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ABSTRACT

The purpose of this paper is to study and compare the methods for constructing confidence
intervals for variance components in an unbalanced one-way random effects model. The
methods are based on a classical exact, generalised pivotal quantity, a fiducial inference and
a fiducial generalised pivotal quantity. The comparison of criteria involves the empirical
coverage probability that maintains at the nominal confidence level of 0.95 and the shortest
average length of the confidence interval. The simulation results show that the method based
on the generalised pivotal quantity and the fiducial inference perform very well in terms
of both the empirical coverage probability and the average length of the confidence interval.
The classical exact method performs well in some situations, while the fiducial generalised
pivotal quantity performs well in a very unbalanced design. Therefore, the method based
on the generalised pivotal quantity is recommended for all situations.

Key words: variance components, unbalanced one-way random effects model, pivotal
quantity, fiducial inference, coverage probability.

1. Introduction

The one-way random effects model is studied in many applications, such as medical
treatment, animal breeding studies, agricultural genetics and industrial process manage-
ment, etc. The variance components of this model are used to consider the different sources
of variation. For example, radiotherapy doses for cancer treatment are determined by pro-
cess variation due to difference in area of organs of individual patients and diagnosis of
individual physician (Demetrashvili et al., 2016). Thus, the inferences for variance compo-
nents in the model is of interest. Consider the one-way random effects model

yi j = µ +ai + ei j, i = 1, . . . ,g, j = 1, . . . ,ni, (1)

where yi j is the random observation, µ is the overall mean. The random group effects
ai and the random errors ei j are mutually independent random variables, and distributed
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as N(0,σ2
a ) and N(0,σ2

e ), respectively. In addition, let n = ∑
g
i=1 ni denote the number of

the total observations. When the number of observations ni of each group is equal, model
(1) is called balanced model. Otherwise, it is called unbalanced model. The source of
variation is known as the variance components, namely, σ2

a and σ2
e . In general, σ2

a is called
between-group variance component, and σ2

e is called within-group variance component.
The proportion of the between-group variance component and the total variation can be
written in the form ρ = σ2

a /(σ
2
a +σ2

e ), which measures the importance of one effect related
to the other effect.

One very important property of an estimator is minimal sufficient statistics. A closed-
form function of the minimal sufficient statistics is available in balanced random model.
However, these functions are unavailable in unbalanced random model as described by
Searle et al. (2006). Furthermore, solving the closed-form functions of the minimal suf-
ficient statistics in the unbalanced case is computationally complicated for estimation of
the variance components. There are several works in the literature that studied inferences
for variance components in unbalanced model, such as Wald (1940), Thomas and Hultquist
(1978), Park and Burdick (2003), and Arendacká (2005) which are based on a pivotal quan-
tity approach. Ting et al. (1990) and Hartung and Knapp (2000) studied that by the classical
exact method. Li and Li (2007) and Lidong et al. (2008) used the idea of a fiducial general-
ized confidence interval for variance components. Liu et al. (2016) proposed the concept of
the fiducial generalized pivotal quantity for constructing the confidence interval for variance
components in unbalanced model.

The aim of this paper is to compare five methods which are applicable to confidence
intervals for between-group variance component in unbalanced one-way random effects
model. These five methods are as follows: the Ting and others (TG) method (Ting et al.,
1990), the Hartung-Knapp (HK) method (Hartung and Knapp, 2000), the Park-Burdick
(PB) method (Park and Burdick, 2003), the Li-Li (LL) method (Li and Li, 2007), and the
Liu-Xu-Hannig (LXH) method (Liu et al., 2016).

The paper is organized as follows. Section 2 describes the model and notation. Sec-
tion 3 presents the methods for constructing a confidence interval for σ2

a . Section 4 shows
the results of a simulation study and compare the performance of the methods. Section 5
provides previously published data example. In the final Section 6, a conclusion is given.

2. Model and notation

A matrix formulation of the model (1) is given by

Y = 1nµ +ZA+E, (2)

where Y = (Y′
1, . . . ,Y

′
g)

′ with Yi = (Yi1, . . . ,Yini)
′ for i = 1, . . . ,g, 1n = (1′n1

, . . . ,1′ng)
′ with

1ni is a ni ×1 vector of ones, and n = ∑
g
i=1 ni. The matrix Z = diag(1n1 , . . . ,1ng) is known

as incidence matrix of size n × g. The random group effects vector A = (A1, . . . ,Ag)
′

is distributed as N(0g,σ
2
a Ig) and the random errors vector E = (E′

1, . . . ,E
′
g)

′ with Ei =

(Ei1, . . . ,Eini)
′ is distributed as N(0n,σ

2
e In), where 0c is a c × 1 vector of zeros, and Ic

is a c× c identity matrix. The random vectors A and E are mutually independent. De-
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note r1 = rank(X)− rank(1n) and r2 = n− rank(X), where X = (1n,ZZ′) is the horizontal
concatenation of matrices 1n and ZZ′. Under model (2), the distribution function of Y
is Y ∼ N(µ1n,σ

2
a ZZ′ +σ2

e In), then H′Y ∼ N(0,σ2
a W+σ2

e I), where H is matrix whose
columns span the space orthogonal to the space spanned by the column vector of ones
(Burch, 2011), W is the part of the variance-covariance matrix associated with σ2

a , 0 is vec-
tor of zeros, and I is identity matrix. The quadratic form is denoted by T = Y′BY, where B
is an appropriately chosen symmetric matrix of constants called the matrix of the quadratic
form (Milliken and Johnson, 2009).

Graybill (1976) described the properties of quadratic forms for estimation of the vari-
ance components. The independently quadratic forms, denoted by T1, . . . ,Td , Td+1, are
minimal sufficient statistics for (σ2

a ,σ
2
e ) under multivariate normal distribution of Y. Burch

(2011) showed that the sum of squares due to between groups SSa and the sum of squares
due to within groups SSe can be expressed as quadratic forms
Y′(X(X′X)−X′ − 1n(1′n1n)

−1′n)Y = T1 + · · ·+ Td and Y′(In −X(X′X)−X′)Y = Td+1, re-
spectively. The mean square for between groups and the mean square for within groups are
denoted by MSa = SSa/r1 and MSe = SSe/r2, respectively. Furthermore, MSa and MSe are
independent, and SSe/σ2

e has a chi-squared distribution with r2 degrees of freedom.

3. Approximate confidence intervals for σ2
a

Several existing methods for constructing the confidence interval for σ2
a are reviewed in

this section.

3.1. The TG method

Ting et al. (1990) suggested the method for constructing the confidence interval for the
variance components in random effect model applying results provided by Howe (1974)
and using cross-product terms in Ting et al. (1989). Let WTG = HTGZZ′HTG, where
HTG is a n×n matrix such that HTG = X(X′X)−X′−1n(1′n1n)

−1′n. Let λ1 > · · · > λd > 0
be the distinct positive eigenvalues of WTG having multiplicities s1, . . . ,sd . Define SSa =

Y′H′
TGW−

TGHTGY.
The approximate 100(1−α)% confidence interval for σ2

a is derived by

[MSa −
1
b

MSe − (G2
1MS2

a +
1
b2 C2

2MS2
e +

1
b

G12MSaMSe)
1/2,

MSa −
1
b

MSe +(C2
1MS2

a +
1
b2 G2

2MS2
e +

1
b

C12MSaMSe)
1/2],

where b = r1(∑
d
ℓ=1 sℓ/λℓ)

−1, G1 = 1−1/F1−α,(r1,∞), C2 = 1/Fα,(r2,∞)−1,
G12 = [(F1−α,(r1,r2)−1)2 −G2

1F2
1−α,(r1,r2)

−C2
2 ]/F1−α,(r1,r2), C1 = 1/Fα,(r1,∞)−1,

G2 = 1−1/F1−α,(r2,∞), C12 = [(1−Fα,(r1,r2))
2 −C2

1F2
α,(r1,r2)

−G2
2]/Fα,(r1,r2).

Note that Fα,(r1,r2) and F1−α,(r1,r2) are the α and 1−α quantiles of the F-distribution with
degrees of freedom r1 and r2, respectively. Furthermore, Fα,(r1,∞) = χ2

α,r1
/r1, F1−α,(r1,∞) =

χ2
1−α,r1

/r1, Fα,(r2,∞) = χ2
α,r2

/r2, and F1−α,(r2,∞) = χ2
1−α,r2

/r2 (Milliken and Johnson, 2009).
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3.2. The HK method

Hartung and Knapp (2000) developed the method for constructing the confidence inter-
val for the between-group variance component using the concept of Wald (1940). The suffi-
cient statistics of the HK method are defined as THK1 , . . . ,THKg , where THKi =(1′ni

1ni)
−1′ni

Yi,
i = 1, . . . ,g.

The approximate 100(1−α)% confidence interval for σ2
a is derived by

[MSeR1,MSeR2].

Note that R1 and R2 are the root of the equations as follows:

f (R1) =
∑

g
i=1 wi(THKi −∑

g
i=1 wiTHKi/∑

g
i=1 wi)

2

r1MSe
∼ F1−α/2,(r1,r2) and

f (R2) =
∑

g
i=1 vi(THKi −∑

g
i=1 viTHKi/∑

g
i=1 vi)

2

r1MSe
∼ Fα/2,(r1,r2),

where wi = ni/(1+niR1) and vi = ni/(1+niR2).

3.3. The PB method

Park and Burdick (2003) proposed the generalized pivotal quantity for constructing the
confidence interval for the between-group variance component using results provided by
Olsen et al. (1976). Let WPB = HPBZZ′HPB, where HPB is a n×n matrix such that HPB =

X(X′X)−X′− 1n(1′n1n)
−1′n. Let λ1 > · · · > λd > 0 be the distinct positive eigenvalues of

WPB having multiplicities s1, . . . ,sd . Let PPB = [PPB1 , . . . ,PPBd ] be n×n orthogonal matrix
such that P′

PBWPBPPB = diag(λ11′s1
, . . . ,λd1′sd

), where PPBℓ
, ℓ = 1, . . . ,d corresponding to

λℓ is of dimension n× sℓ.
The minimal sufficient statistics of the PB method are defined as TPB1 , . . . ,TPBd , where

TPBℓ
= Y′H′

PBPPBℓ
(P′

PBℓ
PPBℓ

)−P′
PBℓ

HPBY, ℓ= 1, . . . ,d. Lamotte (1976) showed that SSa =

∑
d
ℓ=1 TPBℓ

, where TPBℓ
/(λℓσ

2
a +σ2

e ), ℓ = 1, . . . ,d has the chi-squared distribution with sℓ
degrees of freedom. The function of the generalized pivotal quantity is defined by R as the
solution for σ2

a in the non-linear equation given by

U =
d

∑
ℓ=1

TPBℓ

λℓR+ r2MSe/K
, (3)

where U ∼ χ2
r1

and K ∼ χ2
r2

.
The approximate 100(1−α)% confidence interval for σ2

a is derived by

[max(0,Rα/2),max(0,R1−α/2)],

where Rα/2 and R1−α/2 are the α/2 and 1−α/2 quantiles of the distribution of R in equation
(3), respectively. Note that the solutions of Rα/2 and R1−α/2 are based on pivotal quantities.
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3.4. The LL method

Li and Li (2007) presented the concept of the fiducial inference for constructing the
confidence interval for the between-group variance component in random effect model ap-
plying results provided by Li and Li (2005). Let WLL = HLL(Z′Z)−H′

LL, where HLL is a
(g−1)×g matrix such that HLLH′

LL = Ig−1 and H′
LLHLL = Ig. Let λ1 > · · ·> λd ≥ 0 be the

distinct eigenvalues of WLL having multiplicities s1, . . . ,sd . Let PLL = [PLL1 , . . . ,PLLd ] be
(g−1)× (g−1) orthogonal matrix such that P′

LLWLLPLL = diag(λ11′s1
, . . . ,λd1′sd

), where
PLLℓ

, ℓ= 1, . . . ,d corresponding to λℓ is of dimension (g−1)× sℓ.
The sufficient statistics of the LL method are defined as TLL = PLLHLL(Z′Z)−Z′Y. The

function of the fiducial inference is given by

R =
T′

LLTLL −Q′CQSSe/K
Q′Q

, (4)

where C = PLLWLLP′
LL, Q ∼ N(0,Ir1), and K ∼ χ2

r2
.

The approximate 100(1−α)% confidence interval for σ2
a is derived by

[max(0,Rα/2),max(0,R1−α/2)],

where Rα/2 and R1−α/2 are the α/2 and 1−α/2 quantiles of the distribution of R in equation
(4), respectively. Note that the solutions of Rα/2 and R1−α/2 are based on pivotal quantities.

3.5. The LXH method

Liu et al. (2016) proposed the least squares idea of the fiducial generalized pi-votal
quantity for constructing the confidence interval for the variance components in random
effect model. Let WLXH = H′

LXHZZ′HLXH, where HLXH is a n× (n− 1) matrix such that
HLXHH′

LXH = In −n−11n1′n and H′
LXHHLXH = In−1. Let λ1 > · · · > λd ≥ 0 be the distinct

eigenvalues of WLXH having multiplicities s1, . . . ,sd . Let PLXH = [PLXH1 , . . . ,PLXHd ] be
(n− 1)× (n− 1) orthogonal matrix such that P′

LXHWLXHPLXH = diag(λ11′s1
, . . . ,λd1′sd

),
where PLXHℓ

, ℓ= 1, . . . ,d corresponding to λℓ is of dimension (n−1)× sℓ.
The minimal sufficient statistics of the LXH method are defined as TLXH1 , . . . ,TLXHd ,

where TLXHℓ
= Y′HLXHPLXHℓ

P′
LXHℓ

H′
LXHY, ℓ = 1, . . . ,d. The variables Uℓ, ℓ = 1, . . . ,d

are mutually independent and Uℓ = TLXHℓ
/(λℓσ

2
a +σ2

e ), ℓ = 1, . . . ,d has the chi-squared
distribution with sℓ degrees of freedom. The function of the least squares fiducial inference
is given by

R =
∑

d
ℓ=1 U2

ℓ ∑
d
ℓ=1 λℓTLXHℓ

Uℓ−∑
d
ℓ=1 λℓU2

ℓ ∑
d
ℓ=1 TLXHℓ

Uℓ

∑
d
ℓ=1 U2

ℓ ∑
d
ℓ=1 λ 2

ℓ U2
ℓ − (∑d

ℓ=1 λℓU2
ℓ )

2
. (5)

The approximate 100(1−α)% confidence interval for σ2
a is derived by

[max(0,Rα/2),max(0,R1−α/2)],
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where Rα/2 and R1−α/2 are the α/2 and 1−α/2 quantiles of the distribution of R in equation
(5), respectively. Note that the solutions of Rα/2 and R1−α/2 are based on pivotal quantities.

4. Simulation study

In this section, a comparison of the methods for constructing the confidence interval
for σ2

a with the methods described in Section 3 is studied by the Monte Carlo simulation.
Without loss of generality, it is assumed that µ = 0 in model (2). The values chosen for
(σ2

a ,σ
2
e ) are (0.001,0.999), (0.1,0.9), (0.2,0.8), (0.3,0.7), (0.4,0.6), (0.5,0.5), (0.6,0.4),

(0.7,0.3), (0.8,0.2), (0.9,0.1), and (0.999,0.001). The ratio of va-riance components,
ρ = σ2

a /(σ
2
a + σ2

e ) varies from small to large. The nominal confidence level of 0.95 is
considered. The simulation study is based on 5,000 iterations for each setting of the values
(σ2

a ,σ
2
e ) and the sample size pattern (ni, i = 1, . . . ,g).

The criteria for analysing the performance of the methods are the empirical coverage
probability that maintains at the nominal confidence level, and the shortest average
length of the confidence interval. The empirical coverage prob-ability is firstly considered,
and the average length of the confidence interval is later compared. The degree of imbalance
is Φ = (g/∑

g
i=1 ni)(g/∑

g
i=1 1/ni), which is used to measure imbalance in one-way model

(Ahrens and Pincus, 1981). Note that 0 < Φ ≤ 1 is equal to 1 if and only if the model is bal-
anced, and Φ is close to 0 when the model is very unbalanced. The coverage probability of
confidence interval for σ2

a depends on the degree of imbalance and the design (n1, . . . ,ng).
The simulation patterns are shown in Table 1.

Table 1. Unbalanced patterns used in simulations

Pattern Φ g ni

1 0.044 3 1 1 100
2 0.570 3 3 7 20
3 0.818 3 5 10 15
4 0.068 6 1 1 1 1 1 100
5 0.700 6 5 10 15 20 25 30
6 0.957 6 6 6 8 8 10 10
7 0.525 10 1 1 4 4 6 6 8 8 10 10
8 0.835 10 3 3 4 5 6 6 8 8 10 10

The simulation results are represented in the boxplots of Figures 1 and 2. The empirical
coverage probabilities of the confidence interval for σ2

a with the number of groups g = 3,
6, and 10, where ρ < 0.5 and ρ ≥ 0.5, are shown in Figure 1. The relative difference of
the average length of the confidence interval for σ2

a with the number of groups g = 3, 6,
and 10, where ρ < 0.5 and ρ ≥ 0.5 is shown in Figure 2. The relative length is defined as
(LM −LPB)/LPB, where LM denotes the average interval length of competing methods and
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LPB denotes the average interval length of the PB method. Clearly, the positive value of the
relative length implies that LPB is shorter than LM. On the contrary, the negative value of
the relative length implies that LM is shorter than LPB. Moreover, the relative length equal
to 0 implies that LM and LPB are equal.

Regarding the empirical coverage probabilities, from Figure 1, the PB procedure main-
tains the nominal confidence level for all situations. The LL procedure provides a larger than
the nominal confidence level for all situations. The TG procedure maintains the nominal
confidence level for all situations except for g = 10. However, the TG procedure provides
a smaller than the nominal confidence level when ρ < 0.5 for g = 10. The HK procedure
mostly maintains the nominal confidence level when ρ < 0.5 and it provides a larger than
the nominal confidence level when ρ ≥ 0.5 for g = 3. The HK procedure provides a smaller
than the nominal confidence level when ρ < 0.5 and it provides a larger than the nominal
confidence level when ρ ≥ 0.5 for g = 6 and 10. The LXH procedure provides a larger than
the nominal confidence level for all ρ for g = 3. The LXH procedure provides a smaller
than the nominal confidence level for all ρ for g = 6 and 10 except in a very unbalanced
design (pattern 4), that is, the LXH procedure maintains the nominal confidence level in a
very unbalanced design.

Comparing the average length of the confidence interval, Figure 2 clearly indicates that
the average lengths of the TG, LL, and PB intervals behave very similar. The average length
of the LXH interval is the shortest. For the number of groups g = 6 and 10, the average
length of the HK interval is shorter than the average length of the PB interval when ρ < 0.5.
Conversely, the average length of the PB interval is shorter than the average length of the
HK interval when ρ ≥ 0.5.

5. Application

The numerical example from Brownlee (1965) is a study of the effects of environmental
conditions on the measure of the ratio of electromagnetic and electrostatic units of electric-
ity. The data set is shown in Table 2. Model (1) is used to des-cribe this data set, that
is, g = 5, ni = (11,8,6,24,15), and Φ = 0.796. Furthermore, ai denote the random group
effects of the environmental conditions and assume ai ∼ N(0,σ2

a ), ei j represent the ran-
dom effect of the jth measure of electricity on the ith environmental condition and assume
ei j ∼ N(0,σ2

e ). Independence among ai and ei j is also assumed. The five confidence inter-
vals for σ2

a based on the five methods in Section 3 are presented in Table 3. Table 3 shows
that the PB method provides the shortest confidence interval for this data set.
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(a) g = 3, ρ < 0.5 (b) g = 3, ρ ≥ 0.5

(c) g = 6, ρ < 0.5 (d) g = 6, ρ ≥ 0.5

(e) g = 10, ρ < 0.5 (f) g = 10, ρ ≥ 0.5

Figure 1: The empirical coverage probabilities of 95% confidence interval for σ2
a
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(a) g = 3, ρ < 0.5 (b) g = 3, ρ ≥ 0.5

(c) g = 6, ρ < 0.5 (d) g = 6, ρ ≥ 0.5

(e) g = 10, ρ < 0.5 (f) g = 10, ρ ≥ 0.5

Figure 2: Relative difference of the average length of 95% confidence interval for σ2
a
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Table 2. The ratio of the electromagnetic to electrostatic units of electricity

Groups Observations

1 62 64 62 62 65 64 65 62 62 63 64

2 65 64 63 62 65 63 64 63

3 65 64 67 62 65 62

4 62 66 64 64 63 62 64 64 66 64 66 63

65 63 63 63 61 56 64 64 65 64 64 65

5 66 65 65 66 67 66 69 70 68 69 63 65

64 65 64

Table 3. Nominally 95% confidence interval for the data

Method TG HK PB LL LXH

confidence interval (0, 10.901) (0, 11.311) (0, 9.595) (0, 10.836) (0, 9.728)

6. Conclusion

This article studies the methods for constructing 95% confidence intervals for
variance components in an unbalanced one-way random effects model. Simulation studies
indicate that the TG procedure maintains the nominal confidence level for all situations
except for the number of group g = 10, which is liberal when ρ is small. The HK procedure
is conservative when ρ is large. On the contrary, when ρ is small, the HK procedure mostly
maintains the nominal confidence level for the number group g = 3 and is liberal for the
number of groups g = 6 and 10. The PB procedure maintains the nominal confidence level
for all situations. The LL procedure is conservative for all situations. The LXH procedure is
conservative for all ρ in the number of group g = 3. Nevertheless, for the number of groups
g = 6 and 10, the LXH procedure does not adequately maintain the nominal confidence
level. All of the average lengths of the confidence intervals behave similarly, but the average
length of the LXH interval always has the shortest. Notice that the relative length values of
the LXH method is negative.

In summary, the PB and LXH methods are recommended for the number of group g= 3.
The PB and LL methods are recommended for the number of groups g = 6 and 10. The TG
and HK methods are useful when ρ is large. Furthermore, the LXH method is preferred in
a very unbalanced design.
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