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Submission information for Authors  

Statistics in Transition new series (SiT) is an international journal published 
jointly by the Polish Statistical Association (PTS) and Statistics Poland, on a quarterly 
basis (during 1993–2006 it was issued twice and since 2006 three times a year). Also, it 
has extended its scope of interest beyond its originally primary focus on statistical issues 
pertinent to transition from centrally planned to a market-oriented economy through 
embracing questions related to systemic transformations of and within the national 
statistical systems, world-wide.  

The SiT-ns seeks contributors that address the full range of problems involved in 
data production, data dissemination and utilization, providing international 
community of statisticians and users – including researchers, teachers, policy makers 
and the general public – with a platform for exchange of ideas and for sharing best 
practices in all areas of the development of statistics. 

Accordingly, articles dealing with any topics of statistics and its advancement – as 
either a scientific domain (new research and data analysis methods) or as a domain 
of informational infrastructure of the economy, society and the state – are appropriate 
for Statistics in Transition new series. 

Demonstration of the role played by statistical research and data in economic 
growth and social progress (both locally and globally), including better-informed 
decisions and greater participation of citizens, are of particular interest. 

Each paper submitted by prospective authors are peer reviewed by internationally 
recognized experts, who are guided in their decisions about the publication by criteria 
of originality and overall quality, including its content and form, and of potential 
interest to readers (esp. professionals). 

Manuscript should be submitted electronically to the Editor: 
sit@stat.gov.pl,  
GUS/Statistics Poland, 
Al. Niepodległości 208, R. 296, 00-925 Warsaw, Poland 

It is assumed, that the submitted manuscript has not been published previously and 
that it is not under review elsewhere. It should include an abstract (of not more than 
1600 characters, including spaces). Inquiries concerning the submitted manuscript, its 
current status etc., should be directed to the Editor by email, address above, or 
w.okrasa@stat.gov.pl.

For other aspects of editorial policies and procedures see the SiT Guidelines on its
Web site: https://sit.stat.gov.pl/ForAuthors.  
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Policy Statement 

The broad objective of Statistics in Transition new series is to advance the statistical and 
associated methods used primarily by statistical agencies and other research 
institutions. To meet that objective, the journal encompasses a wide range of topics 
in statistical design and analysis, including survey methodology and survey sampling, 
census methodology, statistical uses of administrative data sources, estimation 
methods, economic and demographic studies, and novel methods of analysis of socio-
economic and population data. With its focus on innovative methods that address 
practical problems, the journal favours papers that report new methods accompanied 
by real-life applications. Authoritative review papers on important problems faced by 
statisticians in agencies and academia also fall within the journal’s scope. 
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From the Editor   

Hereby, we present to our readers the last issue of Statistics in Transition new series 
in 2022, containing 12 articles on various topics and nature. As usual, articles are 
grouped into three conventionally defined categories: research papers, other articles 
and Communicates and Letters. The authors of these articles come from many 
countries: Czech Republic, USA, Egypt, Poland, Iran, Nigeria, India, Sri Lanka, 
Botswana, and Thailand.  

As the last publication of the year, this issue gives us the opportunity to express our 
appreciation and thanks to all our contributors: authors, reviewers and all the 
participants of the editorial process. We consider it a great achievement to have such a 
large and growing community of internationally renowned experts among our 
collaborators and journal’s stakeholders. I would like to express my special gratitude to 
the reviewers – also on behalf of the authors of the published articles – as their 
comments and suggestions had a positive impact on the overall quality of the submitted 
papers.  

On behalf of the Editorial Board, Associate Editors and the journal’s readers 
I sincerely thank all our partners and patrons. 

Research articles 

The first paper by Richard Hindls, Lubos Marek and Stanislava Hronová entitled 
Changes in the structure of household disposable income in selected countries as 
a reflection of the crises after 2000 shows how the relationship between the shares of 
households’ wages and final consumption expenditure in their gross disposable income 
has developed over the past 20 years. The presented analysis uses publicly available 
national accounts data for 30 countries for the period of 2000–2019. The studied 
indicators include the proportion of households’ wages and salaries, and final 
consumption expenditure in their gross disposable income. The analysis of the newly 
constructed measure t has shown a decrease (i.e. an approach to the origin of the 
coordinates in the spatial map of the 30 countries) of these proportions in the years of 
financial crisis and economic recession and, on the contrary, an increase (i.e. a move 
away from the origin of the coordinates of the spatial map) of the examined proportions 
in the years of prosperity (economic growth). To confirm this assumption, along with 
the substantive reasoning, the authors have also used the original measure t, which not 
only quantifies these statements sensitively, but also defines the intensity of the 
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phenomenon (the degree of approach or departure from the origin of the coordinates). 
The aggregate analysis is then applicable without any limitation in terms of the number 
of countries (or entire territories) and years studied – the procedure can be applied, for 
example, to groups of countries according to their economic development, their 
geopolitical demarcation, etc. 

Yang Liu and Balgobin Nandram in their article Sampling methods for the 
concentration parameter and discrete baseline of the Dirichlet process start with 
observation that there are many models in the current statistical literature for making 
inferences based on samples selected from a finite population. The authors review the 
current sampling methods for the concentration parameter, which use the continuous 
baseline distribution, and compare three different methods: the adaptive rejection 
method, the mixture of gammas method and the grid method. A new method based on 
the ratio of uniforms, and a discrete baseline approach to the DP prior and sample the 
unobserved responses from the finite population both using a Polya urn scheme and 
a multinomial distribution were proposed. The discrete baseline approach to 
a Phytophthora data set was applied. The ratio of uniforms is more accurate and it is 
faster considering the computational time. The authors have corrected the true number 
of distinct values in the sample by introducing a latent variable that indicates from 
which urn a new observation comes. Due to using this approach, the authors could give 
a more accurate estimation of the finite population mean when the observations are 
discrete.  

The next paper Parameter estimation of exponentiated exponential distribution 
under selective ranked set sampling prepared by Amal S. Hassan, Rasha S. Elshaarawy 
and Heba F. Nagy describe the PRSS (Partial Ranked Set Sampling) method, which 
allows flexibility for the experimenter in selecting the sample when it is either difficult 
to rank the units within each set with full confidence or when experimental units are 
not available. The authors introduce and define the density and likelihood function for 
a random variable under the PRSS scheme. The suggested ranked schemes include 
the PRSS, RSS, neoteric RSS (NRSS), and extreme RSS (ERSS). An intensive simulation 
study was conducted to compare and explore the behaviour of the proposed estimators. 
The study demonstrated that the maximum likelihood estimators via PRSS, NRSS, 
ERSS, and RSS schemes are more efficient than the corresponding estimators under 
SRS. Also, PRSS is not the best method compared to the other ranked schemes, but it is 
important in some cases when selecting the sample. 

Piotr Sulewski and Magdalena Szymkowiak present The Weibull lifetime model 
with randomised failure-free time. They indicated that treating failure-free time in the 
three-parameter Weibull distribution not a constant, but as a random variable, makes 
the resulting distribution much more flexible at the expense of only one additional 
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parameter. Four compound Weibull distributions with the location parameter having 
Uniform, Weibull, Gamma and Normal distribution were defined. Using these 
proposed models the analysis of three real lifetime data sets was performed. 
The received results showed that the new models fit better the data under consideration 
that the standard three-parameter Weibull distribution. However, anyone who will 
decide to use any of the proposed compound Weibull distributions in data analysis has 
to be equipped with a powerful computational environment – Excel, Mathcad, 
Mathematica, Matlab, Scilab, etc. 

In the paper Robustness of randomisation tests as alternative analysis methods for 
repeated measures design Abimibola Victoria Oladugba, Ajali John Obasi and 
Oluchukwu Chukwuemeka Asogwa discuss the problem of using randomisation tests 
(R-tests) which  are regularly proposed as an alternative method of hypothesis testing 
in a situation when assumptions of classical statistical methods are violated in data 
analysis. The authors describe the robustness in terms of the type-I-error and the power 
of the R-test, which were evaluated and compared with that of the F-test in the analysis 
of a single factor repeated measures design. The Monte Carlo approach was used in the 
simulation study. The results showed that when the data were normal, the R-test was 
approximately as sensitive and robust as the F-test, while being more sensitive than the 
F-test when data had skewed distributions. When the sphericity assumption was met, 
both the R-test and the F-test were approximately equally sensitive, whereas the R-test 
was more sensitive and robust than the F-test when the sphericity assumption was not 
met  

Narendra Singh Thakur’s and Diwakar Shukla’s paper Missing data estimation 
by the technique of chaining in the survey sampling pointed out that the sample 
surveys are often affected by missing observations and non-response caused by the 
respondents’ refusal or unwillingness to provide the requested information, or due to 
their memory failure. In order to substitute the missing data, a procedure called 
imputation is applied, which uses the available data as a tool for the replacement of the 
missing values. Two auxiliary variables create a chain which is used to substitute the 
missing part of the sample. The authors present the application of the chain-type factor 
estimator as a means of source imputation for the non-response units in an incomplete 
sample. The proposed strategies were found to be more efficient and bias-controllable 
than similar estimation procedures described in the relevant literature. These 
techniques could also be made nearly unbiased in relation to other selected parametric 
values. The findings are supported by a numerical study involving the use of a data set, 
proving that the proposed techniques outperform other similar ones. 

The article Zero-modified Poisson-Modification of Quasi Lindley distribution and 
its application by Ramajeyam Tharshan and Pushpakanthie Wijekoon presents the 
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Poisson-Modification of Quasi Lindley (PMQL) distribution as a newly introduced 
mixed Poisson distribution for over-dispersed count data. The authors introduce the 
Zero-modified PMQL (ZMPMQL) distribution as an alternative to the PMQL 
distribution in order to accommodate zero inflation/deflation. The method of 
obtaining the ZMPMQL distribution jointly with some of its important properties, 
namely the probability mass and distribution functions, mean, variance, index of 
dispersion, and quantile function are presented. The maximum likelihood (ML) 
estimation method is used for the unknown parameter estimation, and the simulation 
study is conducted in order to evaluate the asymptotic theory of the ML estimation 
method and to show the superiority of the ML method over the method of moments 
estimation. The applicability of the introduced distribution is illustrated by using a real-
world data set. In order to estimate its unknown parameters, the authors derived its log-
likelihood function and score functions, which showed that the maximum likelihood 
estimation method is a suitable method to estimate its unknown parameters via 
a Monte Carlo simulation study. The results revealed its superiority over some other 
existing mixed Poisson and zero-modified mixed Poisson distributions. 

Wilfred Molefe in the paper Optimal allocation for equal probability two-stage 
design examines the optimal designs when it is not feasible for every cluster to be 
represented in a sample as in stratified design, by assuming equal probability two-stage 
sampling where clusters are small areas. The paper develops allocation methods for 
two-stage sample surveys where small-area estimates are a priority. The author seeks 
efficient allocations where the aim is to minimize the linear combination of the mean 
squared errors of composite small area estimators and of an estimator of the overall 
mean. Several alternatives, including the area-only stratified design, are found to 
perform nearly as well as the optimal allocation but with better practical properties. 
Designs are evaluated numerically using Switzerland canton data as well as Botswana 
administrative districts data. This optimal design is less clustered than the usual 
classical two-stage optimal sample size 𝑛ത௖௟. when more priority is given to larger clusters 
(q > 0). The area-only stratified optimum and the area-only simple two-stage optimum 
should always be the best designs in minimizing the objective function but they are not 
when there is equal priority for each cluster, that is when q = 0. These two designs have 
undesirable properties of allocating zero or even negative sample sizes to smaller 
clusters.  

The next paper, by Arisa Jiratampradab, Thidaporn Supapakorn and Jiraphan 
Suntornchost, presents Comparison of confidence intervals for variance components 
in unbalanced one-way random effects model to study and compare the methods for 
constructing confidence intervals for variance components in an unbalanced one-way 
random effects model. The methods are based on a classical exact, generalised pivotal 
quantity, a fiducial inference and a fiducial generalised pivotal quantity. 
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The comparison of criteria involves the empirical coverage probability that is 
maintained at the nominal confidence level of 0.95 and the shortest average length of 
the confidence interval. The simulation results show that the method based on the 
generalised pivotal quantity and the fiducial inference perform very well in terms of 
both the empirical coverage probability and the average length of the confidence 
interval. The classical exact method performs well in some situations, while the fiducial 
generalised pivotal quantity performs well in a very unbalanced design. Therefore, the 
method based on the generalised pivotal quantity is recommended for all situations.  

Arvind Pandey, David D. Hanagal and Shikhar Tyagi focus on Generalized 
Lindley shared additive frailty regression model for bivariate survival data. Frailty 
models are the possible choice to counter the problem of the unobserved heterogeneity 
in individual risks of disease and death. Based on earlier studies, shared frailty models 
can be utilised in the analysis of bivariate data related to survival times (e.g. matched 
pairs experiments, twin or family data). It was assumed that frailty acts additively to the 
hazard rate. A new class of shared frailty models based on generalised Lindley 
distribution is established. By assuming generalised Weibull and generalised log-
logistic baseline distributions, the authors propose a new class of shared frailty models 
based on the additive hazard rate. The parameters in these frailty models and the use of 
the Bayesian paradigm of the Markov Chain Monte Carlo (MCMC) technique were 
estimated, and model selection criteria were applied for the comparison of models. 
The kidney infection data allowed to conclude that the best model was analysed. To fit 
the proposed model the hybrid M-H algorithm was applied. 

Other articles 
The XXXIX Multivariate Statistical Analysis 2021, Lodz, Poland. Conference Papers 

In the paper by Morteza Nazifi and Hamid Fadishei Supsim: a Python package 
and a web-based JavaScript tool to address the theoretical complexities in two-
predictor suppression situations the authors show that two-predictor suppression 
situations continue to produce uninterpretable conditions in linear regression. Their 
study introduces two different versions of software called suppression simulator 
(Supsim): a) the command-line Python package, and b) the web-based JavaScript tool, 
both of which are able to simulate numerous random two-predictor models (RTMs). 
Such a comparison suggests that the basic mathematical concepts of two-predictor 
suppression situations need to be reconsidered with regard to the important issue of 
the statistical control function. 

The study depicts a clear picture of the performance of the statistical control 
function in different suppression and non-suppression situations, and provides 
a mathematical proof indicating that the statistical control function does not work 
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correctly in suppression situations. The study also introduces an algorithm that can 
generate numerous simulated data sets showing all different kinds of suppression and 
non-suppression situations known so far, and therefore they help resolve the theoretical 
complexities related to two-predictor suppression situations by expanding the pervious 
knowledge in this field. 

Research Communicates and Letters 

Barbara Wodecka and Michał Stachura discuss k-th record estimator of the scale 
parameter of the α-stable distribution. The authors present an estimation technique 
that involves the k-th record theory. Several theoretical properties of the introduced 
scale parameter estimators are demonstrated. With the use of Monte Carlo methods, 
a comparative analysis is performed between the approach based on k-th records and 
approaches based on Hill’s and Pickands’ estimators. The research indicates several 
advantages of the k-th record approach over its other counterparts, especially when 
dealing with incomplete information about the underlying sample. It is also remarked 
that the insights, specified in the paper, should be perceived essentially as the 
advantages of the ‘k-th record’ approach over the other ones presented, since Berred’s 
estimator, and the scale parameter estimator based on it, may be employed in cases of 
incomplete information about an underlying sample. The authors show that, on the 
one hand, this incompleteness may be very useful if an analysed data base must stay 
undisclosed, even for a researcher/statistician working on it, or more, the data are only 
partially recorded (i.e. record values of a proper order or several orders). On the other 
hand, if an analysed data base is absolutely fulfilled and disclosed, the ‘k-th record’ 
approach opens up opportunities to make use of permutation methods in order to make 
repeated estimation that leads to much more precise results. 

 
 

Włodzimierz Okrasa 
Editor  
 
© Włodzimierz Okrasa. Article available under the CC BY-SA 4.0 licence   
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Changes in the structure of household disposable income 
in selected countries as a reflection of crises after 2000 

Richard Hindls1, Lubos Marek2, Stanislava Hronová3 

ABSTRACT 

Wages and salaries represent the most important component of household disposable 
income. The aim of the article is to examine how the relationship between the shares of 
households’ wages and final consumption expenditure in their gross disposable income has 
developed over the past 20 years. The presented analysis uses publicly available national 
accounts data for 30 countries for the period of 2000–2019. The studied indicators include 
the proportion of households’ wages and salaries, and final consumption expenditure 
in their gross disposable income. Using the proposed method based on the evaluation of 
changes in the spatial map, it is possible to observe any significant changes in these 
proportion values in the years of financial crisis and recession, as well as in the years of 
prosperity. The procedure can therefore serve as an indicator of appreciable changes 
in economic development. 

Key words: gross domestic product, final consumption expenditure, disposable income, 
mutual change of two relative indicators in space and time, indicators of income and 
expenditure in households. 

1. Introduction

Households (represented in the national accounts by the household sector)
represent an entity with a specific main economic behaviour, namely, consumption. 
The final consumption expenditure is funded by households' disposable income, which 
is the result of the distribution and redistribution of income derived from productive 
activity and whose most important component is labour income, i.e. wages and salaries. 
Households enter into the distribution process as parties that get more than they pay; 

1 Department of Statistics and Probability, Faculty of Informatics and Statistics, Prague University of Economics 
and Business, Czech Republic. E-mail: hindls@vse.cz. ORCID: https://orcid.org/0000-0002-0887-3346. 

2 Department of Statistics and Probability, Faculty of Informatics and Statistics, Prague University of Economics 
and Business, Czech Republic. E-mail: marek@vse.cz. ORCID: https://orcid.org/0000-0003-4761-1936. 

3 Department of Economic Statistics, Faculty of Informatics and Statistics, Prague University of Economics and 
Business, Czech Republic. E-mail: hronova@vse.cz. ORCID: https://orcid.org/0000-0002-3568-9755. 

© Richard Hindls, Lubos Marek, Stanislava Hronová. Article available under the CC BY-SA 4.0 licence 
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households receive wages and salaries, social benefits and other income and have to pay 
taxes on production and imports, income taxes, social contributions, and other 
transfers. They thus generate resources sufficient for funding their consumption, and 
at the same time create savings. Moreover, households should be the source of most of 
the national saving. This role is particularly important in years of crisis, when 
government deficits and pressures on public budgets are growing. 

From the household perspective, years of economic growth have brought not only 
rising income from wages (due to rising wage levels and falling unemployment) but 
also a rising level of confidence, which is undoubtedly important for their willingness 
to consume. Other factors that influence the level of household final consumption 
expenditure include the availability of consumer and mortgage credit (determined 
mainly by the level of interest rates), the inflation rate and the related development of 
the cost of living, housing prices, the tax burden, the unemployment rate, etc. However, 
wage levels and wage growth remain a key factor encouraging the appetite and courage 
to spend, which in turn increases the volume of final consumption expenditure. The 
other side of this coin, however, is that rapid growth in household consumption may 
result in households becoming more indebted in the form of loans. This fact, together 
with a declining savings rate and financial savings rate, may, despite a favourable 
economic climate, lead to households becoming over-indebted and jeopardise their 
ability to meet their obligations. 

Periods of recession or even crisis accompanied by uncertainties (not only) on the 
labour market and stagnation of real income mean a change in household behaviour 
manifested by a cautious approach to consumption, reduced willingness to invest and 
take out long-term loans. However, this turnaround is not immediate. As a rule, the 
effects of the crisis will first hit governments and non-financial corporations or 
financial institutions, and households only after a delay. At the same time, households 
are reducing their non-financial investments and diversifying their financial 
investments, or trying to put their spare funds in less risky assets.  

This paper should help answer the question to what extent the wage level is 
a determinant of changes in household final consumption expenditure, i.e. how 
household final consumption expenditure responds to changes in household income 
in the form of wages. For the analysis we have used publicly available data (see Eurostat) 
for 30 countries. The indicators monitored for the household sector are the proportion 
of wages and salaries received in gross disposable income and the proportion of 
household final consumption expenditure in their gross disposable income in the 
period 2000–2019. The method of analysis used is measure t, which describes changes 
in the values of variables in a spatial two-dimensional map, which is similar to the so-
called perceptual map, known, for example, from marketing analysis. 
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2. Theoretical background 

As mentioned above, the undisputed factor influencing household expenditure on 
durables and non-durables (the value of which is expressed by the final consumption 
expenditure indicator) is the level of income. The dominant item of household income 
is labour income, expressed as wages and salaries in the national accounts. 
The evolution of household income and its relationship to final consumption 
expenditure have been the subject of a number of theoretical papers. Understanding of 
and insight into the determinants of changes in household consumption are important 
aspects of economic policy, as household final consumption expenditure accounts for 
around half of gross domestic product (GDP) in developed countries and is an 
important factor in economic growth. 

2.1.  The relationship between income and consumption in economic theory  

The basis for the discussion of the relationship between household income and 
consumption is undoubtedly Keynes's discussion of consumption (Keynes, 1936), 
where he states that as employment grows, labour income rises; this in turn leads to an 
increase in consumption, which, however, grows more slowly than labour income. The 
issue was already addressed by Modigliani and Brumberg (1954) and Friedman (1957) 
soon after World War II, during the post-war boom, probably as a result of 
reminiscences of the economic crisis of the late 1920s and early 1930s. They developed 
and described life-cycle models of permanent income in which they tried to show that 
households use savings to smooth changes in income, so that the effects of these 
changes on consumption levels are small. 

Another model that focused on the evolution of consumption twenty years later 
was the Hall model, inspired by Friedman (1957, see Hall, 1978). Hall's work, to some 
extent, challenged the idea mentioned above – that households have only a weak 
propensity to consume and therefore their consumption is always closely linked to 
current income. On the contrary, he advocated the idea that, assuming useful and 
purposeful behaviour, households try to maintain a stable consumption trend in the 
long run. In his work, he also discussed the time lag between changes in income and 
changes in consumption expenditure with respect to the state of their assets. His work 
has had a very important impact on the further development of econometric models of 
consumption. The evolution of the income-consumption relationship on the 
background of the labour life cycle was the subject of Heckman (1974). He presented 
an alternative neoclassical model, in which he showed that as wages evolve over the 
labour life cycle, the level of consumption changes, or the level of consumption depends 
on the level of wages at each age. He thus confirmed the results arrived at by Thurow 
in the late 1960s (see Thurow, 1969). 
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An interesting empirical analysis of the relationship between permanent and 
current income and consumption can be found in Lusardi (1996), who shows in a panel 
data set that consumption is very sensitive to predictable income growth. Attanazio and 
Davis (1996) based their study on panel data on consumption, wage levels and 
employment in the US in the 1980s and showed that even small changes in the wage 
structure among different age and education groups of workers led to significant 
changes in household consumption expenditures. Jappelli and Pistaferri (2010) 
attempted to map studies dealing with the reflection of income changes in consumption 
levels in terms of whether the change is positive or negative and, moreover, expected or 
unexpected (the so-called income shock). Most models assume that consumption 
responds to an expected increase in income, significantly more than is assumed by 
permanent income models. When income is expected to fall (e.g., a transition from 
economic activity to inactivity), the impact on consumption is rather insignificant. 
However, the authors emphasise that, in such a situation, it is necessary to distinguish 
between higher and lower income households and hence easier or more difficult access 
to credit markets. Among the theoretical underpinnings of the income-consumption 
relationship, it is worth recalling Duesenberry's (1949) relative income hypothesis, 
which has, for many years, been unjustly neglected in economic theory. Its importance 
is presented and developed in Sanders (2010), where he shows the properties and 
empirical significance of this model. 

The level and evolution of household final consumption expenditure provide 
important information for the direction of economic policy. It is clear that there are 
other factors besides households' income, such as various macroeconomic impulses and 
shocks, inflation rate, confidence in the economy, and consumer expectations. Changes 
in economic and non-economic conditions in the national economy (changes 
in interest rates, significant reversals in stock prices, natural disasters, corruption 
scandals, etc.) affect household economic behaviour, but their effect is usually short-
lived and implemented through specific channels. For example, Aspergis et al. (2014) 
address the issue of the relationship between stock and house price movements on 
household consumption levels and conclude that a stock market slowdown may 
dampen households' willingness to spend. Hamburg et al. (2008) address the issue of 
the relationship between income, consumption and wealth in Germany and show that 
this relationship is dynamic and does not settle after a certain period of time. In general, 
it is a fact that households will not increase their consumption expenditure unless they 
consider their economic situation to be good and stable. Rising income, rising market 
prices of their financial and non-financial assets coupled with economic growth 
increase their willingness to spend and invest. Household investments in real estate 
(or financial assets), which are not taken for a part of the household final consumption 
expenditure indicator, give a strong signal of a satisfactory economic climate. 
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Conversely, a fall in consumer confidence is one of the signals of a coming recession or 
crisis. Campelo et al. (2020) investigated this relationship using data from Brazil, 
showing that indicators of consumer confidence and economic climate are better able 
to predict trends and changes in household final consumption expenditure, and that 
improvements in consumer confidence positively affect households' attitudes towards 
consumption. 

The relationship between income shocks and consumption levels in the context of 
the business cycle is also addressed in Kovacz et al. (2019). Using data from the 
Netherlands, the authors show that income shocks observed during the years of the 
global crisis 2008-2009 are of a different nature than those observed during the years of 
the fiscal crisis 2011-2012, or that shocks induced by the fiscal crisis have a longer-term 
impact on consumption. This was consequently reflected in the fact that households as 
consumers reacted more cautiously in the fiscal crisis years than in the global financial 
crisis years, although the decline in their income in the fiscal crisis years was smaller. 
This empirical finding from the Dutch economy is very important in our consideration 
of households' different behaviour with respect to the nature of the economic crisis and 
raises the question whether this phenomenon is also observable in other, especially 
European, countries. 

The relationship between wage levels and the level of consumption of an individual 
is unquestionable, although there are a number of other phenomena that influence 
consumer decision-making. From a macroeconomic point of view, individual 
consumer behaviour translates into the relationship between wages as remuneration 
for work and final consumption expenditure. The level of wages, or – from 
a macroeconomic point of view – the amount of wages received by households, 
is influenced by the phases of the economic cycle. In times of crisis the unemployment 
rate goes up, and wage growth slows down or stops. Conversely, in the boom phase, 
employment grows and the level of wages rises as demand for labour increases. This, of 
course, has an impact on the volume of household consumption expenditure. Can the 
relationship between wage developments and household final consumption 
expenditure be used to document the response of households to the phases of the 
business cycle? Is this relationship valid and can it be generalised to a larger set of 
countries? We have tried to answer this question by analysing the relationship between 
wages and household final consumption expenditure in a set of 30 countries over the 
last 20 years. For our analysis, we have used the original measure t describing the 
changes in the spatial map. 

2.2.  Statistical expression of income and consumption 

However, it is useful to subsequently "put the relationships given by economic 
theory to the test", i.e. to verify the theoretical assumptions on statistical data. Here, we 



6                                               R. Hindls et al.: Changes in the structure of household disposable income… 

 

 

encounter the first fundamental and ever-present problem of the discrepancy between 
economic theory and statistical practice, i.e. the discrepancy between the concepts of 
economic theory and the possibilities of their relevant quantification. This so-called 
adequacy gap lies at the heart of this problem – many of the concepts with which 
theoretical economics operates cannot be quantified to the full extent of the concept, 
and it is therefore necessary to resort to a certain quantitative approximation to these 
theoretical concepts. This mere "approximation" is therefore a necessary compromise 
between the needs for quantification of the concepts of theoretical economics and our 
real ability to carry out this quantification. The trade-off between the "necessary and 
the possible" is the structural content of the adequacy gap mentioned above4. 

If we are to examine the relationship between household income and consumption, 
it is necessary to define the data sources from which we will draw comparable data, to 
define the statistical population of households and to find appropriate indicators of 
income and consumption. The first two conditions are easy to fulfil – the basic source 
of internationally comparable data is given by the national accounts, whose standards5 
guarantee a common understanding and definition of indicators. The definition of the 
household population with respect to the national accounts data sources is also not 
a problem, since households form one of the five resident institutional sectors and the 
characteristics of the units belonging to this sector are clearly defined6. 

For indicators reporting household consumption, the national accounts offer two 
options – household final consumption expenditure and the actual household final 
consumption. Household final consumption expenditure includes the value of 
purchased (new and used) goods and services of short– and long-term consumption, 
excluding dwellings, houses and land, and the value of the so-called consumption 
in kind, i.e. subsistence, agricultural and food products from subsistence. The indicator 
also includes the so-called consumption of output for households' own final use, i.e. 
what households produce and consume themselves (in particular, provision of housing 
services to themselves, agricultural output from subsistence farming, services of 
employing domestic staff). This concept of household final consumption expenditure 
is traditional and, prior to the introduction of the ESA 1995 or SNA 19937, 
corresponded to the only indicator of household final consumption at that time. 

The second indicator providing information on household final consumption is the 
household actual final consumption indicator. The concept of actual final consumption 

                                                           
4 A simple example of this gap is, e.g. inflation as a theoretical economic category on the one hand and the 

consumer price index as a quantification of this theoretical concept on the other hand.  
5 See ESA 2010 (2013) and SNA 2008 (2013). 
6 See ESA 2010 (2013) and SNA 2008 (2013), paragraphs 2.118 – 2.128. The household sector according to this 

definition includes not only households as consumers (employees, recipients of social, property and other income) 
but also small producers (employers and self-employed). 

7 See ESA 1995 (1996) and SNA 1993 (1993). 
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was introduced as late as in the ESA 1995 and SNA 19938 standards in response to the 
requirements of international comparability of household consumption in terms of 
their living standards. Actual final consumption of households is equal to final 
consumption expenditure plus social transfers in kind9 that are paid to households by 
general government and non-profit institutions serving households. 

As can be seen from the definitions presented above, there is a dual concept of 
household final consumption; the first emphasises "what households spend"10 and the 
second "what households actually consume". Therefore, when analysing the economic 
behaviour of the household sector, it is always necessary to choose the appropriate 
indicator for the purpose of the analysis. In our case, where the relationship between 
income and consumption is concerned, the indicator of final consumption expenditure 
is the obvious choice. The indicator of actual final consumption of households contains 
a part (social transfers in kind) which is mainly a reflection of the social policy of the 
state (the extent of non-market production of government institutions) and is therefore 
not a direct consequence of the economic behaviour of households11. 

For the choice of income indicator, the national accounts offer a number of 
indicators. The most general is undoubtedly disposable income (gross/net). Disposable 
income is the result of the primary and secondary distribution of income (value added) 
and its structure consists of business income (gross/net operating surplus and mixed 
income) + labour income (wages and salaries) + balance of property income + balance 
of social income (social benefits – social contributions)12 + balance of other current 
transfers – current taxes. Disposable income is directly intended to cover final 
consumption expenditure. In analysing the economic behaviour of households as 
consumers, we are therefore interested in whether or not disposable income is sufficient 
to cover final consumption, which is monitored by indicators of the average propensity 
to consume13, not whether changes in its level motivate households to change the nature 
and level of consumption. Disposable income is a macroeconomic statistical variable, 

                                                           
8  See ESA 1995 (1996) and SNA 1993 (1993). 
9  Social transfers in kind correspond to the value of individual goods and services provided by non-profit 

institutions and government agencies to households free of charge or at economically insignificant prices, whether 
they are the result of non-market production (e.g. health, education, etc.) or purchased on the market for 
household use (housing transport services, etc.). For more details, see ESA 2010, paragraphs 4.108 through 4.111. 

10 Keeping in mind the consumption in kind. For a precise definition of the final consumption expenditure 
indicator, we refer to ESA 2010, paragraphs 3.94 through 3.99. 

11 For a precise definition of the indicator of actual final consumption, we refer to ESA 2010, paragraphs 3.100 
through 3.109. 

12 Given the design of the compensation of employees, other investment income and net social contributions 
in the household sector account, social contributions are equal to households' actual social contributions + 
households' social contributions supplements – social insurance scheme service charges. 

13 It is the ratio of final consumption expenditure to (gross/net) disposable income. 
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i.e. it is not the income that an individual household may view as a certain limit to its 
consumption14. 

The notional limit of consumption is the wage or salary for employee households, 
the amount of their retirement income for pensioner households, and the amount of 
their so-called other income (i.e. social, property and other income) for other 
households. In the case of small producer households (employers and self-employed), 
this is undoubtedly part of their profits (mixed income), but their amount cannot be 
reasonably estimated. 

Employee households represent the dominant group in the household sector, 
and their labour income (wages and salaries) provide the main component of 
disposable income15. Moreover, changes in wage levels can be viewed as a reflection of 
the economic situation in the national economy, i.e. they, to a certain extent, reflect the 
evolution of the short-term business cycle. Employee households are also understood 
as a crucial group in terms of the commodity structure and the volume of final 
consumption expenditure. Social or other income is independent of the phase of the 
business cycle; the demand of the corresponding households does not generally cover 
all commodities and is not a decisive component of household final consumption 
expenditure. However, ownership income is, to a certain extent, dependent on the 
business cycle, but the recipient households form only a small part of the units 
belonging to the household sector16. 

It follows from the above that if we want to analyse the evolution of changes in final 
consumption expenditure in response to income developments, and moreover in the 
context of the phases of the business cycle, then the best choice is the wages and salaries 
indicator. This indicator reflects both regular and irregular cash and in-kind income as 
remuneration for work performed under labour and other legislation17. 

Both indicators (household final consumption expenditure and wages and salaries) 
are indicators defined by the System of National Accounts, i.e. they are internationally 
comparable indicators. 

                                                           
14 In general, disposable income can be understood as the upper limit of consumption that a household can 

realise without becoming poorer. 
15 The proportion of gross wages and salaries received as a proportion of gross disposable income is 66% on 

average in the 30 compared countries (see input data for this analysis) and in none of these countries has it fallen 
below 40% in recent years. 

16 This is also reflected in the proportion of the balance of proprietary income in gross disposable income, which 
does not, in the long term, exceed 10% in any of the countries compared. 

17 Wages and salaries represent basic wages and salaries, additional payments for overtime, night work, rest days, 
profit sharing, holiday pay, transport allowances to and from work, severance pay, remuneration for work under 
special regulations, professional fees, remuneration for the performance of public functions, compensation for 
paid time off on public holidays, holiday pay, benefits in kind, free shares distributed to employees, etc. Wages and 
salaries are gross, i.e. before deductions of income tax and social contributions paid by the employee – see ESA 
2010, paragraphs 4.03 to 4.07 for details. 
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3.  Our data and methodology of our analysis 

The aim of this paper is to examine the evolution of household final consumption 
expenditure in relation to wage and salary developments in 30 countries over the period 
20002019. The analysis is based on publicly available and internationally comparable 
Eurostat data for the European Union countries (excluding Malta) and selected 
other countries (UK, Norway, Switzerland, USA, and South Korea). While the 
methodological comparability of the content of the selected indicators is guaranteed 
when working with national accounts data, we encounter different currency units 
(and therefore different levels of values) in which the values of the indicators are 
expressed and the fact that national accounts data are always in current prices only. 
The solution is to use relative, i.e. dimensionless, indicators whose values are 
comparable over time and space.  

We have chosen wages and salaries as the income indicator and household final 
consumption expenditure as the consumption indicator. The choice of appropriate 
relative indicators is clear in this case; both indicators are components of disposable 
income – wages and salaries in terms of its creation, final consumption expenditure 
in terms of its use. It is therefore logical to base our analysis on the indicator of the 
proportion of wages and salaries received by households in their disposable income on 
the one hand and the indicator of the proportion of household final consumption 
expenditure in their disposable income on the other hand. 

It remains to resolve the question of whether to use net or gross disposable income 
in the denominator of these relative indicators. In theory, net disposable income is 
undoubtedly the more correct option, since the consumption of fixed capital, which 
makes up for the difference between gross and net disposable income, is meant not for 
consumption but for investment. However, the use of net disposable income 
in international comparisons is hampered by the incomparability of methods used for 
estimating consumption of fixed capital in different countries; for this reason, 
aggregates such as "gross" are generally used in cases of international comparison.  
Here, we therefore also use gross disposable household income in the denominator of 
the chosen indicators. 

However, in view of the availability of comparable data on Eurostat's website, 
it should be noted that only total data for the household and non-profit institutions 
serving households sector are available. In our case, this concerns the indicators for 
final consumption expenditure and gross disposable income, but does not affect the 
value of the wages and salaries indicator, where households as consumers are the only 
beneficiaries. The combination of the household sector and the non-profit institutions 
serving the households sector will in principle not affect the values of the indicator for 
the proportion of final consumption expenditure in gross disposable income and will 
only slightly distort (downwards) the value of the indicator for the proportion of wages 
and salaries in gross disposable income. Given that the distortion applies approximately 
equally to all countries compared, it can be considered negligible. It is also insignificant 
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from the point of view that households account for between three-fifths and two-thirds 
of gross national disposable income in the countries surveyed, while non-profit 
institutions serving households most often account for around 1%, rarely 2%. 

The data described above, i.e. the proportion of wages and salaries received by 
households in gross disposable income (households and non-profit institutions serving 
households) and the proportion of final consumption expenditure by households and 
non-profit institutions serving households in their gross disposable income for 
30 countries over the period 2000–2019, are the inputs to the model. 

The method used to analyse the relationship between the values of the selected 
indicators is the evaluation of changes in a two-dimensional spatial map. This 
procedure, published in Hindls, Hronova (2012), consists of an original development 
of a measure t for the situation where the data are arranged in a two-dimensional spatial 
map; over a given time period (here 2000–2019), we then observe how the individual 
values of the dot plot shift over time (i.e. over the years of observation). Measure t is to 
express the Euclidean distances in the spatial map (see below). This allows us to assess 
how the phases of the economic cycle (in the years in question) have affected the 
indicators analysed. Let us now describe the procedure. 

To simplify the notations, we denote the proportion of wages and salaries received 
(hereinafter WSh) in gross disposable household income (hereinafter GDIh) in the i-th 
country as xi, i = 1, 2, ..., n, where the symbol n denotes the number of countries. 
Analogously, the proportion of household final consumption expenditure (hereinafter 
FCEh) in GDIh as yi, i = 1, 2, ..., n. We denote the year of the first observation by the 
symbol "1" (for the illustration below, let us choose, e.g., 2000 as the beginning year), 
the year of the second observation by "2" (let us choose 2001 for the illustration). Later, 
we will analyse all pairs of individual years, i.e. successive pairs of years over the whole 
period 2000–2019. 

Specifically: 
 By x1i we mean the ratio of WSh/GDIh in the i-th country, i = 1, 2, ..., n,  

(in our case n = 30) in period 1 (year 2000); 
 By x2i we mean the ratio of WSh/GDIh in the i-th country, i = 1, 2, ..., n, (n = 30) 

in period 2 (year 2001); 
 By y1i we mean the ratio of FCEh/GDIh in the i-th country, i = 1, 2, ..., n,  

in period 1 (year 2000); and 
 By y2i we mean the ratio of FCEh/GDIh in the i-th country, i = 1, 2, ..., n,  

in the 2nd period (year 2001). 
Each of the n countries is thus considered in the light of two different percentages 

of WSh/GDIh (variable x) and FCEh/GDIh (variable y), in two different periods (years). 
The baseline values of the relative indicators, i.e. variables x1i, x2i, y1i, y2i, are calculated 
on the basis of the values of the absolute indicators from the Eurostat database18. 
                                                           

18 See https://ec.europa.eu/eurostat/databrowser/view/nasa_10_nf_tr/default/table?lang=fr. 
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Next, let us denote: 
 By K1 the mean value (i.e. mean spatial localisation) of the two observed indices 

(i.e. WSh/GDIh and FCEh/GDIh ratios) in period 1 (here year 2000), i.e. the mean 
value of all points [x1i ; y1i] located in the Cartesian coordinate space (x, y), 
see formulae (1) and (2) below; and 

 By K2 the mean value (i.e. mean spatial localisation) of the two observed indicators 
(i.e. WSh/GDIh and FCEh/GDIh ratios) in period 2 (year 2001), i.e. the mean value 
of all points [x2i ; y2i] located in the Cartesian coordinate space (x, y), see formulae 
(1) and (2) below. 
As a summary evaluation of changes in indicators, we propose – see Hindls, 

Hronová (2012) - a measure t, for which 
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is the estimate of the K2 – K1 value. 

The sign{...} operator above is used to determine the sign of the "aggregate spatial" 
change ("") of the level of the two-indicator assessment in the second (later) period 
(here, in the illustration, 2001) compared with the first period (2000). The sign{...} 
operator thus expresses whether the i-th spatial location (i.e. the location of the i-th 
country) in period 2 (i.e. 2001) has moved closer to ("–") or farther away from ("+") 
the centre [0;0] of the coordinates than in period 1 (i.e. 2000). If, for example, the i-th 
spatial location has moved farther away from the centre of the [0;0] coordinates, then 
the "+" sign indicates that the aggregate (i.e. for the two relative indicators observed 
together) position of the indicators in the i-th country has moved farther away from the 
centre [0;0] of the coordinates (i.e. it is a kind of "geometric" aggregation of the observed 
indicators). The "–" sign then, of course, represents the opposite situation, i.e. an 
approach to the centre [0;0] of the coordinates.  

Based on the values of measure t, we formulate a conclusion about time changes 
in the values of the WSh/GDIh and FCEh/GDIh ratios for all n observed countries. 
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4. Relationship of household income and consumption to the growth rate 
of the economy 

The above relationships show that WSh and FCEh play an extremely important role 
in the evolution of GDP. Therefore, let us first look at the graph of GDP evolution. 
The data used cover 30 economically important countries. Figure 1 presents the 
evolution of GDP (annual growth rates) in three key geopolitical territories between 
2000 and 2019, namely Europe and the USA, and finally it shows the global evolution 
of GDP19. Logically, all three time series of annual growth rates are governed by 
a similar pattern, characterised by an upturn in the performance of the economies 
in the first 6–7 years of the new millennium, followed by a deep global economic crisis 
in 2008–2009, then a renewed but milder moderation of the economies around 2012, 
and then a global slowdown in economic growth rates after 2017. 

In 2017, however, there was already open talk of the possible arrival of a recession. 
However, the subsequent onset of the global SARS-CoV-2 epidemic drowned out any 
further economic considerations about the real strength of the global economy at the 
end of the second decade of this century, and thus overshadowed how the economy 
would develop globally in 2018–2020. For this reason, we have not included 2020 in our 
considerations, because although it was marked by a severe crisis, it did not have 
primarily economic causes, but even more so economic consequences. This would have 
only clouded our purely economic considerations in a 20-year time series. 

 

 
Figure 1. Annual GDP growth rates in selected territories 2000–2019 (percentage values) 

Source: https://www.imf.org/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/WEOWORLD. 

                                                           
19 See: https://www.imf.org/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/WEOWORLD 
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Figure 1 shows that one has to ask how the WSh/GDIh and FCEh/GDIh indicators 
respond to the aggregate data on the performance of economies (with quite significant 
periods of change, the 2000–2007 recovery, the crisis years 2008–2009, 2011–2013 and 
finally the increasing tendency towards recession after 2017). For this analysis, we use 
the method presented by formulae (1), (2) and (3) above. The inputs to monitoring of 
changes in the behaviour of the WSh/GDIh and FCEh/GDIh ratios are, naturally, 
WSh received by households, FCEh and GDIh, aggregated over 30 countries over the 
period 2000–2019. 

From the input data, we determine the value of the measure t from formula (1). 
For the purpose of further analysis, we have evaluated the evolution of measure t in the 
years studied. We compute the value of the measure t for each pair of values of the 
indices [x1i ; y1i] and [x2i ; y2i], respectively, where the subscripts labelled "1" and "2" 
always denote a pair of years in the 20-year time series, i.e. 2000–2019. 

This means that we will go for 
20

2

 
 
 

= 190 pairs of years, where we always determine 

the measure t  according to (1). The resulting matrix of dimension 20 . 19 values of the 
measure t is given in Table 1 in the Appendix. There are "x" symbols on the main 
diagonal of the matrix because it makes no sense to compare spatial changes in the 
measure t in the same year (logically, there cannot be a change in t in the same year). 
The matrix is symmetric due to the existence of relation (2), so we only report the values 
above the main diagonal of the matrix. 

In terms of the objective of our analysis, we are interested in two sets of values: 
1. Year-to-year changes in the measure t, i.e. the relationship between WSh/GDIh and 

FCEh/GDIh for the economic space of all 30 selected countries. That is, year-on-
year changes in the relationship of these indicators, e.g. t2001/t2000, etc. (19 values 
in total). These year-to-year values are shown in Table 1 in the grey boxes 
diagonally directly above the main diagonal of the matrix (from left to right and 
simultaneously slanted from top to bottom), and are denoted as t_y-on-y 
in Figure 2; and 

2. Changes in the measure t against the initial period, i.e. the year 2000, i.e. basically 
the baseline evolution of t-values against the year 2000 (again, 19 values in total), 
i.e. e.g. t2001/t2000, t2002/t2000, etc. (denoted as t_basic in Figure 2) 
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Figure 2. Annual GDP growth rates (%) and changes in measure t  

Source:  https://www.imf.org/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/WEOWORLD; 
  own calculations. 

Figure 2 and the calculations of the values of the measure t show some important 
substantive facts concerning the evolution of the key indicators WSh and FCEh. 
Comparing the evolution of GDP growth rates and the annual values of the measure t 
in Figure 2, it is quite evident that they follow the evolution of GDP with a slight lag. 
For example, it can be seen that the performance of the economies (US, Europe) has 
been growing since 2002, to which the evolution of household income and 
consumption, aggregated in the measure t, responds with a certain lag (this is about one 
year). This happens until 2007–2008, when the global economic recession arrives. 
Again, the response of the measure t to the economic recovery is delayed. The 
WSh/GDIh and FCEh/GDIh then respond with a similar delay to the 2012–2013 
recession and similarly to the 2014–2017 recovery. 

Hence, the t-values, capturing spatial and temporal changes in household 
behaviour in aggregate across 30 major economies confirm the well-known and well-
described phenomenon of consumption smoothing, i.e. that households tend to 
stabilise their expenditure even at a certain level of income and gross disposable 
income, and postpone consumption from periods of higher income to periods when 
they gain a sense of greater stability and predictability in the economy. 

Similarly, we could interpret the evolution of the basic values of the measure t, as 
can also be seen in Figure 2. Perhaps with a slight difference: the basic values do not 
reach such extreme values of the peaks and troughs in their evolution, so they are a bit 
"smoother". 
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It is also interesting to look at the graphical representation (see Figure 3) of all pairs 
of values of the measure t given by the matrix in Table 1 in the Appendix. Figure 3 
shows that in the first decade of this century, the development of the relationship 
between the two relative indicators examined (the share of wages in household gross 
disposable income and the share of household final consumption expenditure in their 
gross disposable income) in the 30 major countries was quieter than in the second 
decade. While the first decade was characterised by a fairly calm development of this 
relationship (this period can be described as a "carpet", see Figure 3), the deep crisis 
towards the end of the decade (2008–2009) severely disrupted households' behaviour 
and there was no corresponding calming in the second decade. After a brief recovery 
in 2010–2011, there was another slowdown in 2012, and soon afterwards, after 2017, 
the tendency towards a looming recession started to float through the economic space 
again. Households naturally responded to this with unease, so that the "carpet" quickly 
became a "mountain range", expressing the increased unease in the economy in the 
second decade of the new millennium, as is evident in Figure 3. 

 
Figure 3. Summary expression of all measures t values given by the matrix in Table 1 

Source:  https://ec.europa.eu/eurostat/databrowser/view/nasa_10_nf_tr/default/table?lang=fr; own  
  calculations 

However, all such considerations were cut short by the arrival of the SARS-CoV-2 
epidemic, so – as noted above – it makes sense to include the 2020 covariate in these 
considerations. It is confirmed that household behaviour is the key to the nature of the 
economy. It is a sensitive phenomenon, a litmus test of sorts, which we have included 
in the newly constructed measure t as reported in this paper. 
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5. Conclusions 

The economic dynamics of all developed countries have been volatile in the two 
most recent decades. Naturally, this fact has also significantly affected the values of the 
indicators for the household sector, i.e. the proportion of WSh in GDIh and 
the proportion of FCEh in GDIh. The analysis of the newly constructed measure t has 
shown a decrease (i.e. an approach to the origin of the coordinates in the spatial map of 
the 30 countries) of these proportions in the years of financial crisis and economic 
recession and, on the contrary, an increase (i.e. a move away from the origin of the 
coordinates of the spatial map) of the examined proportions in the years of prosperity 
(economic growth). 

To confirm this assumption, along with the substantive reasoning, we have also 
used the original measure t, which not only quantifies these statements sensitively, but 
also defines the intensity of the phenomenon (the degree of approach or departure from 
the origin of the coordinates). The aggregate analysis is then applicable without any 
limitation in terms of the number of countries (or entire territories) and years studied 
– the procedure can be applied, for example, to groups of countries according to their 
economic development, their geopolitical demarcation, etc.  

Significant work for the future would of course be to extend the analysis to the crisis 
caused by the SARS-CoV-2 pandemic. However, this should only be done with some 
perspective, once there is sufficient certainty about the state of the epidemic in the 
world and sufficient quality and stability of the necessary data from the Systems of 
National Accounts. Of course, the current crisis does not primarily have economic 
causes, but it has strong economic consequences; it has fully exposed the fragility of the 
world economy. The generalisation of the analysis of household behaviour to the 
phenomenon of the impact of SARS-CoV-2 on the evolution of GDIh, WSh and FCEh 
will only be possible with the passage of a few years, when definitive reports for these 
specific years appear in the national accounts of the world's countries. 

However, in such a post-Covid analysis, it should not be forgotten that the years 
20172019 already signalled a certain tendency towards a slowdown in the world 
economy. This slowdown was quickly overshadowed by the viral epidemic. Therefore, 
after it has subsided, it will be necessary to revisit the phenomenon of 20172019, 
at least in part. And here the values of the measures t presented in this paper could 
provide some help to unravel the sensitive reactions and behaviour of households just 
before the SARS-CoV-2 epidemic and, of course, after it. 
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Appendix 

Table 1. Pairwise measures t for the years 2000-2019 
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Sampling methods for the concentration parameter
and discrete baseline of the Dirichlet Process

Yang Liu1, Balgobin Nandram2

ABSTRACT

There are many models in the current statistical literature for making inferences based on
samples selected from a finite population. Parametric models may be problematic because
statistical inference is sensitive to parametric assumptions. The Dirichlet process (DP) prior
is very flexible and determines the complexity of the model. It is indexed by two hyper-
parameters: the baseline distribution and concentration parameter. We address two distinct
problems in the article. Firstly, we review the current sampling methods for the concentration
parameter, which use the continuous baseline distribution. We compare three different meth-
ods: the adaptive rejection method, the mixture of Gammas method and the grid method. We
also propose a new method based on the ratio of uniforms. Secondly, in practice, some sur-
vey responses are known to be discrete. If a continuous distribution is adopted as the baseline
distribution, the model is misspecified and standard inference may be invalid. We propose
a discrete baseline approach to the DP prior and sample the unobserved responses from the
finite population both using a Polya urn scheme and a Multinomial distribution. We applied
our discrete baseline approach to a Phytophthora data set.

Key words: concentration parameter, discrete baseline, empirical study, grid method, non-
parametric Bayesian statistics.

1. Introduction

We often know very little about the specific parametric forms of the distributions, and
it is also difficult to validate the parametric assumptions. The parametric Bayesian models,
based on distributional assumptions, may be problematic because inferences are sensitive
to such assumptions. It may be more appealing to use a nonparametric Bayesian approach.
The existence of the Dirichlet Process (DP) was established by Ferguson (1973) and further
developed by Blackwell and MacQueen (1973). It is a distribution over distributions, that
is, each draw from a DP itself is a distribution (i.e. we are working on functional spaces). In
this paper we provide an improved method to sample the concentration parameter and show
that it is affected by a discrete baseline.

Another representation of the DP is the generalized Polya urn scheme (Blackwell and
MacQueen, 1973). We consider two urns. Urn I is empty and Urn II contains an infinite
number of balls, each with a different colour. Pick a ball from Urn II and put it in Urn
I. For the next ball, we draw Urn I with probability 1

α+1 . If Urn I is selected, we replace
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the selected ball with two balls of the same colour, and if Urn II is selected, we take a ball
and place it into Urn I. This procedure is repeated until n balls are in Urn I; this is the
sample. We observe that with positive probability draws from G (distribution of Urn I) can
take the same value regardless of the smoothness of G0 (distribution of Urn II). That is, G
is a discrete distribution with probability one. Current literature have been using smooth
functions such as Gaussian distribution as G0; however this is not always reasonable. This
paper will explore a different choice of G0.

To sample the concentration parameter α of the DP is still an open topic. One can use
Gilks’ (1992) adaptive rejection sampling method, which relies on the logconcavity of the
distribution of the logarithmic transformation of α . Nandram and Yin (2016 a, b) used
a grid method to sample α from the posterior density of ρ = 1/(1+α); they have used
a noninformative prior for α , different from the proper (informative) prior suggested by
Escobar and West (1995). Antonelli, Trippa and Haneuse (2016) reviewed several methods
and suggested a more complex method. The problem of sampling the posterior density of α

is a difficult one. One of the reasons why it is difficult to estimate α is because it is based on
a ‘single’ observation, k. There are no repeated sampling. So there will be computational
instability. There is some research in which the authors set α = 1 (e.g. Chaudhuri and Ghosh
2011) to overcome the difficulty in estimating α , thereby leading to an underestimation in
variability. In this paper we will propose a new method based on the ratio of uniforms in
random sampling.

Another concern that will be addressed is regarding the discreteness of the baseline
distribution G0. It is well known that inference is sensitive to the specification of baseline
measure (e.g. McAuliffe, Blei and Jordan 2006 and Nandram and Yin 2016 a). So it is
more robust if we have an unspecified distribution G0. Camerlenghi et al. (2019) discussed
ties across samples at the observed or latent level. In the discrete case we mention here, an
observation can look like a tie, but it may not be. We are not actually talking about ties,
although it is a part of what we are doing. The discreteness of G0 means that the same value
can come from either G0 or from the balls already drawn in the Polya urn scheme. But it is
mandatory to have G0 discrete in this model if we have a strong belief that the observations
are from a discrete family. In such a case, the number of distinct values in the sample, k, is
no longer a sufficient statistic for α . This paper will correct this.

We demonstrate our discrete baseline approach to Phytophthora epidemics in bell pep-
per. The pathogen Phytophthora Capsici Leonian is a severe infectious disease and could
rapidly cause death of the plant (Gumpertz 1997). Disease presence or absence was recorded
for each cell in a 20×20 quadrats study field. We group the quadrats and count the number
of diseased plants in each group so we know the response is guaranteed to be discrete. Now
our goal is to obtain an estimator of the finite population mean provided by a nonparametric
approach. It is apparent that this approach is more robust than the parametric models such as
those based on normality. On the other hand, current nonparametric methods are all based
on continuous baseline distribution (i.e. normal baseline). Our approach, with relaxation
to the baseline distribution, gives a more realistic estimator when we know the response is
discrete.

This paper is an extension of Nandram and Yin (2016 a,b), who studied the sensitivity
of the baseline distribution to the finite population mean. They proposed the DP approach to
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predict the nonsampled observations by using the Polya urn scheme. We choose a discrete
baseline to the DP when the response is known to be from a discrete family. When G0 is
discrete, the number of distinct values in the sample is no longer a sufficient statistic of the
concentration parameter α . We proposed a way to correct this by adding a latent variable to
indicate which urn the observation is from.

When faced with a discrete baseline, researchers might resort to a DP-based mixture
model (DPM) involving a continuous kernel density, however, this is not what we are trying
to discuss here. Note that DPMs are often miscalled as “mixture of Dirichlet process model"
(Neal 2000). There have been many computational methods to run the model over the past
two decades (e.g. Escobar and West 1995, Neal 2000 and Kalli, Griffin and Walker 2011).
The DPM is not appropriate in some applications like the example we discuss in this paper
because we do not have well defined groups of data. For the DPM, we need different groups
of data with different parameters and then a DP is assigned to these parameters. Of course,
in applications the DPM is the workhorse of nonparametric Bayesian statistics, yet we need
to solve the problem associated with discrete baseline distributions as they may be included
as a step in a hierarchical Bayesian model.

The plan of this paper is as follows. In Section 2, we briefly review the Dirichlet pro-
cess (DP), and different sampling algorithms for α , the concentration parameter. We also
introduce our approach, the ratio of uniforms algorithm, and a simulation study to compare
the different methods. In Section 3, we discuss one limitation that current literature has
regarding the baseline distribution of the DP and how we resolve it. We also discuss the
implementation of our method to the finite population mean. In Section 4, we discuss an il-
lustrative example on Phytophthora data. We conclude this paper in Section 5. An appendix
has technical details.

2. Dirichlet Process and Sampling the Concentration Parameter

In Section 2.1, we give a brief review of the Dirichlet process, and in Section 2.2, we
review current methods to sample the posterior density of α . In Section 2.3 we present our
new method based on the ratio of uniforms. In Section 2.4, we provide a small simulation
study to compare our new method with few selected ones that we review.

2.1. Review of the Dirichlet Process

Let (Θ,B) be a measurable space, with G0 the baseline measure (nonrandom) on the
space, and let α be the concentration parameter. A Dirichlet process, DP(α,G0), is defined
as the distribution of a random probability measure G over (Θ,B) such that, for any finite
measurable partition of the measurable space, (Θ, {Ai}n

i=1), with Ai
⋂

A j = φ ,
⋃n

i=1 Ai = Θ,

{G(A1), · · · ,G(An)} ∼ Dirichlet{αG0(A1), · · · ,αG0(An)}.

We write G ∼ DP(α,G0), if G is a random probability measure with a distribution given
by the DP. For any measurable set, A, we have E[G(A)] = G0(A), that is the mean of the DP
is the baseline distribution G0 and Var[G(A)] = G0(A)[1−G0(A)]/(α +1). The larger α is,
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the smaller the variance (i.e. the DP concentrates more of its mass around the baseline dis-
tribution). Here, G0 and α are both parameters and they play intuitive roles in the definition
of the DP. Here, G is constrained to be around G0 and this is regulated by α .

Let G ∼ DP(α,G0) and y1, · · · ,yn be a sequence of independent draws from G. The
posterior distribution, G|y1, · · · ,yn is

DP
(

α +n,
α

α +n
G0 +

1
α +n

n

∑
i=1

δyi

)
,

where δyi is the cdf of a point mass at yi. This conjugate property of the DP was motivated
by Ferguson (1973), desirable for easy algebra and computations.

For a one-sample problem, one might take

Y1, · · · ,Yn|G ∼ G,

G ∼ DP(α,G0),

where G0 is the baseline measure and α the concentration parameter. Assuming that there
are k distinct values among Y1, · · · ,Yn, the baseline model is Y ∗

1 , · · · ,Y ∗
k |k ∼ G0. Note that k

is a random variable. The baseline measure G0 is assumed continuous. Binder (1982) was
the first to introduce this model to survey sampling; more recently, see Nandram and Yin
(2016 a,b). Although G0 can be discrete, it appears that this latter case was not discussed
by Antoniak (1974).

Antoniak (1974) wrote down the distribution of the number of distinct values k given
α and he proved that k is a sufficient statistic for α where G0 is continuous. It is easy to
write down the posterior density with an appropriate prior. The sampling methods being
discussed in this section are all based on continuous baseline. We write here that

p(k|α) =C · Γ(α)αk

Γ(α +n)
, k = 1, · · · ,n,

where C is a constant.
However, if G0 is discrete, k is no longer a sufficient statistic; this result appears to be

not so well known. Therefore, if the result is used, this is a violation of the sufficiency
principle; we will discuss this issue in Section 3.

2.2. Current Sampling Methods

In this section, we will discuss three current sampling methods for the concentration
parameter: the adaptive reject sampling method (ARS), the mixture of Gamma method and
the grid method.

We first review the ARS method (Gilks 1992).
Theorem. Let φ = ln(α), where α is the concentration parameter. With a logconcave prior
π(φ), the posterior density π(φ |k) is logconcave, (i.e. strongly unimodal with a unique
mode).

Rasmussen (2000) first demonstrated the logconcavity of π(φ |k) but here we provide
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our own proof in the appendix. More generally, we show that if prior π(φ) is logconcave,

i.e. d2 ln(π(φ))
dφ2 < 0, then the posterior density on the transformed scale is logconcave. We

mention two useful priors in the appendix when φ = ln(α). The shrinkage prior, f (2,2)
distribution, is

π(α) =
1

(1+α)2 ,α > 0.

Another example, the half-Cauchy prior, is

π(α) =
2

π(1+α2)
,α > 0.

Knowing that π(φ |k) is logconcave, we can use the adaptive reject sampling method
(Gilks 1992) to draw φ . This sampling procedure was performed with the R package ars.
Then we can compute α in the form α = eφ . There is limitation to the ARS method due to
tail problem, i.e. the sampling distribution for the two tails of the distribution is not accurate
and this can be seen in the simulation section.

Nandram and Choi (2004) discussed the use of the gamma prior, which was introduced
earlier by Escobar and West (1995). One concern is that the mix of Gamma method gives
bimodal sampling distribution whereas a unimodal density of α is preferred. Another prob-
lem is that it requires informative Gamma prior and this remains to be validated.

Nandram and Yin (2016) transformed α according to ρ = 1
1+α

, this is actually the cor-
relation, Cor(yi,y j), i ̸= j, in the DP. The posterior density of ρ is

π(ρ|k) ∝
(1−ρ)k−1ρn−k

∏
n−1
j=1(1−ρ +ρ j)

, 0 ≤ ρ ≤ 1.

Note that π(ρ|k) is well defined on [0,1]. However, we see that it is not in a simple form
and a one-dimensional grid method was used to draw samples from it, thereby avoiding
Markov chain Monte Carlo methods (e.g. Metropolis - Hastings sampler). The unit interval
is simply divided into 100 sub-intervals of equal width, and the joint posterior density is
approximated by a discrete distribution with probabilities proportional to the heights of the
continuous distribution at the mid-points of these sub-intervals. Now, it is easy to draw a
sample from this univariate discrete distribution of π(ρ|k); the discreteness is removed by
jittering. Nonetheless, there is a drawback of this method, because it may not perform well
when ρ has substantial probability near 0 or 1.

2.3. Ratio of Uniforms Method

Liu and Nandram (2020) proposed to use the ratio of uniforms method to obtain poste-
rior samples of α . Originally introduced by Kingderman and Monahan (1977), a point is
generated uniformly over a certain region in the plane.

To achieve this, independent uniform random variables are simulated,

U,V ∼ Uniform(0,1)
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and those that fall outside some set are discarded. The ratio V/U is then calculated for those
points inside the set. The ratio values obtained are used as observations from the required
distribution.

There are other priors that can be used but here for illustration purpose, we use the
posterior distribution of α with a noninformative prior, π(α) = 1

(1+α)2 ,

h(α) = π(α|k) ∝
αkΓ(α)

Γ(α +n)(α +1)2 , α > 0.

A half Cauchy prior can be used for the prior of α , but there is very little difference
between the two when transformed to [0,1] a posteriori. This method can proceed using the
following algorithm.

1. Generate u and v independently from U(0,b) and U(c,d).
2. Set α = v/u if u2 ≤ h(v/u) and return to (i) otherwise.

Here, b, c and d are given by

b = sup
α

√
h(α), c =−sup

α

α
√

h(α), d = sup
α

α
√

h(α).

Because α is positive, we set c = 0. This algorithm is very easy to implement and it is
very efficient to get samples.

2.4. Simulation Study

It is convenient to compare different sampling methods using simulations because we
can obtain the true distribution of α and compare the theoretical values with the sampled
values. Firstly we find the theoretical percentiles of α using fine grids of width 0.0025.
Then we perform the four sampling methods to get 10,000 sample points. We can find the
sample percentiles by ordering the sample values and find corresponding quantiles as the
theoretical values. Lastly, we compare the theoretical value versus the sampled value using
a quantile-quantile plot.

In order to compare the four sampling methods, we take the sample size n = 12, 25,
100 and the number of distinct values k to be roughly equal to lnn, with k = 2, 3 and 5
respectively. We choose a common prior, the shrinkage prior,

π(α) =
1

(1+α)2 ,α > 0.

to be used for all four sampling methods.
Results are shown in Figures 1, 2 and 3. All four methods provide reasonable sampling

distributions for α . However, the ratio of uniforms method is most accurate. In all these fig-
ures, the points of ratio of uniforms method fall on almost a 45 degree straight line through
the origin and there is some problem with the other plots at various places (e.g. not fitting
exactly on the 45 degree straight line through the origin). As we mentioned in Section 2, the
ARS and grid method have tail problems and mixture of gamma uses an informative prior



STATISTICS IN TRANSITION new series, December 2022 27

which remains to be validated. Our method does not require informative gamma prior and
it is easy to implement. So we recommend using ratio of uniforms to get random samples
of α .

Figure 1: Comparison for the posterior distributions of the concentration parameter using
the four sampling methods (n= 12, k = 2)

3. Discrete Baseline

Current literature on DP has been using continuous baseline distributions, see Antonelli,
Trippa and Haneuse (2016). Teh, Jordan, Beal and Blei (2006) developed a hierarchical
Dirichlet process model with a discrete baseline distribution. Apparently, they were not
aware of the problem with the discrete baseline distribution when sampling the concentra-
tion parameter and they inadvertently attempted to “sweep the problem under the rug.”

Here, we explore a possibility of using a discrete baseline. One problem is that the
distinct values in the sample are no longer the true distinct ones because of discrete baseline.
We allow observing a “new” value from the baseline distribution that is the same as one that
is already in the sample. To solve this problem, we introduce latent variables,

Zi =

{
1, if a draw is made from the baseline,

0, if a draw is from the value that is already observed

with Zi
ind∼ Ber( α

α+i−1 ), i = 1, · · · ,n. Therefore, the true number of distinct values is k =

∑
n
i=1 zi.
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Figure 2: Comparison for the posterior distributions of the concentration parameter using
the four sampling methods (n= 25, k = 3)
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Figure 3: Comparison for the posterior distributions of the concentration parameter using
the four sampling methods (n= 100, k = 5)
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Our goal is to predict the finite population proportion for a given area based on a random
sample from it. This could be applied to many areas of study, for example we want to predict
the infectious rate (like a proportion where the denominator is fixed) of a given farmland for
some disease and it is not feasible to observe all the plants on the farm, however, we could
take a random sample and estimate the posterior mean using this sample. We have observed
n of them and want to make predictions to the N −n individuals. We consider three cases.

Case 1. We use the one-level DP model for the population values to make inference for
a finite population mean. For this case, the baseline distribution is chosen to be normal. We
assume that

y1 · · · ,yN |G ∼ G,

G ∼ DP(α,G0),

G0 ∼ N(µ,σ2),

π(µ,σ2) ∝
1

σ2 ,

π(α) =
1

(1+α)2 .

Here, we observe the number of distinct values k and then sample α as discussed in
Section 2. For each sampled α value, we predict the unobserved Yn+1, · · · ,YN using the
Polya urn scheme,

Yn+i+1|y1, · · · ,yn,yn+1, · · · ,yn+i ∼
α

α +n+ i
G0 +

n+ i
α +n+ i

n+i

∑
j=1

δy j ,

for i = 1, · · · ,N−n−1, (Nandram and Yin 2016 a, b). So it is easy to draw the nonsampled
values one by one using the Polya urn scheme.

Case 2a. We correct the true number of observations from the baseline distribution
∑

n
i=1 zi, where zi = 1 when obervation i is a distinct value from G0. The discrete model is

yi|G
ind∼ G, i = 1, · · · ,n,

G|p,α ∼ DP(α,Bin(m, p)),

zi|α, p ind∼ Ber(
α

α + i−1
),

π(α) =
1

(1+α)2 ,π(p) = 1.

Where n is the sample size and m is the predefined number of the total trials in the
Binomial distribution. The joint posterior density can be written as

π(z, p,α|y) ∝
1

(1+α)2×

n

∏
i=1

[pyi(1− p)m−yi ]zi [pyi(1− p)m−yi ]1−zi ·
[

α

α + i−1

]zi
[

1
α + i−1

]1−zi

.
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We obtain the conditional distribution of the Gibbs sampler

zi|α, p,y ind∼ Ber(Qi),

where

Qi =
α

α+i−1 pyi(1− p)m−yi

α

α+i−1 pyi(1− p)m−yi + i−1
α+i−1 pyi(1− p)m−yi

=
α

α + i−1
, i = 1, · · · ,n,

p|z,α,y ∼ Beta( ∑
{zi=1}

yi +1, ∑
{zi=1}

(m− yi)+1),

π(α|z, p) ∝
α∑

n
i=1 ziΓ(α)

Γ(α +n)(α +1)2 .

Here, α is drawn from its conditional posterior distribution using our preferred ratio
of uniforms method. For each sampled α , we predict one set of unobserved values and
compute the finite population mean using the Polya urn scheme. We used a burn in of 1000
and thinning of 10 to get a sample of 10,000. We diagnosed the Gibbs sampler after the
chain is run. For the data example we use in this paper, the diagnostic result shows that the
effective sample sizes are 4537, 5042 and 4978 for α , p and ∑

n
i=1 zi respectively. P-values

from the Geweke’s tests are 0.384, 0.533 and 0.628 respectively. So at this setting the Gibbs
sampler is mixing well. It took about 22 seconds to obtain 10,000 sample values on our
computer (see Section 2).

Case 2b. It would be interesting to see the difference of the prediction between a Polya
urn scheme and a stick breaking procedure with the idea borrowed from Sethuraman (1994),
Ishwaran and James (2001), Kalli, Griffin and Walker (2011). Using the model in Case
2a, but suppose we have already observed y∗1, · · · ,y∗d , d distinct values (1 ≤ d ≤ n), with
n1 ≥ n2, · · · ,≥ nd being their corresponding counts. Here, we allow some values to be unob-
served. Now we want to predict N1−n1, · · · ,Nd −nd , for convenience, we write N∗

1 , · · · ,N∗
d .

Let N∗ = N −n, so that we know N∗ = ∑
d
i=1 N∗

i . Now

N∗
1 , · · · ,N∗

d ∼ Multinomial
{

N∗,(w1, · · · ,wd)

}
,

where w1, · · · ,wd are the weights in stick-breaking algorithm with ∑
∞
s=1 ws = 1, w1 = ν1,

w2 = ν2(1−ν1), · · · , wd−1 = νd−1 ∏
d−2
i=1 (1−νi), wd = ∏

d−1
i=1 (1−νi), and

νi
iid∼ Beta(1,α).

Given α from the Gibbs sampler, we can draw νi and thus draw the predicted values from a
Multinomial distribution.

With the posterior samples of α from the Gibbs sampler in Case 2a, the conditional
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posterior distribution of ν is

π(ν |α,d) ∝ ν
n1
1 [ν2(1−ν1)]

n2 · · · [νd−1(1−ν1) · · ·(1−νd−2)]
nd−1

[(1−ν1) · · ·(1−νd−2)(1−νd−1)]
nd ×

d

∏
i=1

(1−νi)
α−1

∝ ν
n1
1 (1−ν1)

n2+···+nd+α−1
ν

n2
2 (1−ν2)

n3+···+nd+α−1 · · ·νnd−1
d−1 (1−νd−1)

nd+α−1.

Therefore,

π(νi|α,d) ind∼ Beta(ni +1,
d

∑
j=i+1

n j +α).

Once samples of νi are obtained, we can predict the unobserved response values from a
Multinomial distribution discussed above.

We will implement the three cases we discussed in the following example.

4. Real Data Analysis

The data we present here are about Phytophthora Epidemic in Bell Pepper from Gumpertz
(1997). The pathogen Phytophthora Capsici Leonian causes lesions on the crown, stem, and
leaves of bell pepper, and rapidly causes the plant to die. For their analyses, they took one
field which was a square lattice of 20 × 20 quadrats with 2 to 3 bell pepper plants per
quadrat as an example. The response variable within each quadrat was presence or absence
of disease in a quadrat. If any plant was wilted, dead, or had lesions on stem, crown, or
leaves, disease was considered to be present in the quadrat. Disease presence or absence
was recorded for each quadrat on nine dates throughout the growing season, from 6/16/92
to 8/5/92. Figure 2 shows the disease incidence on 6/25/92.

We want to make this data set usable to mimic our discrete response scenario so we
perform the following sampling procedure. We divide each row of the field by every fifth
quadrats and then we take one random sample within each row of the field. We assume
that the sampled value follows a binomial distribution with total number of trials being
5. Now, our goal is to predict the unobserved quadrats and estimate the infectious rate,
which is really a finite population proportion (mean) in this application. We performed the
estimation using both discrete baseline and continuous baseline approaches, as discussed in
Section 3.2.

We report the posterior means (PM), posterior standard deviations (PSD) and the cred-
ible intervals (CI) in Table 1. Given the true infectious rate of 0.1525, we found that the
continuous (Normal) baseline distribution provides an unbiased estimation to the infectious
rate. However, the lower end of 95% credible interval is negative. This is because the pos-
terior sample is taken over the whole real line as a nature of the Gaussian distribution. We
know in reality, the infectious rate is a probability and should always be positive. Here, we
naively use normal baseline because this is often chosen to be the G0 in many practices. But
for obvious reasons we now want to avoid it. PMs are roughly the same for Case 1 and Case
2a but Case 2b has some bias, with a larger estimation, however, the PSD is the smallest
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Figure 4: Map of Disease Incidence.

for Case 2b. Binomial baseline (Case 2a) has slightly more variability because it considers
the uncertainty of which urn a new observation is drawn. Last but not least, the prediction
using a Multinomial approach (Case 2b) can significantly reduce the standard deviation and
it provides a realistic result because it is based on a discrete distribution. Figure 5 shows
the posterior distribution of the three estimates of the finite population mean. The plots are
similar for Cases 2a and 2b but Case 2a is more spread out. Note that the plots are in the
same range (easier for us to visualize and compare). Similar to the table, the Multinomial
approach gives most concentrated plot. The Normal approach exceeds zero to the negative
side.

Table 1. Estimation of the Infectious Rate (True Rate∗: 0.1525)
Baseline Distribution PM PSD 95% CI

Case 1. Normal (µ,σ2) 0.1551 0.1728 (-0.2221,0.4735)
Case 2a. Binomial (n∗∗, p) 0.1588 0.219052 (0,0.6800)

Case 2b. Multinomial (N∗∗,w) 0.1698 0.0661 (0.0667,0.3267)

PM = Posterior Mean; PSD = Posterior Standard Deviation; CI = Credible Interval. * We
can compute the true rate with data from the whole 20×20 study site. ** In our case n = 5
and N = 80−20 = 60.

5. Concluding Remarks

We have proposed a new sampling method for the standard concentration parameter of
the Dirichlet Process and compared it with three methods. The Ratio of Uniforms is more
accurate and it is faster considering the computational time. In the meantime, we pointed out
a problem that current researchers have ignored regarding the baseline distribution of the DP.
We have corrected the true number of distinct values in the sample by introducing a latent
variable which indicated which urn a new observation is from. By using this approach,
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Figure 5: Posterior Distributions of the Finite Population Mean (Proportion) for the Three
Cases

we are able to give a more accurate estimation of the finite population mean when the
observations are discrete. We used a Phytophthora example to illustrate our approach. We
concluded the discrete baseline method is more reasonable.

There are two directions we could proceed to extend our current work. First, we might
consider a spatial model for the example provided in this paper. However, it is not the
purpose of our paper to provide a complete analysis of these data.

Second, we could extend the one-level DP model to a two-level DP model, where there
are groups naturally occur in the data. The two-level model is the Dirichlet process mixture
(DPM) model with a DP on the second level. Recently, Yin and Nandram (2020 a,b) placed
the DP on the first level but not on the second. They claimed that their approach is good for
data with gaps, outliers and ties.

Third, the work we have done in this paper also inspired us to study sensitivity to the
baseline. We may give a very weak assumption to the baseline, i.e. either logconcave or
unimodal. These can be discretized nicely. For a logconcave density the slopes of the tan-
gent lines decrease all the way or the chords joining any two points will have non-increasing
slopes all the way from left to right on the real line. Also, a unimodal density has heights
increasing to the mode and then decreasing (i.e. the cumulative distribution function is first
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convex up to the mode and concave after the mode). So, essentially, we can use a discrete
baseline distribution in the DPM.

Therefore, our work on discrete baseline distribution is an important start. However,
although we have a good algorithm for the concentration parameter of the Dirichlet process,
based on the ratio of uniforms, some improvement may be possible.
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Appendix

Logconcavity of the Posterior Density of α

Proof: It is easy to show that the likelihood function for α is

p(α | k) ∝
αk

∏
n−1
j=1( j+α)

,α > 0,

where k is the number of distinct values for a continuous baseline. For any prior π(α), using
Bayes’ theorem, the posterior density of α is

π(α | k) ∝ p(α | k)π(α).

If we make the transformation φ = log(α), p(α | k) will transform to p1(φ | k) = ekφ

∏
n−1
j=1( j+eφ )

and π(α) will transform to π1(φ) and the Jacobian is eφ . We show that if π1(φ) is logcon-

cave, i.e. d2 ln(π1(φ))
dφ2 < 0, then the posterior density on the transformed scale is logconcave.

Let

∆(φ) = (k+1)φ −
n−1

∑
j=1

ln( j+ eφ )+ ln(π1(φ)).

Then,
d∆(φ)

dφ
= (k+1)−

n−1

∑
j=1

eφ

j+ eφ
+

d ln(π1(φ))

dφ

and
d2∆(φ)

dφ 2 =−
n−1

∑
j=1

jeφ

( j+ eφ )2 +
d2 ln(π1(φ))

dφ 2 < 0.

Therefore, under the assumption of logconcavity for π1(φ), the posterior density of α is
logconcave.
We mention two useful priors when φ = ln(α). The shrinkage prior, f (2,2) distribution, is

π(α) =
1

(1+α)2 ,α > 0.

Another example, the half-Cauchy prior, is

π(α) =
2

π(1+α2)
,α > 0.

Both priors after making the transformation φ = ln(α) are logconcave.
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Parameter estimation of exponentiated exponential distribution 
under selective ranked set sampling 
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ABSTRACT 

Partial ranked set sampling (PRSS) is a cost-effective sampling method. It is a combination 
of simple random sample (SRS) and ranked set sampling (RSS) designs. The PRSS method 
allows flexibility for the experimenter in selecting the sample when it is either difficult to 
rank the units within each set with full confidence or when experimental units are not 
available. In this article, we introduce and define the likelihood function of any probability 
distribution under the PRSS scheme. The performance of the maximum likelihood 
estimators is examined when the available data are assumed to have an exponentiated 
exponential (EE) distribution via some selective RSS schemes as well as SRS. The suggested 
ranked schemes include the PRSS, RSS, neoteric RSS (NRSS), and extreme RSS (ERSS). 
An intensive simulation study was conducted to compare and explore the behaviour of the 
proposed estimators. The study demonstrated that the maximum likelihood estimators via 
PRSS, NRSS, ERSS, and RSS schemes are more efficient than the corresponding estimators 
under SRS. A real data set is presented for illustrative purposes. 

Key words: exponentiated exponential distribution, partial ranked set sampling, neoteric 
ranked set sampling, maximum likelihood method. 
Mathematical Subject Classification: 62F10 

1. Introduction

In many studies where sampling is used, such as environmental management,
ecology, sociology, and agriculture, exact measurement of a selected unit is either 
difficult or costly and time-consuming. However, the ranking of a small set of selected 
units can be carried out easily either by visual inspection with respect to the study 
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variable or on the basis of an auxiliary variable. The RSS scheme was first proposed by 
McIntyre (1952) to obtain a sample from a population in his study for estimating the 
yield of pastures. The RSS scheme outweighs the conventionally used SRS scheme 
in terms of the superior efficiency of the RSS estimators of population mean and 
variance (see Wolfe (2010)). Several studies have shown that the calculated estimators 
based on RSS are more efficient than their counterparts in SRS. For example, Bhoj and 
Ahsanullah (1996) used the RSS scheme to estimate the generalized geometric 
distribution parameters. Al-Odat and Al-Saleh (2001) considered estimation of the 
population mean using a variation of the RSS procedure. Mahdizadeh and Arghami 
(2010) discussed entropy estimation in RSS design and compared the results with those 
in SRS design. Hassan (2013) obtained a Bayesian estimator for the shape and scale 
parameters of the EE distribution using RSS. Abu-Dayyeh et al. (2013) used RSS to 
estimate the shape and scale parameters of the Pareto distribution. Samuh and Qtait 
(2015) used median RSS (MRSS) to estimate the shape and scale parameters of the EE 
distribution. Tahmasebi et al. (2017) provided Bayesian estimation for Rayleigh 
distribution based on SRS, RSS, and maximum RSS procedures with unequal samples 
in two cases: one cycle and r-cycles. Bantan et al. (2020) derived Zubair Lomax 
distribution parameter estimators under the RSS scheme. Al-Omari et al. (2020) 
considered stress-strength reliability estimator of the exponentiated Pareto model using 
MRSS and RSS designs. Almarashi et al. (2021) studied stress-strength reliability 
estimator for the Topp–Leone distribution using advanced sampling methods. Hassan 
et al. (2022) considered estimating system reliability using NRSS and MRSS data for 
generalized exponential distribution. 

Some variations of the RSS scheme were proposed by several authors. The PRSS 
requires fewer sampling units and less ranking than the RSS and proves to be more 
efficient than the SRS (see Haq et al. (2013)). In the PRSS scheme, the experimenter 
selects (A) sample units using SRS and (B) sample units using RSS, producing a final 
sample of size M=A+B units. Thus, it requires fewer sampling units and fewer rankings 
than the RSS. The ERSS design has been suggested by Samawi et al. (1996) for 
estimating the population mean. Studies based on the ERSS scheme have been studied 
by several authors (see, for example, Hassan (2012), Hassan et al. (2014), (2015)). 
The NRSS scheme was suggested by Zamanzade and Al-Omari (2016) and it differs 
from the original RSS scheme by the composition of a single set of n2 units instead of n 
sets of size n. This strategy has been shown to be effective, producing more efficient 
estimators for the population mean and variance than the SRS and RSS schemes. Several 
studies have been conducted based on the NRSS scheme by several authors (see, 
for example, Koyuncu and Karagöz (2018) and Sabry and Shaaban (2020)).  

The EE distribution was introduced by Gupta and Kundu (1999) as a generalization 
of an exponential distribution. It is of great interest and is popularly used in analyzing 
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lifetime or survival data. The cumulative distribution function (cdf) and the probability 
density function (pdf) of the EE distribution are given, respectively, by: 

( ; , ) (1 ) ; , , 0,xF x e x        (1)

and 

1( ; , ) (1 ) ; , , 0,x xf x e e x           (2)

where   and   are shape and scale parameters, respectively. Many authors have 
studied the properties and applications of the EE distribution, including Raqab and 
Ahsanullah (2001), Gupta and Kundu (2007), Nadarajah (2011), Ristić and 
Balakrishnan (2012), Abu-Youssef et al. (2015), de Andrade et al. (2016) and 
Chesneau et al. (2022).  

In this study, we introduce, for the first time, the likelihood function for any 
random variable X based on the PRSS scheme, which has not been considered in the 
literature yet. Further, the population parameter estimators of the EE distribution are 
considered based on the maximum likelihood (ML) method. Simulation studies are 
carried out to compare the behaviour of the proposed estimators based on PRSS, RSS, 
NRSS, ERSS, and SRS designs. Finally, we present an application to real data. The rest 
of the article is organized as follows. Section 2 describes the RSS, ERSS, NRSS, and PRSS 
schemes. Section 3 provides the ML estimator of the EE model based on the suggested 
schemes. Section 4 gives a numerical study as well as application to real data. Finally, 
concluding remarks are handled in Section 5. 

2.  Some Ranked Set Sampling Schemes 

This section provides the notion and a short description of the proposed RSS, ERSS, 
NRSS, and the PRSS schemes.  

2.1. Ranked Set Sampling 

The basic idea behind selecting a sample under RSS can be described as follows: 
Step 1: Allocate n2 randomly selected units from the target population into n sets, each 
of size n. 
Step 2: Without knowing any values for the variable of interest, rank the units within 
each set in terms of the variable of interest using your professional judgment. 
Step 3: Choose a sample for actual quantification by including the smallest ranked unit 
in the first set and the second smallest ranked unit in the second set. The process is 
continued in this way until the largest ranked unit is selected from the last set.  
Step 4: Repeat Steps 13 for r cycles to obtain a sample of size m nr  for measurement. 
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2.2. Partial Ranked Set Sampling 

The PRSS scheme is used when the experimenter is unable to inspect the required 
number of units or when the inspection cost per unit is high. At the same time, the PRSS 
scheme requires fewer identified units as compared with a RSS, also it provides more 
precise estimates than the commonly used SRS scheme. Thus, the PRSS scheme helps 
in reducing the total cost and expenditure that are involved in sampling. In order to 
select a PRSS of size m, the following steps are carried out: 

Step 1: Define a coefficient k such that k an , where 0 0.5a   . 
Step 2: Select 2k SRS each of size one from the parent population. In order to select the 
remaining 2n k units, select n2k sets each of size n from the parent population. 
Rank the units within each set and select the ith ranked unit of the ith sample, 
for 1, ,i k n k    . This completes one cycle of a PRSS of size n. 

Step 3: To obtain PRSS of size m nr , we repeat steps 1 and 2 r  times. The total number 
of units that are involved in selecting a PRSS of size 2 2 ( 1)n k n  . Note that for 0k  , 
PRSS is equivalent to RSS. 

2.3. Neoteric Ranked Set Sampling 

The NRSS design is applied in situations where the ranking of sample observations 
is much easier than obtaining their precise values (Zamanzade and Al-Omari (2016)). 
The NRSS method can be described as follows: 
Step 1: Allocate n2 randomly selected units from the target population and rank the 
sample units based on the pre-established ordering criterion. 

Step 2: If n is odd, then select the   [ 1 2 ( 1) ]thn i n    ranked unit for 1, ,i n  . 

But if n is even, select the [ ( 1) ]thJ i n   ranked unit, where  2J n  if i is an even 
and   2 2J n   if i is an odd for 1, ,i n  . 

Step 3: Again, steps 12 can be repeated r times to obtain a final sample of size .m nr   

2.4. Extreme Ranked Set Sampling 

The ERSS scheme is performed by quantifying the smallest and largest order 
statistics (Samawi et al. (1996)). The ERSS procedure is as follows:  
Step 1: Allocate the n2 selected units randomly from the target population into n sets, 
each of size n. 
Step 2: Without yet knowing any values for the variable of interest, rank the units 
within each set with respect to a variable of interest.  
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Step 3: If the set size is odd, select the smallest unit from the first  1 2n   samples, from 
the other  1 2n   the largest unit and for the last sample select the median of the 
sample for actual measurement. If the set size is even, select the smallest unit from the 
first 2n  samples and from the other 2n  samples the largest unit for actual 
measurement.  
Step 4: The steps 1 to 3 can be repeated r times to obtain a sample of size m nr . 

3. Parameter Estimation  

In this section, the ML estimators of the EE distribution parameters are obtained 
based on SRS, RSS, ERSS, NRSS, and PRSS designs. 

3.1.  ML Estimator based on SRS 

Let 1 2 ,, , mX X X  be independent and identically distributed random variables 
from the EE distribution with pdf (2). The log-likelihood function of  and   is 
specified by: 

1
1 1

( 1) (1 ) .
m m

xi
i

i i

lnL mln mln ln e x
   

 

        

The first partial derivatives of 1L  for each parameter are given by: 

1

1

(1 ),
m

xi

i

ln L m
ln e



 





  

   (3)

1

1 1

( 1) .
1

m m
i

ixi
i i

xlnL m
x

e


   


   

 
   (4)

Setting Equations (3) and (4) with zero and solving them numerically, we get the 
ML estimators of   and  .  

3.2.  ML Estimator based on RSS 

Here, we derive the ML estimators of the EE distribution parameters based on the 
RSS scheme. Assume that   1,2, , , 1, }2 ,{ ,;i i sX X i n s r      is a RSS observed from 

the EE distribution with sample size nr, n being the set size and r being the number of 
cycles. The likelihood function based on the RSS scheme is given by: 

1

2 1 ( ) ( ) ( )
1 1

( ) ( 1 ( ,
r n

i n i

i i s i i s i i s
s i

L C f x F x F x
 

 

        (5)
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where 1 !/[( 1)!( )!].C n i n i   The log-likelihood function of (5), based on RSS, 
is yielded by substituting pdf (2) and cdf (1) in (5) as follows: 

2
1 1 1 1 1 1

( ) ( ) ( )ln ln ln ( 1) ln( ) ( ) ln(1 ( ) ),
r r rn n n

s i s i s i
i i s i i s i i sL r n r n i T x n i T    

     

        
 

where ( )(1 ).( )
x i i sei i sT


  The first derivatives of L2 with respect to   and  are 

given by:
 

( ) ( )2
( )

( )1 1 1 1

( ) ( )
,

1 ( )

r n r n
i i s i i s

i i s
i i ss i s i

n i T lnTlnL r n
i lnT

T



     


  

    (6)

1 ( )
( ) ( ) ( )2

( )
( ) ( )11 1 1 1 1 1

( 1) ( ) ( )
.

1 ( )

xi i sr n r n r n
i i s i i s i i s

i i sxi i s i i ss i s i s i

i x n i T xln L r n
x

T

e

e



 

 
 



     

 
  

 
     (7)

 
Differentiate (6) and (7) and equate by zero, the estimators of   and , say ̂  

and ˆ,  are obtained through an appropriate numerical technique. 
In the following, the pdf of a random variable X based on PRSS, as well as its 

likelihood function, are introduced in the case of any continuous probability 
distribution. Then, we obtain the pdf of the EE distribution, under PRSS, as well as we 
provide its likelihood function. Furthermore, based on the log-likelihood function, we 
obtain the ML estimator of the EE distribution via the PRSS scheme.  

3.2.1.  Likelihood Function via PRSS 

Here, we will define the likelihood function for the PRSS scheme depending on 
Lemma 1 using the order statistics theory.  
Lemma 1:  
Let 1 2( , ,..., ),kX X X X  and 1 2( , ,..., ),n k n k nX X X X

     be k independent simple 
random samples each of size k. Also, let ( 1) ( 2) ( )( , , ..., ),k n k n n k nX X X X

    be the 

order statistics of size n2k. We define the joint pdf of a random variable ( ) ,i iX  under 
the PRSS scheme, as follows: 

( ) ( )

1

2

3

( ) , 1,..., ,
( ) ( ) , 1,..., ,

( ) , 1,..., ,

i

i i i

i

X

X X

X

f x i k
f x f x i k n k

f x i n k n




    
   

 (8) 

where 1 ( )
iXf x  is the pdf of SRS' 1 2( , ,..., ),kX X X X  and 3 ( )

iXf x  is the pdf of SRS

1 2( , ,..., ),n k n k nX X X X
     while 

( )2 ( )
iXf x  is the pdf of ith order statistics of 
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sample ( 1) ( 2) ( )( , , ..., ),k n k n n k nX X X X
    where ( 1,...,i k n k   ). Hence, we 

define, for the first time, the pdf of ( )i iX under the PRSS scheme as follows:   

    
( )

1
1 2 2 2 3( ) ( ) ( ) ( ) 1 ( ) ( ), ,

i i

i k n i k
Xf x C f x f x F x F x f x x

          (9)

where ( 2 )!

( 1)!( )!

n k
C

i k n i k
 


      
 

Proposition 1: 
Let )( ) ({ , 1,..., } { , 1,..., } { , 1,..., },{ }S is i i s isi i s s s X i k X i k n k X i nX X X X k n            

1,...,s r  be a PRSS observed from continuous distribution, with a sample size m nr , 
where n is the set size and r is the number of cycles. Based on pdf (9), the likelihood 
function of random variable ( )i i sX  based on the PRSS design is as follows: 

( )
3 1 2 3

1 1 1 1

( ) ( ) ( ) ,
i i s i

r k n k n

X X X
s i i k i n k

L f x f x f x 



      

 
  

  
     (10) 

where 1 ( )
iXf x  is the pdf of SRS, 1 2( , ,..., ),kX X X X and 3 ( )

iXf x  is the pdf of SRS

1 2( , ,..., ),n k n k nX X X X
     while 

( )2 ( )
i sXf x  is the pdf of ith order statistics of 

sample ( 1) ( 2) ( )( , , ..., ),k n k n n k nX X X X
    where ( 1,...,i k n k   ). 

3.2.2. ML Estimator of EE Distribution 

Here, the ML estimators of   and   for the EE distribution are derived based on 
the PRSS scheme. Assume that  

( )( ) { , 1,..., , 1,..., } { , 1,..., , 1,..., } { , 1,is i i si i s isX X i k s r X i k n k s r X i n k            
..., , 1,..., }n s r  is a PRSS observed from the EE distribution with sample size nr, 
n being the set size and r being the number of cycles. The likelihood function, via RSS 
scheme, is obtained by inserting (1) and (2) in (10) as follows: 
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Hence, the logarithm of L3, under the PRSS design, is as follows: 
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  The first partial derivatives of L3, for 

each parameter are: 
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Clearly, it is not easy to obtain a closed form solution for 3 3,ln L ln L      after 
setting them to zero. Therefore, an iterative technique must be applied to solve these 
equations numerically. 

3.3.  ML Estimator based on NRSS 

Using the NRSS technique, we obtain the ML estimators of the EE distribution 
parameters. Let ( ){ , 1,2,..., ; 1,2,..., }b i sX i n s r   and w=n2 be a NRSS where n is the set 
size, r is the number of cycles, and b(i) is chosen as: 

1
( 1) ,

2

( ) ( 1) , ,
2

2
( 1) , ,

2

n
i n if n odd

n
b i i n if n even i even

n
i n if n even i odd

  
  
   


 

According to Sabry and Shaaban (2020), the likelihood function, under the NRSS 
scheme, is given by: 

1
( ) ( 1) 1

4 3 ( ) ( ) ( 1)
1 1 1

( ) [ ( ) ( )] ,
r n n

b i b i
b i s b i s b i s

s i i

L C f x F x F x


  


  
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    (11) 

where 3 1

1

!
,

( ( ) ( 1) 1)!
n

i

w
C

b i b i





  

 b(0) =0, b(n+1)=w+1 2
( (0)) ,bx w n    and

( ( 1)) .b ix   

 The logarithm of (11), based on the NRSS scheme, is obtained as follows: 
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where ( )
( ) 1 b i sx

b i sN e   and ( 1)
( 1) 1 .b i sx

b i sN e  
    

The first partial derivatives of L4 with respect to each parameter are given by: 
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 (13) 

There is no closed form solution to (12) and (13), so a numerical technique will be 
used to obtain the ML estimators for   and  ,   represented by  ˆ , and ˆ.  

3.4. ML Estimator based on ERSS 

In this section, the ML estimation approach will be used to estimate the EE 
distribution parameters on the basis of the ERSS scheme. 

3.4.1 ML Estimator for Odd Set Size  

Suppose that 
(1) ( ) ( ){ , 1,2,... 1, 1,2,..., } { , , 1,..., 1, 1,2,..., } { ,i s i n s n g sX X i g s r X i g g n s r X         

, 1 2, 1,..., }g n s r    is an odd ERSS (ERSSO) design observed from the EE 
distribution, with sample size m nr , where n is the set size, r is the number of cycles.  

Then the likelihood function, under the ERSSO scheme, is given as follows: 
1 1

5 1 (1) ( ) ( )
1 1 1 1

( ) ( ) ( ),
gr r n r

i s n i n s g n g s
s i s i g s

L f x f x f x
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    

    

where 1 (1)( )i sf x  and ( )( )n i n sf x  are the pdfs of the smallest and largest order statistics, 
respectively, and ( )( )g n g sf x  is the pdf of the median. Hence, the logarithm of L5, based 
on ERSSO, is obtained as follows: 
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where (1)
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partial derivatives of L5 owing to   and  are given, respectively, by: 
1 1

(1) (1)5
(1)

(1)1 1 1 1
1

( ) ( )
( ) ( )

( )1 1 1

( 1)( ) ( )
( )

1 ( )
( 1)( ) ( )

( ) ( ) ,
1 ( )

g gr r
i s i s

i s
i ss i s i

r n r r
n g s n g s

i n s n g s
n g ss i g s s

n W ln WlnL r n
ln W

W
g E ln E

n ln V gln E
E









 

 

   


   


  

 


  


 

  
 (14) 

1 11
(1)5

(1) ( ) ( )
(1)

1 1 1 1

1 1 (1) 1
(1) (1) ( )

( )(1)1 1 1

( )

( 1)

1

( 1)( ) ( 1)

1 ( ) 1

( 1)

g gr n r
i s

i s i n s n g s xi s
s i i g s i

xg i sr r n
i s i s i n s

x i n si ss i s i g

n g s

x

xlnL r n
x x x

e

n W e x n x

W e

g x

e





 




 

 



 

    
  

   

        
    

 
 

 




   

 
1 ( )

( ) ( )

( ) ( )1 1

( 1)( )
.

1 ( )1

x n g sr r
n g s n g s

n g s n g ss s

g E e x

E








 





 

 (15) 

Using an iterative technique for (14) and (15) after setting them with zero to 
produce  the ML estimators of   and  . 

3.4.2. ML Estimator for Even Set Size 

Suppose that (1) 1{ , 1, 2,... ,i sX X i g   1,2,..., }s r ( ){ ,i n sX  1 1,i g  1 2,..., ,g n  
1,2,..., }s r  is an even ERSS (ERSSE) scheme observed from an EE distribution, with 

a sample of size m nr , where n is the set size, r is the number of cycles and 1 2g n . 
The likelihood function of the EE distribution from the ERSSE scheme is given by: 

1
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The logarithm of L6 for the EE distribution, using the ERSSE scheme, is given by. 
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The first partial derivatives of L6 owing to   and   are given, respectively, by: 
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and, 
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 (17) 

After setting (16) and (17) to zero, there is no closed form solution, hence the ML 
estimators  and   are derived using a numerical technique. 

4. Numerical Study and Application  

In this section, a numerical study is provided to evaluate the behaviour of ML 
estimates (MLEs) of the EE distribution based on the SRS, RSS, PRSS, NRSS, and ERSS 
schemes. Also, an application to one real data set is provided. 

4.1. Numerical Study 

A numerical evaluation is carried out to examine the performance of the MLEs. The 
MLEs are evaluated based on absolute biases (ABs), mean squared errors (MSEs), and 
relative efficiencies (REs). The simulation procedure is achieved via the 
MATHEMATICA software. The simulation algorithm is performed as follows: 
Step 1: An SRS scheme 1 2, , , nX X X of sample sizes; m   20, 40, 60 and 100 are 
considered; and these random samples are generated from the EE distribution by using 
the inversion method. 
Step 2: An RSS scheme is considered as: 1(1) 2(2) ( ), ,...,s s n n sX X X ; s =1,…,r having sample 
sizes; m  20, 40, 60 and 100 with the number of cycles r = 5, 10, and 20 and set sizes 
n  4, 5 and 6. 
Step 3: A PRSS scheme is considered as: 

1 2, ,..., ,s s ksX X X 1( 1) 2( 2), ,...,k k s k k sX X    ( ) ,n k n k sX   1 2, ,...,n k s n k s nsX X X    ; s=1,…, r 
of sample sizes; m  20, 40, 60 and 100, where (n, r)= (4,5), (4,10), (6,10) and (5,20). 
Step 4: An NRSS scheme is considered as (1) (2) ( ), ,...,b s b s b n sX X X ; s =1,…, r of sample 
sizes; m  20, 40, 60 and 100, where (n, r)= (4,5), (4,10), (6,10) and (5,20).  
Step 5: An ERSSO scheme is considered as 

1(1) 1(1) ( ) 1( ) ( )
1

, ,..., , ,..., , ; ,
2s g s g n s n n s n g s

n
X X X X X g 


  1,...,s r of sample sizes; m  20, 40, 

60 and 100, where (n, r) = (5,4), (5,8), (5,12) and (5,20).  



48                          Amal S. Hassan: Parameter estimation of exponentiated exponential distribution… 

 

 

Step 6: An ERSSE scheme is considered as

1 11(1) (1) 1( ) ( ) 1,..., , ,..., ; , 1,...,
2s g s g n s n n s
n

X X X X g s r   of sample sizes; m  20, 40, 60 and 

100, where (n, r) ൌ (4,5), (4,10), (6,10) and (4,25).  
Step 7:  Parameters’ values are selected as ( =0.5,  =0.4), ( =1,  =0.4), ( =2,  

 =2) and ( =3,  =2). The MSEs and ABs of ̂  and ̂ are evaluated for different 
sample sizes.  
Step 8: The efficiencies of different estimates under selective schemes with respect to 

SRS are defined by 



( )

( ) ,
( )

SRSMSE
RE

MSE








 where 𝜃෠ = ሺ𝛼ො, 𝜆෠ሻ, 𝜁 = RSS, PRSS, NRSS, ERSSE, 

and ERSSO.  

Step 9: The process is repeated 1000 times. The MLEs of  ̂  and ̂ are inspected via 
ABs, MSEs, and their efficiencies.  
Step 10: Empirical results are listed in Tables 13. Tables 1 and 2 list the observed 
results of ABs and MSEs of both estimates based on selective schemes. Also, Table 3 
gives the efficiency of different schemes with respect to SRS. 

Based on Tables 13 and Figures 111, we conclude the following: 

1-  For all sampling schemes, as m increases, the MSE and AB of ̂  and ̂  decreases 
(see Tables 1, 2). 

2- The MLEs of ̂ and ̂  under the NRSS scheme provide more efficient estimates 
than the corresponding estimates in other schemes. 

3- The MLEs of ̂  and ̂  under all modifications of the RSS schemes are more 
efficient than the corresponding estimates under the SRS scheme (see Figure 1 and 
Figure 2). 

  
Figure 1. MSE of ̂ for all schemes at 0.5 
and 0.4   

Figure 2. AB of ̂ for all schemes at 
0.5  and 0.4   

4- The MLEs of ̂  and ̂  under NRSS are more efficient than the others based on the 
RSS, PRSS (at 1k  and 2k  ) and ERSS schemes (see Figure 3 and Table 3). 
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5- The MLEs of ̂  and ̂  under the PRSS scheme at k =1, 2 are more efficient than 
the corresponding estimates under the SRS for all different values of m 
(see Figure 4). 

6- The MSE of ̂  under PRSS increases as the value of k increases from k =1 to k =2, 
because the number of observations under SRS increases when selecting the PRSS. 
In this regard, we notice that as the value of k increases, the MSE of MLEs 
approaches the MSE of those under SRS (see Figures 4 and 5). 

Figure 5. MSE of ̂  under PRSS for m  60 and 100 
 

7- As the value of  increases, the MSE of ̂ increases, while the MSE of ̂  decreases 
under different sampling schemes (see Figures 6, 7 and Tables 1, 2). 

  
Figure 6. MSE of ̂  for all schemes at 

100m   
Figure 7. MSE of ̂  for all schemes at 

100m   

  
Figure 3. Efficiency of MLEs for all schemes at 
m  60 at   0.5,   0.4 

Figure 4. MSE of ̂ under SRS and PRSS 
schemes at   0.5,   0.4 
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8- As the value of   increases, from 0.5 to 1, the MSE and the AB of ̂  increase, while 

the MSE and the AB of ̂  decrease at 100m   (see Figures 8, 9 and Tables 1, 2). 
 

  
Figure 8. MSE of ̂ and ̂  for all schemes at 

100m   
Figure 9. AB of ̂  when   0.5 and 1 for all 
schemes at 100m   

 
9- The MLE of ̂  under the ERSSO scheme is more efficient than the others under the 

ERSSE for all m (see Figure 10 and Tables 1, 2). 
10- As the sample size m increases, the efficiency of estimates also increases  

(see Figure 11 and Table 3). 

 

  
Figure 10. MSE of ̂  under ERSSE and ERSSO 
for all m 

Figure 11. Efficiency of the MLEs for all 
schemes at all sample sizes 
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Table 1.  The MSEs and ABs of the EE distribution based on different RSS schemes 

m 

scheme 

  0.5,   0.4   1,   0.4 

n r 
MSE AB MSE AB 

̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

20 SRS 0.028 0.039 0.057 0.074 0.201 0.021 0.169 0.051 

4 5 RSS 0.017 0.022 0.044 0.047 0.102 0.012 0.097 0.032 

4 5 PRSS k=1 0.026 0.031 0.054 0.063 0.159 0.019 0.135 0.045 

4 5 NRSS 0.007 0.010 0.019 0.025 0.043 0.006 0.052 0.016 

4 5 ERSSE 0.014 0.017 0.032 0.038 0.081 0.010 0.092 0.029 

5 4 ERSSO 0.011 0.014 0.027 0.037 0.077 0.009 0.088 0.028 

40 SRS 0.013 0.017 0.032 0.041 0.078 0.009 0.088 0.030 

4 10 RSS 0.007 0.009 0.018 0.022 0.038 0.005 0.047 0.015 

4 10 PRSS k=1 0.008 0.012 0.021 0.026 0.059 0.008 0.072 0.023 

4 10 NRSS 0.003 0.004 0.007 0.012 0.016 0.002 0.026 0.009 

4 10 ERSSE 0.006 0.007 0.017 0.019 0.03 0.004 0.028 0.011 

5 8 ERSSO 0.005 0.006 0.013 0.013 0.028 0.003 0.021 0.010 

60 SRS 0.0075 0.0088 0.021 0.024 0.037 0.006 0.047 0.016 

6 10 RSS 0.0034 0.0045 0.011 0.012 0.017 0.003 0.021 0.007 

6 10 PRSS 
k=1 0.004 0.006 0.014 0.018 0.022 0.003 0.026 0.009 

k=2 0.005 0.007 0.016 0.020 0.033 0.004 0.041 0.013 

6 10 NRSS 0.0012 0.0016 0.005 0.007 0.007 0.0011 0.013 0.005 

6 10 ERSSE 0.0031 0.0036 0.007 0.008 0.014 0.0026 0.018 0.006 

5 12 ERSSO 0.0029 0.0032 0.006 0.006 0.013 0.0018 0.015 0.0045 

100 SRS 0.0042 0.0052 0.014 0.019 0.024 0.004 0.035 0.012 

5 20 RSS 0.0021 0.0027 0.007 0.009 0.011 0.002 0.015 0.004 

5 20 PRSS 
k=1 0.0027 0.0038 0.007 0.007 0.010 0.0015 0.014 0.004 

k=2 0.0035 0.0044 0.013 0.015 0.013 0.0020 0.021 0.007 

5 20 NRSS 0.0007 0.001 0.002 0.0002 0.004 0.0007 0.008 0.003 

4 25 ERSSE 0.0019 0.0023 0.007 0.007 0.009 0.0015 0.014 0.0042 

5 20 ERSSO 0.0018 0.002 0.005 0.005 0.008 0.0010 0.013 0.0041 
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Table 2.  The MSEs and ABs of the EE distribution based on different RSS schemes 

m 

scheme 

  2,   2   3,   2 

n r 
MSE AB MSE AB 

̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

20 SRS 0.979 0.383 0.382 0.212 3.420 0.287 0.788 0.178 

4 5 RSS 0.575 0.204 0.252 0.132 2.169 0.196 0.509 0.135 

4 5 PRSS k=1 0.958 0.282 0.369 0.160 2.565 0.260 0.768 0.168 

4 5 NRSS 0.262 0.105 0.142 0.072 0.808 0.093 0.279 0.070 

4 5 ERSSE 0.493 0.174 0.209 0.111 1.379 0.149 0.334 0.090 

5 4 ERSSO 0.367 0.147 0.169 0.085 1.293 0.134 0.330 0.077 

40 SRS 0.468 0.187 0.232 0.114 1.192 0.140 0.379 0.120 

4 10 RSS 0.228 0.097 0.147 0.083 0.679 0.079 0.191 0.049 

4 10 PRSS k=1 0.340 0.127 0.180 0.084 0.885 0.112 0.327 0.079 

4 10 NRSS 0.117 0.051 0.070 0.034 0.258 0.039 0.116 0.029 

4 10 ERSSE 0.169 0.084 0.103 0.064 0.450 0.066 0.168 0.045 

5 8 ERSSO 0.165 0.072 0.097 0.047 0.402 0.055 0.151 0.041 

60 SRS 0.256 0.111 0.160 0.087 0.663 0.083 0.212 0.060 

6 10 RSS 0.103 0.048 0.070 0.041 0.298 0.041 0.108 0.030 

6 10 PRSS 
k=1 0.156 0.069 0.079 0.040 0.459 0.058 0.161 0.039 

k=2 0.207 0.088 0.126 0.067 0.554 0.070 0.201 0.051 

6 10 NRSS 0.033 0.017 0.019 0.013 0.091 0.019 0.051 0.017 

6 10 ERSSE 0.098 0.048 0.072 0.042 0.240 0.038 0.102 0.025 

5 12 ERSSO 0.089 0.041 0.067 0.033 0.206 0.032 0.099 0.031 

100 SRS 0.222 0.078 0.092 0.050 0.314 0.050 0.139 0.040 

5 20 RSS 0.072 0.033 0.058 0.029 0.172 0.025 0.061 0.019 

5 20 PRSS 
k=1 0.096 0.044 0.078 0.039 0.253 0.036 0.119 0.033 

k=2 0.120 0.053 0.089 0.048 0.303 0.042 0.133 0.034 

5 20 NRSS 0.024 0.011 0.014 0.012 0.063 0.011 0.019 0.006 

4 25 ERSSE 0.057 0.029 0.038 0.020 0.149 0.024 0.059 0.018 

5 20 ERSSO 0.052 0.025 0.023 0.010 0.147 0.022 0.034 0.009 



STATISTICS IN TRANSITION new series, December 2022 

 

53

Table 3.  Efficiency of the estimators based on RSS, PRSS (at k =1, 2), ERSSE, ERSSO, and NRSS  

n scheme 

  0.5,  

  0.4 
  1,   0.4   2,   2   3,   2 

𝑬𝑭𝑭ሺ𝛂ෝሻ 𝑬𝑭𝑭൫𝛌෠൯ 𝑬𝑭𝑭ሺ𝛂ෝሻ 𝑬𝑭𝑭൫𝛌෠൯ 𝑬𝑭𝑭ሺ𝛂ෝሻ 𝑬𝑭𝑭൫𝛌෠൯ 𝑬𝑭𝑭ሺ𝛂ෝሻ 𝑬𝑭𝑭൫𝛌෠൯ 

20 

RSS 1.65 1.77 1.97 1.75 1.7 1.87 1.57 1.46 

PRSS k=1 1.07 1.25 1.26 1.11 1.02 1.35 1.33 1.10 

NRSS 4 3.9 4.67 3.5 3.73 3.65 4.23 3.08 

ERSSE 2 2.29 2.48 2.1 1.98 2.20 2.48 1.92 

ERSSO 2.55 2.78 2.61 2.33 2.66 2.60 2.64 2.14 

40 

RSS 1.85 1.88 2.05 1.8 2.05 1.93 1.75 1.77 

PRSS k=1 1.63 1.42 1.32 1.13 1.37 1.47 1.34 1.25 

NRSS 4.33 4.25 4.87 4.5 4 3.67 4.62 3.58 

ERSSE 2.16 2.43 2.6 2.25 2.76 2.22 2.64 2.12 

ERSSO 2.6 2.8 2.78 3 2.83 2.59 2.96 2.54 

60 

RSS 2.35 2 2 2 2.48 2.31 2.22 2.02 

PRSS 
k=1 2 1.5 1.7 2 1.64 1.61 1.44 1.43 

k=2 1.6 1.28 1.12 1.5 1.23 1.26 1.19 1.18 

NRSS 6.66 5.62 5.3 4.45 7.75 6.52 7.28 4.63 

ERSSE 2.58 2.5 2.64 2.3 2.61 2.31 2.76 2.18 

ERSSO 2.75 2.81 2.85 3.3 2.87 2.71 3.21 2.59 

100 

RSS 2.47 2.22 2.18 2 3.08 2.36 2.83 2.32 

PRSS 
k=1 1.92 1.57 2.4 2.66 12.31 1.77 1.92 1.61 

k=2 1.48 1.36 1.85 2 1.85 1.47 1.60 1.38 

NRSS 7.42 6 6 5.7 9.25 7.09 7.73 5.27 

ERSSE 2.73 2.6 2.67 2.66 3.89 2.68 3.26 2.41 

ERSSO 2.88 3 3 4 2.26 3.12 3.31 2.63 
 

4.2. Application to Real Data 

Here, a real data set is considered, and all the details for illustrative purposes are 
described. The data represent the survival times (in days) of 72 guinea pigs infected 
with virulent tubercle bacilli, observed and reported by Bjerkedal (1960). To check the 
validity of the fitted model, the Kolmogorov-Smirnov (KS) goodness of fit test and its 
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P-value are obtained. It is observed that the KS distance is 0.0931 with a corresponding 
P-value of 0.561. Additionally, some criteria measurements including values of -2lnL = 
188.472, Akaike information criterion (AIC) = 192.472, correct AIC (AICc) =192.646, 
Bayesian information criterion (BIC) = 192.187 and Hannan-Quinn information 
criterion (HQIC) =194.285 were used to acquire more information. These results show 
that the EE model fits the data reasonably well.  

 
Figure 12. Plots of pdf, cdf, PP plots, and empirical survival function of the EE model  

Table 4 gives the observed ranked values according to different sampling method 
techniques. 

Table 4.  The observation of different ranked sampling from real data set 

Observation 
Schemes 

NRSS RSS 
PRSS, 

k=1 
PRSS, 

k=2 
SRS ERSSE ERSSO 

1 0.10 0.10 0.10 0.10 0.10 0.56 0.10 
2 0.74 0.77 0.44 0.33 0.33 0.92 0.72 
3 1.00 1.05 0.39 0.59 0.44 1.07 0.77 
4 1.15 1.12 1.07 1.00 0.56 1.09 0.93 
5 1.24 1.22 1.15 1.05 0.59 1.22 1.05 
6 1.46 1.46 1.20 1.07 0.72 1.36 1.07 
7 1.53 1.53 1.21 1.07 0.74 1.63 1.08 
8 1.71 1.72 1.22 1.08 0.77 1.76 1.15 
9 1.97 2.13 1.46 1.09 0.92 2.15 1.20 

10 2.53 2.45 1.71 1.22 0.93 2.40 1.22 
11 3.42 3.27 2.02 1.30 0.96 2.93 1.36 
12 5.55 5.55 2.15 1.34 1.00 4.02 1.44 
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Based on the theoretical study, we obtain the MLEs of   and   under the PRSS, 
RSS, NRSS, ERSS, and SRS sampling from the considered data set. Table 5 gives the 
parameter estimators and their corresponding standard error (SE) of the EE model via 
the PRSS, RSS, NRSS, ERSS, and SRS schemes.  

Table 5.  Estimated parameters and SE of the EE distribution based on selective RSS schemes 

Table 5 shows that the SE of ̂  and ̂  based on NRSS, RSS, ERSSE, ERSSO, and 
PRSS (at 1k   and 2k  ) are smaller than the corresponding estimates based on SRS 
for the considered data. 

5. Conclusion 

This paper introduces and defines the density and likelihood function for a random 
variable under the PRSS scheme. The maximum likelihood estimators of exponentiated 
exponential distribution are discussed under selective RSS schemes and the SRS 
scheme. The proposed sampling schemes are SRS, RSS, PRSS, NRSS, and ERSS. 
An intensive numerical study was conducted to compare the performances of different 
estimators using some accuracy measures. Generally, based on a numerical study, we 
conclude that all ranked schemes (RSS, PRSS, NRSS, and ERSS) are more efficient than 
the SRS scheme as evidenced by the results in Table 3. Also, PRSS is not the best method 
compared to the other ranked schemes, but it is important in some cases, in selecting 
the sample, when it is either difficult to rank the units within each set with full 
confidence or due to non-availability of experimental units. 

Scheme 
Estimators SE ( )RE   

̂  ̂  ̂  ̂  ̂  ̂  

NRSS 1.759 0.747 0.730 0.243 2.99 3.10 

RSS 1.789 0.755 0.744 0.244 2.94 3.08 

ERSS (even) 2.948 1.890 1.269 0.517 1.80 1.20 

ERSS (odd) 2.217 1.323 0.926 0.394 2.40 1.80 

PRSS 
k=1 3.809 1.963 1.440 0.781 1.40 1.19 

k=2 3.998 1.986 1.525 0.888 1.30 1.17 

SRS 5.260 2.330 2.882 0.974 1 1 
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The Weibull lifetime model with randomised
failure-free time

Piotr Sulewski1, Magdalena Szymkowiak2

ABSTRACT

The paper shows that treating failure-free time in the three-parameter Weibull distribution
not a constant, but as a random variable makes the resulting distribution much more flexible
at the expense of only one additional parameter.

Key words: Weibull lifetime model, randomised failure-free time, compound Weibull dis-
tributions.

1. Introduction

In the reliability domain we routinely treat time to failure of a particular technical prod-
uct as a random variable. Finding the proper model that fits the reliability data is the main
problem of reliability engineers and applied statisticians. The Weibull distribution, which
has a particular significance in the reliability theory, is named after the Swedish physicist
Waloddi Weibull, who was the first to promote the usefulness of the distribution to model
reliability data sets of widely differing character (see, e.g. Weibull, 1951, and Murthy et al.,
2004).

Recall that the two-parameter Weibull distribution (2pW ) has the following cumulative
distribution function (cdf)

F2pW (t;a,b) = 1− exp
[
−
( t

a

)b
]

for t > 0 (1)

and the probability density function (pdf), based on (1), equal to

f2pW (t;a,b) =
b
a

( t
a

)b−1
exp
[
−
( t

a

)b
]

for t > 0, (2)

where a > 0 and b > 0 are the scale and shape parameters, respectively. The hazard (failure)
rate function (hrf) h(t) = f (t)

P(T>t) =
f (t)

1−F(t) , interpreted as the instantaneous failure rate of a
particular product occurring immediately after the time point t, given that the product has
survived until the time point t, has for 2pW , using (1) and (2), the following form

h2pW (t;a,b) = ba−btb−1 for t > 0.
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It can be increasing, decreasing or constant depending on b > 1, b < 1 or b = 1, respec-
tively. It is easy to note that in the last mentioned case, when b = 1, we get the exponential
distribution, the most standard distribution in the reliability theory, with a constant hazard
rate. It is a well-known fact that the constant hazard rate function h(t) = 1

a characterizes the
family of exponential distribution with scale parameter a.

Further, let us define another reliability function known as the aging intensity function
(aif) in the form

L(t) =
h(t)

1
t
∫ t

0 h(u)du
=

−t f (t)
[1−F(t)] ln[1−F(t)]

for t > 0, (3)

being the ratio of the instantaneous hazard rate to its average and expressing the product
average aging behaviour (see, e.g., Szymkowiak, 2018a). For 2pW it is constant

L2pW (t;a,b) = b for t > 0. (4)

This constant aging intensity L(t) = b characterizes the subfamily of the family of 2pW
with a fixed shape parameter b and varying scale parameter a ( Szymkowiak, 2020). More-
over, the aif equal to 1, L(t) = 1, characterizes the family of exponential distributions.

However, certain lifetime data (i.a., human mortality, machine life-cycles and some bi-
ological studies) require non-monotonic shapes of the hazard rate, e.g., a bathtub shape or a
unimodal (upside-down bathtub) shape. Therefore, many researchers have developed vari-
ous modified forms of the Weibull distribution to achieve non-monotonic shapes of hazard
function, i.a., Drapella, 1993, introduced the complementary Weibull distribution (2pCW ),
known also as the inverse Weibull distribution, with the following cdf

F2pCW (t;a,b) = exp
[
−
(a

t

)b
]

for t > 0.

Further extensive literature is also available on modifications of the standard Weibull
(see, e.g., Murthy et al., 2004, Almaki and Nadarajah, 2014, Lai, 2014), which in some
cases involve one or more additional parameters. For example, the exponentiated Weibull
distribution (2pEW ) with a bathtub hazard rate function has the following cdf

F2pEW (t;a,b,d) =
{

1− exp
[
−
( t

a

)b
]}d

for t > 0

with d > 0 being a new shape parameter ( Mudholkar and Srivastava, 1993).

To be precise, Waloddi Weibull introduced his distribution as a three-parameter model
3pW (known also as the shifted Weibull distribution) with an additional location parameter
τ ≥ 0 and the following cdf

F3pW (t;a,b,τ) = 1− exp

[
−
(

t − τ

a

)b
]

for t > τ, (5)
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pdf, based on (5), equal to

f3pW (t;a,b,τ) =
b
a

(
t − τ

a

)b−1

exp

[
−
(

t − τ

a

)b
]

for t > τ, (6)

and hrf, based on (5) and (6), equal to

h3pW (t;a,b,τ) = ba−b (t − τ)b−1 for t > τ.

Note that for a distribution with support (τ,+∞) we use a modified version of aif, known
as the support dependent aif (see Szymkowiak, 2018b)

Ls(t) =
h(t)

1
t−τ

∫ t
τ

h(u)du
=

(τ − t) f (t)
[1−F(t)] ln[1−F(t)]

, (7)

which for τ = 0 corresponds to the classical definition (3). Then, the subfamily of 3pW
distributions with fixed shape parameter b and location parameter τ , and varying scale pa-
rameter, a is characterized by constant support dependent aif

Ls
3pW (t;a,b,τ) = b for t > τ,

(compare formula (4)).
Figure 1 presents hrf (on the left) and support dependent aif (on the right) of the 3pW (a,b,τ)
for the scale parameter a = 1 and the location parameter τ = 1, and different values of shape
parameter b. As one can note hrf is decreasing for b< 1 and increasing if b> 1. When b= 1,
we get the shifted exponential distribution (see, e.g., Szymkowiak, 2020) with the constant
hrf. On the other hand, the support dependent aging intensity functions, shown in the figure
on the right, are constant, equal to b, for all b > 0.

Figure 1: hrf and aif of the 3pW

Under the assumption of 3pW distribution, none failure of the analysed product can
possibly occur prior to the time τ , therefore the location parameter τ is also referred to as
failure-free time or minimum life.
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In lifetime data analysis, first we try to find the proper model that best fits the data.
Parameter estimation is the second step of our modeling process. In three-parameter Weibull
distribution, the determination of a suitable location parameter τ is not a simple task.

The first and simplest τ estimate is τ̂ = t(1), where t(1) is the smallest value in the order
data set, or τ̂ = t(1)− 1

n , where n is a sample size (see, e.g., Murthy et al., 2004). O’Connor,
2012, suggested an alternative procedure to estimate the location parameter given by

τ̂ = t(2)−
(
t(3)− t(2)

)(
t(2)− t(1)

)(
t(3)− t(2)

)
−
(
t(2)− t(1)

) ,
where further on t(2) and t(3) are the second and third value in the order data set. Drapella,
1999, improved this method and also Kececioglu, 1991, discussed two other methods to
obtain estimates of τ .

In our paper, apart from the fact that we assume that the time to failure follows 3pW dis-
tribution, we also suggest that the failure-free time (location parameter) can be considered
as a new random variable. It allows this parameter to vary and makes the estimation model
more complex.

It is well-known fact (see, e.g., Qutb and Rajhi, 2016) that if X is a random variable
following the known parametrized distribution with pdf fX , and one of its parameters θ is
considered as a new random variable Y with a specified pdf fY then a compound random
variable T has a distribution with the following pdf

fT (t) =
∫

θ

fX (t|θ) fY (θ)dθ for t > 0, (8)

where fX (t|θ) is a conditional density function depending on the parameter θ .
The compound Weibull distribution with random parameters was introduced earlier, e.g.,

by Dubey, 1968, and Qutb and Rajhi, 2016, but as far as we know, its location parameter
has not yet been considered as being random.

The rest of our paper is organized as follows. In Section 2 the compound Weibull life-
time model with random failure free time is defined. In Section 3 four candidates for being
the distribution of the random location parameter are presented. Section 4 contains analysis
of three real lifetime data that compares the defined compound Weibull distributions with
the standard three-parameter one. The conclusions are presented in Section 5.

2. Failure-free time as random variable

In this section the Weibull lifetime model with random failure-free time denoted as
4pWY is defined. Its pdf, according to formula (8), has a form of the convolution integral,
namely

f4pWY (t;a,b,c,d) =
∫ t

0
f3pW (t;a,b,τ) fY (τ;c,d)dτ for t > 0, (9)

where fY is pdf of the failure-free time distribution with parameters c and d. For details
related to the above formula please consult any advanced textbook on probability theory,
e.g. Rossberg et al., 1985.
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Cdf of the 4pWY , based on (9), is given by

F4pWY (t;a,b,c,d) =
∫ t

0

[
1− exp

(
−
(

t − τ

a

)b
)]

FY (τ,c,d)dτ for t > 0, (10)

where FY is cdf of the failure-free time distribution with parameters c and d.
Hrf of the 4pWY , using (9) and (10), is obviously defined as

h4pWY (t;a,b,c,d) =
f4pWY (t;a,b,c,d)

1−F4pWY (t;a,b,c,d)
for t > 0, (11)

and aif of the 4pWY using (11) is given by

L4pWY (t;a,b,c,d) =
h4pWY (t;a,b,c,d)

1
t
∫ t

0 h4pWY (u;a,b,c,d)du
for t > 0. (12)

Regarding the calculations, unfortunately, there will not always be analytical formulas
to which (9)-(12) would be transformed. All applications of the 4pWY lifetime model will
often be numerical. Fortunately, this is not an obstacle these days. Anyone who decides to
use 4pWY to evaluate reliability must be equipped with a powerful computing environment.
Fortunately, we have Excel, Mathcad, Matematica, Matlab, Scilab, and maybe a few other
powerful, less known computing environments.

3. Four candidates for the failure-free time model

Now, four compound Weibull random variables with different distributions of the ran-
dom location parameter will be presented. As the first distribution of the random location
parameter we propose the Uniform distribution U(c,d) giving a smooth transformation from
3pW to the compound Weibull-Uniform distribution 4pWU . As the second very natural
candidate – we propose the Weibull distribution W (c,d). The next one will be the very
popular two-parameter Gamma distribution G(c,d) being the generalization of exponential,
Erlang and chi-square distributions. As the last one we use the Normal distribution N(c,d)
with possibly positive support.

For all the proposed models, their hrf and aif for different parameters are determined
and plotted (using formulas (11) and (12)). Determination of statistical measures of the
presented random variables, such as their ordinary and central moments, quantiles, etc., be-
cause of their complex distribution forms, is possible only with the numerical calculations.

3.1. Compound Weibull-Uniform distribution

The first candidate for the failure-free time model is a Uniform distribution on interval
[c−d,c+d] denoted U (c−d,c+d). For the purposes of the convolution integral (9) we
can write pdf of the U (c−d,c+d) using the Heaviside step function H in the form

fU (t;c,d) =
H (t − c+d)−H (t − c−d)

2d
for t > 0,c ≥ d
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where c > 0 and d > 0 are the position and scale parameters, respectively, as well as

H (x) =


0 for x < 0
0.5 for x = 0
1 for x > 0.

The Heaviside step function we can write as H (x) =
∫ x
−∞

δ (s)ds, where δ (x) is the
Dirac function. Let us define the Dirac function δ (t;τ) as

δ (t;τ) =

{
0 for t = τ

∞ for t ̸= τ.

The Dirac function fulfils, as any probability distribution, Normalization condition∫
∞

−∞
δ (t;τ)dt = 1. This function can also be defined as the limit of the sequence of

τ - centered Normal distributions, namely

lim
d→0

1√
2πσ

exp

{
−0.5

(
t − τ

σ

)2
}
.

Cdf of the U (c−d,c+d) calculated in the Mathematica software is defined as

FU (t;c,d) = I1 + I2,

where

I1 =
c+d − t − (c+d)H (−c−d)

2b
H (t − c−d) ,

I2 =
−c+d + t +(c−d)H (d − c)

2b
H (t − c+d) .

Let 4pWU(a,b,c,d) denotes the four parameters compound Weibull-Uniform distribu-
tion. Then pdf of this distribution, based on (9), is given by

f4pWU (t;a,b,c,d) =
b

2abd

∫ t

0

H (τ − c+d)−H (τ − c−d)

(t − τ)1−b exp
[( t−τ

a

)b
] dτ for t > 0. (13)

The integral in (13) is possible to be calculated, namely

f4pWU (t;a,b,c,d) = I1 + I2,

where

I1 =
b

2abd

∫ t

0

H (τ − c+d)

(t − τ)1−b exp
[( t−τ

b

)b
]dτ, (14)

I2 =
b

2abd

∫ t

0

H (τ − c−d)

(t − τ)1−b exp
[( t−τ

b

)b
]dτ. (15)
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Using the Mathematica software by (14) we obtain

I1 =
H (t +d − c)

[
1+ exp

[
−
( t+d−c

a

)b
]
[H (d − c)−1]− exp

[
−
( t

a

)b
]

H (d − c)
]

2d

and by (15), we get

I2 =
H (t −d − c)

[
1+ exp

[
−
( t−d−c

a

)b
]
[H (−c−d)−1]− exp

[
−
( t

a

)b
]

H (−c−d)
]

2d
.

It turns out that we can pass from 3pW (6) to 4pWU (13) smoothly. If d → 0, then the
4pWU tends to the 3pW (see Figure 2).

Figure 2: pdf of the 3pW and 4pWU

Cdf of the 4pWU , based on (13), is given by

F4pWU (t;a,b,c,d) =
1

2d

∫ t

0

[
1− exp

[
−
(

t − τ

b

)b
]]

× [H (τ − c+d)−H (τ − c−d)]dτ for t > 0.

Figure 3 presents hrf of the 4pWU(a,b,c,d) for various parameter values. For b = 0.5
(Figure 3, left) hrf increases very quickly and then decreases very slowly. The maximum
shifts to the right as d increases. For d = 0.75 (Figure 3, right) hrf increases slowly and then
decreases very quickly. The maximum shifts to the left as b increases.

Figure 4 presents aif of the 4pWU(a,b,c,d) for various parameter values. For a = 1,
b = 0.5, c = 1 regardless of the parameter d (Figure 4, left), aif (after some fluctuations for
small t) tends to a constant function. For a = 1, c = 1, d = 0.75 regardless of the parameter
b (Figure 4, right), aif decreases for small t and then also tends to a constant function.

To generate data that follows a compound Weibull-Uniform distribution we provide
that if T4pWU ∼ 4pWU (a,b,c,d) and TU ∼U (c−d,c+d) ,T2pW ∼ 2pW (a,b) ,R∼U (0,1)
then generator of T4pWU is given by the formula

T4pWU = T2pW +TU = a [− ln(1−R)]1/b +(c−d)+2dR.
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Figure 3: hrf of the 4pWU

Figure 4: aif of the 4pWU

3.2. Compound Weibull-Weibull distribution

The second candidate for the failure-free time model is the Weibull distribution with pdf
given by formula (2). Let 4pWW (a,b,c,d) denotes the four parameters compound Weibull-
Weibull distribution. Pdf of this distribution, based on (9), is given by

f4pWW (t,a,b,c,d) =
bd
∫ t

0
( t−τ

a

)b−1 ( τ

c

)d−1 exp
[
−
( t−τ

a

)b −
(

τ

c

)d
]

dτ

ac
t > 0. (16)

Cdf of the 4pWW , based on (16), is given by

F4pWW (t,a,b,c,d) =
b
∫ t

0

[
1− exp

[
−
(

τ

c

)d
]]( t−τ

a

)b−1exp
[
−
( t−τ

a

)b
]

dτ

a
t > 0

Figure 5 presents hrf of the 4pWW (a,b,c,d) for various parameter values. For d = 0.5
(see Figure 6, left) the hrf is a decreasing function. In other cases, the hrf increases strongly
and then slowly decreases. The larger the d, the higher the maximum. For b = 2 (see Figure
5, right) we obtain the inverse-bathtub hrf. For b = 1 the hrf is initially an increasing func-
tion and then remains constant.
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Figure 5: hrf of the 4pWW

Figure 6: aif of the 4pWW

Figure 6 presents aif of the 4pWW (a,b,c,d) for various parameter values. For a = 1,
b = 0.5, c = 1 regardless of the parameter d (Figure 6, left), aif decreases for small t and
tends to a constant function. Also, for a = 1, b = 2 or b = 1 and c = 1, regardless of the
parameter d (Figure 6, right), aif decreases for small t and then tends to a constant function.

To generate data that follows a compound Weibull-Weibull distribution we provide that
if T4pWW ∼ 4pWW (a,b,c,d), T2pW1 ∼ 2pW (a,b) ,T2pW2 ∼ 2pW (c,d) ,R ∼ U (0,1) then
the generator of T4pWW is given by the formula

T4pWW = T2pW1 +T2pW2 = a [− ln(1−R)]1/b + c [− ln(1−R)]1/d .

3.3. Compound Weibull-Gamma distribution

The third candidate for the failure-free time model is the Gamma distribution with pdf

fG (t;c,d) =
1

cdΓ(d)
td−1 exp

(
− t

c

)
for t > 0,

where c > 0,d > 0 are the scale and shape parameters, respectively.



68 P. Sulewski, M. Szymkowiak: The Weibull lifetime model...

Let 4pWG(a,b,c,d) denote the four-parameters compound Weibull-Gamma distribu-
tion then pdf of this distribution, based on (9), is given by

f4pWG (t;a,b,c,d) =
b
∫ t

0 (t − τ)b−1
τd−1 exp

[
− τ

c −
( t−τ

a

)b
]

dτ

abcdΓ(d)
for t > 0. (17)

Cdf of the 4pWG, based on (17), is given by

F4pWG (t;a,b,c,d) =

∫ t
0 τd−1 exp

[
− τ

c

][
1− exp

[
−
( t−τ

a

)b
]]

dτ

cdΓ(d)
for t > 0.

Decades pass, but the Weibull plotting technique remains irreplaceable in failure data
analysis. Therefore, Figure 7 shows appropriately transformed cdf of the 2pW , 3pW and
4pWG plotted on the Weibull probability paper. Of course, the transformed cdf of 2pW
appears as straight lines. In contrast, both transformed cdf of 3pW and of 4pWG appear
as curves convex upward. As a rule the transformed cdf of 4pWG is less convex then the
transformed cdf of 3pWG.

Figure 7: cdf of the 2pW , 3pW and 4pWG plotted on the Weibull probability paper

Figure 8 has been prepared to express artificiality the stepwise 3pW (denoted as ps0)
and compared it with the smooth 4pWG. Table 1 contains parameter values of the Gamma
component of the 4pWG used in Figure 8.

The 2pW and 3pW offer monotonic hazard rate functions, strictly decreasing or increas-
ing ones, always convex downward. In contrast, 4pWG offers much more flexible hrf that
may be non-monotonic and may have even two points of inflection. The main competitors
of the 4pWG are the Complementary Weibull distribution (see Rossberg et al., 1985) and
LogNormal distribution (see O’Connor, 2012). But they have two-parameter only. Let us
look closely at Figure 8. One can pick up something resembling Moivre-Laplace limit pro-
cess. Let us remember that when p → 0, n → ∞ and pn remains constant, the Binomial
distribution tends to the Poisson distribution. By similarity, when c → 0, d → ∞ and cd
remains constant, then 4pWG tends to 3pW (see Table 1).
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Table 1. Sets of parameters of the Gamma component of the 4pWG

Set of parameters ps0* ps1 ps2 ps3 ps4 ps5 ps6 ps7
c 0.2 0.2 0.1 0.05 0.033 0.025 0.02 0.01
d - 1 2 4 6 8 10 20

Figure 8: hrf of the 4pWG

Figure 9: aif of the 4pWG

Figure 9 presents aif of the 4pWG(a,b,c,d) for various parameter values. For a = 1,
b = 0.5 (Figure 9, left) or a = 1, b = 3 (Figure 9, right), regardless of the parameters c and
d, aif decreases for small t and tends to a constant function.

To generate data that follow a compound Weibull-Gamma distribution we provide that
if T4pWG ∼ 4pWG(a,b,c,d) and TG ∼ G(c,d) ,T2pW ∼ 2pW (a,b) then the generator of
T4pWG is given by the formula

T4pWG = T2pW +TG = a [− ln(1−R)]1/b +TG

The generator of TG, implemented in R software, for d ⩾ 1 and 0 < d < 1 is described
in Ahrens and Dieter, 1982, and Ahrens and Dieter, 1974, respectively.



70 P. Sulewski, M. Szymkowiak: The Weibull lifetime model...

3.4. Compound Weibull-Normal distribution

Many researchers may be tempted to replace the Gamma distribution with the Normal
distribution with pdf

fN (t;c,d) =
1√
2πd

exp

[
−0.5

(
t − c

d

)2
]

for t > 0,

where c > 0,d > 0 are the position and scale parameters, respectively (to ensure that Nor-
mal distribution has positive support – the failure-free time should not be negative – using
the three-sigma rule we assume that c > 3.3d). The argument was that when the shape
parameter d increases, then the Gamma distribution tends to the Normal distribution. It
directly proceeds from Lindeberg-Levy Limit theorem. Such a replacement of the Gamma
distribution with the Normal one, has both advantages and disadvantages.

The advantages are:

• Firstly, one can skip this strong assumption that between-two-portions time interval
follows the exponential distribution. Taking the Central Limit Theorem of Lapunov
as a base, one can admit that particular intervals follow different distributions.

• Secondly, applying the Normal distribution as that between-two-portions time interval
distribution, one makes 4pWN more flexible. It is because the mean value E (t) and
variance D(t) of the Gamma distribution are strongly interrelated because E (t) = cd,
D(t) = cd2.

• Thirdly, the problem of interpretation of non-integer d value disappears.

The disadvantages are:

• Firstly, the moments mentioned above are to some extent interrelated. It is because
the value of the coefficient of variation γ0 = D(t)/E (t) has to be carefully chosen
for probability of negative t values to be negligible, for instance γ0 has to be kept not
greater than 1/3.

• Secondly, it is true that the left-censored Normal distribution can alternatively be
applied, and values of E(t) and D(t) can be freely set, but then the threshold function,
that we wanted to eliminate, returns.

Let 4pWN(a,b,c,d) denotes the four-parameters compound Weibull-Normal distribu-
tion. Then, pdf of this distribution, based on (9), is given by

f4pWN (t;a,b,c,d) =
b√

2πad

∫ t

0

(
t − τ

a

)b−1

(18)

× exp

[
−1

2

(
τ − c

d

)2

−
(

t − τ

a

)b
]

dτ for t > 0, c > 3.3d.
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Cdf of the 4pWN, using (18), is given by

F4pWN (t;a,b,c,d) =
b
∫ t

0 Φ
(

τ−c
d

)( t−τ

a

)b−1exp
[
−
( t−τ

a

)b
]

dτ

a
for t > 0, c > 3.3d,

where Φ is cdf of the standard Normal distribution.

Figure 10: hrf of the 4pWN

Figure 11: aif of the 4pWN

Figure 10 presents hrf of the 4pWN(a,b,c,d) for various parameter values. For b = 0.5
(see Figure 10, left) hrf increases very quickly and then decreases very slowly. The maxi-
mum shifts to the right as d increases. Figure (10,right) presents an upside-down bathtub-
shaped hrf except the case b = 1. Then, initially hrf increases and then remains constant.

Figure 11 presents aif of the 4pWN(a,b,c,d) for various parameter values. For a = 1,
b = 0.5, c = 1, regardless of the parameter d (Figure 11, left), aif (after some fluctuations
for small t) tends to the constant function. For a = 1, c = 1, d = 0.25, regardless of the
parameter b (Figure 11, right), aif decreases for small t and tends to the constant function.

To generate data that follows a compound Weibull-Normal distribution we provide that
if T4pWN ∼ 4pWN (a,b,c,d) and TN ∼ N (c,d) ,T2pW ∼ 2pW (a,b) ,R ∼ U (0,1) then the
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generator of T4pWN is given by the formula

T4pWN = T2pW +TN = a [− ln(1−R)]1/b +Φ
−1 (R,c,d) ,

where Φ−1 is the inverse cdf of the Normal distribution implemented in R software (see
Wichura, 1988).

At the end of this section, let us mention that any infinitely divisible (stable) probability
distribution (see Seidel, 2010) with the positive support would be a good candidate for the
failure-free time model. The only problem is to determine basic statistical functions for
such a candidate.

4. Real lifetime data analysis

To demonstrate the flexibility and applicability of the new compound models in lifetime
data analysis we consider three real data examples. Among the known random variables, the
standard 3pW distribution seems to be the most natural choice for comparing the goodness-
of-fit approach of the proposed models.

Example 1 is devoted to 33 operating times (in hours) of the first phase of the construc-
tion machine: 0.25, 9.25, 17.75, 22, 22.25, 22.5, 22.5, 23, 23.25, 30.25, 35.75, 41.75, 42.5,
48.75, 49.75, 51, 58.75, 63, 68.25, 72.5, 75.5, 127.5, 138.5, 140.5, 141, 146.5, 173, 193.5,
218.25, 237.5, 257.75, 312, 352 (see, e.g., Mahmood, 2021, Saffawy and Algmal, 2006).

Example 2 concerns leukaemia free survival times (in months) of 51 autologous trans-
plant patients: 0.658, 0.822, 1.414, 2.500, 3.322, 3.816, 4.737, 4.836, 4.934, 5.033, 5.757,
5.855, 5.987, 6.151, 6.217, 6.447, 8.651, 8.717, 9.441, 10.329, 11.480, 12.007, 12.007,
12.237, 12.401, 13.059, 14.474, 15.000, 15.461, 15.757, 16.480, 16.711, 17.204, 17.237,
17.303, 17.644, 18.092, 18.092, 18.750, 20.625, 23.158, 27.730, 31.184, 32.434, 35.921,
42.237, 44.638, 46.480, 47.467, 48.322, 56.086 (see, e.g., LaiXie, 2006).

Example 3 refers to survival times (in days from diagnosis) of 43 patients suffering
chronic granulocytic leukaemia: 7, 47, 58, 74, 177, 232, 273, 285, 317, 429, 440, 445, 455,
468, 495, 497, 532, 571, 579, 581, 650, 702, 715, 779, 881, 900, 930, 968, 1077, 1109,
1314, 1334, 1367, 1534, 1712, 1784, 1877, 1886, 2045, 2056, 2260, 2429, 2509 (see, e.g.,
Lai and Xie, 2006).

To estimate parameters of the considered models, in addition to commonly known es-
timation tools such as the maximum likelihood (not quite adequate in the case of three-
parameter Weibull distribution, (see e.g. Murthy et al., 2004, Lam, 2010, Ramakrishnan,
2017, Park, 2018) or least squares methods, also goodness-of-fit tests can be used. For ex-
ample, Kendall and Stuart, 1961 presented the minimum chi-square test statistic method in
parameter estimation. Moreover, Weber, 2006, used the minimum Kolmogorov–Smirnov
test statistic method to estimate the distribution parameters. In our analysis we apply the
latter tool.

To avoid local maxima, the optimization routine was run with several different starting
values that are widely scattered in the parameter space. The p-values for a given model
were calculated as follows. Let Θ be the vector of model parameters. Having estimated
parameters vector Θ̂ for a given sample of size n, we calculate test statistics T

(
Θ̂,n

)
. Next,
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we generate 104 samples of size n for the given model with the estimated parameters vector
Θ̂. For each obtained sample s, we calculated the T s

i

(
Θ̂,n

)
. Finally, the p-value is given

by (see e.g. Balakrishnan and Ristic, 2016)

p ≈ #
{

i : T s
i

(
Θ̂,n

)
> T

(
Θ̂,n

)}
10−4

Tables 2–4 present the estimated parameters of the analysed models, test statistics and
p-values (in parentheses) calculated by the Kolmogorov-Smirnow (KS), Anderson-Darling
(AD) and Cramer von Mises (CVM) tests. The lowest statistics values (the highest p-
values) are noted in bold. The determined values show that for all the exemplary lifetime
data sets, there are some compound Weibull distributions that fit better to the data then the
standard three-parameter Weibull distribution 3pW . For the first data set, two tests point
to the compound Weibull-Gamma distribution, 4pWG, as the distribution that best fits the
data, and one test points to the compound Weibull-Weibull distribution, 4pWW , as the best
one (see Table 2). Further, for the second data set, all the tests point to the compound
Weibull-Weibull distribution, 4pWW , as the distribution that best fits the data (see Table 3).
Finally, for the third data set, two tests point to the compound Weibull-Uniform distribution,
4pWU , and one test points at the compound Weibull-Weibull distribution, 4pWW , as the
best models (see Table 4).

Table 2. Goodness-of-fit tests. Example 1
Model Estimated parameters KS AD CVM
3pW â = 96.91, b̂ = 1.045, τ̂ = 0.06 0.1(0.864) 0.543(0.698) 0.082(0.673)

4pWU â = 90.48, b̂ = 0.92, ĉ = 5.76, d̂ = 5.81 0.094(0.910) 0.513(0.727) 0.062(0.810)
4pWW â = 90.90, b̂ = 0.93, ĉ = 4.71, d̂ = 0.79 0.095(0.901) 0.496(0.747) 0.067(0.764)
4pWG â = 80.90, b̂ = 0.69, ĉ = 4.99, d̂ = 2.87 0.083(0.962) 0.660(0.586) 0.045(0.901)
4pWN â = 91.15, b̂ = 0.93, ĉ = 5.55, d̂ = 0.92 0.094(0.913) 0.994(0.359) 0.064(0.793)

Table 3. Goodness-of-fit tests. Example 2
Model Estimated parameters KS AD CVM
3pW â = 15.92, b̂ = 1.20, τ̂ = 0.64 0.076(0.910) 0.673(0.580) 0.071(0.746)

4pWU â = 15.56, b̂ = 1.29, ĉ = 0.48, d̂ = 0.50 0.071(0.945) 0.542(0.713) 0.065(0.797)
4pWW â = 13.90, b̂ = 1.32, ĉ = 0.36, d̂ = 0.28 0.070(0.946) 0.469(0.778) 0.062(0.802)
4pWG â = 14.64, b̂ = 1.12, ĉ = 1.77, d̂ = 0.99 0.074(0.928) 0.573(0.678) 0.066(0.776)
4pWN â = 15.50, b̂ = 1.17, ĉ = 1.03, d̂ = 0.21 0.075(0.921) 0.836(0.459) 0.070(0.759)

Table 4. Goodness-of-fit tests. Example 3
3pW â = 993.19, b̂ = 1.18, τ̂ = 4.37 0.08(0.928) 0.435(0.812) 0.048(0.891)

4pWU â = 984.62, b̂ = 1.18, ĉ = 4.85, d̂ = 4.5 0.077(0.949) 0.431(0.834) 0.047(0.908)
4pWW â = 993.61, b̂ = 1.18, ĉ = 0.96, d̂ = 1.5 0.077(0.943) 0.392(0.866) 0.046(0.901)
4pWG â = 957.54, b̂ = 1.18, ĉ = 3.55, d̂ = 0.4 0.088(0.863) 0.403(0.847) 0.047(0.892)
4pWN â = 991.98, b̂ = 1.17, ĉ = 4.94, d̂ = 0.6 0.077(0.941) 0.428(0.817) 0.046(0.904)
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5. Conclusions

In the paper, the failure-free time, being the location parameter of the shifted Weibull
distribution, was proposed to be treated as a random variable. We defined four compound
Weibull distributions with the location parameter having Uniform, Weibull, Gamma and
Normal distribution, respectively. Using these proposed models the analysis of three real
lifetime data sets were performed. The received results showed that the new models fit
better the data under consideration that the standard three-parameter Weibull distribution.

However, anyone who will decide to use any of the proposed compound Weibull dis-
tributions in data analysis has to be equipped with a powerful computational environment.
Luckily, nowadays it is not a problem since we have Excel, Mathcad, Mathematica, Matlab,
Scilab and maybe some other not so widely known computational tools.
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Robustness of randomisation tests as alternative analysis methods 
for repeated measures design 
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ABSTRACT 

Randomisation tests (R-tests) are regularly proposed as an alternative method of hypothesis 
testing when assumptions of classical statistical methods are violated in data analysis. In this 
paper, the robustness in terms of the type-I-error and the power of the R-test were evaluated 
and compared with that of the F-test in the analysis of a single factor repeated measures 
design. The study took into account normal and non-normal data (skewed: exponential, 
lognormal, Chi-squared, and Weibull distributions), the presence and lack of outliers, and 
a situation in which the sphericity assumption was met or not under varied sample sizes and 
number of treatments. The Monte Carlo approach was used in the simulation study. 
The results showed that when the data were normal, the R-test was approximately as 
sensitive and robust as the F-test, while being more sensitive than the F-test when data had 
skewed distributions. The R-test was more sensitive and robust than the F-test in the 
presence of an outlier. When the sphericity assumption was met, both the R-test and the  
F-test were approximately equally sensitive, whereas the R-test was more sensitive and
robust than the F-test when the sphericity assumption was not met.

Key words: randomisation test, repeated measures design, sensitivity, robustness, Monte 
Carlo. 

1. Introduction

Research in many areas of application as affirmed by Ma et al. (2012) normally
involves study plans in which measurements or responses are repeatedly obtained from 
an experimental unit (EU). According to Davis (2002), repeated measurements refer 
broadly to data in which the response of each experimental unit or subject is observed 
on multiple treatment conditions or time points. Repeated measures design (RMD) 
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is an experimental design that involves multiple measures of the same variable(s) taken 
on the same EU either under different treatment conditions or over two or more time 
periods (Kreuger and Tian, 2004).The major advantage of RMD is that it uses exactly 
the same individuals or subjects in all treatment conditions thereby eliminating the 
influence of individual differences from the analysis and also being economical in the 
use of resources and enabling the subjects to be their own control as measurements are 
taken under both control and other experimental conditions (Reed III, 2003; Howitt 
and Cramer, 2011). 

An approach to RMD data analysis is the repeated measures analysis of variance 
(RM ANOVA) that is based on the F-test statistic which has assumptions that must be 
met to ensure valid results are obtained from the analysis and therefore is limited in its 
application (Dragset, 2009). The assumptions include random sampling of EU from the 
population, normality of responses, and equality of all pairwise differences in variance 
between experimental conditions called sphericity (Girden, 1992, Lindman, 1992). The 
F-test is a statistical test in which the sampling distribution of the test statistic has an  
F-distribution when the null hypothesis is true (Oladugba et al., 2014). In statistical 
analysis, if the assumptions for any parametric test cannot be satisfied, there is risk of 
passing invalid inference if such test is deployed. So, researchers either transform the 
response data so that the resulting variable meets the conditions of the intended test to 
be used or resort to a different test such as the non-parametric test, which is not affected 
by the assumptions of the parametric test (Zimmerman and Zumbo, 1990) but 
transformation of data according to Sawilowsky et al. (1989) can have poor power 
properties.  Also, the use of ranks in nonparametric tests leads to loss of information, 
thus the researchers cannot rely with high confidence level on ranking or 
transformation of data as an alternative to the F-test when its assumptions are not met 
(Gleason, 2013). 

Randomization test (R-test) or permutation test can provide excellent solutions in 
the presence of unsuitable conditions for the use of the F-test or when the researchers 
want to maintain the use of the original data. The R-test is a way of hypothesis testing 
that can be deployed for analysis of experimental data when assumptions of parametric 
tests are not tenable (Edgington, 1995; Kherad-Pajouh and Renaudi, 2014).  It provides 
an efficient approach to hypothesis testing. In other words, the R-test is perceived as an 
alternative method to data analysis in conditions when assumptions of parametric 
procedures are not met (Craig and Fisher, 2019; Berry et al., 2018). R-test performs well 
in conditions not favourably for the F-test and is as sensitive and robust as the  
F-test when parametric test assumptions are met (Mundry, 1999; Mewhort, 2005; 
Mewhort et al., 2010).  

Since the validity of any statistical inference depends largely on satisfaction of the 
assumptions of the underlying model, researchers should not anticipate any statistical 
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test to be the most appropriate in any situation but rather subject proposed statistical 
test to scrutiny to ensure it is better than other alternatives in terms of sensitivity and 
robustness (Peres-Neto and Olden, 2001). The sensitivity of a test is the ability of a test 
to make right decision vis-à-vis rejection or acceptance of a hypothesis also known as 
power of a test; it is greatly influenced by sample size and presence of outliers (Cohen, 
1988) and assumption of sphericity (constant variance) for RMD (Dragset, 2009) while 
robustness, on the other hand, refers to the ability of a test to yield correct conclusion 
or perform optimally in terms of controlling the type-I-error (p) that is not to falsely 
detect an effect when some of the distributional assumptions  are not met or under 
unfavourable conditions (Vorapongsathorn et al., 2004). 

Hence, this paper used the R-test to analyse the RMD and compared the results to 
that of the F-test in order to find out which was more sensitive and robust under the 
conditions that data are normal and non-normal (exponential, lognormal, Chi-square, 
and Weibull distributions), in the absence and presence of outliers, when sphericity 
assumption was met or not in variant number of treatments and sample sizes. 

2.  Materials and methods 

2.1. Material 

The data presented in Table 1 were obtained from Gravetter and Wallnau (2007). 
The responses generated from the study were based on the time (in seconds) lapsed 
until participants reported they felt nothing called latency when a stimulus  
(of 500-milligram weight) was gently placed on a region of the body. The study 
compared the adaptation for four regions of the body for a sample of 7 participants.  

Table 1.  Data on sensory adaption experiment 

 Area of stimulation (Treatment) 
Subjects Back of hand Lower back Middle of Palm Chin below lower Lip 

1 6.5 4.6 10.2 12.1 
2 5.8 3.5 9.7 11.8 
3 6.0 4.2 9.9 11.5 
4 6.7 4.7 8.1 10.7 
5 5.2 3.6 7.9 9.9 
6 4.3 3.5 9.0 11.3 
7 7.4 4.8 10.8 12.6 

2.2. The F-test method for analysis of single factor RMD 

The F-test procedure for hypothesis testing in analysis of RMD involves computing 
the F-statistic associated with the problem. In this section, the model, ANOVA table 
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presented in Table 2 and the F-test procedures for analysing single factor RMD are 
defined as follows. 

The model for this design is defined as: 

ij i j ijy            i = 1, 2, …, n; j = 1, 2, …, t 

∑ τ୨ 
௧
௝ୀଵ ൌ 0; βi ~ N(0, 2

 ); εij ~ N(0, 2
 ) 

where, yij is the response from the ith subject at treatment j; μ is the grand mean; τj is the 
fixed effect of the jth treatment (the treatments are assumed to have fixed effects thus 
the zero-sum constraint); βi is the random effect for ith subject and εij is a random error 
component specific to ith subject at jth treatment.  

Table 2.  ANOVA table for single factor RMD 

Source of Variation SS df Mean Square F0 

Subject  SSB n -1 MSS  
Treatments SST t – 1 MST 𝑀𝑆்

𝑀𝑆ா
 

Error  SSE (t - 1)(n - 1) MSE  
Total SST tn – 1   

where MSS = ௌௌಳ
௡ିଵ

; MST = ௌௌ೅
௧ିଵ

; MSE = ௌௌಶ
ሺ௧ିଵሻሺ௡ିଵሻ

. The sums of squares are then defined as 
follows: 

SST = ∑ ∑ ሺ𝑦ത.௝ െ  𝑦ത..ሻ
௧
௝ୀଵ

௡
௜ୀଵ

2; SSS = ∑ ∑ ሺ𝑦ത௜. െ  𝑦ത..ሻ
௧
௝ୀଵ

௡
௜ୀଵ

2; SSE = ∑ ∑ ሺ𝑦௜௝ െ
௧
௝ୀଵ

௡
௜ୀଵ

𝑦ത௜. െ 𝑦ത.௝ െ  𝑦ത..ሻ2 

2.3. Randomization test procedure 

The hypothesis to be tested is: 
Ho:  the different treatments had the same effect vs H1: there is a differential effect of 

 at least one treatment 

α = 0.05 

Test statistic 
Here, F-statistic was used as the test statistic. It summarizes the differences between 

means and eliminates the effects of between-subject variability.  

Procedure 
With repeated measures, we permute the data within subject. If there is no effect of 

treatments, then the set of scores from any subject can be exchanged across treatments.  
The steps are as follows: 
 Compute the F-statistic for the original data, and denote that as Fcal. 
 Permute the data within each subject, and do it for every subject. 
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 Calculate an F-statistic for each of the permuted data. 
 If this F-statistic is greater than Fcal, increment the counter. 
 Repeat the preceding three steps B times, where B ≥ 10,000. 
 Divide the value in the counter by B to obtain the probability of obtaining an  

F-statistic as large as Fcal if the null hypothesis were true. Denote this value as 
empirical type-I-error (p-value). 

 Reject the null hypothesis of no difference due to treatment if p-value is less than 
our chosen level of significance. 

2.4. Randomization test procedure for RMD 

The R-test for analysing single factor RMD involves the following procedures. 
Compute a test statistic that sufficiently explains the experimental data (the F-statistic 
in this case) for the data in Table 1. Afterwards, the data are rearranged within the 
subject repeatedly and the test statistic is recomputed for all resultant data 
permutations. Randomization test uses the obtained results from all data permutations 
and the original result of the experiment to form a reference set which is used to decide 
the significance of the test. The fraction of the data permutation in the reference set 
having test statistic values greater than or equal to the value obtained from the original 
results before data were permuted is the type-I-error (significance or probability value).  

In permuting data in RMD, Edgington (1995) proposed two schemes, namely 
systematic and random permutation schemes. In this paper, the random permutation 
scheme was adopted and carried out in the following way. Firstly, the data are arranged 
in a table with k columns and n rows, where k is the number of treatments and n is the 
number of subjects. An index number 1 to n was assigned to the subjects and 1 to k to 
the treatments, so that each measurement has associated with it a compound index 
number, the first part which indicates the subject and the second indicates the 
treatments. Accordingly, index (2, 3) for instance referred to the measurement for the 
second person under the third treatment. Then a random number generation algorithm 
was used to randomly determine for each subject independently of the other subjects 
which of the k measurements is to be assigned to the first treatment, which of the 
remaining k-1 measurements to the second treatment, and so on. The random 
determination of order of measurements within each subject performed over all 
subjects constitutes a single permutation or arrangement of the data. The arrangement 
is repeated for a large number of times like 10,000 permutations, and for each 
permutation, the test statistic is computed. The p-value is computed as the number of 
the test statistic value, including the obtained test statistics values that are as large as the 
obtained test statistics value.  
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2.5.  Outlier detection and sphericity assumption 

Outliers were randomly injected into the dataset in Table 1, and Tukey’s method of 
outlier detection as explained by Songwon (2006) was used in detecting them. One of 
the ways to test for sphericity in RMD is the use of Mauchly’s test. Mauchly’s test tests 
the hypothesis that the variances of the differences between any two conditions are 
equal. Thus, if the significance level of Mauchly’s test is less than or equal to the alpha 
level, sphericity is violated. Mauchly's test of sphericity in SPSS version 22 was used to 
verify this condition. 

2.6.  Monte Carlo Simulation 

In order to analyse RMD with the R-test and the F-test so as to check their 
robustness, a Monte Carlo simulation was conducted using RMD in Table 1 with n = 7 
subjects and t = 4 treatments. Three variables were manipulated: (i) sample sizes (n); 
(ii) number of treatments (t); and (iii) distribution structure of the data (normal, 
exponential, lognormal, Chi-square and Weibull distributions). The performance of 
the two tests was investigated with three sample conditions n = 5, 7, and 9, and three 
treatment conditions t = 3, 4, and 5, under 5 distributional structures of the data in the 
presence and absence of outliers and when sphericity assumption is met or not, 
respectively.  

The R statistical package was used to implement the Monte Carlo technique 
sampling of 10,000 permutations from the possible (t!)n permutations for the R-test. 
In the simulation, the experiment was repeated 1000 times for each distribution. In each 
repetition, the resulting tables of data set were analysed appropriately using the F-test 
and the R-test methods to obtain the rate of type-I-error and power. The percentage of 
significant tests out of 10,000 iterations was considered as the rejection rate.  

The comparison procedures were considered in two scenarios. Firstly, in the 
scenario that the null hypothesis (H0: μi = 0) is true, the rejection rate of the null 
hypothesis was regarded as the type-I-error rate for each test. The test that had the 
closest type-I-error to the nominal α = 0.05 was considered as the more robust of the 
two. Secondly, in the scenario that the alternative hypothesis (Ha: μi ≠ 0) was true, the 
rejection rate of the null hypothesis was considered as the power for each test. The test 
that had larger power was taken to be more sensitive than the other.  

2.7. Distribution structure of data 

Data were simulated from five theoretic distributions. The normal distribution was 
used to test condition under which normality assumption holds. The skewed 
distributions used include Chi-square, exponential, lognormal, and Weibull 
distributions; this represents condition under which the distribution assumption 
(normality) does not hold. The probability density function of the five distributions is 
defined as follows. 
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(a) Normal distribution 
The normal distribution has probability density function (pdf) as 

f(x) = ଵ

ఙ√ଶగ
𝑒ି

ሺೣషഋሻమ

మ഑మ  ,     , 0  , 0x   

The parameters (μ and σ2) of the normal distribution were estimated using the 
maximum likelihood estimators (MLE). For the normal distribution, data were 
simulated using mean, 𝑥̅ = 7.7250 and variance, σ2= 9.1180, of the experimental data. 

 
(b) Exponential distribution 

The exponential distribution has pdf with parameter θ is given by  
𝑓ሺ𝑥ሻ ൌ

ଵ

ఏ
𝑒ି

ೣ
ഇ , 0, 0x    

Data were simulated to follow the exponential distribution using the MLE of the 
exponential distribution parameters obtained as 𝜃෠= 7.7250 as fitted using fitdistrplus 
package in R statistical computing. 

 
(c) Chi-square distribution 

The pdf of Chi-square distribution with parameter n, is given as 
2

2

1 /2

2

( ) ,  0
2 ( )

n

n

x

n

x e
f x x

 

 


 

Using fitdistrplus package in R statistical computing, the parameter of the  
Chi-square distribution,  
n = 4.559 ~ 5, was used for simulation of data where n is the mean of Chi-square 
distribution. 
 
(d) Lognormal distribution  

The pdf for the two-parameter (μ and σ2) lognormal distribution is 

f (X|μ,𝜎ଶ) = ଵ

௑ඥሺଶగఙమሻ
𝑒
ି൤

ሺౢ౤ሺ೉ሻషഋሻమ

మ഑మ
൨ ,           X > 0, -∞ < μ < ∞, σ > 0 

The MLE of μ and σ2 were obtained as: 

𝜇̂ = ∑ 𝒍𝒏 ሺ𝑿𝒊ሻ
𝒏
𝒊స𝟏

௡
 = 7.7880 and 𝜎ො2 = 

൬∑ ሺ𝒍𝒏 ሺ𝑿𝒊ሻି
∑ 𝒍𝒏 ൫𝑿𝒊൯
𝒏
𝒊స𝟏

𝒏
𝒏
𝒊స𝟏 ൰

𝟐

௡
 = 12.0120 

 
(e) Weibull distribution 

The two-parameter Weibull distribution has pdf given as  
1

( )
( / , )

kk
xk x

f x k e 
 


   
 

, 0x  , 0, 0k    
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Data were simulated using the MLE of the Weibull distribution parameters 
obtained as k = 7.020 and λ      = 9.10 as fitted using fitdistrplus package in R statistical 
computing. 

3.  Results 

In Tables 3, 4, 5 and 6, the simulation results (type-I-error and power) for the  
F-test and the R-test based on the three manipulated variables (sample size, number of 
treatments and distribution structure of the data) are presented. Following from the 
methods mentioned in Section 2 as implemented in R Statistical package, for each 
sample size, the optimal values of the type-I-error and power were recorded. 
The sample size was denoted as n, the values in bracket indicate the number of 
treatment (t) that produced optimal type-I-error and highest power as the number of 
treatments were varied. The values in bold are either the optimal type-I-error or the 
highest power for each of the test. 

Table 3 shows the type-I-error of the F-test and the R-test for the data in the absence 
of outliers. The results indicated that as n increased, type-I-error decreased for data 
with normal distribution, for Chi-square, lognormal, exponential and Weibull, 
it initially increased but afterwards decreased for the F-test while the R-test produced 
type-I-error that increased as n increased under the normal distribution but reduced as 
n increased for Chi-square, exponential and Weibull, while for data with lognormal 
distribution, the type-I-error decreased as n decreased. On the other hand, the power 
values for the normal data decreased initially but later increased as the sample size 
increased, it increased initially and subsequently decreased for Chi-square and Weibull 
distributions for the F-test and increased for exponential and lognormal data 
distributions. The R-test on the other hand had increasing power as n increased for 
exponential, Weibull, and Chi-square but had an increasing trend for lognormal 
although with a slight initial decrease at n = 7. When outliers were introduced, the type-
I-error and power values are presented in Table 4. The results indicated that type-I-
error for the F-test under all the data distributions had a decreasing trend as n increased 
but an increasing trend for Weibull distribution. Furthermore, the power for the F-test 
exhibited a slight decreasing trend for Chi-square and lognormal, while it increased for 
normal, exponential and Weibull as n increased. On the other hand, the power values 
of the R-test for all data distribution were increasing as sample size increased. 

The results for when sphericity assumption was met are displayed in Table 5. 
The type-I-error for the F-test in this table revealed that as n increased, normal and 
exponential data distributions initially had a slight increasing trend but substantially 
increased afterwards for Weibull data distribution while a decreasing trend was 
observed for Chi-square and lognormal data distribution. The results of sphericity 
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assumption not met as displayed in Table 6 showed that type-I-error and power for 
both tests decreased for all distributions as the sample size increased. 

 

Table 3.  Simulation results (type-I-error and power) for F-test and R-test in the absence of outliers 

                             type-I-error  Power 

Distribution n (t) F-test R-Test F-test R-Test 

Normal  5(5) 0.0500 0.0429 0.9437 0.9226 
 7(4) 0.0428 0.0546 0.9122 0.9179 
 9(5) 0.0408 0.0595 0.9914 0.9805 
Exponential  5(5) 0.0725 0.0501 0.7093 0.9032 
 7(4) 0.1442 0.0613 0.7528 0.9211 
 9(5) 0.0611 0.0581 0.7828 0.9469 
Lognormal 5(5) 0.0413 0.0593 0.7229 0.8534 
 7(5) 0.0662 0.0439 0.7237 0.8629 
 9(5) 0.0599 0.0490 0.8009 0.8979 
Chi-square 5(4) 0.0705 0.0524 0.6184 0.7528 
 7(4) 0.1009 0.0687 0.6729 0.7367 
 9(5) 0.0704 0.0591 0.5646 0.8086 
Weibull 5(5) 0.0849 0.0640 0.5256 0.7439 
 7(5) 0.1225 0.0580 0.6804 0.7811 
 9(5) 0.0783 0.0441 0.5959 0.8724 

 

Table 4.  Simulation results (type-I-error and power) for F-test and R-test in the presence of outliers 

                             type-I-error  Power 

Distribution n (t) F-test R-Test F-test R-Test 

Normal  5(4) 0.1029 0.0699 0.5790 0.7498 
 7(4) 0.0824 0.0601 0.5617 0.8209 
 9(5) 0.0873 0.0588 0.5869 0.7998 
Exponential  5(5) 0.2018 0.0566 0.5958 0.7909 
 7(5) 0.0755 0.1003 0.6963 0.7304 
 9(5) 0.1046 0.0708 0.5540 0.8202 
Lognormal 5(5) 0.0815 0.0597 0.6876 0.7588 
 7(5) 0.1174 0.0632 0.6011 0.6901 
 9(5) 0.0792 0.0512 0.5906 0.8094 
Chi-square 5(4) 0.2171 0.0696 0.5377 0.8132 
 7(4) 0.1024 0.0741 0.5213 0.7995 
 9(5) 0.0843 0.0516 0.6628 0.8180 
Weibull 5(5) 0.0818 0.0536 0.5448 0.7800 
 7(5) 0.1032 0.0684 0.5994 0.7468 
 9(5) 0.0929 0.0684 0.5834 0.7933 
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Table 5.  Simulation results (type-I-error and power) for F-test and R-test with sphericity assumption 
met 

                         type-I-error  Power 

Distribution n (t) F-test R-Test F-test R-Test 

Normal  5(4) 0.0506 0.0420 0.9637 0.9024 
 7(5) 0.0431 0.0446 0.9202 0.9231 
 9(5) 0.0521 0.0511 0.9884 0.9531 
Exponential  5(4) 0.1011 0.0429 0.8663 0.9001 
 7(5) 0.1502 0.0559 0.8818 0.8965 
 9(5) 0.0841 0.0523 0.9212 0.9045 
Lognormal 5(4) 0.0706 0.0462 0.8291 0.8088 
 7(5) 0.0762 0.0518 0.8119 0.8321 
 9(5) 0.0699 0.0442 0.8921 0.8899 
Chi-square 5(5) 0.0589 0.0493 0.6610 0.8011 
 7(5) 0.1209 0.0621 0.6690 0.7822 
 9(5) 0.1022 0.0489 0.6710 0.8399 
Weibull 5(4) 0.0820 0.0531 0.5006 0.7877 
 7(4) 0.1015 0.0429 0.5094 0.8807 
 9(5) 0.1183 0.0401 0.5009 0.8991 

 

Table 6.  Simulation results (type-I-error and power) for F-test and R-test with sphericity assumption 
not met 

                             type-I-error  Power 

Distribution n (t) F-test R-Test F-test R-Test 

Normal  5(5) 0.1112 0.0612 0.6821 0.8080 
 7(5) 0.1230 0.0610 0.5417 0.8526 
 9(5) 0.0811 0.0588 0.6809 0.8595 
Exponential  5(4) 0.2074 0.0640 0.5958 0.8522 
 7(5) 0.0603 0.0595 0.4993 0.8032 
 9(5) 0.1032 0.0467 0.6240 0.8704 
Lognormal 5(4) 0.1401 0.0531 0.4876 0.7863 
 7(5) 0.0631 0.0699 0.4211 0.7902 
 9(5) 0.0503 0.0518 0.5906 0.8186 
Chi-square 5(5) 0.0813 0.4040 0.5307 0.7863 
 7(5) 0.1109 0.0601 0.5213 0.8039 
 9(5) 0.0705 0.0517 0.6028 0.7995 
Weibull 5(4) 0.1207 0.0485 0.5448 0.7904 
 7(4) 0.0779 0.0590 0.5994 0.8002 
 9(5) 0.1052 0.0508 0.5891 0.7808 
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4. Discussion of results 

The R-test and the F-test were used to analyse RMD with and without outlier and 
sphericity respectively. From the results, under the normal assumption, the type-I-error 
of both tests was within limits regarded as being robust with the F-test producing 
a better value at n = 5 (p = 0.05) while the power of both the F-test and R-test was very 
high (0.9914 and 0.9805 respectively) and it increased as the sample size and the 
number of treatments increased. This implies that both tests were approximately 
equally sensitive and robust under normal assumption. For the exponentially 
distributed data, as the sample size increased, the optimal type-I-error for the F-test was 
at n = 9, t = 5 (p = 0.0611) and n = 5, t = 5 for the R-test (p = 0.051), whereas the highest 
power for the F-test and the R-test was 0.7828 and 0.9469 respectively at n = 9, t = 5, 
which shows that the R-test was more powerful that the F-test and more robust too for 
exponential data. For lognormal distribution, the optimal type-I-error for both tests as 
the sample size increased was 0.0413 and 0.0490 for the F-test and the R-test 
respectively, while both tests exhibited power of 0.8009 and 0.8979 at n = 9 respectively 
for the F-test and the R-test. For the Chi-square distribution, the F-test had optimal 
type-I-error of 0.0704 at n = 9, t = 5 and 0.0524 for R-test at n = 9, t = 5. Also, the highest 
power of the F-test and the R-test was 0.6729 (n = 7) and 0.8076 (n = 9) respectively. 
For the Weibull distribution, the R-test was more robust with p = 0.0441 and more 
powerful with power = 0.8724. 

When outliers are present, the R-test was more powerful and robust in all 
distributions: normal assumption (p = 0.0588, power = 0.8209), exponential 
distribution (p = 0.0566, power = 0.8202), lognormal (p = 0.0512, power=0.8094),  
Chi-square (p = 0.0516, power =0.8180), Weibull (p = 0.0536, power = 0.7933). 

When sphericity condition was met, the F-test was more powerful and robust  
(p = 0.0506, power = 0.9531) for data with normal distribution while the R-test was 
more powerful and robust for lognormal data (p = 0.0518, power = 0.8899), Chi-square 
(p = 0.0493, power = 0.8399), Weibull distribution (p = 0.0429, power = 0.8991). 
For exponential data, the F-test was more robust for data (p = 0.0523) while the R-test 
was more powerful (0.9212). Furthermore, when sphericity assumption was not met, 
the F-test was only more robust for lognormal (p = 0.0503) while the R-test was more 
powerful (power = 0.8186). Meanwhile, the R-test was more robust and powerful for 
other distributions – normal (p = 0.0588, power = 0.8595), exponential (p = 0.0467, 
power = 0.8704), Chi-square (p = 0.0517, power = 0.8039), and Weibull (p = 0.0508, 
power = 0.8002). 
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5. Conclusion  

In this paper, the R-test was used in analysing RMD with or without outlier and 
sphericity respectively. The test offers the freedom of choice of test statistic that 
sufficiently suits a particular statistical problem for researchers and is free from any 
distributional or test assumptions, but rather depends only on the randomization 
technique – thus the name the randomization test. The study also employed the 
classical test (F-test) for analysing RMD, which is hinged on a number of conditions for 
reliable valid inference. This paper compared both tests to ascertain which controlled 
the type-I-error better and had higher power than the other. These criteria of 
comparison were referred to as robustness and sensitivity respectively. 

The results in Tables 3, 4, 5 and 6 showed that under the normal distribution when 
sphericity held, both tests were equally robust and approximately powerful with 
optimal values at n = 5, t = 5 (p = 0.05 power = 0.9914) for the F-test and at n = 9, t =5 
(p = 0.0421, power = 0.9805) for the R-test. When data had skewed distributions 
(exponential, Chi-square, lognormal and Weibull), the R-test was more robust and 
powerful. In the presence of an outlier and when sphericity condition was not met, the 
F-test was less robust and sensitive than the R-test. In the analysis of RMD when 
normality and sphericity conditions were met, the R-test was comparably as robust and 
sensitive as the F-test. When data had skewed distributions (exponential, lognormal, 
Chi-square and Weibull), the F-test was less robust and sensitive as the sample size and 
the number of treatments increased. Also, in the presence of an outlier and when 
sphericity condition was met or not, the R-test was more robust and sensitive than the 
F-test. In a nutshell, the R-test was approximately as sensitive as the F-test in RMD 
when data follow normal and sphericity conditions met but more sensitive when data 
were skewed (exponential, Chi-square, lognormal and Weibull).  

In general, since the R-test is always as robust and sensitive and even more robust 
and sensitive than the F-test, to alleviate the burden of assessing parametric 
assumptions which is done before the use of the F-test, researchers are advised to go 
ahead with R-test which is not based on any assumption and is easily carried out with 
modern-day high-capacity computers.  
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Missing data estimation based on the chaining technique  
in survey sampling 

Narendra Singh Thakur1, Diwakar Shukla2 

ABSTRACT 

Sample surveys are often affected by missing observations and non-response caused by the 
respondents’ refusal or unwillingness to provide the requested information or due to their 
memory failure. In order to substitute the missing data, a procedure called imputation is 
applied, which uses the available data as a tool for the replacement of the missing values. 
Two auxiliary variables create a chain which is used to substitute the missing part of the 
sample. The aim of the paper is to present the application of the Chain-type factor estimator 
as a means of source imputation for the non-response units in an incomplete sample. 
The proposed strategies were found to be more efficient and bias-controllable than similar 
estimation procedures described in the relevant literature. These techniques could also be 
made nearly unbiased in relation to other selected parametric values. The findings are 
supported by a numerical study involving the use of a dataset, proving that the proposed 
techniques outperform other similar ones. 

Key words: estimation, missing data, chaining, imputation, bias, mean squared error (MSE), 
factor type (F-T), chain type estimator, double sampling. 
Mathematical Subject Code: 62D05 

1. Introduction

In sample surveys, the auxiliary information is used to improve efficiency of the
estimate [see, Cochran (2005), Sukhatme et al. (1984)]. The use of a ratio estimator is 
preferred when the population mean of auxiliary variate is known. However, when it is 
unknown then it is not possible to apply the ratio estimator directly and the concept of 
two-phase sampling is applied to get a sample-based estimate of population mean. 
Sometimes information on one more auxiliary variable highly correlated to earlier 
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auxiliary variate is available and easy to access at a lesser cost. This additional 
information could be intelligently utilized for obtaining efficient estimates. Chaining is 
one such technique, used by Chand (1975), Sukhatme and Chand (1977), which has a 
mechanism of combining wisely two auxiliary variates. Kiregyera (1980, 1984) 
proposed some chain type ratio and regression estimators whereas Singh et al. (1994) 
developed a class of chain type estimators under a double sample scheme. Al-Jararha 
and Ahmed (2002) discussed the class of chain type estimators for population variance 
using double a sampling scheme. Some other useful contributions are Kumar and Bahl 
(2006), Pradhan (2005), Rao and Sitter (1995), Sharma and Tailor (2010), Shukla 
(2002), Singh and Espejo (2007), Singh et al. (2009), Singh et al. (1993), Srivastava and 
Jhajj (1980), etc. 

The use of auxiliary information in the estimation of population values of the study 
variate is a common phenomenon in sampling theory of surveys. Auxiliary information 
is successfully utilized either at the planning stage or at the design stage or at the 
information stage to arrive at improved estimator compared to those not utilizing 
auxiliary information. The use of ratio and product strategies in survey sampling solely 

depends upon the knowledge of population mean 



N

i
iXNX

1

1  of the auxiliary 

character X. In many situations of practical importance, the population mean X  is 
unknown before the start of a survey.  In such a situation, the usual thing to do is to 
estimate it by the sample mean 




m

i
im xmx

1

1  based on a preliminary sample of size m 

of which n is a sub-sample  mn  . If the population mean 
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1  

 
of another 

auxiliary variate Z, closely related to auxiliary variate X  but compared to X  remotely 

related to study variate Y is known, it is advisable to estimate X  by 
m

m
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1 , which would provide better estimate of X  than mx  to the terms of order 

 1no  if 5.0
Z

X
XZ C

C
  [see, Choudhury and Singh (2012)]. The symbol XZ  is the 

coefficient of correlation between X and Z  and XC , ZC are the coefficient  of variation 
of X  and Z  respectively. Chand (1975) and Sukhatme and Chand (1977) proposed 
a technique of chaining of the available information on auxiliary characteristics with 
the main characteristic. Kiregyera (1980, 1984), Singh et al. (2006) also proposed some 
chain type ratio and regression estimators based on two auxiliary variables. Using prior 
information on parameters of auxiliary variate some useful contributions are Shukla et 
al. (1991), Bose (1943), Kadilar and Cingi (2003), Srivastava et al. (1990), 
Srivenkataramana (1980), etc.  
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According to Hietjan and Basu (1996), incompleteness in the form of missingness, 
censoring or grouping, is a troubling feature of several data sets. A key question is what 
one needs to assume to justify ignoring the incompleteness mechanism. Rubin (1976) 
addressed this question for Bayes/likelihood and frequentist inferences. Little and 
Rubin (1987) recognized for some time that failure to account for the stochastic nature 
of incompleteness can spoil inferences. 

In brief, Rubin (1976) defined three key concepts: missing at random (MAR), 
observed at random (OAR) and Parameter Distinctness (PD). The data are MAR if the 
probability of the observed missingness pattern, given the observed and unobserved 
data, does not depend on the values of the unobserved data. The data are OAR if, for 
every possible value of the missing data, the probability of the observed missingness 
pattern, given the observed and unobserved data, does not depend on the values of the 
observed data. PD holds if there are no a priori ties between the parameters of the 
missingness model and those of the data model. For Bayesian inference this means that 
the parameters of the data model and missingness model are a priori independent. For 
direct likelihood inference it means that knowledge of one parameter's value does not 
place any constraints on the other parameter's value. Ignoring the missingness 
mechanism is justified for Bayes/likelihood inference if MAR and PD hold. 
The combination of MAR and OAR is called missing completely at random (MCAR). 
In what follows missing completely at random (MCAR) by Heitjan and Basu (1996) is 
used in this article. Some useful contributions available in the literature are Weeks 
(1999), Shukla et al. (2009), Seaman et al. (2013), Bhaskaran and Smeeth (2014), Pandey 
et al. (2015), Pandey et al. (2016), Doretti et al. (2018), etc. This manuscript presents 
the use of Chain-Type estimator as an imputation source for dealing with missing 
observations to estimate the population mean. 

1.1. Some existing imputation strategies 

A simple random sample S without replacement (SRSWOR), of size n is drawn 
from population  N,.......,2 ,1 with iY  as thi  unit of variable Y under study. Let 





N

i
iYNY

1

1   be the mean of a finite population under estimation. The sample S of n 
units contains r responding units (r < n) forming a sub-space R and (n – r) non-
responding with the sub-space (n – r) having symbol CR  in the space S. The sub-spaces 
R and CR are disjoint and .SRR C   The variable Y  is of main interest and X is 
auxiliary correlated with Y. For every unit Ri , the value iy  is observed available.  
For units CRi ,  the iy  values are missing and imputed values are to be derived.  
The thi   value ix  of X could be used as a source of imputation for C

i Riy   , . This is to 
assume for sample S, the data  Sixx is  :  is known and available completely. 
Responding units have missing data only for the study variable Y.  Under this two 
variable set-up, some well-known imputation methods available in the literature are: 
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1.1.1. Ratio method of imputation 

For iy  and ix , define iy   as 
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1.1.2. Mean method of imputation 

For iy  define iy   as 
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Using the above, the imputation-based estimator of population mean Y  is: 
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1.1.3. Compromised method of imputation 

Singh and Horn (2000) proposed a compromised imputation procedure:  
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Where  is a suitably chosen constant, such that the resultant variance of the 
estimator is minimum. The imputation-based estimator, for this case, is  
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1.1.4. Ahmed methods of imputation 

For the case where jiy denotes the ith available observation for the jth imputation 
method Ahmed et al. (2006) suggested: 
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Under this, the point estimator is: 
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The point estimator is under this set-up: 
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The point estimator is: 
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Terms 1, 2 and 3 are suitably chosen constants, so as to keep the variance of the 
resultant estimator minimum. As special cases, when  
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    and   3 = -1, 
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The last one (1.14) is natural analogue of the ratio estimator called the product 
estimator used when an auxiliary variate X has negative correlation with Y. 

1.1.5. Factor type methods of imputation 
Shukla and Thakur (2008) suggested factor-type imputation procedures as: 

(D)      
    














             

                                    

1
1 Cr

i

iFT
Riifrkn

rn

y

Riify

y


    

 (1.15) 

(E)      
    














            

                                   

2
2 Cr

i

iFT
Riifrkn

rn

y

Riify

y


             

(1.16) 
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(F)      
    














             

                                    

3
3 Cr

i

iFT
Riifrkn

rn

y

Riify

y


                     

(1.17) 

Where    
  n

n

xCXfBA

xfBXCA
k




 1 ,    

  rn

rn

xCxfBA

xfBxCA
k




  2 ,    

  r

r

xCXfBA

xfBXCA
k




  3 , 

  ,21  kkA   ,41  kkB    ,432  kkkC , 
N

n
f   k0  

Under (1.15), (1.16) and (1.17) point estimators are:  

   

 
 
  















kyT

kyT

kyT

rFT

rFT

rFT

33

22

11

          







                  (1.18) 

As special cases, when lFTll tTk       then1,1      when lFTll tTk       then1,2   
when   3,2,1         ;     then0,4  lytTk rlFTll  

2. Proposed imputation strategies 

Consider a double sampling set-up with three variables Y,  X and Z  where Y  is the 
main variable and  X, Z are auxiliary variates. The correlation between X  and Z is higher 
than other two. A specific way of combining X and Z is “chaining”, which generates 
chain-type estimators in double sampling, and several authors have used this [see Singh 
and Singh (1991), Singh et al. (1994)] to get a series of alternative estimators for 
estimating population mean. Singh and Shukla (1987) discussed a family of factor-type 
ratio estimator for estimating population mean. In one more contribution, Singh and 
Shukla (1993) derived efficient factor-type estimator for estimating the same 
population parameter. Using the above contributions Singh et al. (1994) developed 
a factor-type-chain estimator, whose application as an imputation tool is the main 
source of motivation in this article.  

2.1. Preliminaries 

Typically, in double sampling, the population mean X  of variable X  is unknown. 
Hence, let '  S  be the preliminary sample drawn from  N,....,2 ,1  by SRSWOR 
containing m units with mean mm zx   ,  of X and Z. This implies  ''

' : Sjxx js  , 
 ''

' : Sjzz js   are known data and at this stage data linked with variable Y are not 
known. A sub-sample S of n units  mn   is drawn from 'S  by SRSWOR having r 
responding units  nr   forming subspace R, having  rn  non-responding units with 
the sub-space CR . Also, in S,  Riyy iR  , ,  Sixx is  , ,  Sizz is  ,  are available,  
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whereas  C
iCR

Riyy  ,  is missing and needs to be estimated by an appropriate 

imputation technique. As discussed in previous section the sub-spaces R and CR are 
disjoint and SRR C  .  

Let us consider Ahmed et al. (2006) point estimator from equation (1.10) 2t  with 
12   : 

r

n
r

x

x
yt *

2               (*) 

The term nx  could be improved by Chaining Technique as suggested by Chand 
(1975), Sukhatme and Chand (1977), Singh and Singh (1991) as: 

   
mr

m
r

z

Z

x

x
yt **

2   (With Zzm   and   known)     (**) 

Motivated from the above discussion, some proposed imputation strategies using 
Singh et al. (1994) are: 

(G)     
        

              
1

                                           

1
1












 C

r

i

iC Riifyrkn
rn

Riify

y


              

   (2.1) 

(H)     
        

              
1

                                           

2
2












 C

r

i

iC Riifyrkn
rn

Riify

y


   

(2.2) 

(I)      
        

              
1

                                           

3
3












 C

r

i

iC Riifyrkn
rn

Riify

y


   

(2.3) 

Where          
  m

m

r

m
r

zCZfBA

zfBZCA

x

x
yk




1       

(2.4) 

   
  rm

rm

r

m
r

zCzfBA

zfBzCA

x

x
yk




2           (2.5) 

   
  r

r

r

m
r

zCZfBA

zfBZCA

x

x
yk




3            (2.6) 

Where          432;41;21  kkkCkkBkkA  and  k0 , 

is a constant. Also, 



Ri

ir y
r

y
1 , ,

1



Ri

ir x
r

x ,
1




Ri

ir z
r

z ,
1

'




Si

im x
m

x 



'

,
1

Si
im z

m
z

.
1 




i

iZ
N

Z   
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Under strategies (2.1), (2.2) and (2.3) the point estimators of population mean of 
study variable Y  are like (2.4), (2.5) and (2.6) respectively. 

2.2. Special Cases: 

(i)   At  k =1 ; A = 0, B = 0, C = - 6  

       
rr

m
r

r

m

r

m
r

mr

m
r

z

Z

x

x
y

z

z

x

x
y

z

Z

x

x
y  1;1;   1 321      (2.7) 

(ii)  At k = 2; A = 0, B= -2, C = 0 

 

     
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z

x
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y
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z
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x
y
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x

x
y
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r

m
r

m

r

r

m
r

m

r

m
r  2;2                      ;2 321       (2.8) 

(iii) At k = 3; A= 2, B = -2, C = 0 

  
 

 
 

 
 Zf

zfZ
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zf

zfz
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x
y
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zfZ
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y
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r

m
r

m

rm

r
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r
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r













1

3    ;
1

3   ;
1

3 321 

  

  (2.9) 

(iv) At k = 4; A= 6, B = 0, C = 0  

      
r

m
r

r

m
r

r

m
r

x

x
y

x

x
y

x

x
y  4;4; 4 321          (2.10) 

3. Properties of the estimators under proposed strategies 

Let B(.) and M(.) be the bias and mean squared error (MSE) of the estimators under 
a given sampling design respectively. Let the large sample approximations as Nn 
be:  11  Yy r ;  21  Xx r ;  31  Xx m ;  41  Zz r  and  51  Zz m   

Here, 5,4,3,2,1   ;1  ii . 

Using the concept of two-phase sampling, following Rao and Sitter (1995) and 
using the mechanism of MCAR [Heitjan and Basu (1996)], for given r, n and m, 
we have: 

  5,4,3,2,1   ;0  iE i ;   ;2
1

2
1 YCME     ;   2

1
2
2 XCME     ;2

2
2
3 XCME     ; 2

1
2
4 ZCME   

  2
2

2
5 ZCME  ;   ; 121 XYYX CCME      ; 231 XYYX CCME     ZYYZ CCME  141   ; 

  ; 251 ZYYZ CCME      ;   2
232 XCME     ZXXZ CCME  142   ;    ; 252 ZXXZ CCME    

  ;   243 ZXXZ CCME      ; 253 ZXXZ CCME         2
254 ZCME   

and
Nr

M
11

 1  ; 
Nm

M
11

 2  ; 
mr

MMM
11

 213  . 

Remark 3.1: Define the symbols 

;;;; 4321 CfBA

fBA

CfBA

CA

CfBA

C

CfBA

fB














      14231    

 21    43   ;
Z

X
XZXZ

Z

Y
YZYZ

X

Y
YXYX C

C
K

C

C
K

C

C
K   ;;  
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Theorem 3.1: 

[a1]  The estimator  k1  in terms of  5,4,3,2,1   ; ii  up to the first order of 
approximation is: 

      2
525352515

2
23231213211 1   Yk    (3.1) 

[a2]  Bias of  k1 : 

       YZZYXX KCMKCMYkB  2
2

2
2

31 1        (3.2) 

[a3]  Mean squared error of  k1 : 

       YZZYXXY KCMKCMCMYkM 221 2
2

2
3

2
1

2

1            (3.3) 

[a4]  Minimum MSE of the estimator  k1  is when YZK  holds and the expression 
 is: 

      22
2

2
3

2
1

2

min1 21 ZYZYXXY CKMKCMCMYkM                   (3.4) 

Proof: 

[a1]   k1   
  

















m

m

r

m
r

zCZfBA

zfBZCA

x

x
y  

             1
52513

1
21 11111   Y  

  2
525352515

2
23231213211   Y  

[a2]      YkEkB  11     YkE  1  

Using (3.1) and taking expectation both sides 
  kE 1    2

52535251
2
23231211   EY  

         YZZYXX KCMKCMY  2
2

2
2

3 11   
           YZZYXX KCMKCMYkB  2

2
2

2
31 1   

[a3]       211 YkEkM    

      22
525352515

2
23231213211 YYE    

        [Using (3.1)] 

       YZZYXXY KCMKCMCMY 221 2
2

2
3

2
1

2
   

[a4]  To obtain minimum MSE, let 

       01 kM
d

d 


    0222
2

2
 YZZ KCMY   YZK  

      22
2

2
3

2
1

2

min1 21 ZYZYXXY CKMKCMCMYkM   
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Theorem 3.2: 

[a5]  The estimator  k2  in terms of  5,4,3,2,1   ; ii  up to the first order of 
 approximation is: 

    5242514154
2
23231213212   1   Yk

   2
54

2
4254425343                             (3.5) 

[a6]  Bias of the estimator  k2 : 
       XZYZZYXX KKCKCMYkB  2

22
32 1                (3.6) 

[a7]   Mean squared error of  k2 : 

        XZYZZYXXY KKCKCMCMYkM 2221 22
3

2
1

2

2                 (3.7) 

[a8]   Minimum MSE of   k2  is at  XZYZ KK   : 

         222
3

2
1

2

min2 21 ZXZYZXYXY CKKCKMCMYkM             (3.8) 

Proof: 

[a5]            k2   
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                                1
544253413

1
21 11111   Y  

                
  2

23231213211 Y  514154    

                             53435242        
 2

54
2
425442   

[a6]         YkEkB  22     YkE  2  

Using (3.5) and taking the expectation both sides, 

    2
23231212 1   EYkE  534352425141    

   2
54

2
425442    

                  XZYZZYXX KKCKCMY  2
22

3 11   

  kB 2    YkE  2    

                 XZYZZYXX KKCKCYM  2
22

3 1   

[a7]      222 YkEkM    

                      254321

2
  EY     [Using (3.5)] 

         XZYZZYXXY KKCKCMCMYkM 2221 22
3

2
1

2

2    
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[a8] To obtain minimum MSE, let 

     02 kM
d

d 


      YZXZ KK   

and substitution provides 

               



  222

3
2

1

2

min2 21 ZXZYZXYXY CKKCKMCMYkM   

Theorem 3.3: 
[a9] The estimator  k3  in terms of  5,4,3,2,1   ; ii   up to the first order of 
approximation could be expressed as: 

       2
424342414

2
23231213213 1   Yk  

(3.9) 
[a10] Bias of  k3  : 

       2131
22

33 1  MKMKMCKCMYkB XZYZZYXX                (3.10) 
[a11] Mean squared error of  k3  : 

       XZYZZYXXY KMKMMCKCMCMYkM 311
22

3
2

1

2

3 2221                   (3.11) 
[a12] Minimum MSE of  k3  is when  YZXZ KMKMM 13

1
1    and the expression is: 

        21
1

2

13
2

3
2

1

2

min3 21 ZYZXZYXXY CMKMKMKCMCMYkM               (3.12) 

Proof:  

[a9]   k3
 
  



























r

r

r

m
r

zCZfBA

zfBZCA

x

x
y          1

42413
1

21 11111   Y  

        413
3
3

2
221 11.....11   Y  .....1 3

4
2
2

2
4

2
242    

   2
23231213211   Y  2

424342414    

[a10]      YkEkB  33   

                       2
2323121321   EY  2

424342414    
                     2131

22
3 1  MKMKMCKCMY XZYZZYXX   

[a11]         211 YkEkM     24321

2
  EY  

                     2
1

2
3

2
3

2
1

2
2 ZXYYXXY CMCCMCMCMY    

            ZXXZZYYZ CCMCCM  312   

              YXXY KCMCMY 212
3

2
1

2
  XZYZZ KMKMMC 311

2 22    
[a12] To obtain minimum MSE, let 

      03 kM
d

d 


   YZXZ KMKMM 13
1

1    

and substitution provides 
          21

1

2

13
2

3
2

1

2

min3 21 ZYZXZYXXY CMKMKMKCMCMYkM   



102                                                                     N. Singh Thakur, D. Shukla: Missing data estimation based… 

 

 

4.  Comparison of the estimators under proposed imputation strategies 

[b1]       min2min11 kMkMD    

       2
2

2
3

22
     YZXZYZZ KMKKMCY                           (4.1) 

   kk 12 over   better     is     if  D1  > 0 

 
3

2

M

M

K

KK

YZ

XZYZ 


  (let)21 FF   

[b2]       min3min12 kMkMD            
      2

2
1

1
2

13
22

     YZYZXZZ KMMKMKMCY               (4.2) 
   kk 13 over  better    is   if  D2  >  0 

 
3

211

M

MMM

K

K

YZ

XZ


  (let)43 FF   

[b3]        min3min23 kMkMD      

     2
3

1
1

2
13

22
     XZYZYZXZZ KKMMKMKMCY             (4.3) 
   kk 23   anbetter  th  is    if  D3  > 0 

 313

311

MMM

MMM

K

K

YZ

XZ






 
(let)53 FF   

5.  Empirical study 

For numerical study consider the data as attached in Appendix A, which is 
a generated artificial population of size N = 200 containing values of main variable Y 
and auxiliary variables X, Z. Parameters of this population are given below:  

485.42Y ; 515.18X ; 52.20Z ; 0598.1992 YS ; 5375.482 XS ; 45.76842 ZS ;
8734.0YX ; 8667.0YZ ; 9943.0XZ ; 0.3287;YC 0.3755XC ; 0.3296ZC ;

;8643.0YZK ;1326.1XZK 7645.0YXK  
Reddy (1978) proved that YXK , YZK , XZK  are ratio values and bear very small 

change over a span of time. It could be easily guessed or assumed to be known a priori. 
Using preliminary large sample of size m = 80 and sub-random sample of size n = 30 
with the number of responding units r = 22 and  f = 0.15 by SRSWOR. The optimum 
values of constants of different estimators at their optimal condition are 2354.0 ,

7646.0321   , '
1k = 1.5206, '

2k = 2.4505, '
3k = 8.9456  for compromised, Ahmed’s 

methods and Factor Type F-T Estimators of imputation respectively. By simplifying 
optimum conditions of proposed estimators for minimum MSE, the cubic equations 
provide the values of constants k as shown in Table 5.1. 
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Table 5.1. Optimum k-values for minimum MSE of proposed estimators 

Estimators 
Condition 

for Optimum MSE 
Three optimum Values of k on one condition 

 k1  YZK  1k = 1.3137 2k = 2.5180 3k = 13.5979 

 k2  YZXZ KK   4k = 1.9321 5k = ----- 6k = ----- 

 k3   YZXZ KMKMM 13
1

1    7k = 1.8759 8k = 3.2154 9k = 4.0919 

Note: k5, k6 do not exist because the solution of cubic equations provided no real roots.   

The formula for efficiency measurement is    
 TMSE

yMSE
Te r

ˆ
ˆ 

 
, where T̂ is any 

estimator under consideration. The steps followed for the simulation procedure are: 
Step 1: Draw a preliminary random sample S’ of size m = 80 from the population of 
size 200. 
Step 2: Again draw a random sub-sample of size n = 30 from S’  drawn in step 1. 
Step 3: Drop away 8 units randomly from each sample corresponding to variable Y. 
Step 4: Compute and impute the dropped units of Y with the help of existing and 
proposed imputation methods. 
Step 5: Obtain the estimates of the population mean for existing and proposed 
imputation methods.  
Step 6: Repeat the above steps (1 to 5) 50,000 times, which provides multiple sample 
based estimates 000,50321

ˆ,........,ˆ,ˆ,ˆ TTTT  .  

Step 7: The bias of T̂  is obtained by    



50000

1

ˆ
50000

1ˆ
i

i YTTB  .  

Step 8: The MSE of T̂  is obtained by    
250000

1

ˆ
50000

1ˆ 



i

i YTTMSE . 

Following the above procedure bias and MSE of the existing and proposed 
estimators are computed based on 50,000 repeated samples drawn by SRSWOR from 
population of N = 200. These computations and efficiencies with respect to 

ry  are 
given in Tables 5.2 and 5.3 respectively. 

Table 5.2. Bias and MSE of existing estimators 

Estimators Optimum Value Bias MSE Efficiency 

ry  ----- -0.3123 9.7252 1 

RATy  ----- -0.0996 7.8457 1.2395 

COMPy  2354.0 -0.0809 6.9649 1.3963 

1t  7646.01   -0.3983 5.8967 1.6492 



104                                                                     N. Singh Thakur, D. Shukla: Missing data estimation based… 

 

 

Table 5.2. Bias and MSE of existing estimators  (cont.) 

Estimators Optimum Value Bias MSE Efficiency 
2t  7646.02   -0.1871 7.6655 1.2686 

3t  7646.03   -0.2151 3.2967 2.9499 

1FTT  

'
1k = 1.5206 -0.3878 4.8327 2.0123 
'
2k = 2.4505 -0.3736 5.1655 1.8827 
'
3k = 8.9456 -0.3961 4.9454 1.9665 

2FTT  

'
1k = 1.5206 -0.1071 6.3071 1.5419 
'
2k = 2.4505 -0.0329 6.1072 1.5924 
'
3k = 8.9456 -0.0980 6.0561 1.6058 

3FTT  

'
1k = 1.5206 -0.1826 1.8399 5.2857 
'
2k = 2.4505 -0.1944 2.2685 4.2870 
'
3k = 8.9456 -0.1818 1.9894 4.8885 

5.1. Numerical computation of proposed estimators  

From Section 4.0 we get computational values of conditions on the population 

given in Appendix A. 
YZ

XZYZ

K

KK
F


1 =  - 0.3104;  

3

2
2 M

M
F   =  0.4774; 

YZ

XZ

K

K
F 3 = 

1.3104; 
3

211
4 M

MMM
F




  
=  1.7570  and  

313

311
5

MMM

MMM
F




 = 1.1082    

Since 21 FF   holds,  k1  is better than  k2  for this data set. 
Again, 43 FF  , which implies  k1  is better than   3 k for the data set, and 53 FF  , 
which implies   3 k is better than  k2 for this data set.  Overall  k1 is the best 
estimator. 

Table 5.3. Bias and MSE of proposed chain type estimators 

Estimator k-optimum Bias MSE Efficiency 

 k1  

1k =1.3137 -0.0030 1.9169 5.0734 

2k =2.5180 0.0215 1.9328 5.0317 

3k =13.5979 -0.0038 1.9409 5.0106 

 k2  

4k =1.9321 0.3534 9.0303 1.0769 

5k = ----- ----- ----- ----- 

6k = ----- ----- ----- ----- 

 k3  

7k =1.8759 0.6036 8.6779 1.1206 

8k =3.2154 0.6215 8.6360 1.1261 

9k = 4.0919 0.5992 8.6621 1.1227 
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6. Almost unbiased imputation based chain type estimator 

By expression (3.2), (3.6) and (3.10), bias of  ki  ; i = 1, 2, 3 could be made zero 
up to the first order of approximation. This provides three equations: 

    01 2
2

2
2

3  YZZYXX KCMKCM                  (6.1) 
    01 2

22  XZYZZYXX KKCKC                  (6.2) 
and        01 2131

22
3   MKMKMCKCM XZYZZYXX               (6.3) 

These equations are cubic or more function of k-values to provide multiple values 
of k on which bias is zero. The best choice is to have lowest mean squared error. So, the 
proposed estimators bear property of reducing MSE along with being almost unbiased 
also. Many similar estimators existing in the literature do not control both bias and 
MSE at their optimal level but the proposed estimators have this property. For equation 
(6.1), we get two real values ''

1k = 0.3829 and ''
2k =6.5038 and from (6.2) and (6.3) all 

values are imaginary, viz. there are no real roots. These results are obtained using the 
data set on which the empirical study was performed. The term almost unbiased is used 
because biases of proposed estimates  ki  are obtained only up to the first order of 
approximation. The bias    02 kB  holds approximately not completely, therefore 
mentioned almost unbiased. 

Table 6.1. Almost unbiased comparison of chain type estimators 

k-values 
 k1   k2   k3  

Bias MSE Bias MSE Bias MSE 
''

1k = 0.3829 0.0005 4.4522 0.0002 15.4062 0.0002 14.4033 
''

2k =6.5038 0.0004 2.4831 0.0001 7.4559 0.0011 6.4898 

7. Discussion and conclusions 

In the present article some imputation procedures and their estimators of 
population mean are suggested and the expression of their bias, mean squared error 
and minimum mean squared error have been derived under large sample 
approximations up to the first order. An empirical study has been done over a data set 
and the bias and mean squared error have been calculated. Among the existing and 
proposed estimators, under Chain-based imputation strategies, i.e.  ki ; (i = 1, 2, 3), 
the estimator  k1 is found best. The general perception regarding imputation of 
missing data is that it increases the bias of the estimate when MSE is optimized. 
In contrary, a key feature of  ki ; (i = 1, 2, 3) is that there are many values of the 
parameter k on which MSE is optimal. One can choose the value with the lowest bias. 
Therefore, suggested strategies are bias-controlled at the optimum level of MSE. Apart 
from this, estimators are almost unbiased also over multiple choices of k-values. The 
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best selection is to have the lowest MSE by proposed strategies one can get almost 
unbiased estimator with lowest possible MSE. Thus, the suggested Chain-based 
imputation strategies  ki ; (i = 1, 2, 3) are useful and have advantage over other 
similar procedures. 
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Appendix  

A. Population (N = 200) 

Yi 45 50 39 60 42 38 28 42 38 35 
Xi 15 20 23 35 18 12 8 15 17 13 
Zi 16 22 26 37 19 14 11 17 18 15 
Yi 40 55 45 36 40 58 56 62 58 46 
Xi 29 35 20 14 18 25 28 21 19 18 
Zi 30 37 23 15 19 27 30 22 21 21 
Yi 36 43 68 70 50 56 45 32 30 38 
Xi 15 20 38 42 23 25 18 11 09 17 
Zi 18 22 39 44 25 26 19 13 12 20 
Yi 35 41 45 65 30 28 32 38 61 58 
Xi 13 15 18 25 09 08 11 13 23 21 
Zi 16 17 19 27 12 10 13 14 24 23 
Yi 65 62 68 85 40 32 60 57 47 55 
Xi 27 25 30 45 15 12 22 19 17 21 
Zi 28 26 33 46 17 15 23 20 19 23 
Yi 67 70 60 40 35 30 25 38 23 55 
Xi 25 30 27 21 15 17 09 15 11 21 
Zi 26 32 30 23 17 18 12 18 14 24 
Yi 50 69 53 55 71 74 55 39 43 45 
Xi 15 23 29 30 33 31 17 14 17 19 
Zi 17 24 30 33 35 32 19 16 19 21 
Yi 61 72 65 39 43 57 37 71 71 70 
Xi 25 31 30 19 21 23 15 30 32 29 
Zi 27 33 32 21 23 25 17 32 33 32 
Yi 73 63 67 47 53 51 54 57 59 39 
Xi 28 23 23 17 19 17 18 21 23 20 
Zi 30 25 24 20 22 20 21 23 26 22 
Yi 23 25 35 30 38 60 60 40 47 30 
Xi 07 09 15 11 13 25 27 15 17 11 
Zi 10 11 18 14 14 26 29 18 20 14 
Yi 57 54 60 51 26 32 30 45 55 54 
Xi 31 23 25 17 09 11 13 19 25 27 
Zi 32 25 27 19 12 13 14 20 27 28 
Yi 33 33 20 25 28 40 33 38 41 33 
Xi 13 11 07 09 13 15 13 17 15 13 
Zi 16 14 9 10 14 17 14 20 17 15 
Yi 30 35 20 18 20 27 23 42 37 45 
Xi 11 15 08 07 09 13 12 25 21 22 
Zi 13 18 11 8 12 16 14 26 24 23 
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Yi 37 37 37 34 41 35 39 45 24 27 
Xi 15 16 17 13 20 15 21 25 11 13 
Zi 16 18 19 16 22 18 23 26 14 14 
Yi 23 20 26 26 40 56 41 47 43 33 
Xi 09 08 11 12 15 25 15 25 21 15 
Zi 11 10 14 15 17 26 17 27 22 17 
Yi 37 27 21 23 24 21 39 33 25 35 
Xi 17 13 11 11 09 08 15 17 11 19 
Zi 19 16 13 12 12 11 17 20 13 20 
Yi 45 40 31 20 40 50 45 35 30 35 
Xi 21 23 15 11 20 25 23 17 16 18 
Zi 22 25 18 13 21 27 26 19 17 19 
Yi 32 27 30 33 31 47 43 35 30 40 
Xi 15 13 14 17 15 25 23 17 16 19 
Zi 17 16 16 14 17 28 25 18 18 22 
Yi 35 35 46 39 35 30 31 53 63 41 
Xi 19 19 23 15 17 13 19 25 35 21 
Zi 22 21 24 17 20 15 22 26 36 23 
Yi 52 43 39 37 20 23 35 39 45 37 
Xi 25 19 18 17 11 09 15 17 19 19 
Zi 26 20 20 19 13 12 17 18 21 22 
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Zero-modified Poisson-Modification of Quasi Lindley
distribution and its application

Ramajeyam Tharshan1, Pushpakanthie Wijekoon2

ABSTRACT

The Poisson-Modification of Quasi Lindley (PMQL) distribution is a newly introduced mixed
Poisson distribution for over-dispersed count data. The aim of this article is to introduce the
Zero-modified PMQL (ZMPMQL) distribution as an alternative to the PMQL distribution
in order to accommodate zero inflation/deflation. The method of obtaining the ZMPMQL
distribution jointly with some of its important properties, namely the probability mass and
distribution functions, mean, variance, index of dispersion, and quantile function are pre-
sented. Furthermore, some of its special cases are discussed. The maximum likelihood
(ML) estimation method is used for the unknown parameter estimation. A simulation study
is conducted in order to evaluate the asymptotic theory of the ML estimation method and
to show the superiority of the ML method over the method of moments estimation. The
applicability of the introduced distribution is illustrated by using a real-world data set.

Key words: over-dispersion, mixed Poisson distribution, PMQL distribution, zero modifi-
cation, maximum likelihood estimation

1. Introduction

The Poisson distribution is the most commonly used distribution for modelling count
data. One of the important properties of the Poisson distribution is that the mean and vari-
ance of the random variable are equal. This property is commonly referred as to equidisper-
sion. However, in some real-world applications, especially actuarial, biomedical, engineer-
ing, ecological sciences, and others, observed data do not obey the equidispersion property.
Here, the variance of the observed data exceeds the mean. This phenomenon is called over-
dispersion (Greenwood and Yule, 1920). In such a situation, the mixed Poisson distributions
are often adopted for modelling the count data as an alternative to the Poisson distribution.
The literature provides various mixed Poisson distributions as negative binomial/Poisson-
gamma (Greenwood and Yule, 1920), Poisson-Gamma product ratio (Irwin, 1975), Poisson-
Generalized gamma (Albrecht, 1984), Poisson-Lindley (Sankaran, 1970), Poisson-Sujatha
(Shanker, 2016c), Poisson-Quasi Lindley (Grine et al., 2017) distributions, among others.

Even though such mixed Poisson distributions can accommodate the longer right-tails
and observed over-dispersion by heterogeneous populations, they do not perform well for
observed over-dispersion by zero-inflation/deflation. To tackle this problem, the researchers
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have proposed several zero-modified mixed Poisson distributions. Here, we point out some
notable examples for the zero-modified mixed Poisson distributions. Greenwood and Yule
(1920) described the zero-inflated negative binomial (ZINB) distribution; Ghitany et al.
(2008) proposed the Zero-truncated Poisson-Lindley distribution; Silva et al. (2018) intro-
duced the Zero-modified Poisson-Sujatha distribution; Xavier et al. (2018) proposed the
Zero-modified Poisson-Lindley (ZMPL) distribution.

Recently, Tharshan and Wijekoon (2021) introduced a lifetime distribution, namely the
Modification of Quasi Lindley (MQL) distribution. Its probability density function (pdf) is
given as

fY (y;θ ,α,δ ) =
θe−θy

(α3 +1)Γ(δ )

(
Γ(δ )α3 +(θy)δ−1

)
;y > 0,θ > 0,α3 >−1,δ > 0, (1)

where α and δ are shape parameters and θ is a scale parameter, and y is the respective
random variable. Equation (1) presents the mixture of two non-identical distributions, ex-

ponential (θ), and gamma (δ ,θ) with the mixing proportion, p =
α3

α3 +1
. Then, the same

authors (Tharshan and Wijekoon, 2022) obtained the Poisson-Modification of Quasi Lindley
(PMQL) distribution by amalgamating the Poisson distribution and the MQL distribution.
Its explicit form of the probability mass function (pmf) and some other important statistics
are given in Section 2.

This paper aims to modify the PMQL distribution at zero probability to adopt the sit-
uation with an excessive number of zeros or a smaller number of zeros. The new distri-
bution will be called the Zero-modified PMQL (ZMPMQL) distribution. The ZMPMQL
distribution’s unknown parameters will be estimated by the maximum likelihood estimation
method. Further, the asymptotic property of the estimation method will be evaluated by a
Monte Carlo simulation study.

This paper is structured as follows. Section 2 briefly presents the PMQL distribution
and some of its statistical properties. In Section 3, we introduce the ZMPMQL distribution
with some of its important structural properties. Its quantile function is discussed in Section
4. Section 5 covers the simulation of the random variables and the maximum likelihood
estimator (MLE) for the ZMPMQL distribution. Section 6 studies the asymptotic property
of the MLE and the applicability of the ZMPMQL distribution by designing a Monte Carlo
simulation study and using a real-world data set, respectively.

2. PMQL distribution

Suppose the random variable X |Λ is said to have the Poisson distribution with parameter
λ . Then, its pmf can be written as

fX |Λ(x|λ ) =
e−λ λ x

x!
; x = 0,1,2, ..., λ > 0. (2)

As defined by Tharshan and Wijekoon (2022), the PMQL distribution is the resultant
distribution of X by assuming the Poisson parameter λ to be followed the MQL distribution.
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Its pmf is given as

fX (x) =
θ

(
Γ(δ )Γ(x+1)α3(1+θ)δ−1 +θ δ−1Γ(x+δ )

)
x!(α3 +1)(1+θ)x+δ Γ(δ )

; (3)

x = 0,1,2, ...,θ > 0,δ > 0,α3 >−1.

It can be shown that equation (3) represents a two-component mixture of geometric ( θ

1+θ
)

and negative binomial (δ , 1
1+θ

) with the mixing proportion p = α3

α3+1 .
Its corresponding cumulative distribution function (cdf) is given as

FX (x) =
x

∑
t=0

f (x) =

δ (1+θ)δ−1Γ(δ )α3Γ(x+1)((1+θ)x+1 −1)+θ δ Γ(x+δ +1)2F1(1,x+δ +1;δ +1; θ

1+θ
)

(α3 +1)Γ(δ )x!δ (1+θ)x+δ+1
(4)

;x = 0,1,2, ...,θ > 0,δ > 0,α3 >−1,

where 2F1(c,d;r;w) is the Gaussian hypergeometric function defined as

2F1(c,d;r;w) =
∞

∑
i=0

(c)i(d)iwi

(r)ii!
,

which is a special case of the generalized hypergeometric function given by the expression

aFb(p1, p2, ...pa;q1,q2, ...qb;w) =
∞

∑
i=0

(p1)i...(pa)iwi

(q1)i...(qb)ii!
,

and (p)i =
Γ(p+i)

Γ(p) = p(p+1)...(p+ i+1) is the Pochhammer symbol.

Tharshan and Wijekoon (2022) showed that its rth factorial moment is given as

µ
′
(r) =

Γ(δ )Γ(r+1)α3 +Γ(δ + r)
(α3 +1)Γ(δ )θ r . (5)

By using the following relationship

µ
′
r = E(X r) =

r

∑
i=0

S(r, i)µ
′
(i) ; r = 1,2, ...,

where S(r, i) is the Stirling numbers of the second kind, which is defined as

S(r, i) =
1
i!

i

∑
j=0

(−1)i− j
(

i
j

)
jr , 0 < i < r,

they have obtained the raw moments of X . Then, they have shown that its mean and variance
are

µ(PMQL) =
α3 +δ

(α3 +1)θ
, and σ

2
(PMQL) = µ(PMQL)+µ

2
(PMQL)

(
α3(α3 +2+δ (δ −1))+δ

(α3 +δ )2

)
,
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respectively. Its index of dispersion (ID) was derived as

ID(PMQL) =
σ2
(PMQL)

µ(PMQL)
= 1+

α3(α3 +2+δ (δ −1))+δ

(α3 +1)(α3 +δ )θ
. (6)

It is clear that the ID(PMQL) > 1. Then, equation (6) implies that the PMQL distribution
is an over-dispersed distribution. Further, the authors derived 2nd , 3rd , and 4th raw moments
of the PMQL distribution as

µ
′
2 =

θ(α3 +δ )+2α3 +δ (δ +1)
(α3 +1)θ 2 ,

µ
′
3 =

θ 2(α3 +δ )+3θ(2α3 +δ (δ +1))+6α3 +δ (δ +1)(δ +2)
(α3 +1)θ 3 ,

µ
′
4 =

1
(α3 +1)θ 4

(
θ

3(α3 +δ )+7θ
2(2α

3 +δ (δ +1))+6θ(6α
3 +δ (δ +1)(δ +2))

+24α3 +δ (δ +1)(δ +2)(δ +3)
)

.

3. Zero-modified PMQL distribution

The pmf of a zero-modified count distribution is given as

fX (x) =

{
φ +(1−φ)g(0) for x = 0

(1−φ)g(x) for x = 1,2, ...,

where g(.) is the pmf of the parent count distribution and the parameter φ is the zero-
modified parameter. Then, the random variable X is said to have the ZMPMQL (φ ,θ ,α,δ )

if its pmf is given as

fX (x) =


φ +(1−φ)

θ((1+θ)δ−1α3 +θ δ−1)

(α3 +1)(1+θ)δ
for x = 0

(1−φ)

θ

(
Γ(δ )Γ(x+1)α3(1+θ)δ−1 +θ δ−1Γ(x+δ )

)
x!(α3 +1)(1+θ)x+δ Γ(δ )

for x = 1,2, ...,

(7)

where δ > 0,θ > 0,α3 >−1, and θ((1+θ)δ−1α3+θ δ−1)

θ δ−(1+θ)δ−1(1+θ+α3)
≤ φ ≤ 1.

The corresponding cdf is given as

F(ZMPMQL)(x) = φ +(1−φ)FX (x), (8)
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where FX (x) is the cdf of the PMQL distribution, which is defined in equation (4).

Note that equation (7) is not a finite mixture model since φ can take negative values. Fur-
ther, various φ values adopt various zero-modifications of the PMQL distribution.

Remarks:

(i) When φ = θ((1+θ)δ−1α3+θ δ−1)

θ δ−(1+θ)δ−1(1+θ+α3)
, the ZMPMQL distribution reduces to the zero-truncat

-ed PMQL distribution. Here, φ no longer appears. The zero-truncated models are
commonly used to study the length of hospital stay.

(ii) For θ((1+θ)δ−1α3+θ δ−1)

θ δ−(1+θ)δ−1(1+θ+α3)
< φ < 0, the ZMPMQL distribution reduces to the zero-

deflated PMQL distribution, and zero-deflated models are very rare in practice.

(iii) When φ = 0, the ZMPMQL distribution is the PMQL distribution.

(iv) For 0 < φ < 1, the ZMPMQL distribution reduces to the zero-inflated PMQL distri-
bution. This can accommodate more zeros than the actual PMQL distribution.

(v) When φ = 1, the ZMPMQL distribution is degenerated at zero, i.e. all probabilities of
the distribution are concentrated at zero.

The pmf of the ZMPMQL distribution is shown in Figure 1. We can observe that the
parameter φ controls the observed counts of zeros.

The mean, variance, and index of dispersion of the ZMPMQL distribution are given,

µ(ZMPMQL) = (1−φ)µ(PMQL), σ2
(ZMPMQL) = (1−φ)

(
σ2
(PMQL)+φ µ2

(PMQL)

)
and

ID(ZMPMQL) =
σ2
(PMQL)

µ(PMQL)
+φ µ(PMQL) = ID(PMQL)+φ µ(PMQL),

respectively, where µ(PMQL), σ2
(PMQL), and ID(PMQL) are mean, variance, and index of dis-

persion of the PMQL distribution, respectively. Further, the 2nd , 3rd , and 4th raw moments
of the ZMPMQL distribution are (1−φ)µ

′
2, (1−φ)µ

′
3, and (1−φ)µ

′
4, respectively, where

µ
′
2, µ

′
3, and µ

′
4 are 2nd , 3rd , and 4th raw moments of the PMQL distribution, respectively

discussed in Section 2.
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Figure 1: The pmf of the ZMPMQL distribution at different parameter values of φ ,θ ,α,
and δ

4. Quantile function

The uth quantile of the ZMPMQL distribution can be derived by solving F(xu) = u for
0 < u < 1. It is defined as

φβ1(xu)+(1−φ)

(
β2(xu)+θ

δ
Γ(xu+δ +1)2F1((1,xu+δ +1;δ +1;

θ

1+θ

)
−uβ1(xu)= 0,

(9)
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where

β1(xu) = (α3 +1)Γ(δ )xu!δ (1+θ)xu+δ+1,

and

β2(xu) = δ (1+θ)δ−1Γ(δ )α3Γ(xu +1)((1+θ)xu+1 −1).

Since equation (9) is not a linear function with respect to xu, the estimates of quantiles
can be evaluated by using the Newton Raphson method. Further, the first three quantiles can
be found by substituting u = 0.25, 0.50, and 0.75 in equation (9) and solving the respective
non-linear equations.

5. Simulation and parameter estimation

5.1. Simulation of random variables

Here, we provide an algorithm to simulate the random variables x1,x2, ...,xn from the
ZMPMQL (φ ,θ ,α,δ ) with size n based on the inverse transform method.

Algorithm

i Simulate random variables, Ui ∼uniform(0,1); i = 1,2, ...,n.

ii Solve the non-linear equation for [xui ];

φβ1(xui)+(1−φ)

(
β2(xui)+θ δ Γ(xui +δ +1)2F1((1,xui +δ +1;δ +1; θ

1+θ

)
−uiβ1(xui)

= 0, where β1(xui) and β2(xui) are defined as in Section 4. Further, [.] denotes the integer
part.

5.2. Parameter estimation of the ZMPMQL distribution

This subsection presents the unknown parameter estimation of the ZMPMQL distribu-
tion based on the method of moments and the maximum likelihood estimation method.

5.2.1 Method of moments estimator (MME)

Let x1,x2, ...,xn be a random sample of size n from the ZMPMQL distribution. Then,
the method of moments estimators of φ ,θ ,α, and δ , abbreviated as φ̂MME , θ̂MME , α̂MME ,

and δ̂MME are found by equating the first four raw moments, µ
′
r (r = 1,2,3,4) to the sample

moments, say

n

∑
i=1

xi

n
,r = 1,2,3,4, and solving the system of non-linear equations. The

system of non-linear equations are as follows:

n(1−φ)(α3 +δ )− (α3 +1)θ
n

∑
i=1

xi = 0,
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n(1−φ)

(
θ(α3 +δ )+2α3 +δ (δ +1)

)
− (α3 +1)θ 2

n

∑
i=1

x2
i = 0,

n(1−φ)

(
θ 2(α3 +δ )+3θ(2α3 +δ (δ +1))+6α3 +δ (δ +1)(δ +2)

)

−(α3 +1)θ 3
n

∑
i=1

x3
i = 0,

n(1−φ)

(
θ 3(α3 +δ )+7θ 2(2α3 +δ (δ +1))+6θ(6α3 +δ (δ +1)(δ +2))

+24α3 +δ (δ +1)(δ +2)(δ +3)
)
− (α3 +1)θ 4

n

∑
i=1

x4
i = 0.

5.2.2 Maximum likelihood estimator (MLE)

Given a random sample x1,x2, ...,xn with size n from the ZMPMQL(φ ,θ ,α,δ ), the
likelihood function of the ith sample value xi is given as

L(φ ,θ ,α,δ |xi) =

(
φ +(1−φ)

θ((1+θ)δ−1α3 +θ δ−1)

(α3 +1)(1+θ)δ

)I(X=0)(xi)

×

(
(1−φ)

θ(Γ(δ )Γ(xi +1)α3(1+θ)δ−1 +θ δ−1Γ(xi +δ )

xi!(α3 +1)(1+θ)xi+δ Γ(δ )

)(1−I(X=0)(xi))

,

where IS(.) is the indicator function of subset S. Then, the log-likelihood function is given
as

ℓ(φ ,θ ,α,δ |x) =

n0log
(

φ +(1−φ)
θ((1+θ)δ−1α3 +θ δ−1)

(α3 +1)(1+θ)δ

)
+(n−n0)log

(
(1−φ)θ

(α3 +1)Γ(δ )

)
+

n

∑
i=1

(1− I(X=0)(xi))

(
log
(

Γ(δ )Γ(xi +1)α3(1+θ)δ−1 +θ
δ−1

Γ(xi +δ )

)
−

log
(

xi!(1+θ)xi+δ

))
,

where n0 =
n

∑
i=1

I(X=0)(xi), which is the zero counts of the sample.

The score functions are:

∂ℓ(φ ,θ ,α,δ |x)
∂φ

=
T1

T2
− n−n0

1−φ
,
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∂ℓ(φ ,θ ,α,δ |x)
∂θ

=

n0(1−φ)

(
T3 −T4

)
(1+θ)δ T2

+
n−n0

θ
+

n

∑
i=1

(1− I(X=0)(xi))
T5

T6
−

n

∑
i=1

(1− I(X=0)(xi))
(xi +δ )

1+θ
,

∂ℓ(φ ,θ ,α,δ |x)
∂α

=

T7

(α3 +1)T2
− 3α2(n−n0)

α3 +1
+

n

∑
i=1

(1− I(X=0)(xi))
3α2Γ(δ )Γ(xi +1)(1+θ)δ−1

T6
,

and

∂ℓ(φ ,θ ,α,δ |x)
∂δ

=

n0(1−φ)θ

(
T8 −T9

)
(1+θ)δ T2

− (n−n0)(ψ(δ )+ log(1+θ))+
n

∑
i=1

(1− I(X=0)(xi))
T10 +T11

T6
,

where

T1 = n0((α
3 +1)(1+θ)δ −θ((1+θ)δ−1α3 +θ δ−1)),

T2 = φ(α3 +1)(1+θ)δ +(1−φ)θ((1+θ)δ−1α3 +θ δ−1),

T3 = (1+θ)δ (α3(θ(δ −1)(1+θ)δ−2 +(1+θ)δ−1)+δθ δ−1),

T4 = θ((1+θ)δ−1α3 +θ δ−1)δ (1+θ)δ−1,

T5 = Γ(δ )Γ(xi +1)α3(δ −1)(1+θ)δ−2 +(δ −1)θ δ−2Γ(xi +δ ),

T6 = Γ(δ )Γ(xi +1)α3(1+θ)δ−1 +θ δ−1Γ(xi +δ ),

T7 = n0(1−φ)θ((α3 +1)(3α2(1+θ)δ−1)−3α2((1+θ)δ−1α3 +θ δ−1)),

T8 = (1+θ)δ (α3(1+θ)δ−1log(1+θ)+θ δ−1log(θ)),

T9 = ((1+θ)δ−1α3 +θ δ−1)(1+θ)δ log(1+θ),

T10 = Γ(xi +1)α3(Γ(δ )(1+θ)δ−1log(1+θ)+(1+θ)δ−1Γ(δ )ψ(δ )),

and

T11 = Γ(xi +δ )θ δ−1log(θ)+θ δ−1Γ(xi +δ )ψ(xi +δ ).

By setting the score functions equal to zero and solving the system of non-linear equa-
tions, the MLEs of φ , θ , α, and δ abbreviated as φ̂MLE , θ̂MLE , α̂MLE , and δ̂MLE can be
derived. The system of non-linear equations with respect to the parameters can be solved
by the Newton Raphson method. Here, the solutions of the parameter estimates will be
obtained by using the optim function in the R package stats.
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The asymptotic confidence intervals for the parameters φ , θ , α, and δ are derived
by the asymptotic theory. The estimates are asymptotic four-variate normal with mean
(φ , θ , α, δ ) and the observed information matrix is

I(φ ,θ ,α,δ ) =



− ∂ 2ℓ

∂φ 2 − ∂ 2ℓ

∂φ∂θ
− ∂ 2ℓ

∂φ∂α
− ∂ 2ℓ

∂φ∂δ

− ∂ 2ℓ

∂θ∂φ
− ∂ 2ℓ

∂θ 2 − ∂ 2ℓ

∂θ∂α
− ∂ 2ℓ

∂θ∂δ

− ∂ 2ℓ

∂α∂φ
− ∂ 2ℓ

∂α∂θ
− ∂ 2ℓ

∂α2 − ∂ 2ℓ

∂α∂δ

− ∂ 2ℓ

∂δ∂φ
− ∂ 2ℓ

∂δ∂θ
− ∂ 2ℓ

∂δ∂α
− ∂ 2ℓ

∂δ 2


at φ = φ̂MLE ,θ = θ̂MLE ,α = α̂MLE , and δ = δ̂MLE .

That is (φ̂MLE , θ̂MLE , α̂MLE , δ̂MLE) ∼ N4((φ ,θ ,α,δ ), I−1(φ ,θ ,α,δ )). Since the mathe-
matical expressions of the second order partial derivatives of the log-likelihood function are
very long, we do not present the elements of the observed information matrix, I(φ ,θ ,α,δ ).

Therefore, (1−a)100% confidence intervals for the parameters φ ,θ ,α, and δ are given
by

φ̂MLE ± za/2

√
Var(φ̂MLE), φ̂MLE ± za/2

√
Var(φ̂MLE),

α̂MLE ± za/2
√

Var(α̂MLE), δ̂MLE ± za/2

√
Var(δ̂MLE),

where the Var(φ̂MLE),Var(θ̂MLE),Var(α̂MLE), and Var(δ̂MLE) are the variance of φ̂MLE ,

θ̂MLE , α̂MLE , and δ̂MLE , respectively. They can be derived by the diagonal elements of
I−1(φ ,θ ,α,δ ) and za/2 is the critical value at a level of significance.

6. Monte Carlo simulation study and real-world application

6.1. Monte Carlo simulation study

Here, we evaluate the performance of the MLEs (φ̂MLE , θ̂MLE , α̂MLE , and δ̂MLE ) and
MMEs (φ̂MME , θ̂MME , α̂MME , and δ̂MME ) with respect to the sample size n by designing a
simulation study. We consider sample sizes of 60, 100, 200, and 300, and the simulation is
repeated 1000 times. The simulation study is designed as follows:

(i) Simulate 1000 samples of size n.

(ii) Compute the MLEs and MMEs for the 1000 samples, say (φ̂i, θ̂i, α̂i, δ̂i), i = 1,2, ...,
1000.

(iii) Compute the average MLEs, MMEs, biases, and mean square errors (MSEs) by using
the following equations:

Ŝ(n) = 1
1000 ∑

1000
i=1 Ŝi, biasS(n) = 1

1000 ∑
1000
i=1 (Ŝi −S),
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MSES(n) = 1
1000 ∑

1000
i=1 (Ŝi −S)2, for S = φ ,θ ,α,δ , and n = 60,100,200,300.

Tables A1 and A2 present the performance of the MLEs and MMEs of φ ,θ ,α, and δ for
different values of φ which are -0.4,-0.2,0.2, and 0.4. Here, the population values of θ ,α,

and δ are 0.10,0.50, and 2.50, respectively. Note that here the average MSEs are presented
in parentheses in both tables. We can observe that in both estimation methods, the biases
and MSEs decrease as n increases for all parameters in all given situations. This implies
that the maximum likelihood estimation method and the method of moments estimation
verify the asymptotic property for all given parameter estimates. Further, when comparing
the performance of the MLEs and MMEs based on the estimators’ biases and MSEs, it is
clear that the maximum likelihood estimation method is better than the method of moment
estimation.

6.2. Real-world application

This subsection is devoted to show the applicability of the ZMPMQL distribution over
the negative binomial (NB), Zero-modified NB (ZMNB), Poisson-Lindley (PL), Zero-modifi
-ed PL (ZMPL), and PMQL distributions. The best-fitted distribution is selected based on
the negative log-likelihood (−2logL), Akaike information criterion (AIC), and chi-square
goodness of fit test statistic (χ2). Further, the maximum likelihood estimation method is
used to estimate the unknown parameters of the distributions.

The example data set presents the number of units of consumers’ goods purchased by
households over 26 weeks (Lindsey, 1995). The proportion of the zeros in the data set is
80.60%, which indicates that there exists inflation of zeros. The sample dispersion index of
4.761 shows that extreme over-dispersion is present. Further, the skewness and excess kur-
tosis of the data are 3.895 and 16.306, respectively. These results imply that the distribution
of the data set is highly positively skewed having a very long right tail. Table 1 summa-
rizes the comparability of the ZMPMQL distribution with the NB, ZINB, PL, ZMPL, and
PMQL distributions. Based on the results, the ZMPMQL distribution having AIC=3419.95,
χ2 = 12.22, p-value=0.06 gives a better fit than the other distributions. Further, when we
compare the PMQL distribution and the ZMPMQL distribution, the likelihood ratio (LR)
test statistic for the hypothesis testing H0 : φ = 0 vs Ha : φ ̸= 0 for this data set is 50.50,
and it is greater than χ2

1,0.05 = 3.84. Then, the parameter estimate φ̂ is significantly different
from zero.
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Table 1. Units of consumers good

Counts Observed Expected
NB ZINB PL ZMPL PMQL ZMPMQL

0 1612 1239.62 1617.92 1272.56 1611.94 1585.72 1611.78
1 164 240.36 146.26 470.84 122.00 207.56 165.09
2 71 130.05 80.89 168.06 88.57 45.30 74.66
3 47 85.41 50.02 58.50 61.44 32.99 39.88
4 28 61.04 32.56 19.99 41.33 33.90 26.36
5 17 45.74 21.83 6.73 27.20 30.93 20.24
6 12 35.33 14.93 2.24 17.59 24.36 16.34
7 12 27.88 10.34 0.74 11.23 16.90 13.03
8 5 22.35 7.24 0.24 7.10 10.53 10.03
9 7 18.12 5.11 0.07 4.45 5.97 7.41

10 25 94.10 12.90 0.03 7.15 5.84 15.18
Total 2000 2000 2000 2000 2000 2000 2000

β̂ = 0.21 φ̂ = 0.33 θ̂ = 2.33 φ̂ = 0.73 θ̂ = 7.00 φ̂ =−0.61
(0.21) (0.30) (0.07) (0.01) (0.67) (0.03)

α̂ = 0.12 β̂ = 0.23 θ̂ = 0.75 α̂ = 2.12 θ̂ = 1.45
MLE (0.01) (0.04) (0.04) (0.07) (0.25)

α̂ = 0.20 δ̂ = 32.88 α̂ = 1.78
(0.13) (2.81) (0.11)

δ̂ = 8.51
(1.32)

χ2 311.64 18.86 17992.93 77.89 110.99 12.22
p-value 0.00 0.01 0.00 0.00 0.00 0.06
−2logL 3800.90 3427.16 4216.21 3455.33 3462.45 3411.95

AIC 3804.90 3433.16 4218.21 3459.33 3468.45 3419.95

7. Conclusion

In this article, the zero-modified Poisson-Modification of Quasi Lindley distribution was
introduced to model the over-dispersed count data having zero inflation/deflation. We de-
rived some of its structural properties. Further, in order to estimate its unknown parameters,
we derived its log-likelihood function and score functions. We showed that the maximum
likelihood estimation method is a suitable method to estimate its unknown parameters via a
Monte Carlo simulation study. The usefulness of the introduced distribution was illustrated
by fitting it to a real-world data set. The results revealed its superiority over some other
existing mixed Poisson and zero-modified mixed Poisson distributions.
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Appendix

Table A1. Performance of MLEs for ZMPMQL(φ ,θ = 0.10,α = 0.50,δ = 2.25)
n = 60 n = 100 n = 200 n = 300

MLE Bias MLE Bias MLE Bias MLE Bias
(MSE) (MSE) (MSE) (MSE)

φ =−0.40
φ -0.0313 0.3686 -0.0770 0.3229 -0.0950 0.3049 -0.1328 0.2671

(0.1402) (0.1092) (0.1043) (0.0809)
θ 0.0373 -0.0626 0.0629 -0.0370 0.0865 -0.0134 0.0916 -0.0083

(0.0040) (0.0030) (0.0026) (0.0019)
α 0.5429 0.0429 0.5359 0.0359 0.4820 -0.0179 0.4903 -0.0096

(0.0933) (0.0710) (0.0379) (0.0333)
δ 0.9333 -1.5666 1.1108 -1.3891 1.1776 -1.3223 1.2210 -1.2789

(2.6203) (2.3570) (2.0278) (1.8462)
φ =−0.20

φ -0.0566 0.1433 -0.0818 0.1181 -0.0975 0.1024 -0.1129 0.0870
(0.0242) (0.0291) (0.0118) (0.0097)

θ 0.0451 -0.0548 0.0848 -0.0151 0.0912 -0.0087 0.0961 -0.0038
(0.0035) (0.0025) (0.0018) (0.0009)

α 0.5629 0.0629 0.5900 0.0900 0.4547 -0.0452 0.4701 -0.0298
(0.1958) (0.1790) (0.0805) (0.0412)

δ 1.0944 -1.4055 1.2009 -1.2990 1.3474 -1.1525 1.4268 -1.0731
(2.2541) (1.9939) (1.6011) (1.2742)

φ = 0.20
φ 0.2582 0.0582 0.2427 0.0427 0.2257 0.0257 0.2119 0.0119

(0.0133) (0.0053) (0.0023) (0.0004)
θ 0.1473 0.0473 0.1379 0.0379 0.1193 0.0193 0.1063 0.0063

(0.0195) (0.0061) (0.0022) (0.0002)
α 0.4138 -0.0861 0.4308 -0.0691 0.4495 -0.0504 0.4891 -0.0108

(0.0953) (0.0701) (0.0565) (0.0314)
δ 2.9704 0.4704 2.7098 0.2098 2.6435 0.1435 2.5623 0.0623

(1.2737) (0.7320) (0.3341) (0.1134)
φ = 0.40

φ 0.4335 0.0335 0.4213 0.0213 0.4174 0.0174 0.4099 0.0099
(0.0105) (0.0027) (0.0016) (0.0008)

θ 0.1447 0.0447 0.1280 0.0280 0.1177 0.0177 0.1051 0.0051
(0.0121) (0.0022) (0.0013) (0.0002)

α 0.4109 -0.0890 0.4245 -0.0754 0.4309 -0.0690 0.4467 -0.0532
(0.0988) (0.0722) (0.0650) (0.0424)

δ 3.0761 0.5761 2.7313 0.2313 2.6573 0.1573 2.5932 0.0932
(1.4439) (0.7488) (0.4785) (0.2135)
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Table A2. Performance of MMEs for ZMPMQL(φ ,θ = 0.10,α = 0.50,δ = 2.25)
n = 60 n = 100 n = 200 n = 300

MME Bias MME Bias MME Bias MME Bias
(MSE) (MSE) (MSE) (MSE)

φ =−0.40
φ -0.0223 0.3776 -0.0547 0.3452 -0.0769 0.3230 -0.1062 0.2937

(0.1427) (0.1199) (0.1186) (0.1034)
θ 0.1832 0.0832 0.1649 0.0649 0.1376 0.0376 0.1335 0.0335

(0.0103) (0.0076) (0.0044) (0.0028)
α 0.7600 0.2600 0.6028 0.1028 0.5921 0.0921 0.5777 0.0777

(0.1022) (0.0843) (0.0642) (0.0440)
δ 4.5414 2.2914 4.1311 1.8811 3.6185 1.3685 3.8331 1.3331

(6.7310) (4.2928) (2.3961) (2.2493)
φ =−0.20

φ -0.3827 -0.1827 -0.3612 -0.1612 -0.3493 -0.1493 -0.3243 -0.1243
(0.0441) (0.0301) (0.0231) (0.0173)

θ 0.1967 0.0967 0.1650 0.0650 0.1492 0.0492 0.1407 0.0407
(0.0131) (0.0082) (0.0034) (0.0024)

α 0.9864 0.4864 0.9691 0.4691 0.7889 0.2889 0.7324 0.2324
(0.2694) (0.3253) (0.1238) (0.0729)

δ 5.7357 3.4857 5.1516 2.9016 3.9256 1.6756 3.6355 1.3855
(15.7459) (12.4246) (3.7138) (2.6906)

φ = 0.20
φ -0.0349 -0.2349 0.0166 -0.1833 0.0700 -0.1299 0.0993 -0.1006

(0.0706) (0.0530) (0.0216) (0.0139)
θ 0.2253 0.1253 0.1759 0.0759 0.1562 0.0562 0.1459 0.0459

(0.0246) (0.0101) (0.0047) (0.0030)
α 1.0917 0.5917 1.0101 0.5101 1.0036 0.5036 0.8582 0.3582

(0.3969) (0.3522) (0.2782) (0.1620)
δ 6.6309 4.3809 5.5530 3.3030 4.3311 2.0811 4.1850 1.9350

(27.6692) (15.6071) (5.8163) (4.5527)
φ = 0.40

φ 0.2199 -0.1800 0.2350 -0.1649 0.3151 -0.0848 0.3576 -0.0423
(0.0465) (0.0406) (0.0114) (0.0053)

θ 0.2581 0.1581 0.1962 0.0962 0.1670 0.0670 0.1553 0.0553
(0.0398) (0.0141) (0.0067) (0.0048)

α 1.0907 0.5907 1.0502 0.5502 0.9728 0.4728 0.8745 0.3745
(0.4056) (0.3492) (0.2560) (0.1674)

δ 7.5974 5.3474 6.2256 3.9756 4.6281 2.3781 4.2158 1.9658
(42.3990) (20.4941) (7.9752) (5.2737)
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Optimal allocation for equal probability two-stage design
Wilford Molefe1

ABSTRACT

This paper develops optimal designs when it is not feasible for every cluster to be represented
in a sample as in stratified design, by assuming equal probability two-stage sampling where
clusters are small areas. The paper develops allocation methods for two-stage sample surveys
where small-area estimates are a priority. We seek efficient allocations where the aim is
to minimize the linear combination of the mean squared errors of composite small area
estimators and of an estimator of the overall mean. We suggest some alternative allocations
with a view to minimizing the same objective. Several alternatives, including the area-only
stratified design, are found to perform nearly as well as the optimal allocation but with better
practical properties. Designs are evaluated numerically using Switzerland canton data as
well as Botswana administrative districts data.

Key words: sample designs, optimal allocation, composite estimation, mean squared error,
two-stage sampling, simple random sampling without replacement

1. Introduction

In many situations it is not feasible for every small area to be represented in a sample.
In practice, it is not possible to anticipate and plan for all possible areas (or domains) and
uses of survey data as “the client will always require more than is specified at the design
stage” (Fuller, 1999).

Longford (2006), Molefe (2011), Molefe and Clark (2015) and Molefe, Shangodoyin
and Clark (2015) derive optimal allocations for stratified sampling, which minimize weighted
sums of the MSEs of small area estimates and a grand mean estimate. In Longford (2006),
the MSEs are design-based (that is, based on repeated probability sampling from a fixed
population without reference to a model), and in Molefe (2011), Molefe and Clark (2015)
and Molefe, Shangodoyin and Clark (2015) anticipated MSEs are used. In all the references
above, stratified simple random sampling without replacement is assumed, where strata are
small areas. All find that the optimal design could sometimes have zero sample size for the
smallest areas. The authors establish numerically that simpler designs with positive stra-
tum sample sizes give near optimal anticipated MSEs. Power allocation (Bankier, 1988)
with stratum sample sizes proportional to a numerically optimized exponent of the stratum
population performs particularly well.

In this paper we consider the case of equal probability two-stage sampling design where
small areas are clusters or primary sampling units (PSUs). Two-stage sampling with equal
probabilities of selection for all clusters (at least within broad regions) are used in many
large scale sample surveys including the Australian and New Zealand labour force surveys.

1University of Botswana, Botswana. E-mail: molefewb@ub.ac.bw. ORCID: https://orcid.org/0000-0001-
7674-2244.
© Wilford Molefe . Article available under the CC BY-SA 4.0 licence 
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It will be assumed that a sample of small areas is selected by SRSWOR, followed by a
sample of the second stage units (units) from each selected small area, also by SRSWOR.
There are several possible reasons for this approach. There may be a list of the small areas
in the population, but not of the population units. Two stage surveys are also useful so that
the sample can be made more geographically clustered, which often reduces enumeration
costs (Cochran, Chapter 10 1977).

In optimizing this sampling design for small area estimation where small areas are clus-
ters, the fundamental question is how to choose the number of clusters (m) and the number
of subunits, referred to as just units (nd) per cluster subject to fixed cost. One approach is to
choose m and nd to optimize some criteria subject to a cost constraint based on some model
for cost.

We adopt the criterion of the weighted sum of the MSE for the small areas in-sample
and the MSE of the estimator for the small areas out-of-sample.

A question within the above setup is when it is appropriate to have some sample in every
small area. This would only be feasible when there are a relatively small number of small
areas (M), or a very large survey budget, and would usually mean that the number of units
{nd} in each small area would be fairly small. In this case the design will be a special
case of stratified design considered by Longford (2006), Molefe (2011), Molefe and Clark
(2015) and Molefe, Shangodoyin and Clark (2015).

In practice, it is not always feasible for every small area to be represented in the sam-
ple. This is clear from the fact that zero stratum sample sizes sometimes arise in Longford
(2006), Molefe (2011) and Molefe and Clark (2015). In this paper, we explicitly allow for
the sampling of small areas. It is assumed that a two-stage design is used, where clusters are
small areas. A cluster d may be selected with equal probability πd =

m
M and a different sam-

ple size nd to be selected from each selected cluster. In Section 2 we state a two-level model
and the resulting anticipated MSE of small area estimates. An objective function which is
a linear combination of anticipated MSEs is defined. A linear cost model consisting of per-
cluster and per-unit costs is assumed. The aim is then to minimize the objective function
with respect to m and nd subject to fixed expected cost for the survey. In Section 3 we de-
velop an optimal analytical solution when only small area estimates are a priority. Section 4
suggests sensible but ad-hoc designs that include equal allocation, proportional allocation,
classical optimal allocation and a combined design made up of the proportional allocation
and the classical optimal design. Section 5 is a numerical study based on the Switzerland
canton population sizes used by Longford (2006). Section 6 contains conclusions.

2. Methods

From a population of M small areas (clusters) indexed by d, denoted by U1, a first stage
sample of m small areas selected by SRSWOR is denoted s1. In the second stage of the
selection a sample of size nd elements selected by SRSWOR from area d is denoted by sd .
The set of Nd population units in a particular cluster d is denoted by Ud . Let the sampling
variances be vd = varp(ȳd) and v = varp(ȳ) respectively for the small area mean estimator
and overall mean estimator. The composite estimator is denoted ỹC

d [φd(opt)].
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Let Yj be the value of the characteristic of interest for the jth unit in the population.
The small area population mean is Ȳd and the national mean is Ȳ . Auxiliary variables x j are
assumed to be available for the full population j ∈U1.

The following two-level linear mixed model ξ will be assumed:

Yj = β T x j +ud + ε j

Eξ [ud ] = Eξ [ε j] = 0
varξ [ud ] = σ2

ud
varξ [ε j] = σ2

εd

 (1)

for d ∈U1 and j ∈Ud with mutual independence of ud and ε j for d ∈U1 and j ∈Ud . This
implies varξ [Yj] = σ2

ud +σ2
εd = σ2 for all j ∈U , and that the covariance covξ [Yi,Yj] = ρdσ2

d
for units i ̸= j in the same small area and 0 for units from different small areas, where
ρd = σ2

ud/σ2. For simplicity it will be assumed that ρd = ρ .
Following Molefe and Clark (2015), we assume a small-area composite estimator which

is a weighted mean of an approximately design unbiased estimator

ȳdr = ȳd + β̂
T (X̄d − x̄d)

recommended by Hidiroglou and Patak (2004) for small domains, and a model-based syn-
thetic estimator ˆ̄Yd(syn) = β̂ T X̄d .

The composite estimator which approximately minimizes the anticipated MSE is

ỹC
d [φd(opt)] = (1−φd)ȳdr +φd

ˆ̄Yd(syn) = β̂
T X̄d +(1−φd)

(
ȳd − β̂

T x̄d

)
where φd(opt) = (1−ρ)

[
1+(n∗d −1)ρ

]−1, assuming that n, Nd and M are all large (Molefe
and Clark, 2015). Under the same assumptions, the approximate anticipated MSE of the
optimal composite estimator of Ȳd conditional on n∗d is

Eξ MSEp
(
ỹC

d
[
φd(opt)

]
;Ȳd |n∗d

)
≈

{
n∗dρ

[
1+(n∗d −1)ρ

]−1
}2

(n∗d)
−1

σ
2(1−ρ)+

{
(1−ρ)

[
1+(n∗d −1)ρ

]−1
}2

σ
2
ρ

= σ
2
ρ(1−ρ)/

[
1+(n∗d −1)ρ

]
(2)

See Molefe (2011) for the derivation.
Small areas with no sample would have a direct estimate of zero. For these, a synthetic

estimator is used. An indirect estimator, ỹC
d = ȳ is proposed, if cluster d /∈ s1. The MSE of

ȳ is given by MSEp
(
ȳ;Ȳd

)
= v+B2

d , where Bd is the design bias of using ȳ to estimate Ȳd .
The population level mean estimator ȳ and area mean ȳd are assumed to be unbiased for

Ȳ and Ȳd respectively. The design variance of the synthetic estimator will be small relative
to the design variance of the direct estimator because it depends only on the precision of
direct estimators at a larger area level. If the number of small areas in the sample is large, v
is negligible and can be ignored. Therefore, we approximate MSEp

(
ȳ;Ȳd

)
by B2

d .
For optimal allocation of sample sizes of clusters and subunits, we search for the area-
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level sampling design that minimizes the weighted expected value of the sum of the sam-
pling variances (MSEs) for a combination of small area composite estimates for clusters
in-sample and out-of-sample and an overall estimator of the mean given by

F = ∑
d∈U1

πdNq
d AMSEd

{
ỹC

d
[
φd(opt)

]
;Ȳd
}
+ ∑

d∈U1

(1−πd)N
q
d AMSEd

[
ȳ;Ȳd

]
(3)

where the first component in (3) is due to the m clusters in-sample and the second component
is due to the remaining (M −m) clusters. The small-area population sizes Nd are weights,
that is, Nq

d for 0 ≤ q ≤ 2, where for q = 0, inference is equally important for every area.
With increasing q, relatively greater importance is ascribed to more populous areas, with
q = 2 corresponding to proportional allocation. AMSEd is the model assisted mean squared
error, that is ξ MSEd .

We can then write the model expectation of the criterion function to be minimized,
ignoring the goal of national estimation, as

F ≈ m
M ∑

d∈U1

Nq
d

σ2ρ(1−ρ)

[1+(nd −1)ρ]
+
(

1− m
M

)
σ

2
ρ ∑

d∈U1

Nq
d (4)

2.1. Cost Models and Cost Estimates

In a two stage sampling scheme the sampling variance of the estimate of the overall
population mean (ȳ) is minimized (for fixed sample size) when n̄ = 1 since this is when the
sample is most spread out. However, costs will be minimized when as few first stage units
as possible are selected. Hence, some compromise between these two extremes has to be
chosen and this is the optimal design problem in multistage sampling. As always costs and
variances are pulling in opposite directions and the task of optimal design is to choose the
optimal balance of these.

In a two-stage sample, several types of costs can be distinguished (Hansen, 1953; Cochran,
1977):

(a) Overhead costs - costs associated with planning, administration, setting up processing
systems, etc. These costs do not depend on the sample sizes used at either stage;

(b) Costs associated with the selection of clusters - these arise from drawing maps, listing
units within selected primary stage units, travel between selected primary stage units.
These costs increase as the number of clusters selected increases;

(c) Costs associated with the selection of secondary stage units - these mainly arise from
the enumeration of selected population units, e.g. the cost of time spent in inter-
viewing people and the cost of processing an individual questionnaire. These costs
increase as the number of selected units increases.

Linear cost models are commonly used by official statistics agencies (Hansen, 1953;
Sukhatme, 1954; Cochran, 1977; Foreman, 1991; Clark, 2007). A linear cost model is often
adequate for sample design, even though it cannot perfectly capture the real cost structure.
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A simple cost model for a two-stage sample is given by

CF = c0 + c1m+ c2
m
M ∑

d∈U1

nd

where m equals the number of primary sampling units (clusters) in the sample; nd is the
number of secondary sampling units (units), for example, households, in the sample from
cluster d; the coefficient c0 is the fixed costs of conducting the survey, independent of the
number of sample clusters and subunits per cluster, including costs for survey planning, de-
velopment of the survey design, preparatory work, survey management and data processing,
analysis and presentation of results; the coefficient c1 is the average cost of adding a clus-
ter to the sample, consisting of travel by interviewers and supervisors between clusters and
home base or between clusters (fuel costs, driver salaries) and interviewer salaries, includ-
ing the cost of obtaining maps and other material for the cluster, the cost of establishing the
survey in the local area, entailing, for example, meeting with and obtaining permission from
local authorities, and the cost of listing and sampling of dwelling units within the cluster;
the coefficient c2 is the average cost of including an extra household in the sample, including
the costs for locating, contacting and interviewing a household, where the costs consist of
interviewer and supervisor salaries and allowance, and also costs for travel by interviewers
and supervisors within clusters (Pettersson and Sisouphanthong, 2005).

Costs for the different components of a survey differ from survey to survey and from
country to country. The survey manager often has a good idea of the time required for
specific survey operations based on information from previous surveys of a similar nature.
Experiences from prior surveys (or from pilot surveys) could often be used for reasonable
estimates of time per household required for locating and interviewing the household. In
these cases, reasonable estimates of c2 could be compiled.

Computing a reasonable estimate of c1 is often difficult because it involves determining
the effect of additional interviewer travel when a cluster is added to the sample. The travel
depends on the size of the area being covered, the number of clusters assigned to each
interviewer, and the travel pattern of the interviewers. The travel includes between-cluster
and within-cluster travel during a data collection trip.

Cost modelling is mainly used for budgetary purposes and for finding an efficient sample
design. In this thesis, our interest is mainly in the use of cost models to find an efficient
design. We do not consider the fixed costs (c0) in trying to work out an efficient design; we
only consider the fieldwork costs. The total sampling cost function has two components;
the first part depends on how many small areas, c1m, and the other on the total number of
units sampled, namely c2 ∑d∈s1 nd . The second component will, however, vary from sample
to sample of the clusters.

Therefore, the expected total sampling cost function will then be given by

CE = c1m+ c2
m
M ∑

d∈U1

nd (5)

The aim is to minimise F with respect to nd and m subject to a cost constraint CE =CF .
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3. Area-Only Simple Two-Stage Optimal Design

The expected criterion function (4), eliminating the common σ2 and ρ terms, reduces
to

F ≈ − m
M ∑

d∈U1

Nq
d ndρ

1+(nd −1)ρ
(6)

plus constant terms which do not depend on m or nd .
We minimize (6) subject to the cost constraint (5). The Lagrangian is:

L = F +λ

(
c1m+ c2

m
M ∑

d∈U1

nd −CF

)
(7)

To obtain an optimal number of clusters and subunits to take into the sample, we take
partial derivatives of (7) with respect to nd , λ and m.

We use the partial derivatives to derive the optimal design by firstly deriving n̄opt., the
optimal average within-cluster sample size. This result will then be used to derive the opti-
mal values of nd .

We use ∂L
∂nd

= 0 to obtain the optimal value for nd as follows:

nd = N
q
2

d

√
(1−ρ)/(λc2ρ)− (1−ρ)/ρ (8)

This solution for nd given implies that the average within-cluster sample size is

n̄ = N̄
q
2

d

√
(1−ρ)/(λc2ρ)− (1−ρ)/ρ

Therefore, we can write√
(1−ρ)/(λc2ρ) =

(
N̄

q
2

d

)−1
{n̄+(1−ρ)/ρ}

Then, the optimal cluster sample sizes can be expressed as

nd = N
q
2

d

(
N̄

q
2

d

)−1
n̄+(1−ρ)/ρ

[
N

q
2

d

(
N̄

q
2

d

)−1
−1
]

We can also substitute for nd given by (8) in ∂L
∂λ

= 0 to obtain

c1m+ c2
m
M ∑

d∈U1

(
N

q
2

d

√
(1−ρ)/(λc2ρ)− (1−ρ)/ρ

)
=CF

This simplifies to

CF = γm+

√
c2

λ

m
M ∑

d∈U1

N
q
2

d

√
(1−ρ)/ρ



STATISTICS IN TRANSITION new series, December 2022 135

where γ = c1 − c2(1−ρ)/ρ .

Similarly, we substitute for nd in ∂L
∂m = 0 and after simplifying we obtain

1
M ∑

d∈U1

Nq
d =

1
M ∑

d∈U1

N
q
2

d

√
λc2(1−ρ)/ρ +λ

(
γ +

1
M

√
c2

λ
∑

d∈U1

N
q
2

d

√
(1−ρ)/ρ

)

Removing the bracket on the right hand size, we obtain

1
M ∑

d∈U1

Nq
d = 2

1
M ∑

d∈U1

N
q
2

d

√
λc2(1−ρ)/ρ +λγ

The resulting two simultaneous equations in m and λ are:

m
M

√
c2/λ (1−ρ)/ρ ∑

d∈U1

N
q
2

d + γm =CF (9)

2
√

λc2(1−ρ)/ρ ∑
d∈U1

N
q
2

d +λγM = ∑
d∈U1

Nq
d (10)

We use (9) to write λ in terms of m as follows:

√
λ =

1
M
(
CF/m− γ

) ∑
d∈U1

N
q
2

d

√
c2(1−ρ)/ρ

Substituting for λ in (10) we obtain

∑
d∈U1

Nq
d =

2c2(1−ρ)/ρ
(

∑d∈U1 N
q
2

d

)2

M
(
CF/m− γ

) +
c2(1−ρ)/ρ

(
∑d∈U1 N

q
2

d

)2

M
(
CF/m− γ

)2 × γ

Cross-multiplying and further simplifying we obtain

0 = γ

c2(1−ρ)/ρ

(
∑

d∈U1

N
q
2

d

)2

+ γM ∑
d∈U1

Nq
d

+M
(

CF

m

)2

∑
d∈U1

Nq
d −

2
CF

m

c2(1−ρ)/ρ

(
∑

d∈U1

N
q
2

d

)2

+ γM ∑
d∈U1

Nq
d

 (11)

which is a quadratic in m−1 of the form am−2 +bm−1 + c = 0.

Define C2
q/2 the relative population variance of N

q
2

d given by

C2
q/2 = M−1

∑
d∈U1

(
N

q
2

d − N̄
q
2
)2
/
(
N̄

q
2
)2 (12)
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Then

M−1
∑d∈U1(N

q
2

d )2

(M−1 ∑d∈U1 N
q
2

d )2
=

M−1
∑d∈U1 Nq

d

(M−1 ∑d∈U1 N
q
2

d )2
= 1+C2

q/2

Hence, we write

∑
d∈U1

Nq
d = M−1

(
∑

d∈U1

N
q
2

d

)2(
1+C2

q/2

)
(13)

We substitute for ∑d∈U1 Nq
d into (11) to obtain a reduced quadratic equation in m−1:

0 =

(
CF

m

)2

(1+C2
q/2)−2

CF

m

[
c2(1−ρ)/ρ + γ

(
1+C2

q/2

)]
+ γ
[
c2(1−ρ)/ρ +

γ

(
1+C2

q/2

)]
(14)

Define n̄ = E
[ n

m

]
= 1

M ∑d∈U1 nd . There is a one-to-one relationship between m and
n̄ because CF = c1m+ c2mn̄ so that m = CF/(c1 + c2n̄). Hence finding the optimal m is
equivalent to finding n̄. Substituting for m−1 into (14) we obtain

0 = (c1 + c2n̄)2(1+C2
q/2)−2(c1 + c2n̄)

[
c2(1−ρ)/ρ + γ(1+C2

q/2)
]
+

γ

[
c2(1−ρ)/ρ + γ(1+C2

q/2)
]

which is a quadratic in n̄ of the form an̄2 +bn̄+ c.
Therefore, the optimum n̄ is:

n̄opt. =
−c2(1−ρ)/ρC2

q/2 ±
[
c1c2(1−ρ)/ρ +

{
c2(1−ρ)/ργ

}
C2

q/2

] 1
2

c2
(
1+C2

q/2

) (15)

Of primary interest will be to compare the optimal sample size using composite esti-
mation, n̄opt., with the classical two-stage optimal design given by Hansen, Hurwitz and
Madow (1953, page 173 equations 10.1 and 10.2) and Cochran (1977, page 281 equa-
tion 10.26) as n̄cl. =

√
c1/c2(1−ρ)/ρ for the purpose of drawing general conclusions on

whether the two-stage composite optimal is always more clustered or always less clustered
than the standard or classical two-stage cluster optimal.

The classical optimal for the two-stage cluster design n̄cl. coincides with n̄opt. when
q = 0.

It is not obvious whether the two-stage general optimal n̄opt. is larger or smaller than the
classical two-stage cluster design optimal n̄cl. when q > 0. In fact, it is not clear that the
stationary point for n̄opt. exists at all. If ρ is small enough, then the contents of the square
bracket in (15) will become negative, so that the square root will not exist.
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Looking at (15) it appears that n̄opt. will usually be less than in the classical design
(n̄cl.), because in the square root of the discriminant, the coefficient of C2

q/2 is c2(1−ρ)/ργ .
Usually, ρ is 0.05 or less, so that γ/c2 becomes {c1/c2 −19}. The cost of including a new
PSU in the sample (c1) will always be higher than the cost of including a new household
in a selected PSU (c2), hence the cost ratio will always be well above 1.0. The higher
the cost ratio, the more costly it is to select a new PSU compared with selecting more
households in selected PSUs; consequently, we should select more households in already
selected PSUs. We assume that c1/c2 < 19, so the coefficient of C2

q/2 is negative. In the
term −b, the coefficient of C2

q/2 is negative and in the denominator the coefficient of C2
q/2 is

positive. Hence, n̄opt. is (usually) a decreasing function of C2
q/2, so that for C2

q/2 > 0, n̄opt.

will be less than the classical design. A sufficient condition for this is that γ/c2 < 0, which
would usually be satisfied, unless c1 or ρ are unusually large. When C2

q/2 = 0 as is the case
when Nd = N̄ the optimal sample size reduces to the standard optimal cluster size so that
n̄opt. = n̄cl..

Let ntot = ∑d∈U1 nd (note that ntot ̸= n, the sample size, since ntot is the sum of nd over
all clusters in-sample and out-of-sample).

We now consider the solution of nd given by nd given by (8). Summing over all the
clusters and dividing by the total number of clusters M we obtain

ntot

M
=

1
M
√

λc2
∑

d∈U1

N
q
2

d

√
(1−ρ)/ρ − (1−ρ)/ρ (16)

Solving for
√

λ in (16) and substituting in (8) we obtain

nd = ntotP
q
2

d +(1−ρ)/ρ(MP
q
2

d −1) (17)

where P
q
2

d = N
q
2

d /∑d∈U1 N
q
2

d .

This solution for {nd} is identical to the area-only stratified formula for nd given by
Longford (2006), Molefe (2011) and Molefe and Clark (2015):

nh,opt. = nP
q
2

h +(1−ρ)/ρ(HP
q
2

h −1) (18)

for stratified sampling design, with total sample size n replaced by ntot . This shows that the
two-stage allocation for nd is the same as stratified allocation, given ntot . We can then write
the expected cost constraint (5) in terms of ntot as

CE = c1m+ c2
m
M

ntot (19)

For c1
c2

= 10, equation (14) gives a value of m which is greater than M when q = 1.
When this happens, the optimal value for the number of clusters to take into the sample is
m=M. As q approaches 2, the discriminant becomes negative so that there is no real-valued
solution for m, implying that m = M is optimal.
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3.1. Numerical Example

The cost constraint for sampling is set at CF = 350 cost units. The following per cluster
to per subunit cost ratios are considered; c1

c2
= 10, 4 and 2 where the cost per second stage

unit c2 = 1 cost units.
We used data on the 26 cantons (clusters) of Switzerland (Longford, 2006) to allocate

the sample using the various simple two-stage designs. Throughout, we assume that ρ = 1
40 .

We compute the optimum sample sizes for each ratio c1
c2

by priority exponent q using
(15) in Table 1. From the results, it is apparent that n̄opt. is a decreasing function of q. As q
increases the discriminant becomes small and eventually negative, resulting in the solution
for n̄opt. being negative or even a complex number. When this happens, the optimal sample
size is n̄opt. = 1. We also observe that the optimum sample size decreases as c1

c2
decreases.

Therefore, the main finding here is that the general optimal gives a less clustered design
when q > 0 than the classical two-stage optimal.

Table 1: Area-only simple two-stage optimum sample sizes
Priority c1

c2
= 10 c1

c2
= 4 c1

c2
= 2

exponent mopt n̄opt n̄cl. mopt n̄opt. n̄cl. mopt. n̄opt. n̄cl.

q = 0 12 20 20 21 12 13 26 9 9
q = 1

4 12 18 20 24 10 13 26 6 9
q = 1

2 15 14 20 26 4 13 26 1 9
q = 3

4 20 7 20 26 1 13 26 1 9
q = 1 26 1 20 26 1 13 26 1 9
q = 2 26 1 20 26 1 13 26 1 9

When c1
c2

is large, the sample is more clustered hence the CV’s of the estimates of the
cluster means are relatively smaller. However, the CV of the estimate of the grand mean
will be large. When c1

c2
goes down, the sample becomes less clustered since we can take

a larger number of clusters into the sample. When this happens the CV’s of the estimates
of the cluster means will be relatively larger since the within-cluster sample size is smaller,
and the CV of the estimate of the grand mean will be smaller.

In the case of clusters of equal size, the within-cluster sample size is the same for all
clusters selected into the sample. Hence, the optimization problem reduces to a singular
problem of finding the optimal number of clusters to take into the sample.

The optimal number of clusters, mopt., and the optimal expected sample size of ultimate
cluster, n̄opt., subject to a fixed total expenditure, CF = c1m+ c2mn̄, are mopt. = CF/(c1 +

c2n̄opt.) where n̄opt. =
√

c1/c2(1−ρ)/ρ .

4. Other Designs

We consider several sensible but ad-hoc designs that include equal allocation, propor-
tional allocation, classical optimal allocation and a combined design made up of the pro-
portional allocation and the classical optimal design. We consider these ad-hoc designs
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because sometimes the optimal design derived in Section 3 has undesirable properties such
as negative or complex values for the analytical result for n̄cl. or nd (implying values of 1 in
practice).

4.1. Equal Design

In the cluster equal design we consider the case in which a sample is taken from each
and every small area (cluster). An equal number of secondary stage units is taken from each
and every cluster. That is, m = M and nd = n/M for d = 1, . . . ,M, where n = (CF −c1M)/c2

is the total sample size.

4.2. Proportional Design

In this design a sample is taken from each and every cluster. The within-cluster sample
sizes are proportional to the population sizes of the clusters. The design is m = M and
nd = nPd for d = 1, . . . ,M, where n is the same as in equal design and Pd = Nd/N.

4.3. Classical Optimal Design

The number of clusters taken into the sample is determined by the cost constraint. The
within-cluster sample size is the standard optimal two-stage cluster design given by m =

CF/(c1 + c2n̄cl.) and nd = n̄cl. for d = 1, . . . ,m.

4.4. Proportional & Optimal Design

It may also be constructive to propose modifications of existing sampling designs. This
design uses a combination of two designs. The within-cluster sample size is proportional
to the cluster population size and also optimal for two-stage cluster design: m =CF/(c1 +

c2n̄cl.) and nd = Pd n̄cl. for d = 1, . . . ,m.

5. Numerical Evaluation

In this section, we compare the efficiency of the ad-hoc designs and the area-only opti-
mum derived in Section 3. We consider the relative efficiency of these designs by calculating
the ratios of F given by (6) of the designs using the equal design as the base design. A ra-
tio less than one implies that a design is more efficient than the base design, whilst a ratio
greater than one implies a design is less efficient than the base design.

In Table 2 we show the summary statistics of the CV’s of the estimates of the cluster
and national means for c1

c2
= 10, 4 and 2 under the ad-hoc designs. The results show that

for equal and classical optimum allocations, the CV’s of the estimates of the small area
means are narrowly dispersed by virtue of the design allocations being equal sample sizes.
On the other hand, we see that the ranges of the CV’s under proportional allocation and
proportional & optimum allocation designs are widely dispersed since the clusters receive
sample sizes that are proportionate to their population sizes.
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Table 2: CV’s of the ad-hoc designs

Equal Proportional Classical Proportional Area-only
allocation allocation optimum & optimum optimuma

c1
c2

= 10
CV % (SAE’s)

Minimum 57.01 25.49 22.64 10.77 13.31
1st Quarter 57.01 44.16 22.65 20.50 20.16
Median 57.01 57.01 22.65 26.03 29.77
Mean 57.01 60.42 22.65 34.47 38.08
3rd Quarter 57.01 69.82 22.65 44.16 49.37
Maximum 57.01 98.74 22.65 98.74 98.74
CV % (National) 81.41 52.33 57.67 46.37 34.32

c1
c2

= 4
CV % (SAE’s)

Minimum 32.91 15.24 27.37 13.19 12.34
1st Quarter 32.91 28.82 27.38 25.11 19.31
Median 32.91 37.61 27.39 33.07 27.39
Mean 32.91 49.54 27.38 41.87 36.05
3rd Quarter 32.91 69.82 27.39 57.01 38.82
Maximum 32.91 98.74 27.39 98.74 98.74
CV % (National) 46.75 31.75 45.71 33.75 31.24

c1
c2

= 2
CV % (SAE’s)

Minimum 29.77 13.96 29.76 13.96 12.06
1st Quarter 29.77 26.64 29.77 26.64 18.60
Median 29.77 33.91 29.77 33.91 25.49
Mean 29.77 44.05 29.77 44.05 30.19
3rd Quarter 29.77 57.01 29.77 57.01 33.91
Maximum 29.77 98.74 29.77 98.74 69.82
CV % (National) 42.21 28.55 42.21 28.55 26.95
aArea-only optimum when q = 1

We observe that the classical optimum is relatively more efficient for estimating cluster
means as shown by smaller CV’s of the estimates of the cluster means compared to the
other allocations. However, for estimating the national mean, the proportional & optimum
allocation is relatively more efficient than the other designs. The CV of the estimate of the
national mean is however considerably higher for the four ad-hoc designs, possibly showing
that these two-stage cluster designs are not well suited for estimating the overall mean.

When c1
c2

= 4, it implies more clusters and within-cluster samples for fixed CF . The
result of increased sample size is that the CV’s of the estimates of the cluster means under
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equal allocation and classical optimum are considerably lower than when c1
c2

= 10. But
proportional allocation and proportional & optimum allocation seem to be relatively better
than equal and classical optimum allocations in estimating the national mean.

For c1
c2

= 2 equal design give identical results to classical optimal design. Proportional
design on the other hand also gives identical results to proportional & optimal design. These
two designs perform better than equal and standard optimal designs for q ≥ 1

2 in terms of
CV’s and the criterion function F .

In Table 3 we see that proportional allocation and area-only stratified optimum given by
(18) is less efficient than the base design. The area-only optimum designs should always be
the best since the criterion function is minimized when the largest clusters are included in the
sample but they are not when q = 0. Classical optimum and proportional & optimum are the
only designs that are more efficient than equal allocation at q = 0. As the priority exponent
q increases all the designs’ efficiency against equal designs improve with the exception of
classical optimum, whose efficiency is constant. At q = 2, the area-only stratified optimum
and area-only optimum are nearly twice as efficient as equal design.

Table 3: Relative efficiency of two-stage designs for c1
c2

= 10

Priority Exponent (q)

Designs nd q = 0 q = 1
2 q = 1 q = 3

2 q = 2

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.91 0.83 0.77 0.71 0.66

Classical optimum n̄opt 0.92 0.92 0.92 0.92 0.92
Proportional & optimum Nd

N̄ n̄opt 0.91 0.83 0.77 0.71 0.61
Area-only stratified optimum nd

1 1.00 0.87 0.76 0.63 0.53
Area-only optimum nd

2 1.09 0.94 0.76 0.63 0.53

Table 4: Relative efficiency of two-stage designs for c1
c2

= 4

Priority Exponent (q)

Designs nd q = 0 q = 1
2 q = 1 q = 3

2 q = 2

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 1.02 0.94 0.86 0.80 0.74

Classical optimum n̄opt 0.98 0.98 0.98 0.98 0.98
Proportional & optimum Nd

N̄ n̄opt 1.02 0.94 0.87 0.82 0.77
Area-only stratified optimum nd

1 1.00 0.92 0.81 0.69 0.58
Area-only optimum nd

2 1.05 0.92 0.81 0.69 0.58
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In Table 4 we present the relative efficiency for the two-stage designs when c1
c2

= 4.
We see that area-only stratified optimum is equally efficient as the base design whilst the
area-only optimum is less efficient than the base design when q = 0. Also, proportional and
proportional & optimum allocations are less efficient than equal allocation. The classical
optimum design is the only design that is slightly more efficient than equal allocation at
q = 0. As the priority exponent q increases all the designs’ efficiency against equal designs
improve with the exception of classical optimum, whose efficiency is marginal and constant.
At q = 2, the area-only stratified optimum and the area-only optimum are almost twice as
efficient as the equal design.

Table 5: Relative efficiency of two-stage designs for c1
c2

= 2

Priority Exponent (q)

Designs nd q = 0 q = 1
2 q = 1 q = 3

2 q = 2

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 1.03 0.94 0.85 0.78 0.72

Classical optimum n̄opt 1.00 1.00 1.00 1.00 1.00
Proportional & optimum Nd

N̄ n̄opt 1.03 0.94 0.85 0.78 0.72
Area-only stratified optimum nd

1 1.00 0.92 0.81 0.70 0.59
Area-only optimum nd

2 1.00 0.92 0.81 0.70 0.59

The area-only stratified optimum and the area-only optimum compare favorably to pro-
portional allocation and proportional & optimum. Their relative efficiency improves as the
priority exponent q approaches 2. At q = 0, equal allocation is as good as any of these de-
signs, even better than, for example, proportional allocation and proportional & optimum.
But at q = 2 area-only stratified optimum and the area-only optimum are twice as efficient
as equal design, whilst proportional allocation and proportional & optimum are also more
efficient than equal design but to a lesser extent.

In Table 5 one can observe that the relative performance of the area-only stratified op-
timum and the area-only optimum (relative to equal design) are only slightly superior to
proportional allocation and proportional & optimum as q approaches 2.

When c1
c2

= 2 the relative performance of the classical optimum is the same as the base
design. We observe that the performance of proportional allocation is identical to propor-
tional & optimum design. At q = 0 these two designs are less efficient than equal design.
The area-only stratified optimum and the area-only optimum on the other hand are more
efficient than the base design.

Overall we can see that the designs relative efficiencies improves as the ratio of c1
c2

goes
up and q approaches 2.
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6. Sensitivity Analysis

In section 5 the numerical evaluations of the sample designs were based on an assumed
value of the intraclass correlation coefficient for the Switzerland canton data (Longford,
2006). In this section selected tables are replicated using Switzerland’s cantons data for
different values of ρ for the two-stage cluster designs, as well as for data on the population
of the administrative districts of Botswana, to investigate how the optimal sample designs
are altered as a result. For the two-stage designs we consider varying ρ , and CF for q = 1.

6.1. Switzerland Canton Data

Here the interest is in finding out how the values of c1
c2

, the cost ratio, CF , the total
fixed sampling cost, and ρ , the intraclass correlation coefficient, affect these designs. To
investigate this we consider the relative efficiency of these designs by fixing one parameter
and varying the others.

Table 6: Relative efficiency of simple two-stage designs for ρ = 1
40 , c1

c2
= 10, q = 1

Sampling cost (CF)

Designs nd CF = 250 CF = 300 CF = 350 CF = 400

Equal allocation n
M 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 1.01 0.97 0.93 0.90

Classical optimum n̄opt 0.88 0.90 0.92 0.94
Proportional & optimum Nd

N̄ n̄opt 1.01 0.97 0.93 0.90
Area-only stratified optimum nd

1 0.73 0.74 0.76 0.76
Area-only optimum nd

2 0.73 0.74 0.76 0.76

In Tables 6 - 7 we present the results of the numerical evaluation of the relative effi-
ciency for the simple two-stage designs for ρ = 1

4 and q = 1 when the sampling cost CF is
varied using data on the Switzerland’s cantons. The results show that the area-only stratified
optimum and the area-only optimum are the best designs and are identically efficient.

Table 7: Relative efficiency of simple two-stage designs for ρ = 1
40 , c1

c2
= 5, q = 1

Sampling cost (CF)

Designs nd CF = 250 CF = 300 CF = 350 CF = 400

Equal allocation n
M 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.92 0.89 0.88 0.86

Classical optimum n̄opt 0.97 0.98 0.99 1.00
Proportional & optimum Nd

N̄ n̄opt 0.92 0.89 0.88 0.86
Area-only stratified optimum nd

1 0.80 0.80 0.80 0.80
Area-only optimum nd

2 0.80 0.80 0.80 0.80
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Table 8: Relative efficiency of simple two-stage designs for CF = 350, c1
c2

= 10, q = 1

Intraclass Correlation (ρ)

Designs nd ρ = 1
1000 ρ = 1

100 ρ = 1
4 ρ = 1

20 ρ = 1
10

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 1.00 0.97 0.93 0.89 0.84

Classical optimum n̄opt 0.99 0.95 0.92 0.91 0.91
Proportional & optimum Nd

N̄ n̄opt 1.00 0.97 0.93 0.89 0.84
Area-only stratified optimum nd

1 0.96 0.83 0.76 0.70 0.63
Area-only optimum nd

2 0.96 0.83 0.76 0.76 0.76

Table 9: Relative efficiency of simple two-stage designs for CF = 350, c1
c2

= 5, q = 1

Intraclass Correlation (ρ)
Designs nd ρ = 1

1000 ρ = 1
100 ρ = 1

4 ρ = 1
20 ρ = 1

10

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.99 0.93 0.88 0.83 0.80

Classical optimum n̄opt 1.00 0.99 0.99 0.99 1.03
Proportional & optimum Nd

N̄ n̄opt 0.99 0.93 0.88 0.83 0.80
Area-only stratified optimum nd

1 0.96 0.85 0.80 0.76 0.74
Area-only optimum nd

2 0.96 0.85 0.80 0.76 0.74

In Tables 8 - 9 we consider the relative efficiency of the designs for CF = 350 cost units
and q = 1 when ρ is varied. The results show that the area-only stratified optimum and the
area-only optimum with partial coverage are the best designs for small values of ρ . As ρ

increases, the area-only stratified optimum is the best design, with the area-only optimum
nearly as good when ρ = 1

40 .

6.2. Botswana District Data

In this section we investigate the new sample designs for different data. We use data for
the administrative districts of Botswana published by the Central Statistics Office (CSO).
The population of Botswana is 1.67 million (Central Statistics Office, 2002). Botswana is
divided into 16 administrative districts comprising major cities, towns and tribal territories.
The smallest district is a mining town of Sowa with a population of almost 3,000 persons
and the largest is Central district with a population of just over half a million inhabitants as
per the 1991 population and housing census (Central Statistics Office, 2002).

For the simple two-stage designs we are interested in finding out whether the values
of CF and ρ has any effect on these designs. To investigate this we consider the relative
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efficiency of these designs by fixing one parameter and varying the others.
In Tables 10 - 11 we present the results of the numerical evaluation of the relative effi-

ciency for the simple two-stage designs for ρ = 1
10 and q = 1 when the sampling cost CF is

varied using data on Botswana administrative data. The results show that the area-only strat-
ified optimum given by (18) and the area-only optimum given by (17) are the best designs
and are identical.

Table 10: Relative efficiency of simple two-stage designs for ρ = 1
10 , c1

c2
= 10, q = 1

Sampling cost (CF)

Designs nd CF = 250 CF = 300 CF = 350 CF = 400

Equal allocation n
M 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.78 0.80 0.82 0.78

Classical optimum n̄opt 0.96 1.00 1.00 1.00
Proportional & optimum Nd

N̄ n̄opt 0.90 0.83 0.77 0.78
Area-only stratified optimum nd

1 0.68 0.69 0.71 0.72
Area-only optimum nd

2 0.68 0.69 0.71 0.72

Table 11: Relative efficiency of simple two-stage designs for ρ = 1
10 , c1

c2
= 5, q = 1

Sampling cost (CF)

Designs nd CF = 250 CF = 300 CF = 350 CF = 400

Equal allocation n
M 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.82 0.85 0.87 0.90

Classical optimum n̄opt 1.00 1.00 1.00 1.00
Proportional & optimum Nd

N̄ n̄opt 0.77 0.77 0.78 0.78
Area-only stratified optimum nd

1 0.72 0.74 0.74 0.75
Area-only optimum nd

2 0.72 0.74 0.74 0.75

Table 12: Relative efficiency of simple two-stage designs for CF = 350, c1
c2

= 10, q = 1

Intraclass Correlation (ρ)

Designs nd ρ = 1
1000 ρ = 1

100 ρ = 1
4 ρ = 1

20 ρ = 1
10

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.98 0.89 0.83 0.80 0.82

Classical optimum n̄opt 0.99 0.98 0.98 1.00 1.00
Proportional & optimum Nd

N̄ n̄opt 1.01 0.99 0.95 0.85 0.77
Area-only stratified optimum nd

1 0.99 0.89 0.81 0.75 0.71
Area-only optimum nd

2 0.99 0.89 0.81 0.75 0.71
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In Tables 12 - 13 we consider the relative efficiency of the designs for CF = 350 cost
units and q = 1 when ρ is varied. The results show that the area-only stratified optimum and
the area-only optimum with partial coverage are the best designs for all values of ρ . The
proportional & optimum design is nearly as good.

Table 13: Relative efficiency of simple two-stage designs for CF = 350, c1
c2

= 5, q = 1

Intraclass Correlation (ρ)

Designs nd ρ = 1
1000 ρ = 1

100 ρ = 1
4 ρ = 1

20 ρ = 1
10

Equal allocation n
M 1.00 1.00 1.00 1.00 1.00

Proportional allocation Nd
N̄ n 0.98 0.87 0.82 0.82 0.87

Classical optimum n̄opt 1.00 1.00 1.00 1.00 1.00
Proportional & optimum Nd

N̄ n̄opt 0.99 0.93 0.80 0.78 0.78
Area-only stratified optimum nd

1 0.98 0.89 0.81 0.76 0.74
Area-only optimum nd

2 0.98 0.89 0.81 0.76 0.74

In this section we have used Switzerland canton data and Botswana district data. We
have replicated the numerical evaluation of the various designs by considering the relative
efficiencies of the designs, by computing the values of F for designs under consideration.
We considered relative priority exponent q = 1 and selected values of the relative prior-
ity coefficient. Selected tables are replicated using Switzerland’s cantons data for different
values of ρ for the stratified designs, as well as for data on the population of the administra-
tive districts for Botswana to investigate how the optimal sample designs are modified as a
result. For the two-stage designs we consider varying c1

c2
, ρ , and CF for fixed q.

To investigate whether the value of ρ , the intraclass correlation, has an effect on the
stratified allocations, we consider different values of ρ whilst keeping the priority coefficient
and priority exponent fixed, for these designs. When q = 1 proportional allocation and
optimal power allocation are the best designs when ρ = 1

1000 . As ρ increases, all designs
are the best except for proportional allocation and equal allocation.

For the simple two-stage designs we are interested in finding out whether the values of
CF and ρ has any effect on the choice of the within-cluster sample size. The results as in
section 5, show that the area-only stratified optimum given by equation 18 and the area-
only optimum given by equation 17 are the best designs. When ρ is varied for fixed CF

and q = 1, the results show that the area-only stratified optimum and the area-only optimum
with partial coverage are the best designs for all values of ρ .

7. Conclusions

An analytical solution for the stationary point exists when the only priority is small
area estimation. This optimal design is less clustered than the usual classical two-stage
optimal sample size n̄cl. when more priority is given to larger clusters (q > 0). The optimal
sample size depends on the cost per cluster relative to ( c1

c2
), intraclass correlation coefficient

(ρ) and the relative variance of N
q
2

d denoted by C2
q/2. When the only priority is small area
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estimation, that is, q = 0, or when the Nd’s are constant, C2
q/2 = 0 and the general optimal

coincides with the classical optimal. The area-only optimal average sample size is usually
a decreasing function of C2

q/2, so that when C2
q/2 > 0, n̄opt. will be less than the classical

optimum. A sufficient condition for this is that γ/c2 < 0, which would usually be satisfied,
unless c1

c2
or ρ are unusually large.

The area-only stratified optimum and the area-only simple two-stage optimum should
always be the best designs in minimizing the objective function but they are not when there
is equal priority for each cluster, that is when q = 0. These two designs have undesirable
properties of allocating zero or even negative sample sizes to smaller clusters. Negative
sample sizes are obviously not possible in practice and this anomaly is corrected by setting
them to zero and reallocating again.

When the clusters are equally important (q = 0), classical optimum and proportional
& optimum are the best designs especially when the cost ratio is high, in this case when
c1
c2

= 10. When c1
c2

= 2, proportional design and proportional & optimum design are less
efficient than equal allocation. Also, the classical optimum is as efficient as equal allocation.
All the other designs are better as q approaches 2, with area-only stratified optimum and the
area-only optimum being the best.
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Comparison of confidence intervals for variance
components in an unbalanced one-way random effects

model
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ABSTRACT

The purpose of this paper is to study and compare the methods for constructing confidence
intervals for variance components in an unbalanced one-way random effects model. The
methods are based on a classical exact, generalised pivotal quantity, a fiducial inference and
a fiducial generalised pivotal quantity. The comparison of criteria involves the empirical
coverage probability that maintains at the nominal confidence level of 0.95 and the shortest
average length of the confidence interval. The simulation results show that the method based
on the generalised pivotal quantity and the fiducial inference perform very well in terms
of both the empirical coverage probability and the average length of the confidence interval.
The classical exact method performs well in some situations, while the fiducial generalised
pivotal quantity performs well in a very unbalanced design. Therefore, the method based
on the generalised pivotal quantity is recommended for all situations.

Key words: variance components, unbalanced one-way random effects model, pivotal
quantity, fiducial inference, coverage probability.

1. Introduction

The one-way random effects model is studied in many applications, such as medical
treatment, animal breeding studies, agricultural genetics and industrial process manage-
ment, etc. The variance components of this model are used to consider the different sources
of variation. For example, radiotherapy doses for cancer treatment are determined by pro-
cess variation due to difference in area of organs of individual patients and diagnosis of
individual physician (Demetrashvili et al., 2016). Thus, the inferences for variance compo-
nents in the model is of interest. Consider the one-way random effects model

yi j = µ +ai + ei j, i = 1, . . . ,g, j = 1, . . . ,ni, (1)

where yi j is the random observation, µ is the overall mean. The random group effects
ai and the random errors ei j are mutually independent random variables, and distributed
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as N(0,σ2
a ) and N(0,σ2

e ), respectively. In addition, let n = ∑
g
i=1 ni denote the number of

the total observations. When the number of observations ni of each group is equal, model
(1) is called balanced model. Otherwise, it is called unbalanced model. The source of
variation is known as the variance components, namely, σ2

a and σ2
e . In general, σ2

a is called
between-group variance component, and σ2

e is called within-group variance component.
The proportion of the between-group variance component and the total variation can be
written in the form ρ = σ2

a /(σ
2
a +σ2

e ), which measures the importance of one effect related
to the other effect.

One very important property of an estimator is minimal sufficient statistics. A closed-
form function of the minimal sufficient statistics is available in balanced random model.
However, these functions are unavailable in unbalanced random model as described by
Searle et al. (2006). Furthermore, solving the closed-form functions of the minimal suf-
ficient statistics in the unbalanced case is computationally complicated for estimation of
the variance components. There are several works in the literature that studied inferences
for variance components in unbalanced model, such as Wald (1940), Thomas and Hultquist
(1978), Park and Burdick (2003), and Arendacká (2005) which are based on a pivotal quan-
tity approach. Ting et al. (1990) and Hartung and Knapp (2000) studied that by the classical
exact method. Li and Li (2007) and Lidong et al. (2008) used the idea of a fiducial general-
ized confidence interval for variance components. Liu et al. (2016) proposed the concept of
the fiducial generalized pivotal quantity for constructing the confidence interval for variance
components in unbalanced model.

The aim of this paper is to compare five methods which are applicable to confidence
intervals for between-group variance component in unbalanced one-way random effects
model. These five methods are as follows: the Ting and others (TG) method (Ting et al.,
1990), the Hartung-Knapp (HK) method (Hartung and Knapp, 2000), the Park-Burdick
(PB) method (Park and Burdick, 2003), the Li-Li (LL) method (Li and Li, 2007), and the
Liu-Xu-Hannig (LXH) method (Liu et al., 2016).

The paper is organized as follows. Section 2 describes the model and notation. Sec-
tion 3 presents the methods for constructing a confidence interval for σ2

a . Section 4 shows
the results of a simulation study and compare the performance of the methods. Section 5
provides previously published data example. In the final Section 6, a conclusion is given.

2. Model and notation

A matrix formulation of the model (1) is given by

Y = 1nµ +ZA+E, (2)

where Y = (Y′
1, . . . ,Y

′
g)

′ with Yi = (Yi1, . . . ,Yini)
′ for i = 1, . . . ,g, 1n = (1′n1

, . . . ,1′ng)
′ with

1ni is a ni ×1 vector of ones, and n = ∑
g
i=1 ni. The matrix Z = diag(1n1 , . . . ,1ng) is known

as incidence matrix of size n × g. The random group effects vector A = (A1, . . . ,Ag)
′

is distributed as N(0g,σ
2
a Ig) and the random errors vector E = (E′

1, . . . ,E
′
g)

′ with Ei =

(Ei1, . . . ,Eini)
′ is distributed as N(0n,σ

2
e In), where 0c is a c × 1 vector of zeros, and Ic

is a c× c identity matrix. The random vectors A and E are mutually independent. De-
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note r1 = rank(X)− rank(1n) and r2 = n− rank(X), where X = (1n,ZZ′) is the horizontal
concatenation of matrices 1n and ZZ′. Under model (2), the distribution function of Y
is Y ∼ N(µ1n,σ

2
a ZZ′ +σ2

e In), then H′Y ∼ N(0,σ2
a W+σ2

e I), where H is matrix whose
columns span the space orthogonal to the space spanned by the column vector of ones
(Burch, 2011), W is the part of the variance-covariance matrix associated with σ2

a , 0 is vec-
tor of zeros, and I is identity matrix. The quadratic form is denoted by T = Y′BY, where B
is an appropriately chosen symmetric matrix of constants called the matrix of the quadratic
form (Milliken and Johnson, 2009).

Graybill (1976) described the properties of quadratic forms for estimation of the vari-
ance components. The independently quadratic forms, denoted by T1, . . . ,Td , Td+1, are
minimal sufficient statistics for (σ2

a ,σ
2
e ) under multivariate normal distribution of Y. Burch

(2011) showed that the sum of squares due to between groups SSa and the sum of squares
due to within groups SSe can be expressed as quadratic forms
Y′(X(X′X)−X′ − 1n(1′n1n)

−1′n)Y = T1 + · · ·+ Td and Y′(In −X(X′X)−X′)Y = Td+1, re-
spectively. The mean square for between groups and the mean square for within groups are
denoted by MSa = SSa/r1 and MSe = SSe/r2, respectively. Furthermore, MSa and MSe are
independent, and SSe/σ2

e has a chi-squared distribution with r2 degrees of freedom.

3. Approximate confidence intervals for σ2
a

Several existing methods for constructing the confidence interval for σ2
a are reviewed in

this section.

3.1. The TG method

Ting et al. (1990) suggested the method for constructing the confidence interval for the
variance components in random effect model applying results provided by Howe (1974)
and using cross-product terms in Ting et al. (1989). Let WTG = HTGZZ′HTG, where
HTG is a n×n matrix such that HTG = X(X′X)−X′−1n(1′n1n)

−1′n. Let λ1 > · · · > λd > 0
be the distinct positive eigenvalues of WTG having multiplicities s1, . . . ,sd . Define SSa =

Y′H′
TGW−

TGHTGY.
The approximate 100(1−α)% confidence interval for σ2

a is derived by

[MSa −
1
b

MSe − (G2
1MS2

a +
1
b2 C2

2MS2
e +

1
b

G12MSaMSe)
1/2,

MSa −
1
b

MSe +(C2
1MS2

a +
1
b2 G2

2MS2
e +

1
b

C12MSaMSe)
1/2],

where b = r1(∑
d
ℓ=1 sℓ/λℓ)

−1, G1 = 1−1/F1−α,(r1,∞), C2 = 1/Fα,(r2,∞)−1,
G12 = [(F1−α,(r1,r2)−1)2 −G2

1F2
1−α,(r1,r2)

−C2
2 ]/F1−α,(r1,r2), C1 = 1/Fα,(r1,∞)−1,

G2 = 1−1/F1−α,(r2,∞), C12 = [(1−Fα,(r1,r2))
2 −C2

1F2
α,(r1,r2)

−G2
2]/Fα,(r1,r2).

Note that Fα,(r1,r2) and F1−α,(r1,r2) are the α and 1−α quantiles of the F-distribution with
degrees of freedom r1 and r2, respectively. Furthermore, Fα,(r1,∞) = χ2

α,r1
/r1, F1−α,(r1,∞) =

χ2
1−α,r1

/r1, Fα,(r2,∞) = χ2
α,r2

/r2, and F1−α,(r2,∞) = χ2
1−α,r2

/r2 (Milliken and Johnson, 2009).
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3.2. The HK method

Hartung and Knapp (2000) developed the method for constructing the confidence inter-
val for the between-group variance component using the concept of Wald (1940). The suffi-
cient statistics of the HK method are defined as THK1 , . . . ,THKg , where THKi =(1′ni

1ni)
−1′ni

Yi,
i = 1, . . . ,g.

The approximate 100(1−α)% confidence interval for σ2
a is derived by

[MSeR1,MSeR2].

Note that R1 and R2 are the root of the equations as follows:

f (R1) =
∑

g
i=1 wi(THKi −∑

g
i=1 wiTHKi/∑

g
i=1 wi)

2

r1MSe
∼ F1−α/2,(r1,r2) and

f (R2) =
∑

g
i=1 vi(THKi −∑

g
i=1 viTHKi/∑

g
i=1 vi)

2

r1MSe
∼ Fα/2,(r1,r2),

where wi = ni/(1+niR1) and vi = ni/(1+niR2).

3.3. The PB method

Park and Burdick (2003) proposed the generalized pivotal quantity for constructing the
confidence interval for the between-group variance component using results provided by
Olsen et al. (1976). Let WPB = HPBZZ′HPB, where HPB is a n×n matrix such that HPB =

X(X′X)−X′− 1n(1′n1n)
−1′n. Let λ1 > · · · > λd > 0 be the distinct positive eigenvalues of

WPB having multiplicities s1, . . . ,sd . Let PPB = [PPB1 , . . . ,PPBd ] be n×n orthogonal matrix
such that P′

PBWPBPPB = diag(λ11′s1
, . . . ,λd1′sd

), where PPBℓ
, ℓ = 1, . . . ,d corresponding to

λℓ is of dimension n× sℓ.
The minimal sufficient statistics of the PB method are defined as TPB1 , . . . ,TPBd , where

TPBℓ
= Y′H′

PBPPBℓ
(P′

PBℓ
PPBℓ

)−P′
PBℓ

HPBY, ℓ= 1, . . . ,d. Lamotte (1976) showed that SSa =

∑
d
ℓ=1 TPBℓ

, where TPBℓ
/(λℓσ

2
a +σ2

e ), ℓ = 1, . . . ,d has the chi-squared distribution with sℓ
degrees of freedom. The function of the generalized pivotal quantity is defined by R as the
solution for σ2

a in the non-linear equation given by

U =
d

∑
ℓ=1

TPBℓ

λℓR+ r2MSe/K
, (3)

where U ∼ χ2
r1

and K ∼ χ2
r2

.
The approximate 100(1−α)% confidence interval for σ2

a is derived by

[max(0,Rα/2),max(0,R1−α/2)],

where Rα/2 and R1−α/2 are the α/2 and 1−α/2 quantiles of the distribution of R in equation
(3), respectively. Note that the solutions of Rα/2 and R1−α/2 are based on pivotal quantities.
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3.4. The LL method

Li and Li (2007) presented the concept of the fiducial inference for constructing the
confidence interval for the between-group variance component in random effect model ap-
plying results provided by Li and Li (2005). Let WLL = HLL(Z′Z)−H′

LL, where HLL is a
(g−1)×g matrix such that HLLH′

LL = Ig−1 and H′
LLHLL = Ig. Let λ1 > · · ·> λd ≥ 0 be the

distinct eigenvalues of WLL having multiplicities s1, . . . ,sd . Let PLL = [PLL1 , . . . ,PLLd ] be
(g−1)× (g−1) orthogonal matrix such that P′

LLWLLPLL = diag(λ11′s1
, . . . ,λd1′sd

), where
PLLℓ

, ℓ= 1, . . . ,d corresponding to λℓ is of dimension (g−1)× sℓ.
The sufficient statistics of the LL method are defined as TLL = PLLHLL(Z′Z)−Z′Y. The

function of the fiducial inference is given by

R =
T′

LLTLL −Q′CQSSe/K
Q′Q

, (4)

where C = PLLWLLP′
LL, Q ∼ N(0,Ir1), and K ∼ χ2

r2
.

The approximate 100(1−α)% confidence interval for σ2
a is derived by

[max(0,Rα/2),max(0,R1−α/2)],

where Rα/2 and R1−α/2 are the α/2 and 1−α/2 quantiles of the distribution of R in equation
(4), respectively. Note that the solutions of Rα/2 and R1−α/2 are based on pivotal quantities.

3.5. The LXH method

Liu et al. (2016) proposed the least squares idea of the fiducial generalized pi-votal
quantity for constructing the confidence interval for the variance components in random
effect model. Let WLXH = H′

LXHZZ′HLXH, where HLXH is a n× (n− 1) matrix such that
HLXHH′

LXH = In −n−11n1′n and H′
LXHHLXH = In−1. Let λ1 > · · · > λd ≥ 0 be the distinct

eigenvalues of WLXH having multiplicities s1, . . . ,sd . Let PLXH = [PLXH1 , . . . ,PLXHd ] be
(n− 1)× (n− 1) orthogonal matrix such that P′

LXHWLXHPLXH = diag(λ11′s1
, . . . ,λd1′sd

),
where PLXHℓ

, ℓ= 1, . . . ,d corresponding to λℓ is of dimension (n−1)× sℓ.
The minimal sufficient statistics of the LXH method are defined as TLXH1 , . . . ,TLXHd ,

where TLXHℓ
= Y′HLXHPLXHℓ

P′
LXHℓ

H′
LXHY, ℓ = 1, . . . ,d. The variables Uℓ, ℓ = 1, . . . ,d

are mutually independent and Uℓ = TLXHℓ
/(λℓσ

2
a +σ2

e ), ℓ = 1, . . . ,d has the chi-squared
distribution with sℓ degrees of freedom. The function of the least squares fiducial inference
is given by

R =
∑

d
ℓ=1 U2

ℓ ∑
d
ℓ=1 λℓTLXHℓ

Uℓ−∑
d
ℓ=1 λℓU2

ℓ ∑
d
ℓ=1 TLXHℓ

Uℓ

∑
d
ℓ=1 U2

ℓ ∑
d
ℓ=1 λ 2

ℓ U2
ℓ − (∑d

ℓ=1 λℓU2
ℓ )

2
. (5)

The approximate 100(1−α)% confidence interval for σ2
a is derived by

[max(0,Rα/2),max(0,R1−α/2)],
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where Rα/2 and R1−α/2 are the α/2 and 1−α/2 quantiles of the distribution of R in equation
(5), respectively. Note that the solutions of Rα/2 and R1−α/2 are based on pivotal quantities.

4. Simulation study

In this section, a comparison of the methods for constructing the confidence interval
for σ2

a with the methods described in Section 3 is studied by the Monte Carlo simulation.
Without loss of generality, it is assumed that µ = 0 in model (2). The values chosen for
(σ2

a ,σ
2
e ) are (0.001,0.999), (0.1,0.9), (0.2,0.8), (0.3,0.7), (0.4,0.6), (0.5,0.5), (0.6,0.4),

(0.7,0.3), (0.8,0.2), (0.9,0.1), and (0.999,0.001). The ratio of va-riance components,
ρ = σ2

a /(σ
2
a + σ2

e ) varies from small to large. The nominal confidence level of 0.95 is
considered. The simulation study is based on 5,000 iterations for each setting of the values
(σ2

a ,σ
2
e ) and the sample size pattern (ni, i = 1, . . . ,g).

The criteria for analysing the performance of the methods are the empirical coverage
probability that maintains at the nominal confidence level, and the shortest average
length of the confidence interval. The empirical coverage prob-ability is firstly considered,
and the average length of the confidence interval is later compared. The degree of imbalance
is Φ = (g/∑

g
i=1 ni)(g/∑

g
i=1 1/ni), which is used to measure imbalance in one-way model

(Ahrens and Pincus, 1981). Note that 0 < Φ ≤ 1 is equal to 1 if and only if the model is bal-
anced, and Φ is close to 0 when the model is very unbalanced. The coverage probability of
confidence interval for σ2

a depends on the degree of imbalance and the design (n1, . . . ,ng).
The simulation patterns are shown in Table 1.

Table 1. Unbalanced patterns used in simulations

Pattern Φ g ni

1 0.044 3 1 1 100
2 0.570 3 3 7 20
3 0.818 3 5 10 15
4 0.068 6 1 1 1 1 1 100
5 0.700 6 5 10 15 20 25 30
6 0.957 6 6 6 8 8 10 10
7 0.525 10 1 1 4 4 6 6 8 8 10 10
8 0.835 10 3 3 4 5 6 6 8 8 10 10

The simulation results are represented in the boxplots of Figures 1 and 2. The empirical
coverage probabilities of the confidence interval for σ2

a with the number of groups g = 3,
6, and 10, where ρ < 0.5 and ρ ≥ 0.5, are shown in Figure 1. The relative difference of
the average length of the confidence interval for σ2

a with the number of groups g = 3, 6,
and 10, where ρ < 0.5 and ρ ≥ 0.5 is shown in Figure 2. The relative length is defined as
(LM −LPB)/LPB, where LM denotes the average interval length of competing methods and



STATISTICS IN TRANSITION new series, December 2022 155

LPB denotes the average interval length of the PB method. Clearly, the positive value of the
relative length implies that LPB is shorter than LM. On the contrary, the negative value of
the relative length implies that LM is shorter than LPB. Moreover, the relative length equal
to 0 implies that LM and LPB are equal.

Regarding the empirical coverage probabilities, from Figure 1, the PB procedure main-
tains the nominal confidence level for all situations. The LL procedure provides a larger than
the nominal confidence level for all situations. The TG procedure maintains the nominal
confidence level for all situations except for g = 10. However, the TG procedure provides
a smaller than the nominal confidence level when ρ < 0.5 for g = 10. The HK procedure
mostly maintains the nominal confidence level when ρ < 0.5 and it provides a larger than
the nominal confidence level when ρ ≥ 0.5 for g = 3. The HK procedure provides a smaller
than the nominal confidence level when ρ < 0.5 and it provides a larger than the nominal
confidence level when ρ ≥ 0.5 for g = 6 and 10. The LXH procedure provides a larger than
the nominal confidence level for all ρ for g = 3. The LXH procedure provides a smaller
than the nominal confidence level for all ρ for g = 6 and 10 except in a very unbalanced
design (pattern 4), that is, the LXH procedure maintains the nominal confidence level in a
very unbalanced design.

Comparing the average length of the confidence interval, Figure 2 clearly indicates that
the average lengths of the TG, LL, and PB intervals behave very similar. The average length
of the LXH interval is the shortest. For the number of groups g = 6 and 10, the average
length of the HK interval is shorter than the average length of the PB interval when ρ < 0.5.
Conversely, the average length of the PB interval is shorter than the average length of the
HK interval when ρ ≥ 0.5.

5. Application

The numerical example from Brownlee (1965) is a study of the effects of environmental
conditions on the measure of the ratio of electromagnetic and electrostatic units of electric-
ity. The data set is shown in Table 2. Model (1) is used to des-cribe this data set, that
is, g = 5, ni = (11,8,6,24,15), and Φ = 0.796. Furthermore, ai denote the random group
effects of the environmental conditions and assume ai ∼ N(0,σ2

a ), ei j represent the ran-
dom effect of the jth measure of electricity on the ith environmental condition and assume
ei j ∼ N(0,σ2

e ). Independence among ai and ei j is also assumed. The five confidence inter-
vals for σ2

a based on the five methods in Section 3 are presented in Table 3. Table 3 shows
that the PB method provides the shortest confidence interval for this data set.
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(a) g = 3, ρ < 0.5 (b) g = 3, ρ ≥ 0.5

(c) g = 6, ρ < 0.5 (d) g = 6, ρ ≥ 0.5

(e) g = 10, ρ < 0.5 (f) g = 10, ρ ≥ 0.5

Figure 1: The empirical coverage probabilities of 95% confidence interval for σ2
a
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(a) g = 3, ρ < 0.5 (b) g = 3, ρ ≥ 0.5

(c) g = 6, ρ < 0.5 (d) g = 6, ρ ≥ 0.5

(e) g = 10, ρ < 0.5 (f) g = 10, ρ ≥ 0.5

Figure 2: Relative difference of the average length of 95% confidence interval for σ2
a
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Table 2. The ratio of the electromagnetic to electrostatic units of electricity

Groups Observations

1 62 64 62 62 65 64 65 62 62 63 64

2 65 64 63 62 65 63 64 63

3 65 64 67 62 65 62

4 62 66 64 64 63 62 64 64 66 64 66 63

65 63 63 63 61 56 64 64 65 64 64 65

5 66 65 65 66 67 66 69 70 68 69 63 65

64 65 64

Table 3. Nominally 95% confidence interval for the data

Method TG HK PB LL LXH

confidence interval (0, 10.901) (0, 11.311) (0, 9.595) (0, 10.836) (0, 9.728)

6. Conclusion

This article studies the methods for constructing 95% confidence intervals for
variance components in an unbalanced one-way random effects model. Simulation studies
indicate that the TG procedure maintains the nominal confidence level for all situations
except for the number of group g = 10, which is liberal when ρ is small. The HK procedure
is conservative when ρ is large. On the contrary, when ρ is small, the HK procedure mostly
maintains the nominal confidence level for the number group g = 3 and is liberal for the
number of groups g = 6 and 10. The PB procedure maintains the nominal confidence level
for all situations. The LL procedure is conservative for all situations. The LXH procedure is
conservative for all ρ in the number of group g = 3. Nevertheless, for the number of groups
g = 6 and 10, the LXH procedure does not adequately maintain the nominal confidence
level. All of the average lengths of the confidence intervals behave similarly, but the average
length of the LXH interval always has the shortest. Notice that the relative length values of
the LXH method is negative.

In summary, the PB and LXH methods are recommended for the number of group g= 3.
The PB and LL methods are recommended for the number of groups g = 6 and 10. The TG
and HK methods are useful when ρ is large. Furthermore, the LXH method is preferred in
a very unbalanced design.
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Generalised Lindley shared additive frailty regression
model for bivariate survival data

Arvind Pandey 1, David D. Hanagal 2, Shikhar Tyagi3

ABSTRACT

Frailty models are the possible choice to counter the problem of the unobserved heterogene-
ity in individual risks of disease and death. Based on earlier studies, shared frailty models
can be utilised in the analysis of bivariate data related to survival times (e.g. matched pairs
experiments, twin or family data). In this article, we assume that frailty acts additively to the
hazard rate. A new class of shared frailty models based on generalised Lindley distribution
is established. By assuming generalised Weibull and generalised log-logistic baseline distri-
butions, we propose a new class of shared frailty models based on the additive hazard rate.
We estimate the parameters in these frailty models and use the Bayesian paradigm of the
Markov Chain Monte Carlo (MCMC) technique. Model selection criteria have been applied
for the comparison of models. We analyse kidney infection data and suggest the best model.

Key words: Bayesian estimation, frailty, generalised Lindley frailty, generalised log-logistic
distribution, generalised Weibull distribution, hazard rate, MCMC, random censoring.

1. Introduction

To analyse the survival data in biological, epidemiological, and medical studies, a com-
mon approach is that subjects are supposed to have the same risk of occurrence of an event
of interest, which acts multiplicatively. However, this assumption rarely occurs because
neither all the covariates can be measured nor can be included in the study due to technical
difficulties, time limitations, or financial implications. In real-life situations risk (hazard
rate) changes from one family to another family, one group to another group, one cluster to
another cluster. Heterogeneity in the population exists, because of the mixture of groups of
individuals with different risk factors. This heterogeneity is called frailty. Ignoring frailty
may have adverse consequences. A random impact that is an unobservable risk shared by
the subject is characterized as frailty, which was introduced by Vaupel et al. (1979). To
handle such kinds of problems, many models have been derived in survival analysis. Since
the establishment of the proportional hazard model given by Cox (1972), the survival func-
tion has been dominated by hazard rate models. The reason behind the popularity of this
model is the significance of known covariates that can be tested, also a relationship between
lifetimes and covariates can be incorporated.
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Research on the bivariate survival models has grown rapidly over the past few years.
Clayton’s (1978) random effect model of the bivariate survival was a key innovation. He in-
troduced the notion of the shared relative risk. This model was further developed by Oakes
(1982) to analyze the association between two non-negative random variables. Hougaard
(1985, 1991, 2000) discussed the different aspects of frailty on a broad scale. In the last
decade, frailty regression models in mixture distribution were discussed by Hanagal (2008).
Modelling kidney infection data for inverse Gaussian shared frailty was done by Hanagal
and Pandey (2014a). Gamma frailty models for bivariate survival data were given by Hana-
gal and Pandey (2015a). Hanagal and Pandey (2017a) used the shared inverse Gaussian
frailty models based on additive hazard. Hanagal (2019) gave an extensive literature review
on different shared frailty models. Pandey et al. (2020a) presented shared inverse Gaussian
frailty models for bivariate findings. Pandey et al. (2020b) looked at generalised inverse
Gaussian shared frailty models based on reversed hazard rates. Pandey et al. (2021a, 2022)
and Tyagi et al. (2021a) developed distinct Generalised Lindley (GL) shared frailty models
based on the reversed hazard rate. Tyagi et al. (2021b, 2022a, 2022b), Gupta et al. (2022),
Pandey et al. (2021b), and Pandey and Tyagi (2021) developed inverse weighted Lindley,
and GL shared frailty models, respectively. In this article, we assume that frailty acts ad-
ditively to the hazard rate. The additive hazard models characterize a different facet of the
association between covariates and the failure time than the proportional hazard model and
are more plausible than the latter for many applications (Lin and Ying, 1994; Bin, 2010).
The additive hazard models can be authentically a better alternative to proportional hazard
or other nonlinear hazard regression models to narrate the consequences of covariates on
survival time (Hosmer and Royston, 2002). When the absolute change in risk, instead of
the risk ratio, is of primary interest or when the proportional hazard assumption for the Cox
proportional hazard model is violated, an additive hazard regression model may be more
appropriate (Xie et al., 2013). Let a continuous random variable T be a lifetime of an indi-
vidual and the random variable W be frailty variable. The conditional hazard function for a
given frailty variable, W = w at time t ∈ IR+ is

φ(t | w) = φ0(t)+ eKβ+V β1 = φ0(t)+weKβ ,w ∈ IR+,V ∈ IR, (1)

where w = eV β1 and φ0(t) is a baseline hazard function at time t ∈ IR+, K is a row vector of
covariates, and β is a column vector of regression coefficients. The cumulative hazard rate
function is given by

Φ(t | z) = Φ0(t)+wteKβ . (2)

The conditional survival function for given frailty at time t ∈ IR+ is

S(t | w) = e−
∫ t

0 φ(x|w)dx = e−
[
Φ0(t)+wteKβ

]
, (3)

where Φ0(t) is the cumulative baseline hazard function at time t ∈ IR+. Integrating over the
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range of frailty variable W having density f (w), we get the marginal survival function as

S(t) =
∫

w∈IR+
S(t | w) f (w)dw =

∫
w∈IR+

e−
[
Φ0(t)+wteKβ

]
f (w)dw, = S0(t)Lw(teKβ ), (4)

where LZ(.) is the Laplace transformation of the distribution of Z and S0(t) is the baseline
survival function of T . Once we get the survival function at time t ∈ IR+, of lifetime random
variable for an individual, we can obtain the probability structure and make its inferences
based on it.
The main objective of this article is threefold. First, generalised Lindley (GL) shared frailty
models for additive hazard rate with generalised Weibull and generalised log-logistic as
baseline distributions have been introduced. Second, the Bayesian approach of estimation
has been employed to estimate the unknown parameters under random censoring. Third, a
simulation study and data analysis have been done for the Kidney infection data set.

2. General Shared Frailty Model

The shared frailty models are applicable to event time of the related individuals,
similar organs, and repeated measurements. In this model individuals from a group shares
common covariates. It has been considered that survival times are conditionally indepen-
dent, for a given shared frailty. Shared frailty indicates dependence between survival times
is only because of unobservable covariates (frailty). Frailty variable W has a degenerate
distribution in the absence of variability. If the dependence is positive, the distribution of W
is not degenerate.

Assume n individuals are considered under the study. Bivariate random variables (T1 j,T2 j)
are postulated as the first and the second survival times of the jth individual ( j = 1,2,3, . . . ,n).
Also m known covariates are supposed to be collected in a vector K j = (K1 j, . . . ,Km j) for
the jth individual where Ka j (a = 1,2,3, . . . ,m) represents the value of the ath observed co-
variate for the jth individual. Under shared frailty model, it has been presupposed that both
survival times for everyone share the similar value of the covariates. Let Wj be shared frailty
for the jth individual. Assuming that the frailties are acting additively on the baseline hazard
function and both the survival times of individuals are conditionally independent for given
frailty, the conditional hazard function for the jth individual at the ith (i = 1,2) survival time
ti j ∈ IR+ for given frailty Wj = w j has the form

φ(ti j |Wj,K j) = φ0(ti j)+w jeK jβ ,

where φ0(ti j) is the baseline hazard at time ti j ∈ IR+ and β is a vector of order m, of the
regression coefficients. The conditional cumulative hazard function for the jth individual at
the ith survival time ti j ∈ IR+ for a given frailty Wj = w j is

Φ(ti j | w j,X j) = Φ0(ti j)+w jti jρ j,

where ρ j = eK jβ and Φ0(ti j) is the cumulative baseline hazard function at time ti j ∈ IR+.
The conditional survival function for the jth individual at the ith survival time ti j ∈ IR+ for
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a given frailty Wj = w j is

S(ti j | w j,K j) = e−Φ(ti j |w j ,K j) = e−[Φ0(ti j)+w jti jρ j].

Under the assumption of independence, the bivariate conditional survival function for a
given frailty, Wj = w j at time t1 j ∈ IR+ and t2 j ∈ IR+ is

S(t1 j, t2 j | w j,K j) = S(t1 j | w j,K j)S(t2 j | w j,K j) = e−[(Φ01(t1 j)+Φ02(t2 j))+w j(t1 j+t2 j)ρ j].

The unconditional bivariate survival function at time t1 j ∈ IR+ and t2 j ∈ IR+ can be obtained
by integrating over the frailty variable Wj having the probability function fW (w j), for the
jth individual

S(t1 j, t2 j | K j) =
∫

W j∈IR+
S(t1 j, t2 j | w j) fW (w j)dw j = e−(Φ01(t1 j)+Φ02(t2 j))LW j [(t1 j + t2 j)ρ j],

(5)
where LZ j(.) is the Laplace transform of the frailty variable of Wj for the jth individual.
Here onwards we represent S(t1 j, t2 j | K j) as S(t1 j, t2 j).

3. Generalised Lindley Frailty Model

Lindley (1958) proposed a distribution with one parameter. Because of having only
one parameter, the Lindley distribution does not provide enough flexibility for modelling
purposes. It will be useful to consider further alternatives of this distribution. For a frailty
distribution, a new generalised Lindley distribution has been considered in this paper. This
distribution is the mixture of two gamma distributions G(θ ,µ) and G(θ ,η) with mixing
coefficient θ/(θ + 1) ( Elbatal, et al. (2013)). Because of the mixture of two gamma
densities, a slight suppleness can be seen during analysis of time to event data. That is the
reason why the GL frailty model is more adaptable in comparison with the gamma frailty
model. the probability density function of GL distribution has been specified below:

fW (w) =

{
1

(1+θ)

[
θ µ+1wµ−1

Γµ
+ θ η wη−1

Γη

]
e−θw ;w ∈ IR+,µ,η ,θ ∈ IR+

0 ;otherwise,

with mean E[W ] = 1
1+θ

[
µ + η

θ

]
. And corresponding variance is,

V (W ) =
1

(1+θ)

[(
µ

2 +
η2

θ

)(
1

θ(1+θ)

)
+

(
µ +η

θ

)
−
(

2µη

θ(1+θ)

)]
,

after applying identifiability property, i.e., E[W ] = 1 we get a relation between parameters
η = θ (1+θ −µ). Consequently, the density function, the Laplace transformation and vari-
ance for GL are reduced to

fW (w) =

{
1

(1+θ)

[
θ µ+1wµ−1

Γµ
+ θ θ(1+θ−µ)wθ(1+θ−µ)−1

Γθ(1+θ−µ)

]
e−θw ; w,θ ∈ IR+,µ ∈ (0,1+θ)

0 ; otherwise.
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LW (s) =
1

(1+θ)

[
θ µ+1

(s+θ)µ
+

θ θ(1+θ−µ)

(s+θ)θ(1+θ−µ)

]
, (6)

V (W ) =
θ 4 −θ 3µ +3θ 2(1+θ)−4θ 2µ +3θ µ(µ −1)+µ2

θ(1+θ)2 . (7)

Let n be the number of observations under study. Let (T1 j,T2 j) be the first and second
survival times of pairs of components of jth (1,2, ...,n) objects. The unconditional bivariate
survival function at time t1 j ∈ IR+ and t2 j ∈ IR+ using equations (5) and (6) can be written
as

S(t1 j, t2 j) =
e−(Φ01(t1 j)+Φ02(t2 j))

(1+θ)

[
θ µ+1

(θ +ρ(t1 j + t2 j))µ
+

θ θ(1+θ−µ)

(θ +ρ(t1 j + t2 j))θ(1+θ−µ)

]
,

(8)

where Φ01(t1 j), Φ02(t2 j) are the cumulative baseline hazard rate functions of the lifetime
T1 j and T2 j, respectively. One can have different baseline distributions for T1 and T2. Af-
ter substituting different cumulative hazard functions in (8), we get different generalised
Lindley frailty distributions.

4. Dependence Measure

Sometimes due to complex form of frailty models, it is difficult to compare the degree
of dependence between different frailty models. Kendall’s τ can be used to quantify depen-
dence because it is independent of transformations on the time scale and the frailty model
used. It is a rank-based dependence measure.

τ =
∫

s∈IR+
4sL”

W (s)LW (s)ds−1. (9)

After using equation (8) and (9), we get,

τ =
∫

s∈IR+
R(s | θ ,µ)ds−1, (10)

where R(s | θ ,µ) =
4θs(θ µ+1A−µ+θ θBAθ(µ−θ−1))(µ(µ+1)θ µ A−µ+θ θBB(−µθ+θ 2+θ+1)Aθ(µ−θ−1))

(θ+1)2A2 .
A = (θ + s), B = (1+θ −µ).
Kendall’s τ cannot be found in closed form for GL frailty. Some numerical approaches can
be utilized to obtain Kendall’s τ dependence measure.
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5. Baseline Distributions

5.1. Generalised Weibull Distribution

Here, the generalised Weibull distribution has been postulated as a baseline distribution.
If a continuous random variable T ∈ IR+ follows the generalised Weibull distribution then
the survival and cumulative hazard function, are respectively,

S(t) =

 1−
(

1− e−δ tξ
)ζ

; t ∈ IR+,δ ,ζ ,ξ ∈ IR+

1 ;otherwise
(11)

Φ0(t) =

 − log
(

1−
(

1− e−δ tξ
)ζ
)

; t ∈ IR+,δ ,ζ ,ξ ∈ IR+

0 ;otherwise
(12)

5.2. Generalised log-logistic distribution

Bacon (1993) used the log-logistic distribution for modelling saturation effects. The
survival function of the log-logistic distribution is given by,

S(t) = (1+δ tξ )−1 (13)

Due to having heavier tail in camparison to the gamma distribution, the log-logistic
distribution can be more beneficial to be used for finance and insurance variables. The log-
logistic distribution provides two parametric models for the survival analysis. Unlike the
more commonly used Weibull distribution, it can have a non-monotonic hazard function:
when ξ > 1 the hazard function is unimodal (when ξ ≤ 1 , the hazard decreases monoton-
ically). The fact that the cumulative distribution function can be written in the closed form
is particularly useful for the analysis of the survival data with censoring.

Lehmann family (Deshpande and Purohit, 2005) is a very useful family of life distribu-
tions generated from a given survival function and extensively used to model the effect of
covariates. Let S0(t) be an arbitrary known survival function. If ζ is positive, then

S(t) = (S0(t))ζ (14)

is also a survival function. If, in particular, ζ is the positive integer n, then it represents
the survival function of min(X1, ...,Xn) where Xi’s are i.i.d. random variables with S0(t) as
the common survival function. The hazards are proportional ζ times. Lehmann family is
also known as the proportional hazards family. We use the same property and obtain, the
survival function and the cumulative hazard rate as follows.

S(t) =

{
(1+δ tξ )−ζ ; t ∈ IR+,δ ,ζ ,ξ ∈ IR+

1 ;otherwise
(15)
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Φ0(t) =

{
ζ log(1+δ tξ ) ; t ∈ IR+,δ ,ζ ,ξ ∈ IR+

0 ;otherwise
(16)

6. Proposed model

Due to group variation or frailty and individual variation described by the hazard func-
tion, a shared frailty model can be considered as a mixture model in survival analysis. Dis-
tribution of W is convergent, if dependence is positive. After substituting a cumulative
hazard function for generalised Weibull and generalised log-logistic baseline distributions
in equation (8)

S(t1 j, t2 j) =
1

(1+θ)

[
θ µ+1

(θ +ρ(t1 j + t2 j))µ
+

θ θ(1+θ−µ)

(θ +ρ(t1 j + t2 j))θ(1+θ−µ)

]
2

∏
i=1

(
1−
(

1− e−δit
ξi
i j

)ζi
)
, (17)

S(t1 j, t2 j) =
1

(1+θ)

[
θ µ+1

(θ +ρ(t1 j + t2 j))µ
+

θ θ(1+θ−µ)

(θ +ρ(t1 j + t2 j))θ(1+θ−µ)

]
2

∏
i=1

(1+δit
ξi
i j )

−ζi , (18)

here, equations (17), (18) can be called Model-I, Model-II respectively, which have been
established for generalised Weibull and generalised log-logistic baseline distributions.

7. Likelihood Design and Bayesian Paradigm

For the study, n individuals have been considered. Observed failure times have been
indicated by (t1 j, t2 j). We are using the random censoring scheme. Let censoring time is in-
dicated by c1 j and c2 j for jth individual ( j = 1,2,3, ...,n). Independence between censoring
schemes and lifetimes of individuals has been presumed. The probability density function
can be described for bivariate lifetime random variable of the jth individual as

f j(t1 j, t2 j) =


f1(t1 j, t2 j), ; t1 j < c1 j, t2 j < c2 j,

f2(t1 j,c2 j), ; t1 j < c1 j, t2 j > c2 j,

f3(c1 j, t2 j), ; t1 j > c1 j, t2 j < c2 j,

f4(c1 j,c2 j), ; t1 j > c1 j, t2 j > c2 j.

The likelihood function will be

L(Θ,β ,θ ,µ) =
n1

∏
j=1

f1(t1 j, t2 j)
n2

∏
j=1

f2(t1 j,c2 j)
n3

∏
j=1

f3(c1 j, t2 j)
n4

∏
j=1

f4(c1 j,c2 j), (19)
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where Θ, β , θ and µ are the vector of baseline parameters and the vector of regression
coefficients and frailty parameters respectively. Let n1,n2,n3, and n4 be the number of pairs
for which the first and the second failure times (t1 j, t2 j) lie in the ranges t1 j < c1 j, t2 j < c2 j;
t1 j < c1 j, t2 j > c2 j; t1 j > c1 j, t2 j < c2 j, and t1 j > c1 j, t2 j > c2 j respectively and let

f1(t1 j, t2 j) =
∂ 2S(t1 j, t2 j)

∂ t1 j∂ t2 j
; f2(t1 j,c2 j) =−

∂S(t1 j,c2 j)

∂ t1 j
,

f3(c1 j, t2 j) =−
∂S(c1 j, t2 j)

∂ t2 j
; f4(c1 j,c2 j) = S(c1 j,c2 j). (20)

Substituting cumulative hazard rates Φ01(t1 j) and Φ02(t2 j) and survival function S(t1 j, t2 j)

in equation (29) for Model-I and Model-II and by differentiating we get the likelihood func-
tion. The maximum likelihood method has crucial importance in computing efficient esti-
mators. Inappropriately, due to a convergence problem, maximum likelihood failed to esti-
mate the parameters, because Model-I and Model-II have thirteen-dimensional optimization
problems. The Bayesian scenario has been discussed by several researchers for estimating
parameters of the frailty models. For gamma and log-normal frailty models, the Bayesian
paradigm has been contemplated by Santos and Achcar (2010). Weibull and piecewise ex-
ponential models have been discussed by Ibrahim et al. (2001) with gamma frailty. The
joint posterior density function of parameters for given failure times is obtained as

π(Θ,θ ,µ,β0) ∝ L(Θ,µ,β
0
)g1(ζ )g2(ξ )g3(δ )g4(θ)g5(µ)

5

∏
i=1

pi(β0i×1)

where gi(.) indicates the prior density function with known hyperparameters of the corre-
sponding argument for baseline parameters and frailty variance; pi(.) is prior density func-
tion for regression coefficient β0i and the likelihood function is L(.). An important assump-
tion here is that all the parameters are independently distributed. In a similar way, the joint
posterior density function can be written for without frailty models. To estimate the param-
eters of the models, hybrid Metropolis-Hastings algorithms have been used. The Geweke
test (see Geweke, 1992) and Gelman-Rubin (see Gelman and Rubin, 1992) statistics have
been used to monitor the convergence of a Markov chain to a stationary distribution.
Due to the high dimensions of conditional distributions, it is difficult to integrate out. Thus,
it has been considered that full conditional distributions can be obtained as they are propor-
tional to the joint distribution of the parameter of the model. The conditional distribution
for single parameter δ with frailty is obtained as

ψ1(δ | ξ ,ζ ,θ ,µ,β0) ∝ L(δ ,ξ ,ζ ,θ ,µ,β0) ·g1(δ ) (21)

the conditional distribution for single parameter δ without frailty is obtained as

ψ1(δ | ξ ,ζ ,β0) ∝ L(δ ,ξ ,ζ ,β0) ·g1(δ ).

Similarly, the conditional distributions for other parameters can be obtained.
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8. Simulation Study

A simulation study has been executed to appraise the Bayesian estimation paradigm for
Model-I and Model-II. Single covariate K1 has been considered folliwng normal distribu-
tion. The frailty variable W is assumed to follow generalised Lindley distribution. Indepen-
dence between lifetimes of individuals has been considered. Samples are generated using
the subsequent mechanism,

1. From the binomial distribution with probability 0.6, 25 values for K1 has been gener-
ated.

2. For known covariates, compute ρ = eK1β1 .

3. The distribution of lifetimes follow generalised Weibull and generalised log-logistic
baseline distributions for given frailty Wj. 25 values of lifetimes have been generated.
The conditional survival function for lifetime t j ( j = 1,2, ...,n) for given frailty Wj =

w j and covariate K1 is

S(t j | w j,K1) = e−(Φ0(t j)+w jtρ)

Equating S(t j | w j,K1) to random number, say v j(0 < v j < 1) generated from U(0,1)
over t j ∈ IR+ we get:
for Model-I and Model-II

v j =

(
1−
(

1− e−δ tξ

j

)ζ
)
∗ e−wt jρ ,

v j = (1+δ tξ

j )
−ζ ∗ e−wt jρ respectively.

4. Censoring time c j has been generated from G(0.9,0.01) for Model-I.

5. Observe the jth survival time t∗j = min(t j,c j) and the censoring indicator χ j for the
jth individual ( j = 1,2, ...,25) where

χ j =

{
1, ; t j < c j

0, ; t j > c j

thus we have data consisting of 25 pairs of survival times t∗j and the censoring indica-
tor χ j.

Concurrently, with different priors and starting points, two chains have been operated. Both
chains were recapitulated 100,000 times. Gelman-Rubin test values are very close to one.
Due to small values of Geweke test statistic and corresponding p-values, the chains reach
stationary distribution for both prior sets. The estimates of parameters were the same for
both the priors, no impact of prior distributions has been found on posterior summaries.
Here, the analysis for one chain has been exhibited because both the chains have shown the
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same results. Tables 1 and 2 present the estimates and the credible intervals of the param-
eters for Models I and II based on the simulation study. The Gelman-Rubin convergence
statistic values are nearly equal to one and also the Geweke test values are quite small, and
the corresponding p-values are large enough to say that the chain attains stationary distribu-
tion.

9. Applicability on Kidney Infection Data

To elucidate the Bayesian estimation paradigm, kidney infection data of McGilchrist
and Aisbett (1991) have been considered. This data consists of 38 patients and recurrence
times (in days) of infection are given. Table 3 gives the p-values of goodness of fit test for
Model I and Model II. Consequently, on the basis of p-values of K-S test it is clear that there
is no statistical evidence to reject the hypothesis that data are from Model I and Model II
in the marginal case and it can be assumed that they also fit for bivariate case. For frailty
parameters, gamma distribution with very small shape and scale parameters (say, 0.0001)
has been used. Additionally, it can be considered that regression coefficients are normally
distributed with mean zero and high variance (say 1000). A similar type of prior was used
in Ibrahim et al. (2001) and Santos and Achcar (2010). Thus for frailty parameters θ ,µ

and regression coefficients β0i, i = 1, ...,5, vague priors have been used. Because of no
information about the baseline parameter, the prior distribution corresponding to baseline
parameters is also considered flat. We considered two different vague prior distributions
for baseline parameters, one is gamma distribution with shape and scale hyperparameters
ε1,ε2 respectively and another is uniform distribution with interval (ν1,ν2). All the hyper-
parameters are known. Under the Bayesian paradigm, for both models, two parallel chains
have been run. Also, two sets of prior distributions have been used with different starting
points using the hybrid Metropolis-Hastings algorithm based on normal transition kernels.
It can be said that estimates are independent of the different prior distributions because, for
both sets of priors, estimates of parameters are approximately similar. We got an almost
similar convergence rate of the Gibbs sampler for both sets of priors. Here, the analysis
for one chain has been exhibited because both the chains have shown the same results. The
Gelman-Rubin convergence statistic values are closely equal to one. The Geweke test statis-
tic values are somewhat small, and the corresponding p-values are large enough to say that
the chains reach stationary distribution. Tables 4-5 contained the values of posterior mean
and the standard error with 95% credible intervals, the Gelman-Rubin statistics values, and
the Geweke test with p-values for Model I and II. The AIC, BIC, and DIC values, given in
Table 7, have been used to compare both models. Model-I holds the lowest possible values
of AIC, BIC, and DIC. For Model-I and Model-II, the credible interval of all regression
coefficients does not contain zero. It indicates that all covariates have a significant effect
on both models. With a negative value, it is being indicated that age, sex, disease PKD are
significant factors for kidney infection, having negative effects. But, with positive value
diseases, GN and AN have a positive significant effect with a higher chance of infection. It
is observed that female patients have a lower risk of kidney infection as compared to male
counterparts.
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10. Conclusions

A generalised Lindley additive frailty model under generalised Weibull and generalised
log-logistic baseline distributions has been proposed. To fit the proposed model the hybrid
M-H algorithm has been applied. Analysis has been done in R statistical software with
self-written programs. The value of both frailty parameters for Model-I (θ = 2.29258,µ =

1.38391) and Model-II (θ = 2.12060,µ = 1.28878) is very high and corresponding vari-
ances are 1.434811 and 1.36565 by using equation (3.2). In Table 6, we calculate Kendall’s
τ measure of dependence by using equation (4.2). All these values are large enough to ex-
hibit that there is a strong indication of heterogeneity among the patients in the population
for the data set. To take the decision about all models, different tools have been utilized.
With the lowest value of AIC, BIC, and DIC, from Table 7, and the value of Bayes factor for
Model-I against Model-II (1.122368), it can be said that Model-I is better than the Model-II
to analyze kidney infection data. For kidney infection data, all the covariates have been
found statistically significant factors for both models (see Tables 4-5). Our proposed frailty
models, Model-I and Model-II, are better as compared to the frailty models by Hanagal et
al. (2017) and Hanagal and Pandey (2017a) with baseline generalised log-logistic distribu-
tion. In a similar way, with a minimum value of AIC, our proposed frailty models are better
as compared to the frailty models by Pandey et al. (2018).
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Appendix

Tables and Figures

Table 1: Posterior Summary of Generalised Lindley Frailty with Baseline Generalised
Weibull (Simulation Study: Model-I)

Parameter Estimate s.e. L.C.L. U.C.L. Geweke p− value Gelman
test Rubin test

burn-in period = 6900; autocorrelation lag = 400
ζ1(22.5) 23.07359 1.34778 20.32034 25.68016 0.00151 0.50060 1.01140
δ1(0.013) 0.01418 0.00291 0.00919 0.01884 -0.00694 0.49723 1.00058
ξ1(0.35) 0.35559 0.03256 0.29407 0.42018 0.00562 0.50224 1.00174
ζ2(22.5) 22.77481 3.04714 17.77885 27.43331 -0.00067 0.49973 1.00054
δ2(0.013) 0.01395 0.00287 0.00916 0.01865 -0.00405 0.49839 0.99996
ξ2(0.33) 0.33549 0.03187 0.27242 0.40088 -0.00716 0.49714 0.99996
θ(2.8) 2.57442 0.50458 1.83115 3.55436 0.00639 0.50255 1.00289
µ(1.5) 1.51839 0.18151 1.21484 1.93333 0.00094 0.50037 1.00154

β1(0.15) 0.12616 0.06989 -0.00552 0.26851 -0.00119 0.49953 0.99996

Table 2: Posterior Summary of Generalised Lindley Frailty with Baseline Generalised Log-
Logistic-II (Simulation Study: Model-II)

Parameter Estimate s.e. L.C.L. U.C.L. Geweke p− value Gelman
test Rubin test

burn-in period = 6900; autocorrelation lag = 400
ζ1(4.5) 4.42991 0.32462 3.78131 5.04944 0.00185 0.50074 1.00044

δ1(0.02) 0.02039 0.00291 0.01514 0.02481 -0.00352 0.49860 1.06288
ξ1(0.75) 0.76296 0.06621 0.63513 0.87928 -0.00773 0.49692 1.01162
ζ2(7.5) 7.36200 0.55461 6.51050 8.40194 0.00984 0.50392 1.00001

δ2(0.05) 0.04829 0.00577 0.04045 0.05902 0.00597 0.50238 0.99996
ξ2(0.65) 0.64983 0.06029 0.53887 0.77669 -0.00359 0.49857 0.99996
θ(4.8) 4.65038 0.52427 3.85500 5.62394 0.01400 0.50559 1.00018
µ(2.5) 2.50104 0.32257 1.90090 3.14192 0.01360 0.50543 0.99997

β1(0.15) 0.13734 0.06798 -0.00299 0.27876 0.01239 0.50494 0.99996

Table 3: p-value of K-S statistics for goodness of fit test for Kidney Infection data set

Model T1 p-value T2 p-value
Model − I 0.7912 0.4490
Model − II 0.5722 0.6860
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Table 4: Posterior Summary of Generalised Lindley Frailty with Baseline Generalised
Weibull for Kidney Infection Data (Model-I)

Parameter Estimate s.e. L.C.L. U.C.L. Geweke p− value Gelman
test Rubin test

burn-in period = 6900; autocorrelation lag = 400
ζ1 1.99061 0.06654 1.84351 2.10812 0.00268 0.50107 1.00003
δ1 0.05530 0.00310 0.04954 0.06115 -0.00126 0.49950 1.00001
ξ1 0.66315 0.02125 0.61705 0.70345 -0.00648 0.49741 1.00006
ζ2 2.71016 0.06297 2.59528 2.83639 -0.00474 0.49811 0.99998
δ2 0.06205 0.00311 0.05563 0.06818 0.00865 0.50345 1.00034
ξ2 0.67052 0.02313 0.62961 0.71617 -0.00296 0.49882 0.99998
θ 2.29258 0.09757 2.11305 2.47659 0.00077 0.50031 0.99998
µ 1.38391 0.09709 1.20062 1.58699 -0.00608 0.49757 1.00025
β1 -0.10576 0.01289 -0.13073 -0.08109 -0.00220 0.49912 0.99997
β2 -8.88412 1.46382 -11.50565 -6.16638 0.00658 0.49912 1.00032
β3 2.44371 0.33770 1.84343 3.11420 0.00775 0.50309 1.00075
β4 1.61045 0.29506 1.08735 2.19532 -0.00539 0.49785 1.00093
β5 -52.67579 27.25061 -101.04670 -4.02850 0.00950 0.50379 0.99996

Table 5: Posterior Summary of Generalised Lindley Frailty with Baseline Generalised Log-
Logistic-II for Kidney Infection Data (Model-II)

Parameter Estimate s.e. L.C.L. U.C.L. Geweke p− value Gelman
test Rubin test

burn-in period = 6900; autocorrelation lag = 400
ζ1 3.79268 0.10452 3.59085 4.01330 0.00174 0.50070 1.00009
δ1 0.00160 0.00006 0.00148 0.00173 -0.00034 0.49987 1.00000
ξ1 1.04034 0.04412 0.95236 1.11628 0.00441 0.50176 1.00096
ζ2 4.30595 0.09619 4.11335 4.49439 -0.00039 0.49984 0.99997
δ2 0.00043 0.00001 0.00041 0.00045 0.00431 0.50172 1.00010
ξ2 1.25850 0.04593 1.16443 1.34386 0.00485 0.50194 0.99997
θ 2.12060 0.10701 1.92252 2.34629 0.00182 0.50072 0.99997
µ 1.28878 0.09992 1.10590 1.49725 -0.00126 0.49950 1.00025
β1 -0.10630 0.01145 -0.12756 -0.08297 -0.00153 0.49939 0.99997
β2 -67.94356 33.76583 -132.77210 -7.62369 0.00755 0.49939 1.00175
β3 2.51987 0.26359 2.04163 2.97889 0.00187 0.50075 1.00056
β4 1.51014 0.20139 1.14758 1.87047 -0.00018 0.49993 1.00104
β5 -54.94150 31.09431 -111.91510 -3.56763 0.00406 0.50162 0.99997

Table 6: Kendall’s τ Measure of Dependence

Model Kendall’s τ value
Model − I 0.297939
Model − II 0.303226

Table 7: AIC, BIC and DIC Comparison

Model AIC BIC DIC
Model-I 685.3974 706.6861 664.4514
Model-II 686.2751 707.5637 665.7128
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Supsim: a Python package and a web-based JavaScript tool to 
address the theoretical complexities in two-predictor  

suppression situations 

Morteza Nazifi1, Hamid Fadishei2 

ABSTRACT 

Two-predictor suppression situations continue to produce uninterpretable conditions 
in linear regression. In an attempt to address the theoretical complexities related to 
suppression situations, the current study introduces two different versions of a software 
called suppression simulator (Supsim): a) the command-line Python package, and b) the 
web-based JavaScript tool, both of which are able to simulate numerous random two-
predictor models (RTMs). RTMs are randomly generated, normally distributed data vectors 
x1, x2, and y simulated in such a way that regressing y on both x1 and x2 results in the 
occurrence of numerous suppression and non-suppression situations. The web-based 
Supsim requires no coding skills and additionally, it provides users with 3D scatterplots of 
the simulated RTMs. This study shows that comparing 3D scatterplots of different 
suppression and non-suppression situations provides important new insights into the 
underlying mechanisms of two-predictor suppression situations. An important focus is on 
the comparison of 3D scatterplots of certain enhancement situations called Hamilton's 
extreme example with those of redundancy situations. Such a comparison suggests that the 
basic mathematical concepts of two-predictor suppression situations need to be 
reconsidered with regard to the important issue of the statistical control function. 

Key words: Supsim, multicollinearity, suppression effects, statistical control function. 

1. Introduction

Two-predictor suppression effects remain among complex and confusing
situations in linear regression (eg. Holling, 1983, Ludlow and Klein, 2014, McFatter, 
1979, Friedman and Wall, 2005). When the inclusion of a second predictor, say x2, 
which is relatively highly correlated with x1, in the regression equation leads to some 
kind of two-predictor suppression effect, possible contradictory results include: 
calculating a negative part of the explained variance in y when partitioning 𝑅ଶ 
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(Cohen et al., 2003), finding opposite signs between the second predictor's zero-order 
correlation with y and its regression coefficient in the equation, observing situations in 
which one of the two predictors or both of them get a large regression coefficient in the 
equation despite showing "no or low" zero-order correlation with y, and finally finding 
situations in which 𝑅ଶ ൐  𝑟௬ଵ

ଶ ൅ 𝑟௬ଶ
ଶ  (Hamilton, 1987), where 𝑟௬ଵ and 𝑟௬ଶ are the zero-

order correlations between the outcome variable y and x1 or x2. Suppression situations 
have attracted attention for several decades because it is generally believed that such 
situations can increase the predictive validity especially in the context of psychological 
testing (Conger and Jackson, 1972, Horst, 1941, Pedhazur, 1997, Tzelgov and Henik, 
1991, Watson et al., 2013, Friedman and Wall, 2005, Darlington and Hayes, 2017, 
Cohen et al., 2003). Under the condition of 𝑅ଶ ൐  𝑟௬ଵ

ଶ ൅ 𝑟௬ଶ
ଶ , Hamilton (1987) describes 

an even more challenging two-predictor suppression effect, in which 𝑟௬ଵ and 𝑟௬ଶ are 
both close to 0 but 𝑅ଶ and |𝑟ଵଶ| are both near 1, where 𝑟ଵଶ is the correlation between x1 
and x2. Given that research on these challenging two-predictor suppression effects 
requires access to some simulation algorithm that can generate three-variable datasets 
showing different suppression and non-suppression situations, the authors develop and 
introduce a computerized algorithm called suppression simulator (Supsim), some 
open-source software (Nazifi and Fadishei, 2021a), made available in two different 
versions: a) the command-line Python package of Supsim, and b) the web-based 
JavaScript tool (see screenshots from the user-interface of the web-based Supsim 
in panel B of Figure 1). This algorithm enables researchers to easily generate numerous 
series of random data vectors x1, x2, and y so that one can generate numerous regression 
models with or without suppression by regressing y on both x1 and x2. The web-based 
Supsim is more user-friendly in that it does not require any coding skills and in addition 
it allows investigators to automatically produce 3D scatterplots of the simulated 
random two-predictor models (RTM's). Elsewhere, the authors explain in a video how 
to install and work with both the command-line Python package and the web-based, 
JavaScript versions of Supsim (Nazifi and Fadishei, 2021b). Before proceeding, 
a comprehensive definition of two-predictor suppression effects is needed to be used as 
a frame of reference.  

Friedman and Wall (2005) provide a comprehensive review of two-predictor 
suppression effects, which incorporates different definitions of suppression situations 
that have been presented so far. Holding arbitrary selected 𝑟௬ଵ and 𝑟௬ଶ  constant and 
letting 𝑟ଵଶ  vary over its possible limits (see inequality (1) below), Friedman and Wall 
(2005) show that for each fixed pair of 𝑟௬ଵ and 𝑟௬ଶ, letting 𝑟ଵଶ  vary, different suppression 
and non-suppression situations can occur. They are illustrated with some graphical 
views showing the variations in 𝑅ଶ, 𝛽መଵ or 𝛽መଶ in response to the variations in 𝑟ଵଶ. In such 
graphical views the vertical axis represents either 𝑅ଶ, 𝛽መଵ or 𝛽መଶ and the horizontal axis 
represents 𝑟ଵଶ. Each of the regions in Friedman and Wall's systematic graphs 
corresponds to some suppression or non-suppression situations defined previously by 
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other leading researchers in this field (e.g. see Horst, 1941, Lynn, 2003, Conger, 1974, 
Cohen and Cohen, 1975, Currie and Korabinski, 1984, Shieh, 2001, Sharpe and Roberts, 
1997, Velicer, 1978, Hamilton, 1987, Darlington, 1968). According to Friedman and 
Wall (2005) as long as 𝑟௬ଵ and 𝑟௬ଶ  are both positive, and 𝑟௬ଵ  ൐  𝑟௬ଶ  , as it is common 
in the linear regression research, the regions on the graph, from left to right, are defined 
according to Table 1 (Note that in Table 1, Friedman and Wall's definitions are subtly 
altered to also include situations where 𝑟௬ଵ and 𝑟௬ଶ  are both negative and ห𝑟௬ଵห ൐ ห𝑟௬ଶห). 
It should be noted that in Friedman and Wall’s graphs, when 𝑟௬ଵ and 𝑟௬ଶ  are of opposite 
signs the order of the regions described above becomes reverse (see Table 2 for more 
details). When the reverse graph is the case, region I covers any positive values of 𝑟ଵଶ 
(all 𝑟ଵଶ’s > 0), and regions II, III, and IV all are shifted to the negative side of the 𝑟ଵଶ 
axis. In addition, when 𝑟௬ଶ = 0, a situation called “classical suppression”, Friedman and 
Wall’s graph has only two regions including, from left to right, region I (enhancement), 
and region IV (enhancement) (see Figure 2 below; also see the application by Brown 
(2005) to be able to generate the graphs). 

Table 1.  Definitions of the Different Suppression and Non-Suppression Situations As Long As 𝒓𝒚𝟏 
and 𝒓𝒚𝟐 are of Similar Signs, and ห𝒓𝒚𝟏ห ൐ ห𝒓𝒚𝟐ห 
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■ All 𝑟ଵଶ’s < 0 
 
■ ห𝛽መଵห ൐ ห𝑟௬ଵห 
 
■ 𝑅ଶ ൐  𝑟௬ଵ

ଶ ൅  𝑟௬ଶ
ଶ  

 
■ And the signs of 𝛽መଵ and 𝛽መଶ are 
always similar to the signs of 𝑟௬ଵ 
and 𝑟௬ଶ, respectively. 
 

■ 0 ൑ 𝑟ଵଶ ൑  𝛾   
 
■ ห𝛽መଵห ൑ ห𝑟௬ଵห 
 
■ 𝑅ଶ ൑  𝑟௬ଵ

ଶ ൅  𝑟௬ଶ
ଶ  

 

■ 𝛾 ൏ 𝑟ଵଶ ൑  
ଶఊ

ଵାఊమ
  

 
■ ห𝛽መଵห ൐ ห𝑟௬ଵห 
 
■ 𝑅ଶ ൑  𝑟௬ଵ

ଶ ൅  𝑟௬ଶ
ଶ  

 
■ And in which 𝑟௬ଶ 
and 𝛽መଶ are always of 
the opposite signs. 

■ All 𝑟ଵଶ′𝑠 > ଶఊ

ଵାఊమ
 

 
■ ห𝛽መଵห ൐ ห𝑟௬ଵห 
 
■ 𝑅ଶ ൐  𝑟௬ଵ

ଶ ൅  𝑟௬ଶ
ଶ  

 
■ And in which 𝑟௬ଶ 
and 𝛽መଶ are always of 
the opposite signs. 

Note:  γ ൌ  
୰౯మ
୰౯భ

 ; and ଶஓ

ଵାஓమ
ൌ  

ଶ ൫୰౯భൈ ୰౯మ൯

୰౯భ
మ ା ୰౯మ

మ     

 
It should be noted that it is also possible to provide simplified, practical definitions 

of suppression situations. According to such simplified definitions, suppression 
situations occur when each of the following conditions are met: 1) the absolute value of 
the collinearity between the two predictors, x1 and x2, exceeds the ratio of |𝛾|, which 
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means |𝑟ଵଶ| ൐  ฬ
௥೤మ
௥೤భ
ฬ (negative suppression); 2) 𝑟௬ଵ and 𝑟௬ଶ  are of similar signs, while 

the sign of the collinearity between x1 and x2 is negative (i.e. 𝑟ଵଶ ൏ 0) (reciprocal 
suppression); and finally 3) 𝑟௬ଵ and 𝑟௬ଶ are of opposite signs, while the sign of the 
collinearity between x1 and x2 is positive (i.e. 𝑟ଵଶ ൐ 0) (reciprocal suppression).  

 

Table 2.  Definitions of the Different Suppression and Non-Suppression Situations As Long As 𝒓𝒚𝟏 
and 𝒓𝒚𝟐 are of Opposite Signs, and ห𝒓𝒚𝟏ห ൐ ห𝒓𝒚𝟐ห 
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■ 𝑟ଵଶ ൏ ଶఊ

ଵାఊమ
 

 
■ ห𝛽መଵห ൐ ห𝑟௬ଵห 
 
■ 𝑅ଶ ൐  𝑟௬ଵ

ଶ ൅  𝑟௬ଶ
ଶ  

 
■ And 𝑟௬ଶ and 𝛽መଶ are 
always of the 
opposite signs. 

■ 𝛾 ൐ 𝑟ଵଶ ൒  
ଶఊ

ଵାఊమ
  

 
■ ห𝛽መଵห ൐ ห𝑟௬ଵห 
 
■ 𝑅ଶ ൑  𝑟௬ଵ

ଶ ൅  𝑟௬ଶ
ଶ  

 
■ And 𝑟௬ଶ and 𝛽መଶ 
are always of the 
opposite signs. 

■ 0 ൒ 𝑟ଵଶ ൒  𝛾   
 
■ ห𝛽መଵห ൑ ห𝑟௬ଵห 
 
■ 𝑅ଶ ൑  𝑟௬ଵ

ଶ ൅  𝑟௬ଶ
ଶ  

 

■ All 𝑟ଵଶ’s > 0 
 
■ ห𝛽መଵห ൐ ห𝑟௬ଵห 
 
■ 𝑅ଶ ൐  𝑟௬ଵ

ଶ ൅  𝑟௬ଶ
ଶ  

 
■ And the signs of 
𝛽መଵ and 𝛽መଶ are always 
similar to the signs of 𝑟௬ଵ 
and 𝑟௬ଶ, respectively. 
 

Note:  γ ൌ  
୰౯మ
୰౯భ

 ; and ଶஓ

ଵାஓమ
ൌ  

ଶ ൫୰౯భൈ ୰౯మ൯

୰౯భ
మ ା ୰౯మ

మ  

 

Friedman and Wall (2005) believe that in order to get an accurate picture of two-
predictor suppression effects each fixed pair of 𝑟௬ଵ and 𝑟௬ଶ should be considered 
separately allowing 𝑟ଵଶ vary over its possible limit. They state that it is not the 𝑟ଵଶ per 
se but the combination of the three correlations (i.e. 𝑟௬ଵ, 𝑟௬ଶ and 𝑟ଵଶ) that affects the 
sign change in 𝛽መଶ. The possibility limit of 𝑟ଵଶ, when a fixed pair of 𝑟௬ଵ and 𝑟௬ଶ is given, 
is defined by the following inequality (e.g. Neill, 1973, Sharpe and Roberts, 1997): 

𝑟௬ଵ ൈ 𝑟௬ଶ െ  ට൫1 െ  𝑟௬ଵ
ଶ ൯ ൫1 െ  𝑟௬ଶ

ଶ ൯  ൑  𝑟ଵଶ ൑  𝑟௬ଵ ൈ 𝑟௬ଶ ൅  ට൫1 െ  𝑟௬ଵ
ଶ ൯ ൫1 െ  𝑟௬ଶ

ଶ ൯         ሺ1ሻ 

The limits were imposed by the fact that the correlation matrix which 𝑟௬ଵ, 𝑟௬ଶ, and 
𝑟ଵଶ come from must be nonnegative, definite (Neill, 1973, Sharpe and Roberts, 1997, 
Friedman and Wall, 2005). The limits defined by inequality (1) imply that the possible 
interval of 𝑟ଵଶ can become very wide when both ห𝑟௬ଵห and ห𝑟௬ଶห are close to 0 and it can 
also become very narrow when both ห𝑟௬ଵห and ห𝑟௬ଶห are near 1. Concentrating on the 
possible limits of 𝑟ଵଶ is extremely important in understanding two-predictor 
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suppression effects, because formulas of both 𝑅ଶ and 𝛽መଶ (and 𝛽መଵ as well) are sensitive 
to the values of 𝑟ଵଶ as it is evident from formula (2) (Cohen et al., 2003) and formula 
(3) below (Cohen et al., 2003, Hamilton, 1987): 

𝛽መଶ ൌ  
௥೤మି௥೤భ௥భమ
ଵି௥భమ

మ                                                                   (2) 

𝑅ଶ ൌ  
௥೤భ
మ ା௥೤మ

మ ିଶ௥೤భ௥೤మ௥భమ
ଵି௥భమ

మ                                                     (3) 

Friedman and Wall's approach, beside its strengths, has an important limitation 
because in their method only arbitrary selected pairs of correlations are used and 
therefore one is completely unaware of the data vectors x1, x2, and y and what the 3D 
scatterplots of each particular regression model looks like. Hamilton (1987) does 
explain a method for generating artificial data vectors x1, x2, and y that are used 
in building regression models in which 𝑅ଶ ൐  𝑟௬ଵ

ଶ ൅  𝑟௬ଶ
ଶ , but he uses the data vectors 

x1, x2, and y only in drawing two-dimensional scatterplots and fails to explore 3D 
scatterplots of the resulting two-predictor models. This study shows that comparing 3D 
scatterplots of two-predictor regression models with or without suppression bear 
important new insights into the effects of multicollinearity on the results of linear 
regression models. In addition, in the previous research, little attention has been paid 
to the mechanisms of statistical control in redundancy situations compared to 
suppression situations. Objectives of this study are as follows: 

1- Describing the Supsim and showing how simulation with Supsim works 
(see Section 2). 

2- Generating several examples of RTM's, falling within different suppression and 
non-suppression regions including enhancement, suppression, and redundancy 
(see Section 3) 

3- Generating 3D scatterplots for each simulated RTM to be able to compare them 
with each other. To make this comparison more meaningful, RTM's from 
enhancement or suppression regions are matched with those of redundancy 
regions in terms of either 𝑅ଶ values or zero-order correlations with y 
(see Section 3). 

4- Making new mathematical reasoning with respect to statistical control mechanisms 
(see Section 4). 

5- Discussing the significance and implications of the findings (see Section 5).  

6- Concluding and describing the strengths and weaknesses of this study 
(see Section 6).   
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2. Supsim or the RTM Generation Algorithm 

The idea behind the RTM generation algorithm or "Supsim" is to facilitate the study 
of two-predictor suppression effects by generating numerous random functions  
(i.e. yo = f(x1, x2)) and inserting errors into the outputs of those functions and then fitting 
an OLS regression surface to the resulting noisy data (y). The proposed algorithm is 
illustrated by panel A of Figure (1). This iterative process starts by choosing two 
random vectors x1 and x2 so that the correlation between x1 and x2 (𝑟ଵଶ) is set to a desired 
amount. Next, a random function is generated to produce yo as a function of both x1 
and x2 and then a normally distributed noise vector, 𝑒, is added to yo in order to generate 
a noisy data vector y (i.e. 𝑦 ൌ  𝑦௢ ൅ 𝑒ሻ. It should be noted that, before running the 
algorithm, the distribution of the noise vector, 𝑒 ൌ 𝑁ሺ𝜇௘ ,𝜎௘ሻ, is arbitrarily determined 
by the user through selecting an A coefficient where 𝜇௘ ൌ 𝐴𝜇௬೚  and 𝜎௘ ൌ 𝐴𝜎௬೚ . Also 
other arbitrary, user-provided constraints can be set to constrain 𝑟௬ଵ, 𝑟௬ଶ, 𝑟ଵଶ, and the 
amount of 𝑅ଶ enhancement before running the Supsim. Otherwise all the required 
constraints are met, the current RTM shall be discarded and the current iteration shall 
be started again. When designing the Supsim algorithm, an important technical 
problem was meeting the constraint imposed on 𝑟ଵଶ range. If this problem is left 
unresolved, the algorithm would be trapped in an exhaustive search over a very large 
space of all possible RTM’s to find those meeting the desired 𝑟ଵଶ range. In order to 
overcome this limitation and speed up the simulation process, a specific random 
number generation method is used, which can generate a data vector (x1) that not only 
is random, but also shows a desired amount of correlation with another random data 
vector (x2) (Whuber, 2017).  

The first two steps of the algorithm shown in Figure 1 are designed according to 
the method described by Whuber (2017). The algorithm first chooses a normal random 
vector x1 and then another normal random vector a with the same length, mean, and 
standard deviation as x1 and then applies a transformation to a to calculate b in a way 
that the correlation between b and x1 is set to the desired amount (𝑟ଵଶ). Such 
a transformation is described in Equation (4) where d is the vector of residuals resulted 
from regressing a on x1, 𝜎ௗ  represents the standard deviation of d, and 𝜎௫భ  represents 
the standard deviation of x1, and 𝑟 is the desired amount of correlation between b and 
x1. It should be noted that such a transformation changes the initial distribution of the 
b vector. Therefore, in order to return b to a mean and a standard deviation equal to 
those of x1, the b vector again is transformed into x2 vector by using x2 = mb+n, where 
m = 𝜎௫భ/ 𝜎௕ and n = 𝜇௫భ- m.𝜇௕. Now x2 is a random, normal vector, with the same 
length, mean, and standard deviation as x1 , which shows specific amount of correlation 
with x1. 

𝑏 ൌ 𝑟.𝜎ௗ . 𝑥ଵ ൅ 𝑑.𝜎௫భ .√1 െ 𝑟ଶ                                         (4) 
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2.1. The Simulation Process in Supsim   

After generating RTM's, the regression parameters 𝑅ଶ, 𝛽መଵ, and 𝛽መଶ for each of the 
simulated RTM's are automatically estimated, the simulated RTM's are classified 
according to the definitions by Friedman and Wall, and then the regression parameters 
for each of the simulated RTM's are scattered over four different regions on Friedman 
and Wall’s graphs (see Figure 2, panels A through C). Generated by the Python package 
of Supsim, Figure 2 shows the distribution of the regression parameters of 10,000 
simulated RTM's. As it is shown in Figure 2, the regression parameters of the majority 
of the simulated RTM's fall within the four regions of either the regular graph (in which 
𝑟௬ଵ and 𝑟௬ଶ are of similar signs, and ห𝑟௬ଵห ൐ ห𝑟௬ଶห) or the reverse graph (in which 𝑟௬ଵ 
and 𝑟௬ଶ are of opposite signs, and ห𝑟௬ଵห ൐ ห𝑟௬ଶห), and only a few of them fall within the 
two regions of the classical graph (representing classical suppression situations). To 
avoid overcrowding, in Figure 2, before running Supsim, the algorithm is constrained 
to plot only the 𝑅ଶ parameters (and not 𝛽መଵ, and 𝛽መଶ) for each of the simulated RTM's 
(see Figure 2 below) (For more details about the Supsim algorithm please see user's 
guide for Supsim (Nazifi and Fadishei, 2021c)). 

3. Case Studies on Unique RTM’s  

Supsim allows users to constrain the magnitudes of 𝑟௬ଵ, 𝑟௬ଶ, 𝑟ଵଶ, noise, and the 
amount of 𝑅ଶ enhancement to facilitate the production of unique cases of RTM’s with 
desired characteristics that are useful for specific purposes like case studies on unique 
RTM’s. This section is devoted to case studies on unique RTM’s with fixed pairs of 𝑟௬ଵ 
and 𝑟௬ଶ. The authors primarily focus on the most challenging situation defined by 
Hamilton (1987) in which 𝑟௬ଵ and 𝑟௬ଶ are both close to 0 but 𝑅ଶ and |𝑟ଵଶ| are both near 
1 and then extend the discussion to other suppression situations. 

3.1. Comparing 3D Scatterplots of Different Regions 

After running several simulations by using Supsim, with predetermined 
constraints, resulting in several sets of large number of RTM’s, the authors searched 
among numerous simulated RTM’s to find matched examples of RTM's belonging to 
different suppression or non-suppression regions. The selected RTM's were then 
plotted in Figures 3 and 4. It should be noted that in Figure 3, 𝑅ଶ values are matched 
between the following pairs: panels A and B, panels C and D, panels E and F. In panels 
A, C, and E of Figure 3, RTM's are selected in such a way that x1 and x2 are not correlated 
with y (i.e. the y vectors are orthogonal to both x1 and x2 vectors). In Figure 4, the 𝑅ଶ 
values are matched between the following pairs: panels A and B, and panels C and D. 
In Figure 4, the absolute values of the zero-order correlations with y also are matched 
between panels A and C (interested readers can contact the authors to reach datasets 
for Figures 3 and 4). 
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Notes for Panel A: 
   * "e" is a distribution of errors of the same 

length as Yo (or original Y), while mean 
and standard deviation of "e" is 
determined arbitrarily by the user as a 
proportion of mean and standard 
deviation of Yo. "e" enables users to control 
the fit levels of the RTM's. 

  ** arguments (or arg's) are arbitrarily 
selected by the users to limit the 
magnitude of 𝑟௬ଵand 𝑟௬ଶ. By using arg's, 
users control the amount of 𝑟௬ଵ and 𝑟௬ଶ. 

 *** There are two kinds of "allowed range" for 
𝑟ଵଶ in Supsim: first, the default allowed 
range is defined by "𝑟௬ଵ ൈ 𝑟௬ଶ െ

 ට൫1 െ  𝑟௬ଵ
ଶ ൯ ൫1 െ  𝑟௬ଶ

ଶ ൯  ൑  𝑟ଵଶ ൑  𝑟௬ଵ ൈ

𝑟௬ଶ ൅  ට൫1 െ  𝑟௬ଵ
ଶ ൯ ൫1 െ  𝑟௬ଶ

ଶ ൯"; Second, 

users are allowed to further limit the 
magnitude of 𝑟ଵଶ by selecting an arbitrary 
range between 0 and 1. 

**** arg's about the amount of 𝑅ଶ 
enhancement enable users to arbitrarily 
control the levels of 𝑅ଶ enhancement by 
selecting a proportion between 0 and 1. 

   A: The Iterative Process of Python Package of Supsim 
 

 
   B: Screenshots from the user-interface of the web-based JavaScript version of Supsim 

Figure 1.  Flowchart of the Python package of Supsim and Screenshots from the JavaScript version 
of Supsim  
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A: The 𝑅ଶ values for thousands of RTM's Scattered among Regions of Friedman and Wall’s Regular Graph 

B: The  𝑅ଶ values for thousands of RTM's Scattered among Regions of Friedman and Wall’s Reverse Graph 
 

C: The 𝑅ଶ values for RTM's Scattered among Regions of Friedman and Wall’s Classical Suppression Graph 

Figure 2. Distribution of a Large-Scale Sample of RTM’s (N = 10,000) among The Regions of 
Friedman and Wall’s Graph  
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A: Classical Suppression  
with 0.11 Enhancement 
𝑹𝟐= 0.119,  𝑟௬ଵ= 0.08, 
𝑟௬ଶ= 0.008,  𝑟ଵଶ= -0.965, 
β1= 1.322,  β2= 1.284;  
noise magnitude = 2.00 

C: Region I Situation  
with 0.483 Enhancement 
𝑹𝟐= 0.492,  𝑟௬ଵ= 0.07,  
𝑟௬ଶ= 0.065,  𝑟ଵଶ= -0.981,   
β1= 3.635,  β2= 3.632;  
noise magnitude = 1.00 

E: Classical Suppression  
with 0.995 Enhancement 
𝑹𝟐= 0.999,  𝑟௬ଵ= -0.056, 
𝑟௬ଶ= -0.00036,   𝑟ଵଶ= -0.996, 
β1= -17.674  β2= -17.647;  
noise magnitude = 0.04 
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B: Redundancy  
(RTM without Suppression) 
𝑹𝟐= 0.115,  𝑟௬ଵ= 0.27, 
𝑟௬ଶ= -0.21,  𝑟ଵଶ= -0.212, 
β1= 0.227,  β2= -0.209;  
noise magnitude = 2.00 

D: Redundancy  
(RTM without Suppression) 
𝑹𝟐= 0.49,  𝑟௬ଵ= 0.688, 
𝑟௬ଶ= 0.657,  𝑟ଵଶ= 0.86,   
β1= 0.47,  β2= 0.253;  
noise magnitude = 1.00 

F: Redundancy  
(RTM without Suppression) 
𝑹𝟐= 0.998,  𝑟௬ଵ= -0.856, 
𝑟௬ଶ= -0.548,  𝑟ଵଶ= 0.056, 
β1= -0.837,  β2= -0.501;  
noise magnitude = 0.04 

 

Figure 3.  Matched Scatterplots from Enhancement Regions Compared to Redundancy Regions 
 (Matched for 𝑹𝟐) 
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A: Region I Situation with 0.121 Enhancement 
𝑹𝟐= 0.128,  𝑟௬ଵ= -0.07,  𝑟௬ଶ= -0.03, 
𝑟ଵଶ= -0.956,  β1= -1.215,  β2= -1.194;  
noise magnitude = 2.0 

C: Region I Situation with 0.99 Enhancement 
𝑹𝟐= 0.997,  𝑟௬ଵ= 0.07,  𝑟௬ଶ= -0.03,   
𝑟ଵଶ= 0.994,  β1= 9.48,  β2= -9.46;  
noise magnitude = 0.05 

RT
M

’s 
fr

om
 R

eg
io

n 
II

I S
up

pr
es

si
on

 
( 𝑅

ଶ
 v

al
ue

s a
re

 m
at

ch
ed

 b
et

w
ee

n:
 A

 an
d 

B,
 C

 an
d 

D
) 

  
B: Region III: Suppression 
𝑹𝟐= 0.128,  𝑟௬ଵ= -0.349,  𝑟௬ଶ= -0.116, 
𝑟ଵଶ= 0.523,  β1= -0.396,   β2= 0.091;  
noise magnitude = 2.0 

D: Region III: Suppression 
𝑹𝟐= 0.997,  𝑟௬ଵ= 0.901,  𝑟௬ଶ= 0.801,  
𝑟ଵଶ= 0.981,  β1= 3.07,  β2= -2.211;  
noise magnitude = 0.05 

 

Figure 4.  Matched Scatterplots of Enhancement Situations Compared to Region III Suppression 
(Matched for 𝑹𝟐or Zero-Order Correlations) 

 
To obtain the best image quality, the 3D scatterplots in Figure 3 and Figure 4 are 

generated manually by entering x1, x2 and y vectors into the NCSS software and then 
drawing the 3D scatterplots. However, the entire process of drawing 3D scatterplots 
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like those in Figure 3 and Figure 4 can be performed automatically by a few clicks using 
the web-based version of Supsim (Nazifi and Fadishei, 2021c). 

For all three enhancement situations in panels A, C, and E of Figure 3, the values 
of x1 and x2 are almost independent from the values of y, which is evident from the 
scattered dots being almost orthogonal to the plane spanned by x1 and x2 in all the three 
scatterplots (it is also evident from the zero-order correlations with y in Figure 3 panels 
A, C and E that all of them are smaller than |0.08|). Indeed, for panels A, C, and E while 
x1 and x2 are highly sensitive to each other’s variability (i.e. all |𝑟ଵଶ|’s ൒ 0.965ሻ they are 
almost indifferent to the variability in y. Surprisingly, however, not only the three 𝑅ଶ 

parameters in panels A, C, and E of Figure 3 are not near 0 but also they are considerably 
different from each other as a function of different |𝑟ଵଶ| values (estimated 𝑅ଶ values are 
0.119, 0.492, and 0.997 respectively for panels A, C, and E of Figure 3). Consider, for 
example, the scatter plot in Figure 3, panel E, where the possibility interval of 𝑟ଵଶ is -
0.99841 to 0.99845, and the regression surface is almost parallel to the y axis and 
orthogonal to the plane spanned by x1 and x2. However, again the estimated value of 𝑅ଶ 

is 0.999 (i.e. near 1). Although apparently the estimated 𝑅ଶ as large as 0.999 in panel E 
is calculated correctly, because the residuals are near 0, and it is well known that 𝑅ଶ has 
been defined as a function of residuals in some texts (Kvalseth, 1985, Alexander et al., 
2015), but this situation needs more explanations.  

Panel E in Figure 3 is an extreme example of what first was described by Hamilton 
(1987), a suppression situation with 𝑅ଶ ൐  𝑟௬ଵ

ଶ ൅ 𝑟௬ଶ
ଶ  in which 𝑟௬ଵ and 𝑟௬ଶ are both close 

to 0 but 𝑅ଶ and |𝑟ଵଶ| are both near 1. Hamilton (1987) shows that under the condition 
of 𝑅ଶ ൐  𝑟௬ଵ

ଶ ൅ 𝑟௬ଶ
ଶ  whenever 𝑅ଶ = 1 and 𝑟௬ଶ = 0 the following equality can be derived 

from formula (3) above: 

𝑟ଵଶ
ଶ ൌ 1 െ  𝑟௬ଵ

ଶ                                                              (5) 

Note that by moving the െ 𝑟௬ଵ
ଶ  to the left side of the equality (5) the following 

equality can be obtained: 

𝑅ଶ ൌ 𝑟ଵଶ
ଶ ൅ 𝑟௬ଵ

ଶ ൌ 1                                                     (6) 

Readers see that under a set of conditions defined by Hamilton (1987) including 
𝑅ଶ ൐  𝑟௬ଵ

ଶ ൅ 𝑟௬ଶ
ଶ , 𝑅ଶ = 1, and 𝑟௬ଶ ൌ 0, if 𝑟௬ଵ is also approximately close to 0, as it is the 

case in panel E of Figure 3, formula (3) tends to approximately substitute the value of 
𝑟ଵଶ
ଶ  for the value of 𝑅ଶ. It is possible to generate countless cases of Hamilton's extreme 

examples in which 𝑟ଵଶଶ  constitutes the major part of 𝑅ଶ (for another instance see panel 
C of Figure 4). However, it is an obvious mistake to consider 𝑟ଵଶଶ  as the largest part of 
𝑅ଶ since it is only a proportion of inter-correlation between x1 and x2 themselves. One 
might argue that Hamilton's extreme examples never occur in real empirical studies, 
and therefore such a mistake would never occur in the real world. However, the authors 
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show in the next sections that substituting a proportion of 𝑟ଵଶ for the value of 𝑅ଶ is not 
limited to Hamilton's extreme examples, but this phenomenon occurs in all different 
suppression situations.  

When Hamilton's extreme example is the case, the slop of the regression surface 
also cannot be considered as a correct slop, because it causes an incorrect replacement 
of 𝑅ଶ with a proportion of 𝑟ଵଶ by allocating inflated regression coefficients (IRC) to 
both x1 and x2 in the equation. IRC can be seen when one compares a regression model 
affected by high multicollinearity with an equivalent model with the same values of 𝑟୷ଵ 
and 𝑟୷ଶ but 𝑟ଵଶ= 0. 

Readers know that in a two-predictor model in which 𝑟ଵଶ= 0, then 𝑟୷ଵ ൌ 𝛽መଵ and 
𝑟୷ଶ ൌ 𝛽መଶ, while in cases where 𝑟ଵଶ ≠ 0 both ห𝛽መଵห and ห𝛽መଶห deviate from the respective 
ห𝑟୷ଵห and ห𝑟୷ଶห values. Also it is well known that both 𝛽 coefficients and zero-order 
correlations (𝑟୷୶) are standardized measures. By using these principles, the authors 
suggest quantifying the severity of IRC by a novel index that hereafter is referred to as 
absolute beta-to-correlation ratio (or |𝐵𝐶|). The |𝐵𝐶| is defined as follows: 

|𝐵𝐶| ൌ ቤ
the standardized regression coefficient

the respective zero-order correlation with "y"ቤ                 ሺ7ሻ 

In Figure 3, panel E, the |𝐵𝐶| for 𝛽መଵ equals 315.61 and it means that ห𝛽መଵห is more 
than 315 times greater than ห𝛽መଵห in an equivalent model with 𝑟ଵଶ = 0. And the |𝐵𝐶| for 
𝛽መଶ in panel E equals 49019.45 and it means that ห𝛽መଶห is more than 49000 times greater 
than ห𝛽መଶห in an equivalent model with 𝑟ଵଶ = 0. In contrast, scatterplots from redundancy 
regions (panels B, D, and F in Figure 3) show no sign of IRC, because all |𝐵𝐶| ratios ൑
1 . For example, in panel F of Figure 3, relatively large values of 𝑟୷ଵ and 𝑟୷ଶ, but not 
necessarily a large value of 𝑟ଵଶ, are needed to obtain a 𝑅ଶ value as large as 0.998. In fact, 
the |𝐵𝐶| ratios for those RTM's drawn from redundancy regions are always equal to or 
smaller than 1 indicating the absence of IRC as it is evident from panels B, D, and F in 
Figure 3.   

The scatterplots in Figure 4 help further explain the issue of IRC in enhancement 
regions compared to region III (suppression). Note that panels A and B as well as panels 
C and D are matched for 𝑅ଶ values in Figure 4. Panels A and C also are matched for 
zero-order correlations with y. The possible interval of 𝑟ଵଶ in both panels A and C of 
Figure 4 is between -0.995 and 0.9992. A comparison between the two enhancement 
situations in panels A and C reveals that to obtain a 𝑅ଶ value of 0.128, a |𝑟ଵଶ| ൌ 0.956 
is needed (see panel A of Figure 4). And then in panel C only a 0.038 increase in |𝑟ଵଶ| 
is needed to obtain a 𝑅ଶ value of 0.997. Again, y is almost independent from both x1 
and x2 in both panels A and C. But in panel A, the value of |𝑟ଵଶ| ൌ 0.956 is not strong 
enough to produce an orthogonal regression surface through generating a large IRC to 
obtain a 𝑅ଶ value near 1. Indeed, panel A needs only a 0.038 increase in |𝑟ଵଶ| value to 
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perform as well as panel C of Figure 4 in enhancing the 𝑅ଶ up to 0.997. The |𝐵𝐶| ratios 
are 17.36 and 39.8 respectively for 𝛽መଵ and 𝛽መଶ in panel A of Figure 4 compared to 135.43 
and 315.34 respectively for 𝛽መଵ and 𝛽መଶ in panel C of Figure 4.  

Similarly, IRC is always present in RTM’s drawn from region III (suppression) (see 
panels B and D in Figure 4). For instance, the |𝐵𝐶| ratios for panel B of Figure 4 are 
1.135 and 0.784 respectively for 𝛽መଵ and 𝛽መଶ, while they are more sever for panel D of 
Figure 4 as they are 3.41 and 2.76 respectively for 𝛽መଵ and 𝛽መଶ.  

So far the readers have seen that IRC may not occur in two-predictor models falling 
within redundancy regions while it is always present in models falling within region III 
(suppression), region I or region IV (enhancement). These conclusions have already 
been verified by the definitions presented by Friedman and Wall (2005) for each of the 
four regions on their graphs.  

By referring to the important issue of statistical control in two-predictor linear 
regression, the next section presents the results of further case studies on RTM's, which 
call on researchers to be more cautious about the issue of IRC in suppression situations. 

4. New Mathematical Reasoning: The Statistical Control Function 

In this section the authors show that comparing the mechanisms of statistical 
control between regression models affected by suppression effects with those not 
affected can provide important new insights into the effects of multicollinearity on the 
results of two-predictor regression models. When a second predictor x2 is entered into 
the regression equation, multicollinearity between x1 and x2 raises the issue of statistical 
control. To better understand the effects of multicollinearity the authors suggest 
equality (8) that can be derived from formula (3) by moving the terms 1 െ 𝑟ଵଶ

ଶ  from the 
denominator to the left side of the equation, multiplying them by 𝑅ଶ and then moving 
the term െ𝑅ଶ. 𝑟ଵଶ

ଶ  to the right side: 

𝑅ଶ ൌ  𝑟௬ଵ
ଶ ൅ 𝑟௬ଶ

ଶ െ ൫2 𝑟௬ଵ𝑟௬ଶ𝑟ଵଶ൯ ൅  𝑅ଶ𝑟ଵଶ
ଶ                               (8) 

Of course, equality (8) is not an optimum way for calculating 𝑅ଶ, but it is still 
important because it helps figure out the role of multicollinearity by partitioning 𝑅ଶ 
into two parts: a) the sum of the first two terms (i.e. 𝑟௬ଵଶ ൅ 𝑟௬ଶ

ଶ ) which we call the 
collinearity-independent part (CIP), and b) the sum of the second two terms (i.e. 
െ2 𝑟௬ଵ𝑟௬ଶ𝑟ଵଶ ൅  𝑅ଶ𝑟ଵଶ

ଶ ), which we call the collinearity-dependent part (CDP). It should 
be noted that when calculating 𝑅ଶ, the terms െ2 𝑟௬ଵ𝑟௬ଶ𝑟ଵଶ ൅  𝑅ଶ𝑟ଵଶ

ଶ  or CDP are added 
to the terms 𝑟௬ଵଶ ൅ 𝑟௬ଶ

ଶ  or CIP in order to control for the common variance explained 
jointly by x1 and x2 in cases where multicollinearity is present. However, if 𝑟ଵଶ = 0, then 
the sum of the terms െ2 𝑟௬ଵ𝑟௬ଶ𝑟ଵଶ ൅  𝑅ଶ𝑟ଵଶ

ଶ  is equal to 0, but 𝑟ଵଶ is usually non-zero 
and accordingly the sum of the terms െ2 𝑟௬ଵ𝑟௬ଶ𝑟ଵଶ ൅  𝑅ଶ𝑟ଵଶ

ଶ  is usually non-zero. The 
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terms െ2 𝑟௬ଵ𝑟௬ଶ𝑟ଵଶ ൅  𝑅ଶ𝑟ଵଶ
ଶ  here should be regarded as a proportion of 𝑟ଵଶ because 𝑟୷ଵ 

and 𝑟୷ଶ are held constant to study the effects of variations in 𝑟ଵଶ. Indeed, equality (8) 
shows that when redundancy is the case, the 𝑅ଶ formula tends to subtract some 
proportion of 𝑟ଵଶ from 𝑟௬ଵଶ ൅ 𝑟௬ଶ

ଶ  to prevent the estimated value of 𝑅ଶ from containing 
any part of the common variance explained jointly by x1 and x2. Therefore, the terms 
െ2 𝑟௬ଵ𝑟௬ଶ𝑟ଵଶ ൅  𝑅ଶ𝑟ଵଶ

ଶ  hereafter are called the statistical control part (SCP) that usually 
subtracts some proportion of 𝑟ଵଶ from 𝑟௬ଵଶ ൅ 𝑟௬ଶ

ଶ . However, there is evidence that under 
the enhancement conditions, especially those described by Hamilton (1987), the SCP 
can become positive (see Table 3 below).  

By obtaining equality (8) from formula (3) for the first time, Hamilton (1987) 
argues that in cases where 𝑅ଶ ൐  𝑟௬ଵ

ଶ ൅ 𝑟௬ଶ
ଶ , 𝑟௬ଶ= 0, and 𝑅ଶ ൌ 1, then the equality (5) 

can be derived from formula (3). In fact, by suggesting equality (5), Hamilton (1987) 
has been first to show that in extreme cases under the condition of 𝑅ଶ ൐  𝑟௬ଵ

ଶ ൅ 𝑟௬ଶ
ଶ , 

whenever 𝑅ଶ ൌ 1, 𝑟௬ଶ= 0, and 𝑟௬ଵ is also approximately near 0, then formula (3) tends 
to approximately substitute the value of 𝑟ଵଶଶ  for the value of 𝑅ଶ. Generally, when 
enhancement is the case, the SCP is always positive (see Table 3 below) adding some 
proportion of 𝑟ଵଶ to the value of 𝑟௬ଵଶ ൅ 𝑟௬ଶ

ଶ , which in turn leads to the condition of 𝑅ଶ ൐
 𝑟௬ଵ
ଶ ൅ 𝑟௬ଶ

ଶ .  
So far it is evident that there is a statistical control function inherent in formula (3), 

which if carefully quantified can help explain why suppression situations occur. 
Readers know that if 𝑟ଵଶ = 0, then 𝑅ଶ = 𝑟௬ଵଶ ൅ 𝑟௬ଶ

ଶ , while in cases where 𝑟ଵଶ ≠ 0, then the 
value of 𝑅ଶ deviates from the value of 𝑟௬ଵଶ ൅ 𝑟௬ଶ

ଶ  (see Table 3 below). This explains why 
many texts (e.g. Cohen et al., 2003, Darlington and Hayes, 2017) suggest the following 
formulas: 

𝑅௬.ଵଶ
ଶ ൌ  𝑟௬ଵ

ଶ ൅  𝑠𝑟ଶ
ଶ                                                          (9) 

𝑠𝑟ଶ ൌ  
௥೤మି௥೤భ௥భమ

ටଵି ௥భమ
మ

                                                          (10) 

where 𝑠𝑟ଶ is the semipartial correlation of x2 with y, and 𝑠𝑟ଶଶ is its squared value 
representing a proportion of the total variance in y explained by x2 over and above the 
variance explained by x1. In fact, when calculating 𝑅ଶ, 𝑠𝑟ଶଶ is used instead of 𝑟௬ଶଶ  to 
prevent 𝑅ଶ from including the common variance explained jointly by x1 and x2 in cases 
of multicollinearity (i.e. when 𝑟ଵଶ ≠ 0). Here, again, if 𝑟ଵଶ = 0, then 𝑠𝑟ଶଶ = 𝑟௬ଶଶ , while if 
𝑟ଵଶ ≠ 0 then 𝑠𝑟ଶଶ deviates from 𝑟௬ଶଶ . Indeed, 𝑠𝑟ଶଶ in formula (9) can be divided into two 
parts: 

𝑠𝑟ଶ
ଶ ൌ  𝑟௬ଶ

ଶ ൅ 𝑆𝐶𝑃                                                           (11) 

And formula (9) can be rewritten as follows: 

𝑅௬.ଵଶ
ଶ ൌ  𝑟௬ଵ

ଶ ൅ 𝑟௬ଶଶ ൅ 𝑆𝐶𝑃                                                (12) 
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Therefore, equality (11) gives another simple method for quantifying the SCP:   

𝑆𝐶𝑃 ൌ 𝑠𝑟ଶ
ଶ െ  𝑟௬ଶ

ଶ                                                             (13) 

As a result when 𝑟୷ଵ, 𝑟୷ଶ and 𝑟ଵଶ are known, the statistical control part (SCP) also 
can be defined as a function of the combination of three correlations: 

𝑆𝐶𝑃 ൌ 𝑓൫𝑟௬ଵ, 𝑟௬ଶ, 𝑟ଵଶ൯ ൌ  ቌ
௥೤మି௥೤భ௥భమ

ටଵି ௥భమ
మ
ቍ

ଶ

െ  𝑟௬ଶ
ଶ                       (14) 

Readers see that the first term in function (14) is equal to 𝑠𝑟ଶଶ, and therefore 
function (14) is identical to equality (13). 

As the readers may guess, there is also a collinearity-dependent part (CDPB) in both 
𝛽መଵ and 𝛽መଶ formulas, which help explain the reason why regression coefficients become 
inflated in suppression situations. The following equalities can be derived from 
formulas of 𝛽መଵ and 𝛽መଶ (see formula (2) above): 

𝛽መଵ ൌ 𝑟௬ଵ െ 𝑟௬ଶ𝑟ଵଶ ൅  𝛽መଵ𝑟ଵଶ
ଶ                                                  (15) 

𝛽መଶ ൌ 𝑟௬ଶ െ 𝑟௬ଵ𝑟ଵଶ ൅  𝛽መଶ𝑟ଵଶ
ଶ                                                  (16) 

Similarly, equalities (15) and (16) each partition the respective standardized 
regression coefficients into two parts: a) the first term, which is the zero-order 
correlation with y (𝑟௬ଵ or 𝑟௬ଶ), is called the collinearity-independent part (CIPB) and b) 
the sum of the next two terms (i.e. െ𝑟௬ଶ𝑟ଵଶ ൅  𝛽መଵ𝑟ଵଶ

ଶ  in equality (15) and െ𝑟௬ଵ𝑟ଵଶ ൅
 𝛽መଶ𝑟ଵଶ

ଶ  in equality (16)) is called the collinearity-dependent part (CDPB). The authors 
suggest using CDPB1 as the collinearity-dependent part in 𝛽መଵ and CDPB2 as the 
collinearity-dependent part in 𝛽መଶ. Here, again, the aim of adding CDPB terms to each 
zero-order correlations is to penalize the regression coefficients for multicollinearity. 
However, the term "penalty" can be used strictly for CDPB1 and CDPB2 values as long as 
no kind of two-predictor suppression exists in the model, because only and only over 
the redundancy regions the signs of CDPB1 and CDPB2 are constantly opposite to the 
signs of 𝑟௬ଵ and 𝑟௬ଶ, making them to produce ห𝛽መଵห and ห𝛽መଶห values smaller than or equal 
to ห𝑟୷ଵห and ห𝑟୷ଶห (see Table 3 below). In contrast, in region III (suppression) as well as 
both region I and region IV (enhancement), the sign of CDPB1 is always similar to the 
sign of 𝑟௬ଵ adding progressively greater proportions of 𝑟ଵଶ to 𝑟௬ଵ to produce more and 
more inflated 𝛽መଵ values as |𝑟ଵଶ| increases to its maximum value (see Table 3 below). 
Interestingly, over both the region III (suppression) and the region IV (enhancement), 
always |𝐶𝐷𝑃஻ଶ| ൐  ห𝑟௬ଶห and the signs of 𝐶𝐷𝑃஻ଶ's are always opposite to the signs of the 
respective 𝑟௬ଶ's making them to produce inflated 𝛽መଶ values of the opposite signs 
compared to 𝑟௬ଶ. Therefore, over the region III (suppression) and the region IV 
(enhancement) situations, CDPB2 subtracts progressively larger proportions of 𝑟ଵଶ from 



STATISTICS IN TRANSITION new series, December 2022 

 

193

𝑟௬ଶ as |𝑟ଵଶ| increases to its maximum value (see Table 3 below). Finally, in region I 
(enhancement) the sign of CDPB2 values is always similar to the sign of 𝑟௬ଶ adding 
progressively larger proportions of 𝑟ଵଶ to 𝑟௬ଶ to produce inflated 𝛽መଶ values as |𝑟ଵଶ| 
increases to its maximum value (see Table 3 below). 

To verify these observations, consider, for example, an arbitrary, fixed pair of 𝑟௬ଵ 
and 𝑟௬ଶ letting 𝑟ଵଶ vary over its possible limit. This arbitrary pair can be (-0.6, -0.5). 
Variations in the regression parameters in response to the variations in 𝑟ଵଶ for the pair 
(-0.6, -0.5) are shown in Table 3. To further discuss the mechanisms of statistical 
control, also for the pair (-0.6, -0.5), all the values of 𝑅ଶ, 𝛽መଵ, and 𝛽መଶ are plotted against 
different values of 𝑟ଵଶ in panels A through C of Figure 5. 

Table 3.  Variations in the regression parameters according to the variation in 𝑟ଵଶ for the pair 
 𝑟௬ଵ ൌ െ0.6, 𝑟௬ଶ ൌ െ0.5,𝑛 ൌ 25 

γ = 0.833333333 Lower limit of 𝒓𝟏𝟐 = -0.39282 
𝟐𝜸 𝟏 ൅ 𝜸𝟐⁄  = 0.983606557 Upper limit of 𝒓𝟏𝟐 = 0.9928203 
Range* of 

𝒓𝟏𝟐 
𝑹𝟐 𝜷෡𝟏 𝜷෡𝟐 𝒔𝒓𝟐

𝟐 SCP CDPB1  CDPB2  𝐒𝐄𝛃෡'s 

Max=0.992820323 1.000 -7.240 6.688 0.640 0.390 -6.640 7.188 0.000 
0.99 0.80402 -5.28 4.72 0.444 0.194 -4.68 5.22 0.669 

ratio=0.983606557 0.610 -3.327 2.773 0.250 0.000 -2.727 3.273 0.738 
0.90 0.36842 -0.79 0.21 0.008 -0.241 -.189 0.710 0.389 

γ = 0.833333333 0.360 -0.600 0.000 0.000 -0.250 0.000 0.500 0.309 
0.80 0.36111 -0.56 -0.06 0.001 -0.249 0.044 0.44 0.284 
0.70 0.37255 -0.49 -0.16 0.013 -0.237 0.11 0.34 0.236 
0.60 0.39063 -0.47 -0.22 0.031 -0.219 0.131 0.28 0.208 
0.50 0.41333 -0.47 -0.27 0.053 -0.197 0.133 0.23 0.189 
0.40 0.44048 -0.48 -0.31 0.080 -0.17 0.123 0.19 0.174 
0.30 0.47253 -0.49 -0.35 0.113 -0.137 0.105 0.148 0.162 
0.20 0.51042 -0.52 -0.40 0.150 -0.099 0.079 0.10 0.152 
0.10 0.55556 -0.56 -0.44 0.196 -0.054 0.044 0.055 0.143 
0.00 0.61000 -0.60 -0.50 0.250 0.000 0.000 0.000 0.133 
-0.10 0.67677 -0.66 -0.57 0.317 0.067 -0.056 -0.065 0.122 
-0.20 0.76042 -0.73 -0.65 0.400 0.15 -0.129 -0.146 0.106 
-0.30 0.86813 -0.82 -0.75 0.508 0.258 -0.224 -0.247 0.081 

Min=-
0.392820323 1.000 -0.942 -0.870 0.640 0.390 -0.342 -0.370 0.000 

-0.40 1.01190 -0.95 -0.88 0.652 0.4 -0.352 -0.381 - 
-0.50 1.21333 -1.13 -1.07 0.853 0.6 -0.533 -0.567 - 
-0.60 1.51563 -1.41 -1.34 1.156 0.9 -0.806 -0.844 - 
-0.70 2.01961 -1.86 -1.80 1.660 1.4 -1.26 -1.304 - 
-0.80 3.02778 -2.78 -2.72 2.668 2.41 -2.17 -2.22 - 
-0.90 6.05263 -5.53 -5.47 5.693 5.44 -4.92 -4.97 - 
-0.99 60.50251 -55.03 -54.97 60.143 59.9 -54.89 -54.48 - 

Note: SCP = statistical control part; CDPB1 = collinearity-dependent part of 𝛽መଵ; CDPB2 = collinearity-dependent 
part of 𝛽መଵ; 𝑆𝐸𝛽መ 's = standard errors of 𝛽መ 's; Min = minimum allowed value of 𝑟ଵଶ; Max = maximum allowed value 
of 𝑟ଵଶ; ratio = 2𝛾 1 ൅ 𝛾ଶ⁄ ; *: The possibility interval of 𝑟ଵଶ is highlighted in gray in 𝑟ଵଶ column. Note that only the 
highlighted area on the table falls within the allowed range of 𝑟ଵଶ. 
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A:  Changes in 𝑅ଶ According to 
Changes in Both 𝑟ଵଶ and SCP 

a: Region I: Enhancement:  
When calculating the 𝑅ଶ value, 
SCP adds progressively greater 
proportions of 𝑟ଵଶ to ሺ𝑟௬ଵ ൅ 𝑟௬ଶሻ 
as 𝑟ଵଶ approaches its minimum 
value.  
b: Region II: Redundancy:  
SCP penalizes 𝑅ଶ for 
multicollinearity by subtracting 
progressively greater proportions 
of 𝑟ଵଶ from ሺ𝑟௬ଵ ൅ 𝑟௬ଶሻ as 𝑟ଵଶ 
approaches 𝛾.  
c: Region III: Suppression:  
SCP subtracts progressively 
smaller proportions of 𝑟ଵଶ from 
ሺ𝑟௬ଵ ൅ 𝑟௬ଶሻ as 𝑟ଵଶ approaches 
2𝛾 1 ൅ 𝛾ଶ⁄  until the penalty level 
against multicollinearity reaches 0 
by 𝑟ଵଶ = 2𝛾 1 ൅ 𝛾ଶ⁄ .  
d: Region IV: Enhancement: 
When calculating the 𝑅ଶ value, 
SCP adds progressively greater 
proportions of 𝑟ଵଶ to ሺ𝑟௬ଵ ൅ 𝑟௬ଶሻ 
as 𝑟ଵଶ approaches its maximum 
value. 

B: Changes in 𝛽መଵ According to 
Changes in Both 𝑟ଵଶ and CDPB1 

a: Region I: Enhancement:  
When calculating 𝛽መଵ, CDPB1 adds 
progressively greater proportions 
of 𝑟ଵଶ to 𝑟௬ଵ to create inflated 𝛽መଵ 
values as 𝑟ଵଶ approaches its 
minimum value. The signs of 
CDPB1 and 𝑟௬ଵ are always similar 
in this region.  
b: Region II: Redundancy:  
the CDPB1 penalizes 𝛽መଵ for 
multicollinearity by subtracting 
different proportions of 𝑟ଵଶ from 
𝑟௬ଵ when calculating 𝛽መଵ. When 𝑟ଵଶ 
= 0.00 or 𝑟ଵଶ = 𝛾 the penalty level 
against multicollinearity always is 
0 and this explains why 𝛽መଵ = 𝑟௬ଵ. 
The CDPB1 and the 𝑟௬ଵ are always 
of the opposite signs in this 
region.  
c: Region III: Suppression:  
CDPB1 adds progressively greater 
proportions of 𝑟ଵଶ to 𝑟௬ଵ to create 
inflated 𝛽መଵ values as 𝑟ଵଶ 
approaches 2𝛾 1 ൅ 𝛾ଶ⁄ . The signs 
of  CDPB1 and 𝑟௬ଵ are always 
similar in this region.  
d: Region IV: Enhancement: 
CDPB1 adds progressively greater 
proportions of 𝑟ଵଶ to 𝑟௬ଵ to create 
inflated 𝛽መଵ values as 𝑟ଵଶ 
approaches its maximum value. 
The sign of CDPB1 and 𝑟௬ଵ are 
always similar in this region. 

C: Changes in 𝛽መଶ According to 
Changes in Both 𝑟ଵଶ and CDPB2 
a: Region I: Enhancement:  
When calculating 𝛽መଶ, CDPB2 adds 
progressively greater proportions 
of 𝑟ଵଶ to 𝑟௬ଶ to create inflated 𝛽መଶ 
values as 𝑟ଵଶ approaches its 
minimum value. The signs of 
CDPB2 and 𝑟௬ଶ are always similar 
in this region. 
b: Region II: Redundancy:  
CDPB2 penalizes 𝛽መଶ for 
multicollinearity by subtracting 
progressively greater proportions 
of 𝑟ଵଶ from 𝑟௬ଶ as 𝑟ଵଶ approaches 
 𝛾. CDPB2 and 𝑟௬ଶ are always of 
opposite signs in this region. 
c: Region III: Suppression: 
Always |CDPB2| > |𝑟௬ଶ|, CDPB2 and 
𝑟௬ଶ are always of opposite signs in 
this region, and CDPB2 subtracts 
progressively greater proportions 
of 𝑟ଵଶ from 𝑟௬ଶ as 𝑟ଵଶ approaches 
2𝛾 1 ൅ 𝛾ଶ⁄ . Therefore, CDPB2 

creates inflated 𝛽መଶ values of the 
opposite sign with respect to 𝑟௬ଶ. 
d: Region IV: Enhancement: 
Always |CDPB2| > |𝑟௬ଶ|, CDPB2 and 
𝑟௬ଶ are always of opposite signs in 
this region, and CDPB2 subtracts 
progressively greater proportions 
of 𝑟ଵଶ from 𝑟௬ଶ as 𝑟ଵଶ approaches 
its maximum value. CDPB2 creates 
inflated 𝛽መଶ values of the opposite 
sign  with respect to 𝑟௬ଶ. 

Figure 5.  Comparing the Statistical Control Mechanisms Among Suppression and Non-Suppression 
Situations  
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The possibility interval of 𝑟ଵଶ for the pair (-0.6, -0.5) is -0.39282 ≤ 𝑟ଵଶ ≤ 0.9928203. 
Table 3 and panels A through C in Figure 5 show that when the minimum allowed value 
of 𝑟ଵଶ is used (i.e. 𝑟ଵଶ = -0.39282) then the calculations indicate that 𝑅ଶ = 𝑟௬ଵଶ ൅  𝑠𝑟ଶ

ଶ= 
ሺെ0.6ሻଶ ൅ 0.64 = 1, 𝛽መଵ ൌ  െ0.942, 𝛽መଶ ൌ  െ0.87, 𝑠𝑟ଶ= -0.8, 𝑠𝑟ଶଶ ൌ 0.64, SCP = 𝑠𝑟ଶଶ െ
 𝑟௬ଶ
ଶ = 0.64 – 0.25 = 0.39, CDPB1 = -0.342, CDPB2 = -0.37. Because this is a region I 

situation (enhancement) (see the definitions in Table 1), therefore, the sign of the SCP 
is positive and the signs of CDPB1 and CDPB2 are both similar to the signs of 𝑟௬ଵ and 𝑟௬ଶ, 
respectively. Such conditions in region I (enhancement) cause SCP playing a role 
opposite to statistical control mechanism, because CDPB1 and CDPB2 in region I 
(enhancement) add some proportions of 𝑟ଵଶ to both 𝑟௬ଵ and 𝑟௬ଶ, instead of penalizing 
them for multicollinearity, a mechanism that causes inflation in ห𝛽መଵห and ห𝛽መଶห values. 
Therefore, it can be seen that ห𝛽መଵห and ห𝛽መଶห values for the pair (-0.6, -0.5), are 
respectively 1.57 and 1.74 times greater than ห𝛽መଵห and ห𝛽መଶห in an equivalent model with 
𝑟ଵଶ = 0 (see Table 3). Panel A in Figure 5 also shows that, in examples where the 
minimum allowed 𝑟ଵଶ  is used, 𝑆𝐶𝑃 ൌ 1 െ ൫𝑟௬ଵ

ଶ ൅  𝑟௬ଶ
ଶ ൯ ൌ 0.39.  

In contrast, Table 3 shows that if 𝑟ଵଶ = 0 then 𝑅ଶ = 𝑟௬ଵଶ ൅  𝑠𝑟ଶ
ଶ ൌ 𝑟௬ଵଶ ൅  𝑟௬ଶ

ଶ = 
ሺെ0.6ሻଶ ൅ ሺെ0.5ሻଶ = 0.61, 𝛽መଵ ൌ 𝑟௬ଵ ൌ െ0.6, 𝛽መଶ ൌ  𝑟௬ଶ ൌ െ0.5, 𝑠𝑟ଶ ൌ  𝑟௬ଶ = -0.5, 
𝑠𝑟ଶ

ଶ ൌ  𝑟௬ଶ
ଶ  = 0.25, SCP = 𝑠𝑟ଶଶ െ  𝑟௬ଶ

ଶ = 0.25 – 0.25 = 0, CDPB1 = 0, CDPB2 = 0 (see also 
panels A through C in Figure 5). Obviously, when 𝑟ଵଶ = 0 the 𝑅ଶ value cannot exceed 
the value of 𝑟௬ଵଶ ൅  𝑟௬ଶ

ଶ .  
Now, consider a condition in which 𝑟ଵଶ ൌ 𝛾 ൌ

ି଴.ହ

ି଴.଺
ൌ 0.833333333. In such 

a condition Table 3 shows that 𝑅ଶ = 𝑟௬ଵଶ ൅  𝑠𝑟ଶ
ଶ= ሺെ0.6ሻଶ ൅ 0 = 0.36, 𝛽መଵ ൌ  െ0.6, 𝛽መଶ ൌ

 0, 𝑠𝑟ଶ= 0, 𝑠𝑟ଶଶ ൌ 0, SCP = 𝑠𝑟ଶଶ െ  𝑟௬ଶ
ଶ = 0 – 0.25 = – 0.25, CDPB1 = 0, CDPB2 = െሺ𝑟௬ଶሻ ൌ

0.5. These results show that 𝑟ଵଶ ൌ 𝛾 is the end-point of the redundancy region, in which 
the statistical control function removes the entire part of x2 by estimating 𝛽መଶ ൌ  0 and 
𝑆𝐶𝑃 ൌ  െ𝑟௬ଶ

ଶ . Accordingly, panel A in Figure 5 shows that under such a condition 
𝑆𝐶𝑃 ൌ െ0.25. In fact, when 𝑟ଵଶ = 𝛾, linear regression model assumes that any 
explained variance in y related to x2 is in common with x1 and therefore x2 has no 
specific contribution to add to the explained variance in y.  

And for the pair (-0.6, -0.5), if 𝑟ଵଶ = 
ଶఊ

ଵାఊమ
 = 0.983606557 then 𝑅ଶ = 𝑟௬ଵଶ ൅  𝑠𝑟ଶ

ଶ ൌ 
𝑟௬ଵ
ଶ ൅  𝑟௬ଶ

ଶ  = ሺെ0.6ሻଶ ൅ ሺെ0.5ሻଶ = 0.61, 𝛽መଵ ൌ െ3.327, 𝛽መଶ ൌ  2.773, |𝑠𝑟ଶ| ൌ  ห𝑟௬ଶ ห ൌ
0.5,  𝑠𝑟ଶଶ ൌ  𝑟௬ଶ

ଶ  = 0.25, SCP = 𝑠𝑟ଶଶ െ  𝑟௬ଶ
ଶ = 0.25 – 0.25 = 0, CDPB1 = -2.727, CDPB2 = 

3.2726 (also see panels A through C in Figure 5). Although in the latter case, SCP is 0 
and again 𝑅ଶ = 𝑟௬ଵଶ ൅  𝑟௬ଶ

ଶ , contrary to situations where 𝑟ଵଶ =0, CDPB1 and CDPB2 here 
are quite large creating inflated 𝛽መଵ and 𝛽መଶ with ห𝛽መଵห being 5.545 times greater than 
ห𝛽መଵ หin an equivalent model with 𝑟ଵଶ = 0 and ห𝛽መଶห being 5.546 times greater than ห𝛽መଶห 
in an equivalent model with 𝑟ଵଶ = 0. Another important insight here is that as |𝑟ଵଶ| 
increases beyond the value of |𝛾| the statistical control mechanism is weakened 
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gradually so that by |𝑟ଵଶ| = ቚ
ଶఊ

ଵାఊమ
ቚ the penalty level against multicollinearity reaches 0 

(i.e. SCP = 0; see panels A through C in Figure 5).  
Finally, if the maximum allowed value of 𝑟ଵଶ is used (i.e. 𝑟ଵଶ = 0.992820323) then 

𝑅ଶ = 𝑟௬ଵଶ ൅  𝑠𝑟ଶ
ଶ= ሺെ0.6ሻଶ ൅ 0.64 = 1, 𝛽መଵ ൌ  െ7.24, 𝛽መଶ ൌ  6.6881, 𝑠𝑟ଶ= 0.79999861, 

𝑠𝑟ଶ
ଶ ൌ 0.64, SCP = 𝑠𝑟ଶଶ െ  𝑟௬ଶ

ଶ = 0.64 – 0.25 = 0.39, CDPB1 = -6.64, CDPB2 = 7.1881. Again, 
here, 𝑆𝐶𝑃 ൌ 1 െ ൫𝑟௬ଵ

ଶ ൅  𝑟௬ଶ
ଶ ൯ ൌ 0.39, but both CDPB1 and CDPB2 show that the IRC is 

much more sever compared to the case where the minimum allowed value of 𝑟ଵଶ  is used. 
In this case, ห𝛽መଵห and ห𝛽መଶห are respectively 12.07 and 13.376 times greater than ห𝛽መଵห and 
ห𝛽መଶห in an equivalent model with 𝑟ଵଶ = 0. 

5. Discussion 

The concept of two-predictor suppression effects has been the subject of debate 
over terminology (Friedman and Wall, 2005), definition, and interpretation 
(Mendershausen, 1939, Horst, 1941, Meehl, 1945, Conger and Jackson, 1972, Conger, 
1974, Tzelgov and Henik, 1991, Velicer, 1978, Cohen and Cohen, 1975, Lynn, 2003, 
Sharpe and Roberts, 1997, Shieh, 2001) for decades. However, one point of agreement 
has been the approach chosen by some researchers who agree that a suppressor variable 
showing “no or low” correlation with the criterion variable y but is correlated with 
another significant predictor x1, can be included in the regression equation to increase 
the predictive validity of x1 and it explains why they consider suppressor variables useful 
and even desirable for situations where the purpose of the study is prediction (Conger 
and Jackson, 1972, Horst, 1941, Pedhazur, 1997, Tzelgov and Henik, 1991, Watson et 
al., 2013, Friedman and Wall, 2005, Darlington and Hayes, 2017, Cohen et al., 2003). 
On the other hand, some texts have warned researchers against multicollinearity and 
suggest some “rules of thumb” to limit the magnitude of multicollinearity between 
predictor variables, especially when the purpose of the study is "theoretical explanation" 
(e.g. Cohen et al., 2003). They argue that highly correlated predictor variables, when 
simultaneously included in the regression equation, cause “instabilities” in different 
meanings: first, increased standard errors, as a function of high multicollinearity, may 
cause “instability” in estimating the regression coefficients (Cohen et al., 2003, Fox, 
1997, Neter et al., 1996); second, computational inaccuracies are more likely to occur 
in calculating the inverses of matrices with highly correlated variables (Cohen and 
Cohen, 1983); and third, high levels of 𝑟ଵଶ  can lead to rapid increase in 𝛽መଶ, a condition 
in which “the interpretation of regression coefficients may become problematic”  
(Cohen et al., 2003). Friedman and Wall (2005) argue against the latter texts by 
presenting evidence that show the standard errors (SE's) of regression coefficients do 
not increase steadily with increasing multicollinearity and there are cases in which low 
standard errors are coincident with high multicollinearity and that SE's of regression 
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coefficients always become 0 when the multicollinearity for each given pair of 𝑟௬ଵ and 
𝑟௬ଶ reaches its absolute maximum values (see Table 3). They also argue that the issue of 
computational accuracy is no longer problematic for the latest generations of regression 
algorithms (Friedman and Wall, 2005). And finally, Friedman and Wall (2005) 
conclude that when regressing y on two predictors there are no limits on 
multicollinearity except those warranting a nonnegative definite matrix. Although 
Friedman and Wall's observation concerning SE's of regression coefficients is quite 
correct, their final conclusion, which assumes no limits should be imposed on 
multicollinearity except nonnegative, definiteness limitation is incorrect. Similarly, as 
Cohen et al. (2003) observed, it is true that there is a rapid increase in 𝛽መଶ at high levels 
of 𝑟ଵଶ, but their agreement to use the suppressor variables in order to increase 𝑅ଶ in 
cases where the main purpose of the study is increasing the predictive validity is 
misleading. As noted earlier in the introduction section, two important aspects of two-
predictor suppression effects have been overlooked in the previous studies that have led 
researchers to misleading conclusions: first, failure to compare 3D scatterplots of 
suppression and non-suppression situations; and second, insufficient attention to the 
important issue of statistical control mechanisms in non-suppression compared to 
suppression situations. Taking into consideration these two important aspects, this 
study achieved significant findings as follows. 

First, a closer look at the integral terms in 𝑅ଶ, 𝛽መଵ, and 𝛽መଶ formulas indicates that 
these formulas consist of two separate parts (see Equalities 8, 15 and 16 above): the 
collinearity-independent part (CIP) and the collinearity-dependent part (CDP). The 
CDP terms in 𝑅ଶ, 𝛽መଵ, and 𝛽መଶ formulas are associated with statistical control 
mechanisms, and therefore should be quantified and examined separately. 

Second, the CDP terms in 𝑅ଶ formula act differently in redundancy and 
suppression regions in terms of statistical control mechanisms (see Figure 5 panel A). 
While the SCP is always negative in redundancy regions penalizing 𝑅ଶ for 
multicollinearity, the penalty level of SCP decreases progressively in region III 
(suppression), which in turn causes SCP to subtract progressively smaller proportions 
of 𝑟ଵଶ from 𝑟௬ଶଶ  as 𝑟ଵଶ approaches 2𝛾 1 ൅ 𝛾ଶ⁄ . At 2𝛾 1 ൅ 𝛾ଶ⁄  point, the penalty level of 
SCP against multicollinearity reaches 0. Beyond the 2𝛾 1 ൅ 𝛾ଶ⁄  ratio, in region IV 
(enhancement), SCP becomes positive and adds progressively greater proportions of 
𝑟ଵଶ to 𝑟௬ଶଶ  as 𝑟ଵଶ approaches its absolute maximum value. As mentioned earlier, 
according to the definitions in Table 1 and Table 2, when 𝑟௬ଵ and 𝑟௬ଶ have similar signs, 
the region covering all 𝑟ଵଶ's < 0 create the "region I" (enhancement) (or reciprocal 
suppression), but when 𝑟௬ଵ and 𝑟௬ଶ are of opposite signs, the region covering all 𝑟ଵଶ's > 
0 produces the "region I" (enhancement) (another type of reciprocal suppression). It 
should be noted that SCP is positive in both types of "region I" situations, adding 
progressively greater proportions of 𝑟ଵଶ to 𝑟௬ଶଶ  as 𝑟ଵଶ approaches its absolute maximum 
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values. For example, for the pair (-0.6, -0.5), panel A in Figure 5 shows that SCP is 
positive and equal to 1 െ ሺ𝑟௬ଵ

ଶ ൅  𝑟௬ଶ
ଶ ሻ both at the upper limit and at the lower limit of 

𝑟ଵଶ, whereas in cases where 𝑟ଵଶ  = 0, also SCP = 0; if 𝑟ଵଶ  = γ, SCP = െሺ𝑟௬ଶଶ ሻ; and if 𝑟ଵଶ  = 
2𝛾 1 ൅ 𝛾ଶ⁄ , SCP = 0.  

According to these findings, the authors suggest renaming the regions suggested by 
Friedman and Wall (2005) in terms of their statistical control functioning. Therefore, 
the following labels are suggested: "region I: statistical anti-control", "region II: 
statistical control", "region III: statistical de-control", and "region IV: statistical anti-
control", respectively for "region I: enhancement", "region II: redundancy", "region III: 
suppression", and "region IV: enhancement". In fact, the aim of these "relabelling" is to 
show that all different two-predictor suppression effects are different kinds of 
"dysregulations in statistical control" and that the "correct statistical control" can occur 
only and only in "region II: redundancy". The authors emphasize that no proportions 
of 𝑟ଵଶ  can replace the 𝑅ଶ value, and therefore the results produced by two-predictor 
suppression effects are completely erroneous and misleading.   

Third, the CDP terms in formulas of both 𝛽መଵ and 𝛽መଶ also function differently in 
redundancy and suppression regions (see Figure 5, panels B and C). The signs of both 
CDPB1 and CDPB2 values in redundancy regions are always opposite to the signs of 𝑟௬ଵ 
and 𝑟௬ଶ and they always subtract different proportions of 𝑟ଵଶ from 𝑟௬ଵ and 𝑟௬ଶ to 
penalize the resulting 𝛽መଵ and 𝛽መଶ values for multicollinearity and to produce 𝛽መଵ and 𝛽መଶ 
values, which are always smaller than or equal to 𝑟௬ଵ and 𝑟௬ଶ, respectively. In contrast, 
in region III (suppression) the signs of CDPB1 values are always similar to the sign of 
𝑟௬ଵ, adding progressively greater proportions of 𝑟ଵଶ  to 𝑟௬ଵ to produce inflated 𝛽መଵ values 
as 𝑟ଵଶ approaches 2𝛾 1 ൅ 𝛾ଶ⁄ , whereas the signs of CDPB2 values are always opposite to 
the sign of 𝑟௬ଶ in region III (suppression), but always |𝐶𝐷𝑃஻ଶ| ൐  ห𝑟௬ଶห in this region, a 
condition in which  CDPB2  produces inflated 𝛽መଶ values of the opposite sign compared 
to 𝑟௬ଶ. Similarly, in region IV (enhancement) the signs of CDPB1 values are always 
similar to the sign of 𝑟௬ଵ, creating inflated 𝛽መଵ values as 𝑟ଵଶ approaches its absolute 
maximum value, whereas the signs of CDPB2  values again are always opposite to the 
sign of 𝑟௬ଶ, but always |𝐶𝐷𝑃஻ଶ| ൐  ห𝑟௬ଶห in this region, a condition that cause CDPB2 to 
produce inflated 𝛽መଶ values of the opposite sign compared to 𝑟௬ଶ. In contrast, in region 
I (enhancement), the signs of both CDPB1 and CDPB2 values are always similar to the 
signs of 𝑟௬ଵ and 𝑟௬ଶ adding gradually greater proportions of 𝑟ଵଶ to the zero-order 
correlations to create progressively more inflated 𝛽መଵ and 𝛽መଶ values as 𝑟ଵଶ approaches its 
absolute maximum value. These findings show that the statistical control mechanisms 
can correctly adjust the slope of the regression surface only and only in redundancy 
regions, while the slope of the regression surface unjustifiably increases in all the three 
suppression regions in such a way that geometrically speaking the regression surface 
sharply cuts the plane spanned by both x1 and x2; a condition that can be called "slope 
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dysregulation" (see Figure 3 and Figure 4). Again, the authors emphasize that no 
proportions of 𝑟ଵଶ can be added to the values of regression coefficients, and therefore 
the slope regulations affected by two-predictor suppression effects are completely 
erroneous and misleading. 

6. Conclusion 

This study depicts a clear picture of the performance of the statistical control 
function in different suppression and non-suppression situations, and provides 
a mathematical proof indicating that the statistical control function does not work 
correctly in suppression situations. These findings provide evidence that the regression 
parameters affected by suppression effects should be regarded as incorrect estimations. 
This study also introduces an algorithm that can generate numerous simulated datasets 
showing all different kinds of suppression and non-suppression situations known so 
far, and therefore they help resolve the theoretical complexities related to two-predictor 
suppression situations by expanding the pervious knowledge in this field. Based on 
these results, researchers are strongly recommended to examine their linear regression 
models to make sure that their results are not affected by suppression effects. These 
findings also provide important implications for the issue of "effect size" in linear 
regression and can change the educational contents and materials of the topic of two-
predictor suppression effects in linear regression.   

Like any other research, this study also involves important limitations. First, the 
case studies and examples include only models with two predictors. Second, only 
continuous quantitative variables are included, and further investigation on regression 
with categorical variables or a combination of continuous and categorical variables 
remains to be carried out. The implications of these findings for the issue of "effect size" 
in linear regression also need to be investigated in the future. Future research should 
focus on providing researchers with other applied algorithms or packages to help them 
detect suppression effects in their actual datasets for regression models with two or 
more predictors. Finally, an important question is how these findings and tools can be 
best incorporated into educational contents and materials.  
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k-th record estimator of the scale parameter
of the α-stable distribution 

Michał Stachura1, Barbara Wodecka2 

ABSTRACT 

Various techniques of scale parameter estimation have been proposed in the case of alpha 
stable  distributions. In the paper, the authors present an estimation technique that involves 
the k-th record theory. Although this theory is over 40 years old, its implementation in the 
classical extreme value theory – being the other cornerstone of the presented approach – is 
quite new, and tempting. Several theoretical properties of the introduced scale parameter 
estimators are presented. With the use of Monte Carlo methods, a comparative analysis is 
performed between the approach based on k-th records and approaches based on Hill’s and 
Pickands’ estimators. Additionally, the paper uses a real-life data set to illustrate how to 
effectively apply the k-th record estimator of the scale parameter. The research indicates 
several advantages of the k-th record approach over its other counterparts, especially when 
dealing with incomplete information about the underlying sample. 

Key words: stable distribution, scale parameter estimator, k-th record values. 

1. Introduction

Specificity of many financial data sets (regarded as proper time-series) imposes that
the so-called heavy-tailed distributions constitute an attractive alternative way of 
modelling such data. Amongst these distributions, the class of 𝛼-stable ones gained one 
of prominent places. 

There are several methods of estimation of stability index 𝛼. However, for 
a complete recognition of a theoretical 𝛼-stable distribution that approximates 
empirical data, it is necessary to estimate the other parameters of the distribution, 
including the scale parameter 𝜎 as well. For instance, this holistic look is the most 
appropriate approach when calculating risks measures such as VaR or CVaR (see, e.g. 
Stoyanov et al. 2006, Khindanova et al. 2001). 
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Therefore, the present paper: 1) describes construction of 𝑘-th record estimators of 
parameter 𝜎, in the case of stability index 𝛼 ൏ 2, and 2) reveals some theoretical 
properties of the estimators introduced in the paper. The main goal of this article is to 
compare the quality of 𝑘-th record estimators of parameter 𝜎 with the two estimators 
of this parameter that are based on Hill’s and Pickand’s estimators. Such a comparative 
analysis is conducted by simulation research concerning some arbitrarily chosen range 
of 𝛼-stable distribution parameters (1.8 ൑ 𝛼 ൑ 1.99, 𝛽 ൌ 𝜇 ൌ 0, 0.01 ൑ 𝜎 ൑ 100). 
Additionally, the paper is supplemented by an empirical example concerning energy 
prices quoted at the Nord Pool Spot. 

The procedure for estimating the sigma parameter of the stable distribution 
described in this paper is part of a broader research trend that explores methods 
implementing the possibility of using 𝑘-th records in estimation. In the literature on 
the subject, one can find proposals for estimating the parameters of other distributions, 
such as: Gumbel’s, Burr’s, power, Weibull’s, Rayleigh’s, logistic or Pareto’s ones 
(for instance see: Ahsanullah 1990, Malinowska et al. 2005). Moreover, 𝑘-th records, 
apart from the more classical approach, appear as a tool in Bayesian estimation 
(see: Malinowska and Szynal 2004). 

2.  Theoretical background 

From now on, let 𝑋ଵ,𝑋ଶ,𝑋ଷ, … be independent and identically distributed (i.i.d.) 
random variables with a common cumulative distribution function (cdf) 𝐹. For any 
fixed 𝑛 ∈ ℕା, the order statistics of a sample 𝑋ଵ,𝑋ଶ, … ,𝑋௡ are denoted by 𝑋ଵ:௡ ൑
𝑋ଶ:௡ ൑ ⋯ ൑ 𝑋௡:௡. 

The main theorem of the extreme value theory (EVT) states that if there exist 
constants 𝑎௡ ൐ 0, 𝑏௡ for 𝑛 ∈ ℕା, and some non-degenerate distribution function 𝐺 
such that for all 𝑥 ∈ ℝ holds lim

௡→ஶ
ℙቀ೉೙:೙ష್೙

ೌ೙
ஸ௫ቁ ൌ 𝐺ሺ𝑥ሻ, then there exists a constant 

𝛾 ∈ ℝ such that the limit distribution 𝐺 has the form: 

𝐺ሺ𝑥ሻ ൌ 𝐺ఊሺ𝑥ሻ ൌ ቊ
exp൫െሺ1 ൅ 𝛾𝑥ሻିଵ/ఊ൯ 1 ൅ 𝛾𝑥 ൐ 0 𝛾 ് 0

expሺെ𝑒ି௫ሻ 𝑥 ∈ ℝ 𝛾 ൌ 0
. 

The parameter 𝛾 is called the extreme value index (EVI), and it impacts the right 
tail asymptotics of the common cdf 𝐹 (e.g. see de Haan and Ferreira 2006). 

Classical estimators of EVI are based on upper order statistics. Among wide variety 
of such estimators, the most popular are Pickands’ and Hill’s ones (see Gomes et al. 
2008), given respectively by formulas: 

 𝛾ො୔
௞ ൌ logଶ

௑೙షೖ:೙ି௑೙షమೖ:೙

௑೙షమೖ:೙ି௑೙షరೖ:೙
,     𝛾ොୌ௞ ൌ భ

ೖ
∑ ln𝑋௡ି௜:௡
௞ିଵ
௜ୀ଴ െ ln𝑋௡ି௞:௡. (1A, B) 

for any fixed 𝑘 ∈ ሼ1,2, … ሾ𝑛/4ሿሽ (case 1A), or 𝑘 ∈ ሼ1,2, … ,𝑛 െ 1ሽ (case 1B). 
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An alternative, proposed by Berred (1995), is based on the notion of 𝑘-th records, 
which were defined by Dziubdziela and Kopociński (1976). So for a fixed 𝑘 ∈ ℕା, 
the 𝑘-th record times ሼ𝑇௡

ሺ௞ሻሽ, and the 𝑘-th record values ሼ𝑅௡
ሺ௞ሻሽ are defined by 

recurrence relations: 

𝑇ଵ
ሺ௞ሻ ൌ 𝑘,  𝑇௡

ሺ௞ሻ ൌ minሼ 𝑗 ∈ ℕ ∶ 𝑗 ൐ 𝑇௡ିଵ
ሺ௞ሻ ,𝑋௝ ൐ 𝑋

೙்షభ
ሺೖሻ ି௞ାଵ∶ ೙்షభ

ሺೖሻ ሽ, for 𝑛 ൒ 2, 

𝑅௡
ሺ௞ሻ ൌ 𝑋

೙்
ሺೖሻି௞ାଵ∶ ೙்

ሺೖሻ. 

In other words, a sequence of 𝑘-th record values 𝑅ଵ
ሺ௞ሻ ൏ 𝑅ଶ

ሺ௞ሻ ൏ 𝑅ଷ
ሺ௞ሻ ൏  …  is 

constructed by eliminating repetitions in the non-decreasing sequence of 𝑘-th order 
statistics 𝑋ଵ:௞ ൑ 𝑋ଶ:௞ାଵ ൑ 𝑋ଷ:௞ାଶ ൑  … , while 𝑇ଵ

ሺ௞ሻ ൏ 𝑇ଶ
ሺ௞ሻ ൏ 𝑇ଷ

ሺ௞ሻ ൏  …  are the 
appearance numbers (the so-called record times) of the succeeding record values. 

The original Berred’s estimator based on the 𝑘-th record values is of the form: 

 𝛾ො୆
௞ ൌ ln

ೃಿሺೖ,೙ሻ
ሺೖሻ

షೃಿሺೖ,೙ሻషೖ
ሺೖሻ

ೃಿሺೖ,೙ሻషೖ
ሺೖሻ

షೃಿሺೖ,೙ሻషమೖ
ሺೖሻ , (2) 

where 𝑁ሺ𝑘,𝑛ሻ is a random number of 𝑘-th records values in a sample of size 𝑛. 
Pickands’ and Berred’s estimators are convenient for any real 𝛾 (these estimators 

are additionally invariant under any linear transformation – with a positive slope – of 
data, which is fully concordant with the linear transformation appearing in the main 
EVT theorem), while Hill’s one is proper for 𝛾 ൐ 0 only. Moreover, Berred’s estimator 
value depends on sample order, which allows resampling, since i.i.d. property is 
assumed. (The mentioned resampling makes sense only if data do not represent any 
time series.) 

We recall one of equivalent definitions of 𝛼-stable distribution in order to assume 
the parametrization we use. Thus, a random variable 𝑋 has 𝛼-stable distribution (noted 
as: 𝑋~𝑆ሺ𝛼,𝛽, 𝜇,𝜎ሻ) if the logarithm of its characteristic function 𝜙 is given by the 
following formula: 

ln𝜙ሺ𝑡ሻ ൌ ቐ
𝑖𝜇𝑡 െ 𝜎ఈ|𝑡|ఈ ቀ1 െ 𝑖𝛽signሺ𝑡ሻ tan

గఈ

ଶ
ቁ , 𝛼 ് 1

𝑖𝜇𝑡 െ 𝜎𝑡 ቀ1 ൅ 𝑖𝛽
ଶ

గ
signሺ𝑡ሻ ln|𝑡|ቁ , 𝛼 ൌ 1

, 

where 𝛼 ∈ ሺ0, 2⟩ is the stability index, 𝛽 ∈ 〈െ1,1〉 is the skewness parameter, 
𝜎 ∈ ሺ0,∞ሻ is the scale parameter, 𝜇 ∈ ℝ is the location parameter. It should be also 
mentioned that in 𝛼-stable case the following relation holds: 𝛾 ൌ 1/𝛼 for 𝛼 ∈ ሺ0, 2ሻ, 
and 𝛾 ൌ 0 for 𝛼 ൌ 2, which reveals discontinuous functional dependence of 𝛼-stable 
tails asymptotics on the stability parameter value. Thus, the tails of the stable 
distributions have a power decay (are the so-called “heavy tails”) if they are distinct 
from normal distribution (see Nolan 2011, Weron 2001). 
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Let 𝑍 ൌ |𝑋| for 𝑋~𝑆ሺ𝛼,𝛽, 𝜇,𝜎ሻ, and let 𝐺 and 𝑄 be the cdf, and quantile function 
of variable 𝑍, respectively. Moreover, let 𝑘 ൌ 𝑘௡ be an increasing sequence of natural 
numbers such that the following condition is fulfilled: 

𝑘௡ → ∞    and    𝑘௡/𝑛 → 0,    as 𝑛 → ∞. 

Basic properties of 𝛼-stable distribution tail yield that: 

 1 െ 𝐺ሺ𝑥ሻ ~ 𝐶ఈ𝜎ఈ𝑥ିఈ,    as 𝑥 → ∞, (3) 

for the constant 𝐶ఈ ൌ
ଶ

గ
Γሺ𝛼ሻ sin

గఈ

ଶ
, and the gamma function Γሺ𝑥ሻ ൌ ׬ 𝑡௫ିଵ𝑒ି௧𝑑𝑡

ஶ
଴  

(see Samorodnitsky and Taqqu 1994, Nolan 2011). As a consequence (see Meraghni 
and Necir 2007) we obtain: 

 𝑄 ቀ1 െ
௞

௡
ቁ ൬ 

௞

௡
 

గ

ଶ୻ሺఈሻ ୱ୧୬ഏഀ
మ

 ൰
ଵ/ఈ

 →  𝜎,    as 𝑛 → ∞. (4) 

The last convergence enables straightforward construction of estimators in the 
following manner. For a given sample 𝑍ଵ, 𝑍ଶ, …, 𝑍௡ of independent copies of 𝑍, 
an unknown quantile 𝑄 ቀ1 െ

௞

௡
ቁ may be substituted by the appropriate order statistic 

𝑍௡ି௞:௡ taken out of that sample. Additionally, if parameter 𝛼 is also unknown, it may 
be substituted by any of its estimators, let us say 𝛼ොሺ୉ሻ

௡,௞. It may be Hill’s, Pickand’s, 
Dekkers-Einmahl-de Haan’s one (e.g. see de Haan and Ferreira 2006), to mention but 
a few. In the 𝛼-stable case, owing to the formula (3), these estimators may be applied to 
sample 𝑍ଵ, 𝑍ଶ, …, 𝑍௡ instead of sample 𝑋ଵ, 𝑋ଶ, …, 𝑋௡. 

Therefore, the estimator of the scale parameter takes the form: 

 𝜎ොሺ୉ሻ
௡,௞ ൌ 𝑍௡ି௞:௡ ቌ

௞గ

ଶ௡୻ቀఈෝሺుሻ
೙,ೖቁ ୱ୧୬

ഏෝഀሺుሻ
೙,ೖ

మ

ቍ

ଵ/ఈෝሺుሻ
೙,ೖ

, (5) 

which is quite general, but limited for ‘order statistics’ case. 
It occurs that 𝑘-th records may be applied in the convergence (4), which leads to 

the following estimator: 

 𝜎ොሺୖሻ
௡,௞ ൌ 𝑅ேሺ௡,௞ሻ

ሺ௞ሻ ቌ
௞గ

ଶ௡୻ቀఈෝሺ౎ሻ
೙,ೖቁ ୱ୧୬

ഏෝഀሺ౎ሻ
೙,ೖ

మ

ቍ

ଵ/ఈෝሺ౎ሻ
೙,ೖ

, (6) 

as the ideas from original proofs of Meraghni and Necir (2007), concerning properties 
of the estimator (5), may be straightforwardly adapted to the ‘𝑘-th records’ case. 

To do this, it suffices to notice that 𝑅ேሺ௡,௞ሻ
ሺ௞ሻ  ൌௗ 𝑍௡ି௞ାଵ:௡ (as 𝑛 → ∞) for any 

continuous probability distribution, where ‘ൌௗ’ designates equality in distribution 
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(see Wodecka 2016, Lemma 2.18). Moreover, the key is a direct consequence of the 
formula (3) that 𝑄 ቀ1 െ

௞ିଵ

௡
ቁ /𝑄 ቀ1 െ

௞

௡
ቁ → 1 (as 𝑛 → ∞) for variable 𝑍 ൌ |𝑋| defined 

above herein. So, the replacement of a proper order statistic 𝑍௡ି௞:௡ in (5) by one of its 
nearest neighbour 𝑅ேሺ௡,௞ሻ

ሺ௞ሻ  creates the formula (6). 
As a result, the estimator 𝜎ොሺୖሻ

௡,௞ is consistent if 𝑘 ൌ 𝑘௡~𝑑𝑛ఏ, as 𝑛 → ∞, for some 
constants 𝑑 ൐ 0 and 𝜃 ∈ ሺ0, 1ሻ (see Wodecka 2016, Theorem 2.19). Additionally, 
√௞

୪୭୥ೖ
೙

൫log𝜎ොሺୖሻ
௡,௞ െ log𝜎൯ →𝒟  𝒩൬0,

௘మ/ഀ ାଵ

൫௘భ/ഀ ିଵ൯
మ
ఈమ 
൰, as 𝑛 → ∞, where →𝒟 stands for 

convergence in distribution, which means that the estimator 𝜎ොሺୖሻ
௡,௞ has asymptotically 

log-normal property (see Wodecka 2016, Theorem 2.20). 
Moreover, in contrast to the order statistics, the formula (6) allows to estimate 𝜎 

even in case of unknown sample size. For this purpose, one may use, for instance, 
the following estimators of the sample size: 

 𝑛ොట ൌ 𝜓ିଵ ൬
ேሺ௞,௡ሻ

௞
൅ 𝜓ሺ𝑘ሻ൰ െ 1,  𝑛ො௟ ൌ 𝑘 𝑒𝑥𝑝 ቀ

ேሺ௞,௡ሻ

௞
ቁ െ 1. (7A, B) 

The above holds, since: a) 𝔼൫𝑁ሺ𝑘,𝑛ሻ൯ ൌ 𝑘∑ భ
೔

௡
௜ୀ௞ ൌ 𝑘൫𝜓ሺ𝑛 ൅ 1ሻ െ 𝜓ሺ𝑘ሻ൯, where 

𝜓 is the digamma function 𝜓ሺ𝑥ሻ ൌ Γ′ሺ𝑥ሻ/Γሺ𝑥ሻ, and it has logarithmic asymptotics 
in infinity, and b) 𝑉𝑎𝑟൫𝑁ሺ𝑘,𝑛ሻ൯ ൌ 𝑘∑ భ

೔
௡
௜ୀ௞ െ 𝑘ଶ ∑ భ

೔మ
௡
௜ୀ௞  is relatively small, as: 

0 ൏ 𝑉𝑎𝑟൫𝑁ሺ𝑘,𝑛ሻ൯ ൏ 𝔼൫𝑁ሺ𝑘,𝑛ሻ൯. 

3.  Study of the quality of estimators  

3.1.  Comparing estimators 

For a while, let us consider quite general perspective, and let 𝜃෠ଵ and 𝜃෠ଶ be two 
estimators of an unknown parameter 𝜃. We assume that we wish to assess which of 
these estimators is “better” than the other. One of the criteria for solving this question 
is the Pitman nearness measure (see Pitman 1937) given as: 

𝐏൫𝜃෠ଵ, 𝜃෠ଶห𝜃൯ ൌ ℙ൫ ห𝜃෠ଵ െ 𝜃ห ൏ ห𝜃෠ଶ െ 𝜃ห ൯, 

which indicates that 𝜃෠ଵ is Pitman-closer estimator than 𝜃෠ଶ, if ℙ൫𝜃෠ଵ ൌ 𝜃෠ଶ൯ ൌ 0, 
and 𝐏൫𝜃෠ଵ,𝜃෠ଶห𝜃൯ ൐

భ
మ
 . The measure is very natural and intuitive, and additionally – as it 

preserves bivariate relation of both estimators, regarded as joint vector ሺ𝜃෠ଵ,𝜃෠ଶሻ – it is 
very advisable, in contrast to such measures that rely only on univariate (marginal) 
distributions of both compared estimators. 

Therefore, in the sequel we select Pitman nearness criterion as the main one, and we 
use it in every case that provides large enough bivariate sample size, in a sense of 
pairwise completeness. Otherwise, we decide to employ an analogue of the commonly 
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known mean square error. The chosen measure is given by 𝜂௜ ൌ หMeሺ𝜃෠௜ሻ െ 𝜃ห ൅
୍୕ୖሺఏ෡೔ሻ

ଶ
 

for 𝑖 ∈ ሼ1,2ሽ, and we say that 𝜃෠ଵ is better than 𝜃෠ଶ, providing that 𝜂ଵ ൏ 𝜂ଶ. We prefer 
the positional measure to classical ones since this approach is unlimited by incongruity 
to any theoretical assumptions including existence of the high order moments of 
distribution, as long as we consider the 𝛼-stable case (see: Stachura 2017). 

3.2.  Simulation study 

In order to compare estimates of parameter σ based on record value theory with 
several selected estimates based on classical order statistic approach, simulation 
research is executed as follows, in the case of stability index α ൏ 2. (The simulation 
research, and additionally all the calculations and plots presented hereunder, are 
accomplished in R environment (R Core Team 2018).) 

Firstly, for a fixed pair of parameters 𝛼 and 𝜎 – taken from arbitrarily chosen 
ranges 𝛼 ∈ ሼ1.8, 1.82, 1.84, 1.86, 1.88, 1.9, 1.92, 1.94, 1.96, 1.98, 1.99ሽ, 𝜎 ∈ ሼ0.01,
0.1, 1, 10, 100ሽ – and 𝛽 ൌ 0, 𝜇 ൌ 0, and for a fixed 𝑛 – out of ሼ50, 80, 110ሽ  – pseudo-
random i.i.d. sample of size 𝑛 is generated (with the use of the R’s package stabledist by 
Wuertz et al. 2016). The choice of 𝛼’s range is motivated by the reason that the research 
by Stachura and Wodecka (2016), and Wodecka (2016) – including 𝛼’s from 0.1 to 1.9 
by 0.1 step – showed that the values of estimates were alarmingly discrepant near 
𝛼 ൌ 2, so the authors decided to examine the case of 𝛼 ൒ 1.8 far more accurately, 
taking a tiny step 0.02. Besides, this new range integrates with 𝛼’s detected in empirical 
research in financial data (just about 1.6 – 1.9 see e.g. Weron 2004). Next, 
a. with respect to formulas (1A), (1A), (2), and the relation 𝛼 ൌ 1/𝛾, estimators 𝛼ොୌ௞ , 

𝛼ො୔
௞, 𝛼ො୆௞ are calculated on the basis of absolute values of a sample, for each possible 

𝑘, which means 𝑘 ∈ 𝐾௡ ൌ ሼ1, 2, … , ሾ𝑛/4ሿ െ 1ሽ (𝑘-th records – necessary for 𝛼ො୆௞ – 
are calculated in the R’s package Records by Chrapek 2012) 

b. each estimate 𝛼ොୌ௞ , 𝛼ො୔௞, 𝛼ො୆௞ that is beyond the interval ሺ0, 2ሻ, is rejected and, as 
a consequence, omitted in the sequel (this is the reason why we deal with the already 
mentioned meaningful pairwise incompleteness of bivariate samples of estimates), 

c. for all the other cases – based on formulas (5), (6) – estimates 𝜎ොୌ௞, 𝜎ො୔௞, 𝜎ො୆௞ are 
computed based on known sample size 𝑛, 

d. concurrently with 𝜎ො୆௞, considering formulas (7A, B), two additional estimates 𝜎ොట௞, 
𝜎ො௟
௞ are calculated as if a sample size 𝑛 was unknown. 

Secondly, the previous step is replicated 𝐽 ൌ 10000 times independently, so that 
for any set of given 𝛼, 𝜎, 𝑛, 𝑘 we get five sequences 𝜎ොୌ௞, 𝜎ො୔௞, 𝜎ො୆௞, 𝜎ොట௞, 𝜎ො௟௞ of sizes at most 
𝐽 (because of marginal incompleteness). 

Thirdly, we perform “internal” comparative analysis of estimators 𝜎ොୌ௞, 𝜎ො୔௞, 𝜎ො୆௞, 𝜎ොట௞, 
𝜎ො௟
௞ (within these 5 types of estimators separately) in order to indicate the best 𝑘 for any 
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given 𝑛. The Pitman nearness measure is evaluated for any pair of distinct 𝑘ଵ, 𝑘ଶ ∈ 𝐾௡, 
given a set of 𝛼, 𝜎, and 𝑛. A demonstrative Table 1 presents values of Pitman nearness 
measure for estimates based on Berred’s approach with known sample size (𝜎ො୆௞), with 
fixed 𝑛 ൌ 50, 𝛼 ൌ 1.9, 𝜎 ൌ 1. Tables of Pitman nearness measure for other estimators 
and other values of 𝛼, 𝜎, 𝑛 provide quite similar tables of matrices, whose dimensions 
vary depending on sample sizes. 

Next, all the indications of which 𝑘 provides better (in the sense of being Pitman-
closer estimate) within the same sample size, against other 𝑘’s, are counted up. This 
procedure leads to optimal choices of 𝑘’s for a given estimator type and sample size 𝑛, 
which is presented in Table 2. 

Table 1. Pitman-closer measures, comparing all possible 𝑘’s (order 𝑘ଵ is assigned to the first of 
compared estimators) – selected case of for 𝜎ො୆௞, 𝑛 ൌ 50 𝛼 ൌ 1.9, 𝜎 ൌ 1. 

𝑘ଶ 
𝑘ଵ 1 2 3 4 5 6 7 8 9 10 11 

1 - 0.250 0.197 0.170 0.175 0.199 0.247 0.245 0.226 0.406 0.250 
2 0.750 - 0.300 0.295 0.239 0.255 0.290 0.242 0.262 0.346 0.400 
3 0.803 0.700 - 0.323 0.329 0.268 0.444 0.315 0.333 0.438 0.556 
4 0.830 0.705 0.677 - 0.362 0.345 0.399 0.300 0.244 0.474 0.429 
5 0.825 0.761 0.671 0.638 - 0.369 0.414 0.400 0.388 0.280 0.600 
6 0.801 0.745 0.732 0.655 0.631 - 0.517 0.458 0.412 0.478 0.875 
7 0.753 0.710 0.556 0.601 0.586 0.483 - 0.463 0.476 0.382 0.357 
8 0.755 0.758 0.685 0.700 0.600 0.542 0.537 - 0.478 0.444 0.438 
9 0.774 0.738 0.667 0.756 0.612 0.588 0.524 0.522 - 0.500 0.522 

10 0.594 0.654 0.563 0.526 0.720 0.522 0.618 0.556 0.500 - 0.588 
11 0.750 0.600 0.444 0.571 0.400 0.125 0.643 0.563 0.478 0.412 - 

Source: own study. 

Table 2. Optimal choices of 𝑘’s for 5 types of estimators. 

𝒏 50 80 110 

𝜎ොୌ 5 6 7 
𝜎ො୔ 10 13 15 
𝜎ො୆ 8 10 12 
𝜎ොట 10 13 14 
𝜎ො௟ 10 13 14 

Source: own study. 

Fourthly, we perform “external” comparative analysis of the best estimators of each 
type. In contrast to the “internal” case, we are forced to rely on the previously 
introduced measure 𝜂. For a given sample size, and values of both parameters 𝛼 and 𝜎, 
measures 𝜂 of each estimator are calculated, and then ranked. Demonstrative values of 
these measures, for fixed 𝑛 ൌ 50, 𝛼 ൌ 1.9 and all five types of estimators, are gathered 
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in Table 3, while Table 4 includes their corresponding ranks (from 0 – the best to 4 – 
the worst). 

Table 3.  Values of measure 𝜂 – case of 𝑛 ൌ 50 𝛼 ൌ 1.9, all 𝜎’s. 

𝝈 0.01 0.1 1 10 100 

𝜎ොୌ 0.00897 0.08565 1.0553 8.634 85.68 
𝜎ො୔ 0.00666 0.05361 0.6323 6.975 70.52 
𝜎ො୆ 0.00467 0.06508 0.5912 5.935 68.1 
𝜎ොట 0.00558 0.05985 0.5223 4.615 59.62 
𝜎ො௟ 0.00541 0.05804 0.5032 4.393 57.66 

Source: own study. 

Next, within the type of estimator, single ranks are summed up in the whole range 
of σ’s and the sums are ranked (“combined ranks”) as the preconceived approach to 
estimation assumes naturally that the value of parameter 𝜎 is unknown – see the two 
last columns of demonstrative Table 4. 

Finally, within the type of estimator, “combined ranks” are summed up 
simultaneously in the range of all sample sizes and all values of parameter 𝛼 (partial 
illustration of this procedure is contained in Table 5). Again, the sums obtained in this 
way are ranked (“total ranks”). 

Table 4.  Ranks of 𝜂 values – case of 𝑛 ൌ 50 𝛼 ൌ 1.9, all 𝜎’s. 

𝝈 0.01 0.1 1 10 100 
sums of 

ranks 
combined 

ranks 
𝜎ොୌ 4 4 4 4 4 20 4 
𝜎ො୔ 3 0 3 3 3 12 3 
𝜎ො୆ 0 3 2 2 2 9 2 
𝜎ොట 2 2 1 1 1 7 1 
𝜎ො௟ 1 1 0 0 0 2 0 

Source: own study. 

Table 5.  Total ranks of 𝜂 values. 
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total 
ranks 

𝜎ොୌ 4 4 … 4 … 4 … 4 4 130 4 
𝜎ො୔ 3 2 … 3 … 3 … 3 3 82 3 
𝜎ො୆ 2 3 … 2 … 1.5 … 2 2 69.5 2 
𝜎ොట 1 1 … 1 … 0 … 0 0 15 0 
𝜎ො௟ 0 0 … 0 … 1.5 … 1 1 33.5 1 

Source: own study. 
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The reported procedure of making rankings shows that the ‘𝑘-th-record’ estimators 
of the scale parameter are appraised to be the best ones. Interestingly, regardless of quite 
small discrepancies in the values of measure 𝜂, especially good performance 
characterises estimators assuming unknown sample size. 

Moreover, quite similar indications may be noticed globally, with the use of scaled 
measure 𝜂. To do so, every value of 𝜂 is divided by the adequate 𝜎, which allows to carry 
out a comparative analysis of estimates that are obtained for different 𝜎’s. (It is imposed 
by a simple fact that 𝜎𝑋~𝑆ሺ𝛼, 0,0,𝜎ሻ for 𝑋~𝑆ሺ𝛼, 0,0,1ሻ, and any 𝜎 ൐ 0). Within 
almost all values of 𝛼, the best estimates of the scale parameter are those based on 𝑘-th-
records (see Table 6). Additionally, the total sums of the scaled measure 𝜂 confirm 
previous insights, and accentuate approximate quality level of estimation based on 
Pickands’ and Berred’s approaches. 

Table 6.  Summed values of measure 𝜂 scaled by 𝜎 – within groups of 𝛼’s. 

𝜶 𝝈ෝ𝐇 𝝈ෝ𝐏 𝝈ෝ𝐁 𝝈ෝ𝝍 𝝈ෝ𝒍 

1.8 11.41176 10.69419 10.63437 9.02193 9.29989 
1.82 11.34495 10.10213 10.58824 9.28663 9.57081 
1.84 12.10306 10.89211 10.28613 8.56202 8.77059 
1.86 12.48158 10.64509 10.39769 8.55502 8.68862 
1.88 13.09939 10.42322 9.78006 7.89665 8.18492 
1.9 13.92617 10.54751 10.10855 9.11400 9.33091 
1.92 13.89563 10.12217 9.98363 9.08145 9.29733 
1.94 13.91820 10.44230 9.94078 8.01853 8.22405 
1.96 14.83072 10.07188 9.39138 8.93096 9.15942 
1.98 15.78266 10.75358 9.93393 8.53742 8.62024 
1.99 19.33139 10.30731 10.04061 8.06486 8.21329 
Total 152.12551 115.00149 111.08538 95.06947 97.36007 

Source: own study. 

4.  Empirical example 

To illustrate how the introduced estimation works in practice we consider electric 
energy prices in Finland quoted in euro at the Nord Pool Spot 
(www.nordpoolgroup.com). The chosen time series represents weekly prices from the 
10th week of 2018 to the 9th week of 2020, which makes the sample size to be 𝑛 ൌ 104 
(time span of two years). Figure 1 illustrates the mentioned data, and suggests SARMA-
GARCH approach as an appropriate way to model the series. Such types of models are 
effectively applied for electricity market data (see for instance Aiube et al. 2013, 
Stachura and Wodecka 2016). 
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Figure 1. Week electricity prices in Finland. 

Source: own study. 

Amongst several initially estimated models (the R’s package fGarch by Wuertz et 
al. 2020), the SARMAሺ1,1ሻଵଷ ൈ GARCHሺ1,1ሻ occurred to be the best. Its residuals may 
be recognized as a random sample (Wald-Wolfowitz runs test 𝑝-value ൌ 0.9147 – 
calculated with use of the R’s package randtests by Caeiro and Mateus 2014) taken from 
normal distribution (Jarque-Bera test 𝑝-value ൌ 0.9201, Shapiro-Wilk test 𝑝-value ൌ 
0.9945 – both calculated with the use of the R’s package fGarch by Wuertz et al. 2020). 
The detected normality may as well indicate that residuals’ distribution is 𝛼-stable with 
the stability parameter close to 2. 

We decide to approximate the distribution of the residuals with a stable distribution 
𝑆ሺ𝛼, 0, 0,𝜎ሻ. To do so, we fix record order 𝑘 ൌ 3. As formula (3) holds, we use formula 
(2) for absolute values of the residuals, obtaining 𝛼ො୆௞ ൌ 1.812339. Then, formula (6) 
yields 𝜎ො୆௞ ൌ 0.895889. It occurs that such gained approximation is accepted in view of 
two goodness of fit tests (Anderson-Darling test 𝑝-value ൌ 0.1051 – calculated with use 
of the R’s package goftest by Faraway et al. 2019, Kolmogorov-Smirnov test 𝑝-value ൌ 
0.3532). 

5.  Conclusions 

The presentation of simulation research results gives some straightforward 
conclusions, which are as follows: 
 ‘𝑘-th record’ approach to estimation of the scale parameter 𝜎 is at least as good as 

the other classical methods presented herein (also, or even especially, assuming 
unknown sample size). 

 ‘𝑘-th record’ approach gives globally quite comparable results to Pickands’ 
approach, which should not be surprising, as Berred’s estimator is an analogue of 
Pickands’ one. 
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 Estimation of 𝜎 based on Hill’s estimator is distinctly characterized by the lowest 
stability in the sense that scale parameter estimates become more and more biased 
as stability index 𝛼 tends to 2. 

 ‘𝑘-th record’ approach seems to be “unbeatable” in the region of stability index 𝛼 
very close to 2. 

Concluding in general, it must be also remarked that the insights, hereinbefore 
specified, should be perceived essentially as the advantages of the ‘𝑘-th record’ 
approach over the others presented, since the Berred’s estimator, and the scale 
parameter estimator based on it, may be employed in cases of incomplete information 
about an underlying sample. 

On the one hand, this incompleteness may be very useful if an analysed database 
must stay undisclosed, even for a researcher/statistician working on it, or more, the data 
are only partially recorded (i.e. record values of a proper order or several orders). 
On the other hand, if in contrary an analysed database is absolutely fulfilled and 
disclosed, the ‘𝑘-th record’ approach opens up opportunities to make use of 
permutation methods in order to make repeated estimation that leads to much more 
precise results. Obviously, the key to success in the latter case is that the data correspond 
to i.i.d. random sample. 

However, it should be pointed out that the ‘𝑘-th record’ approach still requires 
a complete recognition of theoretical properties of the ‘𝑘-th record’ estimator of the 
scale parameter, at least in a range of enhancing the results of Wodecka (2016) in the 
context of how fast is the ‘𝑘-th record’ estimators’ convergence. 
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