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Estimation of P(X <Y) for discrete distributions with
non-identical support
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ABSTRACT

The Uniformly Minimum Variance Unbiased (UMVU) and the Maximum Likelihood (ML)
estimations of R = P(X <Y) and the associated variance are considered for independent
discrete random variables X and Y. Assuming a discrete uniform distribution for X and the
distribution of Y as a member of the discrete one parameter exponential family of distribu-
tions, theoretical expressions of such quantities are derived. Similar expressions are obtained
when X and Y interchange their roles and both variables are from the discrete uniform dis-
tribution. A simulation study is carried out to compare the estimators numerically. A real
application based on demand-supply system data is provided.

Key words: stress-strength model, uniformly minimum variance unbiased, maximum like-
lihood.

1. Introduction

In the stress-strength reliability literature, the quantity R = P(X <Y, where X defines
stress and Y defines strength, is the well-known reliability function, although a lot of devel-
opment was carried out in the last few decades to explore inferential aspects concerning R,
under the assumption of continuous X and Y. However, X and Y may be both discrete ran-
dom variables and inference on R is required in many situations. For example, in demand
analysis, if the number of demanded items is considered as the stress random variable X
and the corresponding number of items supplied is regarded as strength random variable Y,
then X and Y are both discrete and R represents the sensitivity of demand-supply system.
Another example considered is the working of regular life gadgets, like scanners and Xerox
machines, where measurable resistible voltage shocks are applied to the bulbs of the ma-
chines in a time interval. Then, the number of applied shocks may define stress (X) and the
number of shocks the machine can withstand may define strength (Y) and consequently R
measures the reliability of the system, where stress and strength random variables are both
discrete. A comprehensive account of the details of stress-strength reliability can be found
in the book-length coverage of Kotz et al. (2003).
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However, most of the authors considered identical distributions to represent stress and
strength random variables. For example, Maiti (1995) took Geometric distribution to cal-
culate UMVU and ML estimators of R, Ivshin and Lumelskii (1995) and Sathe and Dixit
(2001) considered Negative Binomial distribution to represent both stress and strength ran-
dom variables. Further, Balyaev and Lumelskii (1995) and Barbiero (2003) assumed Pois-
son distributions for both stress and strength random variables. On the contrary, Obradovic
et al. (2015) regarded two different distributions for stress and strength random variables
in a recent work. Specifically, Geometric distribution is used to model stress and Poisson
distribution is assumed for the strength random variable.

In all these works, supports of the stress and strength random variables are assumed to be
identical and the distributions are members of One Parameter Exponential Family (OPEF)
of distributions. Strength and/ or stress random variable may be uniform, that is, supports
may depend on the unknown parameters.

Assuming continuous uniform distributions, Ivshin (1996) and Ali et al. (2005) ex-
plored different inferential properties of R. But as far as our knowledge goes, no discrete
counterpart of such work is developed. A motivating example may be the following. Sup-
pose someone forgets his computer password. Now, if X denotes that he inputs the right
password in second draw, then X follows Discrete Uniform distribution. Again, if Y rep-
resents the number of attempts the computer allows, then Y follows Poisson random vari-
able. So R is the probability that he can open the computer successfully and hence Discrete
Uniform-Poisson model is more appropriate. Consequently, in this work, we derive theoret-
ical expressions of UMVU estimator of R and UMVU estimator of the associated variance
assuming different discrete distributions for stress and strength random variables. In partic-
ular, assuming Y to be a member of the discrete OPEF and X as discrete uniform, we derive
the UMVU estimator and then do the same when both X and Y are discrete uniform with
different supports. UMVU estimation of R and the derivation of the UMVU estimators of
the variances of the UM VU estimators are provided in Section 2. Section 3 gives the deriva-
tion of ML estimators of R for earlier mentioned combinations. In Section 4, we provide
simplified expressions of R, associated three dimensional plots and also UMVU and ML
estimators of R for specific members of OPEF. We compare efficiency of UMVU and ML
estimators of R numerically for various combinations in Section 5. A real application based
on demand-supply system data is discussed in Section 6. Finally, Section 7 concludes with
a discussion of the related issues.

2. UMVU estimation of R

Derivation of the UMVU estimator of R depends on the nature of the distributions of
stress (X) and strength (Y) random variables. Consequently, we start with the derivation for
regular family of discrete distributions and then extend the methodology to cover distribu-
tions with parameter dependent supports. But, if either of .#y- (i.e. support of X) and .
(i.e. support of Y) involves an unknown parameter, we need to develop afresh. Although
a number of discrete distributions are available in the literature, we consider the Discrete
Uniform distribution to model stress and discrete OPEF to represent strength and derive
UMVU estimator of R. Similar expressions are also obtained for the combination (OPEF,
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Discrete Uniform). Further, considering (Discrete Uniform, Discrete Uniform) combination
for (X,Y), we develop UMVU estimation of R.

2.1. UMVU estimation of R for regular family of discrete distributions

Suppose stress and strength are independent random variables having distributions in
the regular family of discrete distributions with the supports (identical and/or non-identical)
Y9 and S, respectively. Naturally, .9 and .¥% are independent of the parameters and
L9 (L is non-empty. Further, assume that single but different parameters are involved
in the distributions of X and Y and complete sufficient statistics Tx and Ty exist for the
family of distributions of X and Y, respectively. Since we can write

R=P(X<Y)= Y P(X<j)P(Y =),
€Sy

Blackwellisation (Rao, 1973) ensures that ¢;(Ty) = P(Y; = j/Ty) is the UMVU estima-
tor of P(Y = j) and ¢;(Tx) = P(X; < j/Tx) is that of P(X < j) for every fixed j € .75 .
Then, due to independence of the distributions of X and Y and the assumption of parameter
independent of supports .4 and .5 give the UMVU estimator of R as

Rumvue = Y, 0i(Ty)¢;(Tx).
j€Sy

The available UMVU estimators of R (Kotz et al., 2003) can all be derived from the
above expression.

2.2. UMYVU estimation of R for (Discrete Uniform, OPEF) combination

Suppose X has a Discrete Uniform distribution over {1,2,....,N} with probability mass
function (PMF)

1

PX=x) = — ifx=1,...N
N
= 0 otherwise
and Y has OPEF with PMF
P(Y=y) = c(0)h(y)exp(q(0)t(y)) ify=0,1,2,..
=0 otherwise

where, ¢(0) = [Z;":O h(y)exp(q(0)t(y))] ', Then, under the independence of X and Y, we
have
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However, if the roles of X and Y are interchanged, we get the following expression:

X -1
R=PX<Y) = 1-E|——|.
N

In order to facilitate UMVU estimation of R, we assume that (X;,Xa, ...... ,Xn,) and
(Y1,Y2,....,Yy,) are independent samples from the distributions of X and Y, respectively.
Then, it is well known that complete sufficient statistics for N and 0 exist (Lehmann and
Casella, 1998) and are respectively, Ty = X(,,,) = max (X1,X2, ... X, ) and Ty = Z:Zl t(Y;)
with respective PMFs

t' = (L —1)m

P(X(nl):tx) = N ift,=1,2,....N
=0 otherwise
and
P(Ty =ty) = [c(0)]ho(ty)exp(q(0)ty) ifty=0,1,2,...
=0 otherwise

where h(ty) is the sum of H'}il h(y;) over all (y1,y2,......,yn,) for which Z?i] t(yj) =ty
(Ferguson, 1967).

Since the indicator function /[X; < Y;] is unbiased for R, the Rao-Blackwell theorem
coupled with Lehman-Scheffe theorem (Lehmann and Casella, 1998) expresses the UMVU
estimator of R as

Rumvue = E(I[X) <N||X() =t Ty =1y)
= PXi <Nh|X,,)=t,Tr =1ty)
P(X1 <Y1, X)) =, Ty = 1ty)
P(Xn)) =t Ty = 1)

min(ty ty)

Zy:l P(Xl San(nl):txaTY:tyvyl :y)
P(X(nl) = lx)P(Ty = ly)

min(ty ty)

Zy:] P(Xl San(nl) :tx)P(Yl :yaZ:th(Yl) :t)’)
P(X(nl) = IX)P(TY = l‘y)

£ h(y)hoty — () )y P(X1 = 2{X () = 1)

ho(ty)
Further, using the fact that
M -yt
PXy=xX, =t) = fx=1,2,....(t—1
(X1 = x[X () = 1) I PR T if x ( )
ol

= ifx=t
A T
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ﬁUMVUE can be simplified as

R 1
Rymvve = [Ty' — (Tx — 1)M]ho(Ty) :
min(7x,Ty)
Y hO)ho(Ty —1(y)) x
y=1

)i {T,?l‘l (T — V)" U A T+ T M= TX]}.

x=1

However, for (OPEF, Discrete Uniform) combination), in a similar way, we derive the

UMVU estimator of R as
R - ! «
UMVUE — [T;tz _ (TY _ l)nz]ho(TX)
min(T)(,Ty)
{(Tynz_l —(Ty = 1) DIy # )+ 172y = Ty]} X
y=1
Yy
Z /’l(x)ho(TX —t(x)).
x=0

2.3. UMVU estimation of R for (Discrete Uniform, Discrete Uniform) combination

Now, assume that the distributions of both X and Y are Discrete Uniform with respective

parameters N1 and N;. Then, the expression of R takes the form:

2N, —Nj +1
R=P(X<Y) = ZTIJF if Nj < N»
2

N +1
if N > N
N, =10

It is well known that for such distributions, complete sufficient statistics exist and are
given by Tx = X, ) = max (X1,X2, ... ,Xn,) and Ty = Y(,,) = max (Y1,Ya,...... ,Yy,), respec-
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tively. Thus the UMVU estimator of R takes the form

Rumyue = E([X < V][ Xny) =, Yiny) = 1y)
= PX; <Y |an = tx,Y(nz) = ty)
P(X1 <Y1, X(n)) =t Y(ny) = 1)
P(X(nl) - t)ﬁY(nz) = ty)
L P <3 Xiay) = 1Yoy = 111 =)
P(X( D= tx>P<Y( ) =1y )
B Z)I)n:“;(tx,ly) P(X1 < y7X(n|> = tx)P(Yl =Y, Y(nz) = ty>
P(Xin) = t)P(Y(n,) = 1)

min(fy,ty) y
= Y ) P(Xi =x[X(,) =1:)P(Y1 = YY) = 1).
y=1 x=1

Now, using the expressions of the conditional PMF’s P(X; = x[X,) = f,) and P(Y; =
¥[¥(n,) =1ty), we derive the simplified expression

1
(Tx —1)m }{Ty? — (Ty — 1)} .

Rumvue = o
{1y —

min(Tx,Ty)
Y @ @y AT T Iy =Ty} x

y=1

Z{ T = (T = A T+ T =Ty}

2.4. UMVU estimation of Var(ﬁUMVUE)

For the UMVU estimation of Var(I?UMVUE), we consider the representation

Var(ﬁUMVUE) = E([ﬁUMVUE]Z)*Ez(ﬁUMVUE)
= E([Rumvue)®) —R*

Therefore, if we can derive the UMV U estimator QUMVUE of Q= R2, then we can write
Var(Rumvue) = E(Rumvue)?) —E(Qumvue),

and hence obtain the UMVU estimator of Var(RUMVUE) as Var(RUMVUE) [R\UMVUE]Z —
QUMVUE Consequently, we move our attention to deriving QUMVUE

For the relevant derivation, first of all, we note that the events (X; <Y) and (X, <Y»)
are independent and so are the corresponding indicator functions I[X; < Y;] and I[X; < 1>].
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Then, naturally I[X; < Y1,X> < Y5] = I[X; < Y]I[X, < Y»] is unbiased for Q = R* and
corresponding to the (Discrete Uniform, One Parameter Exponential family) combination,

we derive

QUMVUE = E(I[Xi <Y, X <W||Tx =t,,Ty =t,)
= PXi <1, X <W|Ix=t,Ty = ty)
PX) <Y1,X <Y, Tx =1t,, Ty =ty)
P(Tx =t,,Ty =ty)

Z;:ii(fx’t"") Qzl PXy <y1,X <y, Tx =1, Ty = 1,,Y1 = y1,Y2 =)
P(Tx = 1)P(Ty = 1,)
Z;:Tf‘ o) Yo 1 P(Xi <y1,X2 <32, Tx = 1) P(Ty =1y, Y1 = y1,Y2 = »2)
P(TX = tx)P(TY = ty) .

Since, for xp < x1,

M2 (e —1)m2

P(Xl =x1,X2 :xz/X<,,l) :tx) = P (l‘ — 1)"| ifx; = 1,2,...,(1‘)57 1)
X X
tnl -2
X .
f—(—nn T

we get the simplified expression of QUMVUE for the (Discrete Uniform, OPEF) combination
as

= X
QumvuE o (T ) [T — (Tx — 1)"1]
min(Tx,Ty)
Y Z h(y1)h(y2)ho(Ty —t(y1) —t(y2)) x
yi=1 =1
Yo%
Z Z {Tnl 2 Tx — 1)”'721[)61 =+ Tx] —|—T}?1_21[x1 = Tx]}][)cz le}.
X1= 1x2 1

In a similar way, we derive the UMVU estimator of Q for (OPEF, Discrete Uniform)
combination as

Oumvue = o (T — (T 1)) X
min(Ty,Ty) y; 2 2 5
Yo X {0 - A B T = T e <]
yi=l =1

X i ihxl h(x2)ho(Tx —t(x1) —t(x2)).

0x2 0
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Finally, replacing 7y by ¥(,,) and proceeding in a similar manner, we get the UMVU
estimator of Q for (Discrete Uniform, Discrete Uniform) combination as

_ 1
= X
Cumvue = T a1y — By — 1]
min(Ty,Ty) y; 5 5
Yo YR @m - ) A BT =T 2 < i)
yi=l  y=l
V1 Y2
<y ¥ {T)?I*2 — (T — 1" 2y # Tx] + T 2y = TX}}I[xz <.
x1=1x2=1

3. Maximum likelihood (ML) estimation of R

Suppose (X1,Xa,.....,X,,) and (¥1,Y>,.....,Y,,) are independent random samples from
the distribution of random variables X and Y respectively. It is well known that ML estima-
tor Ny of N is X(n)) and ML estimator 6y, of 0 is obtained by solving

nzc(l)(e) ( )

OB 1)(6);t()’i) =0,

1

where superscript indicate the first order derivative.

Then, by virtue of the invariance property of ML estimator we can obtain RuLe by
substituting values of 8 and N by §MLE and IVMLE in the corresponding expression of R.
Similarly, ML estimator of R can be obtained for OPEF - Discrete Uniform combination.
ﬁMLE for Discrete Uniform - Discrete Uniform combination can be written as

~ 2Y,y — Xy + 1
Rypp = =l zy(nz(’;‘) if Xyy) < Yoy
Yoy +1

= xgy e 2 Y

4. Expressions of R and ﬁUMVUE

Theoretical expressions of R and its UMVU estimators are derived for discrete OPEF
and Discrete Uniform (DU) distributions in the previous section. Now, we provide such
expressions in the simplified form for different members of OPEF. In particular, apart
from the well-known Binomial, Poisson, Negative Binomial (Neg Bin), Log Series dis-
tributions, we consider One Parameter Discrete Lindley (OPDL) distribution of Hussain
et al. (2016). OPDL is also a member of the discrete OPEF having the PMF, P(X =
x) = (1—¢)2(14+x)¢*, where x =0,1,2,...., 0 < ¢ < 1 and complete sufficient statistic
Ix=Y",X.
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Further, for brevity, we provide three dimensional plots (Figure 1-4) of R for different
members of OPEF along with the concerned expressions of R. We also provide simplified
expressions of UMVU and ML estimators of R for different combinations of stress and
strength distributions in Tables 1-2.

(a) Discrete Uniform (N} ) - Discrete Uniform (N, ) Model, (b) Discrete Uniform (N7 ) - Discrete Uniform (Np) Model,
2Ny Ny +1 Ny+l
R= =2yl Ny <] R=1= 1INy 2 M)

(C) Discrete Uniform (N) - Binomial (n, p) Model, (d) Binomial (m, p) - Discrete Uniform (N) Model,
RZ P Ry mp=l
=1l

Figure 1: Plot of R for Discrete Uniform - Discrete Uniform and Discrete Uniform - Bino-
mial, Binomial - Discrete Uniform models
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A (b) Poisson (1) - Discrete Uniform (V) Model,
(@) Discrete Uniform (N) - Poisson (A) Model.R = 4 Re1_ A=l
- N

(C) Discrete Uniform (N) - Negative Binomial (r,7) Model, (d) Negative Binomial (r, y) - Discrete Uniform (N) Model,
_ -y _ =ty
R= "l R=1- =

Figure 2: Plot of R for and Discrete Uniform - Poisson, Poisson - Discrete Uniform and
Discrete Uniform - Negative Binomial, Negative Binomial - Discrete Uniform models
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(a) Discrete Uniform (N) - Geometric (8) Model, (b) Geometric (0) - Discrete Uniform (N) Model,
PR Re1_1=20
] - oN

() Discrete Uniform (N) - Log series (8) Model, (d) Log series () - Discrete Uniform (V) Model,
o L a+(1=A)log(1-8)
R= = NT=5)log(1-9) R=1+4 57 og(i—

Figure 3: Plot of R for Discrete Uniform - Geometric, Geometric - Discrete Uniform and
Discrete Uniform - Log series, Log series - Discrete Uniform models
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(@) Discrete Uniform (N) - OPDL (¢) Model, (b) OPDL (9) - Discrete Uniform () Model,
R= 2 R=1- ¢!
(I=¢)N N(1-9)

Figure 4: Plot of R for Discrete Uniform - OPDL and OPDL - Discrete Uniform model

5. Simulation study

In this section, it is of our interest to compare the efficiency of the estimates I?UMVUE
and Ry1. Although estimators of Var(ﬁUMVUE) have a closed form, neither MSE (ﬁMLE)
nor its estimator is analytically tractable. Therefore for the purpose of comparison, we run a
simulation study with specific choices of (n1,n;) and different choices of stress and strength
distributions.

For each such choice, we estimate, I/?\UMVU £ and ﬁMLE together with their MSE. Finally,
we report the empirical relative efficiency (ERE), defined by

MSE (Rye)

ERE = —
Var(Rumvue)

for different choices of parameters and distributions. Naturally ﬁUMVUE is better or worse
than Ry as efficiency exceeds or does not exceed unity. Figure of Tables 3-8 reveal the
superiority of Ry g over Ryyyyg for most of the assumed configuration.
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Table 3: Poisson(A) and DU(N)

Poisson — DU

DU — Poisson

(n1, n2)

(A, N)

R

ERE

R

ERE

(15, 30)

(0.3,15)

0.064

0.430

0.015

0.006

(15, 30)

0.5,15)

0.061

1.577

0.020

1.728

(15, 30)

(0.8,15)

0.054

0.523

0.024

0.359

(15, 30)

(0.3,30)

0.032

1.947

0.007

2.125

(15, 30)

(0.5,30)

0.030

0.040

0.010

0.403

(15, 30)

(0.8,30)

0.027

0.939

0.012

0.435

(30, 30)

0.3, 15)

0.064

0.041

0.015

1.922

(30, 30)

0.5, 15)

0.061

0.032

0.020

0.783

(30, 30)

0.8, 15)

0.054

0.956

0.024

0.005

(30, 30)

(0.3, 30)

0.032

0.110

0.007

0.533

(30, 30)

0.5, 30)

0.030

4.819

0.010

0.829

(30, 30)

(0.8, 30)

0.027

3.461

0.012

0.034

(45, 30)

0.3, 15)

0.064

0.246

0.015

0.432

(45, 30)

0.5, 15)

0.061

0.398

0.020

0.602

45, 30)

0.8, 15)

0.054

0.102

0.024

0.205

45, 30)

(0.3, 30)

0.032

0.202

0.007

1.148

45, 30)

(0.5, 30)

0.030

1.701

0.010

0.015

45, 30)

(0.8, 30)

0.027

0.601

0.012

0.060
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Table 4: Binomial(m = 8, p) and DU(N)

Binomial — DU DU — Binomial

(ny , na) (p,N) R ERE R ERE

(15,30) | (0.3,15) 0.017 0.077 0.013 0.013

(15,30) | (0.5,15) 0.002 0.138 0.002 0.001

(15,30) | (0.8,15) | 1.84x10°¢ | 0.415 | 5.46x 10°° | 1.096

(15,30) | (0.3,30) 0.008 0.102 0.007 0.252

(15,30) | (0.5,30) 0.001 0.001 0.001 0.726

(15,30) | (0.8,30) | 2.82x10°¢ | 0.387 | 2.73x 10°° | 1.396

(30,30) | (0.3,15) 0.017 1.604 0.013 1.923

(30,30) | (0.5,15) 0.002 0.553 0.002 0.207

(30,30) | (0.8,15) | 5.63x107° | 0.859 | 5.46x107° | 0.487

(30, 30) | (0.3, 30) 0.008 0.241 0.007 2.175

(30,30) | (0.5,30) 0.001 0.598 0.001 0.330

(30, 30) | (0.8,30) | 2.82x10°° | 0.214 | 2.73x 10°° | 0.498

(45,30) | (0.3,15) 0.017 0.002 0.013 2.436

(45,30) | (0.5,15) 0.002 1.181 0.002 0.438

(45,30) | (0.8,15) | 5.63x107° | 0.642 | 5.46x107° | 1.456

(45,30) | (0.3,30) 0.008 0.005 0.007 0.405

(45,30) | (0.5,30) 0.001 0.072 0.001 0.162

(45,30) | (0.8,30) | 2.82x 107 [ 0.266 | 2.73x 107° | 0.633
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Table 5: Geometric(6) and DU(N)

Geometric — DU

DU — Geometric

(n.m) | (B,N) R ERE R ERE
(15,30) | (0.3,15) | 0.034 | 0.041 | 0.014 | 0.664
(15,30) | (0.5,15) | 0.050 | 0.791 | 0.017 | 0.867
(15,30) | (0.8,15) | 0.064 | 0.290 | 0.011 | 0.731
(15,30) | (0.3,30) | 0.017 | 0.808 | 0.007 | 0.505
(15,30) | (0.5,30) | 0.025 | 0.001 | 0.008 | 2.873
(15,30) | (0.8,30) | 0.032 | 0.030 | 0.005 | 0.058
(30,30) | (0.3,15) | 0.034 | 2.547 | 0.014 | 2.256
(30,30) | (0.5,15) | 0.050 | 0.045 | 0.017 | 1.628
(30,30) | (0.8,15) | 0.064 | 0.102 | 0.011 | 0.567
(30,30) | (0.3,30) | 0.017 | 0.929 | 0.007 | 1.621
(30,30) | (0.5,30) | 0.025 | 0.469 | 0.008 | 0.879
(30,30) | (0.8,30) | 0.032 | 0.791 | 0.005 | 0.761
45,30) | (0.3,15) | 0.034 | 2.036 | 0.014 | 0.120
(45,30) | (0.5,15) | 0.050 | 0.935 | 0.017 | 0.183
45,30) | (0.8,15) | 0.064 | 0519 | 0.011 | 1.833
(45,30) | (0.3,30) | 0.017 | 0.845 | 0.007 | 0.663
45,30) | (0.5,30) | 0.025 | 0.122 | 0.008 | 0.984
(45,30) | (0.8,30) | 0.032 | 0.364 | 0.005 | 0.020
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Table 6: Neg Bin(r = 3, y) and DU(N)

NegBin—DU | DU — NegBin

(n1 , n2) (y,N) R ERE R ERE

(15,30) | (0.3,15) | 0.006 | 0.014 | 0.004 | 0.085

(15,30) | (0.5,15) | 0.021 | 0.154 | 0.012 | 4.031

(15,30) | (0.8,15) | 0.055 | 4.173 | 0.020 | 0.118

(15,30) | (0.3,30) | 0.003 | 0.015 | 0.002 | 1.790

(15,30) | (0.5,30) | 0.010 | 2.942 | 0.006 | 2.391

(15,30) | (0.8,30) | 0.027 | 0.447 | 0.010 | 4.302

(30,30) | (0.3,15) | 0.006 | 0.630 | 0.004 | 1.851

(30,30) | (0.5,15) | 0.021 | 1.315 | 0.012 | 0.397

(30,30) | (0.8,15) | 0.055 | 0.828 | 0.020 | 0.209

(30,30) | (0.3,30) | 0.003 | 0.014 | 0.002 | 1.082

(30,30) | (0.5,30) | 0.010 | 0.003 | 0.006 | 0.031

(30,30) | (0.8,30) | 0.027 | 1.847 | 0.010 | 0.307

(45,30) | (0.3,15) | 0.006 | 0.543 | 0.004 | 0.443

(45,30) | (0.5,15) | 0.021 | 1.050 | 0.012 | 3.684

(45,30) | (0.8,15) | 0.055 | 0.313 | 0.020 | 0.076

(45,30) | (0.3,30) | 0.003 | 1.123 | 0.002 | 1.337

(45,30) | (0.5,30) | 0.010 | 0.006 | 0.006 | 2.508

(45,30) | (0.8,30) | 0.027 | 2.156 | 0.010 | 0.698
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Table 7: OPDL(¢) and DU(N)

OPDL - DU

DU — OPDL

(1, n2)

(¢.N)

R

ERE

R

ERE

(15, 30)

(0.3,15)

0.013

0.004

0.007

0.003

(15, 30)

(0.5,15)

0.026

0.001

0.013

0.020

(15, 30)

(0.8,15)

0.041

0.089

0.017

0.031

(15, 30)

(0.3,30)

0.006

0.021

0.004

0.003

(15, 30)

(0.5,30)

0.013

0.033

0.006

0.041

(15, 30)

(0.8,30)

0.021

0.019

0.008

0.005

(30, 30)

0.3,15)

0.013

0.026

0.007

0.017

(30, 30)

0.5,15)

0.026

0.059

0.013

0.005

(30, 30)

(0.8,15)

0.041

0.832

0.017

0.045

(30, 30)

(0.3,30)

0.006

0.004

0.004

0.025

(30, 30)

0.5, 30)

0.013

0.009

0.006

0.065

(30, 30)

(0.8, 30)

0.021

0.063

0.008

0.013

(45, 30)

0.3, 15)

0.013

0.001

0.007

0.003

(45, 30)

0.5, 15)

0.026

0.003

0.013

0.202

(45, 30)

0.8, 15)

0.041

0.886

0.017

0.090

(45, 30)

0.3, 30)

0.006

0.003

0.004

0.098

(45, 30)

0.5, 30)

0.013

0.012

0.006

0.103

(45, 30)

(0.8, 30)

0.021

0.003

0.008

0.006
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Table 8: Log Series(8) and DU (N)

LogSeries — DU | DU — LogSeries
(ny , ny) (0,N) R ERE R ERE
(15,30) | (0.3,15) | 0.080 | 0.115 | 0.056 | 0.023
(15,30) | (0.5,15) | 0.096 | 0.014 | 0.048 | 0.535
(15,30) | (0.8,15) | 0.165 | 0.192 | 0.033 | 0.143
(15,30) | (0.3,30) | 0.040 | 0.910 | 0.028 | 0.683
(15,30) | (0.5,30) | 0.048 | 0.004 | 0.024 | 3.074
(15,30) | (0.8,30) | 0.082 | 0.238 | 0.016 | 0.014
(30,30) | (0.3,15) | 0.080 | 0.666 | 0.056 | 1.627
(30,30) | (0.5,15) | 0.096 | 0.060 | 0.048 | 0.226
(30,30) | (0.8,15) | 0.165 | 0.073 | 0.033 1.028
(30,30) | (0.3,30) | 0.040 | 0.009 | 0.028 | 0.150
(30,30) | (0.5,30) | 0.048 | 0.021 | 0.024 | 3.418
(30,30) | (0.8,30) | 0.082 | 1.262 | 0.016 | 1.915
(45,30) | (0.3,15) | 0.080 | 0.004 | 0.056 | 1.156
(45,30) | (0.5,15) | 0.096 | 0.068 | 0.048 | 0.050
(45,30) | (0.8,15) | 0.165 | 0.323 | 0.033 | 0.235
(45,30) | (0.3,30) | 0.040 | 0.031 | 0.028 | 1.785
(45,30) | (0.5,30) | 0.048 | 0.041 | 0.024 | 3.425
(45,30) | (0.8,30) | 0.082 | 0.386 | 0.016 | 0.050

6. A real application

A uniform distribution may be used to model demand-supply system data [Hadley and
Whitin (1963), Wanke (2008)]. Here, we use a demand-supply system data (Naikan et al.
2014) of spare parts from an auto ancillary unit in India, reported in Table 9. We fit Discrete
Uniform with N = 56 for demand (X) and Discrete Uniform with N> = 45 for supply (Y).
Now, by using expression of UMVU and ML estimators of R, we obtain ﬁMLE = 0.409 and
ﬁUMVUE = 0.411. Therefore, the expressions derived theoretically are well applicable in
real problems to estimate reliability (R) of demand-supply system data.
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Table 9: Demand and supply system data for spare parts

Week | Demand | Supply | Week | Demand | Supply | Week | Demand | Supply
1 25 30 12 50 43 23 27 31
2 38 37 13 27 31 24 36 36
3 2 16 14 19 21 25 25 30
4 28 32 15 27 31 26 30 33
5 23 29 16 18 27 27 27 31
6 7 21 17 18 27 28 17 26
8 23 29 18 34 35 29 22 29
9 56 45 19 34 35 30 12 24
10 48 41 20 34 35
11 6 21 21 26 31

7. Concluding Remarks

We have discussed so far the UMVU and ML estimation of P(X <Y) considering a
discrete uniform distribution to represent stress and/or strength. However, an assumption of
equal (but unknown) probability for stress and/or strength is less practical. Consequently,
we intend further development with a general class of distributions to model stress and/or
strength, allowing non-identical and parameter dependent supports.
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