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Generalised Lindley shared additive frailty regression
model for bivariate survival data

Arvind Pandey 1, David D. Hanagal 2, Shikhar Tyagi3

ABSTRACT

Frailty models are the possible choice to counter the problem of the unobserved heterogene-
ity in individual risks of disease and death. Based on earlier studies, shared frailty models
can be utilised in the analysis of bivariate data related to survival times (e.g. matched pairs
experiments, twin or family data). In this article, we assume that frailty acts additively to the
hazard rate. A new class of shared frailty models based on generalised Lindley distribution
is established. By assuming generalised Weibull and generalised log-logistic baseline distri-
butions, we propose a new class of shared frailty models based on the additive hazard rate.
We estimate the parameters in these frailty models and use the Bayesian paradigm of the
Markov Chain Monte Carlo (MCMC) technique. Model selection criteria have been applied
for the comparison of models. We analyse kidney infection data and suggest the best model.

Key words: Bayesian estimation, frailty, generalised Lindley frailty, generalised log-logistic
distribution, generalised Weibull distribution, hazard rate, MCMC, random censoring.

1. Introduction

To analyse the survival data in biological, epidemiological, and medical studies, a com-
mon approach is that subjects are supposed to have the same risk of occurrence of an event
of interest, which acts multiplicatively. However, this assumption rarely occurs because
neither all the covariates can be measured nor can be included in the study due to technical
difficulties, time limitations, or financial implications. In real-life situations risk (hazard
rate) changes from one family to another family, one group to another group, one cluster to
another cluster. Heterogeneity in the population exists, because of the mixture of groups of
individuals with different risk factors. This heterogeneity is called frailty. Ignoring frailty
may have adverse consequences. A random impact that is an unobservable risk shared by
the subject is characterized as frailty, which was introduced by Vaupel et al. (1979). To
handle such kinds of problems, many models have been derived in survival analysis. Since
the establishment of the proportional hazard model given by Cox (1972), the survival func-
tion has been dominated by hazard rate models. The reason behind the popularity of this
model is the significance of known covariates that can be tested, also a relationship between
lifetimes and covariates can be incorporated.
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Research on the bivariate survival models has grown rapidly over the past few years.
Clayton’s (1978) random effect model of the bivariate survival was a key innovation. He in-
troduced the notion of the shared relative risk. This model was further developed by Oakes
(1982) to analyze the association between two non-negative random variables. Hougaard
(1985, 1991, 2000) discussed the different aspects of frailty on a broad scale. In the last
decade, frailty regression models in mixture distribution were discussed by Hanagal (2008).
Modelling kidney infection data for inverse Gaussian shared frailty was done by Hanagal
and Pandey (2014a). Gamma frailty models for bivariate survival data were given by Hana-
gal and Pandey (2015a). Hanagal and Pandey (2017a) used the shared inverse Gaussian
frailty models based on additive hazard. Hanagal (2019) gave an extensive literature review
on different shared frailty models. Pandey et al. (2020a) presented shared inverse Gaussian
frailty models for bivariate findings. Pandey et al. (2020b) looked at generalised inverse
Gaussian shared frailty models based on reversed hazard rates. Pandey et al. (2021a, 2022)
and Tyagi et al. (2021a) developed distinct Generalised Lindley (GL) shared frailty models
based on the reversed hazard rate. Tyagi et al. (2021b, 2022a, 2022b), Gupta et al. (2022),
Pandey et al. (2021b), and Pandey and Tyagi (2021) developed inverse weighted Lindley,
and GL shared frailty models, respectively. In this article, we assume that frailty acts ad-
ditively to the hazard rate. The additive hazard models characterize a different facet of the
association between covariates and the failure time than the proportional hazard model and
are more plausible than the latter for many applications (Lin and Ying, 1994; Bin, 2010).
The additive hazard models can be authentically a better alternative to proportional hazard
or other nonlinear hazard regression models to narrate the consequences of covariates on
survival time (Hosmer and Royston, 2002). When the absolute change in risk, instead of
the risk ratio, is of primary interest or when the proportional hazard assumption for the Cox
proportional hazard model is violated, an additive hazard regression model may be more
appropriate (Xie et al., 2013). Let a continuous random variable T be a lifetime of an indi-
vidual and the random variable W be frailty variable. The conditional hazard function for a
given frailty variable, W = w at time t ∈ IR+ is

φ(t | w) = φ0(t)+ eKβ+V β1 = φ0(t)+weKβ ,w ∈ IR+,V ∈ IR, (1)

where w = eV β1 and φ0(t) is a baseline hazard function at time t ∈ IR+, K is a row vector of
covariates, and β is a column vector of regression coefficients. The cumulative hazard rate
function is given by

Φ(t | z) = Φ0(t)+wteKβ . (2)

The conditional survival function for given frailty at time t ∈ IR+ is

S(t | w) = e−
∫ t

0 φ(x|w)dx = e−
[
Φ0(t)+wteKβ

]
, (3)

where Φ0(t) is the cumulative baseline hazard function at time t ∈ IR+. Integrating over the
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range of frailty variable W having density f (w), we get the marginal survival function as

S(t) =
∫

w∈IR+
S(t | w) f (w)dw =

∫
w∈IR+

e−
[
Φ0(t)+wteKβ

]
f (w)dw, = S0(t)Lw(teKβ ), (4)

where LZ(.) is the Laplace transformation of the distribution of Z and S0(t) is the baseline
survival function of T . Once we get the survival function at time t ∈ IR+, of lifetime random
variable for an individual, we can obtain the probability structure and make its inferences
based on it.
The main objective of this article is threefold. First, generalised Lindley (GL) shared frailty
models for additive hazard rate with generalised Weibull and generalised log-logistic as
baseline distributions have been introduced. Second, the Bayesian approach of estimation
has been employed to estimate the unknown parameters under random censoring. Third, a
simulation study and data analysis have been done for the Kidney infection data set.

2. General Shared Frailty Model

The shared frailty models are applicable to event time of the related individuals,
similar organs, and repeated measurements. In this model individuals from a group shares
common covariates. It has been considered that survival times are conditionally indepen-
dent, for a given shared frailty. Shared frailty indicates dependence between survival times
is only because of unobservable covariates (frailty). Frailty variable W has a degenerate
distribution in the absence of variability. If the dependence is positive, the distribution of W
is not degenerate.

Assume n individuals are considered under the study. Bivariate random variables (T1 j,T2 j)
are postulated as the first and the second survival times of the jth individual ( j = 1,2,3, . . . ,n).
Also m known covariates are supposed to be collected in a vector K j = (K1 j, . . . ,Km j) for
the jth individual where Ka j (a = 1,2,3, . . . ,m) represents the value of the ath observed co-
variate for the jth individual. Under shared frailty model, it has been presupposed that both
survival times for everyone share the similar value of the covariates. Let Wj be shared frailty
for the jth individual. Assuming that the frailties are acting additively on the baseline hazard
function and both the survival times of individuals are conditionally independent for given
frailty, the conditional hazard function for the jth individual at the ith (i = 1,2) survival time
ti j ∈ IR+ for given frailty Wj = w j has the form

φ(ti j |Wj,K j) = φ0(ti j)+w jeK jβ ,

where φ0(ti j) is the baseline hazard at time ti j ∈ IR+ and β is a vector of order m, of the
regression coefficients. The conditional cumulative hazard function for the jth individual at
the ith survival time ti j ∈ IR+ for a given frailty Wj = w j is

Φ(ti j | w j,X j) = Φ0(ti j)+w jti jρ j,

where ρ j = eK jβ and Φ0(ti j) is the cumulative baseline hazard function at time ti j ∈ IR+.
The conditional survival function for the jth individual at the ith survival time ti j ∈ IR+ for
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a given frailty Wj = w j is

S(ti j | w j,K j) = e−Φ(ti j |w j ,K j) = e−[Φ0(ti j)+w jti jρ j].

Under the assumption of independence, the bivariate conditional survival function for a
given frailty, Wj = w j at time t1 j ∈ IR+ and t2 j ∈ IR+ is

S(t1 j, t2 j | w j,K j) = S(t1 j | w j,K j)S(t2 j | w j,K j) = e−[(Φ01(t1 j)+Φ02(t2 j))+w j(t1 j+t2 j)ρ j].

The unconditional bivariate survival function at time t1 j ∈ IR+ and t2 j ∈ IR+ can be obtained
by integrating over the frailty variable Wj having the probability function fW (w j), for the
jth individual

S(t1 j, t2 j | K j) =
∫

W j∈IR+
S(t1 j, t2 j | w j) fW (w j)dw j = e−(Φ01(t1 j)+Φ02(t2 j))LW j [(t1 j + t2 j)ρ j],

(5)
where LZ j(.) is the Laplace transform of the frailty variable of Wj for the jth individual.
Here onwards we represent S(t1 j, t2 j | K j) as S(t1 j, t2 j).

3. Generalised Lindley Frailty Model

Lindley (1958) proposed a distribution with one parameter. Because of having only
one parameter, the Lindley distribution does not provide enough flexibility for modelling
purposes. It will be useful to consider further alternatives of this distribution. For a frailty
distribution, a new generalised Lindley distribution has been considered in this paper. This
distribution is the mixture of two gamma distributions G(θ ,µ) and G(θ ,η) with mixing
coefficient θ/(θ + 1) ( Elbatal, et al. (2013)). Because of the mixture of two gamma
densities, a slight suppleness can be seen during analysis of time to event data. That is the
reason why the GL frailty model is more adaptable in comparison with the gamma frailty
model. the probability density function of GL distribution has been specified below:

fW (w) =

{
1

(1+θ)

[
θ µ+1wµ−1

Γµ
+ θ η wη−1

Γη

]
e−θw ;w ∈ IR+,µ,η ,θ ∈ IR+

0 ;otherwise,

with mean E[W ] = 1
1+θ

[
µ + η

θ

]
. And corresponding variance is,

V (W ) =
1

(1+θ)

[(
µ

2 +
η2

θ

)(
1

θ(1+θ)

)
+

(
µ +η

θ

)
−
(

2µη

θ(1+θ)

)]
,

after applying identifiability property, i.e., E[W ] = 1 we get a relation between parameters
η = θ (1+θ −µ). Consequently, the density function, the Laplace transformation and vari-
ance for GL are reduced to

fW (w) =

{
1

(1+θ)

[
θ µ+1wµ−1

Γµ
+ θ θ(1+θ−µ)wθ(1+θ−µ)−1

Γθ(1+θ−µ)

]
e−θw ; w,θ ∈ IR+,µ ∈ (0,1+θ)

0 ; otherwise.
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LW (s) =
1

(1+θ)

[
θ µ+1

(s+θ)µ
+

θ θ(1+θ−µ)

(s+θ)θ(1+θ−µ)

]
, (6)

V (W ) =
θ 4 −θ 3µ +3θ 2(1+θ)−4θ 2µ +3θ µ(µ −1)+µ2

θ(1+θ)2 . (7)

Let n be the number of observations under study. Let (T1 j,T2 j) be the first and second
survival times of pairs of components of jth (1,2, ...,n) objects. The unconditional bivariate
survival function at time t1 j ∈ IR+ and t2 j ∈ IR+ using equations (5) and (6) can be written
as

S(t1 j, t2 j) =
e−(Φ01(t1 j)+Φ02(t2 j))

(1+θ)

[
θ µ+1

(θ +ρ(t1 j + t2 j))µ
+

θ θ(1+θ−µ)

(θ +ρ(t1 j + t2 j))θ(1+θ−µ)

]
,

(8)

where Φ01(t1 j), Φ02(t2 j) are the cumulative baseline hazard rate functions of the lifetime
T1 j and T2 j, respectively. One can have different baseline distributions for T1 and T2. Af-
ter substituting different cumulative hazard functions in (8), we get different generalised
Lindley frailty distributions.

4. Dependence Measure

Sometimes due to complex form of frailty models, it is difficult to compare the degree
of dependence between different frailty models. Kendall’s τ can be used to quantify depen-
dence because it is independent of transformations on the time scale and the frailty model
used. It is a rank-based dependence measure.

τ =
∫

s∈IR+
4sL”

W (s)LW (s)ds−1. (9)

After using equation (8) and (9), we get,

τ =
∫

s∈IR+
R(s | θ ,µ)ds−1, (10)

where R(s | θ ,µ) =
4θs(θ µ+1A−µ+θ θBAθ(µ−θ−1))(µ(µ+1)θ µ A−µ+θ θBB(−µθ+θ 2+θ+1)Aθ(µ−θ−1))

(θ+1)2A2 .
A = (θ + s), B = (1+θ −µ).
Kendall’s τ cannot be found in closed form for GL frailty. Some numerical approaches can
be utilized to obtain Kendall’s τ dependence measure.
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5. Baseline Distributions

5.1. Generalised Weibull Distribution

Here, the generalised Weibull distribution has been postulated as a baseline distribution.
If a continuous random variable T ∈ IR+ follows the generalised Weibull distribution then
the survival and cumulative hazard function, are respectively,

S(t) =

 1−
(

1− e−δ tξ
)ζ

; t ∈ IR+,δ ,ζ ,ξ ∈ IR+

1 ;otherwise
(11)

Φ0(t) =

 − log
(

1−
(

1− e−δ tξ
)ζ
)

; t ∈ IR+,δ ,ζ ,ξ ∈ IR+

0 ;otherwise
(12)

5.2. Generalised log-logistic distribution

Bacon (1993) used the log-logistic distribution for modelling saturation effects. The
survival function of the log-logistic distribution is given by,

S(t) = (1+δ tξ )−1 (13)

Due to having heavier tail in camparison to the gamma distribution, the log-logistic
distribution can be more beneficial to be used for finance and insurance variables. The log-
logistic distribution provides two parametric models for the survival analysis. Unlike the
more commonly used Weibull distribution, it can have a non-monotonic hazard function:
when ξ > 1 the hazard function is unimodal (when ξ ≤ 1 , the hazard decreases monoton-
ically). The fact that the cumulative distribution function can be written in the closed form
is particularly useful for the analysis of the survival data with censoring.

Lehmann family (Deshpande and Purohit, 2005) is a very useful family of life distribu-
tions generated from a given survival function and extensively used to model the effect of
covariates. Let S0(t) be an arbitrary known survival function. If ζ is positive, then

S(t) = (S0(t))ζ (14)

is also a survival function. If, in particular, ζ is the positive integer n, then it represents
the survival function of min(X1, ...,Xn) where Xi’s are i.i.d. random variables with S0(t) as
the common survival function. The hazards are proportional ζ times. Lehmann family is
also known as the proportional hazards family. We use the same property and obtain, the
survival function and the cumulative hazard rate as follows.

S(t) =

{
(1+δ tξ )−ζ ; t ∈ IR+,δ ,ζ ,ξ ∈ IR+

1 ;otherwise
(15)
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Φ0(t) =

{
ζ log(1+δ tξ ) ; t ∈ IR+,δ ,ζ ,ξ ∈ IR+

0 ;otherwise
(16)

6. Proposed model

Due to group variation or frailty and individual variation described by the hazard func-
tion, a shared frailty model can be considered as a mixture model in survival analysis. Dis-
tribution of W is convergent, if dependence is positive. After substituting a cumulative
hazard function for generalised Weibull and generalised log-logistic baseline distributions
in equation (8)

S(t1 j, t2 j) =
1

(1+θ)

[
θ µ+1

(θ +ρ(t1 j + t2 j))µ
+

θ θ(1+θ−µ)

(θ +ρ(t1 j + t2 j))θ(1+θ−µ)

]
2

∏
i=1

(
1−
(

1− e−δit
ξi
i j

)ζi
)
, (17)

S(t1 j, t2 j) =
1

(1+θ)

[
θ µ+1

(θ +ρ(t1 j + t2 j))µ
+

θ θ(1+θ−µ)

(θ +ρ(t1 j + t2 j))θ(1+θ−µ)

]
2

∏
i=1

(1+δit
ξi
i j )

−ζi , (18)

here, equations (17), (18) can be called Model-I, Model-II respectively, which have been
established for generalised Weibull and generalised log-logistic baseline distributions.

7. Likelihood Design and Bayesian Paradigm

For the study, n individuals have been considered. Observed failure times have been
indicated by (t1 j, t2 j). We are using the random censoring scheme. Let censoring time is in-
dicated by c1 j and c2 j for jth individual ( j = 1,2,3, ...,n). Independence between censoring
schemes and lifetimes of individuals has been presumed. The probability density function
can be described for bivariate lifetime random variable of the jth individual as

f j(t1 j, t2 j) =


f1(t1 j, t2 j), ; t1 j < c1 j, t2 j < c2 j,

f2(t1 j,c2 j), ; t1 j < c1 j, t2 j > c2 j,

f3(c1 j, t2 j), ; t1 j > c1 j, t2 j < c2 j,

f4(c1 j,c2 j), ; t1 j > c1 j, t2 j > c2 j.

The likelihood function will be

L(Θ,β ,θ ,µ) =
n1

∏
j=1

f1(t1 j, t2 j)
n2

∏
j=1

f2(t1 j,c2 j)
n3

∏
j=1

f3(c1 j, t2 j)
n4

∏
j=1

f4(c1 j,c2 j), (19)
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where Θ, β , θ and µ are the vector of baseline parameters and the vector of regression
coefficients and frailty parameters respectively. Let n1,n2,n3, and n4 be the number of pairs
for which the first and the second failure times (t1 j, t2 j) lie in the ranges t1 j < c1 j, t2 j < c2 j;
t1 j < c1 j, t2 j > c2 j; t1 j > c1 j, t2 j < c2 j, and t1 j > c1 j, t2 j > c2 j respectively and let

f1(t1 j, t2 j) =
∂ 2S(t1 j, t2 j)

∂ t1 j∂ t2 j
; f2(t1 j,c2 j) =−

∂S(t1 j,c2 j)

∂ t1 j
,

f3(c1 j, t2 j) =−
∂S(c1 j, t2 j)

∂ t2 j
; f4(c1 j,c2 j) = S(c1 j,c2 j). (20)

Substituting cumulative hazard rates Φ01(t1 j) and Φ02(t2 j) and survival function S(t1 j, t2 j)

in equation (29) for Model-I and Model-II and by differentiating we get the likelihood func-
tion. The maximum likelihood method has crucial importance in computing efficient esti-
mators. Inappropriately, due to a convergence problem, maximum likelihood failed to esti-
mate the parameters, because Model-I and Model-II have thirteen-dimensional optimization
problems. The Bayesian scenario has been discussed by several researchers for estimating
parameters of the frailty models. For gamma and log-normal frailty models, the Bayesian
paradigm has been contemplated by Santos and Achcar (2010). Weibull and piecewise ex-
ponential models have been discussed by Ibrahim et al. (2001) with gamma frailty. The
joint posterior density function of parameters for given failure times is obtained as

π(Θ,θ ,µ,β0) ∝ L(Θ,µ,β
0
)g1(ζ )g2(ξ )g3(δ )g4(θ)g5(µ)

5

∏
i=1

pi(β0i×1)

where gi(.) indicates the prior density function with known hyperparameters of the corre-
sponding argument for baseline parameters and frailty variance; pi(.) is prior density func-
tion for regression coefficient β0i and the likelihood function is L(.). An important assump-
tion here is that all the parameters are independently distributed. In a similar way, the joint
posterior density function can be written for without frailty models. To estimate the param-
eters of the models, hybrid Metropolis-Hastings algorithms have been used. The Geweke
test (see Geweke, 1992) and Gelman-Rubin (see Gelman and Rubin, 1992) statistics have
been used to monitor the convergence of a Markov chain to a stationary distribution.
Due to the high dimensions of conditional distributions, it is difficult to integrate out. Thus,
it has been considered that full conditional distributions can be obtained as they are propor-
tional to the joint distribution of the parameter of the model. The conditional distribution
for single parameter δ with frailty is obtained as

ψ1(δ | ξ ,ζ ,θ ,µ,β0) ∝ L(δ ,ξ ,ζ ,θ ,µ,β0) ·g1(δ ) (21)

the conditional distribution for single parameter δ without frailty is obtained as

ψ1(δ | ξ ,ζ ,β0) ∝ L(δ ,ξ ,ζ ,β0) ·g1(δ ).

Similarly, the conditional distributions for other parameters can be obtained.
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8. Simulation Study

A simulation study has been executed to appraise the Bayesian estimation paradigm for
Model-I and Model-II. Single covariate K1 has been considered folliwng normal distribu-
tion. The frailty variable W is assumed to follow generalised Lindley distribution. Indepen-
dence between lifetimes of individuals has been considered. Samples are generated using
the subsequent mechanism,

1. From the binomial distribution with probability 0.6, 25 values for K1 has been gener-
ated.

2. For known covariates, compute ρ = eK1β1 .

3. The distribution of lifetimes follow generalised Weibull and generalised log-logistic
baseline distributions for given frailty Wj. 25 values of lifetimes have been generated.
The conditional survival function for lifetime t j ( j = 1,2, ...,n) for given frailty Wj =

w j and covariate K1 is

S(t j | w j,K1) = e−(Φ0(t j)+w jtρ)

Equating S(t j | w j,K1) to random number, say v j(0 < v j < 1) generated from U(0,1)
over t j ∈ IR+ we get:
for Model-I and Model-II

v j =

(
1−
(

1− e−δ tξ

j

)ζ
)
∗ e−wt jρ ,

v j = (1+δ tξ

j )
−ζ ∗ e−wt jρ respectively.

4. Censoring time c j has been generated from G(0.9,0.01) for Model-I.

5. Observe the jth survival time t∗j = min(t j,c j) and the censoring indicator χ j for the
jth individual ( j = 1,2, ...,25) where

χ j =

{
1, ; t j < c j

0, ; t j > c j

thus we have data consisting of 25 pairs of survival times t∗j and the censoring indica-
tor χ j.

Concurrently, with different priors and starting points, two chains have been operated. Both
chains were recapitulated 100,000 times. Gelman-Rubin test values are very close to one.
Due to small values of Geweke test statistic and corresponding p-values, the chains reach
stationary distribution for both prior sets. The estimates of parameters were the same for
both the priors, no impact of prior distributions has been found on posterior summaries.
Here, the analysis for one chain has been exhibited because both the chains have shown the
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same results. Tables 1 and 2 present the estimates and the credible intervals of the param-
eters for Models I and II based on the simulation study. The Gelman-Rubin convergence
statistic values are nearly equal to one and also the Geweke test values are quite small, and
the corresponding p-values are large enough to say that the chain attains stationary distribu-
tion.

9. Applicability on Kidney Infection Data

To elucidate the Bayesian estimation paradigm, kidney infection data of McGilchrist
and Aisbett (1991) have been considered. This data consists of 38 patients and recurrence
times (in days) of infection are given. Table 3 gives the p-values of goodness of fit test for
Model I and Model II. Consequently, on the basis of p-values of K-S test it is clear that there
is no statistical evidence to reject the hypothesis that data are from Model I and Model II
in the marginal case and it can be assumed that they also fit for bivariate case. For frailty
parameters, gamma distribution with very small shape and scale parameters (say, 0.0001)
has been used. Additionally, it can be considered that regression coefficients are normally
distributed with mean zero and high variance (say 1000). A similar type of prior was used
in Ibrahim et al. (2001) and Santos and Achcar (2010). Thus for frailty parameters θ ,µ

and regression coefficients β0i, i = 1, ...,5, vague priors have been used. Because of no
information about the baseline parameter, the prior distribution corresponding to baseline
parameters is also considered flat. We considered two different vague prior distributions
for baseline parameters, one is gamma distribution with shape and scale hyperparameters
ε1,ε2 respectively and another is uniform distribution with interval (ν1,ν2). All the hyper-
parameters are known. Under the Bayesian paradigm, for both models, two parallel chains
have been run. Also, two sets of prior distributions have been used with different starting
points using the hybrid Metropolis-Hastings algorithm based on normal transition kernels.
It can be said that estimates are independent of the different prior distributions because, for
both sets of priors, estimates of parameters are approximately similar. We got an almost
similar convergence rate of the Gibbs sampler for both sets of priors. Here, the analysis
for one chain has been exhibited because both the chains have shown the same results. The
Gelman-Rubin convergence statistic values are closely equal to one. The Geweke test statis-
tic values are somewhat small, and the corresponding p-values are large enough to say that
the chains reach stationary distribution. Tables 4-5 contained the values of posterior mean
and the standard error with 95% credible intervals, the Gelman-Rubin statistics values, and
the Geweke test with p-values for Model I and II. The AIC, BIC, and DIC values, given in
Table 7, have been used to compare both models. Model-I holds the lowest possible values
of AIC, BIC, and DIC. For Model-I and Model-II, the credible interval of all regression
coefficients does not contain zero. It indicates that all covariates have a significant effect
on both models. With a negative value, it is being indicated that age, sex, disease PKD are
significant factors for kidney infection, having negative effects. But, with positive value
diseases, GN and AN have a positive significant effect with a higher chance of infection. It
is observed that female patients have a lower risk of kidney infection as compared to male
counterparts.
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10. Conclusions

A generalised Lindley additive frailty model under generalised Weibull and generalised
log-logistic baseline distributions has been proposed. To fit the proposed model the hybrid
M-H algorithm has been applied. Analysis has been done in R statistical software with
self-written programs. The value of both frailty parameters for Model-I (θ = 2.29258,µ =

1.38391) and Model-II (θ = 2.12060,µ = 1.28878) is very high and corresponding vari-
ances are 1.434811 and 1.36565 by using equation (3.2). In Table 6, we calculate Kendall’s
τ measure of dependence by using equation (4.2). All these values are large enough to ex-
hibit that there is a strong indication of heterogeneity among the patients in the population
for the data set. To take the decision about all models, different tools have been utilized.
With the lowest value of AIC, BIC, and DIC, from Table 7, and the value of Bayes factor for
Model-I against Model-II (1.122368), it can be said that Model-I is better than the Model-II
to analyze kidney infection data. For kidney infection data, all the covariates have been
found statistically significant factors for both models (see Tables 4-5). Our proposed frailty
models, Model-I and Model-II, are better as compared to the frailty models by Hanagal et
al. (2017) and Hanagal and Pandey (2017a) with baseline generalised log-logistic distribu-
tion. In a similar way, with a minimum value of AIC, our proposed frailty models are better
as compared to the frailty models by Pandey et al. (2018).
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Appendix

Tables and Figures

Table 1: Posterior Summary of Generalised Lindley Frailty with Baseline Generalised
Weibull (Simulation Study: Model-I)

Parameter Estimate s.e. L.C.L. U.C.L. Geweke p− value Gelman
test Rubin test

burn-in period = 6900; autocorrelation lag = 400
ζ1(22.5) 23.07359 1.34778 20.32034 25.68016 0.00151 0.50060 1.01140
δ1(0.013) 0.01418 0.00291 0.00919 0.01884 -0.00694 0.49723 1.00058
ξ1(0.35) 0.35559 0.03256 0.29407 0.42018 0.00562 0.50224 1.00174
ζ2(22.5) 22.77481 3.04714 17.77885 27.43331 -0.00067 0.49973 1.00054
δ2(0.013) 0.01395 0.00287 0.00916 0.01865 -0.00405 0.49839 0.99996
ξ2(0.33) 0.33549 0.03187 0.27242 0.40088 -0.00716 0.49714 0.99996
θ(2.8) 2.57442 0.50458 1.83115 3.55436 0.00639 0.50255 1.00289
µ(1.5) 1.51839 0.18151 1.21484 1.93333 0.00094 0.50037 1.00154

β1(0.15) 0.12616 0.06989 -0.00552 0.26851 -0.00119 0.49953 0.99996

Table 2: Posterior Summary of Generalised Lindley Frailty with Baseline Generalised Log-
Logistic-II (Simulation Study: Model-II)

Parameter Estimate s.e. L.C.L. U.C.L. Geweke p− value Gelman
test Rubin test

burn-in period = 6900; autocorrelation lag = 400
ζ1(4.5) 4.42991 0.32462 3.78131 5.04944 0.00185 0.50074 1.00044

δ1(0.02) 0.02039 0.00291 0.01514 0.02481 -0.00352 0.49860 1.06288
ξ1(0.75) 0.76296 0.06621 0.63513 0.87928 -0.00773 0.49692 1.01162
ζ2(7.5) 7.36200 0.55461 6.51050 8.40194 0.00984 0.50392 1.00001

δ2(0.05) 0.04829 0.00577 0.04045 0.05902 0.00597 0.50238 0.99996
ξ2(0.65) 0.64983 0.06029 0.53887 0.77669 -0.00359 0.49857 0.99996
θ(4.8) 4.65038 0.52427 3.85500 5.62394 0.01400 0.50559 1.00018
µ(2.5) 2.50104 0.32257 1.90090 3.14192 0.01360 0.50543 0.99997

β1(0.15) 0.13734 0.06798 -0.00299 0.27876 0.01239 0.50494 0.99996

Table 3: p-value of K-S statistics for goodness of fit test for Kidney Infection data set

Model T1 p-value T2 p-value
Model − I 0.7912 0.4490
Model − II 0.5722 0.6860
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Table 4: Posterior Summary of Generalised Lindley Frailty with Baseline Generalised
Weibull for Kidney Infection Data (Model-I)

Parameter Estimate s.e. L.C.L. U.C.L. Geweke p− value Gelman
test Rubin test

burn-in period = 6900; autocorrelation lag = 400
ζ1 1.99061 0.06654 1.84351 2.10812 0.00268 0.50107 1.00003
δ1 0.05530 0.00310 0.04954 0.06115 -0.00126 0.49950 1.00001
ξ1 0.66315 0.02125 0.61705 0.70345 -0.00648 0.49741 1.00006
ζ2 2.71016 0.06297 2.59528 2.83639 -0.00474 0.49811 0.99998
δ2 0.06205 0.00311 0.05563 0.06818 0.00865 0.50345 1.00034
ξ2 0.67052 0.02313 0.62961 0.71617 -0.00296 0.49882 0.99998
θ 2.29258 0.09757 2.11305 2.47659 0.00077 0.50031 0.99998
µ 1.38391 0.09709 1.20062 1.58699 -0.00608 0.49757 1.00025
β1 -0.10576 0.01289 -0.13073 -0.08109 -0.00220 0.49912 0.99997
β2 -8.88412 1.46382 -11.50565 -6.16638 0.00658 0.49912 1.00032
β3 2.44371 0.33770 1.84343 3.11420 0.00775 0.50309 1.00075
β4 1.61045 0.29506 1.08735 2.19532 -0.00539 0.49785 1.00093
β5 -52.67579 27.25061 -101.04670 -4.02850 0.00950 0.50379 0.99996

Table 5: Posterior Summary of Generalised Lindley Frailty with Baseline Generalised Log-
Logistic-II for Kidney Infection Data (Model-II)

Parameter Estimate s.e. L.C.L. U.C.L. Geweke p− value Gelman
test Rubin test

burn-in period = 6900; autocorrelation lag = 400
ζ1 3.79268 0.10452 3.59085 4.01330 0.00174 0.50070 1.00009
δ1 0.00160 0.00006 0.00148 0.00173 -0.00034 0.49987 1.00000
ξ1 1.04034 0.04412 0.95236 1.11628 0.00441 0.50176 1.00096
ζ2 4.30595 0.09619 4.11335 4.49439 -0.00039 0.49984 0.99997
δ2 0.00043 0.00001 0.00041 0.00045 0.00431 0.50172 1.00010
ξ2 1.25850 0.04593 1.16443 1.34386 0.00485 0.50194 0.99997
θ 2.12060 0.10701 1.92252 2.34629 0.00182 0.50072 0.99997
µ 1.28878 0.09992 1.10590 1.49725 -0.00126 0.49950 1.00025
β1 -0.10630 0.01145 -0.12756 -0.08297 -0.00153 0.49939 0.99997
β2 -67.94356 33.76583 -132.77210 -7.62369 0.00755 0.49939 1.00175
β3 2.51987 0.26359 2.04163 2.97889 0.00187 0.50075 1.00056
β4 1.51014 0.20139 1.14758 1.87047 -0.00018 0.49993 1.00104
β5 -54.94150 31.09431 -111.91510 -3.56763 0.00406 0.50162 0.99997

Table 6: Kendall’s τ Measure of Dependence

Model Kendall’s τ value
Model − I 0.297939
Model − II 0.303226

Table 7: AIC, BIC and DIC Comparison

Model AIC BIC DIC
Model-I 685.3974 706.6861 664.4514
Model-II 686.2751 707.5637 665.7128




