ̂ ,θ)+(ω −1)2 ∗ (θ −θg)

2 +2ω(ω −1)(θ −θg)E(θ̂ −θ)

=
ω2θ 2

n
+(ω −1)2(θ −θg)

2, (3)

Now, we have to minimize the MSE,

dMSE(θ̂sh)

dω
=

2ωθ 2

n
+2(θg −θ)2(ω −1) = 0, (4)

ω
∗ =

(θg −θ)2

θ 2

n +(θg −θ)2
, (5)

So the shrinkage estimator is given by

θ̂sh = θg +[
(θg −θ)2

θ 2

n +(θg −θ)2
](θ̂ −θg) (6)



STATISTICS IN TRANSITION new series, September 2022 67

and

MSE(θ̂sh) = [θ̂sh −θ ]2

= E[θg +B1(θ̂ −θg)−θ ]2

= B1
2MSE(θ̂)+(1−B1)

2(θg −θ)2,

where

B1 =
(θg −θ)2

θ 2

n +(θg −θ)2
. (7)

In Section 2, we have obtained the joint distribution of (X1,X2, ...,Xn) in the presence
of k outliers. In Section 3, 4 and 5 we deal with the shrinkage estimator with the presence
of outliers, a feasible interval shrinkage estimator and an interval shrinkage estimator under
LINEX loss function. In Section 6, we compare the MSE and LINEX risk of the interval
shrinkage estimators.

2. Joint distribution of (X1,X2, ...,Xn) with presence of outliers

Let X1,X2, ...,Xn be n non-negative continuous random variables such that for a given
combination (i1, i2, ..., in−k) of the integers (1,2, ...,n), the following conditions hold:

a) The random variables Xi1 ,Xi2 , ...,Xin−k are independent, each having the probability
density function f (x).

b) The remaining random variables are also independent, each having the probability
density function g(x).

c) The two sets of the random variables are also independent.
d) Further, it is assumed that the combinations (i1, i2, ..., in−k) of the integers (1,2,3, ...,n)

are chosen at random with equal probability [c(n,k)]−1 for each combination, where

c(n,k) =
n!

k!(n− k)!

The joint density of X1,X2, ...,Xn is given as (See Dixit and Nasiri (2001))

f (x1,x2, ...,xn) =
n

∏
i=1

f (xi) ∑
(i1,i2,...,in−k)

k

∏
j=1

[c(n,k)]−1 g(xi j)

f (xi j)

Dixit and Nasiri (2001) consider estimation of parameters of an exponential distribution
in the presence of outliers generated from a uniform distribution. So, if we have random
variables (X1,X2, ...,Xn) such that k of them are a distribution with pdf f1(x;θ)

f1(x;θ) =
1
θ
,0 < x < θ , (8)
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and the remaining (n− k) random variables are distributed with pdf f2(x;θ) function

f2(x;θ) =
1
θ

e−
x
θ ,x > 0,θ > 0, (9)

then the joint distribution of (X1,X2, ...,Xn) is

f (x1,x2, ...,xn;θ) =

[
k!(n− k)!

n!

]−1 n

∏
i=1

f2(xi,θ)
∗

∑
k

∏
j=1

f1(xA j ;θ)

f2(xA j ;θ)
, (10)

where
∗

∑ =
n−k+1

∑
A1=1

n−k+2

∑
A2=A1+1

...
n

∑
Ak=Ak−1+1

.
For f1(x;θ) and f2(x;θ), f (x1,x2, ...,xn;θ) is

f (x1,x2, ...,xn;θ) =
k!(n− k)!

n!
e
−∑xi

θ

θ n−k

∗

∑
k

∏
j=1

1
θ

I(0,θ)(xA j)

e
−xA j

θ

=
k!(n− k)!

n! θ n e
−∑xi

θ

∗

∑
k

∏
j=1

I(0,θ)(xA j)

e
−xA j

θ

=
k!(n− k)!

n! θ n e
−∑xi

θ

∗

∑
k

∏
j=1

e
xA j

θ I(0,θ)(xA j),

For k = 1 ; f (x1,x2, ...,xn;θ) = 1
nθ n e

−∑xi
θ ∑

n
A1=1 e

xA1
θ I(θ − xA1).

For k= 2 ; f (x1,x2, ...,xn;θ)= 2
n(n−1)θ n e

−∑xi
θ ∑

n−1
A1=1 ∑

n
A2=A1+1 e

xA1
+xA2
θ I(xA1−θ) I(xA2−θ).

Dixit (1987), based on the joint distribution

f (x1,x2, ...,xn) =
n

∏
j=1

g(xi j)

f (xi j)
[C(n,k)]−1

show that the marginal distribution of Xi is given by

h(xi) =
k
n

g(xi)+
n− k

n
f (xi)
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Hence,

f (x;θ) =
k
n

f1(x;θ)+
n− k

n
f2(x;θ)

=
k
n

1
θ

I(0,θ)(x)+
n− k
nθ

e
−x
θ I(0,∞)(x), (11)

So we have

E(X̄) =
1
n

n

∑
i=1

E(Xi) = E(X) =
k
n

∫
θ

0

1
θ

x dx+
n− k

n

∫
∞

0

1
θ

xe−
x
θ dx =

(2n− k)θ
2n

V (X̄) =
(

1− 2k
3n

+
k2

4n2

)
θ 2

n
, (12)

It is easy to show that

θ̂ =
2n

2n− k
X̄ . (13)

which is unbiased with expectation and variance as:

E(θ̂) = θ and V (θ̂) = A2C
θ 2

n
, (14)

where A = 2n
2n−k and C =

(
1− 2k

3n +
k2

4n2

)
.

Note: The sample size n and the number of outliers k are given parameters. But in the
actual application, k is unknown and should be estimated. One of the methods is that k
can be selected by evaluating the likelihood for different values of k choosing the one that
maximizes the likelihood.

3. Feasible interval shrinkage estimator

In 2011, Golosnoy and Liesenfeld (2011) show the shrinkage estimator towards the
interval θ ∈ [θ0,θ1]⊂ R for unbiased conventional sample estimator of θ̂ with E(θ̂) = θ is
given by

θ̃sh =θ̂ +

√
V (θ̂)

θ − θ̂

θ1 −θ0

[
arctan

(
θ1 −θ√

V (θ̂)

)
−arctan

(
θ0 −θ√

V (θ̂)

)]

+
V (θ̂)

2(θ1 −θ0)
ln
(V (θ̂)+(θ1 −θ)2

V (θ̂)+(θ0 −θ)2

)
, (15)
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and

E(θ̃sh) = θ̂ +
V (θ̂)

2(θ1 −θ0)
ln
[V (θ̂)+(θ1 − θ̂)2

V (θ̂)+(θ0 − θ̂)2

]
, (16)

for E(θ̂) = θ , we have

θ̃sh = θ̂ +
V (θ̂)

2(θ1 −θ0)
ln
[V (θ̂)+(θ1 − θ̂)2

V (θ̂)+(θ0 − θ̂)2

]
. (17)

For different values of lower and upper bound of the interval, when θ1 is far from θ0

or V (θ̂) approaches zero, the MSE(θ̂) decreases. Furthermore, if θ̂ is considered as the
median of the interval, θm = (θ0 +θ1)/2, then (θ1 − θ̂) = θ1−θ0

2 and (θ0 − θ̂) = θ0−θ1
2 . In

this case, the equation(16) can be written as:

θ̃sh = θ̂ +
V (θ̂)

2(θ1 −θ0)
ln
[V (θ̂)+ (θ1−θ0)

2

4

V (θ̂)+ (θ0−θ1)2

4

]
= θ̂ +

V (θ̂)

2(θ1 −θ0)
ln(1) = θ̂ ,

θ̃sh approaches θ̂ .

Note that the expectation and variance of θ̃sh is not easy since θ̃sh is not linear θ̂ . Golos-
noy and Liesenfeld (2011) suggest to find θ̃sh by using the first order Taylor expansion
around the median point θm. We also define θd = (θ1 −θ0)/2, so the equation would be as
follows:

θ̃sh = θm +(θ̂ −θm)
∂ θ̂(θm)

∂ θ̂
+

(θ̂ −θm)
2

2
∂ 2θ̂(θm)

∂ θ̂ 2
= 0

where

∂ θ̂(θm)

∂ θ̂
= 1+

V (θ̂)

θ1 −θ0

(
θ0 − θ̂

V (θ̂)+(θ0 − θ̂)2
+

θ1 − θ̂

V (θ̂)+(θ0 − θ̂)2

)
,

and

∂ 2θ̂(θm)

∂ θ̂ 2
= 0.
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The resulting estimator is

θ̃sh = θ̂

1− V (θ̂)

V (θ̂)+

((
θ1−θ0

2

)2
)
+θm

V (θ̂)

V (θ̂)+

((
θ1−θ0

2

)2
)

We also define θd = θ1−θ0
2 , so the equation would be as follows:

˜̃
θ sh = θ̂

[
1− V (θ̂)

V (θ̂)+θ 2
d

]
+θm

V (θ̂)

V (θ̂)+θ 2
d

. (18)

For V (θ̂)

V (θ̂)+θ 2
d

is constant, its variance is equal zero. So, we can easily show that

E(˜̃θ sh) = θ − (θ −θm)
V (θ̂)

V (θ̂)+θ 2
d

,

and

V (
˜̃
θ sh) =V (θ̂)

(
1− V (θ̂)

V (θ̂)+θ 2
d

)2
.

Let 1− V (AX̄)

V (AX̄)+θ 2
d
= B2 then

˜̃
θ sh = AB2X̄ +(1−B2)θm,

so

MSE(˜̃θ sh) = E
(˜̃

θ sh −θ

)2

= E
(

B2AX̄ +(1−B2)θm −θ

)2

= E
(

B2(AX̄ −θ)+B2θ +(1−B2)θm −θ

)2

= E
(

B2(AX̄ −θ)+(1−B2)θ +(1−B2)θm

)2

= E
(

B2(AX̄ −θ)+(1−B2)(θ −θm)
)2

= B2
2MSE(θ̂Sh−outlier)+(1−B2)

2(θ −θm)
2,

resulting

MSE(˜̃θ sh)≤ MSE(θ̂Sh−outlier).
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4. Interval shrinkage estimation under LINEX loss function

In decision theory and quality assurance filed, loss functions are used to reflect the
monetary loss or economic loss caused by deterioration of the product characteristics from
the target quality. However, Berger (1985) even emphasized that the loss function should
be bounded and concave, because the loss function also mimics the negative of the utility,
whereas the squared-error loss, Taguchi quadratic loss in quality control, or absolute error
loss is unbounded and even disturb the convexity. In some decision problems, some types
of asymmetric losses are proposed. One of the most eminent examples is LINEX, which
was proposed by Varian (1975) and populated by Zellner (1986).

Consider LINEX loss function for ˜̃θ
L(∆) = ea∆ −a∆−1, ∆ =

˜̃
θ

θ
.

which

∆ =
˜̃
θ

θ
=

AB2

θ
X̄ +(1−B2)

θm

θ
.

where A = 2n
2n−k , B2 = 1− V (AX̄)

V (AX̄)+θ 2
d

. In this case the risk under LINEX loss function is

obtained by

R = E(L(∆)) = E(ea∆ −a∆−1) = E(ea∆)−aE(∆)−1

where

aE(∆) = aE

˜̃θ
θ

=
a
θ

E(˜̃θ) = a
θ

E(AB2X̄ +(1−B2)θm)

=
aAB2

θ
E(X̄)+(1−B2)

θm

θ

=
aAB2

θ

(
2n− k

2n
θ

)
+(1−B2)

θm

θ

=
aAB2(2n− k)

2n
+(1−B2)

θm

θ

E(ea∆) = E
(

e
aθ̃

θ

)
= E

(
e

a
θ
(AB2X̄+(1−B2)θm)

)
= e

a(1−B2)θm
θ E

(
e

aAB2X̄
θ

)
= e

a(1−B2)θm
θ E

(
e

aAB2
nθ

(X1+X2+...+Xn)
)

= e
a(1−B2)θm

θ E
(

e
aAB2

θ
X1e

aAB2
θ

X2 ...e
aAB2

θ
Xn
)
= e

a(1−B2)θm
θ

[
E
(

e
aAB2

nθ
X
)]n

such that
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E
(

e
aAB2

nθ
X
)
=

k
n

∫
θ

0

1
θ

e
aAB2

nθ
xdx+

n− k
n

∫
∞

0

1
θ

e
aAB2

nθ
xe

−x
θ dx

=
k

nθ

[
nθ

aAB2
e

aAB2
nθ

x|θ0
]
+

n− k
nθ

∫
∞

0
e−
(

1− aAB2
n

)
x
θ dx

=
k

nθ

[
nθ

aAB2
e

aAB2
nθ − nθ

aAB2

]
=

n− k
nθ

(
nθ

n−aAB2

)

=
k

aAB2
e

aAB2
n − k

aAB2
+

n− k
n−aAB2

Hence,

R = e
a(1−B2)θm

θ

[
k

aAB2
e

aAB2
2 − K

aAB2
+

n− k
n−aAB2

]n

− aAB2(2n− k)
2n

+(1−B2)
θm

θ
−1

5. Numerical Study

To compare the performance of mean square error (MSE) and LINEX risk of the interval

shrinkage estimator ˜̃θ sh , we carry out simulation study using R software and the results are
shown in Tables 1 to 4. The shape parameter takes different values. Samples were generated
with sizes n = 10(10)(50) using of R software. The MSE and LINEX loss function of
the interval shrinkage estimator decrease when the sample size increases. Meantime, for
k = 1,n= 9 means that one sample is generated from the uniform distribution and 9 samples
are generated from the exponential distribution. Here, the number of replicated cases is
N = 1000. In cases of a =−0.01 and a = 0.01, they are very close to each other. It is also
worth mentioning, based on the results of Tables 1 and 2, when the value of "a" tends to
zero, the results are the same.

Table 1. k = 1, θ = 4, θg = 3.2, θ0 = 3.7, θ1 = 4.2

a=-1 a=-0.25 a=-0.01

n MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh)

10 0.0082 0.0054 0.0082 0.0008 0.0077 0.0012
20 0.0042 0.0052 0.0055 0.0007 0.0060 0.0011
30 0.0037 0.0048 0.0043 0.0007 0.0060 0.0011
40 0.0027 0.0039 0.0030 0.0006 0.0033 0.0013
50 0.0027 0.0038 0.0025 0.0005 0.0023 0.0013
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Table 2. k = 2, θ = 4, θg = 3.2, θ0 = 3.7, θ1 = 4.2

a=-1 a=-0.25 a=-0.01

n MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh)

10 0.0012 0.0024 0.0021 0.0004 0.0013 0.0019
20 0.0016 0.0021 0.0017 0.0003 0.0016 0.0014
30 0.0015 0.0029 0.0017 0.0003 0.0017 0.0013
40 0.0019 0.0029 0.0017 0.0004 0.0017 0.0010
50 0.0016 0.0049 0.0016 0.0004 0.0017 0.0017

Table 3. k = 1, θ = 4, θg = 3.2, θ0 = 3.7, θ1 = 4.2

a=0.01 a=0.25 a=1

n MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh)

10 0.0083 0.0013 0.0082 0.0024 0.0082 0.0006
20 0.0058 0.0013 0.0046 0.0020 0.0052 0.0005
30 0.0044 0.0010 0.0041 0.0024 0.0043 0.0004
40 0.0029 0.0013 0.0032 0.0024 0.0028 0.0003
50 0.0026 0.0015 0.0026 0.0016 0.0026 0.0002

Table 4. k = 2, θ = 4, θg = 3.2, θ0 = 3.7, θ1 = 4.2

a=0.01 a=0.25 a=1

n MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh) MES(˜̃θ sh) R(˜̃θ sh)

10 0.0025 0.0005 0.0017 0.0005 0.0018 0.0002

20 0.0018 0.0010 0.0017 0.0010 0.0016 0.0002

30 0.0017 0.0017 0.0017 0.0014 0.0015 0.0002

40 0.0016 0.0016 0.0016 0.0013 0.0015 0.0004

50 0.0018 0.0018 0.0015 0.0012 0.0017 0.0001

6. Practical Example

In order to illustrate the methodology proposed in this paaper, we consider, Nelson
(1982) concerning the data on time to break-down of an insulating fluid between electrodes
at a voltage of 34 KV (Kilo-Volts). Data are as follows:
0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.50 7.35 8.01 8.27 12.06 31.75 32.52 33.91
36.71 72.89

In the initial evaluation, one-sample Kolmogorov-Smirnov test results show that the data
follow an exponential distribution. Figures 1 and 2 have been reported to be checked for the
presence of outlier’s data. Figure 1 shows the presence of one outlier. Investigation of this
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result is based on theoretical and interval shrinkage estimation. Here, to find the number of
outliers or k, we consider θ ∈ (14,15) and based on the sample information
n = 19 , ∑

19
i=1 xi = 272.82 ; x̄ = 14.35895. Note that in Table 5, to determine the value of k

we have

V̂ (
˜̃
θ) = V̂ (θ̂)

(
1− V̂ (θ̂)

V̂ (θ̂)+θ 2
d

)

such that

V̂ (θ̂) =

[
2n

2n− k

]2(
1− 2k

3n
− k2

4n2

)
θ̂ 2

n

According to the estimator of V̂ (
˜̃
θ), it can be said that the increase in the value of k

is greater than the increase in the estimator. But by rotating the value of the maximum
likelihood, the value of k is determined.

Table 5.

k ˜̃
θ sh V (

˜̃
θ sh) ∑

∗ L(˜̃θ |x)
0 14.49682 0.0055031 1 5.790283×10−31

1 14.50518 0.0051386 19.29345 5.879082×10−31∗

2 14.51281 0.0047826 172.2583 5.831662×10−31∗

3 14.51969 0.00443596 943.3984 5.635563×10−31

4 14.52582 0.00409897 3540.8260 5.287464×10−31

According to the results of Table 5, the likelihood function with respect to k is maxi-

mized when k is equal to 1. So, the number of outliers is 1 and ˜̃θ sh = 14.51281.

7. Conclusion

In an experimental situation, many a time an experimenter comes across some of the
observations which are far removed from the main body of the data and hence are outliers.
In this paper, shrinkage and interval shrinkage estimators are discussed for the first time
with the presence of outliers generated from a uniform distribution and it is shown that
the interval shrinkage estimator is better than the shrinkage estimator. Using different loss
functions can also improve the performance of the estimator. It may be mentioned that
the proposed method can be extended for Bayesian interval shrinkage estimation and other
positive data distribution as well as for the presence of outliers from other distributions.
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Figure 1. Exponential Q-Q Plot

Figure 2. Frequency Distribution
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Polish inequality statistics reconsidered:   
are the poor really that poor? 

Adam Szulc1 

ABSTRACT 

In the present study income inequality in Poland is evaluated using corrected income data 
to provide more reliable estimates. According to most empirical studies based on household 
surveys and considering the European standards, the recent income inequality in Poland is 
moderate and decreased significantly after reaching its peaks during the first decade of the 
21st century. These findings were challenged by Brzeziński et al. (2022), who placed Polish 
income inequality among the highest in Europe. Such a conclusion was possible when 
combining the household survey data with information on personal income tax. In the 
present study the above-mentioned findings are further explored using 2014 and 2015 data 
and employing additional corrections to the household survey incomes. Incomes of the 
poorest people are replaced by their predictions made on a large set of well-being correlates, 
using the hierarchical correlation reconstruction. Applying this method together with the 
corrections based on Brzeziński’s et al. results reduces the 2014 and 2015 revised Gini 
indices, still keeping them above the values obtained with the use of the survey data only. It 
seems that the hierarchical correlation reconstruction offers more accurate proxies to the 
actual low incomes, while matching tax data provides better proxies to the top incomes. 

Key words: inequality indices, household income imputation, income correlates. 

1. Introduction

According to most of the empirical studies based on household surveys, recent
income inequality in Poland is moderate, considering the European standards, and 
decreased significantly after peaks reached during the first decade of the 21st century 
(time series for the official Gini indices covering 1995–2015 period may be found 
in Brzeziński et al., 2022). However, a prevailing part of those studies ignore the 
problem of the data quality and representativity, although there are reasons to assume 
that nominally low declared incomes are frequently underestimated, especially in tails 
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of the distributions. This affects also official inequality measures in Poland, which may 
be substantially underestimated, as demonstrated by Brzeziński et al. (2022) on the 
basis of combined survey and tax return data for 1995–2015 period. Further 
consequences of prospective underestimation of the official inequality are of political 
nature, as concluded by those authors: underrating by the previous governments 
importance of the (real) inequality and degree of the redistribution might be one of the 
reasons for reaching the parliament majority by Law and Justice (Prawo 
i Sprawiedliwość) party in 2015 election. Although this hypothesis is hardly testable 
empirically, it seems to be obvious that the social rhetoric represented by this party was 
widely accepted by the voters. On the other hand, according to Bussolo et al. (2021) the 
demand for redistribution in Poland between 1992 and 2009 was at a moderate level, as 
compared to several European countries included into that study. Moreover, other 
results presented by Bussolo et al. do not claim correlation between the demand for 
redistribution and the (in)equality perception. Nevertheless, calculation of more 
accurate inequality indices definitely may shed more light on the abovementioned 
issues in Poland, especially on discrepancy between the official indicators and the 
inequality perception. In this study some estimates obtained by Brzeziński et al. (2022) 
are utilised to correct incomes in the upper tails of the distributions for 2014 and 2015 
years. Corrections of the household survey incomes are also performed at the bottom 
tails, which is an added value of the present research. Incomes of the poorest people are 
replaced by their predictions estimated on a large set of well-being correlates, using the 
so-called hierarchical correlation reconstruction (Duda, 2018, Szulc and Duda, 2018). 
This should yield more accurate inequality measures, as compared to the official ones 
and to those based solely on the top incomes corrections. 

Several sources of non-random errors leading to underestimation of household 
survey incomes may be pronounced: i/ allocating too large portion of the revenues to 
production when completing the questionnaires (this applies to self-employed 
incomes, including farmers), ii/ incorrect tax adjustment, iii/ intentional misreporting, 
and iv/ seasonality of the revenues. For a comprehensive discussion of household 
survey measurement errors see Moore et al. (2000) and Kasprzyk (2005), while non-
response issues are discussed in Lepkowski (2005). A discussion of the Polish household 
survey data quality may be found in Kośny (2019). Generally, two approaches to 
handling the data errors in research on inequality and poverty may be observed in the 
literature. In the first one additional datasets, usually tax registers, are utilised. 
Household survey data are combined with administrative records to provide more 
reliable income statistics at the upper tails of the distribution (Jenkins, 2017, Bartels and 
Metzing, 2018, Blanchet, 2018, Medeiros et al., 2018, Davern et al., 2019, Brzeziński et 
al., 2022). The literature on “decontamination” of low declared incomes is rather 
narrow. Nicoletti et al. (2011) proposed the so-called partial identification approach, 
taking into account the whole range of the distribution. This allows calculation of 
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bounds for the poverty rates instead of the point estimates. Pudney and Francavilla 
(2006) employed a data “decontamination” procedure based on observing 
discrepancies between income and other well-being indicators (like consumption or 
household durables) ranks for Albania. This procedure, utilising non-parametric 
regression, is supposed to produce more reliable poverty rates. In this research the so-
called hierarchical correlation reconstruction method (hereafter: HCREC) proposed by 
Duda (2018) is utilised. This methods yields estimates of the income distribution 
function, conditional on the household attributes correlated with well-being. As they 
are mainly nonmonetary and/or relatively stable in time, it may be assumed that they 
are more reliable and therefore can provide more accurate proxies to the household 
well-being and then to the actual incomes. Moreover, better reliability of the declared 
incomes in the middle range of the distribution than in the extreme ones is assumed. 
In this approach no additional information but survey data is required (this applies also 
to the methods proposed by Nicoletti et al., 2011, and Pudney and Francavilla, 2006). 

The remaining part of the paper is organised as follows. In Section 2 the database 
is described. In Section 3 the main principles of two methods of data imputation are 
presented. Section 4 reports results of the empirical inequality comparisons. Section 5 
concludes. 

2.  The data issues 

The individual data employed in this research come from 2014 and 2015 household 
budget surveys being carried by Statistics Poland (Główny Urząd Statystyczny). 
It encompasses, inter alia, information on the households’ disposable income and its 
components, expenditures, assets, durables, dwelling conditions, demographic and 
socio-economic attributes, and answers to subjective income questions. The samples 
covered more than 37,000 households and 101,000 persons per year. The reference 
period of observation is one month. More methodological details on Polish HBS may 
be found in Główny Urząd Statystyczny – Statistics Poland (2015). For a brief 
description of the tax data in Poland applicable to this study see Kośny (2019). 

Except the disposable income numerous household variables are used in the 
present research in order to provide estimates of the corrected declared incomes. They 
may be of financial type and then continuous (remaining equivalent cash at the end of 
the month, shares of expenditures on the luxury goods and on the food) but most of 
them are nonmonetary and discrete (demographic attributes, dwelling and 
neighbourhood characteristics, possession of durables, main income source, subjective 
evaluations). For the full list of the variables employed in the imputations based on 
HCREC method see Duda and Szulc (2020). All calculations are performed for 
equivalent units, using the total household incomes and assuming equal distribution 
between the household members. 



82                                                                            A. Szulc: Polish inequality statistics reconsidered: are the… 

 

 

As mentioned in the Introduction, misestimation of the incomes affects mainly tails 
of the distribution. Since the disposable income is calculated as a difference between 
the household net revenues and spending on production, allocating too large portion 
of the revenues to a latter component affects mainly producers’ (including farmers) 
households. Overestimation of the cost of production is quite frequent and leads to 
underestimation of disposable incomes, making them, in some cases, negative. 
Although negative disposable incomes constitute only about 0.9% of the whole 2015 
sample, there is no reason to believe that the positive ones are free of such a bias. A meta 
study of the problem may be found in Hlasny et al. (2022). Errors caused by seasonality 
and by intentional misreporting of incomes may affect most of types of the households. 
It seems to be rational to suppose that the majority of well-being correlates, like 
household conditions or possession of durables, are much more stable in time and less 
likely to be intentionally misreported than the disposable incomes. Assuming moreover 
that the income data in the middle of the distribution are relatively reliable and the 
relations between income and welfare correlates are stable for the whole range of the 
distribution, it is possible to reduce impact of the abovementioned data errors applying 
imputations based on the HCREC method. However, this technique seems to be rather 
unproductive at the high ranges of the distribution, due to very low share of the extreme 
incomes which would result in a serious downward bias of the estimates. As mentioned 
above, it is possible to handle underestimation of highest incomes by matching survey 
data with tax registers. In the present research this method is embedded by replacing 
top 1% or top 5% incomes by estimates of the Pareto distribution obtained by 
Brzeziński et al. (2022) after matching the tax and the household survey data. 

Underestimation of low incomes in the Polish household surveys becomes evident 
when they are confronted with a simple multidimensional household well-being 
indicator. The one employed in the present study covers equivalent income, dwelling 
conditions (esp. dwelling size and quality, presence of various appliances, 
neighbourhood), household equipment with durables and subjective evaluations of 
own material position. Each of those components was transformed into [0, 1] interval. 
Hence, at each dimension of well-being the households or people may be compared 
directly. For the non-binary, continuous or ordinal variables the multidimensional 
poverty indicator for each household is calculated as weighted mean of the following 
components: 

𝑓௜ ൌ 𝑓ሺ𝑦ሻ ൌ
𝑌௠௔௫ െ 𝑦௜
𝑌௠௔௫ െ 𝑌௠௜௡

 

where yi stands for i-th well-being individual component, e.g. equivalent income, 
dwelling size per capita or subjective income evaluation. This concept represents a more 
general method referred to as fuzzy set approach to poverty measurement (for more 
details see Panek, 2006). In order to relax impact of the outliers, for the continuous, 
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non-limited variables the minimum and maximum values in the above equation were 
replaced by percentiles of rank 0.05 and 0.95, respectively, with due censoring of yi 
values beyond these limits. The highest weight, 0.4, is attached (arbitrarily) to the 
monetary dimension (equivalent income), the remaining three equal 0.2. 

 

 
Figure 1a.  Nonparametric estimation of multidimensional poverty on survey incomes  
 (PLN per month), below the first decile. 
 

 
Figure 1b.  Nonparametric estimation of multidimensional poverty on imputed incomes  
 (PLN per month), below the first decile. 
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Figures 1a and 1b display the results of nonparametric LOWESS estimation (for the 
econometric details see Cleveland, 1979) of the abovementioned multidimensional 
poverty indicator on the equivalent income declared by the households and on income 
corrected by means of HCREC, respectively. In the first case, a nonsensical, positive 
correlation between both variables may be observed for the lowest incomes. The results 
obtained for the corrected incomes appear to be much more acceptable (see Figure 1b). 
A positive correlation between the declared income and poverty resulted also 
in reporting a counterproductive effect of the social transfers on the multidimensional 
poverty (although the respective indicator included also equivalent incomes). This 
nonsensical result did not appear when low incomes were replaced by their predictions 
estimated by means of HCREC (see Duda and Szulc, 2020 for details). Naturally, the 
components of the multidimensional poverty index and the set of income correlated 
yielding HCREC estimates do not intersect, as it would result in upper bias in the 
correlation measures. 

3.  Income imputations 

3.1.  Low incomes 

The method of imputation applied in the present study, referred to as HCREC, allows 
to predict conditional probability distribution of an exogenous variable (here: household 
equivalent income) based on values of endogenous variables (here: income correlates). 
First, the marginal distribution of the predicted variable is normalized to uniform 
distribution on [0, 1] using empirical distribution function ሺ𝑥 ൌ 𝐸𝐷𝐹ሺ𝑦ሻ ∈ ሾ0, 1 ሿሻ. 
Then a density of its conditional distribution is predicted as a linear combination of 
orthonormal polynomials using coefficients modelled as linear combinations of the 
remaining variables. Once the conditional density function is estimated, selected 
declared incomes (here: those below first quintile) may be replaced by the respective 
theoretical estimates. HCREC offers two advantages, as compared to a standard 
regression. First, due to employing high order polynomials instead of assuming a priori 
a functional form, it can fit virtually all types of distribution. Second, except conditional 
expected values, it is possible to estimate the entire probability distribution as well as 
a large set of the moments. For more technical details see Duda (2018), and Duda and 
Szulc (2018). For an empirical application in the measurement of social transfers impact 
on poverty see Duda and Szulc (2020). 
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3.2.  High incomes 

This type of correction utilises findings by Brzeziński et al. (2022), who estimated 
Pareto I distribution function using the tax data and then replaced top 1% or 5% of 
equivalent incomes by the predictions. Pareto I cumulative distribution function for 
income x is defined as follows: 

𝑥ᇱ ൌ 𝑥௠ ඥ1 െ 𝐹′ሺ𝑥ሻഀ  

where F’(x) represents a cumulative distribution function estimated using a whole 
sample of the survey data. 

3.3.  Comparing the survey and the corrected income distributions 

In the present study correction of the low incomes utilising  HCREC is principally 
applied to bottom 20%. The impact of corrections applied to alternative low ranges of 
the distribution (bottom 5%, 10%, 15% and 25%) is also investigated further and the 
results are reported in Table 4. Figure 2 displays differences in the density functions 
using the declared (survey) and the bottom corrected incomes. To make the plot more 
readable, the highest incomes are not included in the subsample. Similar comparisons, 
using cumulative distribution functions, made for top 1% and 5% corrected incomes 
are presented in Figures 3 and 4 for the survey equivalent incomes exceeding, 
approximately, 95th and 90th centiles. 

 

 
Figure 2.  Kernel density functions for the survey and the corrected monthly equivalent incomes 
 below 5000 PLN, 2015 data. 
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Figure 3.  Empirical cumulative distribution function for the survey and the imputed (top 1%) 
 monthly equivalent income, 2015 data. 

 
 
 

 
Figure 4.  Empirical cumulative distribution function for the survey and the imputed (top 5%) 
 monthly equivalent income, 2015 data. 
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Table 1 displays mean values of the survey and the corrected incomes in low and 
top ranges of the distribution for 2014 and 2015, in 2015 prices. Applied corrections 
raised enormously top 1% and 5% incomes, as compared to the declared ones: in 2014 
by 233%/79% and by 248%/85% in 2015. Increases among the poorest 20% were less 
massive: by 65% in 2014 and by 63% in 2015. Nevertheless, since much larger share of 
the nominally poor people this growth mitigated significantly the income inequality 
growth caused by rising the highest incomes. The final results of changes in the 
inequality are reported in the succeeding section. 

 
Table 1.  Changes in mean equivalent incomes due to bottom 20%, top 1% and top 5% corrections, 

2015 prices, PLN per month. 

Range 
Type of income 

Raw 
survey 

Top 1% 
corrected 

Top 5% 
corrected 

Bottom 20% 
corrected 

 2014 
Bottom 20% 696 - - 1148 

 (+65%) 
Top 1% 9054 30139 (+233%) 36895 (+307%) - 
Top 5% 5299 9510 

 (+79%) 
15002 (+183%) - 

 2015 
Bottom 20% 728 - - 1189 

 (+63%) 
Top 1% 9261 32198 (+248%) 37519 (+305%) - 
Top 5% 5379 9964 

 (+85%) 
15067  
(180%) 

- 

Legend: in parentheses growth rates, as compared to the survey incomes 
Source: own calculation based on the household budget survey. 

4.  Inequality in Poland after income imputations 

The final results on changes in the inequality indices are summarised in Table 2 
(top 1%) and Table 3 (top 5%). Similarly to comparisons made in the previous section, 
inequality indices (Gini, Theil, and 90/10 and 75/25 percentile ratios) are calculated 
using the raw survey incomes and those corrected at low and high ranges, separately 
and altogether. It should be noted that corrections of the top incomes are not exactly 
the same as those proposed by Brzeziński et al. (2022). This is due to the various 
weighting systems employed in both studies. The one applied in the present study uses 
the survey weights (the only available), while that of Brzeziński et al. utilises the tax 
information for that purpose. 
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Table 2.  Inequality indices for the survey and the corrected incomes: top 1% and bottom 20%. 

 
Raw survey income 

Area of income correction 

Top 1% Bottom 20% Both 

20
14

 

Gini 
0.308 0.382 0.263 0.339 

90/10 
3.89 3.89 2.85 2.85 

75/25 
1.98 1.98 1.77 1.77 

Theil 
0.175 0.455 0.135 0.403 

20
15

 

Gini 
0.303 0.382 0.258 0.338 

90/10 
3.79 3.79 2.78 2.78 

75/25 
1.95 1.95 1.75 1.75 

Theil 
0.171 0.470 0.132 0.416 

Source: own calculation based on the household budget survey. 

 
As might be expected, applying income correction to the bottom 20% (see Figure 2 

for detailed changes in the income distribution) reduces inequality, as compared to that 
calculated using the survey data only. Gini indices drop by, approximately, 15%. On the 
other hand, modifying top incomes increases Gini indices, up to 0.38 or by 25% (when 
top 1% incomes are corrected) and up to 0.45 or by 47-48% (top 5% incomes corrected). 
Applying both corrections simultaneously places Gini indices between both extremes 
but still well above, by 10-34%, those calculated with the use of the survey data only. 
Although the bottom corrections were applied to a larger portion of the sample, the top 
corrections resulted in much higher increases in the extreme incomes (see Figures 2-4). 
In a similar way changes in the incomes revised also the Theil index, however with 
a much higher magnitude. Final estimates raised as much as by 220%, which confirms 
empirically high sensitivity of this formula to extremes values (proved theoretically by 
Cowell and Flachaire, 2007). It is worth mentioning that the modifications of top 1% 
and even top 5% incomes left inequality measures based on the percentile ratios (75/25 
and 90/10) unchanged. This is because 75th and 90th centiles derived from the survey 
data are still below the values derived from the modified incomes. Correcting bottom 
incomes reduces inequality measures of that type and the amount of this reduction is 
greater for the 90/10 ratios. In Table 4, the impact of the area of the bottom incomes 
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corrections on inequality is examined by comparing Gini index for the following ranges 
of the distribution: 10%, 15%, 20%, and 25%, calculated together with top 1% and top 
5% corrections. As might be expected, the wider range of the bottom correction, the 
stronger the reducing effect, however the differences in the size of the changes are rather 
moderate: from 0.020 to 0.022. 

 

Table 3.  Inequality indices for the survey and the imputed incomes: corrections to top 5% and 
bottom 20%. 

 

Raw survey income 
Area of income correction 

Top 5% Bottom 20% Both 

20
14

 

Gini 
0.308 0.454 0.263 0.413 

90/10 
3.89 3.89 2.85 2.85 

75/25 
1.98 1.98 1.77 1.78 

Theil 
0.175 0.619 0.135 0.561 

20
15

 

Gini 
0.303 0.447 0.258 0.405 

90/10 
3.79 3.79 2.78 2.78 

75/25 
1.95 1.95 1.75 1.75 

Theil 
0.171 0.604 0.132 0.546 

Source: own calculation based on the household budget survey. 

 
Additionally, Theil indices are decomposed into between-group and within-group 

inequality. The following subgroups, created on the basis of the main source of the 
household income, are observed: 

 blue collar employees, 
 white collar employees, 
 farmers, 
 self-employed and those living on a property income, 
 retirement pensioners, 
 invalid pensioners, 
 living on social transfers. 
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Table  4.  Gini index sensitivity to the area of income correction. 

Survey 
income 

Area of income correction 
Top 1% and bottom: Top 5% and bottom: 

10% 15% 20% 25% 10% 15% 20% 25% 
 2014 

0.308 0.355 0.346 0.339 0.333 0.428 0.420 0.413 0.407 
 2015 

0.303 0.354 0.345 0.338 0.332 0.420 0.412 0.405 0.400 

Source: own calculation based on the household budget survey. 

 
A question about within- and between-group components of the overall inequality 

may be, less formally, translated into the question: which gap is, on average, larger – 
between a rich and a poor employee (say) or between an employee and a pensioner 
(say)? Probably in all similar calculations based on household incomes performed for a 
large variety of the countries, the within-group inequality is substantially higher than 
the between-group one. The present results2  definitely confirm this rule: depending on 
the type of income the within-group component ranges from 85% to 89% of the overall 
inequality. Lower values are obtained when the survey incomes and the incomes with 
corrections for bottom 20% only are used. When top 1% or top 5% corrections are 
applied, the within-group component rises to around 89%, irrespective of whether 
bottom 20% correction is applied or not. Rising highest incomes results in huge rises 
in the within-group inequality for all groups, however at certainly different paces. The 
largest increases may be observed for the farmers and the self-employed, which hardly 
can surprise. Not much smaller inequality increases in within-group inequality were 
experienced by the white collars households. Changing a type of the income left 
inequality rankings between groups nearly unaffected. 

5.  Conclusions and further studies 

The results of the present study only partly confirm findings by Brzeziński et al. 
(2022) on the serious underestimation of the Polish inequality indices. Corrections of 
the 2014 and 2015 survey income data applied to both tails of the distribution also 
results in inequality growth, however not so high and not for all types of inequality 
measures. Possible overestimation of the income inequality by Brzeziński et al. stems 
from restricting the survey income corrections to the highest ranges of the distribution 

                                                           
2 Since similarity of the outcomes for 2014 and 2015 only results for the latter year are reported. Detailed results 

are available upon request. 
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(top 1% and top 5%). Applying corrections also to the bottom tail of the distribution, 
which may be informally called making the “fake poor” non poor, leads to lower and 
probably more reliable estimates of the income inequality in Poland. Nevertheless, the 
final indices are still well above those calculated solely by means of the survey data  
(Gini index is higher by at least 10%) but also well below those calculated after 
correcting highest incomes only (Gini index is lower by at least 9%). 

Assuming better reliability of the corrected incomes than of the raw survey data, 
there is bad and good news. Potentially bad news is a rise in the inequality in Poland, as 
compared to that based on the survey data. Good news is that the rise in the inequality 
measures is due to an upward correction of the high incomes (“making the rich more 
rich”), not due to a downward correction of the low incomes (“making the poor more 
poor”). One more good news is a reduction of the poverty incidence and depth 
estimates, due to income corrections applied to the bottom ranges of the distribution 
(see Duda and Szulc, 2020). Less sizable growth in income disparities put partly 
in question Brzeziński’s et al. (2022) hypothesis on impact of inequality perception by 
the voters on the results of 2015 election in Poland. Moreover, applying income 
corrections to both tails of the distribution even decreased inequality measures defined 
as extreme percentile ratios (75/25 and 90/10). The question which measures of 
inequality, the latter ones or Gini indices, are better proxies to inequality perception is 
another issue worth further research. One more argument against the hypothesis under 
consideration may be pronounced referring to 2015 election campaign. The winner’s 
(Law and Justice) rhetoric was rather pro-poor than anti-rich (with two exceptions: 
they announced increased taxation for banks and foreign hypermarkets, see Prawo 
i Sprawiedliwość, 2015). Informally speaking, the future government promised to be 
Santa Claus rather than Robin Hood. 

Another point worth consideration is the source of income growths estimated for 
some rich people. As pointed out by Brzeziński et al. (2022), it followed a substantial 
reduction of the personal income tax progressivity. Without deciding whether this 
growth itself was advantageous or not, the recent changes in the tax system in Poland, 
referred to as Polish Deal (“Polski Ład”), started in 1st January 2022 make room for 
further studies in this field. The declared features of those changes are, inter alia: 
a minor increase in a tax burden for the richest people and an enlargement of tax 
exemptions for (at least) the less privileged groups. Another relevant reform introduced 
by the government after 2015 is a reconstruction of the system of social cash transfers. 
In April 2016 the family support program, referred to as “Family 500+”, was launched. 
Its principal details may be found in Brzeziński and Najsztub (2017) and in Michoń 
(2021). It ensures monthly unconditional support of tax-free 500 PLN (26% of mean 
equivalent income in 2016) per each child in families with two or more children and 
means tested support of same amount for families with one child. The transfers to 
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families with children resulted, inter alia, in reduction of Gini index for equivalent 
incomes between 2015 and 2017 by 9%, using survey data only. It seems, however, that 
Family 500+ cash transfers had no impact on underreporting incomes in the household 
surveys3. 

Acknowledgement 

The author is grateful to Jarosław Duda for providing the estimates of imputed 
incomes obtained by means of the hierarchical correlation reconstruction and for 
a fruitful discussion. All remaining errors are solely the responsibility of the author. 

References 

Altman, E. I., (1968). Financial Ratios, Discriminant Analysis and the Prediction of the 
Corporate Bankruptcy. The Journal of Finance, Vol. 23, pp. 589–609. 

Bartels, C., Metzing, M., (2019). An integrated approach for a top-corrected income 
distribution. Journal of Economic Inequality, Vol. 17, pp. 125–143. 

Blanchet, T., Flores, I. and Morgan, M., (2018). The weight of the rich: Improving 
surveys using tax data. WID.world Working Paper Series No. 2018/12,  

 World Inequality Lab, retrieved from 
https://pdfs.semanticscholar.org/71d4/c87af7224d185bdd9adee4ea22fcd1edc879.pdf 

Brzeziński, M., Myck, M. and Najsztub, M., (2022). Sharing the gains of transition: 
Evaluating changes in income inequality and redistribution in Poland using 
combined survey and tax return data, forthcoming in European Journal of Political 
Economy. 

Brzeziński, M., Najsztub, M., (2017). The impact of “Family 500+ programme on 
household incomes, poverty and inequality. Polityka Społeczna, Vol. 44, pp. 16–25. 

Bussolo, M., Ferrer‐I‐Carbonell, Giolbas, A. and Torre, I., (2021). I perceive therefore 
I demand: the formation of inequality perceptions and demand for redistribution, 
Review of Income and Wealth, Vol. 67, pp. 835–871. 

Cleveland, W. S., (1979). Robust locally weighted regression and smoothing 
scatterplots. Journal of the American Statistical Association, Vol. 74, pp. 829–836. 

Cowell, F. A., Flachaire, E., (2007). Income distribution and inequality measurement: 
The problem of extreme values. Journal of Econometrics, Vol. 141, pp. 1044–1072. 

                                                           
3  Preliminary, not published findings available upon request. 



STATISTICS IN TRANSITION new series, September 2022 

 

93

Davern, M. E., Meyer, B. D. and Mittag, N. K., (2019). Creating improved survey data 
products using linked administrative-survey data. Journal of Survey Statistics and 
Methodology, Vol. 7, pp. 440–463. 

Duda, J., (2018). Hierarchical correlation reconstruction with missing data, arXiv 
preprint, arXiv:1804.06218, retrieved from: https://arxiv.org/abs/1804.06218 

Duda, J., Szulc, A., (2018). Credibility evaluation of income data with hierarchical 
correlation reconstruction, arXiv: 1812.08040, retrieved from: 
https://arxiv.org/abs/1812.08040 

Duda, J., Szulc, A., (2020). Social benefits versus monetary and multidimensional 
poverty in Poland: imputed income exercise. In: Tsounis, N., Vlachvei, A. (eds.) 
Advances in cross-section data methods in applied economic research. ICOAE 
2019. Springer Proceedings in Business and Economics. Springer. 

Główny Urząd Statystyczny  Statistics Poland, (2015). Budżety gospodarstw 
domowych  Household budget survey, Warsaw. 

Hlasny, V., Ceriani, L. and Verme, P., (2022)., Bottom incomes and the measurement 
of poverty and inequality, forthcoming in Review of Income and Wealth. 

Jenkins, S. P., (2017). Pareto models, top incomes and recent trends in UK income 
inequality. Economica, Vo. 84, pp. 261–289. 

Kasprzyk, D., (2005). Measurement error in household surveys: sources and 
measurement, in: Household Sample Surveys in Developing and Transition 
Countries, United Nations, New York. 

Kośny, M., (2019). Upper tail of the income distribution in tax records and survey data. 
Evidence from Poland. Argumenta Oeconomica, Vol. 42, pp. 55–80. 

Lepkowski, J., (2005). Non-observation error in household surveys in developing 
countries, in: Household Sample Surveys in Developing and Transition Countries, 
United Nations, New York. 

Medeiros, M., De Castro Galvão, J. and De Azevedo Nazareno, L., (2018). Correcting 
the underestimation of top incomes: Combining data from income tax reports and 
the Brazilian 2010 census. Social Indicators Research, Vol. 135, pp. 233–244. 

Michoń, P., (2021). Deservingness for "Family 500+" Benefit in Poland: Qualitative 
Study of Internet Debates, Social Indicators Research, Vol. 157, pp. 203–223. 

Moore, J. C., Stinson, L. L. and Welniak, E. J., (2000). Income measurement error in 
surveys: A review. Journal of Official Statistics, Vol. 16, pp. 331–361. 



94                                                                            A. Szulc: Polish inequality statistics reconsidered: are the… 

 

 

Nicoletti, C., Peracchi, F. and Foliano, F., (2011). Estimating income poverty in the 
presence of missing data and measurement error. Journal of Business and Economic 
Statistics, Vol. 29, pp. 61–72. 

Prawo i Sprawiedliwość – Law and Justice, (2015). Myśląc Polska 2015, proceedings of 
the conference, retrieved from: http://pis.org.pl/dokumenty?page=2 

Panek, T., (2006). Multidimensional fuzzy relative poverty dynamic measures in Poland. 
In: Lemmi, A. and G. Betti (eds.), Fuzzy Set Approach to Multidimensional Poverty 
Measurement, Springer. 

Pudney, S., Francavilla, F., (2006). Income mis-measurement and the estimation of 
poverty rates. An analysis of income poverty in Albania. ISER Working Paper 2006–
35. Colchester: University of Essex, retrieved from: 
https://www.iser.essex.ac.uk/research/publications/working-papers/iser/2006-
35.pdf 

 



STATISTICS IN TRANSITION new series, September 2022 
Vol. 23 No. 3, pp. 95–112, DOI 10.2478/stattrans-2022-0032 
Received – 31.01.2020; accepted – 31.01.2022 

New polynomial exponential distribution:  
properties and applications 

Abdelfateh Beghriche1, Halim Zeghdoudi2, Vinoth Raman3,  
Sarra Chouia4 

ABSTRACT 

The study describes the general concept of the XLindley distribution. Forms of density and 
hazard rate functions are investigated. Moreover, precise formulations for several numerical 
properties of distributions are derived. Extreme order statistics are established using 
stochastic ordering, the moment method, the maximum likelihood estimation, entropies 
and the limiting distribution. We demonstrate the new family's adaptability by applying it 
to a variety of real-world datasets. 
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1. Introduction

Statistical models can be used to describe and predict real-world events. In recent
years, a variety of distributions have been employed for data modelling in a variety of 
domains. Recent advances have centred on establishing new families that extend well-
known distributions while still allowing for a great deal of flexibility in data modelling 
in practice. Several distributions have been proposed in the statistical literature to 
modify lifetime data, including the Lindley, exponential, gamma, Weibull, Zeghdoudi, 
and Xgamma distributions. 
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In this paper, we investigate a new polynomial exponential family that includes the 
distributions of XLindley and Xgamma, as well as Zeghdoudi as special instances, 
to introduce a new family of single-parameter continuous distributions. The existing 
literature on modelling survival data, biological sciences, and actuarial sciences will 
benefit from this new family of distributions. 

Assume X is a random variable with values in the range [0, ∞], and the distribution 
of X depends on an indeterminate parameter θ with values in the range [0, ∞]. The 
distribution of X can be absolutely continuous or discrete. The distribution of X is a new 
one-parameter polynomial exponential family and the probability density function is 
expressed as 

𝑓ே௉ா஽ሺx, θሻ ൌ
௉ሺ௫,ఏሻ௘షഇೣ

∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ

;   𝑥, θ ൐ 0                                    (1) 

where 𝑃ሺ𝑥,𝜃ሻ ൌ ∑ 𝑎௞,ఏ𝑥௞
௡
௞ୀ଴  , and 𝑎௞,ఏ depend on 𝑘 and θ. 

The following is the format of this research paper: 

Section 2 covers the survival and hazard rate functions, moments stochastic orders, 
mean deviations, extreme domain of attraction, constraint force estimate parameter, 
the Lorenz curve, and entropies of the new polynomial exponential distribution 
(NPED). Sections 3 and 4 look at estimating maximum likelihood distribution 
parameters and inferring a random sample from the XLindley and Xgamma 
distributions. Finally, various real-world applications demonstrate the superior 
performance of the XLindley and Xgamma distributions, two special examples of the 
(NPED) family, as compared to the exponential, Lindley, Zeghdoudi, and exponential 
distributions. 

2.  Statistical and reliability measures of some properties of NPED 
distribution 

We present some key statistical and reliability measures, as well as various NPED 
features, in this section. 

2.1.  Density and distribution functions  

The first derivative of 𝑓ே௉ா஽: 
ௗ

ௗ௫
𝑓ே௉ா஽ሺx,θሻ ൌ

ሾ൫௔భ,ഇିఏ௔బ,ഇ൯ା⋯ା൫௡௔೙,ഇିఏ௔೙షభ,ഇ൯௫೙షభା௔೙,ഇ௫೙ሿ௘షഇೣ

∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ

ൌ 0           (2) 

gives 1 2, ,...., nx x x  solutions. 
The NPED cumulative distribution function (CDF) is derived in (3). 

𝐹ே௉ா஽ሺxሻ ൌ 1 െ
∑

ೌೖ,ഇ౳ሺೖశభ,ೣഇሻ

ഇೖశభ
೙
ೖసబ

∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ

;  𝑥, θ ൐ 0                                       (3) 
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2.2.  Survival and hazard rate functions  

𝑆ே௉ா஽ሺxሻ ൌ 1െ𝐹ே௉ா஽ሺxሻ ൌ
∑

ೌೖ,ഇ౳ሺೖశభ,ೣഇሻ

ഇೖశభ
೙
ೖసబ

∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ

 ;   𝑥, θ ൐ 0                        (4) 

ℎே௉ா஽ሺxሻ ൌ
௙ಿ ುಶವሺ௫ሻ

ଵିிಿ ುಶವሺ௫ሻ
ൌ

∑ ௔ೖ,ഇ௫ೖ௘షഇೣ
೙
ೖసబ

∑
ೌೖ,ഇ౳ሺೖశభ,ೣഇሻ

ഇೖశభ
೙
ೖసబ

  ;   𝑥, θ ൐ 0                            (5) 

Let equation (4) and (5) be the survival and hazard rate function, respectively. 

 
Proposition 1. Let ℎఏሺxሻbe the hazard rate function of X . Then, ℎఏሺxሻ is increasing 
for: 

෍ሺ𝑘 ൅ 1ሻሺ𝑚 െ 2𝑘ሻ𝑎௠ି௞,ఏ𝑎௞ାଵ,ఏ ൒ 0,𝑚 ൌ 0, … … . ,2𝑛 െ 1

௡

௞ୀ଴

. 

Proof. According to Glaser (1980) and from the density function (2) we have: 

𝜌ሺ𝑥ሻ ൌ െ
௙ᇲಿುಶವሺ௫;ఏሻ

௙ಿ ುಶವሺ௫;ఏሻ
ൌ െ

∑ ௞௔ೖ,ഇ௫ೖషభ
೙
ೖసభ

∑ ௔ೖ,ഇ௫ೖ
೙
ೖసబ

൅ 𝜃.                                    (6) 

After simple computations, we obtain: 

𝜌ᇱሺ𝑥ሻ ൌ
∑ ∑ ሺ௞ାଵሻሺ௠ିଶ௞ሻ௔೘షೖ,ഇ௔ೖశభ,ഇ௫೘షభ೘

ೖసబ
మ೙
೘సబ

ሺ∑ ௔ೖ,ഇ௫ೖ
೙
ೖసబ ሻమ

൅ 𝜃                            (7) 

Which implies that ℎఏሺxሻis increasing for: 

෍ሺ𝑘 ൅ 1ሻሺ𝑚 െ 2𝑘ሻ𝑎௠ି௞,ఏ𝑎௞ାଵ,ఏ ൒ 0,𝑚 ൌ 0, … … . ,2𝑛 െ 1

௡

௞ୀ଴

 

2.3.  Moments and related measures 

The 𝑘௧௛ moment about the origin of 𝑁𝑃𝐸𝐷 is: 

𝐸൫𝑋௜൯ ൌ
∑

ೌೖ,ഇሺೖశ೔శభሻ!

ഇೖశ೔శభ
೙
ೖసబ

∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ

; 𝑖 ൌ 1,2, ….                                       (8) 

Corollary 1. Let 𝑋~𝑁𝑃𝐸𝐷ሺ𝜃ሻ, the mean of 𝑋 is: 

𝐸ሺ𝑋ሻ ൌ
∑

ೌೖ,ഇሺೖశభሻ!

ഇೖశమ
೙
ೖసబ

∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ

   .                                                              (9) 

Theorem 1. Let 𝑋~𝑁𝑃𝐸𝐷ሺ𝜃ሻ, 𝑚𝑒 ൌ 𝑚𝑒𝑑𝑖𝑎𝑛ሺ𝑋ሻand 𝜇 ൌ 𝐸ሺ𝑋ሻ. Then, 𝑚𝑒 ൏ 𝜇. 

Proof. According to the increasing of 𝐹ሺ𝑋ሻ for all 𝑥 and 𝜃. 

𝐹ே௉ா஽ሺ𝑚𝑒ሻ ൌ
1
2
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and  
𝐹ே௉ா஽ሺ𝜇ሻ ൌ 1 െ ℎሺ𝜃ሻ∑

௔ೖ,ഇ୻ቀ௞ାଵ,ఏ௛ሺఏሻ∑ ௔ೖ,ഇ
ሺೖశభሻ!

ഇೖశమ
೙
ೖసబ ቁ

ఏೖశభ
௡
௞ୀ଴ . 

Note that ଵ
ଶ
൏ 𝐹ሺ𝜇ሻ ൏ 1. It is easy to check that 𝐹ሺ𝑚𝑒ሻ ൏ 𝐹ሺ𝜇ሻ. At the other end 

we have 𝑚𝑒 ൏ 𝜇. 

2.4.  Stochastic orders 

Definition 1. Consider two random variables X and Y. X is said to be smaller than 𝑌  in the:  
a)  Stochastic order 𝑋 ≺ௌ 𝑌if   𝐹௑ሺ𝑡ሻ ൒ 𝐹௒ሺ𝑡ሻ,∀𝑡. 
b)  Convex order 𝑋 ≺஼௑ 𝑌 Nif for all convex functions Φ and provided expectation 

 exist,𝐸ሾΦሺ𝑋ሻሿ ൑ 𝐸ሾΦሺ𝑌ሻሿ. 
c)  Hazard rate order 𝑋 ≺௛௥ 𝑌, if  ℎ௑ሺ𝑡ሻ ൒ ℎ௒ሺ𝑡ሻ,∀𝑡. 
d)  Likelihood ratio order 𝑋 ≺௟௥ 𝑌, if ௙೉ሺ௧ሻ

௙ೊሺ௧ሻ
 is decreasing in t.  

Remark 1. Likelihood ratio order⇒Hazard rate order⇒Stochastic order. 
If E (X) = E (Y), then convex order⇔stochastic order. 

Theorem 2. Let 𝑋௜~𝑁𝑃𝐸𝐷ሺ𝜃௜ሻ𝑖 ൌ 1,2 be two random variables. If 𝜃ଵ ൒ 𝜃ଶ, 
then 𝑋ଵ ≺௟௥ 𝑋ଶ,𝑋ଵ ≺௛௥ 𝑋ଶ,𝑋ଵ ≺ௌ 𝑋ଶ. 

Proof. We have: 
௙೉భሺ௧ሻ

௙೉మሺ௧ሻ
ൌ

∑ ௔ೖ,ഇ
ሺೖశభሻ!

ഇమ
ೖశమ

೙
ೖసబ

∑ ௔ೖ,ഇ
ሺೖశభሻ!

ഇభ
ೖశమ

೙
ೖసబ

𝑒ିሺఏభିఏమሻ.                                       (11) 

For simplification, we use ln ሺ
௙೉భሺ௧ሻ

௙೉మሺ௧ሻ
ሻ. Now, we can find 

ௗ

ௗ௧
ln ൬

௙೉భሺ௧ሻ

௙೉మሺ௧ሻ
൰ ൌ െሺ𝜃ଵ െ 𝜃ଶሻ. 

To this end, if 𝜃ଵ ൒ 𝜃ଶ,, we have 
ௗ

ௗ௧
ln ൬

௙೉భሺ௧ሻ

௙೉మሺ௧ሻ
൰ ൑0. This means that 𝑋ଵ ≺௟௥ 𝑋ଶ. Also, 

according to Remark 1 the theorem is proved. 

2.5.  Mean deviations 

These are two mean deviations: about Mean and Median, defined as: 
𝑀𝐷ଵ ൌ ׬ |𝑥 െ 𝜇|ஶ

଴ 𝑓ሺ𝑥ሻ𝑑𝑥 and 𝑀𝐷ଶ ൌ ׬ |𝑥 െ 𝑚𝑒|ஶ
଴ 𝑓ሺ𝑥ሻ𝑑𝑥  respectively, 

where         𝜇 ൌ 𝐸ሺ𝑋ሻ and 𝑚𝑒 ൌ 𝑀𝑒𝑑𝑖𝑎𝑛ሺ𝑋ሻ.  
The measures 𝑀𝐷ଵ and 𝑀𝐷ଶ can be computed using the following simplified 

formulas: 
𝑀𝐷ଵ ൌ 2𝜇𝐹ሺ𝜇ሻ െ 2න 𝑥𝑓ሺ𝑥ሻ

ఓ

଴
𝑑𝑥 

𝑀𝐷ଶ ൌ 𝜇 െ 2න 𝑥𝑓ሺ𝑥ሻ
௠௘

଴
𝑑𝑥 
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2.6.  Extreme domain of attraction 

As to the extreme value stability, the 𝐹ே௉ா஽is in the Gumbel extreme value domain 
of attraction, that is, there exist two sequences ሺ𝑎௡ሻ௡ஹ଴ and ሺ𝑏௡ሻ௡ஹ଴of real numbers 
such that for any 𝑥𝜖𝑅, we have 

lim
 ௫→ାஶ

𝑃 ൬
ெ೙ି௕೙,ഇ

௔೙,ഇ
൑ 𝑥൰ ൌ lim

௫→ାஶ
𝐹ே௉ா஽൫𝑎௡,ఏ𝑥 ൅ 𝑏௡,ఏ൯

௡
ൌ 𝑒ሺି௘

షೣሻ                 (12) 

This follows from Formula 1.2.4 in theorem 1.2.1 (Laurens de Haan, Ana Ferreira 
(2006)) since we have 

lim
௧→ାஶ

1 െ 𝐹ே௉ா஽ሺ𝑡 ൅ 𝑥𝑓ሺ𝑡ሻሻ
1 െ 𝐹ே௉ா஽ሺ𝑡ሻ

ൌ lim
௧→ାஶ

𝑓ே௉ா஽ሺ𝑡 ൅ 𝑥𝑓ሺ𝑡ሻሻ
𝑓ே௉ா஽ሺ𝑡ሻ

 

              ൌ lim
௧→ାஶ

∑ ௔ೖ,ഇሺ௧ା௫௙ሺ௧ሻሻೖశభ
೙
ೖసబ ௘షഇሺ೟శೣ೑ሺ೟ሻሻ

∑ ௔ೖ,ഇ
೙
ೖసబ ௧ೖశభ௘ሺషഇ೟ሻ

ൌ 𝑒ି௫                                            (13) 

(Such formula is called  -variation). Then, 𝐹ே௉ா஽ lies in the Gumbelextreme domain 
of attraction. In his case, 𝑓ሺ𝑡ሻ ൌ ଵ

ఏ
. 

So, for (as in the invoked theorem)      𝑎௡,ఏ ൌ 𝑓 ൬𝐹ିଵே௉ா஽ ቀ1 െ
ଵ

௡
ቁ൰ ൌ

ଵ

ఏ
     and   𝑏௡,ఏ ൌ 𝐹ିଵ

ே௉ா஽
ቀ1 െ

ଵ

௡
ቁ, we have: 

lim
௫→ାஶ

𝐹ே௉ா஽൫𝑎௡,ఏ𝑥 ൅ 𝑏௡,ఏ൯
௡
ൌ 𝑒ሺି௘

షೣሻ 

2.7.  Estimation of the Stress-Strength Parameter and Lorenz curve 

Because it evaluates the system performance, the stress-strength parameter (R) is 
crucial in the reliability analysis. Furthermore, R indicates the likelihood of a system 
failure; the system breaks when the applied stress exceeds its strength, i.e. 

 𝑅 ൌ 𝑃ሺ𝑋 ൐ 𝑌ሻ. Here, 𝑋~𝑁𝑃𝐸𝐷ሺ𝜃ଵሻ, denotes the strength of a system subject to 
stress Y, and 𝑌~𝑁𝑃𝐸𝐷ሺ𝜃ଶሻ,, X and Y are independent of each other. In our case, the 
stress-strength parameter R is given by: 

𝑅 ൌ 𝑃ሺ𝑋 ൐ 𝑌ሻ ൌ න 𝑆௑ሺ𝑦ሻ𝑓௒ሺ𝑦ሻ𝑑𝑦
ஶ

଴
 

ൌ
׬ ∑ ௔ೖ,ഇ୻ሺ௞ାଶ,௬ఏభሻ

ఏభ
ೖశమ

௡
௞ୀ଴

ஶ
଴

∑ 𝑎௞,ఏy௞ାଵ𝑒ሺିఏమ௬ሻ𝑑𝑦௡
௞ୀ଴

ሺ∑ 𝑎௞,ఏ
ሺ௞ାଵሻ!

ఏభ
ೖశమ ሻ

௡
௞ୀ଴ ሺ∑ 𝑎௞,ఏ

ሺ௞ାଵሻ!

ఏమ
ೖశమ ሻ

௡
௞ୀ଴
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The Lorenz curve is a well-known way of describing income and wealth 
distributions. The graph of the ratio is the Lorenz curve for a positive random 
variable 𝑋. Against 𝐹ሺ𝑥ሻwith the properties 𝐿ሺ𝑝ሻ ൑ 𝑝, 𝐿ሺ0ሻ ൌ 0and 𝐿ሺ1ሻ ൌ 1. If 
𝑋 represents annual income, 𝐿ሺ𝑝ሻ is the proportion of total income that accrues to 
individuals with the 100%𝑝 lowest incomes. 

If all individuals earn the same income then 𝐿ሺ𝑝ሻ ൌ 𝑝 for all 𝑝. The area between 
the line 𝐿ሺ𝑝ሻ ൌ 𝑝 and the Lorenz curve can be used to calculate income inequality or, 
more broadly, the variability of 𝑋. The Lorenz curve is well known for the exponential 
distribution and is given by: 

𝐿ሺ𝑝ሻ ൌ 𝑝ሼ𝑝 ൅ ሺ1 െ 𝑝ሻ logሺ1 െ 𝑝ሻሽ 

For the 𝑁𝑃𝐸𝐷 distribution in (3), 

𝐸ሺ𝑋 𝑋⁄ ൑ 𝑥ሻ𝐹ே௉ா஽ሺ𝑥ሻ∑ 𝑎௞,ఏ
ሺ௞ାଶሻ!

ఏೖశయ
௡
௞ୀ଴ ሺ

ଵି∑
ೌೖ,ഇ౳ሺೖశమ,ೣഇሻ

ഇೖశమ
ሻ೙

ೖసబ

ሺ∑ ௔ೖ,ഇ
ሺೖశభሻ!

ഇೖశమ
ሻ೙

ೖసబ

మ              (14) 

2.8.  Entropies 

It is commonly understood that entropy and information can be used to calculate 
the degree of uncertainty in a probability distribution. However, many correlations 
have been created based on the features of entropy. 
The entropy of a random variable 𝑋 is a measure of the uncertainty's variation. The 
entropy of Rényi is defined as: 

𝐽ሺ𝛾ሻ ൌ
1

1 െ 𝛾
log ሼන 𝑓ఊሺ𝑥ሻ

ஶ

଴
𝑑𝑥ሽ 

where 𝛾 ൐ 0  and 𝛾 ് 1. For the 𝑁𝑃𝐸𝐷 distribution in (2), note that for 𝛾 integer we 
have: 

න𝑓ே௉ா஽
ఊሺ𝑥ሻ𝑑𝑥 ൌ

∑ሺ׬ 𝑎௞,ఏ𝑥௞ሻ
௡
௞ୀ଴

ఊ
𝑒ሺିఏఊ௫ሻ𝑑𝑥

ሺ∑ 𝑎௞,ఏ
௞!

ఏೖశభ
௡
௞ୀ଴ ሻఊ

 

ൌ
∑ 𝑏௞,ఏሺ𝛾ሻ ׬ 𝑥௞ఊ
௡
௞ୀ଴ 𝑒ሺିఏఊ௫ሻ𝑑𝑥

ሺ∑ 𝑎௞,ఏ
௞!

ఏೖశభ
௡
௞ୀ଴ ሻఊ

 

where: ׬𝑥௞ఊ 𝑒ሺିఏఊ௫ሻ𝑑𝑥 ൌ െ
ଵ

ሺఏఊሻೖംశభ
Γሺ𝑘𝛾 ൅ 1, 𝑥𝛾𝜃ሻ and 𝑏௞,ఏሺ𝛾ሻ in function 

𝑎௞,ఏ and 𝛾. Now, the Rényi entropy is given by: 

𝐽ሺ𝛾ሻ ൌ
ଵ

ଵିఊ
log൭

∑ ௕ೖ,ഇሺఊሻ
ሺೖംሻ!౳ሺೖംశభሻ

ሺഇംሻೖംశభ
೙
ೖసబ

ቀ∑ ௔ೖ,ഇ
ೖ!

ഇೖశభ
೙
ೖసబ ቁ

൱                                     (15) 



STATISTICS IN TRANSITION new series, September 2022 

 

101

2.9. Estimation and inference 

Let 𝑋ଵ, … …𝑋௡ be a random sample of 𝑁𝑃𝐸𝐷. The ln-likelihood function 
𝑙𝑛𝑙ሺ𝑥௜;𝜃ሻ is given by: 

𝑙𝑛𝑙ሺ𝑥௜; 𝜃ሻ ൌ 𝑛𝑙𝑛ℎሺ𝜃ሻ ൅ ∑ ln ሺ∑ 𝑎௞,ఏ𝑥௜௞ሻ െ 𝜃 ∑ 𝑥௜
௡
௜ୀଵ

௠
௞ୀ଴

௡
௜ୀଵ           (16) 

The derivative of 𝑙𝑛𝑙ሺ𝑥௜; 𝜃ሻ with respect to 𝜃 is: 

𝑙𝑛𝑙ሺ𝑥௜;𝜃ሻ

𝑑𝜃
ൌ
𝑛ℎሶ ሺ𝜃ሻ
ℎሺ𝜃ሻ

൅෍
𝑝ሶሺ𝑥௜ ,𝜃ሻ
𝑝ሺ𝑥௜ ,𝜃ሻ

௡

௜ୀଵ

െ෍𝑥௜

௡

௜ୀଵ

 

The Method of Moments (MoM) and Maximum Likelihood (ML) estimators of the 
parameter are the same after using 𝑵𝑷𝑬𝑫 (16), and they may be found by solving the 
following non-linear equation: 

ℎሶ ሺ𝜃ሻ
ℎሺ𝜃ሻ

൅
1
𝑛
෍

𝑝ሶሺ𝑥௜ ,𝜃ሻ
𝑝ሺ𝑥௜ ,𝜃ሻ

௡

௜ୀଵ

െ 𝑥̅ ൌ 0 

where:  

ℎሶ ሺ𝜃ሻ ൌ
𝑑ℎሺ𝜃ሻ
𝑑𝜃

 𝑎𝑛𝑑 𝑝ሶሺ𝜃ሻ ൌ
𝑑𝑝ሺ𝜃ሻ
𝑑𝜃

 

ℎሺ𝜃ሻሾ∑
௞!

ఏೖశమ
൫𝑎௞,ఏሺ𝑘 ൅ 1ሻ െ 𝑎௞,ఏሶ 𝜃൧ ൅

ଵ

௡
∑ ௣ሶሺ௫೔,ఏሻ

௣ሺ௫೔,ఏሻ
௡
௜ୀଵ െ 𝑥̅ ൌ 0                    ௠

௞ୀ଴ (17) 

Although this equation is difficult to answer, we can consider a specific scenario 

in which, 𝑝ሺ𝑥௜ ,𝜃ሻ ൌ ሺ2 ൅ 𝜃 ൅ 𝑥௜ሻ 𝑎𝑛𝑑 ℎሺ𝜃ሻ ൌ
ఏమ

ሺଵାఏሻమ
. This case will be studied 

in Section 3. 

3.  XLindley distribution and some properties 

In this section, we present the XLindley (XL) distribution, which belongs to the new 
polynomial exponential family of distributions. 

A random variable X is said to possess an XL distribution if it has the following 
form: 

𝑓௑௅ሺ𝑥; 𝜃ሻ ൌ
ఏమሺଶାఏା௫ሻ

ሺଵାఏሻమ
𝑒ିఏ௫        𝑥,𝜃 ൐ 0                                    (18) 

Note that the XL distribution is a member of the new polynomial exponential 
family where 𝑛 ൌ 1,𝑎଴,ఏ ൌ 2 ൅ 𝜃,𝑎ଵ,ఏ ൌ 1using formula (1). Therefore, the mode of 
XL is given by 

𝑚𝑜𝑑𝑒ሺ𝑋ሻ ൌ െ
ఏమାଶఏିଵ

ఏ
 𝑓𝑜𝑟  𝑥, 0 ൏ 𝜃 ൏ √2 െ 1                            (19) 
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We can find easily the CDF of the XL distribution 

𝐹௑௅ሺ𝑥; 𝜃ሻ ൌ 1 െ ቀ1 ൅
ఏ௫

ሺଵାఏሻమ
ቁ 𝑒ିఏ௫        𝑥,𝜃 ൐ 0                             (20) 

 

  
Figure.1.  Plots of the density function for some 

parameter values of 𝜃 
Figure.2. Plots of the cumulative function for 

some parameters values of 𝜃 

 

3.1.  Survival and hazard rate function 

For a continuous distribution, the survival function and the failure rate (hazard 
rate) functions are defined as: 

𝑆௑௅ሺ𝑥; 𝜃ሻ ൌ 1 െ 𝐹ூ௑௅ሺ𝑥;𝜃ሻ ൌ ሺ1 ൅
ఏ௫

ሺଵାఏሻమ
ሻ𝑒ିఏ௫      𝑥,𝜃 ൐ 0                    (21) 

ℎ௑௅ሺ𝑥;𝜃ሻ ൌ
௙ᇲ೉ಽሺ௫;ఏሻ

ଵିி೉ಽሺ௫;ఏሻ
ൌ

ఏమሺ௫ାఏାଶሻ

ሺଵାఏሻమାఏ௫
        𝑥,𝜃 ൐ 0                          (22) 

Let equation (21) and (22) be the survival and hazard rate function, respectively. 

 
Proposition 2. Let XLh be the hazard rate function of X. Then, XLh  is increasing. 
Proof. According to Glaser (1980) and from the density function (18): 

𝜌ሺ𝑥ሻ ൌ െ
𝑓ᇱ௑௅ሺ𝑥ሻ

𝑓௑௅ሺ𝑥;𝜃ሻ
ൌ
𝑥𝜃 ൅ 𝜃ଶ െ 2𝜃 െ 1

𝑥 ൅ 𝜃 ൅ 2
 

 
It follows that: 

𝜌ᇱሺ𝑥ሻ ൌ
1

ሺ𝑥 ൅ 𝜃 ൅ 2ሻଶ
 

Imply that XLh is increasing. 



STATISTICS IN TRANSITION new series, September 2022 

 

103

3.2.  Moments and related measures 

The 𝑟௧௛ moment about the origin of the XLindley distribution can be obtained as: 

𝜇௥ᇱ ൌ 𝐸ሺ𝑋௥ሻ ൌ න 𝑥௥
ஶ

଴
𝑓௑௅ሺ𝑥ሻ𝑑𝑥 

ൌ න 𝑥௥
ஶ

଴

𝜃ଶሺ2 ൅ 𝜃 ൅ 𝑥ሻ
ሺ1 ൅ 𝜃ሻଶ

𝑒ିఏ௫𝑑𝑥 

𝜃ଶ

ሺ1 ൅ 𝜃ሻଶ
න 𝑥௥
ஶ

଴
ሺ2 ൅ 𝜃 ൅ 𝑥ሻ𝑒ିఏ௫𝑑𝑥 

Finally, using gamma integral and little algebraic simplification, we get a general 
expression for the 𝑟௧௛ factorial moment of XL distribution as: 

𝜇௥ᇱ ൌ
ሺఏమାଶఏା௥ାଵሻ௥!

ሺଵାఏሻమఏೝ
                                                (23) 

The first four moments can be derived by substituting 𝑟 ൌ 1; 2; 3 and 4 in (23), and 
then using the relationship between moments about origin and moments about mean, 
the first four moments about origin of the XL distribution may be obtained as follows: 

𝜇ଵ
ᇱ ൌ

ሺ𝜃ଶ ൅ 2𝜃 ൅ 2ሻ
ሺ1 ൅ 𝜃ሻଶ𝜃

ൌ
ሺ1 ൅ 𝜃ሻଶ ൅ 1
ሺ1 ൅ 𝜃ሻଶ𝜃

ൌ
1
𝜃
൅

1
ሺ1 ൅ 𝜃ሻଶ𝜃

 

𝜇ଶ
ᇱ ൌ

2ሺ𝜃ଶ ൅ 2𝜃 ൅ 3ሻ
ሺ1 ൅ 𝜃ሻଶ𝜃ଶ

 

𝜇ଷ
ᇱ ൌ

6ሺ𝜃ଶ ൅ 2𝜃 ൅ 4ሻ
ሺ1 ൅ 𝜃ሻଶ𝜃ଷ

 

𝜇ସ
ᇱ ൌ

24ሺ𝜃ଶ ൅ 2𝜃 ൅ 5ሻ
ሺ1 ൅ 𝜃ሻଶ𝜃ସ

 

Let 𝑋~𝑋𝐿ሺ𝜃ሻ, the mean, variance for X be: 

𝜇ଵ
ᇱ ൌ 𝐸ሺ𝑋ሻ ൌ

ሺଵାఏሻమାଵ

ሺଵାఏሻమఏ
                                                (24) 

𝐸ሺ𝑋ଶሻ ൌ
2ሺ𝜃ଶ ൅ 2𝜃 ൅ 3ሻ
ሺ1 ൅ 𝜃ሻଶ𝜃ଶ

 

𝜇ଶ ൌ 𝑉𝑎𝑟ሺ𝑋ሻ ൌ
ሺ1 ൅ 𝜃ሻସ ൅ 4𝜃ଶ ൅ 6𝜃 ൅ 1

ሺ1 ൅ 𝜃ሻସ𝜃ଶ
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3.3.  Estimation of parameter 

3.3.1.  Maximum Likelihood Estimation (MLE) 

Let 𝑋௜~𝑋𝐿ሺ𝜃ሻ, 𝑖 ൌ 1, … . . ,𝑛 be 𝑛 random variables, the 𝑙𝑛-likelihood function, 
𝑙𝑛𝑙ሺ𝑥௜;𝜃ሻ is: 

𝐿ሺ𝜃ሻ ൌ ሺ
ఏమ

ሺଵାఏሻమ
ሻ௡ ∏ ሺ2 ൅ 𝜃 ൅ 𝑥௜ሻ

௡
௜ୀଵ 𝑒ିఏ∑ ௫೔

೙
೔సభ                  (25) 

The logarithm of the likelihood function is: 

𝑙𝑛𝑙ሺ𝑥௜; 𝜃ሻ ൌ 2𝑛𝑙𝑜𝑔𝜃 െ 2𝑛𝑙𝑜𝑔ሺ𝜃 ൅ 1ሻ ൅෍𝑙𝑜𝑔ሺ2 ൅ 𝜃 ൅ 𝑥௜ሻ
௡

௜ୀଵ

െ 𝜃෍𝑥௜

௡

௜ୀଵ

 

𝑙𝑛𝑙ሺ𝑥௜; 𝜃ሻ ൌ 2𝑛ሾ𝑙𝑜𝑔𝜃 െ 𝑙𝑜𝑔ሺ𝜃 ൅ 1ሻሿ ൅ ∑ 𝑙𝑜𝑔ሺ2 ൅ 𝜃 ൅ 𝑥௜ሻ
௡
௜ୀଵ െ 𝜃 ∑ 𝑥௜

௡
௜ୀଵ      (26) 

The derivatives of 𝑙𝑛𝑙ሺ𝑥௜;𝜃ሻ with respect to 𝜃 are: 
𝑙𝑛𝑙ሺ𝑥௜;𝜃ሻ

𝛿𝜃
ൌ 0 

𝛿𝑙𝑛𝑙ሺ𝑥௜; 𝜃ሻ

𝛿𝜃
ൌ

2𝑛
𝜃
െ

2𝑛
1 ൅ 𝜃

൅෍
1

2 ൅ 𝜃 ൅ 𝑥௜
െ෍𝑥௜

௡

௜ୀଵ

௡

௜ୀଵ

 

𝛿𝑙𝑛𝑙ሺ𝑥௜;𝜃ሻ

𝛿𝜃
ൌ

2
𝜃
െ

2
1 ൅ 𝜃

൅
1
𝑛
෍

1
2 ൅ 𝜃 ൅ 𝑥௜

െ 𝑋ത
௡

௜ୀଵ

 

ఋ௟௡௟ሺ௫೔;ఏሻ

ఋఏ
ൌ

ଶ

ఏሺଵାఏሻ
൅

ଵ

௡
∑ ଵ

ଶାఏା௫೔
െ 𝑋ത௡

௜ୀଵ                                    (27) 

To obtain the MLE of 𝜃:𝜃෠ெ௅ா  we can maximize equation (27) directly with respect 
to𝜃, or we can solve the non-linear equationఋ௟௡௟ሺ௫೔;ఏሻ

ఋఏ
ൌ 0. Note that 𝜃෡ெ௅ா  cannot be 

solved analytically; numerical iteration techniques, such as the Newton-Raphson 
algorithm, are thus adopted to solve the logarithm of the likelihood equation for which 
(27) is maximized. 

3.3.2.  Method of Moments Estimation (MME) 

Let 𝑋ത be the sample mean, equating sample mean and population mean 𝐸ሺ𝑋ሻ, 

𝐸ሺ𝑋ሻ ൌ ∑ ௫೔
௡

௡
௜ୀଵ                                                         (28) 

When we plug in the expression of 𝐸ሺ𝑋ሻ from equation (24) and solve the equation 
for 𝜃, we get 

𝑋ത ൌ
ሺ1 ൅ 𝜃ሻଶ ൅ 1
ሺ1 ൅ 𝜃ሻଶ𝜃

ൌ
𝜃ଶ ൅ 2𝜃 ൅ 2
𝜃ଷ ൅ 2𝜃ଶ ൅ 𝜃
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We obtain equation of 3rd degree 𝑋ത𝜃ଷ ൅ 𝜃ଶሺ2𝑋ത െ 1ሻ ൅ 𝜃ሺ𝑋ത െ 2ሻ െ 2 ൌ 0. We 
take the real part for the solution 

𝜃෠ெ௅ா ൌ െ
ଵ

ଷ௑ത
ሺ2𝑋ത െ 1ሻ ൅

మ
వ೉ഥ
ା భ
వ೉ഥమ

ାభ
వ

ඨට భ
మళ೉ഥ

ା భయ
యల೉ഥమ

ା భ
వ೉ഥయ

ା భ
మళ೉ഥర

ା భభ
భఴ೉ഥ

ା భ
వ೉ഥమ

ା భ
మళ೉ഥయ

ା భ
మళ

൅

    ඨට
ଵ

ଶ଻௑ത
൅

ଵଷ

ଷ଺௑തమ
൅

ଵ

ଽ௑തయ
൅

ଵ

ଶ଻௑തర
൅

ଵଵ

ଵ଼௑ത
൅

ଵ

ଽ௑തమ
൅

ଵ

ଶ଻௑തయ
൅

ଵ

ଶ଻

య

                                         (29) 

 

3.4.  Simulation 

The behaviour of the estimators for a finite sample size (𝑛) is investigated in this 
subsection. A simulation study consisting of the following steps is being carried out 
N=10000 times for selected values of ሺ𝜃,𝑛ሻ, where 𝜃 ൌ 0.05; 0.25; 1; 2; 5 and 𝑛 ൌ
20; 50; 100. 

 Generate 𝑈௜ Uniform (0; 1),    𝑖 ൌ 1, … . . ,𝑛. 
     Generate 𝑌௜  Exponentialሺ𝜃ሻ, 𝑖 ൌ 1, … . . ,𝑛. 
     Generate 𝑍௜ Lindleyሺ𝜃ሻ, 𝑖 ൌ 1, … . . ,𝑛. 
 If 𝑈௜ ൑ 𝑝ሺ𝜃ሻ, then set 𝑋௜ ൌ 𝑌௜  otherwise, set 𝑋௜ ൌ 𝑍௜,  𝑖 ൌ 1, … . . ,𝑛 

𝑣𝑒𝑟𝑎𝑔𝑒 𝑏𝑖𝑎𝑠ሺ𝜃ሻ ൌ
1
𝑁
෍൫𝜃෠௜ െ 𝜃൯.

ே

௜ୀଵ

 

And the average square error: 

 𝑀𝑆𝐸ሺ𝜃ሻ ൌ
1
𝑁
෍ሺ𝜃෠௜ െ 𝜃ሻଶ
ே

௜ୀଵ

 

 

Table 1.  Average bias of the estimator 𝜃෡  

Bias 𝜃 ൌ 0.05 𝜃 ൌ 0.25 𝜃 ൌ 1 𝜃 ൌ 2 𝜃 ൌ 5 

𝑛 ൌ 20 0.00131 0.01002 0.0456 0.2451 0.7512 
𝑛 ൌ 50 0.00095 0.0124 0.0106 0.1162 0.1421 
𝑛 ൌ 100 0.00011 0.00251 0.0122 0.0423 0.0506 

 

Table 2.  The average square error of the estimator 𝜃෠ 

MSE 𝜃 ൌ 0.05 𝜃 ൌ 0.25 𝜃 ൌ 1 𝜃 ൌ 2 𝜃 ൌ 5 

𝑛 ൌ 20 1,03.10-6 0.000113 0.00236 0.0654 0.6177 
𝑛 ൌ 50 2, 55.10-7 0.000214 0.000162 0.01233 0.03135 
𝑛 ൌ 100 1,04.10-8 1.34.10-5 0.000216 0.00184 0.00301 
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Table 1 and 2 show the outcomes of the simulation. The simulation analysis yielded 
the following conclusions: 

 for some given value of 𝜃, the average of bias of 𝜃 and the mean square error of 
𝜃 decrease as the sample size n increases, 

 the mean square error (MSE) gets higher and following a similar way for larger 
value of 𝜃 as we mentioned before. 

3.5.  Application and goodness of fit 

Data set 1: Survival times (in months) of 94 Sierra Leone individuals infected with 
Ebola virus. It is available at https://apps.who.int/gho/data/node.ebola-sitrep. In table 3, 
we compare the Lindley (LD), Zeghdoudi, exponential, XGamma, and XL distributions 
using data set 1. 

Table 3.   Comparison between LD, XG, ZD, Exp and XL distributions. 

Survival time 
m=3.17 , s=2.095 

Obsfreq LD  
𝜃෠ ൌ 0.522 

Xgamma 
𝜃෠ ൌ 0.689 

ZD 
𝜃෠ ൌ 0.852 

Exp  
𝜃෠ ൌ 0.315 

XL 
𝜃෠ ൌ 0.467 

[0,2] 45 38. 262 37. 652 30. 339 43. 937 41. 028 
[2,4] 22 28. 164 27. 197 37.27 23. 4 25. 855 
[4,6] 17 15. 075 16. 342 17.743 12. 463 13. 984 
[6,8] 7 7. 1187 7. 7769 6.1658 6. 6375 6. 9986 

[8,10] 3 3. 1423 3. 2015 1.828 3. 5351 3. 3409 
Total 94 94 94 94 94 94 
 2 - 2. 7899 3. 2040 14.236 1. 8619 1. 6446 

4.  Exponential-gamma (𝟑, 𝜽) (X gamma ) distribution and its applications 

In this section, we give an overview on Exponential-gamma Eg (𝜽) (X gamma ) 
distribution (see Subhradev (2016)), which is a member of the NPED. A random 
variable X is said to possess Eg(𝜽) distribution if it has the following form: 

𝑓ாீሺ𝑥;𝜃ሻ ൌ
ఏమ

ሺଵାఏሻ
ሺ1 ൅

ఏ

ଶ
𝑥ଶሻ 𝑒ିఏ௫        𝑥,𝜃 ൐ 0                              (30) 

Note that the Eg distribution is a member of the NPED family where: 
𝑛 ൌ 2,𝑎଴,ఏ ൌ 1,𝑎ଵ,ఏ ൌ 0,𝑎ଶ,ఏ ൌ

ఏ

ଶ
, using formula (1). 

Therefore, the mode of Eg (𝜽) distribution is given by: 

𝑚𝑜𝑑𝑒ሺ𝑋ሻ ൌ
ଵା√ଵିଶఏ

ఏ
 𝑓𝑜𝑟  0 ൏ 𝜃 ൏

ଵ

ଶ
                                         (31) 

We can find easily the CDF of the Eg (𝜽) distribution: 

𝐹ா௚ሺ𝑥;𝜃ሻ ൌ 1 െ
ሺଵାఏାఏ௫ାഇ

మೣమ

మ
ሻ

ሺଵାఏሻ
𝑒ିఏ௫        𝑥,𝜃 ൐ 0                              (32) 
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Figure 3.  Plots of the density function for some 
parameters values of 𝜃 

Figure4. Plots of the cumulative function for 
some parameters values of 𝜃    

4.1.  Survival and hazard rate function 

For a continuous distribution, the survival function and failure rate (hazard rate) 
functions are defined as: 

𝑆ா௚ሺ𝑥; 𝜃ሻ ൌ 1 െ 𝐹ா௚ሺ𝑥;𝜃ሻ ൌ
ሺଵାఏାఏ௫ାഇ

మೣమ

మ
ሻ

ሺଵାఏሻ
𝑒ିఏ௫         𝑥,𝜃 ൐ 0                 (33) 

4.2.  Moments and related measures 

The 𝑟௧௛ moment about the origin of the Eg (𝜽) distribution can be obtained as: 

𝜇௥ᇱ ൌ 𝐸ሺ𝑋௥ሻ ൌ
௥!ሺఏା௥ା௔ೝሻ

ఏೝሺଵାఏሻ
                                          (34) 

where 𝑎௥ ൌ 𝑎௥ିଵ ൅ 𝑟 for 𝑟 ൌ 1,2,3, … ..with 𝑎଴ ൌ 0 and 𝑎ଵ ൌ 2. In particular, 

𝜇ଵ
ᇱ ൌ

ሺ𝜃 ൅ 3ሻ
𝜃ሺ𝜃 ൅ 1ሻ

ൌ 𝑀𝑒𝑎𝑛ሺ𝑋ሻ ൌ 𝜇 

𝜇ଶ
ᇱ ൌ

2ሺ𝜃 ൅ 6ሻ
𝜃ଶሺ𝜃 ൅ 1ሻ

, 𝜇ଷ
ᇱ ൌ

6ሺ𝜃 ൅ 10ሻ
𝜃ଷሺ𝜃 ൅ 1ሻ

, 𝜇ସ
ᇱ ൌ

24ሺ𝜃 ൅ 15ሻ
𝜃ସሺ𝜃 ൅ 1ሻ

 

It is to be noted that, for the exponential distribution with parameter 𝜃, the 𝑟௧௛ 
order moment about origin is  

𝜇௥ᇱ ൌ
𝑟!
𝜃௥

 
The 𝑗௧௛ order central moment of the Eg (𝜽) is 

𝜇௝ ൌ 𝐸ൣሺ𝑋 െ 𝜇ሻ௝൧ ൌ ∑ ቀ𝑗
𝑟
ቁ௝

௥ୀ଴ 𝜇௥ᇱ ሺെ𝜇ሻ௝ି௥. In particular, 
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𝜇ଶ ൌ
ሺఏమା଼ఏାଷሻ

ఏమሺଵାఏሻమ
ൌvar(X) ൌ 𝜎ଶ 

𝜇ଷ ൌ
2ሺ𝜃ଷ ൅ 15𝜃ଶ ൅ 9𝜃 ൅ 3ሻ

𝜃ଷሺ1 ൅ 𝜃ሻଷ
 

𝜇ସ ൌ
3ሺ5𝜃ସ ൅ 88𝜃ଷ ൅ 310𝜃ଶ ൅ 288𝜃 ൅ 177ሻ

𝜃ସሺ1 ൅ 𝜃ሻସ
 

4.3. Estimation of parameter 

Let 𝑋௜~𝐸𝑔ሺ𝜃ሻdistribution, 𝑖 ൌ 1, … . . ,𝑛 be 𝑛 random variables. The 𝑙𝑛-likelihood 
function, 𝑙𝑛𝑙ሺ𝑥௜; 𝜃ሻ is: 

𝐿ሺ𝜃ሻ ൌෑ𝑓ሺ𝑥௜:𝜃ሻ

௡

௜ୀଵ

ൌෑ
𝜃ଶሺ1 ൅

ఏ

ଶ
𝑥௜
ଶሻ𝑒ିఏ௫೔

1 ൅ 𝜃

௡

௜ୀଵ
 

The logarithm of the likelihood function is: 

log 𝐿 ሺ𝑥௜;𝜃ሻ ൌ 2𝑛𝑙𝑜𝑔𝜃 െ 𝑛𝑙𝑜𝑔ሺ1 ൅ 𝜃ሻ ൅ ∑ ሾlog ቀ1 ൅
ఏ

ଶ
𝑥௜
ଶቁ െ 𝜃𝑥௜ሿ

௡
௜ୀଵ      (35) 

The derivatives of log 𝐿 ሺ𝑥௜;𝜃ሻwith respect to 𝜃 are: 

𝛿𝐿
𝛿𝜃

ൌ
2𝑛
𝜃
െ

𝑛
1 ൅ 𝜃

൅෍ቌ
𝑥௜
ଶ

2ሺ1 ൅
ఏ

ଶ
𝑥௜
ଶሻ
െ 𝑥௜ቍ

௡

௜ୀଵ

 

We get the likelihood equation as a system of nonlinear equations in 𝜃 by setting 
the left side of the above equation to zero. The MLE of 𝜃 in this system is obtained by 
solving it in 𝜃. It is simple to calculate numerically using a statistical software tool such 
as the 𝑛𝑙𝑚package in R programming with arbitrary initial values. 

The Fisher information about 𝜃,I(𝜃), is 

𝐼ሺ𝜃ሻ ൌ 𝐸 ቊെ
𝜕ଶ

𝜕ଶ𝜃ଶ
𝑙𝑛𝑓ሺ𝑋,𝜃ሻቋ ൌ 𝐸 ቐ

2
𝜃ଶ

െ
1

ሺ1 ൅ 𝜃ሻଶ
൅
𝑥ସ

4
1

ቀ1 ൅
ఏ

ଶ
𝑥ଶቁ

ଶቑ 

ൌ
ଶ

ఏమ
െ

ଵ

ሺଵାఏሻమ
൅ 𝐸 ቊ

௫ర

ସ

ଵ

ሺଵାഇ
మ
௫మሻమ

ቋ                                                                   (36) 
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Then the asymptotic 100ሺ1 െ 𝛼ሻ% confidence interval for 𝜃 is given by 𝜃෠ േ

𝑧ఈ
ଶൗ
ூష

భ
మൗ

√௡
. 

4.4.  Simulation 

Table 4.  Average bias and MSE of the estimator 𝜃෠ 

θ n Bias MSE 
1 50 -0.00086 3.65 05e  

100 0.00040 1.56 05e  
500 1.32 05e  8.56 08e  

1.5 50 -0.000061 2.64 05e  
100 -0.00063 3.34 05e  
500 -3.92 06e  7.63 09e  

1.85 50 0.00174 0.000153 
100 0.00090 8.61 05e  
500 0.000168 1.4097 05e  

4.5.  Data analysis and applications 

Application of the Eg distribution is illustrated in two examples. 
Data set 2: The data set is taken from Klein and Berger. It shows the survival data on 
the death times of 26 psychiatric inpatients admitted to the University of Iowa hospitals 
during the years 1935-1948. 

Table. 5.  The survival data on the death times of psychiatric inpatients. 

1 1 2 22 30 28 32 11 14 36 31 33 33 
37 35 25 31 22 26 24 35 34 30 35 40 39 

To evaluate the data, we used three different distributions: ED, EED, and Eg 
distributions. Table 6 shows the estimated unknown parameters, as well as the 
accompanying Kolmogorov-Sminrov (K-S) test statistic and LogL values for three 
alternative models. 

Table 6.  The estimates, K-S test statistic and 𝑙𝑜𝑔 െ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 for the data set 2 

Model Estimates K-S LogL 
ED 𝜃෠ ൌ 0.0378 0.377 -112.321 
EED 𝑎ො ൌ 1.797, 𝑏෡ ൌ 0.052 0.318 -109.998 
Eg 𝜃෠ ൌ 0.0105 0.3146 -104.611 

We present the p-value, corresponding Akaikes Information Criterion (AIC) 
(see Akaike, H. (1974) and Bayesian Information Criterion (BIC) in the following table 7. 
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Table 7.  The p-value, AIC and BIC  of the models on the base data set 1 

Model p-value AIC BIC 
ED 0.001 224.264          225.518 

EED 0.011 221.974          224.490 
Eg 0.057 211.171          212.429 

Table 6 provides the fitted distributions' parameter MLEs and log likelihood values, 
while table 7 shows the AIC, BIC, and p-value values. Tables 6 and 7 show that the 
Eg (θ) distribution is a strong rival to the other distributions chosen to suit the dataset 
here. 

Data set 3: Chen (Gupta R. D. and Kundu D. (1999)) gave type-II censoring data of 
samples with complete unit failures: 0.29, 1.44, 8.38, 8.66, 10.20, 11.04, 13.44, 14.37, 
17.05, 17.13, and 18.35. Table 8 shows the estimated unknown parameters, as well as 
the accompanying Kolmogorov-Smirnov (K-S) test statistic and Log L values for three 
alternative models. 

Table 8.  The estimates, K-S test statistic and log-likelihood for the data set 2 

Model Estimates K-S LogL 
ED 𝜃෠ ൌ 0.091 0.3622 -40.432 

EED 𝑎ො ൌ 1.355,𝑏෠ ൌ 0.109 0.3183 -38.523 
Eg 𝜃෠ ൌ 0.237 0.251 -35.642 

We present the p-value, corresponding AIC and BIC for the data set in 2 in Table 9. 

Table 9.  The p values , (AIC) and (BIC) of the models based on the data set 3 

Model p-value AIC BIC 
ED 0.098 76.635 77.033 

EED 0.172 78.093 78.889 
Eg 0.462 72.504 72.902 

The parameter MLEs and log-likelihood values of the fitted distributions are shown 
in table 8, and the values of AIC, BIC, and p-values are shown in Table 9. Tables 8 and 
9 show that the Eg (θ) is a strong rival to the other distributions employed to suit the 
dataset here. 

5. Conclusions 

We have suggested a family of distributions with only one parameter in this paper. 
Moments, distribution function, characteristic function, failure rate, stochastic order, 
maximum likelihood approach, and method of moments were among the properties 
studied. 
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The Lindley and Zeghdoudi distributions lack the flexibility needed to examine and 
model many forms of data related to lifetime data and survival analysis. The 𝑁𝑃𝐸𝐷 
distribution, on the other hand, is adaptable, straightforward, and simple to use. The 
novel distribution was used to evaluate two real data sets and was compared to existing 
distributions (Lindley, exponential, Zeghdoudi, Exponential Exponential and 
Xgamma). The comparison's findings support the 𝑁𝑃𝐸𝐷 distribution's quality 
adjustment. We anticipate that our new distribution family will entice many additional 
life data, reliability analysis, and actuarial science applications. 

We can employ a more general distribution with two parameters in future 
experiments, and  

𝑓ே௘௪ሺ𝑥,𝜃ሻ ൌ ℎሺ𝜃ሻ𝑝ሺ𝑥,𝜃ሻ𝑐𝑜𝑠𝜃exp ሺെ𝜃𝑥ሻ 

where ℎሺ𝜃ሻ is real-valued functions on ሾ0,∞ሿ, and where 𝑝ሺ𝑥,𝜃ሻ ൌ 𝑏ሺ𝜃ሻ ൅ 𝑥௞. 
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An improved ridge type estimator for logistic regression
Nagarajah Varathan1

ABSTRACT

In this paper, an improved ridge type estimator is introduced to overcome the effect of multi-
collinearity in logistic regression. The proposed estimator is called a modified almost unbi-
ased ridge logistic estimator. It is obtained by combining the ridge estimator and the almost
unbiased ridge estimator. In order to asses the superiority of the proposed estimator over the
existing estimators, theoretical comparisons based on the mean square error and the scalar
mean square error criterion are presented. A Monte Carlo simulation study is carried out to
compare the performance of the proposed estimator with the existing ones. Finally, a real
data example is provided to support the findings.

Key words: Logistic Regression, Multicollinearity, ridge estimator, Modified almost unbi-
ased ridge logistic estimator, Mean square error.

1. Introduction

The general form of logistic regression model is

yi = πi + εi, i = 1, ...,n, (1)

where εi are independent with mean zero and variance πi(1−πi) and πi is the expected value
of the response yi when the ith value of dependent variable follows the Bernoulli distribution
with parameter πi as

πi =
exp(x′iβ )

1+ exp(x′iβ )
, (2)

where xi is the ith row of X , which is an n× p data matrix with p explanatory variables
and β is a p×1 vector of coefficients. The Maximum likelihood method is the most com-
mon estimation technique to estimate the parameter vector β , and the maximum likelihood
estimator (MLE) of β based on the sample model (1) can be obtained as follows:

β̂MLE = (X ′ŴX)−1X ′Ŵ z, (3)

where z is the column vector with ith element equals logit(π̂i)+
yi−π̂i

π̂i(1−π̂i)
and Ŵ = diag[π̂i(1−

π̂i)], which is asymptotically unbiased estimate of β . The asymptotic covariance matrix of
β̂MLE is

Cov(β̂MLE) = (X ′ŴX)−1. (4)
1Department of Mathematics and Statistics, University of Jaffna, Sri Lanka. E-mail: varathan@univ.jfn.ac.lk.
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The asymptotic MSE and SMSE of β̂MLE are

MSE[β̂MLE ] = Cov[β̂MLE ]+B[β̂MLE ]B′[β̂MLE ] (5)

= {X ′ŴX}−1

= C−1

and

SMSE[β̂MLE ] = tr[C−1] (6)

Since C is a positive definite matrix there exists an orthogonal matrix P such that P′CP =

∆ = diag(λ1,λ2, ...,λp), where λ1 ≥ λ2 ≥ ... ≥ λp > 0 are the ordered eigen values of C.
Then,

SMSE[β̂MLE ] =
p

∑
j=1

1
λ j

.

The logistic regression model becomes unstable when there exists strong dependence
among explanatory variables. This situation is referred to as multicollinearity. When the
multicollinearity presents among explanatory variables, the estimation of the model param-
eters becomes inaccurate because of the need to invert near-singular information matrix
X ′ŴX . As a result, the estimates have large variances and large confidence intervals, which
produces inefficient estimates.

To overcome the problem of multicollinearity in the logistic regression, many estimators
have been proposed in the literature alternative to the MLE. The most popular estimator to
deal with this problem is called the Logistic Ridge Estimator (LRE), and was first proposed
by Schaefer et al. (1984). Later, Aguilera et al. (2006) introduced the Principal Compo-
nent Logistic Estimator (PCLE), Nja et al. (2013) proposed the Modified Logistic Ridge
Regression Estimator (MLRE), Mansson et al. (2012) introduced the Liu-Estimator in lo-
gistic regression, Inan and Erdogan (2013) proposed Liu-type estimator, Xinfeng (2015)
proposed the Almost Unbiased Liu Logistic Estimator (AULLE), Wu and Asar (2016) pro-
posed the Almost Unbiased Ridge Logistic Estimator (AURLE), Varathan and Wijekoon
(2019) proposed the Modified Almost Unbiased Liu Logistic Estimator (MAULLE), Jad-
hav (2020) proposed the Linearized ridge logistic estimator (LRLE), and the Modified ridge
type logistic estimator was proposed by Lukman et al. (2020).

In this research a new estimator is proposed by combining AURLE and LRE. Further,
we compare the performance of the proposed MAURLE estimator with the existing MLE,
LRE and AURLE estimators in the mean square error sense.

The organization of the paper is as follows. The construction of the proposed estimator
is given in Section 2. In Section 3, the asymptotic properties of the estimators are given.
In Section 4, the conditions for superiority of the proposed MAURLE estimator over the
existing MLE, LRE, and AURLE estimators are derived with respect to mean square error
(MSE) criterion. In Section 5, the conditions for superiority of the proposed MAURLE
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estimator over the existing MLE, LRE, and AURLE estimators are derived with respect to
scalar mean square error (SMSE) criterion. The detail Monte Carlo simulation study is given
to investigate the performance of the proposed estimator with some existing estimators in
Section 6. A real data application is discussed in Section 7. Finally, some conclusive
remarks are given in Section 8.

2. Construction of the proposed estimator

The new estimator is constructed by considering the Logistic ridge estimator (LRE)
(Schaefer et al., 1984) and the Almost Unbiased Ridge Logistic Estimator (AURLE) (Wu
and Asar, 2016). Note that LRE and AURLE are defined as

β̂LRE = (X ′ŴX + kI)−1X ′ŴX β̂MLE (7)

= (C+ kI)−1Cβ̂MLE

= Zkβ̂MLE

where Zk = (C+ kI)−1C and k is the ridge parameter, k ≥ 0.

β̂AURLE = Wkβ̂MLE (8)

where Wk = I − k2(C+ kI)−2, k ≥ 0.

By substituting β̂LRE in place of β̂MLE in the estimator AURLE in (2.2), we propose a new
estimator which is named the Modified almost unbiased ridge logistic estimator (MAURLE)
and defined as

β̂MAURLE = Wkβ̂LRE

= WkZkβ̂MLE

= Fkβ̂MLE (9)

where

Fk = WkZk

= [I − k2(C+ kI)−2][(C+ kI)−1C] (10)

SMSE(β̂MAURLE) =
p

∑
j=1

λ 3
j (λ j +2k)2

(λ j + k)6

+
p

∑
j=1

(k3 +3k2λ j+ kλ j2)2

(λ j + k)6 α
2
j (11)
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3. Asymptotic properties of the proposed estimator

The mean vector, dispersion matrix and the bias vector of β̂MAURLE are

E[β̂MAURLE ] = E[Fkβ̂MLE ]

= Fkβ , (12)

D(β̂MAURLE) = Cov(β̂MAURLE)

= Cov(Fkβ̂MLE)

= FkC−1F ′
k , (13)

and

Bias(β̂MAURLE) = E[β̂MAURLE ]−β

= [Fk − I]β

= δMAURLE (14)

Consequently, the mean square error and scalar mean square error can be obtained as,

MSE(β̂MAURLE) = D(β̂MAURLE)+Bias(β̂MAURLE)Bias(β̂MAURLE)
′

= FkC−1F ′
k +(Fk − I)ββ

′(Fk − I)′ (15)

where

Fk = WkZk

= [I − k2(C+ kI)−2][(C+ kI)−1C]

= (C+ kI)−2C(C+2kI)(C+ kI)−1C

> 0 is a positive definite matrix. (16)

and

SMSE(β̂MAURLE) =
p

∑
j=1

λ 3
j (λ j +2k)2

(λ j + k)6

+
p

∑
j=1

(k3 +3k2λ j+ kλ j2)2

(λ j + k)6 α
2
j (17)

where α j is the jth element of P′β , P is an orthogonal matrix such that P′CP = ∆ =

diag(λ1,λ2, ...,λp), where λ1 ≥ λ2 ≥ ...≥ λp > 0 are the ordered eigen values of C.
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4. Mean square error comparison of estimators

To check the performance of the proposed MAURLE estimator with the existing MLE,
LRE, and AURLE estimators, we compare the corresponding mean square errors of the
estimators.

Note that, following Schaefer et al. (1984) and Wu and Asar (2016), the mean square
errors of LRE and AURLE are respectively given by
MSE[β̂LRE ] = ZkC−1Z′

k +δLREδ ′
LRE ; where δLRE = (Zk − I)β

MSE[β̂AURLE ] =WkC−1W ′
k +δAURLEδ ′

AURLE ; where δAURLE = (Wk − I)β

(I). MAURLE Versus MLE

MSE(β̂MLE)−MSE(β̂MAURLE) = {D(β̂MLE)+B(β̂MLE)B′(β̂MLE)}
−{D(β̂MAURLE)+B(β̂MAURLE)B′(β̂MAURLE)}

= C−1 −{FkC−1F ′
k +δMAURLEδ

′
MAURLE}

= U1 −V1 (18)

where U1 =C−1 and V1 =FkC−1F ′
k +δMAURLEδ ′

MAURLE . One can obviously say that FkC−1F ′
k

and U1 are positive definite matrices and δMAURLEδ ′
MAURLE is non-negative definite matrix.

Further by Lemma 1 (see Appendix), it is clear that V1 is a positive definite matrix. By
Lemma 2 (see Appendix), if λmax(V1U−1

1 ) < 1, then U1 −V1 is a positive definite matrix,
where λmax(V1U−1

1 ) is the largest eigen value of V1U−1
1 . Based on the above arguments, the

following theorem can stated.
Theorem 1: The MAURLE estimator is superior to MLE if and only if λmax(V1U−1

1 )< 1.

(II). MAURLE Versus LRE

MSE(β̂LRE)−MSE(β̂MAURLE) = {D(β̂LRE)+B(β̂LRE)B′(β̂LRE)}
−{D(β̂MAURLE)+B(β̂MAURLE)B′(β̂MAURLE)}

= {ZkC−1Z′
k +δLREδ

′
LRE}

−{FkC−1F ′
k +δMAURLEδ

′
MAURLE}

= U2 −V2 (19)

where U2 = ZkC−1Z′
k+δLREδ ′

LRE and V2 =FkC−1F ′
k +δMAURLEδ ′

MAURLE . One can easily say
that FkC−1F ′

k and ZkC−1Z′
k are positive definite matrices and δLREδ ′

LRE and δMAURLEδ ′
MAURLE

are non-negative definite matrices. Further by Lemma 1, it is clear that U2 and V2 are posi-
tive definite matrices. By Lemma 2, if λmax(V2U−1

2 )< 1, then U2 −V2 is a positive definite
matrix, where λmax(V2U−1

2 ) is the largest eigen value of V2U−1
2 . Based on the above results,

the following theorem can be stated.
Theorem 2: The MAURLE estimator is superior to LRE if and only if λmax(V2U−1

2 )< 1.
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(III). MAURLE Versus AURLE

MSE(β̂AURLE)−MSE(β̂MAURLE) = {D(β̂AURLE)+B(β̂AURLE)B′(β̂AURLE)}
−{D(β̂MAURLE)+B(β̂MAURLE)B′(β̂MAURLE)}

= {WkC−1W ′
k +δAURLEδ

′
AURLE}

−{FkC−1F ′
k +δMAURLEδ

′
MAURLE}

= U3 −V3 (20)

where U3 = WkC−1W ′
k + δAURLEδ ′

AURLE and V3 = FkC−1F ′
k + δMAURLEδ ′

MAURLE . One can
easily say that FkC−1F ′

k and WkC−1W ′
k are positive definite matrices and δAURLEδ ′

AURLE and
δMAURLEδ ′

MAURLE are non-negative definite matrices. Further by Lemma 1, it is clear that
U3 and V3 are positive definite matrices. By Lemma 2, if λmax(V3U−1

3 )< 1, then U3 −V3 is
a positive definite matrix, where λmax(V3U−1

3 ) is the largest eigen value of V3U−1
3 . Based

on the above results, the foolowing theorem can be stated.
Theorem 3: The MAURLE estimator is superior to AURLE if and only if λmax(V3U−1

3 )< 1.

5. Scalar mean square error comparison

In this section, we compare the scalar mean square error of the proposed MAURLE es-
timator with the existing MLE, LRE, and AURLE estimators. According to Schaefer et al.
(1984) and Wu and Asar (2016), the mean square errors of LRE and AURLE are respec-
tively given by:

SMSE[β̂LRE ] = ∑
p
j=1

λ j
(λ j+k)2 +∑

p
j=1

k2α2
j

(λ j+k)2

SMSE[β̂AURLE ] = ∑
p
j=1

λ j(λ j+2k)2

(λ j+k)4 +∑
p
j=1

k4α2
j

(λ j+k)4

(I). MAURLE Versus MLE

SMSE(β̂MLE)−SMSE(β̂MAURLE)
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1
λ j
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p
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λ 3
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+
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(k3 +3k2λ j+ kλ j2)2

(λ j + k)6 α
2
j ]

=
p

∑
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(λ j + k)6 − (λ j4λ j +2k)2

λ j(λ j + k)6

−
p

∑
j=1

(k3 +3k2λ j+ kλ j2)2α2
j

(λ j + k)6

= ∆
∗
1 (21)
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Based on the above comparison, it can be noted that MAURLE is superior to MLE in the
SMSE sense if and only if ∆∗

1 > 0.

(II). MAURLE Versus LRE

SMSE(β̂LRE)−SMSE(β̂MAURLE) =
p

∑
j=1

λ j

(λ j + k)2 +
p

∑
j=1

k2α2
j

(λ j + k)2 −
p

∑
j=1

λ 3
j (λ j +2k)2

(λ j + k)6

−
p

∑
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(k3 +3k2λ j+ kλ j2)2

(λ j + k)6 α
2
j

=
p

∑
j=1

λ j(λ j + k)4 −λ 3
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+
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−
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α2
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2 +3k2

λ j+ kλ j2)2

= ∆
∗
2 (22)

From the above comparison, it can be concluded that MAURLE is superior to LRE in the
SMSE sense if and only if ∆∗

2 > 0.

(III). MAURLE Versus AURLE

SMSE(β̂AURLE)−SMSE(β̂MAURLE) =
p

∑
j=1

λ j(λ j +2k)2

(λ j + k)4 +
p

∑
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k4α2
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(λ j + k)4

−
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= ∆
∗
3 (23)
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Based on the above comparison, it can be said that MAURLE is superior to AURLE in the
SMSE sense if and only if ∆∗

3 > 0.

6. Monte Carlo Simulation study

In this simulation study we compare the performance of proposed MAURLE estimator
with the existing MLE, LRE, and AURLE estimators in the scalar mean square error criteria.
The sample sizes n= 20, 50, and 100 are considered. Following McDonald and Galarneau
(1975) and Kibria (2003), we generate the explanatory variables as follows:

xi j = (1−ρ
2)1/2zi j +ρzi,p+1, i = 1,2, ...,n, j = 1,2, ..., p

where zi j are pseudo- random numbers from standardized normal distribution and ρ2 rep-
resents the correlation between any two explanatory variables. For the multicollinearity,
different levels of ρ , such as ρ= 0.9, 0.95, 0.99 and 0.999 are used. Further, for the biasing
parameter k, we consider some selected values in the range 0 < k < 1. The simulation is
repeated 1000 times by generating new pseudo- random numbers, and the simulated SMSE
values of the estimators are obtained using the following equation.

ˆSMSE(β̂ ) =
1

1000

1000

∑
r=1

(β̂r −β )′(β̂r −β )

where β̂r is any estimator considered in the rth simulation. The simulated scalar mean square
errors of estimators are reported for different values of d, ρ , and n in Tables 1 - 3.
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Table 1: The estimated MSE values for different k when n = 20

ρ = 0.9 ρ = 0.95 ρ = 0.99 ρ = 0.999
k = 0.1 MLE 66.8246 135.8973 698.0638 7023.9774

LRE 33.6541 45.7819 64.8760 37.0857
AURLE 48.3103 74.0211 137.5215 108.2149
MAURLE 30.1161 37.8386 40.0568 10.4364

k = 0.2 MLE 66.8246 135.8973 698.0638 7023.9774
LRE 25.0801 30.8425 33.9479 15.0765
AURLE 39.5509 54.7585 77.9639 40.7710
MAURLE 21.1814 23.5606 18.3130 5.8744

k = 0.3 MLE 66.8246 135.8973 698.0638 7023.9774
LRE 20.4920 23.7132 22.6380 9.7370
AURLE 33.8980 44.0296 53.3815 23.4383
MAURLE 16.7268 17.3486 11.6077 5.0841

k = 0.4 MLE 66.8246 135.8973 698.0638 7023.9774
LRE 17.6061 19.5145 16.9926 7.6181
AURLE 29.8427 37.0186 40.0643 16.3491
MAURLE 14.1271 13.9827 8.7388 4.8320

k = 0.5 MLE 66.8246 135.8973 698.06386 7023.9774
LRE 15.6389 16.7747 13.7330 6.5873
AURLE 26.7593 32.0282 31.8030 12.7009
MAURLE 12.4977 11.9727 7.3495 4.7941

k = 0.6 MLE 66.8246 135.8973 698.0638 7023.9774
LRE 14.2318 14.8758 11.6889 6.0421
AURLE 24.3250 28.2792 26.2346 10.5413
MAURLE 11.4422 10.7165 6.6648 4.8842

k = 0.7 MLE 66.8246 135.8973 698.0638 7023.9774
LRE 13.1936 13.5077 10.3412 5.7533
AURLE 22.3515 25.3560 22.2638 9.1379
MAURLE 10.7527 9.9205 6.3619 5.0612

k = 0.8 MLE 66.8246 135.8973 698.06386 7023.9774
LRE 12.4114 12.4961 9.4255 5.6153
AURLE 20.7202 23.0144 19.3148 8.1649
MAURLE 10.3085 9.4233 6.2837 5.2989

k = 0.9 MLE 66.8246 135.8973 698.0638 7023.9774
LRE 11.8137 11.7350 8.7934 5.5725
AURLE 19.3512 21.0998 17.0568 7.4588
MAURLE 10.0342 9.1285 6.3450 5.5784
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Table 2: The estimated MSE values for different k when n = 50

ρ = 0.9 ρ = 0.95 ρ = 0.99 ρ = 0.999
k = 0.1 MLE 12.1526 22.3349 102.87942 1008.1701

LRE 11.1597 18.8554 51.6995 59.7663
AURLE 12.0889 21.8856 81.6874 165.7703
MAURLE 11.1069 18.5386 44.1989 19.2800

k = 0.2 MLE 12.1526 22.3349 102.8794 1008.1701
LRE 10.3536 16.4178 34.0311 22.8387
AURLE 11.9366 21.0209 63.2961 68.7981
MAURLE 10.2011 15.6829 25.0449 5.3163

k = 0.3 MLE 12.1526 22.3349 102.8794 1008.1701
LRE 9.6877 14.5909 24.9083 12.7929
AURLE 11.7342 20.0544 50.7573 38.4925
MAURLE 9.4312 13.5255 16.2785 3.1866

k = 0.4 MLE 12.1526 22.3349 102.8794 1008.1701
LRE 9.1311 13.1668 19.4025 8.6338
AURLE 11.5041 19.0916 41.8789 25.0999
MAURLE 8.7818 11.8640 11.5592 2.6042

k = 0.5 MLE 12.1526 22.3349 102.8794 1008.1701
LRE 8.6620 12.0274 15.7713 6.5190
AURLE 11.2596 18.1716 35.3344 17.9971
MAURLE 8.2368 10.5637 8.7654 2.3981

k = 0.6 MLE 12.1526 22.3348 102.8794 1008.1701
LRE 8.2642 11.0987 13.2338 5.3059
AURLE 11.0095 17.3081 30.3489 13.7716
MAURLE 7.7814 9.5338 7.0081 2.3256

k = 0.7 MLE 12.1526 22.3348 102.8794 1008.1701
LRE 7.9257 10.3315 11.3873 4.5556
AURLE 10.7591 16.5045 26.4491 11.0495
MAURLE 7.4028 8.7115 5.8587 2.3167

k = 0.8 MLE 12.1526 22.3348 102.8794 1008.1701
LRE 7.6369 9.6912 10.0031 4.0692
AURLE 10.5121 15.7596 23.3318 9.1899
MAURLE 7.0903 8.0521 5.0896 2.3459

k = 0.9 MLE 12.1526 22.3348 102.8794 1008.1701
LRE 7.3902 9.1526 8.9421 3.7456
AURLE 10.2707 15.0700 20.7951 7.8607
MAURLE 6.8348 7.5224 4.5706 2.4017
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Table 3: The estimated MSE values for different k when n = 100

ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 0.99
k = 0.1 MLE 5.0169 8.9865 40.3501 392.0983

LRE 4.8749 8.4967 30.7126 72.6411
AURLE 5.0144 8.9688 38.7927 170.6357
MAURLE 4.8725 8.4807 29.6393 37.2474

k = 0.2 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.7454 8.0613 24.5283 31.8073
AURLE 5.0072 8.9218 35.9068 88.1286
MAURLE 4.7370 8.0075 22.1917 10.0957

k = 0.3 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.6275 7.6724 20.2308 18.2460
AURLE 4.9959 8.8527 32.8470 53.9915
MAURLE 4.6107 7.5696 17.0628 4.4179

k = 0.4 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.5201 7.3234 17.0880 12.0657
AURLE 4.9811 8.7669 29.9663 36.6658
MAURLE 4.4936 7.1672 13.4521 2.6290

k = 0.5 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.4226 7.0095 14.7042 8.7289
AURLE 4.9633 8.6686 27.3633 26.6724
MAURLE 4.3859 6.7990 10.8469 1.9207

k = 0.6 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.3342 6.7263 12.8461 6.7242
AURLE 4.9427 8.5610 25.0478 20.3845
MAURLE 4.2874 6.4634 8.9250 1.5979

k = 0.7 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.2543 6.4704 11.3661 5.4283
AURLE 4.9200 8.4465 22.9995 16.1707
MAURLE 4.1979 6.1586 7.4803 1.4386

k = 0.8 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.1821 6.2388 10.1670 4.5452
AURLE 4.8952 8.3273 21.1888 13.2082
MAURLE 4.1172 5.8824 6.3771 1.3585

k = 0.9 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.1173 6.0288 9.1817 3.9194
AURLE 4.8688 8.2047 19.5857 11.0458
MAURLE 4.0451 5.6329 5.5238 1.3212

From the results of Tables 1 - 3 it can be observed that, the proposed MAURLE estimator
outperforms the MLE, LRE, and AURLE estimators in the scalar mean square error sense
for almost all the values of biasing parameter k in the range 0 < k < 1 and for all sample
sizes n = 20, 50, and 100, except the case of k=0.9, ρ=0.999, and n=20. The LRE gives
the second best performance compared to MLE, and AURLE for all the values of k, ρ ,
and n considered in this study. It is further noted that, comparatively MLE gives the worst
performance by giving large values of SMSE.
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7. A real data application

To illustrate the performance of the proposed MAURLE estimator with the existing
MLE, LRE and AURLE estimators, in this research, we consider a real data application,
which is obtained from the Statistics Sweden website (http://www.scb.se/). This example
was used in Mansson et al. (2012), Asar and Genç (2016), and Wu and Asar (2016) to
illustrate results of their papers. The data describes the information of 100 municipalities of
Sweden. The following variables are considered in this study.
x1: Population,
x2: Number unemployed people,
x3: Number of newly constructed buildings,
x4: Number of bankrupt firms,
y: Net population change and is defined as

y =
{

1 ; if there is an increase in the population;
0 ; o/w.

Note that the Variance Inflation Factor (VIF) values for the above data are 488.17, 344.26,
44.99, and 50.71. VIF measure how much the variance of the estimated regression coef-
ficients are inflated as compared to when the predictor variables are not linearly related.
According to the literature, multicollinearity is high if VIF > 10. Hence, a clear high multi-
collinearity exists in this data set. Further, the condition number, which is used as a measure
of the degree of multicollinearity, is obtained as 188. This indicates the sign of severe mul-
ticollinearity in this data set.
The SMSE values of MLE, LRE, AURLE, and MAURLE for some selected values of bi-
asing parameter k in the range 0 < k < 1 are given in the Table 4. Results reveal that the
proposed MAURLE estimator outperforms the MLE, LRE, and AURLE estimators in the
SMSE sense, with respect to all values of k in the range 0 < k < 1, and LRE performs well
compared to MLE and AURLE.

Table 4: The SMSE values (in 10−4) of estimators for the real world application data

MLE LRE AURLE MAURLE
k = 0.1 7.596226 7.595180 7.759226 7.595180
k = 0.2 7.596226 7.594137 7.759225 7.541370
k = 0.3 7.596226 7.593097 7.759225 7.593096
k = 0.4 7.596226 7.592059 7.759225 7.592058
k = 0.5 7.596226 7.591024 7.759224 7.591022
k = 0.6 7.596226 7.589991 7.759223 7.589988
k = 0.7 7.596226 7.588961 7.759222 7.588957
k = 0.8 7.596226 7.587934 7.759221 7.587929
k = 0.9 7.596226 7.586909 7.759220 7.586903
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8. Concluding Remarks

In this paper, an improved estimator called Modified almost unbiased ridge logistic es-
timator (MAURLE) is proposed for logistic regression model when the multicollinearity
problem exists. The superiority conditions for the proposed estimator with the existing
MLE, LRE, and AURLE estimators are derived with respect to MSE and SMSE criterions.
Further, from the real data application and the Monte Carlo simulation study we notice that
the proposed estimator performs well compared to MLE, LRE, and AURLE when the mul-
ticollinearity among the explanatory variables is high.
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Appendix

Lemma 1: (Rao and Toutenburg, 1995) Let A : n×n and B : n×n such that A is positive
definite and B is non-negative definite. Then (A+B) is positive definite.
Lemma 2: (Rao et al., 2008) Let the two n×n matrices M be positive definite, N be non-
negative definite, then M−N is positive definite if and only if λmax(NM−1)< 1.
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Impact of restrictions on the COVID-19 pandemic  
situation in Poland 

Sergiusz Herman1 

ABSTRACT 

The COVID-19 pandemic has had a substantial impact on public health all over the world. 
In order to prevent the spread of the virus, the majority of countries introduced restrictions 
which entailed considerable economic and social costs. The main goal of the article is to 
study how the lockdown introduced in Poland affected the spread of the pandemic in the 
country. The study used synthetic control method to this end. The analysis was carried on 
the basis of data from the Local Data Bank and a government website on the state of the 
epidemic in Poland. 
The results indicated that the lockdown significantly curbed the spread of the COVID-19 
pandemic in Poland. Restrictions led to the substantial drop in infections – by 9500 cases – 
in three weeks. The results seem to stay the same despite the change of assumptions in the 
study. Such conclusion can be drawn from the performance of the placebo-in-space and 
placebo-in-time analyses. 

Key words: COVID-19, coronavirus, lockdown, synthetic control method, treatment effect. 

1. Introduction

The Coronavirus disease 2019 (COVID-19) is an infectious respiratory disease
caused by a SARS-CoV-2 virus. The first known case was identified in Wuhan, Central 
China, in November 2019. The virus has rapidly spread around the world. As a result, 
the World Health Organization declared the outbreak of a pandemic on 11 March 2020. 
Until 31 June 2021, more than 182 million cases were identified around the world and 
3.9 million people died from the coronavirus. 

Due to the rapid spread of the virus, countries around the world introduced 
restrictions to stop the spread of the coronavirus. China was the first country to do so. 
At the beginning of March 2020, Italy was the first European country to impose 
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a national lockdown. By the end of the month, similar actions were taken by the 
majority of European countries, which introduced various restrictions for their citizens.  

In the literature, there are studies on COVID-19 restrictions. Some authors focus 
on negative impacts of a lockdown and evaluate its social and economic costs 
(Bonaccorsi et al., 2020; Palomino, Rodríguez and Sebastian, 2020; Coccia, 2021; Ke 
and Hsiao, 2021, Wu et al., 2021, Zhang et al., 2022). More applicable for this article are 
studies that concern a positive impact of introduced restrictions on the pace of spread 
of the COVID-19 pandemic in the world. For instance, the studies that demonstrated 
that making masks mandatory in public spaces considerably reduces the spread of the 
virus (Mitze et al., 2020; Zhang et al., 2020, Bo et al., 2021, Chernozhukov et al., 2021). 
Other authors try to study the impact of lockdown on the outbreak of the pandemic. 
Studies on the topic mostly concern China (Lai et al., 2020; Ruan et al., 2020; Tian, Luo, 
et al., 2021; Tian, Tan, et al., 2021) and US (Bayat et al., 2020, Courtemanche et al., 2020; 
Siedner et al., 2020; Abouk and Heydari, 2021; Li et al., 2021). There are still not many 
similar studies concerning Europe. Among others, there were studies on the impact of 
school openings in Italy (Alfano, Ercolano and Cicatiello, 2021), lockdown in Madrid 
or London (Goodman-Bacon and Marcus, 2020) or a lack of restrictions on the health 
of citizens (Cho, 2020; Born, Dietrich and Müller, 2021). Also, there are international 
studies (Alfano and Ercolano, 2020; Fountoulakis et al., 2020; Piovani et al., 2021). 
Mendez-Brito et al. (2021) presented more research connected to the discussed subject.  

In their research, the authors mentioned above used diversified methods, such as: 
synthetic control method (Bayat et al., 2020; Cho, 2020; Mitze et al., 2020; Alfano, 
Ercolano and Cicatiello, 2021; Born, Dietrich and Müller, 2021; Tian, Luo, et al., 2021; 
Tian, Tan, et al., 2021), linear regression (Fountoulakis et al., 2020; Siedner et al., 2020; 
Zhang et al., 2020), event studies (Courtemanche et al., 2020; Abouk and Heydari, 2021; 
Li et al., 2021), structural equation model (Chernozhukov et al., 2021), SEIR model 
(Lai et al., 2020), difference-in-differences analyses (Goodman-Bacon and Marcus, 
2020; Abouk and Heydari, 2021), panel analysis (Alfano and Ercolano, 2020; Piovani 
et al., 2021), generalized linear mixed model (Bo et al., 2021). 

The main goal of the research is to study the impact of the lockdown in Poland on 
the spread of the coronavirus pandemic. The spread of this pandemic shown completely 
different behaviour in different regions (voivodships). In the research, therefore, a data-
driven, non-parametric way to look at things is required. For this reason the synthetic 
control method was used in the study. It allowed the author to determine how the 
pandemic would have had spread in the region similar to Warmińsko-Mazurskie 
voivodship if it had not been for the lockdown. There is not much research on the 
impact of restrictions on the spread of the pandemic in European countries. It is crucial 
to conduct such analyses due to the risk of another wave of COVID-19. The results 
might be imperative for the government to determine effective actions against the 
spread of the pandemic. To the best knowledge of the author, there is no other analysis 
in the Polish literature that uses the synthetic control method. 
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The article has the following structure. In the second part, the author presented 
statistics on the spread of the coronavirus pandemic in Poland and restrictions 
implemented subsequently. The third part includes a description of the methodology 
of the study – the synthetic control method. Next parts present a research sample and 
results of the empirical analysis. The article ends with the summary. 

2.  The spread of COVID-19 in Poland and subsequent restrictions  

First cases of the coronavirus in Europe were identified at the end of January 2020. 
First, they were recorded in France, Germany and Italy. In Poland, a month later, on 4 
March 2020, patient zero was documented in Lubuskie voivodship. Next cases on the 
subsequent days as well as a rapid spread of the disease in Western Europe led to first 
restrictions in Poland. On 10 March 2020, mass gatherings were cancelled. Two days 
later, schools and cultural institutions were closed. On 24 March, the movement of the 
population and gatherings (up to 2 people) were restricted. A week later, next 
restrictions were imposed; among others: hotels, restaurants and hair salons were 
closed, and religious gatherings were limited. On 16 April, similarly to other European 
countries, it became mandatory to cover nose and mouth in public spaces. Owing to 
the rapid introduction of restrictions as well as self-discipline of the society, a daily 
number of cases was stagnant in the studied period (Figure 1). 

Figure 1. Daily new coronavirus cases in Poland for the period 4.03.2020 – 6.06.2020.  

Source: author’s work on the basis of Ritchie et al. (2021). 

As a result, as of 20 April, restrictions were gradually lifted. It was divided in the 7-
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new cases were growing (reaching the maximum value of 903) but remained stable. 
Restrictions were implemented locally (in poviats). 

The situation got considerably worse in autumn. This is well-illustrated in Figure 2. 
This is when the second wave of pandemic hit Poland. Due to a dramatic growth in new 
cases, all restrictions lifted during summertime were reintroduced. The worst situation 
was in November. In the subsequent months, the situation was gradually improving. 
Therefore, first restrictions were lifted on 18 January – schools were opened for younger 
kids, shopping malls, museums and art galleries were opened on 1 February, and hotels, 
swimming pools, cinemas and theatres were opened on 12 February. 

 
Figure 2. Daily new coronavirus cases in Poland between 7.06.2020 – 30.06.2021 

Source: author’s work on the basis of Ritchie et al. (2021). 

It was not long before another lockdown was introduced. The third, most serious, 
wave of pandemic hit Poland. From the beginning of March, the daily number of new 
cases was rapidly growing reaching the maximum of 35000 cases a day. The hospitals 
were overwhelmed with COVID-19 patients. To reduce the strain on healthcare system, 
temporary hospitals were opened around Poland. The pandemic was spreading at 
different pace around the country. Therefore, first, the government introduced 
lockdown only in some regions. First, it was introduced in Warmińsko-Mazurskie 
(27.02), then Pomorskie (13.03), and Mazowieckie and Lubuskie (15.03). Figure 2 
illustrates that the daily number of new coronavirus cases was growing in the studied 
period. Therefore, the lockdown was introduced in the entire country on 20 March. 
After the peak of new cases at the turn of March and April, the situation began to 
improve. From 20 April, the introduced restrictions were being lifted. 
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3.  Research methodology  

The synthetic control method, proposed by Abadie and Gardeazabal (Abadie and 
Gardeazabal, 2003) and further developed by Abadie, Diamond and Hainueller 
(Abadie, Diamond and Hainmueller, 2010, 2011, 2015; Abadie, 2021) was used in the 
study. This method is used in comparative case study research. In this kind of research, 
authors compare the outcome of one or multiple units affected by the treatment or 
intervention with the outcome of one or multiple units not affected by them. In the 
synthetic control method, the assumption is that only one unit was affected by the 
intervention. The goal of the research is to identify the impact of the treatment on the 
outcome of the research subject. 

The assumption is that gathered data included 𝐽+1 units (𝑗 ൌ 1,2, … , 𝐽 ൅ 1ሻ, where 
the first unit  ሺ𝑗 ൌ 1ሻ is a treated unit, whereas remaining units 𝑗 ൌ 2, … . 𝐽 ൅ 1 belong 
to the donor pool and constitute a set of potential comparative units not affected by the 
treatment. The data were gathered from 𝑇 periods, where first 𝑇଴ are periods prior to 
the treatment (periods 1,2, … ,𝑇଴ሻ . The 𝑌௝௧ outcome of interest can be observed for each 
𝑗 unit and 𝑡 period. For each 𝑗 unit, there is 𝑘 set of 𝑋ଵ௝, … ,𝑋௞௝ predictors of the 
outcome that may include outcomes before the 𝑌௝௧ treatment. Vectors with 
ሺ𝑘𝑥1ሻ𝑿𝟏, … .𝑿𝑱ା𝟏 dimensions include components for   𝑗 ൌ 1, … . 𝐽 ൅ 1 units. The 
𝑿଴ ൌ ൣ𝑋ଶ … 𝑋௃ାଵ൧ matrix with ሺ𝑘𝑥𝐽ሻ dimensions includes predictors of 𝐽 untreated 
units. The outcome of interest for 𝑡 ൐ 𝑇଴ and for the studied ሺ𝑗 ൌ 1ሻ unit may be 
defined with the equation: 

𝜏ଵ௧ ൌ 𝑌ଵ௧
ூ െ 𝑌ଵ௧

ே                                                         (1) 

where 𝑌ଵ௧ூ  and 𝑌ଵ௧ே are denoted as the outcome for the unit affected by the intervention 
or in the absence of the intervention respectively. The (1) equation allows for the fact 
that the impact of the political intervention may vary over time. The intervention might 
not have an immediate effect – it can be accumulated over time. The 𝑌ଵ௧ூ  values are 
known. The purpose of the synthetic control method is to estimate the outcome for the 
studied unit in the absence of the 𝑌ଵ௧

ே intervention. The method is based on the 
assumption that the linear combination of units not affected by the intervention will 
better illustrate how the unit reacts to the intervention. In order to construe the 
synthetic control unit, the author defined the ሺ𝐽𝑥1ሻ weights vector where weights are 
denoted as 𝑊 ൌ ሺ𝑤ଶ, … ,𝑤௃ାଵሻᇱ. When the 𝑊 weights vector is known, the 𝑌ଵ௧ே and 𝜏ଵ௧ 
estimators are respectively: 

𝑌෠ଵ௧
ே ൌ ∑ 𝑤௝𝑌௝௧                                                         

௃ାଵ
௝ୀଵ (2) 

𝜏̂ଵ௧ ൌ 𝑌ଵ௧
ூ െ 𝑌෠ଵ௧

ே                                                          (3) 
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The weights meet the assumptions: 𝑤௝ ൒ 0  𝑗 ൌ 2, , … 𝐽 and 𝑤ଶ ൅⋯  ൅ 𝑤௃ାଵ ൌ 1. 
The main challenge is to estimate the 𝑤ଶ, … ,𝑤௃ାଵ weights. Abadie and Gardeazabal 
(2003) as well as Abadie et al. (2010) suggest choosing weights in such a way that 
characteristics of the synthetic control unit were best illustrating characteristics of the 
unit affected by the intervention ሺ𝑗 ൌ 1ሻ. It means that, taking into account non-
negative 𝑣ଵ, … 𝑣௞ values, they suggest choosing 𝑊∗ ൌ ൫𝑤ଶ

∗, … ,𝑤௃ାଵ
∗ ൯ synthetic control 

that minimizes the distance defined as: 

‖𝑿𝟏 െ 𝑿𝟎𝑾‖ ൌ ඥሺ𝑿𝟏 െ 𝑿𝟎𝑾ሻᇱ𝑽ሺ𝑿𝟏 െ 𝑿𝟎𝑾ሻ ൌ ൫∑ 𝑣௛ሺ𝑋௛ଵ െ 𝑤ଶ𝑋௛ଶ െ ⋯െ௞
௛ୀଵ

𝑤௃ାଵ𝑋௛௃ାଵሻଶ൯
భ
మ                        (4) 

under conditions: 

0 ൑ 𝑤௝     𝑗 ൌ 2, , … 𝐽     𝑤ଶ ൅⋯  ൅ 𝑤௃ାଵ ൌ 1 

Positive  𝑣ଵ, … 𝑣௞ values illustrate validity of each 𝑋ଵଵ, … 𝑋௞ଵ predictive variable. 
For a given set of 𝑣ଵ, … 𝑣௞ values, the minimizing of the (4) equation constitutes the 
problem of the square optimization. The question is how to choose the 𝑽 vector. Abadie 
and Gardeazabal (2003) as well as Abadie et al. (2010) suggest choosing the 𝑽 vector 
that minimizes the mean squared prediction error (MSPE) for the outcome over some 
set of pre-intervention periods. In other words, the 𝑍ଵሺ𝑇௉𝑥1ሻ  is a vector of the outcome 
for the treated unit over some set of pre-intervention periods and 𝑍଴ሺ𝑇௉𝑥𝐽ሻ is a matrix 
of corresponding values for units from the donor pool, where 𝑇௉ ሺ1 ൑ 𝑇௉ ൑ 𝑇଴ሻ is 
a number of pre-intervention periods for which the mean squared prediction error 
(MSPE) is minimized. Then, the 𝑉∗  is chosen to minimize:  

𝑎𝑟𝑔min
௏∈ఊ

ሺ𝑍ଵ െ 𝑍଴𝑊∗ሺ𝑉ሻሻᇱሺ𝑍ଵ െ 𝑍଴𝑊∗ሺ𝑉ሻሻ                                (5) 

where 𝛾 is a set of all positive ሺ𝐾𝑥𝐾ሻ diagonal matrices. In the end, the embedded 
optimization problem is solved, which minimized the above (5) equation for 𝑊∗ሺ𝑉∗ሻ 
defined by the (4) equation. 

4.  Research sample 

The goal of the research is to study the impact of restrictions imposed in Poland on 
the spread of the COVID-19 pandemic. For this purpose, the author used Warmińsko-
Mazurskie region (voivodship), where lockdown was introduced on 27 February 2021. 
As mentioned before, this is the first region in Poland where the lockdown was 
introduced during the third wave of the coronavirus pandemic. The research covers the 
period of 36 days, which is period of two weeks prior to restrictions and three weeks 
after they were introduced. It is the period between the lifting of restrictions in Poland 
(12 February 2021) and their reintroduction in the entire country (20 March 2021). 
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It was assumed that restrictions introduced on 13 and 15 March in three regions had 
not shown the desired effect – to curb the spread of the pandemic. The assumption was 
based on the fact that according to the literature, the average period between the 
infection and a positive test result is 11.7 days (Mitze et al., 2020). 

Apart from Warmińsko-Mazurskie region, all 15 voivodships in Poland constituted 
the set of potential comparative units – the donor pool. The  𝑌௝௧  outcome variable 
responsible for the spread of the pandemic in every voivodships was the accumulated 
number of new infections from 12 February 2021 until 20 march 2021 (36 observations 
for each region). The predictive variables were:  

 accumulated number of cases a day and seven days prior to the restrictions 
(2 observations for each voivodship), 

 average daily number of cases in the last 7 days prior to the restrictions 
(1 observation for each voivodship), 

 young‐age dependency ratio (ratio of people aged 14 and younger to the 1564 
age group) in 2020 (1 observation for each voivodship),  

 share of people living in cities in 2020 (1 observation for each voivodship), 
 doctors per 10 thousand citizens in 2020 (1 observation for each voivodship), 
 pharmacies per 10 thousand citizens in 2020 (1 observation for each 

voivodship), 
 number of people vaccinated per 10 thousand citizens on a day prior to 

restrictions in 2020 (1 observation for each voivodship), 
 number of recoveries per 10 thousand citizens on a day prior to restrictions in 

2020 (1 observation for each voivodship). 

They were chosen based on the literature review and the availability of data. Data 
on the spread of the pandemic in Poland were taken from the government website on 
the pandemic in Poland (Ministry of Health 2021), whereas data on demographics and 
healthcare were taken from the Local Data Bank (GUS 2021). Calculations were made 
in the R statistical environment.  

5.  Results of the empirical study 

Using the methodology and data described in previous parts, based on the two-
week period prior to restrictions (13.02.2021-26.02.2021), the author construed the 
synthetic control unit – synthetic Warmińsko-Mazurskie region (voivodship). Table 1 
includes weights created for this purpose. Based on that, it is safe to say that the 
synthetic region is the combination of three regions: Kujawsko-Pomorskie, Śląskie and 
Mazowieckie. 
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Table 1. Synthetic weights for Warmińsko-Mazurskie 

Region 
Synthetic 

control weight 
Region 

Synthetic control 
weight 

Dolnośląskie 0.001 Podkarpackie 0.001 
Kujawsko-Pomorskie 0.745 Podlaskie 0.000 
Łódzkie 0.001 Pomorskie 0.000 
Lubelskie 0.000 Śląskie 0.196 
Lubuskie 0.000 Świętokrzyskie 0.000 
Małopolskie 0.000 Wielkopolskie 0.000 
Mazowieckie 0.055 Zachodniopomorskie 0.001 
Opolskie 0.000     

Source: own calculation based on GUS (2021) and Ministry of Health (2021).  

Table 2 presents values of predictive variables used in the study for two units, that 
is Warmińsko-Mazurskie and synthetic Warmińsko-Mazurskie regions as well as an 
average value for the 15 remaining regions. 

Table 2. Averages for predictive variables of accumulated number of cases 

Variable 
Warmińsko-Mazurskie Average of 

15 control 
voivodships 

Real Synthetic 
Accumulated number of cases a day prior to the 
restrictions 8944.0 8878.1 6808.4 
Accumulated number of cases seven days prior to the 
restrictions 4378.0 4414.2 3306.9 
Average daily number of cases in the last 7 days prior 
to the restrictions 704.3 715.8 562.1 
Young‐age dependency ratio (persons aged 14 years 
and below per 100 of population aged 15‐64 years) 22.5 22.8 22.8 
Doctors per 10 thousand citizens 42.4 58.5 55.7 
Pharmacies per 10 thousand citizens 2.9 2.9 3.1 
Share of people living in cities 59.0 62.4 58.3 
Number of people vaccinated per 10 thousand citizens 
on a day prior to restrictions 799.1 785.9 848.3 
Number of recoveries per 10 thousand citizens on a 
day prior to restrictions 575.6 534.8 432.0 
  RMSPE 126.6  

Source: own calculation based on GUS (2021) and Ministry of Health (2021).  
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According to the results, for the vast majority of predictive variables, the synthetic 
Warmińsko-Mazurskie region is more similar to the actual region than to all other 
studied regions. In other words, the determined linear combination of regions better 
reflects characteristics of the studied unit than the average of the donor pool. The table 
also presents the root mean square prediction error (RMSPE). It measures the 
difference between outcome variables (accumulated number of cases) for Warmińsko-
Mazurskie region and its synthetic equivalent for the period prior to restrictions. 
Figure 3 presents slight differences. Trajectories of the pandemic for both analysed 
units are aligned in the studied period. The synthetic region almost perfectly illustrates 
outcome variables for the actual Warmińsko-Mazurskie region. 

 

 
Figure 3.  Accumulated number of cases for Warmińsko-Mazurskie region and synthetic 

Warmińsko-Mazurskie region in the period prior to restrictions 
Source: own calculation based on GUS (2021) and Ministry of Health (2021).  
 

For the goal of the research, it is crucial how the variable responsible for the 
accumulated number of new cases for the synthetic unit changes after restrictions were 
introduced. The figure presents data on the spread of the pandemic in the studied 
period. 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

13
.0

2.
20

21

14
.0

2.
20

21

15
.0

2.
20

21

16
.0

2.
20

21

17
.0

2.
20

21

18
.0

2.
20

21

19
.0

2.
20

21

20
.0

2.
20

21

21
.0

2.
20

21

22
.0

2.
20

21

23
.0

2.
20

21

24
.0

2.
20

21

25
.0

2.
20

21

26
.0

2.
20

21

A
cc

um
ul

at
ed

 n
um

be
r 

of
 c

as
es

 

Day

Warmińsko-Mazurskie

synthetic control unit



136                                                               S. Herman: Impact of restrictions on the COVID-19 pandemic… 

 

 

 
Figure 4.  Accumulated number of cases in Warmińsko-Mazurskie region and for the synthetic 

control unit in the studied period  
Source: own calculation based on GUS (2021) and Ministry of Health (2021).  
 

The figure shows that after 27 February there is a growing discrepancy between 
presented trajectories that are responsible for the spread of the pandemic. Over time, 
values for the synthetic unit are more and more different compared to actual numbers 
in the studied region in Poland. It is worth reminding that the synthetic unit is 
responsible for the situation with an absence of the studied intervention; that is if the 
lockdown had not been introduced. According to the results, only 10 days after the 
restrictions were imposed, the accumulated number of cases for the Warmińsko-
Mazurskie region would have been lower by 1100 compared to the synthetic unit. On 
the last studied day, the difference grew to more than 9500 cases. Thus, the conclusion 
is that if it had not been for the lockdown introduced in the Warmińsko-Mazurskie 
region, on 20 March 2020 the number of new cases would have been higher by 34% 
compared to the reality. 

To assess the validity of the results, placebo studies were conducted. As a result, it 
was verified whether differences visible in Figure 4 stem from the introduced 
restrictions or lack of prognostic abilities of the adopted method. Placebo studies were 
conducted in two dimensions: time and space. In the first scenario, the entire analysis 
was repeated assuming that the restrictions were introduced earlier, e.g. on 22 January 
2020. Figure 5 presents accumulated number of cases. 
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Figure 5.  Placebo-in-time tests for (pseudo) treatment effects in the period 22 January to 12 February 
Source: own calculation based on GUS (2021) and Ministry of Health (2021).  

 
According to the figure, the dynamics of the pandemic evolution in Warmińsko-

Mazurskie region and its synthetic equivalent is similar. Only the last 4 days show 
slightly higher discrepancies between the curves presented on the figure. Most 
importantly, unlike in the case of Figure 4, values for the synthetic unit are lower 
compared to the Warmińsko-Mazurskie region. 

In the second placebo study, analyses are redone assuming that units affected by 
the intervention (lockdown) are all 15 regions from the donor pool. As a result, it was 
possible to compare the estimated outcome of restrictions for the Warmińsko-
Mazurskie region with the distribution of placebo outcomes for other regions. The 
assumption is that the studied outcome for the Warmińsko-Mazurskie region is 
relevant if the gap (defined as the difference between the accumulated number of cases 
for the actual region and the synthetic one) for the Warmińsko-Mazurskie is high 
in comparison with the gaps from the donor pool. The results are shown in Figure 6. 
The figure presents the distribution of the gaps. It is clear that Warmińsko-Mazurskie 
voivodship is one of the regions for which the studied difference is negative. Most 
importantly, it is the highest (absolute value) on the last day of the studied period. 
Results of the placebo studies show that the outcome presented in Figure 4 is the actual 
outcome of restrictions introduced in Warmińsko-Mazurskie voivodship.  
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Figure 6.  Placebo-in-space tests (all voivodships) 
Source: own calculation based on GUS (2021) and Ministry of Health (2021).  
 

The last part of the study includes robustness tests and is connected with the 
sensitivity analysis determining how the adopted method is affected by the change of 
the research sample. First, it was studied how the outcomes would be changing if 
different regions were taken to the donor pool. Table 1 shows that three regions 
(Kujawsko-Pomorskie, Śląskie and Mazowieckie) are crucial for the construction of the 
synthetic Warmińsko-Mazurskie region. Using variables presented earlier, the 
methodology was used three more times and one of the above-mentioned regions was 
left out from the donor pool in next iterations. The outcomes on the accumulated 
number of cases in Warmińsko-Mazurskie region and its synthetic equivalents are 
presented in Figure 7. 
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Figure 7. Leave-One-Out Distribution of the Synthetic Control for Warmińsko-Mazurskie  

Source: own calculation based on GUS (2021) and Ministry of Health (2021).  
 
 
The figure shows that outcomes obtained at the beginning of the research are quite 

resistant to leaving out the most important regions from the donor pool. The leave-
one-out synthetic controls produce a very similar effect of restrictions introduced 
in Warmińsko-Mazurskie. In all three cases introducing lockdown causes decrease 
in the number of cases. Only in one case (after deleting the Mazowieckie region) the 
effect of lockdown would be higher than for whole quota of donors. The second 
robustness test included the change of predictive variables. To conduct the test, 
calculations were repeated twice. First, not taking into account demographics and 
healthcare data in Poland, then, not including variables on the dynamics of the 
pandemic in Poland. Table 3 shows weights for particular variables in presented 
calculations and root mean square prediction errors. 
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Table 3. Weights for analysed predictive variables 

Variable 
Synthetic 

control unit 

Synthetic control 
unit (without 
variables on 

demographics and 
healthcare) 

Synthetic 
control unit  

(without 
variables on 

the dynamics 
of the 

pandemic) 

Accumulated number of cases a day 
prior to the restrictions 0.624 0.870 - 

Accumulated number of cases seven 
days prior to the restrictions 0.195 0.096 - 

Average daily number of cases in the 
last 7 days prior to the restrictions 0.177 0.030 - 

Young‐age dependency ratio (persons 
aged 14 years 
and below per 100 of population aged 
15‐64 years) 0.004 - 0.000 

Doctors per 10 thousand citizens 0.000 - 0.840 

Pharmacies per 10 thousand citizens 0.000 - 0.005 

Share of people living in cities 0.000 - 0.107 

Number of people vaccinated per 10 
thousand citizens on a day prior to 
restrictions 0.000 0.004 0.000 

Number of recoveries per 10 
thousand citizens on a day prior to 
restrictions 0.001 0.000 

0.048 

RMSPE 126.600 126.352 158.691 

Source: own calculation based on GUS (2021) and Ministry of Health (2021)  

The results show that leaving out variables on demographics and healthcare does 
not have much impact on the alignment of the synthetic unit to the actual one. More 
significant impact (higher RMSPE value) can be observed if variables on the dynamics 
of the pandemic are excluded from the study. However, the value of the error is not 
very high. The same conclusion can be drawn from analysing the figure on the 
accumulated number of cases in the studied period (Figure 8). 
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Figure 8. Accumulated number of cases for Warmińsko-Mazurskie and synthetic regions with 

a different set of predictive variables 
Source: own calculation based on GUS (2021) and Ministry of Health (2021).  

It is clear that a day before the restrictions were introduced, all curves have a very 
similar position. What is more, after the restrictions were implemented, their dynamics 
are not changing significantly. Therefore, the synthetic control method and its results 
are resistant to the change of assumptions made at the beginning of the study. 

6.  Conclusions 

Due to the rapid spread of the pandemic, governments in many countries decided 
to introduce various restrictions. Their main goal was to reduce contact between 
people, which is how the virus transmits. Closing of shopping malls, cinemas, schools, 
hotels involves high economic and social costs. Since lockdowns are put in place 
repeatedly and for a longer period, the society has been rebelling against them more 
and more often. Therefore, before the next pandemic wave, it is essential to estimate 
the validity of restriction on life and health of citizens.  

The main goal of the research was to study the impact of lockdown on the spread 
of COVID-19 in Poland. Results show that lockdown is an efficient tool that curbs the 
spread of the COVID-19 pandemic. Its introduction has significantly limited the 
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number of new cases in the analysed region in Poland. The research included the 
construction of the synthetic region that well illustrated the tendency of the pandemic 
development in the Warmińsko-Mazurskie region before the lockdown. After that, 
with time, the virus spread trajectories started to differ considerably. Results indicate 
that imposed restrictions decreased the number of coronavirus cases by 9500 people 
in 21 days. Placebo-in-space and placebo-in-time studies proved that results are reliable 
and resistant to the change of research assumptions. 
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ABSTRACT 

The coronavirus (COVID-19) pandemic affected every country worldwide. In particular, 
outbreaks in Belgium, the Czech Republic, Poland and Switzerland entered the second wave 
and was exponentially increasing between July and November, 2020. The aims of the study 
are: to estimate the compound growth rate, to develop a modified exponential time-series 
model compared with the hyperbolic time-series model, and to estimate the optimal 
parameters for the models based on the exponential least-squares, three selected points, 
partial-sums methods, and the hyperbolic least-squares for the daily COVID-19 cases 
in Belgium, the Czech Republic, Poland and Switzerland. The speed and spreading power of 
COVID-19 infections were obtained by using derivative and root-mean-squared methods, 
respectively. The results show that the exponential least-squares method was the most 
suitable for the parameter estimation. The compound growth rate of COVID-19 infection 
was the highest in Switzerland, and the speed and spreading power of COVID-19 infection 
were the highest in Poland between July and November, 2020. 

Key words: COVID-19, modified exponential time-series model, method of parameter 
estimation, compound growth rate. 

1. Introduction

Since the end of 2019, the coronavirus disease 2019 (COVID-19) outbreak caused
by the SARS-Cov-2 virus, which started in Wuhan of Hubei Province, China, has spread 
throughout the world. The outbreak in Europe has entered the second wave with 
increasing numbers of COVID-19 cases in many countries. As of November 12, 2020, 
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there were 12,914,903 cases and 306,504 deaths in Europe (Worldometer, 2020). 
Especially, the second-wave COVID-19 outbreaks in Belgium, the Czech Republic, 
Poland, and Switzerland rapidly spread with what looks like an exponential function; 
at the same time point, there were 507,475 cases and 13,561 deaths in Belgium, 438,805 
cases and 5,570 deaths in the Czech Republic, 641,496 cases and 9,080 deaths in Poland, 
and 243,472 cases and 3,113 deaths in Switzerland. Measures imposed by the 
governments of these countries, such as lockdown policies, face mask-wearing in public 
areas, encouraging hand washing, avoiding public areas, and prohibiting people from 
assembling were launched to control and protect the population from the spread of 
COVID-19. In addition, physical and social distancing have remained in practice in 
many areas, while learning from home for students and working from home have 
become necessary policies. Thus, the spread of COVID-19 has gone mainly 
unchallenged due to a lack of medical equipment and personnel to fight the pandemic. 

Forecasting the number of COVID-19 cases (the number of people contracting the 
disease) is essential for planning the necessary provisions for medical treatment 
(hospital beds, ventilators, personal protective equipment, etc.). Many models for 
forecasting COVID-19 cases comprising time-series data have been studied. For 
example, linear regression analysis, machine learning, vector support regression 
machine, and autoregressive integrated moving average (ARIMA) models based on the 
linear relationship between the time variable and dependent variables have been 
popular for establishing models for forecasting COVID-19 cases. Forecasting new cases 
and new deaths from COVID-19 in Ethiopia was investigated by Argaru (2020). Linear 
regression analysis of COVID-19 data comprising new cases, deaths, the number of 
days, and recoveries in May and June to estimate the parameters for a forecasting model 
has been reported. The relationship between COVID-19 data and time has been analysed 
by using Pearson’s correlation analysis. The results show that there is a correlation 
between new COVID-19 cases and deaths, while the number of days and new recoveries 
were significant to the new deaths. For the COVID-19 outbreak in Henan province, 
China, linear regression analysis was adopted to estimate parameters for constructing 
a forecasting model and to study the relationship between the number of people from 
Wuhan who had travelled and the number of cases in 18 cities in Henan province. 
The results show a statistically significant linear correlation between the number of 
people traveling from Wuhan and the number of cases (Cheng, 2020).  

The COVID-19 outbreak in India has caused socioeconomic recession and 
mounting deaths. Both multiple and linear regression analyses have been adopted to 
predict the number of deaths and to study correlations in the COVID-19 data from 
India, with the ability of the developed predictive model being based on autoregression 
(Ghosal et al., 2020). The dependent variable (the number of active cases) in the 
forecasting model was correlated with the independent variables (the number of cases, 
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deceased, and recovered). In a study of public health responses in various countries by 
Rath, Tripathy and Tripathy (2020), the performances of forecasting models were 
compared based on the coefficient of determination and correlation. Correlations 
between intervention scores, daily new cases, and doubling time were significant for 
identifying epidemiological changes in the spread of COVID-19. In research involving 
linear and polynomial regression analysis for predicting the COVID-19 fatality rate 
in Nigeria by Suleiman et al. (2020), the results reveal that the polynomial regression 
model is suitable for predicting the COVID-19 fatality rate in this particular country.  

In other studies, linear regression analysis was employed by Melik-Huseynov et al. 
(2020) to estimate new cases of COVID-19. Simple regression analysis was applied by 
Losif et al. (2020) to study the incidence of correlation between the COVID-19 peak or 
plateau and air traffic volume. Forecasting models based on polynomial regression were 
investigated by Ekum and Ogunsanya (2020) to forecast new cases of COVID-19; their 
results show that the cubic polynomial regression model performed better than other 
polynomial regressions. Calculating the fatality rate based on linear regression analysis 
and comparing its efficacy among countries affected by the COVID-19 pandemic was 
conducted by Hoseinpour et al. (2020). Support vector regression as a predictive model 
for the duration of spread and analysis of growth and transmission rates was used to 
evaluate the correlation between COVID-19 outbreaks and weather conditions by 
Yadav, Perumal and Srinivas (2020). Machine learning was applied as a forecasting 
model based on linear regression, least absolute shrinkage and selection operator, 
support vector machine, and exponential smoothing for the number of COVID-19 
patients, new infection cases, deaths, and recoveries by Rustam et al. (2020); their 
results proved that exponential smoothing offered the best performance. Linear 
regression and support vector machine analyses have been used for predicting the 
number of COVID-19 cases to aid decision-making by the government in India 
(Likhesh et al., 2020). Prediction models and comparison between the susceptible-
exposed/infectious-recovered model and regression analysis were used to predict the 
number of COVID-19 cases in India by Pandey et al. (2020). 

ARIMA models have often been applied to COVID-19 time-series data. 
An ARIMA model and regression analysis were used to estimate the mortality rate of 
COVID-19 by Chaurasia and Pal (2020). Forecasting COVID-19 time-series data based 
on an ARIMA model in the US, Brazil, India, Russia, and Spain was investigated by 
Sahai et al. (2020). An ARIMA model was created to forecast new cases and deaths from 
COVID-19 time-series data by Yang et al. (2020). An ARIMA model for short-term 
prediction was developed by Fang, Wang and Pan (2020) to predict COVID-19 cases, 
deaths, and recoveries in Russia. An ARIMA model was applied by Benvenuto et al. 
(2020) to a COVID-19 time-series dataset from the Johns Hopkins database for 
forecasting the trend and incidence of COVID-19 outbreak. Singh et al. (2020) 
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developed an ARIMA model for predicting confirmed cases, deaths, and recoveries 
with a spatial map showing the intensity of each criterion. Moreover, they used the 
Akaike information criterion to validate the ARIMA model. 

Because linear regression analysis, linear machine learning, linear support vector 
regression, and ARIMA model are dependent on the linear combination of time as the 
independent variable to predict dependent variables, our aim was to develop a modified 
exponential time-series model compared with hyperbolic time-series model that is 
nonlinear and uses the exponential growth rate to forecast the number of COVID-19 
cases increasing rapidly each day in Belgium, the Czech Republic, Poland, and 
Switzerland. Herein, the accuracy and validation of the developed model are reported, 
while its ability to predict the speed and spreading power of the daily COVID-19 cases 
are illustrated. 

2.  Methods 

2.1.  Derivation of the modified exponential time-series model 

A time series is a sequence of observations taken sequentially in time (George et al., 
2015). The number of COVID-19 cases per day is an example of a time series. It can be 
represented by modelling its curve as the solution of a differential equation with time 
as the independent variable. In this research, a modified exponential curve is adopted 
to analyse and forecast the daily COVID-19 cases as follows. 

Let ( )y t be the number of total daily COVID-19 cases at time t . Differential 
equation which represents the speed of COVID-19 cases and is solved into the modified 
exponential curve ( )y t can be derived as follows: 

ln( ) ; (0) ; , ,   tdy
b c c y a b a b c

dt
                              (1)  

Taking integral both sides of Equation (1), the result becomes 

ln( )
  tdy

c dt
b c

 

( ) ln( ) ty t bc Kb c  where K is an arbitrary constant. 

With initial condition (0)  y a b , the K value can be carried out as 

ln( )


a
K

b c
 

Therefore, a modified exponential curve is 
( )   ty t a bc                                                          (2) 

where , ,a b c are the parameters. 
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2.2.  Compound growth rate and parameter estimations with the algorithm 

Let   1
( )



n

t
y t be a time series of the number of COVID-19 cases. The dependent 

variable y , which is related to independent variable t  has the modified exponential 
relationship to t  as in Equation (2). In this research, the exponential least-squares 
method, three selected points, partial-sums method, and the hyperbolic least-squares 
method were employed for the estimation of parameters as follows. 

2.2.1.  The exponential least-squares method 

The exponential least-squares method is to seek an approximating function that 
best fits the data points (Kharab and Guenther, 2012). It is based on the sum of squares 
error ( SSE ) defined by 

2ˆ( ) SSE y y                                                             (3) 
where y  is an actual value of time series and ŷ is a forecasted value of time series. 

The partial derivative is taken into both sides of Equation (3). Then, it is determined 
to be zero for evaluating the parameters , ,a b c  based on the minimum of the sum of 
squares error. 

2

2

2

ˆ( ) 0,

ˆ( ) 0,

ˆ( ) 0.

 
  

 
 

  
 
 

  
 

SSE y y
a a

SSE y y
b b

SSE y y
c c

 

In addition, the compound growth rate of the time series with initial value 0y  is 
defined as 

0( ) (1 )  ty t y r                                                      (4) 

Rewriting Equation (2), the result becomes 
( )  Y t A Bt  

where ln( ) ln( ) ln( ), ln( ), ln( ).    A a b ab B c Y y   

An estimate of the compound growth rate r  based on the least squares estimation 
for estimation of parameters A and B is given by 

2

1 1 1

2

12

1

( ) ( )

ˆ
  








 
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  and ˆ ˆ A Y Bt  
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The estimator of parameter b is given by 
ˆˆ ˆexp( ) 1  c B r  

where  r̂  is the estimator of the compound growth rate. 
Therefore, an estimate of the compound growth rate is given by  

ˆ ˆ 1 r c                                                                (5) 
Also, Student's T-test is a statistic for significant test of the compound growth rate 

given by 
ˆ

; 2.
ˆ( )

  
B

T df n
SE B

                                                (6) 
The decision of the significance of the compound growth rate is dependent on the 

comparison between the calculated value of |T with the critical value of T  or on the 
consideration of p-value. 

2.2.2.  The three selected points method 

The estimation of parameters of the modified exponential curve is represented by 
the three selected points method (Das and Chakrabarty, 2017). Three points of the time 
series coordinates * * * * * *

1 1 2 2 3 3( , ), ( , ), ( , )t y t y t y  along the time series   1
( )



n

t
y t are selected to 

estimate parameters , ,a b c . 
*
1*

1   ty a bc                                                                  (7) 
*
2*

2   ty a bc                                                                  (8) 
*
3*

3   ty a bc                                                                  (9) 
where * * * *

2 1 3 2   h t t t t . 
By the algebraic way, the system of Equations (7)-(9) is solved for the estimation of 

parameters ˆˆ ˆ, ,a b c as 1
* *
3 2
* *
2 1

ˆ
 

   

hy y
c

y y
 

* *
2 1

* * * *
3 2 2 1ˆ

ˆ ˆ ˆ ˆ( 1) ( 1)

 
 

 t th h

y y y y
b

c c c c
 

* * *
3 2 1* * *

3 2 1
ˆ ˆ ˆˆ ˆ ˆ ˆ     t t ta y bc y bc y bc  

2.2.3. The partial sums method 

The partial sums method (Ikaya et al., 2005) is based on the partition of the time 
series data into three categories with equal length n  points. The dependent variable is 

 1 2 3 1 2 3 2 2 1 2 2 2 3 3, , ,..., ; , , ,..., ; , , ,...,      n n n n n n n n ny y y y y y y y y y y y y  and the time 
independent variable is  

 1,2,3,..., ; 1, 2, 3,...,2 ; 2 1,2 2,2 3,...,3      t n n n n n n n n n . 
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Let 1 2 3, ,S S S  be the partial sums of the partitions of the dependent variable .y  
Thus, 

1
1

( 1)

1


  


nn

t
t

bc c
S y an

c
                                                (10) 

12

2
1

( 1)

1



 


  


n nn

t
t n

bc c
S y an

c
                                         (11) 

2 13

3
2 1

( 1)

1



 


  


n nn

t
t n

bc c
S y an

c
                                       (12) 

The algebraic way is adopted to carry out Equations (10)-(12) for the estimation of  
parameters ˆˆ ˆ, ,a b c as 

1

3 2

2 1

ˆ
 

   

nS S
c

S S
 

2

3 22 1

2 1

ˆ( )( 1)ˆ 1
ˆ


  

   

S SS S c
b

c S S
 

2 11
31 2

ˆˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ( 1) ( 1)( 1) ( 1) ( 1) ( 1)ˆ
ˆ ˆ ˆ( 1) ( 1) ( 1)

        
  

  

n nn n n S c bc cS c bc c S c bc c
a

n c n c n c
 

2.2.4.  The hyperbolic least-squares method 

The hyperbolic least-squares method (Kharab and Guenther, 2012) is a nonlinear 
model estimation. It is the fitting given observations with hyperbolic time-series model, 
which is given as 

( )  
b

y t a
t

 

Setting ( ) ( ), , ,   Y t y t a b  and 1
T

t
,  the hyperbolic time-series model can 

be transformed as 
( )   Y T T  

Then, the least-squares method is applied to the estimation of parameters a  and b . 

2.2.5.  Statistics for the accuracy and validation of the time-series model and 
spreading power 

In this section, the accuracy and validation of the time series model are measured. 
The spreading power is also measured. The measurement of validation of the time 
series model is evaluated by the Root Mean Squared Percentage Error ( RMSPE ) as 

2

1

ˆ1 ( ) ( )

( )

 
  

 


n

t

y t y t
RMSPE

n y t
                                           (13) 

where ( )y t  is an actual value of y  and ˆ( )y t  is a forecasted value of y . 
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For accuracy of the time series model, the coefficient of determination ( 2R ) is 
defined as  

 

2

2 1

2

1

ˆ( ) ( )
1 1

( )





  
   







n

t
n

t

y t y t
RSS

R
TSS

y t y

                                           (14) 

where RSS is the Sum of Squares of Residuals,  
    TSS is the Total Sum of Squares. 

The Root Mean Square ( RMS ) (Jones, 2019) is measured as the spreading power 
of the COVID-19 cases time series. The RMS  can be defined as 

 2

1

1
( )



 
n

t

RMS y t
n

                                                    (15) 

2.2.6.  The algorithm for evaluating the parameters, estimating the derivative, 
  root-mean-square (RMS), RMS percentage error (RMSPE), and estimating 
  the compound growth rate 

In this section, the algorithm for this research is demonstrated.  

Algorithm 

Input: total COVID-19 cases 

y  total COVID-19 cases 

n length(y) 

1 :t n  
2, , ExpoLeast ExpoLeast ExpoLeastPara RMSPE R Expoleastsquare(modifiedexpo, ,t y ) 

2, , Three Three ThreePara RMSPE R Threepoints(modifiedexpo, ,t y ) 
2, , Partial Partial PartialPara RMSPE R Partialsums(modifiedexpo, ,t y ) 

2, , HyperLeast HyperLeast HyperLeastPara RMSPE R Hyperleastsquare(hypebolic, ,t y ) 

The optimal estimate parameter is based on the minimum of RMSPE and the 
maximum of 2R  

1del  
For 2 : 1 t n  

( ) ( ( 1) ( 1)) / 2 /   dy t y t y t del  
End 

1 2 3 4, , , , 0SS SS SS SS SS  
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For 1 :i n  
2( ( )) SS SS y i  

2
1 1 ( ) SS SS t y t  

2 2 ( ) SS SS ty t  

3 3 SS SS t  
2

4 4 SS SS t  

End 
1

( )RMS sqrt SS
n

 

  

 

2 31

2

3
4

ˆ






SS SSSS

n nB
SS

SS
n

 

ˆˆ exp( )c B  

ˆ ˆ 1 r c  
Output: estimate parameters, estimate derivative, RMS, RMSPE, r̂  

2.3.  Data collection 

The sampled countries, Belgium, the Czech Republic, Poland, and Switzerland, 
are selected for investigation because the spreading of COVID-19 in these countries is 
severe outbreak at the second wave in the manner of exponential outbreak. The total 
COVID-19 cases were only collected to model in the first stage of COVID-19 outbreak 
because the first stage is exponentially increasing. Then, the total COVID cases will pass 
the inflation point and will be converged to the carrying capacity (Areepong and 
Sunthornwat, 2021). For selected four countries, the outbreak in the first stage of the 
second wave started in the second wave between July and November, 2020. The data 
for this research are the number of daily total COVID-19 cases in Belgium, the Czech 
Republic, Poland, and Switzerland. The data is collected at the Worldometers website 
(Worldometer, 2020). This website reveals the real time data about world population, 
government and economics, society and media, environment, food, water, energy, 
health, as well as COVID-19 statistics. The duration of time for collecting data for 
making the forecasting model is dependent on the severity in each country. The time 
range for collection of data in Belgium is from July 15, 2020 ( 0t ) to November 3, 
2020 ( 111t ). The time range for collection of da ta in Czech Republic is from August 
23, 2020 ( 0t ) to November 3, 2020 ( 72).t  The time range for collection of data 
in Poland is from September 1, 2020 ( 0t ) to November 3, 2020 ( 63t ). The time 
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range for collection of data in Switzerland is from September 2, 2020 ( 0t ) to 
November 3, 2020 ( 62t ). For the out of sample data, the time range is extended to 
5 days from the last day of the data for making the forecasting model.  

3.  Results 

The results of this research concern estimating the parameters and forecasting 
using the models, as well as the compound growth rate and spreading power of 
COVID-19 in Belgium, the Czech Republic, Poland, and Switzerland. 

3.1.  The parameters and forecasting models for the number of daily COVID-19  
 cases in Belgium 

Here, we present the estimated parameters and forecasting models for the daily 
COVID-19 cases in Belgium. The estimated parameters evaluated by each method are 
as follows: ˆˆ 72207.129, 316.821, a b and ˆ 1.066c  by using the exponential least-
squares method; ˆˆ 62757.544, 114.456, a b and ˆ 1.086c  by using the three selected 
points method; ˆˆ 67327.213, 754.656, a b and ˆ 1.058c  by using the partial-sums 
method; and ˆ 138260.53a and ˆ -188328.83b  by using the hyperbolic least-squares 
method. The forecasting models based on the three methods and estimating the 
parameters of the daily COVID-19 cases in Belgium are shown in Figure 1.   

 
Figure 1.  Estimation of the daily COVID-19 cases in Belgium 



STATISTICS IN TRANSITION new series, September 2022 

 

157

3.2.  The parameters and forecasting models for the daily COVID-19 cases  
  in the Czech Republic 

Here, we present the estimated parameters and forecasting models for the daily 
COVID-19 cases in the Czech Republic. The estimated parameters evaluated by each 
method are as follows: ˆˆ 9077.568, 9261.801, a b  and ˆ 1.053c  by using the least-squares 
method; ˆˆ 21701.501, 221.499, a b and ˆ 1.125c  by using the three selected points 
method; ˆˆ 3408.564, 13198.966, a b and ˆ 1.047c  by using the partial-sums method; 
and ˆ 125497.33a and ˆ -235555.95b  by using the hyperbolic least-squares method. 
The forecasting models based on the three methods and estimates of the parameters for 
the daily COVID-19 cases in the Czech Republic are shown in Figure 2. 

 
Figure 2.  Estimation of the daily COVID-19 cases in the Czech Republic 

3.3.  The parameters and forecasting models for the daily COVID-19 cases  
 in Poland 

Here, we present the estimated parameters and forecasting models for the daily 
COVID-19 cases in Poland. The estimate parameters evaluated by the three methods 
are as follows: ˆˆ 64655.708, 3192.084, a b and ˆ 1.078c  by using the least-squares 

method; ˆˆ 47097.000, 20825.000, a b and ˆ 1.029c  by using the three selected points 



158                                W. Permpoonsinsup, R. Sunthornwat: Modified exponential time series model… 

 

 

method; ˆˆ 67958.474, 1649.921, a b and ˆ 1.099c  by using the partial-sums method; 

and ˆ 157216.97a and ˆ -198139.63b  by using the hyperbolic least-squares method. 
The forecasting models based on the three methods and the estimated parameters for 
the daily COVID-19 cases in Poland are shown in Figure 3. 

 
Figure 3.  Estimation of the daily COVID-19 cases in Poland 

3.4.  Parameters and forecasting models for the daily COVID-19 cases  
 in Switzerland 

Here, we present the estimate parameters and forecasting models for the daily 
COVID-19 cases in Switzerland. The estimated parameters evaluated by each method 
are as follows: ˆˆ 44629.163, 699.939, a b and ˆ 1.089c  by using the least-squares 

method; ˆˆ 42258.5002, 504.499, a b and ˆ 1.119c  by using the three selected points 

method; ˆˆ 55456.458, 901.478, a b and ˆ 1.089c  by using the partial-sums method; 

and ˆ 77679.67a and ˆ -75580.83b  by using the hyperbolic least-squares method.. 
The forecasting models based on the three methods and the estimated parameters for 
the daily COVID-19 cases in Switzerland are shown in Figure 4. 
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Figure 4.  Estimation of the daily COVID-19 cases in Switzerland 

3.5.  Comparison of the spread of COVID-19 and appropriate parameters 

The derivatives of the speed and spreading power of the daily COVID-19 cases 
in Belgium, the Czech Republic, Poland, and Switzerland are shown in Figures 5 and 6, 
respectively. In addition, the compound growth rate and forecasting model validation 
based on RMSPE  and 2R values along with testing of the significance of the 
compound growth rate based on p-values are reported in Table 1. Moreover, 
forecasting of the daily COVID-19 cases for the out-of-sample data for November 4 –
8, 2020, and comparing the forecasted values with the actual values are summarized 
in Table 2. The results indicate that the increase in the speed and spreading power of 
the daily COVID-19 cases in Belgium was higher than for the other countries. 
Moreover, the compound growth rate for each country was statistically significant  
(p-value < 0.05). The exponential least-squares method provided the best fitting of the 
parameter estimations for the four countries, as indicated by the lowest RMSPE  and 
the highest 2R values. 
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Figure 5.  Estimated speed of the increase in daily COVID-19 cases 

 

 
Figure 6.  The spreading power for the daily COVID-19 cases 
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Table 1.  The compound growth rate and forecasting model validation for the daily COVID-19 cases. 

Country Estimate 
B  

Compound 
Growth Rate 

Standard 
Error t-test p-value RMSPE 2R  

Belgium 0.064 0.066 0.001 22.879 1.267e-43 0.456 
0.064 
0.063* 

0.594 

0.982 
0.992 
0.995* 

0.051 
Czech 
Republic 

0.052 0.053 3.613e-07 23.266 6.066e-35 0.543 
0.091 
0.058* 

1.711 

0.867 
0.994 
0.996* 

0.101 
Poland 0.075 0.078 0.001 22.236 3.056e-31 0.248 

0.207 
0.020* 

0.641 

0.904 
0.989 
0.999* 

0.089 
Switzer 
land 

0.086 0.090 0.001 17.460 2.076e-25 0.735 
0.266 
0.034* 

0.406 

0.978 
0.993 
0.994* 

0.089 

Note: * the best value. For each country, the top, middle, and bottom rows are for the models using 
the three points, partial-sums, exponential least-squares methods, and hyperbolic least-squares 
methods, respectively. 
 

Table 2.  Forecasting COVID-19 cases for the out-of-sample data using the least-squares method. 

Country Time RMSPE 2R  
 Nov  

4, 2020 
Nov  
5, 2020 

Nov  
6, 2020 

Nov  
7, 2020 

Nov  
8, 2020 

  

Belgium 453310 
497600.183 

468213 
525854.870 

479341 
555986.239 

488044 
588118.939 

494168 
622385.899 

0.179 0.959 

Czech 
Republic 

378717 
406855.462 

391949 
427880.541 

403497 
450016.929 

411219 
473323.365 

414827 
497861.694 

0.134 0.943 

Poland 439536 
456977.627 

466679 
487608.675 

493765 
520631.283 

521640 
556232.174 

546425 
594612.651 

0.061 0.997 

Switzerland 192376 
199713.233 

202504 
213594.438 

211913 
228718.115 

211913 
245195.477 

211913 
263147.688 

0.137 0.735 

Note: For each country, the top line is the actual value and the bottom line is the forecasted value 
based on the exponential least-squares method. 
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4.  Conclusions 

In this research, we applied a modified exponential time series model to forecast 
daily COVID-19 cases. Belgium, the Czech Republic, Poland, and Switzerland were 
selected for this research because their curves for the daily COVID-19 cases in the 
second wave were exponentially increasing. Parameter estimation of the modified 
exponential time-series model was conducted by using the exponential least-squares 
method, the three selected points method, and the partial-sums methods. The 
hyperbolic least-squares time-series model, the other nonlinear model, which is 
a hyperbolic form, is applied to be compared with the previous models. The optimal 
forecasting model with the estimated parameters was selected based on having the 
lowest RMSPE  and the highest 2R . Moreover, the compound growth rate, speed, and 
spreading power of the daily COVID-19 cases were evaluated and compared. The 
findings show that the exponential least-squares method was the most appropriate 
method for parameter estimation for the modified exponential time-series model for 
the daily COVID-19 cases in all four countries. The compound growth rates were 
statistically significant for each country, with that of Switzerland being slightly higher 
than in the other countries. Moreover, the speed and spreading power of the daily 
COVID-19 cases in Belgium were higher than the other countries. When applying the 
optimal least-squares model to predict the daily COVID-19 cases from the out-of-
sample data, the forecasted daily COVID-19 cases were in good agreement with the 
actual values. Changing the parameters of the modified exponential time-series model 
made the forecasting model less accurate. Hence, the modified exponential time-series 
model is suitable for short-term forecasting, and parameter estimation should be 
evaluated again if the accuracy of the forecasting model is reduced. However, the 
limitation of this research is that the modified exponential time-series model is 
effectively used for the first stage of the outbreak because the total COVID-19 cases will 
exponentially increase in the first stage of the outbreak. Consequently, the total 
COVID-19 cases will pass the inflation point and converge to the carrying capacity. 
Future research will encompass other variables related to the COVID-19 situation, such 
as the number of active cases and the number of deaths, to enable the authorities 
effectively control a COVID-19 outbreak and protect the population from it. 
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Poisson area-biased Ailamujia Distribution and its applications 
in environmental and medical sciences 

Ahmad Aijaz1, S. Qurat ul Ain2, Ahmad Afaq3, Rajnee Tripathi4 

ABSTRACT 

In this paper, a new Poisson area-biased Ailamujia distribution has been formulated to 
analyse count data. It was created by combining two distributions: the Poisson and area-
biased Ailamujia distributions, using the compounding technique. Several distributional 
properties of the formulated distribution were studied. Its ageing characteristics were 
determined and expressed explicitly. A variety of diagrams were used to demonstrate the 
characteristics of the probability mass function (pmf) and the cumulative distribution 
function (cdf). The parameter of the developed model was estimated by employing the 
maximum likelihood estimation approach. Finally, two data sets were used to demonstrate 
the effectiveness of the investigated distribution. 

Key words: compound technique, Poisson distribution, area-biased Ailamujia distribution, 
reliability analysis, order statistics, maximum likelihood estimator. 
Mathematics subject classification: 60E05, 62E15. 

1. Introduction

In probability distributions, discrete distributions are very essential. Researches are
focused extensively in past years to build new discrete models for assessing count data. 
There are a variety of procedures for developing new distributions in the statistics 
literature. Extensions to classical distributions can be made by adding additional 
parameters to them. Transmutation, discretization of continuous distributions, 
Marshall-Olkin method, compounding, and other approaches were examples. Classical 
distributions frequently fail to offer an acceptable fit to observable data. This became 
imperative for researchers to investigate new probability models in order to overcome 
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the drawbacks of classical distributions. The compounding of distributions has 
attracted the attention of researchers over the last decade. The compounding approach 
is most commonly used when the parameter of one distribution is a random variable 
that follows another distribution, as in the case of count data. The compounding of 
distributions occurs when two separate distributions are combined. It makes no odds 
whether they are discrete or continuous in character. Based upon parent distribution, 
the resultant distribution from compounding may be continuous or discrete. 

The concept of weighted models can be traced back from Fisher (1935). Later on 
weighted models were briefly discussed by C.R. Rao (1964), when sample observations 
have an unequal probability of choosing. Thus, in such situation we add weights to the 
distribution to model bias.  

Suppose Y denotes random variable with pmf  yp , then pmf of weighted 
variable wY  is defined by 

     
   0;;  y
ywE

yfyw
yP   

where   kyyw  is a non–negative weight function. For 2k  we get area-biased 
distributions. 

In this study, we have used compounding approach to create a new distribution by 
combining Poisson and area-biased Ailamujia distribution. The newly established 
distribution is called “Poisson area-biased Ailamujia distribution”. Compounding 
distributions have extensive applications in several sectors of research such as 
biomedicine, insurance, engineering, and communications, among others. Researchers 
in this field have worked extensively, and they have made significant contributions to 
compounding research that has been tracked back to 1920. The inception of 
compounding models has been traced from Greenwood and Yule (1920). Sankaran 
(1970), Gerstenkorn (1993,1996), Mahmodi et al. (2010), Zamani and Ismail (2010), 
Gupta and Ong (2004), Shanker (2017), Shi(2012), Subhradev sen (2018), Giovani 
Carrara Rodrigues et al. (2018), Shanker et al. (2019), This study proposes a novel 
probability model known as the Poisson area-biased Ailamujia distribution, which is 
derived via the compounding process, and discusses its many mathematical aspects. 

2.   Definition of Poisson Area-Biased Ailamujia Distribution           

Consider a random variableY follows Poisson distribution i:e Y ~  P  and 
assume that the parameter of  P  follows area-biased Ailamujia distribution with 
parameter  . The distribution obtained by compounding Poisson with area-biased 
Ailamujia distribution follows a discrete distribution whose probability mass function 
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is denoted as PABAD  ,Y . The probability function of the obtained model PABAD
   is given by the following theorem. 

Theorem 2.1. The probability mass function of a discrete Poisson area-biased 
Ailamujia distribution PABAD  ,Y  is given as 
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Proof: The probability mass function of the discrete Poisson area-biased Ailamujia 
distribution PABAD  ,Y  may be obtained as 

IfY ~  P , the probability mass function (pmf) of the Poisson distribution is 
given by 
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The following six graphs illustrate the behaviour of pmf of the Poisson area-biased 
Ailamujia distribution for different values of parameter 

 
 

The corresponding cumulative distribution function (cdf) of the discrete Poisson 
area-biased Ailamujia distribution is given as 
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The following six graphs illustrate the behaviour of cdf of the Poisson area-biased 
Ailamujia distribution for different values of parameter 

 

 

3.  Statistical Measures of Poisson Area-Biased Ailamujia Distribution 

In this section several statistical measures of the Poisson area-biased Ailamujia 
distribution has been studied. They include are moments, moment generating function 
(mgf) and probability generation function (pgf). 

3.1.  Moments of Poisson Area-Biased Ailamujia Distribution. 

The thr factorial moment of the Poisson area-biased Ailamujia distribution is 

denoted as  


r and can be obtained by 
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Substituting 𝑟 ൌ 1,2,3,4 in (3.1), the first four factorial moments can be obtained, 
and using the relationship between factorial moments and moments about origin, the 
first four moments about origin of the PABAD (2.1) are obtained as 
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The moments about mean of the Poisson area-biased Ailamujia distribution are 
obtained by using the relationship between moments about mean and moments about 
origin 
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Table1.  The numerical values of the mean, variance, skewness, kurtosis, coefficient of variation and 
index of dispersion for some values of parameter   

 

3.2.  Generating Functions (pgf, mgf, ch.f) of Poisson Area-Biased Ailamujia   
 Distribution 

In this section we study pgf, mgf and characteristics function (ch.f ) of the Poisson 
area-biased Ailamujia distribution. 

Theorem.3.2.1. If Y ~  PABAD then the probability generating function  tPY  is 
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Proof: The probability generating function (pgf) of the Poisson area-biased Ailamujia 
distribution is defined as  
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  2 1 2 C.V 

0.5 4.00 8.000 0.012 0.569 0.707 2.000 

0.6 3.333 6.111 0.013 0.647 0.741 1.833 

0.7 2.857 4.897 0.014 0.718 0.774 1.714 

0.8 2.500 4.062 0.015 0.783 0.806 1.625 

0.9 2.222 3.456 0.016 0.840 0.689 1.555 

1 2.00 3.000 0.017 0.887 0.836 1.500 

2 1.00 1.250 0.031 0.845 0.866 1.250 

3 0.666 0.777 0.048 -0.037 1.118 1.166 

4 0.500 0.562 0.064 -1.535 1.322 1.125 

5 0.400 0.440 0.078 -3.468 1.658 1.100 
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Theorem 3.2.2. If Y ~  PABAD  then the moment generating function  tM Y  is  
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Proof: Since the moment generating function is a generalization of the probability 
generating function with the relationship given as 
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Similarly, the relationship between mgf and ch.f is defined as 
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4.  Reliability Measures of Poisson Area-Biased Ailamujia Distribution 

The reliability of the majority of the system decreases with time. So, the chance that 
a device that is operating until period "t" would fail after that period is referred to as the 
device's reliability. Suppose Y is a continuous random variable with cdf  yF ; 0y . 
Then its reliability function, which is also called survival function, is defined as 
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The survival function of the discrete Poisson area-biased Ailamujia distribution is 

given as 
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The following six graphs show the behaviour of the survival function of the Poisson 
area-biased Ailamujia distribution for different values of parameter. 

 
The hazard rate function is described as an indicator of the system's proclivity to 

collapse within a certain time interval. The hazard rate function of a random variable 
y  is given as 
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Substituting (2.2) and (4.1) into (4.2), we get 
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The following six graphs show the behaviour of the hazard function of the Poisson 
area-biased Ailamujia distribution for different values of parameter. 

    
The reverse hazard rate function denoted as rh is given by 
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The following six graphs shows the behaviour of reverse hazard function of the 

Poisson area-biased Ailamujia distribution for different values of parameter 

  



STATISTICS IN TRANSITION new series, September 2022 

 

177

5.  Recurrence Relation of Poisson Area-Biased Ailamujia Distribution. 

If  PABADY ~  then probability mass function of Y is  
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The recurrence relation of the Poisson area-biased Ailamujia distribution is given by 
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This represents the recurrence relation.  

6.  Method of Estimation 

6.1.  Method of Moments (MOM) 

Suppose nyyy ,...,, 21 denotes a random sample of size n from the Poisson area-
biased Ailamujia distribution. Now, to obtain sample moments, we replace population 
moments with sample moments.  
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Theorem 6.1.1. The MOM estimator̂  of   is positively biased. 

Proof: Let us suppose  y ˆ , where   0,
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Then,  u  is strictly convex. Hence by Jensen’s inequality, we have 
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Thus,   
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We obtain  
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Theorem 6.1.2. The MOM estimator ̂  of   is consistent and asymptotically normal  

                   nNn d 2,0ˆ     

where      
4

122
2 


 n  
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Finally, we have 
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6.2.  Maximum Likelihood Estimation of Poisson Area-Biased Ailamujia   
  Distribution. 

Let nyyy ,...,, 21 denote a random sample of size n from the Poisson area-biased 
Ailamujia distribution. Then, its likelihood function is given by 
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The log likelihood function is obtained as 
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Differentiate w.r.t to  , we get 
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7.  Application to real data sets 

In this section the goodness of fit of area-biased Poisson Ailamujia distribution 
(PABAD) has been proposed for two real count data sets. And we show that the 
established distribution perform better than size-biased Poisson Ailamujia distribution 
(PSBAD), Poisson Ailamujia distribution (PAD) and Poisson distribution (PD), 
Poisson Lindley distribution (PLD) and Poisson Shunkar distribution (PSD). 

Data set 1: The first data set represents the number of micronuclei after exposure at 
dose 4 Gy of  radiation, counted using the cytochalasim B method and available 
in reference (10).  

In order to compare the above distribution models, we consider the criteria like 
AIC (Akaike Information criterion), AICC (corrected Akaike information criterion), 
BIC (Bayesian information criterion). Among the above distributions, the better 
distribution is considered to have lesser values of AIC, AICC.  
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Table 7.1.  Number of micronuclei 

  
 

The following histogram represents the number of micronuclei for the proposed 
model when compared with other models. 
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p-value  0.1280 2.6*10-5 9.6*10-20 3.3*10-17 3.4*10-66 2.4*10-62 
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Data set 2: Data on the macroscopic fresh-water fauna in dredge samples from the 
bottom of water ber Lake is due to Juday (1942) and Thomas (1949). 

Table 7.2.  Microcalanus Nauplii 
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2  
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p-value 0.31875 0.03275 3.0*10-5 1.3*10-15  9.5*10-8 4.0*10-7 
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The following histogram represents the number of micronuclei for the proposed model 
when compared with other models. 

           
 
 

From Table 1 and 2, it has been observed that the discrete Poisson area-biased 

Ailamujia distribution have the lesser AIC, AICC, llog2 , BIC and 
2  values along 

with higher p-values as compared to size-biased Poisson Ailamujia distribution 
(PSBAD), Poisson Ailamujia distribution (PAD), Poisson distribution (PD), Poisson 
Lindley distribution (PLD) and Poisson Shanker distribution (PSD). It is evident from 
the above arguments that the proposed distribution provides better fit than the 
compared ones. 

8.  Concluding Remarks  

The aim of this study is to use compounding to develop a new distribution for count 
data termed the “Poisson area-biased Ailamujia distribution”. Different distributional 
features of the newly formed distribution have been obtained and analysed. The 
parameter of the proposed distribution has been estimated by the known method of 
maximum likelihood estimation. Eventually, the model's efficiency was assessed using 
two count data sets, and it was revealed that the Poisson area-biased Ailamujia 
distribution provides an appropriate fit for the two count data sets. 
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Triads or tetrads? Comparison of two methods for measuring the 
similarity in preferences under incomplete block design 

Artur Zaborski1 

ABSTRACT 

The measurement of preferences can be based on historical observations of consumer 
behaviour or on data describing consumer intentions. In the latter case, the measure-ment 
of preferences is performed using methods which express consumer attitudes at the time of 
research. However, most of these methods are very laborious, especially when a large 
number of objects is tested. In such cases incomplete analyses may prove useful. 
An incomplete analysis involves the division of objects into subgroups, so that each pair of 
objects appears at exactly the same frequency and all objects are in each subgroup. 
The purpose of the work is to compare two incomplete methods for measuring the simi-
larity of preferences, i.e. the triad method and the tetrad method. These methods can be used 
whenever similarities are measured on an ordinal scale. They have been com-pared in terms 
of their labour intensity and ability to map the known structure of ob-jects, even when all 
pairs of objects in subgroups cannot be presented equally frequent-ly. 

Key words: measurement of preferences, triads, tetrads, multidimensional scaling. 

1. Introduction

Preferences represent the basic concept in the theory of economics and,
in particular, in the consumer choice theory. They reflect consumers’ attitudes 
developed in the process of mutual interactions between consumers and their 
environment. They take the form of a binary relationship based on axiomatic properties 
of reflexivity, transitivity and consistency (e.g. Varian, 2005, pp. 63–64). Even though 
the relationship of preferences is very easy to determine experimentally (e.g. using 
a questionnaire survey), the measurement aimed at quantifying preferences is 
a problematic one. There are no precise and unambiguous definitions of many 
concepts, therefore it is difficult to measure both the intensity and the level of the 
conditions described by these concepts. 
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An important tool in the study of the similarities of preferences is nonmetric 
multidimensional scaling, which is a technique for the analysis of similarity 
(or dissimilarity) data on a set of n objects (see, e.g. Borg and Groenen, 2005). 
Multidimensional scaling produces a multidimensional geometrical representation of 
objects in a low dimensional space (this is usually a two or three-dimensional space), 
where relationships between the objects correspond to geometric relationships of 
points representing objects on the perceptual map. In the nonmetric multidimensional 
scaling, dissimilarities are measured on the ordinal scale. In this case, given the 
dissimilarities δij and δkl of two object pairs (Oi, Oj) and (Ok, Ol) from the set of n objects 
O = (O1, O2, …, On), the researcher is only interested which of the two dissimilarity δij 
and δkl is greater (or smaller). 

There are two ways of obtaining input dissimilarities in multidimensional scaling. 
When they are directly obtained from empirical subjective measurements of objects 
performed by subjects, they are called direct dissimilarities. By contrast, when they are 
not obtained from subjects, but calculated from a data matrix associated with these 
objects, they are labeled as derived dissimilarities. This article focuses only on direct 
dissimilarities. 

When the number of objects is high, the number of direct assessments made by 
respondents becomes too large, and makes the dissimilarities task more difficult. In this 
article, two incomplete methods are proposed to solve this problem in order to make 
the similarity task easier, while keeping satisfactory scaling solutions. These methods 
are the method of triads and the method of tetrads. The idea of the presented methods 
is based on the theory of balanced incomplete block designs (see, e.g. Burton and 
Nerlove, 1976; Rink, 1987; Morris, 2010, pp. 109–111). The method of tetrads is an 
original proposal, the idea of which is based on the method of triads. These methods 
will be compared due to their labor intensity and the ability to map the known structure 
of preferences. 

2.  The methods of collecting preferences similarity data 

The most important decision to be taken at the initial stage of preference scaling is 
the selection method for measuring similarities. So far, many more or less popular and 
widely used methods of direct similarities measurement have been developed (see, e.g. 
Bijmolt, 1996, pp. 30-31;  Zaborski, 2001, pp. 40–43). There are three main approaches to 
collecting input similarities. The first approach is based on rankings and similarity ratings 
of the pairs of objects, the second uses grouping and sorting tasks in order to calculate 
similarities, and the third approach consists of pairwise comparisons of similarities. Some 
of them, suggested in the literature, are presented in Table 1. 
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Table 1.  The methods of collecting similarities data 

Method Description 

Sorting The subject has to sort the objects into a number of groups, with 
relatively similar objects in each group 

Paired comparisons For all pairs of objects the subject has to indicate the most preferred 
object 

Ratings The subject has to rate each pair of objects on an ordinal scale, where the 
extreme values of the scale represent the maximum dissimilarity and 
maximum similarity of preferences 

Ranking The subject has to arrange the objects from the most to the least preferred 

Ranking of pairs The subject is requested to arrange all possible pairs of objects in order 
of decreasing similarity of preferences 

Pick k out of n The subject is asked to pick a number of objects which s/he considers 
most similar to a particular reference object. This process has to be done 
several times while rotating the reference object 

Conditional ranking One object is presented to the subject as a reference object, and the 
remaining objects have to be ordered on the basis of their preference 
similarity with the reference object. Each of the objects is in turn 
presented as the reference 

Dyads For each pair of pairs of objects (dyad) the subject has to select a more 
similar pair of the two 

Triads The subject has to indicate which objects of combinations of tree objects 
form the most similar pair, and which form the least similar pair 

Source: Zaborski (2017). 

The differences in the application of various measurement methods may result 
from the number of objects simultaneously presented to the respondents (e.g. in the 
method consisting in ranking, sorting or conditional ordering of similarities the 
respondents simultaneously assess all objects, while in the course of pairwise 
comparison or triad method, only two or three objects are presented in a sequence), the 
difficulty in assessing similarities (e.g. ordering for the entire set, especially with a large 
number of objects, is more problematic than selecting the preferred object from two or 
three items) and the total number of required ratings (in the case of ranking, it is just 
one assessment, and, e.g. for the triad method the number of assessments is a cubic 
function of the number of objects). 
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Table 2.  Effects of the similarity data collection methods 

Effects 
Preference collection methods 

ST RT CR RN TR 
Subjective feelings:      

Fatigue ++ + – ++ – 
Boredom  + + – + – 
Ease of expressing preferences  + + + +/– + 
Command clarity  + + + + + 

Preference judgements:      
Completion time ++ + +/– ++ – 
Missing values + ++ +/– +/– – 

Preference scaling results:      
Goodness of fit to the data + + + + + 
Recovery of known distances – + + +/– + 

Explanation: ST – sorting, RT – ratings, CR – conditional ranking, RN – ranking, TR – triads, ++ = very 
good, + = good, +/–  = medium, – = poor  
Source: own work based on Bijmolt, 1996, pp. 41-48; Zaborski, 2003. 

The selection of a method affects subjective feelings of the respondents, i.e. fatigue, 
weariness resulting from making numerous assessments, or difficulties in expressing 
similarity assessments. As a result, the collected data may be incomplete or assessments 
which do not always fully reflect the respondents’ attitudes may occur. Table 2 presents 
the impact of different preference collecting methods on subjective feelings of 
respondents, preference judgements and preference scaling results. It shows that by 
using methods that are not labor intensive, i.e. sorting or ranking, we are not able to 
fully reproduce the known structure of preferences. With ranking procedures, the 
respondent may become frustrated if asked to rank many more objects, and he/she may 
skip the question or select the most and least preferred, ignoring the rest. On the other 
hand, paired comparison methods require a large number of observations. When the 
number of objects becomes large, deriving all pairs can become tedious and time-
consuming. The respondent may become tired answering the large number of paired 
comparisons that are necessary to collect similarity data. In such cases, incomplete tests 
may be helpful. The triad and tetrad methods presented in this paper under the 
incomplete block design allow for a significant reduction of the above-mentioned 
limitations, resulting from the use of other methods included in Table 1.  

3.  Presentation of methods 

In the method of triads (see Roskam, 1970; Burton and Nerlove, 1976) the subject 
is asked to consider all possible groups of three objects (Oi, Oj, Ok) (i, j, k = 1, 2, …, n, 
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where i ≠ j ≠ k ≠ i) at a time, taken from the full set of n objects O = (O1, O2, …, On). 
The subject has to indicate which two objects of each combination form the most 
similar pair, and which two objects form the least similar pair. On this basis the triad is 
formed, where the most similar objects are placed as the first and the second, and the 
least similar as the first and the third one. For example, if (Oi, Oj) is the most similar 
pair and (Oj, Ok) is the least similar pair, the triad is (Oj, Oi, Ok).  

In the method of tetrads the respondent also has the task to indicate the most 
similar pair and the least similar pair, but for all possible groups of four objects (Oi, Oj, 
Ok, Ol) i, j, k, l = 1, 2, …, n, where i ≠ j ≠ k ≠ l ≠ i ≠ k and j ≠ l. On this basis the tetrad 
is formed, where the most similar objects are placed as the first and the second, and the 
least similar as the first and the fourth one. For example, if (Oi, Oj) is the most similar 
pair and (Oj, Ol) is the least similar pair, the tetrad is (Oj, Oi, Ok, Ol ). If the object from 
the most similar pair (Oi, Oj) is not present in a pair of the least similar objects then the 
most similar objects are placed as the second and the third. In this situation one should 
also ask the respondent to indicate the second most similar pair of objects. For example, 
if (Oi, Oj) is the most similar pair, (Oi, Ok) is the second similar pair and (Ok, Ol) is the 
least similar pair, the tetrad is (Ok, Oi, Oj, Ol)*. 

Although the advantage of the methods presented above is a relative simplicity of 
the judgments required of the subjects, so they can be useful techniques for preference 
data collection, the number of triads and tetrads increases very rapidly with the number 
of objects. The number of ratings which a respondent must make for n objects in the 
method of triads is equal to the number of three element combinations of n-element set 
and it amounts to: 

 𝐶௡ଷ ൌ
௡ሺ௡ିଵሻሺ௡ିଶሻ

଺
.  (1) 

For tetrads it is a four element combinations of n-element set: 

 𝐶௡ସ ൌ
௡ሺ௡ିଵሻሺ௡ିଶሻሺ௡ିଷሻ

ଶସ
, (2) 

so beyond about n=7, the presentation of the full sets becomes totally unfeasible and 
very laborious for the subject.  

When the number of triads or tetrads is considered too large to be practical, 
according to the theory of balanced incomplete block designs, it can be reduced in such 
a way that all pairs of objects are presented equally frequently, but less than their 
potential maximum number. If λ denotes the number of three or four-elements 
combinations (blocks) in which each pair of objects occurs, than the reduced number 
of blocks L  must satisfy both of these defining relations (see, e.g. Rink, 1987): 

 ൜
𝑛𝑟 ൌ 𝑘𝐿ఒ

ሺ𝑛 െ 1ሻ𝜆 ൌ ሺ𝑘 െ 1ሻ𝑟 
, (3) 
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where: 
k is the number of objects in one block (k=3 for triads and k=4 for tetrads),   
r is the number of replication of each object in the reduced blocks, 
λ=1,…, n – 2 for triads, 
λ=1,…, (n – 1)(n – 2)/2 for tetrads. 
 
According to the equations (3), the number of incomplete blocks in the method of 

triads is equal: 

 𝐿ఒ ൌ 𝐶௡ଷ
ఒ

௡ିଶ
ൌ

ఒ௡ሺ௡ିଵሻ

଺
, (4) 

and in the method of tetrads: 

 𝐿ఒ ൌ 𝐶௡ସ
ଶఒ

ሺ௡ିଶሻሺ௡ିଷሻ
ൌ

ఒ௡ሺ௡ିଵሻ

ଵଶ
. (5) 

The number of triads and tetrads for different values of λ and n is shown in Table 3. 
Because it is not possible to define a reduced number of blocks for all combinations of 
λ and n, not all the cells in Table 3 are filled. 

Table 3.  The number of triads and tetras for different values of λ and n 

n 
Triads 

Full set 
of triads 

Tetrads 
Full set 

of tetrads 
λ λ 

1 2 3 4 5 6 1 2 3 4 5 6 
6 – 10 – 20 × × 20 – – – – – 15 15 
7 7 14 21 28 35 × 35 – 7 – 14 – 21 35 
8 – – – – – 56 56 – – 14 – – 28 70 
9 12 24 36 48 60 72 84 – – 18 – – 36 126 

10 – 30 – 60 – 90 120 – 15 – 30 – 45 210 
11 – – 55 – – 110 165 – – – – – 55 330 
12 – 44 – 88 – 132 220 – – 33 – – 66 495 
13 26 52 78 104 130 156 286 13 26 39 52 65 78 715 
14 – – – – – 182 364 – – – – – 91 1001 
15 35 70 105 140 175 210 455 – – – – – 105 1365 
16 – 80 – 160 – 240 560 20 40 60 80 100 120 1820 
17 – – 136 – – 272 680 – – 68 – – 136 2380 

Source: own work. 

For both methods it is possible to enter the judgement on paired comparisons into 
a similarity matrix. The creation of the triangular similarity matrix is possible by giving 
the pair of objects the number of points, which is equal to the number of pairs in a block, 
for which it can be assumed that the similarity is smaller than the similarity of a given 
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pair. The number of points assigned to pairs from the set of hypothetical blocks (triads 
and tetrads) marked with the consecutive letters of the alphabet is presented in Table 4 
and Table 5.  

Table 4.  Number of points for pairs in example triad 

Objects 
Most 

similar 
pair 

Least 
similar 

pair 
Triad 

Number of points for pairs 

in triads 

ABC AB AC ABC AB=2 AC=0 BC=1 

Source: own work. 

Table 5.  Number of points for pairs in example tetrads 

Objects 
Most 

similar 
pair 

Least 
similar 

pair 
Tetrad 

Number of points for pairs 
in tetrads 

ABCD AB AD ABCD AB=5 AC=1 AD=0 BC=3 BD=1 CD=3 

ABCD AB CD CABD*1) AB=5 AC=4 AD=1 BC=1 BD=3 CD=0 

   CBAD*2) AB=5 AC=1 AD=3 BC=4 BD=1 CD=0 

   DABC*3) AB=5 AC=1 AD=4 BC=3 BD=1 CD=0 

   DBAC*4) AB=5 AC=3 AD=1 BC=1 BD=4 CD=0 

Explanation: the second most similar pair of objects is: 1) AC; 2) BC; 3) AD; 4) BD 
Source: own work. 

The value of an element pij in the i-th row and the j-th column of the similarity 
matrix is equal to the sum of points awarded to a pair consisting of the i-th and the j-th 
objects in all blocks. 

To discover the similarity structure of preferences by using nonmetric 
multidimensional scaling, the similarity matrix should be transformed into a matrix of 
dissimilarities, especially if all pairs of objects in blocks cannot be presented equally 
frequently. The dissimilarities δij are determined in accordance with the formula: 

  𝛿௜௝ ൌ 1 െ
௣೔ೕ

max௥ ∙ ௠೔ೕ
, (6) 

where mij is the number of pairs (i, j) in blocks, max𝑟 is the maximum number of points 
that can be obtained by a pair of objects in a block (for triads max𝑟 ൌ 2 and for tetrads 
max𝑟 ൌ 5). The denominator in the second component of the equation (6) indicates 
the maximum possible number of points for the pair (i, j), i.e. when in all blocks it was 
considered to be the pair of the most similar objects. 
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4.  The comparison of methods 

In order to make the study results independent on respondents' subjective effects 
(fatigue, boredom, task insight), the comparison of the presented above methods was 
made on the basis of the given distance matrix (see Table 6). The matrix shows the 
dissimilarities in the preferences of the University of the Third Age members in relation 
to the selected forms of activities (see Zaborski, 2014). As a result of multidimensional 
scaling based on the dissimilarity matrix, a configuration of points representing 
activities was obtained (Figure 1). 

Table 6.  The preferences dissimilarity matrix 

Activities 1 2 3 4 5 6 7 8 9 

1. English 0.000         
2. German 0.694 0.000        
3. Computer skills 1.372 1.128 0.000       
4. Gymnastics  0.908 1.111 0.766 0.000      
5. Yoga 0.596 1.007 1.062 0.370 0.000     
6. Swimming 1.117 1.276 0.712 0.209 0.568 0.000    
7. Weight training  1.395 1.413 0.530 0.522 0.892 0.342 0.000   
8. Nordic walking 0.754 1.291 1.333 0.578 0.318 0.723 1.065 0.000  
9. Painting and handcraft 1.196 0.663 0.637 1.071 1.190 1.138 1.104 1.507 0.000 

Source: own work. 

 

 
Figure 1.  Preference map received based on the dissimilarity matrix 

Source: own work. 

In order to check how the incomplete study affects the preferences scaling results, 
five sets of triads (for λ=1, 2, …,5) and three sets for tetrads (for λ=3, λ=6 and λ=9) were 
generated. All sets are presented in Table 7. 
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Table 7.  Sets of triads and tetrads 

 Triads 
=1 1 2 3 6 4 5 8 7 9 7 4 1 9 2 5 3 6 8 1 6 9 8 4 2 3 5 7 8 5 1 7 6 2 3 9 4  
=2 1 5 9 3 2 8 4 6 7 2 9 6 3 4 1 8 5 7 7 3 9 4 5 2 6 8 1 8 4 9 5 6 3 2 1 7 

1 2 3 6 4 5 8 7 9 7 4 1 9 2 5 3 6 8 1 6 9 8 4 2 3 7 5 8 5 1 7 6 2 3 9 4 
=3 2 1 4 2 5 3 4 6 3 5 4 7 8 5 6 6 7 9 1 8 7 9 2 8 3 9 1 3 4 1 4 5 2 5 6 3 

4 6 7 8 5 7 8 6 9 7 9 1 2 1 8 3 9 2 2 1 6 7 3 2 8 4 3 5 4 9 6 5 1 7 6 2 
3 7 8 8 4 9 1 5 9 1 6 3 7 4 2 8 5 3 6 4 9 1 5 7 8 6 2 7 3 9 4 8 1 9 2 5 

=4 the complement of triads set for =3 
=5 the complement of triads set for =2 

 Tetrads 
λ=3 1243 

8539 
6512 
6479 

2187 
5463* 

7351 
8562 

6481 
3678* 

3961 
8547 

8419 1597 9328 5429 7692 7432 
 

λ=6 1243 
7432 
2467* 

6512 
6562 
4512 

2187 
8539 
8423 

7351 
6479 
2957 

6481 
5463* 
9218 

3961 
8673* 
2936 

7681 
8547 
7391 

8419 
7491 
8569 

1597 
8469* 
2587* 

8429 
4539 
1263 

5429 
3748 
5673* 

7692 
6451 
8513 

λ=9 7351 
6592 
1243 
7432 
2467* 

6512 
6562 
4512 
2957 
5368 

2187 
8539 
8423 
7645* 
8412 

7439 
3921 
7351 
6479 
2957 

7612 
6432 
6481 
5463* 
9218 

7382 
1469* 
3961 
8673* 
2936 

7681 
8547 
7391 
7681 

8419 
7491 
8569 
8479* 

1597 
8469* 
2587* 

8563 

8429 
4539 
1263 
8519 

5429 
3748 
5673* 

8542 

7692 
6451 
8513 
3451 

Explanation: * – the most similar objects are placed second and third 
Source: own work.  

For each set similarity matrices were calculated, then they were transformed into 
dissimilarity matrix according to the formula (6) and the multidimensional scaling with 
the use of MINISSA program was performed. In the case of the method of triads the 
program TRISOSCAL, which uses MINISSA algorithm for multidimensional scaling, 
was used.  MINISSA and TRISOSCAL are available in the multidimensional scaling 
package  NewMDSX (Coxon and Davies, 1982). MINISSA performs the basic model of 
nonmetric MDS by taking data in the form of the full square symmetric matrix (or its 
lower triangle) of dissimilarities, whose elements are to be transformed to give the 
distances of the solution. This transformation will preserve the rank order of the input 
data. 

The quality of matching the resulting points’ configuration to the configuration 
determined based on the distance matrix (Table 6) was tested by the Procrustes statistic 
(see Cox and Cox, 2001; Borg and Groenen, 2005): 

𝑅ଶ ൌ
ቊ௧௥൫X∗೅𝐘𝐘೅𝐗∗൯

భ
మቋ

మ

௧௥ሺ𝐗∗೅𝐗∗ሻ௧௥ሺ𝐘೅𝐘ሻ
,  (7) 
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where X∗ ൌ 𝐗ሺ𝐗்𝐘𝐘்𝐗ሻ
భ
మሺ𝐘்𝐗ሻିଵ – optimally rotated configuration X (𝐗 ൌ

ሾ𝒙ଵ,𝒙ଶ, … ,𝒙௡ሿ் – the configuration of points determined on the basis of the incomplete 
blocks), 𝒀 ൌ ሾ𝒚ଵ,𝒚ଶ, … ,𝒚௡ሿ் – the configuration of points determined on the basis of 
the distance matrix. R2  (0; 1, where 1 means a perfect matching. Because all 
configurations have the centroids at the origin and the average distance of points from 
the origin is equal to 1, the Procrustes analysis is limited only to the stage of optimal 
rotation. The quality of matching of the resulting configurations of points to the 
configuration on Figure 1 tested by the Procrustes statistic is presented in Table 8. 

Table 8.  Procrustes statistics for different sets of triads and tetrads 

 Triads  Tetrads 

λ λ=1 λ=2 λ=3 λ=4 λ=5  λ=3 λ=6 λ=9 

L  12 24 36 48 60  18 36 54 

R2 0.6071 0.9401 0.9438 0.9484 0.9749  0.9647 0.9483 0.9715 

Source: own work. 

With the exception of the set of twelve triads, the quality of matching the other sets 
does not differ significantly (they are in the range from 0.94 to 0.97) and should be 
considered as very good. Therefore, due to the practical application of both methods, 
the further study was limited to the triad sets for λ=2, λ=3 and λ=4, and the tetrad sets 
for λ=3 and λ=6. To verify how the choice of blocks affects the preference scaling 
results, nine sets of triads were generated (three for each value of λ), and six sets of 
tetrads (three for λ=3, and three for λ=6). As it was previously mentioned, it is not 
possible to determine reduced sets for all combinations of λ and n, and in consequence, 
all pairs of objects cannot be presented equally frequently. So each set was modified by 
subtracting randomly selected two, four and six triads/tetrads. Finally 36 sets of triads 
and 24 sets of tetrads were obtained. Based on the dissimilarity matrices for all sets, 
multidimensional scaling with the use of MINISSA program was performed. The 
quality of matching of the resulting configuration to the initial configuration (Figure 1) 
was tested by the Procrustes statistic. In addition, for λ=2 (in the case of triads) and for 
λ=3 (in the case of tetrads) each set was successively reduced by two triads/tetrads, until 
the value of the Procrustes statistics started to fall drastically. The reduction in the 
number of blocks was done in such a way that in each block (as much as possible) each 
pair was present at least once. The results of the study are presented in Table 9 and 
Table 10.  

It can be seen that for all generated sets of tetrads results should be regarded as 
almost perfect. Even if the number of tetrads in sets was reduced by 10, the results 
indicate a very good matching in relation to the scaling carried out for the data set 



STATISTICS IN TRANSITION new series, September 2022 

 

195

in Table 6. There is only a small difference in the obtained results between reduced 
(maximum to 8) sets of tetrads. The difference between the best and the worst solution 
for all sets in this group is less than 0.08 (excluding the results for Tep

-12 and Tep
-14). 

Table 9.  Procrustes statistics for different sets of triads 

 λ=2  λ=3  λ=4 

 Tr1 Tr2 Tr3  Tr4 Tr5 Tr6  Tr7 Tr8 Tr9 

Trp0 0.9401 0.9009 0.9444  0.9438 0.9606 0.9402  0.9484 0.9572 0.9392 

 Trp-2 0.9705 0.9009 0.9566  0.9535 0.9633 0.9398  0.9487 0.9535 0.9373 

 Trp-4 0.8723 0.9181 0.9403  0.9434 0.9420 0.9355  0.9473 0.9508 0.9316 

 Trp-6 0.8772 0.9010 0.8949  0.9313 0.9427 0.9364  0.9448 0.9581 0.9204 

Trതതതp  0.9181  0.9444  0.9448 

CV(%) 3.74  1.04  1.16 

 Trp-8 0.8480 0.9033 0.9097         

  Trp-10 0.8610 0.8862 0.8126         

Explanation: Trp-k – set Trp (p=1,2,…,9) reduced by k triads; CV – the coefficient of variation 
Source: own work. 

Table 10.  Procrustes statistics for different sets of tetrads 

 λ=3  λ=6 

 Te1 Te2 Te3  Te4 Te5 Te6 

Tep0 0.9647 0.9727 0.9323  0.9483 0.9814 0.9518 

Tep-2 0.9507 0.9674 0.9062  0.9412 0.9723 0.9556 

Tep-4 0.9452 0.9226 0.9034  0.9431 0.9828 0.9622 

Tep-6 0.9450 0.9356 0.9437  0.9541 0.9688 0.9447 

Teതതതp 0.9409  0.9589 

CV (%) 2.37  1.51 

Tep-8 0.9586 0.9658 0.9563     

Tep-10 0.9575 0.9425 0. 9184     

Tep-12 0.8213 0.9077 0.8125     

Tep-14 0.8235 0.4878 0.2434     

Explanation: Tep-k – set Tep (p=1,2,…,6) reduced by k tetrads; CV – the coefficient of variation 
Source: own work. 
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The coefficient of variation of the Procrustes statistic value for sets containing from 
8 to 18 tetrads is about 0.024, and from 30 to 36 tetrads about 0.015. It attests the fact 
that the choice of a set of tetrads (as in the case of the method of triads) has no 
significant effect on the results of preference scaling, even when all pairs of objects 
cannot be presented equally frequently. The analysis showed that the results clearly 
deteriorated only when the number of tetrads in sets was less than 8, but in these cases, 
not all pairs appear in sets. In the case of the triads method, similar results were 
obtained when the number of triads in the set is over 20, which means that recovery of 
a known structure of preferences requires respondents to make about three times more 
assessments than in the method of tetrads. 

5.  Conclusions 

The results of many studies (see, e.g. Humphreys, 1982; Bijmolt, 1996; Zaborski, 
2003) indicate that preference scaling based on various direct methods of measuring 
dissimilarities gives similar solutions. However, the selection method affects subjective 
feelings of respondents, which may result in different quality of input data. Therefore, 
the choice of the method of measurement should be guided primarily by two criteria: 
the method should not be labour-intensive, and expressing opinions on similarities 
should not cause problems to respondents. The methods which are proposed in the 
article do not satisfy the first of the above conditions. In the case of the triads method 
the number of ratings which a respondent must make for n objects is equal to the 
number of three element combinations of an n-element set. In the method of tetrads it 
is the number of four element combinations of an n-element set. The article indicates 
the possibility of reducing the number of sets presented to respondents in such a way 
that each pair of objects appears equally frequently, but less than their potential 
maximum number. In the example for 9 objects it was shown that scaling based on 
8 tetrads gave a good solution. Using the method of triads, where a respondent is asked 
to pick out the most similar and the least similar pair from the three element sets, 
obtaining comparable results requires over three times more assessments. It was also 
demonstrated that the choice of the incomplete sets has no significant effect on the 
results of nonmetric multidimensional preference scaling, even when all pairs of objects 
cannot be presented equally frequently. This conclusion is particularly relevant for the 
creation of reduced sets when the number of objects does not allow to fulfil the 
condition of an equal number of pairs. The analysis indicated that the tetrad method 
can be used if each pair of objects appears in sets at least once, while for the method of 
triads each pair should appear at least twice. 
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Two-stage cluster sampling with unequal probability sampling 
in the first stage and ranked set sampling in the second stage 

Michael C. Ugwu1, Mbanefo S. Madukaife2 

ABSTRACT 

In this research work we introduce a new sampling design, namely a two-stage cluster 
sampling, where probability proportional to size with replacement is used in the first stage 
unit and ranked set sampling in the second in order to address the issue of marked variability 
in the sizes of population units concerned with first stage sampling. We obtained an 
unbiased estimator of the population mean and total, as well as the variance of the mean 
estimator. We calculated the relative efficiency of the new sampling design to the two-stage 
cluster sampling with simple random sampling in the first stage and ranked set sampling in 
the second stage. The results demonstrated that the new sampling design is more efficient 
than the competing design when a significant variation is observed in the first stage units. 

Key words: cluster sampling, population mean estimator, probability proportional to size 
sampling, ranked set sampling, relative efficiency. 

1. Introduction

In scientific research, sample survey to a great extent plays a vital role, most
especially in the presence of limited cost. This is because we need not possibly embark 
on complete enumeration which entails studying the entire population, in order to 
learn efficiently about the population characteristics of interest. Also in real life 
situations, there are occasions unlike in element sampling when a list of elements of the 
population is not available but it is easy (or possible) to obtain a list of segmented 
groups, known as clusters. Even when such list exists, it is sometimes uneconomical to 
obtain information from a sample of elements in the population due to the nature of 
the distribution of the population. In such cases, it becomes ideal to use cluster 
sampling technique to draw random sample from the population and when this 
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technique is carried out in two phases, it becomes two-stage cluster sampling  
(Okafor, 2002). 

In two-stage cluster sampling, the entire units of the population are at first grouped 
into say N clusters, each having iM , 1, 2, . . .,i N  elements. Then a random sample 
of n clusters, say, is drawn from the N clusters, also known as the first stage units (FSU), 
as the first stage sample. From each of the n selected clusters, each of size iM ,

1,2,...,i n  elements, a random sample of cluster elements of size im  is also selected 

from iM  second stage units (SSU) as second stage sample. The common motivation 
of cluster sampling is to reduce cost by increasing sampling efficiency. 

A good number of authors have applied two-stage cluster sampling in real life 
situations in order to enhance sampling efficiency. Some of them include Fears and Gail 
(2000), Stehman et al. (2009), Phillips et al. (2008), Horney et al. (2010) as well as 
Galway et al. (2012) and Dilip (2015). The efficiency of the design when applied to real 
life situations, however depends to great extent on the sampling techniques used in both 
stages of the design. 

It could be recalled that in equal probability sampling, all the population units have 
equal chances of being selected in the sample regardless of the size of each unit. When 
units of clusters are of different sizes, it is appropriate to use probability proportional 
to size (PPS) sampling (Damon, 2018 & Ozturk, 2019). In this sampling plan, the 
probability of selection of a cluster element is in proportion to its size or measure of 
size of the element, so that larger clusters have greater chances of being selected than 
the smaller clusters, provided the sizes of units of clusters in the population are known 
and also have positive correlation with the variable under study. The choice of PPS 
scheme in the first-stage of two-stage sampling under variant cluster sizes has also been 
supported by Innocenti et al. (2019). Such a procedure of sample selection is also known 
as unequal probability sampling (Okafor, 2002). For a more detailed discussion on 
selection procedures and estimation in unequal probability sampling, see Shahbaz and 
Hanif (2010). 

Optimum sampling methods that are cost friendly have been of great concern in 
the field of statistics, especially when the cost of measuring the population attribute 
under study is high. In situations where it is less costly to identify sampling units to be 
included in the sample and at the same time ranking them accordingly with respect to 
the attribute of interest than to directly measure the values, a ranked set sample (RSS) 
yields better efficiency than its simple random sample (SRS) counterpart under the 
same sample size (McIntyre, 1952 and Chen et al., 2003). Ranked set sampling was 
introduced by McIntyre (1952) and Halls and Dell (1966) while its theoretical basis was 
laid by Takahasi and Wakimoto (1968) and Dell and Clutter (1972). Also, it has been 
applied in real-life situations by a number of researchers including Chen et al. (2003). 
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In order to improve the efficiency of two-stage sampling, Nematollahi et al. (2008) 
introduced RSS in the second stage, with the first stage remaining as SRS scheme. They 
showed that the estimators obtained from the design have significant improvement in 
efficiency over the dominant case of SRS scheme on both stages. Regardless of the 
improvement observed in Nematollahi et al. (2008), the problem of sampling from 
variant cluster sizes in the first stage is not addressed. Innocenti et al. (2021) presented 
three options, namely: sampling clusters with probability proportional to cluster size, 
and then sampling the same number of individuals from each selected cluster in the 
second stage; sampling clusters with equal probability, and then sampling the same 
percentage of individuals from each sampled cluster in the second stage and sampling 
clusters with equal probability, and then sampling the same number of individuals per 
cluster in the second stage. These options, no doubt, addressed the underlying problem 
only in the first option. In what appears to be an overall improvement so far, in this 
direction, Ozturk (2019) obtained a frame work for a two-stage cluster sampling where 
probability proportional to size (PPS) sampling is applied in the first stage as well as 
RSS applied in the second stage of sampling. 

It is well known that PPS can be carried out with or without replacement. However, 
PPS without replacement (PPSWOR) is more complex in application than PPS with 
replacement (PPSWR) and that is one of the major advantages of the later over the 
former. Additionally, when the study population is very large, sampling with 
replacement is always best suited. In this work therefore, we shall propose a cluster 
sampling design in two stages where PPSWR is applied in the first stage and RSS in the 
second stage. Section 2 gives the framework for PPSWR as well as RSS. In section 3, the 
estimators of population mean and total of the new sampling design as well as the 
variance of the estimators are derived. Section 4 gives the relative efficiency of the 
design over the earlier design proposed by Nematollahi et al. (2008) under significantly 
variant clusters in the first stage of sampling and the paper is concluded in section 5. 

2. The new sampling design 

In this paper, a two-stage cluster sampling where sampling is done among the first 
stage units by probability proportional to size sampling with replacement (PPSWR) and 
ranked set sampling (RSS) among the second stage units is proposed. 

2.1. Probability proportional to size sampling with replacement 

Suppose 1 2 3, , , . . ., NU U U U  have measure of sizes 1 2 3, , , . . ., NX X X X  
respectively, where ; 1, 2, 3, . . .,iX i N is an integer value and ; 1, 2, 3, . . .,iU i N  is 
the ith first stage unit. In a situation where the 'iX s  are not integers, they are all 
multiplied by an appropriate power of 10 to make them integers. Now, suppose a 
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sample of size n units { , 1,2,3..., }iU i n  is to be selected from a population of N units, 

we first form a cumulative aggregate of sizes for each of the first stage units, iU  in the 
population. Then, the ranges to all the population units are obtained using the 
cumulative totals. Using a table of random numbers, one is required to select a number

d between 1 and 
1

N

i
i

X X


  inclusive. If the number d falls in the range of 2U , say, 

then it is selected in the sample. Another random number is drawn between 1 and X 
inclusive, and if the number drawn falls this time in the range of iU , the unit iU  is 
selected. In other words, the unit chosen to be included in the sample is the unit whose 
range contains the drawn random number.  The process of drawing a random number 
is repeated independently until n number of units is drawn into the sample. With this 
selection procedure, the n number of units are drawn with PPSWR, and the probability 

of drawing the ith unit from the population is i iP X X  where 
1

1
N

i
i

P


 . 

From the foregoing technique according to Hansen and Hurwitz (1943), the 
unbiased estimator of the population mean is given by:  

1

ˆ1 n
i PPS

PPS
i i

y Y
y

nN p N
                      (1) 

where , 1, 2, . . .,iy i n  is the value of the variable of interest in the sample, i
i

x
p

X
  is 

the probability of drawing the ith unit in the sample; ix  is the measure of size of the ith 

sample unit and 
1

1ˆ n
i

i i

y
Ypps n p

   is the unbiased estimator of the population total, Y. 

Also, the variance of the sample mean is given by: 
2

2
2

1

1
( ) i

pps
i i

N Y
V y Y

nN P

 
  

 
                 (2)  

where iY  is the ith cluster total. 
 

2.2. Ranked set sampling (RSS) procedure 

The basic premise for RSS is that sampling units are drawn from infinite population 
or with replacement from a finite population under study and that the sampling units 
drawn from the population can be ranked by certain means, rather cheaply, devoid of 
actual measurement of the variable of interest which is either costly or time consuming, 
or both. It may be considered as a controlled random sampling design. Stokes (1980), 
Chen et al. (2003) and Al-Omari and Bouza (2014) describe ranked set sampling 
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procedure as follows: (i) Randomly select from the study population sampling units of 
size m2 (ii) Randomly allot the m2 units selected into m independent sets where every 
set is of size m. (iii) The units in every set are ranked in line with the information about 
study variable by visual inspection, concomitant variable or through other methods that 
cost little or nothing. (iv) The samples are chosen for quantification by selecting from 
the first, second down to the mth set the lowest ranked unit, the second lowest ranked 
unit, up to the highest ranked unit from the mth set. The entire process from (i) to (iv) 
is called a cycle. (v) Repeat the cycle, say r times to get a ranked set sample of size rm  

out of the total of 2rm units initially selected, see Table 1. 
Each cycle of the selection process (i.e. from step i to iv) will result in measured 

observations 11 22, , . . ., mmy y y  into the sample assuming our variable of interest is Y 

and each of these observations is called judgment order statistic. If 1 2 . . . mm m m  
, that is the set sizes of the independent random samples are equal, the RSS is said to be 
balanced, else, it is unbalanced. The ranks which the units in the set receive may not 
necessarily correspond with the numerical layouts of the real values of Y. If they 
correspond with the numerical layouts, the ranking is said to be perfect, else, it is 
imperfect. The square brackets [.] are used to denote imperfect ranking in the subscripts 
of ranked observations while the round brackets (.) are used if the judgment order 
statistics are perfect. 

The efficiency of RSS relies on the sampling allocation, either balanced or 
unbalanced. In balanced RSS, the rank order statistics has an equal allocation. Takahasi 
and Wakimoto (1968), Patil (2002) and Al-Omari and Bouza (2014) state that balanced 
RSS estimator has a variance not greater than its SRS estimator counterpart even in the 
presence of errors in ranking. This implies that no matter how bad RSS method is, it 
cannot be worse than SRS method if properly conducted. This no doubt, lies the 
goodness of the former over the later. Thus, from the measured ranked set sample, we 
can obtain unbiased estimators of population parameters, such as the population mean 
and variance. 

Suppose iy  is the value of the variable of interest, iY  for 1, 2, . . .,i M , where M 

is the population size. The set 1 2{ , , . . ., }mY Y Y  is a random sample from Y with pdf 

( )f y , finite mean   and variance 2  and with a set of observed values 

1 2{ , , . . ., }my y y . Let 1 2, , . . .,j j jmY Y Y ; 1, 2, . . .,j m  be a simple random sample 
drawn from the population with replacement. In some occasions, it is not an easy task 
ranking m units for large sample set of m, so we select a ranked set sample with small 
sample set of m and then replicate this sampling scheme up to r times. If that is well 
executed, it will turn out to produce r cycles, yielding the judgment order statistics value 
as it is displayed in Table 1. Let jlY  represent the jth judgment ordered statistic value 
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from the jth sample of size m coming from the lth cycle of size r, 
1, 2, . . ., ; 1, 2, . . .,j m l r   and with jly being the value of the observed variable. 
According to Takahasi and Wakimoto (1968), based on RSS technique, the 

unbiased estimator of the mean and its variance are respectively obtained by: 

1 1

1
ˆ

m r

rss jl
j l

Y
mr


 
 =                                    (3) 

and  

1 1 1

1 1 1 12 2 2 2ˆ( ) ( ) ( )
m r m

rss jl j
j l j

Var u
mr mr mr m

     
  

              
=          

(4) 

Table 1.  Display of judgment order statistics (JOS) values from RSS when the cycle is replicated r 
times 

Cycle First JOS Second JOS … mth JOS 

Cycle 1 Y[1]1 Y[2]1 … Y[m]1 

Cycle 2 Y[1]2 Y[2]2 … Y[m]2 

⁝ ⁝ ⁝ ⁝ ⁝ 
Cycle r Y[1]r Y[2]r … Y[m]rfy 

 

2.3. The proposed two-stage cluster sampling design 

Suppose there are N first stage units (FSU’s) in the population where every ith FSU 
has iM  second stage units (SSU’s) with expected value i  and variance 2

i . Let the 

sample size from FSU’s be represented by n  while im  represents the sample size from 
SSU’s in the ith selected FSU. First, a sample of n  FSU’s is selected from the population 
using probability proportional to size with replacement (PPSWR) in the first stage. 
Then from every ith selected FSU’s, im  second stage sampling units will be selected by 
ranked set sampling (RSS) scheme. Assuming RSS procedure where r = 1 is the case in 
the second stage, then out of every ith chosen FSU’s, we draw im  units using RSS 
procedure. The final sample can be displayed in the array of values given by: 

1

2

1[1] 1[ 2 ] 1[ ]

2[1] 2[ 2 ] 2[ ]

[1] [ 2 ] [ ]

. . .

. . .

. . .

. . .
n

m

m

n n n m

Y Y Y

Y Y Y

Y Y Y

  
                         (5)   
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This is as illustrated by Nematollahi et al. (2008), where [ ]i jY  denotes the variable 
of interest pertaining to the jth order of the jth random sample in ith selected FSU 
which are independent but not identically distributed. To maintain the attribute of 
independence of samples in RSS, the units selected from every ith FSU drawn for rank 
ordering in the jth sample set is carried by simple random sampling with replacement 
scheme. 

If we consider RSS scheme with replication in the second stage sampling, then from 
every ith FSU selected, i i im rm  units will be drawn by RSS method in cycles ir  with 

fix sample size m . Going by this, let [ ]il jY  represent the variable pertaining to the jth 
order of jth random sample in lth cycle from ith drawn FSU. Thus, the observations in 
(5) will form a random sample in every ith  selected FSU while im  and [ ]i jY  are replaced 

by im  and [ ]il jY  respectively. 

3. Estimators of the population mean and total in the new sampling design 

The mean estimator for two-stage cluster sampling with probability proportional 
to size sampling with replacement in the first stage units and RSS design in the second 
stage units is given by: 

1

1

1 n
i i

ppsrss N
i i

i
i

M y
y

Pn M 



 
 1

1 1

ˆˆ1 n ppsrssi
N N

i i
i i

i i

YY

Pn M M

 

 
 

           (6)    

where [ ]
1 1

1 i ir m

i il j
l ji i

y Y
rm



 
   is the sample mean of the variable pertaining to the jth 

ordered value from the jth random sample in lth cycle of sampling in ith selected FSU 
and   

[ ]
1 1 1

1ˆ i ir mn
i

ppsrss il j
i l j i i i

M
Y Y

n rm p



  
  


                 (7) 

is the unbiased estimator of the population total Y. i
i

x
p

X
 is the probability of 

selecting the ith unit in the first stage sample; ix  is the measure of size of the ith sample 

unit. In the case of the measure of size used in this work, 

1

i
i n

i
i

m
p

M





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It is straight forward to show that the estimator in (6) is an unbiased estimator of 
the population mean. This is because we have: 

   1 2 1 2
1 1

1 1

1 1i i i
ppsrss iN N

i ii i
i i

i i

n nM y M
E y E E E E y

P nPn M M 

 

   
   

     
    

   

 

1

1 1

ˆˆ1 ppsrssi
N N

i i
i i

i i

n YY

Pn M M

 

 
 

 

  1
1

1 1

ˆ1 n ppsrssi
ppsrss N N

i i
i i

i i

YY
E y E Y

nPM M

 

 
    
  

 

                       (8) 

The variance of the unbiased estimator of the population mean is given by: 

 
2 2 2 2

2

1 [ ]2 2 2 2 2 2
1 1 1 1 10 0 0

1 1 1
( )

i ir mN N n
i i i i

ppsrss i i j i
i i i l ji i i i i

Y M M
V y P Y E

nM P nM P m n M P m

  


    

  
       

   
  

    
(9) 

The result in (9) is derived as follows:  

Without loss of generality, let the number of cycles in each FSU be one such that 

1 2 . . . 1nr r r     . Hence, i im m . Then, 

1 2 1 2( ) ( ) ( )ppsrss ppsrss ppsrssV y V E y EV y           (10) 

Considering 1 2 ( )ppsrssV E y  gives the result: 

1 2 1 2
10

1
( )

n
i i

ppsrss
i i

M y
V E y V E

nM P

 
  

 
 , 

where
 

[ ] [ ]
1

1
ˆ
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i i j i j
ji

y Y
m



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1 2 1 2 1
1 10 0

1 1
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   
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Also considering 1 2 ( )ppsrssEV y  in (10) gives the result: 

1 2 1 2
10

1
( )

n
i i

ppsrss
i i

M y
E V y E V

nM P

 
  

 
  

2

1 2 1 22 2 2
1 10 0

1 1
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i i i
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E V E V y

nM P n M P 

    
     

    
   

But Takahasi and Wakimoto (1968) have obtained that  
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  
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 
  

where 2
i  is the variance of the variable of interest Y  in the ith FSU and [ ]i j  is the 

expected value of [ ]i jY . Hence,  
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            (12) 

Adding (11) and (12) gives the variance of ppsrssy  as: 

 
2 2 2 2
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1 [ ]2 2 2 2 2 2
1 1 1 10 0 0

1 1 1 imN N n
i i i i

i i j i
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   
         

(13) 
Now, if the number of cycles is ir  instead of one, (13) would have turned out to 

be (9). 

4. Relative Efficiency 

Relative efficiency of a sampling design 1  over another 2  based on an estimator 

̂  of a population parameter   is a measure of relative overall quality of the designs 
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evidenced in their estimators. Algebraically, the relative efficiency of 1  over 2 , based 

on ̂  is obtained by: 

 
 

2

1

1 2

ˆvar
( )

ˆvar
RE






 


                   (14) 

where var(.) is a measure of variability of the estimators obtained from the two designs. 
Using (14), 1  will be adjudged a more efficient design if 1 2( )RE    is greater than 1 
and less efficient if otherwise. 

The proposed sampling design and its associated estimators are applied to the 
greenhouses data obtained in the 2003 agricultural survey conducted in Iran as adopted 
from Nematollahi et al. (2008). The provinces or a set of provinces are considered as 
first stage units (FSU’s) and greenhouses as second stage units (SSU’s). For us to 
estimate the mean value of the greenhouses products and subsequently compare our 
proposed sample mean in (6) with the mean estimator ( ˆ r

TSCRSS ) proposed by 
Nematollahi et al. (2008) for relative efficiency, a simulation study is carried out on this 
data. The sampling units are ranked based on the values of the greenhouses in the 
frame, and the ranking is assumed to be flawless. The study variable is also the same as 
the greenhouses values in our simulation survey, consequently, the sizes of the second 
stage units iM  are used as our measure of sizes. 

4.1. Layout of the data selection 

In this study, there are N = 25 first stage units (FSU’s) or provinces in the frame. 
And every ith province contains a total of ; 1, ,iM i N   greenhouses that are 
regarded as second stage units as they appeared in Table 2. For the sake of 
demonstration of the methodology for the proposed estimator of the mean, a random 
sample of size n = 5 first stage units are selected from the population of N = 25 clusters, 
using unequal probability sampling (PPSWR). The FSU’s selected in the first stage of 
sampling via PPSWR are marked asterisks (*) in Table 3. Out of every ith selected 
province, m rm greenhouses (SSU’s) were selected by RSS. This paper considers 
where 4r   and 3m   to get a ranked set sample of size 12 units each in the second 
stage sampling. 

Similarly, for the estimator according to Nematollahi et al. (2008), a random sample 
of size n = 5 is also selected from the population by simple random sampling without 
replacement. Out of every ith chosen FSU, a sample of SSU’s, m rm  is selected by 
RSS. Also, 4r   and 3m   are considered to get a ranked set sample of size 12 units 
each in the second stage sampling. 
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Table 2.  The number of secondary sampling units in the first stage units 

FSU’s Mi FSU’s Mi FSU’s Mi FSU’s Mi FSU’s Mi 

1 
2 
3 
4 
5 

42 
169 
538 
38 
33 

6 
7 
8 
9 

10 

61 
680 
936 
167 
20 

11 
12 
13 
14 
15 

27 
26 
14 
40 
93 

16 
17 
18 
19 
20 

750 
32 

275 
14 
20 

21 
22 
23 
24 
25 

30 
26 
18 
14 
84 

 

Table 3.  Cumulative table for selection of 5 provinces by PPSWR 

FSU’s Mi 
Cum. of 

Mi’s 
Prob (Mi) FSU’s Mi 

Cum. of 
Mi’s 

Prob (Mi) 

1 42 42 0.010127803 14 40 2791 0.009645527 
2 169 211 0.040752351 15 93 2884 0.022425850 
3 538 749 0.129732337 16* 750 3634 0.180853629 
4 38 787 0.009163251 17* 32 3666 0.007716422 
5 33 820 0.007957560 18* 275 3941 0.066312997 
6 61 881 0.014709429 19 14 3955 0.003375934 
7* 680 1561 0.163973957 20 20 3975 0.004822763 
8* 936 2497 0.225705329 21 30 4005 0.007234145 
9 167 2664 0.040270075 22 26 4031 0.006269592 

10 20 2684 0.004822763 23 18 4049 0.004340487 
11 27 2711 0.006510731 24 14 4063 0.003375934 
12 26 2737 0.006269592 25 84 4147 0.020255606 
13 14 2751 0.003375934     

 

4.2. Computation of estimated means for the two competing designs 

In order to obtain the estimated means and totals using the Nematollahi et al. 
(2008) estimators and the new proposed estimators, their mean estimators and 
computations are presented as follows: 

( )
[ ]

1 1 1 1

1 1
ˆ ˆ

i ir mn n
r ji
TSCRSS il j i i

i l j ii i

M
Y M

nM nMrm
 



   

 
             (15) 
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1 1

1
ˆ

i ir m
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i il j
l ji i

Y
rm




 


  . The terms of the mean estimator in 

(15) are computed and presented in Table 4. Using the computed terms, the mean is 

estimated as ˆ r
TSCRSS  = 28.25125. 

Table 4.  Calculation of the estimated population mean in Nematollahi et al. (2008) 

FSU’s iM  i i im r m  ˆi  ˆi iM   

13 38 12 14.0000 532.0000 
8 938 12 12.0000 11256.0000 

10 20 12 13.8333 276.6667 
16 750 12 12.5833 9437.5000 
2 169 12 11.4167 1929.4167 

 

Also, the terms contained in the new proposed estimator of the mean in (6) are 
computed for the sample in Table 5 and the mean is estimated as ppsrssy  = 20.2204. 

   

Table 5.  Calculation of the estimated population mean using the new mean estimator 

FSU’s iM  ip  m rm  iy  
i

i

y

p
 

iy  i i

i

M y

p
 

7 680 0.162213740 12 160 986.3529 13.33 55893.33 
16 750 0.178912214 12 140 782.5067 11.67 48906.67 
8 936 0.223282443 12 170 761.3675 14.17 59386.67 

17 32 0.007633588 12 158 200698.0000 13.17 55194.67 
18 275 0.065601145 12 154 2347.5200 12.83 53797.33 

 
The entire process of sampling and computation is carried out using appropriate 

packages in the R statistical software. 
It has been shown that the mean estimator proposed in this paper is unbiased. As 

a result, the appropriate measure of its variability to be used in this section is the 
variance. However, to ensure uniformity of computation with the estimator due to 
Nematollahi et al. (2008), the mean squared error (MSE) is used. Now, MSE of the two 
competing estimators are obtained empirically using 10000 replications of samples and 
computations. Precisely, the MSE of each estimator of the mean is obtained by: 

   
10000

2

1

1

10000b ab
a

MSE y y 


  ; 1, 2b           (16) 
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where 1ay and 2ay denote ppsrssy  and ˆ r
TSCRSS  respectively in tha  replication of the 

sample, 1, 2, ,10000a   . The results for first stage sample sizes n = 4, 5, 6 and 8 
are presented in Table 6 for the new estimator as MSE1 and Nematollahi et al. (2008) 
estimator as MSE2. 

 

Table 6.  Mean square errors corresponding to each mean estimator ppsrssy  and ˆ r
TSCRSS   

FSU 
Sample Size 

r = 3, m= 2 r = 3, m= 3 r =3, m= 4 

MSE1 MSE2 MSE1 MSE2 MSE1 MSE2 

4 227.4776 89.4379 193.0703 90.0924 204.7227 91.5629 
5 55.4979 69.9861 51.0138 69.3528 55.0475 70.0885 
6 25.8019 56.7316 26.5967 54.9603 26.0757 54.2575 
8 9.2579 37.5100 9.0912 37.3246 9.2049 36.5891 

 
Finally, the relative efficiency of the new estimator ppsrssy  to ˆ r

TSCRSS  at different 
sample sizes in the two stages of the sampling designs are obtained by: 

     
 
ˆ r

TSCRSS

ppsrss

MSE
RE

MSE y


                       (17) 

The computed relative efficiencies are presented in Table 7. 
 

Table 7.  Relative efficiencies of the new estimator ppsrssy  to ˆ r
TSCRSS  

Number of 
selected FSU’s 

r = 3 
m= 2 

r = 3 
m= 3 

r = 3 
m= 4 

4 0.393 0.467 0.447 
5 1.261 1.359 1.273 
6 2.199 2.067 2.080 
8 4.052 4.105 3.9749 

 
From the results in Table 7, the relative efficiency of the new estimator compared 

to Nematollahi et al. (2008) estimator shows that the new estimator is more efficient for 
different sizes of first stage units sample except, in the case when n = 4. This suggests 
that as the sample size in the first stage of sampling increases, the relative efficiency of 
the new estimator keeps improving. For instance, when n = 5 in the first stage and m = 
5 in the second stage, the relative efficiency improves from 0.39 to 1.26. Similarly, when 
n = 8 and m = 12, it changes from 2.08 when n = 6 and m = 12 to 3.97. However, it is 
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important to note that the preferred performance of the new estimator to the 
Nematollahi et al. (2008) estimator may have been because the population in question 
has significantly varied sizes in the first stage units. If a situation where somewhat 
equality in sizes of the FSU’s is encountered, this preference may not be guaranteed. 

5. Conclusion 

A new two-stage sampling design has been developed where probability 
proportional to size sampling with replacement (PPSWR) is used in the first stage and 
ranked set sampling is used in the second stage. The empirical comparative study 
carried out revealed that our new sampling design is more efficient as it produced better 
estimator for estimating the population mean than similar design built with simple 
random sampling in the first stage and ranked set sampling in the second stage units 
under the condition of significant variation in the sizes of the first stage units. 
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