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An improved ridge type estimator for logistic regression
Nagarajah Varathan1

ABSTRACT

In this paper, an improved ridge type estimator is introduced to overcome the effect of multi-
collinearity in logistic regression. The proposed estimator is called a modified almost unbi-
ased ridge logistic estimator. It is obtained by combining the ridge estimator and the almost
unbiased ridge estimator. In order to asses the superiority of the proposed estimator over the
existing estimators, theoretical comparisons based on the mean square error and the scalar
mean square error criterion are presented. A Monte Carlo simulation study is carried out to
compare the performance of the proposed estimator with the existing ones. Finally, a real
data example is provided to support the findings.

Key words: Logistic Regression, Multicollinearity, ridge estimator, Modified almost unbi-
ased ridge logistic estimator, Mean square error.

1. Introduction

The general form of logistic regression model is

yi = πi + εi, i = 1, ...,n, (1)

where εi are independent with mean zero and variance πi(1−πi) and πi is the expected value
of the response yi when the ith value of dependent variable follows the Bernoulli distribution
with parameter πi as

πi =
exp(x′iβ )

1+ exp(x′iβ )
, (2)

where xi is the ith row of X , which is an n× p data matrix with p explanatory variables
and β is a p×1 vector of coefficients. The Maximum likelihood method is the most com-
mon estimation technique to estimate the parameter vector β , and the maximum likelihood
estimator (MLE) of β based on the sample model (1) can be obtained as follows:

β̂MLE = (X ′ŴX)−1X ′Ŵ z, (3)

where z is the column vector with ith element equals logit(π̂i)+
yi−π̂i

π̂i(1−π̂i)
and Ŵ = diag[π̂i(1−

π̂i)], which is asymptotically unbiased estimate of β . The asymptotic covariance matrix of
β̂MLE is

Cov(β̂MLE) = (X ′ŴX)−1. (4)
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The asymptotic MSE and SMSE of β̂MLE are

MSE[β̂MLE ] = Cov[β̂MLE ]+B[β̂MLE ]B′[β̂MLE ] (5)

= {X ′ŴX}−1

= C−1

and

SMSE[β̂MLE ] = tr[C−1] (6)

Since C is a positive definite matrix there exists an orthogonal matrix P such that P′CP =

∆ = diag(λ1,λ2, ...,λp), where λ1 ≥ λ2 ≥ ... ≥ λp > 0 are the ordered eigen values of C.
Then,

SMSE[β̂MLE ] =
p

∑
j=1

1
λ j

.

The logistic regression model becomes unstable when there exists strong dependence
among explanatory variables. This situation is referred to as multicollinearity. When the
multicollinearity presents among explanatory variables, the estimation of the model param-
eters becomes inaccurate because of the need to invert near-singular information matrix
X ′ŴX . As a result, the estimates have large variances and large confidence intervals, which
produces inefficient estimates.

To overcome the problem of multicollinearity in the logistic regression, many estimators
have been proposed in the literature alternative to the MLE. The most popular estimator to
deal with this problem is called the Logistic Ridge Estimator (LRE), and was first proposed
by Schaefer et al. (1984). Later, Aguilera et al. (2006) introduced the Principal Compo-
nent Logistic Estimator (PCLE), Nja et al. (2013) proposed the Modified Logistic Ridge
Regression Estimator (MLRE), Mansson et al. (2012) introduced the Liu-Estimator in lo-
gistic regression, Inan and Erdogan (2013) proposed Liu-type estimator, Xinfeng (2015)
proposed the Almost Unbiased Liu Logistic Estimator (AULLE), Wu and Asar (2016) pro-
posed the Almost Unbiased Ridge Logistic Estimator (AURLE), Varathan and Wijekoon
(2019) proposed the Modified Almost Unbiased Liu Logistic Estimator (MAULLE), Jad-
hav (2020) proposed the Linearized ridge logistic estimator (LRLE), and the Modified ridge
type logistic estimator was proposed by Lukman et al. (2020).

In this research a new estimator is proposed by combining AURLE and LRE. Further,
we compare the performance of the proposed MAURLE estimator with the existing MLE,
LRE and AURLE estimators in the mean square error sense.

The organization of the paper is as follows. The construction of the proposed estimator
is given in Section 2. In Section 3, the asymptotic properties of the estimators are given.
In Section 4, the conditions for superiority of the proposed MAURLE estimator over the
existing MLE, LRE, and AURLE estimators are derived with respect to mean square error
(MSE) criterion. In Section 5, the conditions for superiority of the proposed MAURLE



STATISTICS IN TRANSITION new series, September 2022 115

estimator over the existing MLE, LRE, and AURLE estimators are derived with respect to
scalar mean square error (SMSE) criterion. The detail Monte Carlo simulation study is given
to investigate the performance of the proposed estimator with some existing estimators in
Section 6. A real data application is discussed in Section 7. Finally, some conclusive
remarks are given in Section 8.

2. Construction of the proposed estimator

The new estimator is constructed by considering the Logistic ridge estimator (LRE)
(Schaefer et al., 1984) and the Almost Unbiased Ridge Logistic Estimator (AURLE) (Wu
and Asar, 2016). Note that LRE and AURLE are defined as

β̂LRE = (X ′ŴX + kI)−1X ′ŴX β̂MLE (7)

= (C+ kI)−1Cβ̂MLE

= Zkβ̂MLE

where Zk = (C+ kI)−1C and k is the ridge parameter, k ≥ 0.

β̂AURLE = Wkβ̂MLE (8)

where Wk = I − k2(C+ kI)−2, k ≥ 0.

By substituting β̂LRE in place of β̂MLE in the estimator AURLE in (2.2), we propose a new
estimator which is named the Modified almost unbiased ridge logistic estimator (MAURLE)
and defined as

β̂MAURLE = Wkβ̂LRE

= WkZkβ̂MLE

= Fkβ̂MLE (9)

where

Fk = WkZk

= [I − k2(C+ kI)−2][(C+ kI)−1C] (10)

SMSE(β̂MAURLE) =
p

∑
j=1

λ 3
j (λ j +2k)2

(λ j + k)6

+
p

∑
j=1

(k3 +3k2λ j+ kλ j2)2

(λ j + k)6 α
2
j (11)
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3. Asymptotic properties of the proposed estimator

The mean vector, dispersion matrix and the bias vector of β̂MAURLE are

E[β̂MAURLE ] = E[Fkβ̂MLE ]

= Fkβ , (12)

D(β̂MAURLE) = Cov(β̂MAURLE)

= Cov(Fkβ̂MLE)

= FkC−1F ′
k , (13)

and

Bias(β̂MAURLE) = E[β̂MAURLE ]−β

= [Fk − I]β

= δMAURLE (14)

Consequently, the mean square error and scalar mean square error can be obtained as,

MSE(β̂MAURLE) = D(β̂MAURLE)+Bias(β̂MAURLE)Bias(β̂MAURLE)
′

= FkC−1F ′
k +(Fk − I)ββ

′(Fk − I)′ (15)

where

Fk = WkZk

= [I − k2(C+ kI)−2][(C+ kI)−1C]

= (C+ kI)−2C(C+2kI)(C+ kI)−1C

> 0 is a positive definite matrix. (16)

and

SMSE(β̂MAURLE) =
p

∑
j=1

λ 3
j (λ j +2k)2

(λ j + k)6

+
p

∑
j=1

(k3 +3k2λ j+ kλ j2)2

(λ j + k)6 α
2
j (17)

where α j is the jth element of P′β , P is an orthogonal matrix such that P′CP = ∆ =

diag(λ1,λ2, ...,λp), where λ1 ≥ λ2 ≥ ...≥ λp > 0 are the ordered eigen values of C.



STATISTICS IN TRANSITION new series, September 2022 117

4. Mean square error comparison of estimators

To check the performance of the proposed MAURLE estimator with the existing MLE,
LRE, and AURLE estimators, we compare the corresponding mean square errors of the
estimators.

Note that, following Schaefer et al. (1984) and Wu and Asar (2016), the mean square
errors of LRE and AURLE are respectively given by
MSE[β̂LRE ] = ZkC−1Z′

k +δLREδ ′
LRE ; where δLRE = (Zk − I)β

MSE[β̂AURLE ] =WkC−1W ′
k +δAURLEδ ′

AURLE ; where δAURLE = (Wk − I)β

(I). MAURLE Versus MLE

MSE(β̂MLE)−MSE(β̂MAURLE) = {D(β̂MLE)+B(β̂MLE)B′(β̂MLE)}
−{D(β̂MAURLE)+B(β̂MAURLE)B′(β̂MAURLE)}

= C−1 −{FkC−1F ′
k +δMAURLEδ

′
MAURLE}

= U1 −V1 (18)

where U1 =C−1 and V1 =FkC−1F ′
k +δMAURLEδ ′

MAURLE . One can obviously say that FkC−1F ′
k

and U1 are positive definite matrices and δMAURLEδ ′
MAURLE is non-negative definite matrix.

Further by Lemma 1 (see Appendix), it is clear that V1 is a positive definite matrix. By
Lemma 2 (see Appendix), if λmax(V1U−1

1 ) < 1, then U1 −V1 is a positive definite matrix,
where λmax(V1U−1

1 ) is the largest eigen value of V1U−1
1 . Based on the above arguments, the

following theorem can stated.
Theorem 1: The MAURLE estimator is superior to MLE if and only if λmax(V1U−1

1 )< 1.

(II). MAURLE Versus LRE

MSE(β̂LRE)−MSE(β̂MAURLE) = {D(β̂LRE)+B(β̂LRE)B′(β̂LRE)}
−{D(β̂MAURLE)+B(β̂MAURLE)B′(β̂MAURLE)}

= {ZkC−1Z′
k +δLREδ

′
LRE}

−{FkC−1F ′
k +δMAURLEδ

′
MAURLE}

= U2 −V2 (19)

where U2 = ZkC−1Z′
k+δLREδ ′

LRE and V2 =FkC−1F ′
k +δMAURLEδ ′

MAURLE . One can easily say
that FkC−1F ′

k and ZkC−1Z′
k are positive definite matrices and δLREδ ′

LRE and δMAURLEδ ′
MAURLE

are non-negative definite matrices. Further by Lemma 1, it is clear that U2 and V2 are posi-
tive definite matrices. By Lemma 2, if λmax(V2U−1

2 )< 1, then U2 −V2 is a positive definite
matrix, where λmax(V2U−1

2 ) is the largest eigen value of V2U−1
2 . Based on the above results,

the following theorem can be stated.
Theorem 2: The MAURLE estimator is superior to LRE if and only if λmax(V2U−1

2 )< 1.
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(III). MAURLE Versus AURLE

MSE(β̂AURLE)−MSE(β̂MAURLE) = {D(β̂AURLE)+B(β̂AURLE)B′(β̂AURLE)}
−{D(β̂MAURLE)+B(β̂MAURLE)B′(β̂MAURLE)}

= {WkC−1W ′
k +δAURLEδ

′
AURLE}

−{FkC−1F ′
k +δMAURLEδ

′
MAURLE}

= U3 −V3 (20)

where U3 = WkC−1W ′
k + δAURLEδ ′

AURLE and V3 = FkC−1F ′
k + δMAURLEδ ′

MAURLE . One can
easily say that FkC−1F ′

k and WkC−1W ′
k are positive definite matrices and δAURLEδ ′

AURLE and
δMAURLEδ ′

MAURLE are non-negative definite matrices. Further by Lemma 1, it is clear that
U3 and V3 are positive definite matrices. By Lemma 2, if λmax(V3U−1

3 )< 1, then U3 −V3 is
a positive definite matrix, where λmax(V3U−1

3 ) is the largest eigen value of V3U−1
3 . Based

on the above results, the foolowing theorem can be stated.
Theorem 3: The MAURLE estimator is superior to AURLE if and only if λmax(V3U−1

3 )< 1.

5. Scalar mean square error comparison

In this section, we compare the scalar mean square error of the proposed MAURLE es-
timator with the existing MLE, LRE, and AURLE estimators. According to Schaefer et al.
(1984) and Wu and Asar (2016), the mean square errors of LRE and AURLE are respec-
tively given by:

SMSE[β̂LRE ] = ∑
p
j=1

λ j
(λ j+k)2 +∑

p
j=1

k2α2
j

(λ j+k)2

SMSE[β̂AURLE ] = ∑
p
j=1

λ j(λ j+2k)2

(λ j+k)4 +∑
p
j=1

k4α2
j

(λ j+k)4

(I). MAURLE Versus MLE

SMSE(β̂MLE)−SMSE(β̂MAURLE)

=
p

∑
j=1

1
λ j

− [
p

∑
j=1

λ 3
j (λ j +2k)2

(λ j + k)6

+
p

∑
j=1

(k3 +3k2λ j+ kλ j2)2

(λ j + k)6 α
2
j ]

=
p

∑
j=1

(λ j + k)6 − (λ j4λ j +2k)2

λ j(λ j + k)6

−
p

∑
j=1

(k3 +3k2λ j+ kλ j2)2α2
j

(λ j + k)6

= ∆
∗
1 (21)
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Based on the above comparison, it can be noted that MAURLE is superior to MLE in the
SMSE sense if and only if ∆∗

1 > 0.

(II). MAURLE Versus LRE

SMSE(β̂LRE)−SMSE(β̂MAURLE) =
p

∑
j=1

λ j

(λ j + k)2 +
p

∑
j=1

k2α2
j

(λ j + k)2 −
p

∑
j=1

λ 3
j (λ j +2k)2

(λ j + k)6

−
p

∑
j=1

(k3 +3k2λ j+ kλ j2)2

(λ j + k)6 α
2
j

=
p

∑
j=1

λ j(λ j + k)4 −λ 3
j (λ j +2k)2

(λ j + k)6

+
p

∑
j=1

α2
j

(λ j + k)6 k2(λ j + k)4

−
p

∑
j=1

α2
j

(λ j + k)6 (k
2 +3k2

λ j+ kλ j2)2

= ∆
∗
2 (22)

From the above comparison, it can be concluded that MAURLE is superior to LRE in the
SMSE sense if and only if ∆∗

2 > 0.

(III). MAURLE Versus AURLE

SMSE(β̂AURLE)−SMSE(β̂MAURLE) =
p

∑
j=1

λ j(λ j +2k)2

(λ j + k)4 +
p

∑
j=1

k4α2
j

(λ j + k)4

−
p

∑
j=1

λ 3
j (λ j +2k)2

(λ j + k)6

−
p

∑
j=1

(k3 +3k2λ j+ kλ j2)2

(λ j + k)6 α
2
j

=
p

∑
j=1

λ j(λ j +2k)2(λ j + k)2 −λ 3
j (λ j +2k)2

(λ j + k)6

+
p

∑
j=1

α2
j

(λ j + k)6 k2(λ j + k)4

−
p

∑
j=1

α2
j

(λ j + k)6 (k
2 +3k2

λ j+ kλ j2)2

= ∆
∗
3 (23)
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Based on the above comparison, it can be said that MAURLE is superior to AURLE in the
SMSE sense if and only if ∆∗

3 > 0.

6. Monte Carlo Simulation study

In this simulation study we compare the performance of proposed MAURLE estimator
with the existing MLE, LRE, and AURLE estimators in the scalar mean square error criteria.
The sample sizes n= 20, 50, and 100 are considered. Following McDonald and Galarneau
(1975) and Kibria (2003), we generate the explanatory variables as follows:

xi j = (1−ρ
2)1/2zi j +ρzi,p+1, i = 1,2, ...,n, j = 1,2, ..., p

where zi j are pseudo- random numbers from standardized normal distribution and ρ2 rep-
resents the correlation between any two explanatory variables. For the multicollinearity,
different levels of ρ , such as ρ= 0.9, 0.95, 0.99 and 0.999 are used. Further, for the biasing
parameter k, we consider some selected values in the range 0 < k < 1. The simulation is
repeated 1000 times by generating new pseudo- random numbers, and the simulated SMSE
values of the estimators are obtained using the following equation.

ˆSMSE(β̂ ) =
1

1000

1000

∑
r=1

(β̂r −β )′(β̂r −β )

where β̂r is any estimator considered in the rth simulation. The simulated scalar mean square
errors of estimators are reported for different values of d, ρ , and n in Tables 1 - 3.
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Table 1: The estimated MSE values for different k when n = 20

ρ = 0.9 ρ = 0.95 ρ = 0.99 ρ = 0.999
k = 0.1 MLE 66.8246 135.8973 698.0638 7023.9774

LRE 33.6541 45.7819 64.8760 37.0857
AURLE 48.3103 74.0211 137.5215 108.2149
MAURLE 30.1161 37.8386 40.0568 10.4364

k = 0.2 MLE 66.8246 135.8973 698.0638 7023.9774
LRE 25.0801 30.8425 33.9479 15.0765
AURLE 39.5509 54.7585 77.9639 40.7710
MAURLE 21.1814 23.5606 18.3130 5.8744

k = 0.3 MLE 66.8246 135.8973 698.0638 7023.9774
LRE 20.4920 23.7132 22.6380 9.7370
AURLE 33.8980 44.0296 53.3815 23.4383
MAURLE 16.7268 17.3486 11.6077 5.0841

k = 0.4 MLE 66.8246 135.8973 698.0638 7023.9774
LRE 17.6061 19.5145 16.9926 7.6181
AURLE 29.8427 37.0186 40.0643 16.3491
MAURLE 14.1271 13.9827 8.7388 4.8320

k = 0.5 MLE 66.8246 135.8973 698.06386 7023.9774
LRE 15.6389 16.7747 13.7330 6.5873
AURLE 26.7593 32.0282 31.8030 12.7009
MAURLE 12.4977 11.9727 7.3495 4.7941

k = 0.6 MLE 66.8246 135.8973 698.0638 7023.9774
LRE 14.2318 14.8758 11.6889 6.0421
AURLE 24.3250 28.2792 26.2346 10.5413
MAURLE 11.4422 10.7165 6.6648 4.8842

k = 0.7 MLE 66.8246 135.8973 698.0638 7023.9774
LRE 13.1936 13.5077 10.3412 5.7533
AURLE 22.3515 25.3560 22.2638 9.1379
MAURLE 10.7527 9.9205 6.3619 5.0612

k = 0.8 MLE 66.8246 135.8973 698.06386 7023.9774
LRE 12.4114 12.4961 9.4255 5.6153
AURLE 20.7202 23.0144 19.3148 8.1649
MAURLE 10.3085 9.4233 6.2837 5.2989

k = 0.9 MLE 66.8246 135.8973 698.0638 7023.9774
LRE 11.8137 11.7350 8.7934 5.5725
AURLE 19.3512 21.0998 17.0568 7.4588
MAURLE 10.0342 9.1285 6.3450 5.5784
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Table 2: The estimated MSE values for different k when n = 50

ρ = 0.9 ρ = 0.95 ρ = 0.99 ρ = 0.999
k = 0.1 MLE 12.1526 22.3349 102.87942 1008.1701

LRE 11.1597 18.8554 51.6995 59.7663
AURLE 12.0889 21.8856 81.6874 165.7703
MAURLE 11.1069 18.5386 44.1989 19.2800

k = 0.2 MLE 12.1526 22.3349 102.8794 1008.1701
LRE 10.3536 16.4178 34.0311 22.8387
AURLE 11.9366 21.0209 63.2961 68.7981
MAURLE 10.2011 15.6829 25.0449 5.3163

k = 0.3 MLE 12.1526 22.3349 102.8794 1008.1701
LRE 9.6877 14.5909 24.9083 12.7929
AURLE 11.7342 20.0544 50.7573 38.4925
MAURLE 9.4312 13.5255 16.2785 3.1866

k = 0.4 MLE 12.1526 22.3349 102.8794 1008.1701
LRE 9.1311 13.1668 19.4025 8.6338
AURLE 11.5041 19.0916 41.8789 25.0999
MAURLE 8.7818 11.8640 11.5592 2.6042

k = 0.5 MLE 12.1526 22.3349 102.8794 1008.1701
LRE 8.6620 12.0274 15.7713 6.5190
AURLE 11.2596 18.1716 35.3344 17.9971
MAURLE 8.2368 10.5637 8.7654 2.3981

k = 0.6 MLE 12.1526 22.3348 102.8794 1008.1701
LRE 8.2642 11.0987 13.2338 5.3059
AURLE 11.0095 17.3081 30.3489 13.7716
MAURLE 7.7814 9.5338 7.0081 2.3256

k = 0.7 MLE 12.1526 22.3348 102.8794 1008.1701
LRE 7.9257 10.3315 11.3873 4.5556
AURLE 10.7591 16.5045 26.4491 11.0495
MAURLE 7.4028 8.7115 5.8587 2.3167

k = 0.8 MLE 12.1526 22.3348 102.8794 1008.1701
LRE 7.6369 9.6912 10.0031 4.0692
AURLE 10.5121 15.7596 23.3318 9.1899
MAURLE 7.0903 8.0521 5.0896 2.3459

k = 0.9 MLE 12.1526 22.3348 102.8794 1008.1701
LRE 7.3902 9.1526 8.9421 3.7456
AURLE 10.2707 15.0700 20.7951 7.8607
MAURLE 6.8348 7.5224 4.5706 2.4017
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Table 3: The estimated MSE values for different k when n = 100

ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 0.99
k = 0.1 MLE 5.0169 8.9865 40.3501 392.0983

LRE 4.8749 8.4967 30.7126 72.6411
AURLE 5.0144 8.9688 38.7927 170.6357
MAURLE 4.8725 8.4807 29.6393 37.2474

k = 0.2 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.7454 8.0613 24.5283 31.8073
AURLE 5.0072 8.9218 35.9068 88.1286
MAURLE 4.7370 8.0075 22.1917 10.0957

k = 0.3 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.6275 7.6724 20.2308 18.2460
AURLE 4.9959 8.8527 32.8470 53.9915
MAURLE 4.6107 7.5696 17.0628 4.4179

k = 0.4 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.5201 7.3234 17.0880 12.0657
AURLE 4.9811 8.7669 29.9663 36.6658
MAURLE 4.4936 7.1672 13.4521 2.6290

k = 0.5 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.4226 7.0095 14.7042 8.7289
AURLE 4.9633 8.6686 27.3633 26.6724
MAURLE 4.3859 6.7990 10.8469 1.9207

k = 0.6 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.3342 6.7263 12.8461 6.7242
AURLE 4.9427 8.5610 25.0478 20.3845
MAURLE 4.2874 6.4634 8.9250 1.5979

k = 0.7 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.2543 6.4704 11.3661 5.4283
AURLE 4.9200 8.4465 22.9995 16.1707
MAURLE 4.1979 6.1586 7.4803 1.4386

k = 0.8 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.1821 6.2388 10.1670 4.5452
AURLE 4.8952 8.3273 21.1888 13.2082
MAURLE 4.1172 5.8824 6.3771 1.3585

k = 0.9 MLE 5.0169 8.9865 40.3501 392.0983
LRE 4.1173 6.0288 9.1817 3.9194
AURLE 4.8688 8.2047 19.5857 11.0458
MAURLE 4.0451 5.6329 5.5238 1.3212

From the results of Tables 1 - 3 it can be observed that, the proposed MAURLE estimator
outperforms the MLE, LRE, and AURLE estimators in the scalar mean square error sense
for almost all the values of biasing parameter k in the range 0 < k < 1 and for all sample
sizes n = 20, 50, and 100, except the case of k=0.9, ρ=0.999, and n=20. The LRE gives
the second best performance compared to MLE, and AURLE for all the values of k, ρ ,
and n considered in this study. It is further noted that, comparatively MLE gives the worst
performance by giving large values of SMSE.
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7. A real data application

To illustrate the performance of the proposed MAURLE estimator with the existing
MLE, LRE and AURLE estimators, in this research, we consider a real data application,
which is obtained from the Statistics Sweden website (http://www.scb.se/). This example
was used in Mansson et al. (2012), Asar and Genç (2016), and Wu and Asar (2016) to
illustrate results of their papers. The data describes the information of 100 municipalities of
Sweden. The following variables are considered in this study.
x1: Population,
x2: Number unemployed people,
x3: Number of newly constructed buildings,
x4: Number of bankrupt firms,
y: Net population change and is defined as

y =
{

1 ; if there is an increase in the population;
0 ; o/w.

Note that the Variance Inflation Factor (VIF) values for the above data are 488.17, 344.26,
44.99, and 50.71. VIF measure how much the variance of the estimated regression coef-
ficients are inflated as compared to when the predictor variables are not linearly related.
According to the literature, multicollinearity is high if VIF > 10. Hence, a clear high multi-
collinearity exists in this data set. Further, the condition number, which is used as a measure
of the degree of multicollinearity, is obtained as 188. This indicates the sign of severe mul-
ticollinearity in this data set.
The SMSE values of MLE, LRE, AURLE, and MAURLE for some selected values of bi-
asing parameter k in the range 0 < k < 1 are given in the Table 4. Results reveal that the
proposed MAURLE estimator outperforms the MLE, LRE, and AURLE estimators in the
SMSE sense, with respect to all values of k in the range 0 < k < 1, and LRE performs well
compared to MLE and AURLE.

Table 4: The SMSE values (in 10−4) of estimators for the real world application data

MLE LRE AURLE MAURLE
k = 0.1 7.596226 7.595180 7.759226 7.595180
k = 0.2 7.596226 7.594137 7.759225 7.541370
k = 0.3 7.596226 7.593097 7.759225 7.593096
k = 0.4 7.596226 7.592059 7.759225 7.592058
k = 0.5 7.596226 7.591024 7.759224 7.591022
k = 0.6 7.596226 7.589991 7.759223 7.589988
k = 0.7 7.596226 7.588961 7.759222 7.588957
k = 0.8 7.596226 7.587934 7.759221 7.587929
k = 0.9 7.596226 7.586909 7.759220 7.586903
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8. Concluding Remarks

In this paper, an improved estimator called Modified almost unbiased ridge logistic es-
timator (MAURLE) is proposed for logistic regression model when the multicollinearity
problem exists. The superiority conditions for the proposed estimator with the existing
MLE, LRE, and AURLE estimators are derived with respect to MSE and SMSE criterions.
Further, from the real data application and the Monte Carlo simulation study we notice that
the proposed estimator performs well compared to MLE, LRE, and AURLE when the mul-
ticollinearity among the explanatory variables is high.
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Appendix

Lemma 1: (Rao and Toutenburg, 1995) Let A : n×n and B : n×n such that A is positive
definite and B is non-negative definite. Then (A+B) is positive definite.
Lemma 2: (Rao et al., 2008) Let the two n×n matrices M be positive definite, N be non-
negative definite, then M−N is positive definite if and only if λmax(NM−1)< 1.


