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Parameter estimation of exponentiated exponential distribution 
under selective ranked set sampling 
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ABSTRACT 

Partial ranked set sampling (PRSS) is a cost-effective sampling method. It is a combination 
of simple random sample (SRS) and ranked set sampling (RSS) designs. The PRSS method 
allows flexibility for the experimenter in selecting the sample when it is either difficult to 
rank the units within each set with full confidence or when experimental units are not 
available. In this article, we introduce and define the likelihood function of any probability 
distribution under the PRSS scheme. The performance of the maximum likelihood 
estimators is examined when the available data are assumed to have an exponentiated 
exponential (EE) distribution via some selective RSS schemes as well as SRS. The suggested 
ranked schemes include the PRSS, RSS, neoteric RSS (NRSS), and extreme RSS (ERSS). 
An intensive simulation study was conducted to compare and explore the behaviour of the 
proposed estimators. The study demonstrated that the maximum likelihood estimators via 
PRSS, NRSS, ERSS, and RSS schemes are more efficient than the corresponding estimators 
under SRS. A real data set is presented for illustrative purposes. 

Key words: exponentiated exponential distribution, partial ranked set sampling, neoteric 
ranked set sampling, maximum likelihood method. 
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1. Introduction

In many studies where sampling is used, such as environmental management,
ecology, sociology, and agriculture, exact measurement of a selected unit is either 
difficult or costly and time-consuming. However, the ranking of a small set of selected 
units can be carried out easily either by visual inspection with respect to the study 
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variable or on the basis of an auxiliary variable. The RSS scheme was first proposed by 
McIntyre (1952) to obtain a sample from a population in his study for estimating the 
yield of pastures. The RSS scheme outweighs the conventionally used SRS scheme 
in terms of the superior efficiency of the RSS estimators of population mean and 
variance (see Wolfe (2010)). Several studies have shown that the calculated estimators 
based on RSS are more efficient than their counterparts in SRS. For example, Bhoj and 
Ahsanullah (1996) used the RSS scheme to estimate the generalized geometric 
distribution parameters. Al-Odat and Al-Saleh (2001) considered estimation of the 
population mean using a variation of the RSS procedure. Mahdizadeh and Arghami 
(2010) discussed entropy estimation in RSS design and compared the results with those 
in SRS design. Hassan (2013) obtained a Bayesian estimator for the shape and scale 
parameters of the EE distribution using RSS. Abu-Dayyeh et al. (2013) used RSS to 
estimate the shape and scale parameters of the Pareto distribution. Samuh and Qtait 
(2015) used median RSS (MRSS) to estimate the shape and scale parameters of the EE 
distribution. Tahmasebi et al. (2017) provided Bayesian estimation for Rayleigh 
distribution based on SRS, RSS, and maximum RSS procedures with unequal samples 
in two cases: one cycle and r-cycles. Bantan et al. (2020) derived Zubair Lomax 
distribution parameter estimators under the RSS scheme. Al-Omari et al. (2020) 
considered stress-strength reliability estimator of the exponentiated Pareto model using 
MRSS and RSS designs. Almarashi et al. (2021) studied stress-strength reliability 
estimator for the Topp–Leone distribution using advanced sampling methods. Hassan 
et al. (2022) considered estimating system reliability using NRSS and MRSS data for 
generalized exponential distribution. 

Some variations of the RSS scheme were proposed by several authors. The PRSS 
requires fewer sampling units and less ranking than the RSS and proves to be more 
efficient than the SRS (see Haq et al. (2013)). In the PRSS scheme, the experimenter 
selects (A) sample units using SRS and (B) sample units using RSS, producing a final 
sample of size M=A+B units. Thus, it requires fewer sampling units and fewer rankings 
than the RSS. The ERSS design has been suggested by Samawi et al. (1996) for 
estimating the population mean. Studies based on the ERSS scheme have been studied 
by several authors (see, for example, Hassan (2012), Hassan et al. (2014), (2015)). 
The NRSS scheme was suggested by Zamanzade and Al-Omari (2016) and it differs 
from the original RSS scheme by the composition of a single set of n2 units instead of n 
sets of size n. This strategy has been shown to be effective, producing more efficient 
estimators for the population mean and variance than the SRS and RSS schemes. Several 
studies have been conducted based on the NRSS scheme by several authors (see, 
for example, Koyuncu and Karagöz (2018) and Sabry and Shaaban (2020)).  

The EE distribution was introduced by Gupta and Kundu (1999) as a generalization 
of an exponential distribution. It is of great interest and is popularly used in analyzing 
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lifetime or survival data. The cumulative distribution function (cdf) and the probability 
density function (pdf) of the EE distribution are given, respectively, by: 

( ; , ) (1 ) ; , , 0,xF x e x        (1)

and 

1( ; , ) (1 ) ; , , 0,x xf x e e x           (2)

where   and   are shape and scale parameters, respectively. Many authors have 
studied the properties and applications of the EE distribution, including Raqab and 
Ahsanullah (2001), Gupta and Kundu (2007), Nadarajah (2011), Ristić and 
Balakrishnan (2012), Abu-Youssef et al. (2015), de Andrade et al. (2016) and 
Chesneau et al. (2022).  

In this study, we introduce, for the first time, the likelihood function for any 
random variable X based on the PRSS scheme, which has not been considered in the 
literature yet. Further, the population parameter estimators of the EE distribution are 
considered based on the maximum likelihood (ML) method. Simulation studies are 
carried out to compare the behaviour of the proposed estimators based on PRSS, RSS, 
NRSS, ERSS, and SRS designs. Finally, we present an application to real data. The rest 
of the article is organized as follows. Section 2 describes the RSS, ERSS, NRSS, and PRSS 
schemes. Section 3 provides the ML estimator of the EE model based on the suggested 
schemes. Section 4 gives a numerical study as well as application to real data. Finally, 
concluding remarks are handled in Section 5. 

2.  Some Ranked Set Sampling Schemes 

This section provides the notion and a short description of the proposed RSS, ERSS, 
NRSS, and the PRSS schemes.  

2.1. Ranked Set Sampling 

The basic idea behind selecting a sample under RSS can be described as follows: 
Step 1: Allocate n2 randomly selected units from the target population into n sets, each 
of size n. 
Step 2: Without knowing any values for the variable of interest, rank the units within 
each set in terms of the variable of interest using your professional judgment. 
Step 3: Choose a sample for actual quantification by including the smallest ranked unit 
in the first set and the second smallest ranked unit in the second set. The process is 
continued in this way until the largest ranked unit is selected from the last set.  
Step 4: Repeat Steps 13 for r cycles to obtain a sample of size m nr  for measurement. 
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2.2. Partial Ranked Set Sampling 

The PRSS scheme is used when the experimenter is unable to inspect the required 
number of units or when the inspection cost per unit is high. At the same time, the PRSS 
scheme requires fewer identified units as compared with a RSS, also it provides more 
precise estimates than the commonly used SRS scheme. Thus, the PRSS scheme helps 
in reducing the total cost and expenditure that are involved in sampling. In order to 
select a PRSS of size m, the following steps are carried out: 

Step 1: Define a coefficient k such that k an , where 0 0.5a   . 
Step 2: Select 2k SRS each of size one from the parent population. In order to select the 
remaining 2n k units, select n2k sets each of size n from the parent population. 
Rank the units within each set and select the ith ranked unit of the ith sample, 
for 1, ,i k n k    . This completes one cycle of a PRSS of size n. 

Step 3: To obtain PRSS of size m nr , we repeat steps 1 and 2 r  times. The total number 
of units that are involved in selecting a PRSS of size 2 2 ( 1)n k n  . Note that for 0k  , 
PRSS is equivalent to RSS. 

2.3. Neoteric Ranked Set Sampling 

The NRSS design is applied in situations where the ranking of sample observations 
is much easier than obtaining their precise values (Zamanzade and Al-Omari (2016)). 
The NRSS method can be described as follows: 
Step 1: Allocate n2 randomly selected units from the target population and rank the 
sample units based on the pre-established ordering criterion. 

Step 2: If n is odd, then select the   [ 1 2 ( 1) ]thn i n    ranked unit for 1, ,i n  . 

But if n is even, select the [ ( 1) ]thJ i n   ranked unit, where  2J n  if i is an even 
and   2 2J n   if i is an odd for 1, ,i n  . 

Step 3: Again, steps 12 can be repeated r times to obtain a final sample of size .m nr   

2.4. Extreme Ranked Set Sampling 

The ERSS scheme is performed by quantifying the smallest and largest order 
statistics (Samawi et al. (1996)). The ERSS procedure is as follows:  
Step 1: Allocate the n2 selected units randomly from the target population into n sets, 
each of size n. 
Step 2: Without yet knowing any values for the variable of interest, rank the units 
within each set with respect to a variable of interest.  
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Step 3: If the set size is odd, select the smallest unit from the first  1 2n   samples, from 
the other  1 2n   the largest unit and for the last sample select the median of the 
sample for actual measurement. If the set size is even, select the smallest unit from the 
first 2n  samples and from the other 2n  samples the largest unit for actual 
measurement.  
Step 4: The steps 1 to 3 can be repeated r times to obtain a sample of sizem nr . 

3. Parameter Estimation  

In this section, the ML estimators of the EE distribution parameters are obtained 
based on SRS, RSS, ERSS, NRSS, and PRSS designs. 

3.1.  ML Estimator based on SRS 

Let 1 2 ,, , mX X X  be independent and identically distributed random variables 
from the EE distribution with pdf (2). The log-likelihood function of  and   is 
specified by: 

1
1 1

( 1) (1 ) .
m m

xi
i

i i

lnL mln mln ln e x
   

 

        

The first partial derivatives of 1L  for each parameter are given by: 

1

1
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m

xi

i

ln L m
ln e



 





  

   (3)

1

1 1

( 1) .
1

m m
i

ixi
i i

xlnL m
x

e


   


   

 
   (4)

Setting Equations (3) and (4) with zero and solving them numerically, we get the 
ML estimators of   and  .  

3.2.  ML Estimator based on RSS 

Here, we derive the ML estimators of the EE distribution parameters based on the 
RSS scheme. Assume that   1,2, , , 1, }2 ,{ ,;i i sX X i n s r      is a RSS observed from 

the EE distribution with sample size nr, n being the set size and r being the number of 
cycles. The likelihood function based on the RSS scheme is given by: 

1

2 1 ( ) ( ) ( )
1 1

( ) ( 1 ( ,
r n

i n i

i i s i i s i i s
s i

L C f x F x F x
 

 

        (5)
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where 1 !/[( 1)!( )!].C n i n i   The log-likelihood function of (5), based on RSS, 
is yielded by substituting pdf (2) and cdf (1) in (5) as follows: 

2
1 1 1 1 1 1

( ) ( ) ( )ln ln ln ( 1) ln( ) ( ) ln(1 ( ) ),
r r rn n n

s i s i s i
i i s i i s i i sL r n r n i T x n i T    

     

        
 

where ( )(1 ).( )
x i i sei i sT


  The first derivatives of L2 with respect to   and  are 

given by:
 

( ) ( )2
( )

( )1 1 1 1

( ) ( )
,

1 ( )

r n r n
i i s i i s

i i s
i i ss i s i

n i T lnTlnL r n
i lnT

T



     


  

    (6)

1 ( )
( ) ( ) ( )2

( )
( ) ( )11 1 1 1 1 1

( 1) ( ) ( )
.

1 ( )

xi i sr n r n r n
i i s i i s i i s

i i sxi i s i i ss i s i s i

i x n i T xln L r n
x

T

e

e



 

 
 



     

 
  

 
     (7)

 
Differentiate (6) and (7) and equate by zero, the estimators of   and , say ̂  

and ˆ,  are obtained through an appropriate numerical technique. 
In the following, the pdf of a random variable X based on PRSS, as well as its 

likelihood function, are introduced in the case of any continuous probability 
distribution. Then, we obtain the pdf of the EE distribution, under PRSS, as well as we 
provide its likelihood function. Furthermore, based on the log-likelihood function, we 
obtain the ML estimator of the EE distribution via the PRSS scheme.  

3.2.1.  Likelihood Function via PRSS 

Here, we will define the likelihood function for the PRSS scheme depending on 
Lemma 1 using the order statistics theory.  
Lemma 1:  
Let 1 2( , ,..., ),kX X X X  and 1 2( , ,..., ),n k n k nX X X X

     be k independent simple 
random samples each of size k. Also, let ( 1) ( 2) ( )( , , ..., ),k n k n n k nX X X X

    be the 

order statistics of size n2k. We define the joint pdf of a random variable ( ) ,i iX  under 
the PRSS scheme, as follows: 

( ) ( )

1

2

3

( ) , 1,..., ,
( ) ( ) , 1,..., ,

( ) , 1,..., ,

i

i i i

i

X

X X

X

f x i k
f x f x i k n k

f x i n k n




    
   

 (8) 

where 1 ( )
iX

f x  is the pdf of SRS' 1 2( , ,..., ),kX X X X  and 3 ( )
iX

f x  is the pdf of SRS

1 2( , ,..., ),n k n k nX X X X
     while 

( )2 ( )
iXf x  is the pdf of ith order statistics of 
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sample ( 1) ( 2) ( )( , , ..., ),k n k n n k nX X X X
    where ( 1,...,i k n k   ). Hence, we 

define, for the first time, the pdf of ( )i iX under the PRSS scheme as follows:   

    
( )

1
1 2 2 2 3( ) ( ) ( ) ( ) 1 ( ) ( ), ,

i i

i k n i k
Xf x C f x f x F x F x f x x

          (9)

where ( 2 )!

( 1)!( )!

n k
C

i k n i k
 


      
 

Proposition 1: 
Let )( ) ({ , 1,..., } { , 1,..., } { , 1,..., },{ }S is i i s isi i s s s X i k X i k n k X i nX X X X k n            

1,...,s r  be a PRSS observed from continuous distribution, with a sample size m nr , 
where n is the set size and r is the number of cycles. Based on pdf (9), the likelihood 
function of random variable ( )i i sX  based on the PRSS design is as follows: 

( )
3 1 2 3

1 1 1 1

( ) ( ) ( ) ,
i i s i

r k n k n

X X X
s i i k i n k

L f x f x f x 



      

 
  

  
     (10) 

where 1 ( )
iX

f x  is the pdf of SRS, 1 2( , ,..., ),kX X X X and 3 ( )
iX

f x  is the pdf of SRS

1 2( , ,..., ),n k n k nX X X X
     while 

( )2 ( )
i sXf x  is the pdf of ith order statistics of 

sample ( 1) ( 2) ( )( , , ..., ),k n k n n k nX X X X
    where ( 1,...,i k n k   ). 

3.2.2. ML Estimator of EE Distribution 

Here, the ML estimators of   and   for the EE distribution are derived based on 
the PRSS scheme. Assume that  

( )( ) { , 1,..., , 1,..., } { , 1,..., , 1,..., } { , 1,is i i si i s isX X i k s r X i k n k s r X i n k            
..., , 1,..., }n s r  is a PRSS observed from the EE distribution with sample size nr, 
n being the set size and r being the number of cycles. The likelihood function, via RSS 
scheme, is obtained by inserting (1) and (2) in (10) as follows: 
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Hence, the logarithm of L3, under the PRSS design, is as follows: 
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Clearly, it is not easy to obtain a closed form solution for 3 3,ln L ln L      after 
setting them to zero. Therefore, an iterative technique must be applied to solve these 
equations numerically. 

3.3.  ML Estimator based on NRSS 

Using the NRSS technique, we obtain the ML estimators of the EE distribution 
parameters. Let ( ){ , 1,2,..., ; 1,2,..., }b i sX i n s r   and w=n2 be a NRSS where n is the set 
size, r is the number of cycles, and b(i) is chosen as: 

1
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According to Sabry and Shaaban (2020), the likelihood function, under the NRSS 
scheme, is given by: 
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 The logarithm of (11), based on the NRSS scheme, is obtained as follows: 
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where ( )
( ) 1 b i sx
b i sN e   and ( 1)

( 1) 1 .b i sx
b i sN e  

    
The first partial derivatives of L4 with respect to each parameter are given by: 
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 (13) 

There is no closed form solution to (12) and (13), so a numerical technique will be 
used to obtain the ML estimators for   and  ,   represented by  ˆ , and ˆ.  

3.4. ML Estimator based on ERSS 

In this section, the ML estimation approach will be used to estimate the EE 
distribution parameters on the basis of the ERSS scheme. 

3.4.1 ML Estimator for Odd Set Size  

Suppose that 
(1) ( ) ( ){ , 1,2,... 1, 1,2,..., } { , , 1,..., 1, 1,2,..., } { ,i s i n s n g sX X i g s r X i g g n s r X         

, 1 2, 1,..., }g n s r    is an odd ERSS (ERSSO) design observed from the EE 
distribution, with sample size m nr , where n is the set size, r is the number of cycles.  

Then the likelihood function, under the ERSSO scheme, is given as follows: 
1 1
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where 1 (1)( )i sf x  and ( )( )n i n sf x  are the pdfs of the smallest and largest order statistics, 
respectively, and ( )( )g n g sf x  is the pdf of the median. Hence, the logarithm of L5, based 
on ERSSO, is obtained as follows: 
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partial derivatives of L5 owing to   and  are given, respectively, by: 
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Using an iterative technique for (14) and (15) after setting them with zero to 
produce  the ML estimators of   and  . 

3.4.2. ML Estimator for Even Set Size 

Suppose that (1) 1{ , 1, 2,... ,i sX X i g   1,2,..., }s r ( ){ ,i n sX  1 1,i g  1 2,..., ,g n  
1,2,..., }s r  is an even ERSS (ERSSE) scheme observed from an EE distribution, with 

a sample of size m nr , where n is the set size, r is the number of cycles and 1 2g n . 
The likelihood function of the EE distribution from the ERSSE scheme is given by: 
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The logarithm of L6 for the EE distribution, using the ERSSE scheme, is given by. 
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The first partial derivatives of L6 owing to   and   are given, respectively, by: 
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and, 
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 (17) 

After setting (16) and (17) to zero, there is no closed form solution, hence the ML 
estimators  and   are derived using a numerical technique. 

4. Numerical Study and Application  

In this section, a numerical study is provided to evaluate the behaviour of ML 
estimates (MLEs) of the EE distribution based on the SRS, RSS, PRSS, NRSS, and ERSS 
schemes. Also, an application to one real data set is provided. 

4.1. Numerical Study 

A numerical evaluation is carried out to examine the performance of the MLEs. The 
MLEs are evaluated based on absolute biases (ABs), mean squared errors (MSEs), and 
relative efficiencies (REs). The simulation procedure is achieved via the 
MATHEMATICA software. The simulation algorithm is performed as follows: 
Step 1: An SRS scheme 1 2, , , nX X X of sample sizes; m   20, 40, 60 and 100 are 
considered; and these random samples are generated from the EE distribution by using 
the inversion method. 
Step 2: An RSS scheme is considered as: 1(1) 2(2) ( ), ,...,s s n n sX X X ; s =1,…,r having sample 
sizes; m  20, 40, 60 and 100 with the number of cycles r = 5, 10, and 20 and set sizes 
n  4, 5 and 6. 
Step 3: A PRSS scheme is considered as: 

1 2, ,..., ,s s ksX X X 1( 1) 2( 2), ,...,k k s k k sX X    ( ) ,n k n k sX   1 2, ,...,n k s n k s nsX X X    ; s=1,…, r 
of sample sizes; m  20, 40, 60 and 100, where (n, r)= (4,5), (4,10), (6,10) and (5,20). 
Step 4: An NRSS scheme is considered as (1) (2) ( ), ,...,b s b s b n sX X X ; s =1,…, r of sample 
sizes; m  20, 40, 60 and 100, where (n, r)= (4,5), (4,10), (6,10) and (5,20).  
Step 5: An ERSSO scheme is considered as 

1(1) 1(1) ( ) 1( ) ( )
1

, ,..., , ,..., , ; ,
2s g s g n s n n s n g s
n

X X X X X g 


  1,...,s r of sample sizes; m  20, 40, 

60 and 100, where (n, r) = (5,4), (5,8), (5,12) and (5,20).  
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Step 6: An ERSSE scheme is considered as

1 11(1) (1) 1( ) ( ) 1,..., , ,..., ; , 1,...,
2s g s g n s n n s
n

X X X X g s r   of sample sizes; m  20, 40, 60 and 

100, where (n, r) ൌ (4,5), (4,10), (6,10) and (4,25).  
Step 7:  Parameters’ values are selected as ( =0.5,  =0.4), ( =1,  =0.4), ( =2,  

 =2) and ( =3,  =2). The MSEs and ABs of ̂  and ̂ are evaluated for different 
sample sizes.  
Step 8: The efficiencies of different estimates under selective schemes with respect to 

SRS are defined by 



( )

( ) ,
( )

SRSMSE
RE

MSE








 where 𝜃෠ = ሺ𝛼ො, 𝜆෠ሻ, 𝜁 = RSS, PRSS, NRSS, ERSSE, 

and ERSSO.  

Step 9: The process is repeated 1000 times. The MLEs of  ̂  and ̂ are inspected via 
ABs, MSEs, and their efficiencies.  
Step 10: Empirical results are listed in Tables 13. Tables 1 and 2 list the observed 
results of ABs and MSEs of both estimates based on selective schemes. Also, Table 3 
gives the efficiency of different schemes with respect to SRS. 

Based on Tables 13 and Figures 111, we conclude the following: 

1-  For all sampling schemes, as m increases, the MSE and AB of ̂  and ̂  decreases 
(see Tables 1, 2). 

2- The MLEs of ̂ and ̂  under the NRSS scheme provide more efficient estimates 
than the corresponding estimates in other schemes. 

3- The MLEs of ̂  and ̂  under all modifications of the RSS schemes are more 
efficient than the corresponding estimates under the SRS scheme (see Figure 1 and 
Figure 2). 

  
Figure 1. MSE of ̂ for all schemes at 0.5 
and 0.4   

Figure 2. AB of ̂ for all schemes at 
0.5  and 0.4   

4- The MLEs of ̂  and ̂  under NRSS are more efficient than the others based on the 
RSS, PRSS (at 1k  and 2k  ) and ERSS schemes (see Figure 3 and Table 3). 
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5- The MLEs of ̂  and ̂  under the PRSS scheme at k =1, 2 are more efficient than 
the corresponding estimates under the SRS for all different values of m 
(see Figure 4). 

6- The MSE of ̂  under PRSS increases as the value of k increases from k =1 to k =2, 
because the number of observations under SRS increases when selecting the PRSS. 
In this regard, we notice that as the value of k increases, the MSE of MLEs 
approaches the MSE of those under SRS (see Figures 4 and 5). 

Figure 5. MSE of ̂  under PRSS for m  60 and 100 
 

7- As the value of  increases, the MSE of ̂ increases, while the MSE of ̂  decreases 
under different sampling schemes (see Figures 6, 7 and Tables 1, 2). 

  
Figure 6. MSE of ̂  for all schemes at 

100m   
Figure 7. MSE of ̂  for all schemes at 

100m   

  
Figure 3. Efficiency of MLEs for all schemes at 
m  60 at   0.5,   0.4 

Figure 4. MSE of ̂ under SRS and PRSS 
schemes at   0.5,   0.4 
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8- As the value of   increases, from 0.5 to 1, the MSE and the AB of ̂  increase, while 

the MSE and the AB of ̂  decrease at 100m   (see Figures 8, 9 and Tables 1, 2). 
 

  
Figure 8. MSE of ̂ and ̂  for all schemes at 

100m   
Figure 9. AB of ̂  when   0.5 and 1 for all 
schemes at 100m   

 
9- The MLE of ̂  under the ERSSO scheme is more efficient than the others under the 

ERSSE for all m (see Figure 10 and Tables 1, 2). 
10- As the sample size m increases, the efficiency of estimates also increases  

(see Figure 11 and Table 3). 

 

  
Figure 10. MSE of ̂  under ERSSE and ERSSO 
for all m 

Figure 11. Efficiency of the MLEs for all 
schemes at all sample sizes 
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Table 1.  The MSEs and ABs of the EE distribution based on different RSS schemes 

m 

scheme 

  0.5,   0.4   1,   0.4 

n r 
MSE AB MSE AB 

̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

20 SRS 0.028 0.039 0.057 0.074 0.201 0.021 0.169 0.051 

4 5 RSS 0.017 0.022 0.044 0.047 0.102 0.012 0.097 0.032 

4 5 PRSS k=1 0.026 0.031 0.054 0.063 0.159 0.019 0.135 0.045 

4 5 NRSS 0.007 0.010 0.019 0.025 0.043 0.006 0.052 0.016 

4 5 ERSSE 0.014 0.017 0.032 0.038 0.081 0.010 0.092 0.029 

5 4 ERSSO 0.011 0.014 0.027 0.037 0.077 0.009 0.088 0.028 

40 SRS 0.013 0.017 0.032 0.041 0.078 0.009 0.088 0.030 

4 10 RSS 0.007 0.009 0.018 0.022 0.038 0.005 0.047 0.015 

4 10 PRSS k=1 0.008 0.012 0.021 0.026 0.059 0.008 0.072 0.023 

4 10 NRSS 0.003 0.004 0.007 0.012 0.016 0.002 0.026 0.009 

4 10 ERSSE 0.006 0.007 0.017 0.019 0.03 0.004 0.028 0.011 

5 8 ERSSO 0.005 0.006 0.013 0.013 0.028 0.003 0.021 0.010 

60 SRS 0.0075 0.0088 0.021 0.024 0.037 0.006 0.047 0.016 

6 10 RSS 0.0034 0.0045 0.011 0.012 0.017 0.003 0.021 0.007 

6 10 PRSS 
k=1 0.004 0.006 0.014 0.018 0.022 0.003 0.026 0.009 

k=2 0.005 0.007 0.016 0.020 0.033 0.004 0.041 0.013 

6 10 NRSS 0.0012 0.0016 0.005 0.007 0.007 0.0011 0.013 0.005 

6 10 ERSSE 0.0031 0.0036 0.007 0.008 0.014 0.0026 0.018 0.006 

5 12 ERSSO 0.0029 0.0032 0.006 0.006 0.013 0.0018 0.015 0.0045 

100 SRS 0.0042 0.0052 0.014 0.019 0.024 0.004 0.035 0.012 

5 20 RSS 0.0021 0.0027 0.007 0.009 0.011 0.002 0.015 0.004 

5 20 PRSS 
k=1 0.0027 0.0038 0.007 0.007 0.010 0.0015 0.014 0.004 

k=2 0.0035 0.0044 0.013 0.015 0.013 0.0020 0.021 0.007 

5 20 NRSS 0.0007 0.001 0.002 0.0002 0.004 0.0007 0.008 0.003 

4 25 ERSSE 0.0019 0.0023 0.007 0.007 0.009 0.0015 0.014 0.0042 

5 20 ERSSO 0.0018 0.002 0.005 0.005 0.008 0.0010 0.013 0.0041 
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Table 2.  The MSEs and ABs of the EE distribution based on different RSS schemes 

m 

scheme 

  2,   2   3,   2 

n r 
MSE AB MSE AB 

̂  ̂  ̂  ̂  ̂  ̂  ̂  ̂  

20 SRS 0.979 0.383 0.382 0.212 3.420 0.287 0.788 0.178 

4 5 RSS 0.575 0.204 0.252 0.132 2.169 0.196 0.509 0.135 

4 5 PRSS k=1 0.958 0.282 0.369 0.160 2.565 0.260 0.768 0.168 

4 5 NRSS 0.262 0.105 0.142 0.072 0.808 0.093 0.279 0.070 

4 5 ERSSE 0.493 0.174 0.209 0.111 1.379 0.149 0.334 0.090 

5 4 ERSSO 0.367 0.147 0.169 0.085 1.293 0.134 0.330 0.077 

40 SRS 0.468 0.187 0.232 0.114 1.192 0.140 0.379 0.120 

4 10 RSS 0.228 0.097 0.147 0.083 0.679 0.079 0.191 0.049 

4 10 PRSS k=1 0.340 0.127 0.180 0.084 0.885 0.112 0.327 0.079 

4 10 NRSS 0.117 0.051 0.070 0.034 0.258 0.039 0.116 0.029 

4 10 ERSSE 0.169 0.084 0.103 0.064 0.450 0.066 0.168 0.045 

5 8 ERSSO 0.165 0.072 0.097 0.047 0.402 0.055 0.151 0.041 

60 SRS 0.256 0.111 0.160 0.087 0.663 0.083 0.212 0.060 

6 10 RSS 0.103 0.048 0.070 0.041 0.298 0.041 0.108 0.030 

6 10 PRSS 
k=1 0.156 0.069 0.079 0.040 0.459 0.058 0.161 0.039 

k=2 0.207 0.088 0.126 0.067 0.554 0.070 0.201 0.051 

6 10 NRSS 0.033 0.017 0.019 0.013 0.091 0.019 0.051 0.017 

6 10 ERSSE 0.098 0.048 0.072 0.042 0.240 0.038 0.102 0.025 

5 12 ERSSO 0.089 0.041 0.067 0.033 0.206 0.032 0.099 0.031 

100 SRS 0.222 0.078 0.092 0.050 0.314 0.050 0.139 0.040 

5 20 RSS 0.072 0.033 0.058 0.029 0.172 0.025 0.061 0.019 

5 20 PRSS 
k=1 0.096 0.044 0.078 0.039 0.253 0.036 0.119 0.033 

k=2 0.120 0.053 0.089 0.048 0.303 0.042 0.133 0.034 

5 20 NRSS 0.024 0.011 0.014 0.012 0.063 0.011 0.019 0.006 

4 25 ERSSE 0.057 0.029 0.038 0.020 0.149 0.024 0.059 0.018 

5 20 ERSSO 0.052 0.025 0.023 0.010 0.147 0.022 0.034 0.009 
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Table 3.  Efficiency of the estimators based on RSS, PRSS (at k =1, 2), ERSSE, ERSSO, and NRSS  

n scheme 

  0.5,  

  0.4 
  1,   0.4   2,   2   3,   2 

𝑬𝑭𝑭ሺ𝛂ෝሻ 𝑬𝑭𝑭൫𝛌෠൯ 𝑬𝑭𝑭ሺ𝛂ෝሻ 𝑬𝑭𝑭൫𝛌෠൯ 𝑬𝑭𝑭ሺ𝛂ෝሻ 𝑬𝑭𝑭൫𝛌෠൯ 𝑬𝑭𝑭ሺ𝛂ෝሻ 𝑬𝑭𝑭൫𝛌෠൯ 

20 

RSS 1.65 1.77 1.97 1.75 1.7 1.87 1.57 1.46 

PRSS k=1 1.07 1.25 1.26 1.11 1.02 1.35 1.33 1.10 

NRSS 4 3.9 4.67 3.5 3.73 3.65 4.23 3.08 

ERSSE 2 2.29 2.48 2.1 1.98 2.20 2.48 1.92 

ERSSO 2.55 2.78 2.61 2.33 2.66 2.60 2.64 2.14 

40 

RSS 1.85 1.88 2.05 1.8 2.05 1.93 1.75 1.77 

PRSS k=1 1.63 1.42 1.32 1.13 1.37 1.47 1.34 1.25 

NRSS 4.33 4.25 4.87 4.5 4 3.67 4.62 3.58 

ERSSE 2.16 2.43 2.6 2.25 2.76 2.22 2.64 2.12 

ERSSO 2.6 2.8 2.78 3 2.83 2.59 2.96 2.54 

60 

RSS 2.35 2 2 2 2.48 2.31 2.22 2.02 

PRSS 
k=1 2 1.5 1.7 2 1.64 1.61 1.44 1.43 

k=2 1.6 1.28 1.12 1.5 1.23 1.26 1.19 1.18 

NRSS 6.66 5.62 5.3 4.45 7.75 6.52 7.28 4.63 

ERSSE 2.58 2.5 2.64 2.3 2.61 2.31 2.76 2.18 

ERSSO 2.75 2.81 2.85 3.3 2.87 2.71 3.21 2.59 

100 

RSS 2.47 2.22 2.18 2 3.08 2.36 2.83 2.32 

PRSS 
k=1 1.92 1.57 2.4 2.66 12.31 1.77 1.92 1.61 

k=2 1.48 1.36 1.85 2 1.85 1.47 1.60 1.38 

NRSS 7.42 6 6 5.7 9.25 7.09 7.73 5.27 

ERSSE 2.73 2.6 2.67 2.66 3.89 2.68 3.26 2.41 

ERSSO 2.88 3 3 4 2.26 3.12 3.31 2.63 
 

4.2. Application to Real Data 

Here, a real data set is considered, and all the details for illustrative purposes are 
described. The data represent the survival times (in days) of 72 guinea pigs infected 
with virulent tubercle bacilli, observed and reported by Bjerkedal (1960). To check the 
validity of the fitted model, the Kolmogorov-Smirnov (KS) goodness of fit test and its 
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P-value are obtained. It is observed that the KS distance is 0.0931 with a corresponding 
P-value of 0.561. Additionally, some criteria measurements including values of -2lnL = 
188.472, Akaike information criterion (AIC) = 192.472, correct AIC (AICc) =192.646, 
Bayesian information criterion (BIC) = 192.187 and Hannan-Quinn information 
criterion (HQIC) =194.285 were used to acquire more information. These results show 
that the EE model fits the data reasonably well.  

 
Figure 12. Plots of pdf, cdf, PP plots, and empirical survival function of the EE model  

Table 4 gives the observed ranked values according to different sampling method 
techniques. 

Table 4.  The observation of different ranked sampling from real data set 

Observation 
Schemes 

NRSS RSS 
PRSS, 

k=1 
PRSS, 

k=2 
SRS ERSSE ERSSO 

1 0.10 0.10 0.10 0.10 0.10 0.56 0.10 
2 0.74 0.77 0.44 0.33 0.33 0.92 0.72 
3 1.00 1.05 0.39 0.59 0.44 1.07 0.77 
4 1.15 1.12 1.07 1.00 0.56 1.09 0.93 
5 1.24 1.22 1.15 1.05 0.59 1.22 1.05 
6 1.46 1.46 1.20 1.07 0.72 1.36 1.07 
7 1.53 1.53 1.21 1.07 0.74 1.63 1.08 
8 1.71 1.72 1.22 1.08 0.77 1.76 1.15 
9 1.97 2.13 1.46 1.09 0.92 2.15 1.20 

10 2.53 2.45 1.71 1.22 0.93 2.40 1.22 
11 3.42 3.27 2.02 1.30 0.96 2.93 1.36 
12 5.55 5.55 2.15 1.34 1.00 4.02 1.44 
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Based on the theoretical study, we obtain the MLEs of   and   under the PRSS, 
RSS, NRSS, ERSS, and SRS sampling from the considered data set. Table 5 gives the 
parameter estimators and their corresponding standard error (SE) of the EE model via 
the PRSS, RSS, NRSS, ERSS, and SRS schemes.  

Table 5.  Estimated parameters and SE of the EE distribution based on selective RSS schemes 

Table 5 shows that the SE of ̂  and ̂  based on NRSS, RSS, ERSSE, ERSSO, and 
PRSS (at 1k   and 2k  ) are smaller than the corresponding estimates based on SRS 
for the considered data. 

5. Conclusion 

This paper introduces and defines the density and likelihood function for a random 
variable under the PRSS scheme. The maximum likelihood estimators of exponentiated 
exponential distribution are discussed under selective RSS schemes and the SRS 
scheme. The proposed sampling schemes are SRS, RSS, PRSS, NRSS, and ERSS. 
An intensive numerical study was conducted to compare the performances of different 
estimators using some accuracy measures. Generally, based on a numerical study, we 
conclude that all ranked schemes (RSS, PRSS, NRSS, and ERSS) are more efficient than 
the SRS scheme as evidenced by the results in Table 3. Also, PRSS is not the best method 
compared to the other ranked schemes, but it is important in some cases, in selecting 
the sample, when it is either difficult to rank the units within each set with full 
confidence or due to non-availability of experimental units. 

Scheme 
Estimators SE ( )RE   

̂  ̂  ̂  ̂  ̂  ̂  

NRSS 1.759 0.747 0.730 0.243 2.99 3.10 

RSS 1.789 0.755 0.744 0.244 2.94 3.08 

ERSS (even) 2.948 1.890 1.269 0.517 1.80 1.20 

ERSS (odd) 2.217 1.323 0.926 0.394 2.40 1.80 

PRSS 
k=1 3.809 1.963 1.440 0.781 1.40 1.19 

k=2 3.998 1.986 1.525 0.888 1.30 1.17 

SRS 5.260 2.330 2.882 0.974 1 1 
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