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A comparison of the method of moments estimator and
maximum likelihood estimator for the success probability

in the Fibonacci-type probability distribution

Yeil Kwon1

ABSTRACT

A Fibonacci-type probability distribution provides the probabilistic models for establishing
stopping rules associated with the number of consecutive successes. It can be interpreted as
a generalized version of a geometric distribution. In this article, after revisiting the Fibonacci-
type probability distribution to explore its definition, moments and properties, we proposed
numerical methods to obtain two estimators of the success probability: the method of mo-
ments estimator (MME) and maximum likelihood estimator (MLE). The ways both of them
performed were compared in terms of the mean squared error. A numerical study demon-
srated that the MLE tends to outperform the MME for most of the parameter space with
various sample sizes.

Key words: Fibonacci probability distribution, generalized polynacci distribution, factorial
moment generating function, method of moments, maximum likelihood estimator.

1. Introduction

A geometric random variable is defined by the number of independent Bernoulli trials
until the first success with a success probability p. As a generalized version of the geo-
metric random variable, a negative binomial random variable is defined by the number of
independent Bernoulli trials until r successes. The negative binomial random variable does
not require the r successes to be consecutive. It seems natural to be interested in the case
in which we stop the Bernoulli trials after reaching r consecutive successes. For example,
what is the probability that we need 10 independent Bernoulli trials to have three consecu-
tive successes (Moivre, 1756)?

A Fibonacci-type probability distribution describes the behavior of a random variable N
defined by the number of independent Bernoulli trials until the k-th consecutive success with
a success probability p. Shane (1973) derived a probability mass function and distribution
function of N using polynacci polynomials, and Turner (1979) approached the same prob-
lem with the Pascal-T triangle. Philippou et al. (1982, 1983) developed a new formula for
the probability function for N in terms of the multinomial coefficient and Fibonacci polyno-
mials of order k. Philippou also made a significant contribution to deriving the convolutions
of Fibonacci-type polynomials (Philippou et al., 1985; Philippou & Makri, 1985; Philippou
& Georghiou, 1989) and the distribution of the multivariate Fibonacci-type polynomials of
order k (Philippou & Antzoulakos, 1990, 1991).
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A Fibonacci-type probability distribution potentially can be applied to numerous ar-
eas such as quality control, engineering, and transportation. For example, we can find the
direct applications of negative binomial distribution in quality control (Das, 2003; Ma &
Zhang,1996). Using a Fibonacci-type probability distribution can be an alternative way to
improve the quality control process. Suppose a production line supervisor wants to make a
stopping rule to control a defective rate. The supervisor can set a rule to stop the production
line for inspection when three consecutive defectives are observed. In general, “consecu-
tive defectives” indicate another type of hidden risk of the production line that cannot be
captured by a stopping rule based on the negative binomial distribution. Thus, the stop-
ping rule based on the Fibonacci-type probability distribution is an attractive method for
multi-dimensional quality control. We can find similar applications: the number of flight
operations until three successive accidents, the number of digital signals in specific data
transmission devices until five consecutive missing signals. Needless to say, when we have
the observations from the Fibonacci-type probability distribution, the precise estimation of
the success probability p is one of the most critical procedures in data analysis.

This paper aims to find the estimators for the success probability p and examine their
performances when we have observations from the Fibonacci-type probability distribution.
We revisit the important results on the Fibonacci-type probability distribution in Section
2 and find the estimators for the success probability p using the moments of N and the
likelihood function in Section 3. Although the moments of N are represented in an ex-
plicit function of p, the method of moment estimate for p is obtained using a numerical
method because it is the solution to the k-th degree polynomial in p. Furthermore, since
the Fibonacci-type probability distribution is defined as a recursive form, it is difficult to
find the maximum likelihood function in an explicit form. We propose a numerical method
to approximate the likelihood function to find the maximum likelihood estimate for p. In
Section 4, we provide the numerical results, illustrating the performances of the two esti-
mators in terms of the mean squared error (MSE). The simulation study demonstrates that
the maximum likelihood estimator (MLE) has a smaller MSE than the method of moment
estimator (MME) for p > 1/2 under various sample sizes.

2. Fibonacci-type Probability Distribution

2.1. Fibonacci Probability Distribution where k = 2 and p = 1/2

Let N be the number of coin flips until we have the first consecutive heads with p =

Pr(H)= 1/2. Examining a few cases, Pr(N = 2)=Pr(HH)= 1/4, Pr(N = 3)=Pr(T HH)=

1/8, Pr(N = 4) = Pr(HT HH)+Pr(T T HH) = 2/16, Pr(N = 5) = Pr(HT T HH)

+Pr(T HT HH)+Pr(T T T HH) = 3/32. In general, we can represent Pr(N = n), for a pos-
itive integer n ≥ 4, with the following structure:

Pr(N = n) = Pr(n−3 flips with no consecutive heads)Pr(T HH) =
Cn−3

2n ,

where Cn−3 stands for the number of arrangements of n− 3 coin flip results with no con-
secutive heads. It is evident that Cn−3 =Cn−4 +Cn−5. Let E be the event where n−3 flips
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occur with no consecutive heads. The event E can be split into two cases:

1⃝ n−3 flips with no consecutive heads with the last flip being tail (T ), or

2⃝ n−3 flips with no consecutive heads with the second last flip being tail (T )

Then, the number of arrangements for case 1⃝ is Cn−4, and the number of arrangements
for case 2⃝ is Cn−5, which implies that Cn forms the Fibonacci sequence. Therefore, the
probability mass function of the random variable N can be provided by the following:

Pr(N = n) = fn−1

(
1
2

)n

, n = 2,3,4, . . . , (1)

where fn is the n-th Fibonacci number with f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 =

5, f6 = 8, . . . . Shane (1973) named the probability mass function (1) as Fibonacci proba-
bility distribution because (1) contains Fibonacci numbers. Let s = ∑

∞
n=2

fn−1
2n , which is the

sum of all the probabilities of (1). Then, s = 1 due to the following:

s =
f1

22 +
∞

∑
n=3

(
fn−2

2n +
fn−3

2n

)
=

1
4
+

1
2

∞

∑
n=2

fn−1

2n +
1
4

(
f0

2
+

∞

∑
n=2

fn−1

2n

)
=

1
4
+

1
2

s+
1
4

s,

implying that s = 1. The next problem we are interested in is E(N), the expected value of
N. Proposition (1) plays an important role in computing E(N).

Proposition 1 Let m(y) be an infinite series of y defined by m(y) = ∑
∞
n=2 fn−1 yn. Then,

for |y|< 1/ϕ ,

m(y) =
y2

1− y− y2 ,

where ϕ = limn→∞ fn/ fn−1.

Proof:

m(y) = y2 +
∞

∑
n=3

fn−1 yn = y2 +
∞

∑
n=2

fn yn+1

= y2 + y

(
∞

∑
n=2

( fn−2 + fn−1) yn

)
= y2 + y

(
∞

∑
n=1

fn−1 yn+1 +
∞

∑
n=2

fn−1 yn

)

= y2 + y

(
y

∞

∑
n=2

fn−1 yn +
∞

∑
n=2

fn−1 yn

)
= y2 + y2m(y)+ ym(y).

The radius of convergence of m(y) is given by |y|< 1/ϕ since m(y) converges when

lim
n→∞

∣∣∣∣ fn yn+1

fn−1 yn

∣∣∣∣= lim
n→∞

∣∣∣∣ fn

fn−1

∣∣∣∣ |y|= ϕ |y|< 1.

□
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For a probability mass function of N in (1), we can also show ∑
∞
n=2 Pr(N = n) = 1 by

using Proposition (1) because ∑
∞
n=2 Pr(N = n) = ∑

∞
n=2

fn−1
2n ,= m(1/2) = 1. Next, we find a

way to calculate the mean and variance of N. From Proposition 1, we have

m′(y) =
∞

∑
n=2

n fn−1 yn−1 =
y(2− y)

(1− y− y2)2 ,

and

m′′(y) =
∞

∑
n=2

n(n−1) fn−1 yn−2 =
2(1+3y2 − y3)

(1− y− y2)3 .

As ym′(y) = ∑
∞
n=2 n fn−1 yn, the expected value of N can be obtained by

E(N) =
∞

∑
n=2

nPr(N = n) =
∞

∑
n=2

n fn−1

(
1
2

)n

= ym′(y)
∣∣∣
y=1/2

= 6.

Furthermore, by using simple algebra, we can find

y2 m′′(y) =
∞

∑
n=2

n2 fn−1 yn −
∞

∑
n=2

n fn−1 yn,

resulting in

∞

∑
n=2

n2 fn−1 yn = y2 m′′(y)+ ym′(y). (2)

Therefore, with y = 1/2 in (2),

E(N2) =
∞

∑
n=2

n2 fn−1

(
1
2

)n

=

(
1
2

)2

m′′
(

1
2

)
+

(
1
2

)
m′
(

1
2

)
= 52+6 = 58,

and
V (N) = E(N2)−E2(N) = 58−62 = 22.

The factorial moment generating function of a random variable X , with a probability
mass (or density) function f (x), is defined by

g(t) = E
(
tX) ,

if this expectation exists for all values of t ∈ (1−h,1+h). One of the well-known properties
of the factorial moment generating function is that it satisfies

g(r)(t)
∣∣∣∣
t=1

= E [X(X −1) · · ·(X − r+1)] ,

giving us factorial moments as we can infer from its name. For example, g′(1) = E(X),
g′′(1) = E [X(X −1)], and g(3)(1) = E [X(X −1)(X −2)]. In particular, V (X) = E(X2)−
E2(X) = g′′(1)+g′(1)− [g′(1)]2.
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From Proposition (1), the factorial moment generating function of random variable N
can be calculated using m(y) because

g(t) = E
(
tN)= ∞

∑
n=2

tn Pr(N = n) =
∞

∑
n=2

fn−1

( t
2

)n
= m

( t
2

)
=

t2

4−2t − t2 .

Moreover, since

g′(t) =
2t(4− t)

(4−2t − t2)2 and g′′(t) =
4(8+6t − t3)

(4−2t − t2)3 ,

we obtain E(N) = g′(1) = 6, E(N(N − 1)) = g′′(1) = 52, and V (N) = E(N(N − 1)) +
E(N)−E2(N) = 22, the same value of variance for N obtained by using (2).

2.2. Fibonacci Distribution Function where k = 2 and p ̸= 1/2

Next, we consider the case in which p = p(H) ̸= 1/2. Thus, in this subsection, N
is defined as the number of coin flips until we have the first consecutive heads with p =

Pr(H) ̸= 1/2. Let q = Pr(T ) = 1− p, then Pr(N = 2) = Pr(HH) = p2 and Pr(N = 3) =
Pr(T HH) = qp2. For a positive integer n ≥ 4, Pr(N = n) can be described as follows:

Pr(N = n) = Pr(n−3 flips with no consecutive heads)Pr(T HH)

= Pr(n−3 flips with no consecutive heads)qp2.

Let Gn(p,q) denote Pr(N = n) and examine the first several cases of Pr(N = n). Then

G2(p,q) = Pr(N = 2) = p2,

G3(p,q) = Pr(N = 3) = p2q(1),

G4(p,q) = Pr(N = 4) = p2q(q+ p),

G5(p,q) = Pr(N = 5) = p2q(q2 +2pq),

G6(p,q) = Pr(N = 6) = p2q(q3 +3pq2 + p2q),

G7(p,q) = Pr(N = 7) = p2q(q4 +4pq3 +3p2q2).

Unlike (1), each Pr(N = n) does not include a Fibonacci number. Shane (1973) used the
polynacci numbers and the polynacci polynomials to find the probability function of N for
p ̸= 1/2. However, we propose an alternative representation of Gn(p,q) by using Fibonacci-
type polynomials with a similar idea applied to (1). The probability mass function of N with
the success probability p, is obtained as follows:

f (n) = Pr(N = n) = Gn(p,q), n = 2, 3, 4, . . . . (3)

where Gn(p,q) is a Fibonacci-type polynomial defined as
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Gn(p,q) =


p/q, if n = 0,

0, if n = 1,

qGn−1(p,q)+ pqGn−2(p,q), if n ≥ 2.

(4)

Gn(p,q) in (3) is a valid probability mass function since ∑
∞
n=2 Pr(N = n) = 1:

∞

∑
n=2

Gn(p,q) = q
∞

∑
n=2

Gn−1(p,q)+ pq
∞

∑
n=2

Gn−2(p,q)

= q
∞

∑
k=1

Gk(p,q)+ pq
∞

∑
l=0

Gl(p,q)

= q
∞

∑
k=2

Gk(p,q)+qG1(p,q)+ pq
∞

∑
l=2

Gl(p,q)+ pqG0(p,q)+ pqG1(p,q)

= q
∞

∑
k=2

Gk(p,q)+ pq
∞

∑
l=2

Gl(p,q)+ p2.

Therefore,
∞

∑
n=2

Gn(p,q) =
p2

1−q− pq
= 1.

Theorem 1 Let N denote the number of coin flips until we have the first consecutive heads
with p = Pr(H) ̸= 1/2 and q = Pr(T ) = 1− p. The factorial moment generating function
of N, g(t), is given by

g(t) = E
(
tN)= p2t2

1−qt − pqt2 ,

where Gn(p,q) is a Fibonacci-type polynomials defined in (4).

Proof:

g(t) =
∞

∑
n=2

(
qGn−1(p,q)+ pqGn−2(p,q)

)
tn

=
∞

∑
n=2

qGn−1(p,q)tn +
∞

∑
n=2

(pq)Gn−2(p,q)tn

= qt
∞

∑
n=2

Gn−1(p,q)tn−1 + pqt2
∞

∑
n=2

Gn−2(p,q)tn−2 = qt
∞

∑
k=1

Gk(p,q)tk + pqt2
∞

∑
l=0

Gl(p,q)t l

= qt

(
∞

∑
k=2

Gk(p,q)tk +G1(p,q)t

)
+ pqt2

(
∞

∑
l=2

Gl(p,q)t l +G0(p,q)t0 +G1(p,q)t

)
= qtg(t)+ pqt2g(t)+ pqt2G0(p,q)

(
∵ G1(p,q) = 0

)
= qtg(t)+ pqt2g(t)+ p2t2.

Therefore, by solving the equation for g(t), we have g(t) = p2t2
/
(1−qt − pqt2). □
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In particular, when p = q = 1/2, we have g(t) = t2/(4−2t− t2), g′(t) = (8−2t2)/(4−
2t− t2)2, and g′′(t) = 4

(
8+6t2 − t3

)/
(4−2t− t2)3. Thus, E(N) = g′(1) = 6, and V (N) =

E (N(N −1))+E (N)−E2 (N)= g′′(1)+g′(1)−(g′(1))2 = 22, which are the same results as
we obtained in Section 2.1. From Theorem 1, we have the expected value and the variance
of N as

E(N) = g′(1) =
p2t(2−qt)

(1−qt − pqt2)2

∣∣∣∣
t=1

=
1+ p

p2 .

and
V (N) = g′′(1)+g′(1)−

(
g′(1)

)2
=

(1− p)(1+3p+ p2)

p4 ,

respectively, because E (N(N −1)) can be obtained by

E (N(N −1)) = g′′(1) =
2p2(1+3pqt2 − pq2t3)

(1−qt − pqt2)3

∣∣∣∣
t=1

=
2(1+2p− p2 − p3)

p4 .

2.3. Fibonacci-Type Probability Distribution with Order k

In this section, we discuss the most generalized version of the Fibonacci-type probability
distribution. Let N denote the number of Bernoulli trials until we have the first k consecutive
successes with the success probability p. It can be structured as follows:

Pr(N = n) =
(

1−Pr
(
(n− k−1) flips with k consecutive successes

))
Pr(F S · · ·S︸ ︷︷ ︸

k successes

)

=
(

1−Pr
(
(n− k−1) flips with k consecutive successes

))
qpk.

Cleary, Pr(N = k) = pk. If k+1 ≤ n ≤ 2k,
Pr
(
(n− k−1) flips with k consecutive successes

)
= 0, since n− k−1 < k.

Hence, Pr(N = n) = pkq, for k+1 ≤ n ≤ 2k. We examine several cases for n ≥ 2k+1,

H2k+1(p,q) = Pr(N = 2k+1) = pkq(1− pk),

H2k+2(p,q) = Pr(N = 2k+2) = pkq(1−2pkq− pk+1) = pkq(1− pk(1+q)),

H2k+3(p,q) = Pr(N = 2k+3) = pkq(1−3pkq2 −4pk+1q− pk+2) = pkq(1− pk(1+2q)),

H2k+4(p,q) = Pr(N = 2k+4) = pkq(1−4pkq3 −9pk+1q2 −6pk+2q− pk+3) =

pkq(1− pk(1+3q)).

Philippou et al. (1983) found that the probability mass function for N is given by

f (n) = Pr(N = n) = pnFn+1−k

(
q
p

)
, n = k, k+1, k+2, . . . , (5)

where

Fn(y) =


n, if n = 0, 1,

y∑
n
i=1 Fn−i(y), if 2 ≤ n ≤ k,

y∑
k
i=1 Fn−i(y), if n ≥ k+1,

(6)
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and (5) and (6) can be re-represented in a simpler form (Philippou & Makri, 1985) as

Pr(N = n) = Hn(p,q) =


pk, if n = k,

pkq, if k+1 ≤ n ≤ 2k,

Hn−1 − pkqHn−1−k, if n ≥ 2k+1.

(7)

It is easy to show ∑
∞
n=k Pr(N = n) = 1 based on (7) because

∞

∑
n=k

Hn(p,q) = pk +
2k

∑
n=k+1

pkq+
∞

∑
n=2k+1

(
Hn−1(p,q)− pkqHn−1−k(p,q)

)
= pk + kpkq+

∞

∑
m=2k

Hm(p,q)− pkq
∞

∑
l=k

Hl(p,q)

= pk + kpkq+
∞

∑
m=2k

Hm(p,q)+(k−1)pkq+ pk

− (k−1)pkq− pk − pkq
∞

∑
l=k

Hl(p,q)

= pkq+
∞

∑
m=k

Hm(p,q)− pkq
∞

∑
l=k

Hl(p,q),

which implies ∑
∞
n=k Hn(p,q) = 1.

Theorem 2 Let N denote the number of Bernoulli trials until we have the first k consecu-
tive successes with 0 < p = Pr(success)< 1, and q = Pr( f ail) = 1− p. Then, the factorial
moment generating function of N, h(t), is given by

h(t) = E
(
tN)= pktk(1− pt)

1− t + pkqtk+1 , (8)

where Hn(p,q) is a Fibonacci-type polynomials defined in (7).

Proof:

h(t) = tk pk +
2k

∑
n=k+1

tn pkq+
∞

∑
n=2k+1

tn
(

Hn−1(p,q)− pkqHn−1−k(p,q)
)

= tk pk + pkq
(

tk+1(1− tk)

1− t

)
+

∞

∑
m=2k

tm+1Hm(p,q)− pkq
∞

∑
l=k

t l+k+1Hl(p,q)

= tk pk + pkq
(

tk+1(1− tk)

1− t

)
+ t

(
∞

∑
m=2k

tmHm(p,q)+ tk pk + pkq
(

tk+1(1− tk−1)

1− t

))

− t
(

tk pk + pkq
(

tk+1(1− tk−1)

1− t

))
− pkqtk+1

∞

∑
l=k

t lHl(p,q)

= tk pk(1− t)+ pkqtk+1 +h(t)t −h(t)pkqtk+1,
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indicating

h(t) =
pktk(1− t +qt)
1− t + pkqtk+1 =

pktk(1− pt)
1− t + pkqtk+1 .

The expected value of N can be computed by using h(t) in (8). Moreover, since

h′(t) =
pktk

(
k(t −1)(p−1/t)+q− pkqtk

)
(1− t + pkqtk+1)2 ,

the expected value of N is given by

E(N) = h′(t)
∣∣∣∣
t=1

=
1− pk

pkq
. (9)

□

Corollary 1 Let N(k) be the number of Bernoulli trials until we have the first k consecu-
tive successes with 0 < p = Pr(success)< 1, and q = Pr( f ail) = 1− p. Then,

E
(

N(k+1)
)
=

1
p

E
(

N(k)+1
)
.

Proof: From (9), we have

E
(

N(k+1)
)
=

1− pk+1

pk+1q
=

1
p

(
1− pk

pkq
+

pk − pk+1

pkq

)
=

1
p

E
(

N(k)+1
)
,

since pk − pk+1 = pk(1− p) = pkq.
□

Corollary 1 indicates that the expected value of N(k) increases exponentially when k
increases with a growth factor of 1/p. Hence, it escalates dramatically as p is close to 0, for
example, when p = 1/2, E

(
N(2)

)
= 6, E

(
N(3)

)
= 14 and E

(
N(4)

)
= 30. For p = 1/10,

E
(

N(2)
)
= 110, E

(
N(3)

)
= 1110 and E

(
N(4)

)
= 11110.

3. Estimation Methods for p

3.1. Method of Moments Estimator (MME) for p

Assume a random sample with size m is given as

N1, N2, . . . , Nm
iid∼ f (n), (10)

where f (n) is a pmf defined in (7). The first sample moment (the sample mean) is given by
N̄ = ∑

m
i=1 Ni/m. By replacing E(N) with N̄ in (9), we have the following equation:
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N̄ pk+1 − (N̄ +1) pk +1 = (p−1)(N̄ pk − pk−1 −·· ·− p−1) = 0.

Thus, a positive root in (0,1] of the equation N̄ pk − pk−1 − ·· · − p− 1 = 0 becomes
the MME for p. Proposition 2 indicates that a unique p̂mme exists, and, in particular, if
N̄ = k, the MME for p becomes 1. We have N̄ = k only when all Ni’s (i = 1, . . . ,m) in (10)
are equal to k, and this event occurs with the probability pkm. For example, if p = 1/2, k = 2
and m = 10, Pr(N̄ = k) = 1/2048.

Proposition 2 Let N̄ = ∑
m
i=1 ni/m be a sample mean obtained from (10). Then, for N̄ > k,

r(p) = N̄ pk − pk−1 − ·· · − p−1 (11)

has only one zero in (0,1). When N̄ = k, the solution of the equation r(p) = 0 is given by
p = 1.

Proof:

First, suppose N̄ > k. We know r(0) = −1 < 0 and r(1) = N̄ − k > 0. Because r(p)
is a continuous function on [0,1], by the intermediate value theorem, it has at least one zero
in (0,1). Furthermore, from the Descartes’ rule (Albert, 1943), as there is one sign change
in the coefficients of r(p), the equation r(p) = 0 has exactly one positive root. Therefore,
r(p) has only one zero in (0,1). In particular, when N̄ = k, r(p) can be factored as

r(p) = (p−1)(kpk−1 +(k−1)pk−2 +(k−2)pk−3 + · · · +3p2 +2p+1).

In addition, it turns out kpk−1 +(k − 1)pk−2 +(k − 2)pk−3 + · · · + 3p2 + 2p+ 1 = 0
has no positive root by using the Descartes’ rule again. Hence, the only root of r(p) = 0 on
[0,1] is p = 1.

□

For instance, when k = 2, the MME for p is the solution to the quadratic equation
N̄ p2 − p−1 = 0, and it turns out to be

p̂mme =
1+

√
1+4N̄

2N̄
.

When p ≥ 3, p̂mme can be obtained by finding the root of (11) with the numerical methods
such as Newton’s method and Halley’s method.

3.2. Maximum Likelihood Estimator (MLE) for p

Under the same assumption of (10), the log-likelihood function l(p) is

l(p) =
m

∑
i=1

ln
[
Hni(p,q)

]
,
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and, the maximum likelihood estimator of p is given by

p̂mle = argmax
0<p<1

m

∑
i=1

ln
[
Hni(p,q)

]
.

However, because Hni(p,q) is not provided in a closed form but in a recursive form,
analytical derivation for the MLE of p is extremely challenging. Hence, a numerical method
is proposed as follows:

• (Step 1) Discretize the values of p∈ (0,1), for example, pd = 0.01,0.02, . . . ,0.98,0.99.

• (Step 2) Given n1, . . . ,nm, and k, calculate f (ni) = Hni(pd ,qd) based on (7) for all
i = 1, . . . ,m and all the discretized values of pd .

• (Step 3) Approximate the log-likelihood function l(p) by computing

l(pd) =
m

∑
i=1

ln
[
Hni(pd ,qd)

]
.

• (Step 4) Find the optimal value of p∗d , which maximizes l(pd).

4. Numerical Study

In this section, we compare the performance of the MME (p̂mme) and the computation-
ally driven MLE (p̂mle) for the success probability p in terms of the MSE. In general, the
MSE of an estimator θ̂ for a parameter θ is defined by E(θ̂ −θ)2, and it can be decomposed
as the sum of the variance of θ̂ and the squared bias of θ̂ . In this simulation study, the MSE
is estimated and decomposed by

M̂SE
(
θ̂ , θ

)
=

1
R

R

∑
r=1

(
θ̂r −θ

)2
= B̂ias

2
(θ̂)+V̂ar(θ̂),

where

B̂ias
2
(θ̂) =

1
R

R

∑
r=1

(
¯̂
θ −θ

)2
, V̂ar(θ̂) =

1
R

R

∑
r=1

(
θ̂r − ¯̂

θ

)2
, and ¯̂

θ =
1
R

R

∑
r=1

θ̂r,

with R the total number of simulations, and θ̂r the estimate for θ in the r-th repetition. Here,
θ̂ represents both p̂mme and p̂mle. We set the true success probability p= 0.1, 0.3, 0.5, 0.7, 0.9,
the sample size m = 5, 10, 20, 30, 50, and the number of simulation R = 500.

Table 1 displays the results of the simulation when k = 2. Table 2 is in the same format
as Table 1 but presents the results when k = 4. In other words, Table 1 illustrates the
results of the numerical study with a random variable N defined by the number of Bernoulli
trials until we have two consecutive successes. The estimated squared bias, variance, and
MSE for each estimator are reported with units in 10−3. Ratio columns display the ratios
of the estimated squared bias, variance, and MSE for p̂mme and p̂mle. Hence, the values
of the ratio that are greater than 1 imply that p̂mle outperforms p̂mme. For example, in
Table 1, for m = 10 and p = 0.7, the value in the ratio column of B̂ias

2
is computed as
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Table 1. Squared bias, variance, and mean squared error of p̂mme and p̂mle for k = 2 (unit:
10−3). The ratio columns represent the values of the squared bias (or variance) of p̂mme
divided by the squared bias (or variance) of p̂mle.

k = 2 B̂ias2 V̂ar M̂SE
Sample Size p p̂mme p̂mle Ratio p̂mme p̂mle Ratio p̂mme p̂mle Ratio
m = 5 0.1 0.0817 0.0819 0.997 0.800 0.804 0.994 0.884 0.886 0.997

0.3 0.4885 0.4767 1.025 6.494 6.396 1.015 6.982 6.873 1.016
0.5 1.9970 1.8523 1.078 14.11 13.84 1.019 16.11 15.70 1.026
0.7 0.7481 0.5482 1.365 13.79 13.21 1.043 14.54 13.76 1.056
0.9 0.0844 0.0514 1.642 6.963 6.676 1.043 7.047 6.728 1.047

m = 10 0.1 0.0455 0.0457 0.997 0.366 0.366 1.000 0.412 0.412 1.000
0.3 0.1191 0.1133 1.051 2.752 2.733 1.007 2.871 2.846 1.009
0.5 0.2651 0.2239 1.184 6.578 6.464 1.018 6.843 6.688 1.023
0.7 0.0467 0.0285 1.637 7.321 7.092 1.032 7.368 7.120 1.035
0.9 0.0015 0.0001 11.28 3.900 3.783 1.031 3.902 3.783 1.031

m = 20 0.1 0.0079 0.0079 1.012 0.141 0.141 0.999 0.149 0.149 1.000
0.3 0.0211 0.0206 1.025 1.267 1.264 1.002 1.288 1.285 1.003
0.5 0.0603 0.0561 1.075 2.703 2.684 1.007 2.763 2.741 1.008
0.7 0.0678 0.0464 1.461 3.600 3.429 1.050 3.668 3.475 1.055
0.9 0.0112 0.0086 1.294 2.134 2.036 1.048 2.145 2.045 1.049

m = 30 0.1 0.0034 0.0034 1.001 0.099 0.098 1.003 0.102 0.102 1.003
0.3 0.0034 0.0031 1.092 0.751 0.752 0.999 0.754 0.755 1.000
0.5 0.0430 0.0419 1.027 1.832 1.826 1.003 1.875 1.868 1.004
0.7 0.0294 0.0229 1.285 2.343 2.261 1.037 2.373 2.284 1.039
0.9 0.0103 0.0046 2.222 1.321 1.230 1.074 1.332 1.235 1.079

m = 50 0.1 0.0006 0.0006 1.003 0.060 0.059 1.002 0.060 0.060 1.002
0.3 0.0000 0.0000 2.376 0.530 0.531 0.998 0.531 0.531 1.000
0.5 0.0072 0.0074 0.972 1.167 1.165 1.002 1.175 1.172 1.002
0.7 0.0055 0.0029 1.926 1.456 1.411 1.032 1.461 1.414 1.034
0.9 0.0001 0.0013 0.109 0.803 0.752 1.068 0.803 0.753 1.066

(
0.0467×10−3

)
/
(
0.0285×10−3

)
= 1.637. This indicates the squared bias of p̂mme is

63.7% greater than that of p̂mle on average. We can interpret the numbers in the ratio
columns of V̂ar and M̂SE in the same manner. As for the decomposition of the MSE,
Tables 1 and 2 show the variance (compared with the squared bias) explains a major portion
of the MSE for both of the estimators. Except for the case with a small sample size m,

and a small success probability p, more than 95% of the MSE is explained by the variance
approximately. For the magnitude of the bias, the squared bias of p̂mle is smaller than that
of p̂mme for most cases. In the variance comparison, although the values in the ratio column
are not as large as the ratio values of the squared bias, the variance of p̂mle is smaller than
that of p̂mme for most of the values of p and sample sizes. The MSE ratio of p̂mme and
p̂mle exhibits a pattern similar to the variance ratio due to the substantial contribution of the
variance to the MSE. When p is small, the MSE difference between p̂mme and p̂mle is not
significantly large. However, for moderate and large values of p, the MSE of p̂mle is smaller
than that of p̂mme for all sample sizes. The improvement caused by p̂mle tends to be larger
when p is closer to 1.
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Table 2. Squared bias, variance, and mean squared error of p̂mme and p̂mle for k = 4 (unit:
10−3). The ratio columns represent the values of the squared bias (or variance) of p̂mme
divided by the squared bias (or variance) of p̂mle.

k = 4 B̂ias2 V̂ar M̂SE
Sample Size p p̂mme p̂mle Ratio p̂mme p̂mle Ratio p̂mme p̂mle Ratio
m = 5 0.1 0.0166 0.0166 1.002 0.166 0.166 0.997 0.182 0.183 0.998

0.3 0.1365 0.1347 1.013 1.717 1.709 1.005 1.854 1.844 1.006
0.5 0.3298 0.3148 1.048 5.189 5.085 1.020 5.519 5.400 1.022
0.7 0.3761 0.3158 1.191 6.316 6.066 1.041 6.692 6.382 1.049
0.9 0.2024 0.1163 1.741 4.015 3.836 1.047 4.218 3.953 1.067

m = 10 0.1 0.0010 0.0010 0.993 0.075 0.075 1.005 0.076 0.076 1.005
0.3 0.0455 0.0454 1.004 0.698 0.697 1.001 0.743 0.743 1.001
0.5 0.0818 0.0791 1.034 2.133 2.119 1.007 2.215 2.198 1.008
0.7 0.0340 0.0194 1.754 2.852 2.745 1.039 2.886 2.765 1.044
0.9 0.0269 0.0117 2.311 2.022 1.908 1.060 2.049 1.920 1.067

m = 20 0.1 0.0011 0.0011 0.967 0.036 0.036 0.996 0.037 0.037 0.995
0.3 0.0091 0.0092 0.995 0.356 0.356 1.000 0.365 0.365 1.000
0.5 0.0136 0.0132 1.027 1.036 1.037 0.999 1.049 1.049 1.000
0.7 0.0067 0.0051 1.313 1.609 1.582 1.017 1.616 1.587 1.018
0.9 0.0014 0.0008 1.733 1.068 0.963 1.108 1.069 0.964 1.109

m = 30 0.1 0.0004 0.0004 0.994 0.022 0.023 0.991 0.023 0.023 0.991
0.3 0.0014 0.0014 0.983 0.249 0.250 0.999 0.251 0.250 1.000
0.5 0.0017 0.0017 0.996 0.622 0.622 1.001 0.624 0.623 1.001
0.7 0.0145 0.0123 1.180 0.926 0.896 1.034 0.941 0.908 1.036
0.9 0.0033 0.0016 2.033 0.638 0.577 1.107 0.642 0.578 1.110

m = 50 0.1 0.0001 0.0002 0.868 0.015 0.015 0.994 0.015 0.015 0.993
0.3 0.0002 0.0002 1.013 0.140 0.140 1.000 0.140 0.140 1.000
0.5 0.0013 0.0012 1.042 0.367 0.363 1.010 0.368 0.364 1.010
0.7 0.0061 0.0059 1.035 0.594 0.592 1.004 0.600 0.598 1.003
0.9 0.0013 0.0012 1.119 0.414 0.386 1.072 0.416 0.388 1.072

5. Conclusion

A Fibonacci-type probability distribution can be employed to determine the probabilis-
tic behavior of a random variable N defined by the number of Bernoulli trials with a success
probability p until we have k-consecutive successes. When p = 1/2, it can be expressed as
an implicit form with the Fibonacci numbers. When p ̸= 1/2, the Fibonacci-type probability
distribution is represented in terms of Fibonacci-type polynomials recursively. We calcu-
lated the first and second moments of N by using the factorial moment generating function.
In particular, the expected value of N increases exponentially with a growth factor of 1/p
when the number of consecutive successes k increases by 1, while the expected value of
a negative binomial random variable increases linearly for the unit increase of the number
of successes. To compare MME with MLE, we used the computational methods to obtain
the MLE by approximating the maximum likelihood function using the pmf of N defined
recursively. The result of the simulation discloses that, for both MLE and MME, the biases
are considerably smaller than the variances under all of the values of p and the sample sizes,
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indicating that the variance explains the majority of the MSE. Furthermore, we can see, in
terms of the MSE, the MLE performs better than MME for a wide range of p, especially
when p is greater than 1/2 for the various sample sizes.
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