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ABSTRACT 

Randomisation tests (R-tests) are regularly proposed as an alternative method of hypothesis 
testing when assumptions of classical statistical methods are violated in data analysis. In this 
paper, the robustness in terms of the type-I-error and the power of the R-test were evaluated 
and compared with that of the F-test in the analysis of a single factor repeated measures 
design. The study took into account normal and non-normal data (skewed: exponential, 
lognormal, Chi-squared, and Weibull distributions), the presence and lack of outliers, and 
a situation in which the sphericity assumption was met or not under varied sample sizes and 
number of treatments. The Monte Carlo approach was used in the simulation study. 
The results showed that when the data were normal, the R-test was approximately as 
sensitive and robust as the F-test, while being more sensitive than the F-test when data had 
skewed distributions. The R-test was more sensitive and robust than the F-test in the 
presence of an outlier. When the sphericity assumption was met, both the R-test and the  
F-test were approximately equally sensitive, whereas the R-test was more sensitive and
robust than the F-test when the sphericity assumption was not met.

Key words: randomisation test, repeated measures design, sensitivity, robustness, Monte 
Carlo. 

1. Introduction

Research in many areas of application as affirmed by Ma et al. (2012) normally
involves study plans in which measurements or responses are repeatedly obtained from 
an experimental unit (EU). According to Davis (2002), repeated measurements refer 
broadly to data in which the response of each experimental unit or subject is observed 
on multiple treatment conditions or time points. Repeated measures design (RMD) 
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is an experimental design that involves multiple measures of the same variable(s) taken 
on the same EU either under different treatment conditions or over two or more time 
periods (Kreuger and Tian, 2004).The major advantage of RMD is that it uses exactly 
the same individuals or subjects in all treatment conditions thereby eliminating the 
influence of individual differences from the analysis and also being economical in the 
use of resources and enabling the subjects to be their own control as measurements are 
taken under both control and other experimental conditions (Reed III, 2003; Howitt 
and Cramer, 2011). 

An approach to RMD data analysis is the repeated measures analysis of variance 
(RM ANOVA) that is based on the F-test statistic which has assumptions that must be 
met to ensure valid results are obtained from the analysis and therefore is limited in its 
application (Dragset, 2009). The assumptions include random sampling of EU from the 
population, normality of responses, and equality of all pairwise differences in variance 
between experimental conditions called sphericity (Girden, 1992, Lindman, 1992). The 
F-test is a statistical test in which the sampling distribution of the test statistic has an  
F-distribution when the null hypothesis is true (Oladugba et al., 2014). In statistical 
analysis, if the assumptions for any parametric test cannot be satisfied, there is risk of 
passing invalid inference if such test is deployed. So, researchers either transform the 
response data so that the resulting variable meets the conditions of the intended test to 
be used or resort to a different test such as the non-parametric test, which is not affected 
by the assumptions of the parametric test (Zimmerman and Zumbo, 1990) but 
transformation of data according to Sawilowsky et al. (1989) can have poor power 
properties.  Also, the use of ranks in nonparametric tests leads to loss of information, 
thus the researchers cannot rely with high confidence level on ranking or 
transformation of data as an alternative to the F-test when its assumptions are not met 
(Gleason, 2013). 

Randomization test (R-test) or permutation test can provide excellent solutions in 
the presence of unsuitable conditions for the use of the F-test or when the researchers 
want to maintain the use of the original data. The R-test is a way of hypothesis testing 
that can be deployed for analysis of experimental data when assumptions of parametric 
tests are not tenable (Edgington, 1995; Kherad-Pajouh and Renaudi, 2014).  It provides 
an efficient approach to hypothesis testing. In other words, the R-test is perceived as an 
alternative method to data analysis in conditions when assumptions of parametric 
procedures are not met (Craig and Fisher, 2019; Berry et al., 2018). R-test performs well 
in conditions not favourably for the F-test and is as sensitive and robust as the  
F-test when parametric test assumptions are met (Mundry, 1999; Mewhort, 2005; 
Mewhort et al., 2010).  

Since the validity of any statistical inference depends largely on satisfaction of the 
assumptions of the underlying model, researchers should not anticipate any statistical 
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test to be the most appropriate in any situation but rather subject proposed statistical 
test to scrutiny to ensure it is better than other alternatives in terms of sensitivity and 
robustness (Peres-Neto and Olden, 2001). The sensitivity of a test is the ability of a test 
to make right decision vis-à-vis rejection or acceptance of a hypothesis also known as 
power of a test; it is greatly influenced by sample size and presence of outliers (Cohen, 
1988) and assumption of sphericity (constant variance) for RMD (Dragset, 2009) while 
robustness, on the other hand, refers to the ability of a test to yield correct conclusion 
or perform optimally in terms of controlling the type-I-error (p) that is not to falsely 
detect an effect when some of the distributional assumptions  are not met or under 
unfavourable conditions (Vorapongsathorn et al., 2004). 

Hence, this paper used the R-test to analyse the RMD and compared the results to 
that of the F-test in order to find out which was more sensitive and robust under the 
conditions that data are normal and non-normal (exponential, lognormal, Chi-square, 
and Weibull distributions), in the absence and presence of outliers, when sphericity 
assumption was met or not in variant number of treatments and sample sizes. 

2.  Materials and methods 

2.1. Material 

The data presented in Table 1 were obtained from Gravetter and Wallnau (2007). 
The responses generated from the study were based on the time (in seconds) lapsed 
until participants reported they felt nothing called latency when a stimulus  
(of 500-milligram weight) was gently placed on a region of the body. The study 
compared the adaptation for four regions of the body for a sample of 7 participants.  

Table 1.  Data on sensory adaption experiment 

 Area of stimulation (Treatment) 
Subjects Back of hand Lower back Middle of Palm Chin below lower Lip 

1 6.5 4.6 10.2 12.1 
2 5.8 3.5 9.7 11.8 
3 6.0 4.2 9.9 11.5 
4 6.7 4.7 8.1 10.7 
5 5.2 3.6 7.9 9.9 
6 4.3 3.5 9.0 11.3 
7 7.4 4.8 10.8 12.6 

2.2. The F-test method for analysis of single factor RMD 

The F-test procedure for hypothesis testing in analysis of RMD involves computing 
the F-statistic associated with the problem. In this section, the model, ANOVA table 
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presented in Table 2 and the F-test procedures for analysing single factor RMD are 
defined as follows. 

The model for this design is defined as: 

ij i j ijy            i = 1, 2, …, n; j = 1, 2, …, t 

∑ τ୨ 
௧
௝ୀଵ ൌ 0; βi ~ N(0, 2

 ); εij ~ N(0, 2
 ) 

where, yij is the response from the ith subject at treatment j; μ is the grand mean; τj is the 
fixed effect of the jth treatment (the treatments are assumed to have fixed effects thus 
the zero-sum constraint); βi is the random effect for ith subject and εij is a random error 
component specific to ith subject at jth treatment.  

Table 2.  ANOVA table for single factor RMD 

Source of Variation SS df Mean Square F0 

Subject  SSB n -1 MSS  
Treatments SST t – 1 MST 𝑀𝑆்

𝑀𝑆ா
 

Error  SSE (t - 1)(n - 1) MSE  
Total SST tn – 1   

where MSS = ௌௌಳ
௡ିଵ

; MST = ௌௌ೅
௧ିଵ

; MSE = ௌௌಶ
ሺ௧ିଵሻሺ௡ିଵሻ

. The sums of squares are then defined as 
follows: 

SST = ∑ ∑ ሺ𝑦ത.௝ െ  𝑦ത..ሻ
௧
௝ୀଵ

௡
௜ୀଵ

2; SSS = ∑ ∑ ሺ𝑦ത௜. െ  𝑦ത..ሻ
௧
௝ୀଵ

௡
௜ୀଵ

2; SSE = ∑ ∑ ሺ𝑦௜௝ െ
௧
௝ୀଵ

௡
௜ୀଵ

𝑦ത௜. െ 𝑦ത.௝ െ  𝑦ത..ሻ2 

2.3. Randomization test procedure 

The hypothesis to be tested is: 
Ho:  the different treatments had the same effect vs H1: there is a differential effect of 

 at least one treatment 

α = 0.05 

Test statistic 
Here, F-statistic was used as the test statistic. It summarizes the differences between 

means and eliminates the effects of between-subject variability.  

Procedure 
With repeated measures, we permute the data within subject. If there is no effect of 

treatments, then the set of scores from any subject can be exchanged across treatments.  
The steps are as follows: 
 Compute the F-statistic for the original data, and denote that as Fcal. 
 Permute the data within each subject, and do it for every subject. 
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 Calculate an F-statistic for each of the permuted data. 
 If this F-statistic is greater than Fcal, increment the counter. 
 Repeat the preceding three steps B times, where B ≥ 10,000. 
 Divide the value in the counter by B to obtain the probability of obtaining an  

F-statistic as large as Fcal if the null hypothesis were true. Denote this value as 
empirical type-I-error (p-value). 

 Reject the null hypothesis of no difference due to treatment if p-value is less than 
our chosen level of significance. 

2.4. Randomization test procedure for RMD 

The R-test for analysing single factor RMD involves the following procedures. 
Compute a test statistic that sufficiently explains the experimental data (the F-statistic 
in this case) for the data in Table 1. Afterwards, the data are rearranged within the 
subject repeatedly and the test statistic is recomputed for all resultant data 
permutations. Randomization test uses the obtained results from all data permutations 
and the original result of the experiment to form a reference set which is used to decide 
the significance of the test. The fraction of the data permutation in the reference set 
having test statistic values greater than or equal to the value obtained from the original 
results before data were permuted is the type-I-error (significance or probability value).  

In permuting data in RMD, Edgington (1995) proposed two schemes, namely 
systematic and random permutation schemes. In this paper, the random permutation 
scheme was adopted and carried out in the following way. Firstly, the data are arranged 
in a table with k columns and n rows, where k is the number of treatments and n is the 
number of subjects. An index number 1 to n was assigned to the subjects and 1 to k to 
the treatments, so that each measurement has associated with it a compound index 
number, the first part which indicates the subject and the second indicates the 
treatments. Accordingly, index (2, 3) for instance referred to the measurement for the 
second person under the third treatment. Then a random number generation algorithm 
was used to randomly determine for each subject independently of the other subjects 
which of the k measurements is to be assigned to the first treatment, which of the 
remaining k-1 measurements to the second treatment, and so on. The random 
determination of order of measurements within each subject performed over all 
subjects constitutes a single permutation or arrangement of the data. The arrangement 
is repeated for a large number of times like 10,000 permutations, and for each 
permutation, the test statistic is computed. The p-value is computed as the number of 
the test statistic value, including the obtained test statistics values that are as large as the 
obtained test statistics value.  
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2.5.  Outlier detection and sphericity assumption 

Outliers were randomly injected into the dataset in Table 1, and Tukey’s method of 
outlier detection as explained by Songwon (2006) was used in detecting them. One of 
the ways to test for sphericity in RMD is the use of Mauchly’s test. Mauchly’s test tests 
the hypothesis that the variances of the differences between any two conditions are 
equal. Thus, if the significance level of Mauchly’s test is less than or equal to the alpha 
level, sphericity is violated. Mauchly's test of sphericity in SPSS version 22 was used to 
verify this condition. 

2.6.  Monte Carlo Simulation 

In order to analyse RMD with the R-test and the F-test so as to check their 
robustness, a Monte Carlo simulation was conducted using RMD in Table 1 with n = 7 
subjects and t = 4 treatments. Three variables were manipulated: (i) sample sizes (n); 
(ii) number of treatments (t); and (iii) distribution structure of the data (normal, 
exponential, lognormal, Chi-square and Weibull distributions). The performance of 
the two tests was investigated with three sample conditions n = 5, 7, and 9, and three 
treatment conditions t = 3, 4, and 5, under 5 distributional structures of the data in the 
presence and absence of outliers and when sphericity assumption is met or not, 
respectively.  

The R statistical package was used to implement the Monte Carlo technique 
sampling of 10,000 permutations from the possible (t!)n permutations for the R-test. 
In the simulation, the experiment was repeated 1000 times for each distribution. In each 
repetition, the resulting tables of data set were analysed appropriately using the F-test 
and the R-test methods to obtain the rate of type-I-error and power. The percentage of 
significant tests out of 10,000 iterations was considered as the rejection rate.  

The comparison procedures were considered in two scenarios. Firstly, in the 
scenario that the null hypothesis (H0: μi = 0) is true, the rejection rate of the null 
hypothesis was regarded as the type-I-error rate for each test. The test that had the 
closest type-I-error to the nominal α = 0.05 was considered as the more robust of the 
two. Secondly, in the scenario that the alternative hypothesis (Ha: μi ≠ 0) was true, the 
rejection rate of the null hypothesis was considered as the power for each test. The test 
that had larger power was taken to be more sensitive than the other.  

2.7. Distribution structure of data 

Data were simulated from five theoretic distributions. The normal distribution was 
used to test condition under which normality assumption holds. The skewed 
distributions used include Chi-square, exponential, lognormal, and Weibull 
distributions; this represents condition under which the distribution assumption 
(normality) does not hold. The probability density function of the five distributions is 
defined as follows. 
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(a) Normal distribution 
The normal distribution has probability density function (pdf) as 

f(x) = ଵ

ఙ√ଶగ
𝑒ି

ሺೣషഋሻమ

మ഑మ  ,     , 0  , 0x   

The parameters (μ and σ2) of the normal distribution were estimated using the 
maximum likelihood estimators (MLE). For the normal distribution, data were 
simulated using mean, �̅� = 7.7250 and variance, σ2= 9.1180, of the experimental data. 

 
(b) Exponential distribution 

The exponential distribution has pdf with parameter θ is given by  
𝑓ሺ𝑥ሻ ൌ

ଵ

ఏ
𝑒ି

ೣ
ഇ , 0, 0x    

Data were simulated to follow the exponential distribution using the MLE of the 
exponential distribution parameters obtained as 𝜃෠= 7.7250 as fitted using fitdistrplus 
package in R statistical computing. 

 
(c) Chi-square distribution 

The pdf of Chi-square distribution with parameter n, is given as 
2

2

1 /2

2

( ) ,  0
2 ( )

n

n

x

n

x e
f x x

 

 


 

Using fitdistrplus package in R statistical computing, the parameter of the  
Chi-square distribution,  
n = 4.559 ~ 5, was used for simulation of data where n is the mean of Chi-square 
distribution. 
 
(d) Lognormal distribution  

The pdf for the two-parameter (μ and σ2) lognormal distribution is 

f (X|μ,𝜎ଶ) = ଵ

௑ඥሺଶగఙమሻ
𝑒
ି൤

ሺౢ౤ሺ೉ሻషഋሻమ

మ഑మ
൨ ,           X > 0, -∞ < μ < ∞, σ > 0 

The MLE of μ and σ2 were obtained as: 

�̂� = ∑ 𝒍𝒏 ሺ𝑿𝒊ሻ
𝒏
𝒊స𝟏

௡
 = 7.7880 and 𝜎ො2 = 

൬∑ ሺ𝒍𝒏 ሺ𝑿𝒊ሻି
∑ 𝒍𝒏 ൫𝑿𝒊൯
𝒏
𝒊స𝟏

𝒏
𝒏
𝒊స𝟏 ൰

𝟐

௡
 = 12.0120 

 
(e) Weibull distribution 

The two-parameter Weibull distribution has pdf given as  
1

( )
( / , )

kk
xk x

f x k e 
 


   
 

, 0x  , 0, 0k    
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Data were simulated using the MLE of the Weibull distribution parameters 
obtained as k = 7.020 and λ      = 9.10 as fitted using fitdistrplus package in R statistical 
computing. 

3.  Results 

In Tables 3, 4, 5 and 6, the simulation results (type-I-error and power) for the  
F-test and the R-test based on the three manipulated variables (sample size, number of 
treatments and distribution structure of the data) are presented. Following from the 
methods mentioned in Section 2 as implemented in R Statistical package, for each 
sample size, the optimal values of the type-I-error and power were recorded. 
The sample size was denoted as n, the values in bracket indicate the number of 
treatment (t) that produced optimal type-I-error and highest power as the number of 
treatments were varied. The values in bold are either the optimal type-I-error or the 
highest power for each of the test. 

Table 3 shows the type-I-error of the F-test and the R-test for the data in the absence 
of outliers. The results indicated that as n increased, type-I-error decreased for data 
with normal distribution, for Chi-square, lognormal, exponential and Weibull, 
it initially increased but afterwards decreased for the F-test while the R-test produced 
type-I-error that increased as n increased under the normal distribution but reduced as 
n increased for Chi-square, exponential and Weibull, while for data with lognormal 
distribution, the type-I-error decreased as n decreased. On the other hand, the power 
values for the normal data decreased initially but later increased as the sample size 
increased, it increased initially and subsequently decreased for Chi-square and Weibull 
distributions for the F-test and increased for exponential and lognormal data 
distributions. The R-test on the other hand had increasing power as n increased for 
exponential, Weibull, and Chi-square but had an increasing trend for lognormal 
although with a slight initial decrease at n = 7. When outliers were introduced, the type-
I-error and power values are presented in Table 4. The results indicated that type-I-
error for the F-test under all the data distributions had a decreasing trend as n increased 
but an increasing trend for Weibull distribution. Furthermore, the power for the F-test 
exhibited a slight decreasing trend for Chi-square and lognormal, while it increased for 
normal, exponential and Weibull as n increased. On the other hand, the power values 
of the R-test for all data distribution were increasing as sample size increased. 

The results for when sphericity assumption was met are displayed in Table 5. 
The type-I-error for the F-test in this table revealed that as n increased, normal and 
exponential data distributions initially had a slight increasing trend but substantially 
increased afterwards for Weibull data distribution while a decreasing trend was 
observed for Chi-square and lognormal data distribution. The results of sphericity 
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assumption not met as displayed in Table 6 showed that type-I-error and power for 
both tests decreased for all distributions as the sample size increased. 

 

Table 3.  Simulation results (type-I-error and power) for F-test and R-test in the absence of outliers 

                             type-I-error  Power 

Distribution n (t) F-test R-Test F-test R-Test 

Normal  5(5) 0.0500 0.0429 0.9437 0.9226 
 7(4) 0.0428 0.0546 0.9122 0.9179 
 9(5) 0.0408 0.0595 0.9914 0.9805 
Exponential  5(5) 0.0725 0.0501 0.7093 0.9032 
 7(4) 0.1442 0.0613 0.7528 0.9211 
 9(5) 0.0611 0.0581 0.7828 0.9469 
Lognormal 5(5) 0.0413 0.0593 0.7229 0.8534 
 7(5) 0.0662 0.0439 0.7237 0.8629 
 9(5) 0.0599 0.0490 0.8009 0.8979 
Chi-square 5(4) 0.0705 0.0524 0.6184 0.7528 
 7(4) 0.1009 0.0687 0.6729 0.7367 
 9(5) 0.0704 0.0591 0.5646 0.8086 
Weibull 5(5) 0.0849 0.0640 0.5256 0.7439 
 7(5) 0.1225 0.0580 0.6804 0.7811 
 9(5) 0.0783 0.0441 0.5959 0.8724 

 

Table 4.  Simulation results (type-I-error and power) for F-test and R-test in the presence of outliers 

                             type-I-error  Power 

Distribution n (t) F-test R-Test F-test R-Test 

Normal  5(4) 0.1029 0.0699 0.5790 0.7498 
 7(4) 0.0824 0.0601 0.5617 0.8209 
 9(5) 0.0873 0.0588 0.5869 0.7998 
Exponential  5(5) 0.2018 0.0566 0.5958 0.7909 
 7(5) 0.0755 0.1003 0.6963 0.7304 
 9(5) 0.1046 0.0708 0.5540 0.8202 
Lognormal 5(5) 0.0815 0.0597 0.6876 0.7588 
 7(5) 0.1174 0.0632 0.6011 0.6901 
 9(5) 0.0792 0.0512 0.5906 0.8094 
Chi-square 5(4) 0.2171 0.0696 0.5377 0.8132 
 7(4) 0.1024 0.0741 0.5213 0.7995 
 9(5) 0.0843 0.0516 0.6628 0.8180 
Weibull 5(5) 0.0818 0.0536 0.5448 0.7800 
 7(5) 0.1032 0.0684 0.5994 0.7468 
 9(5) 0.0929 0.0684 0.5834 0.7933 
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Table 5.  Simulation results (type-I-error and power) for F-test and R-test with sphericity assumption 
met 

                         type-I-error  Power 

Distribution n (t) F-test R-Test F-test R-Test 

Normal  5(4) 0.0506 0.0420 0.9637 0.9024 
 7(5) 0.0431 0.0446 0.9202 0.9231 
 9(5) 0.0521 0.0511 0.9884 0.9531 
Exponential  5(4) 0.1011 0.0429 0.8663 0.9001 
 7(5) 0.1502 0.0559 0.8818 0.8965 
 9(5) 0.0841 0.0523 0.9212 0.9045 
Lognormal 5(4) 0.0706 0.0462 0.8291 0.8088 
 7(5) 0.0762 0.0518 0.8119 0.8321 
 9(5) 0.0699 0.0442 0.8921 0.8899 
Chi-square 5(5) 0.0589 0.0493 0.6610 0.8011 
 7(5) 0.1209 0.0621 0.6690 0.7822 
 9(5) 0.1022 0.0489 0.6710 0.8399 
Weibull 5(4) 0.0820 0.0531 0.5006 0.7877 
 7(4) 0.1015 0.0429 0.5094 0.8807 
 9(5) 0.1183 0.0401 0.5009 0.8991 

 

Table 6.  Simulation results (type-I-error and power) for F-test and R-test with sphericity assumption 
not met 

                             type-I-error  Power 

Distribution n (t) F-test R-Test F-test R-Test 

Normal  5(5) 0.1112 0.0612 0.6821 0.8080 
 7(5) 0.1230 0.0610 0.5417 0.8526 
 9(5) 0.0811 0.0588 0.6809 0.8595 
Exponential  5(4) 0.2074 0.0640 0.5958 0.8522 
 7(5) 0.0603 0.0595 0.4993 0.8032 
 9(5) 0.1032 0.0467 0.6240 0.8704 
Lognormal 5(4) 0.1401 0.0531 0.4876 0.7863 
 7(5) 0.0631 0.0699 0.4211 0.7902 
 9(5) 0.0503 0.0518 0.5906 0.8186 
Chi-square 5(5) 0.0813 0.4040 0.5307 0.7863 
 7(5) 0.1109 0.0601 0.5213 0.8039 
 9(5) 0.0705 0.0517 0.6028 0.7995 
Weibull 5(4) 0.1207 0.0485 0.5448 0.7904 
 7(4) 0.0779 0.0590 0.5994 0.8002 
 9(5) 0.1052 0.0508 0.5891 0.7808 
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4. Discussion of results 

The R-test and the F-test were used to analyse RMD with and without outlier and 
sphericity respectively. From the results, under the normal assumption, the type-I-error 
of both tests was within limits regarded as being robust with the F-test producing 
a better value at n = 5 (p = 0.05) while the power of both the F-test and R-test was very 
high (0.9914 and 0.9805 respectively) and it increased as the sample size and the 
number of treatments increased. This implies that both tests were approximately 
equally sensitive and robust under normal assumption. For the exponentially 
distributed data, as the sample size increased, the optimal type-I-error for the F-test was 
at n = 9, t = 5 (p = 0.0611) and n = 5, t = 5 for the R-test (p = 0.051), whereas the highest 
power for the F-test and the R-test was 0.7828 and 0.9469 respectively at n = 9, t = 5, 
which shows that the R-test was more powerful that the F-test and more robust too for 
exponential data. For lognormal distribution, the optimal type-I-error for both tests as 
the sample size increased was 0.0413 and 0.0490 for the F-test and the R-test 
respectively, while both tests exhibited power of 0.8009 and 0.8979 at n = 9 respectively 
for the F-test and the R-test. For the Chi-square distribution, the F-test had optimal 
type-I-error of 0.0704 at n = 9, t = 5 and 0.0524 for R-test at n = 9, t = 5. Also, the highest 
power of the F-test and the R-test was 0.6729 (n = 7) and 0.8076 (n = 9) respectively. 
For the Weibull distribution, the R-test was more robust with p = 0.0441 and more 
powerful with power = 0.8724. 

When outliers are present, the R-test was more powerful and robust in all 
distributions: normal assumption (p = 0.0588, power = 0.8209), exponential 
distribution (p = 0.0566, power = 0.8202), lognormal (p = 0.0512, power=0.8094),  
Chi-square (p = 0.0516, power =0.8180), Weibull (p = 0.0536, power = 0.7933). 

When sphericity condition was met, the F-test was more powerful and robust  
(p = 0.0506, power = 0.9531) for data with normal distribution while the R-test was 
more powerful and robust for lognormal data (p = 0.0518, power = 0.8899), Chi-square 
(p = 0.0493, power = 0.8399), Weibull distribution (p = 0.0429, power = 0.8991). 
For exponential data, the F-test was more robust for data (p = 0.0523) while the R-test 
was more powerful (0.9212). Furthermore, when sphericity assumption was not met, 
the F-test was only more robust for lognormal (p = 0.0503) while the R-test was more 
powerful (power = 0.8186). Meanwhile, the R-test was more robust and powerful for 
other distributions – normal (p = 0.0588, power = 0.8595), exponential (p = 0.0467, 
power = 0.8704), Chi-square (p = 0.0517, power = 0.8039), and Weibull (p = 0.0508, 
power = 0.8002). 
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5. Conclusion  

In this paper, the R-test was used in analysing RMD with or without outlier and 
sphericity respectively. The test offers the freedom of choice of test statistic that 
sufficiently suits a particular statistical problem for researchers and is free from any 
distributional or test assumptions, but rather depends only on the randomization 
technique – thus the name the randomization test. The study also employed the 
classical test (F-test) for analysing RMD, which is hinged on a number of conditions for 
reliable valid inference. This paper compared both tests to ascertain which controlled 
the type-I-error better and had higher power than the other. These criteria of 
comparison were referred to as robustness and sensitivity respectively. 

The results in Tables 3, 4, 5 and 6 showed that under the normal distribution when 
sphericity held, both tests were equally robust and approximately powerful with 
optimal values at n = 5, t = 5 (p = 0.05 power = 0.9914) for the F-test and at n = 9, t =5 
(p = 0.0421, power = 0.9805) for the R-test. When data had skewed distributions 
(exponential, Chi-square, lognormal and Weibull), the R-test was more robust and 
powerful. In the presence of an outlier and when sphericity condition was not met, the 
F-test was less robust and sensitive than the R-test. In the analysis of RMD when 
normality and sphericity conditions were met, the R-test was comparably as robust and 
sensitive as the F-test. When data had skewed distributions (exponential, lognormal, 
Chi-square and Weibull), the F-test was less robust and sensitive as the sample size and 
the number of treatments increased. Also, in the presence of an outlier and when 
sphericity condition was met or not, the R-test was more robust and sensitive than the 
F-test. In a nutshell, the R-test was approximately as sensitive as the F-test in RMD 
when data follow normal and sphericity conditions met but more sensitive when data 
were skewed (exponential, Chi-square, lognormal and Weibull).  

In general, since the R-test is always as robust and sensitive and even more robust 
and sensitive than the F-test, to alleviate the burden of assessing parametric 
assumptions which is done before the use of the F-test, researchers are advised to go 
ahead with R-test which is not based on any assumption and is easily carried out with 
modern-day high-capacity computers.  
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