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Sampling methods for the concentration parameter
and discrete baseline of the Dirichlet Process

Yang Liu1, Balgobin Nandram2

ABSTRACT

There are many models in the current statistical literature for making inferences based on
samples selected from a finite population. Parametric models may be problematic because
statistical inference is sensitive to parametric assumptions. The Dirichlet process (DP) prior
is very flexible and determines the complexity of the model. It is indexed by two hyper-
parameters: the baseline distribution and concentration parameter. We address two distinct
problems in the article. Firstly, we review the current sampling methods for the concentration
parameter, which use the continuous baseline distribution. We compare three different meth-
ods: the adaptive rejection method, the mixture of Gammas method and the grid method. We
also propose a new method based on the ratio of uniforms. Secondly, in practice, some sur-
vey responses are known to be discrete. If a continuous distribution is adopted as the baseline
distribution, the model is misspecified and standard inference may be invalid. We propose
a discrete baseline approach to the DP prior and sample the unobserved responses from the
finite population both using a Polya urn scheme and a Multinomial distribution. We applied
our discrete baseline approach to a Phytophthora data set.

Key words: concentration parameter, discrete baseline, empirical study, grid method, non-
parametric Bayesian statistics.

1. Introduction

We often know very little about the specific parametric forms of the distributions, and
it is also difficult to validate the parametric assumptions. The parametric Bayesian models,
based on distributional assumptions, may be problematic because inferences are sensitive
to such assumptions. It may be more appealing to use a nonparametric Bayesian approach.
The existence of the Dirichlet Process (DP) was established by Ferguson (1973) and further
developed by Blackwell and MacQueen (1973). It is a distribution over distributions, that
is, each draw from a DP itself is a distribution (i.e. we are working on functional spaces). In
this paper we provide an improved method to sample the concentration parameter and show
that it is affected by a discrete baseline.

Another representation of the DP is the generalized Polya urn scheme (Blackwell and
MacQueen, 1973). We consider two urns. Urn I is empty and Urn II contains an infinite
number of balls, each with a different colour. Pick a ball from Urn II and put it in Urn
I. For the next ball, we draw Urn I with probability 1

α+1 . If Urn I is selected, we replace
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the selected ball with two balls of the same colour, and if Urn II is selected, we take a ball
and place it into Urn I. This procedure is repeated until n balls are in Urn I; this is the
sample. We observe that with positive probability draws from G (distribution of Urn I) can
take the same value regardless of the smoothness of G0 (distribution of Urn II). That is, G
is a discrete distribution with probability one. Current literature have been using smooth
functions such as Gaussian distribution as G0; however this is not always reasonable. This
paper will explore a different choice of G0.

To sample the concentration parameter α of the DP is still an open topic. One can use
Gilks’ (1992) adaptive rejection sampling method, which relies on the logconcavity of the
distribution of the logarithmic transformation of α . Nandram and Yin (2016 a, b) used
a grid method to sample α from the posterior density of ρ = 1/(1+α); they have used
a noninformative prior for α , different from the proper (informative) prior suggested by
Escobar and West (1995). Antonelli, Trippa and Haneuse (2016) reviewed several methods
and suggested a more complex method. The problem of sampling the posterior density of α

is a difficult one. One of the reasons why it is difficult to estimate α is because it is based on
a ‘single’ observation, k. There are no repeated sampling. So there will be computational
instability. There is some research in which the authors set α = 1 (e.g. Chaudhuri and Ghosh
2011) to overcome the difficulty in estimating α , thereby leading to an underestimation in
variability. In this paper we will propose a new method based on the ratio of uniforms in
random sampling.

Another concern that will be addressed is regarding the discreteness of the baseline
distribution G0. It is well known that inference is sensitive to the specification of baseline
measure (e.g. McAuliffe, Blei and Jordan 2006 and Nandram and Yin 2016 a). So it is
more robust if we have an unspecified distribution G0. Camerlenghi et al. (2019) discussed
ties across samples at the observed or latent level. In the discrete case we mention here, an
observation can look like a tie, but it may not be. We are not actually talking about ties,
although it is a part of what we are doing. The discreteness of G0 means that the same value
can come from either G0 or from the balls already drawn in the Polya urn scheme. But it is
mandatory to have G0 discrete in this model if we have a strong belief that the observations
are from a discrete family. In such a case, the number of distinct values in the sample, k, is
no longer a sufficient statistic for α . This paper will correct this.

We demonstrate our discrete baseline approach to Phytophthora epidemics in bell pep-
per. The pathogen Phytophthora Capsici Leonian is a severe infectious disease and could
rapidly cause death of the plant (Gumpertz 1997). Disease presence or absence was recorded
for each cell in a 20×20 quadrats study field. We group the quadrats and count the number
of diseased plants in each group so we know the response is guaranteed to be discrete. Now
our goal is to obtain an estimator of the finite population mean provided by a nonparametric
approach. It is apparent that this approach is more robust than the parametric models such as
those based on normality. On the other hand, current nonparametric methods are all based
on continuous baseline distribution (i.e. normal baseline). Our approach, with relaxation
to the baseline distribution, gives a more realistic estimator when we know the response is
discrete.

This paper is an extension of Nandram and Yin (2016 a,b), who studied the sensitivity
of the baseline distribution to the finite population mean. They proposed the DP approach to
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predict the nonsampled observations by using the Polya urn scheme. We choose a discrete
baseline to the DP when the response is known to be from a discrete family. When G0 is
discrete, the number of distinct values in the sample is no longer a sufficient statistic of the
concentration parameter α . We proposed a way to correct this by adding a latent variable to
indicate which urn the observation is from.

When faced with a discrete baseline, researchers might resort to a DP-based mixture
model (DPM) involving a continuous kernel density, however, this is not what we are trying
to discuss here. Note that DPMs are often miscalled as “mixture of Dirichlet process model"
(Neal 2000). There have been many computational methods to run the model over the past
two decades (e.g. Escobar and West 1995, Neal 2000 and Kalli, Griffin and Walker 2011).
The DPM is not appropriate in some applications like the example we discuss in this paper
because we do not have well defined groups of data. For the DPM, we need different groups
of data with different parameters and then a DP is assigned to these parameters. Of course,
in applications the DPM is the workhorse of nonparametric Bayesian statistics, yet we need
to solve the problem associated with discrete baseline distributions as they may be included
as a step in a hierarchical Bayesian model.

The plan of this paper is as follows. In Section 2, we briefly review the Dirichlet pro-
cess (DP), and different sampling algorithms for α , the concentration parameter. We also
introduce our approach, the ratio of uniforms algorithm, and a simulation study to compare
the different methods. In Section 3, we discuss one limitation that current literature has
regarding the baseline distribution of the DP and how we resolve it. We also discuss the
implementation of our method to the finite population mean. In Section 4, we discuss an il-
lustrative example on Phytophthora data. We conclude this paper in Section 5. An appendix
has technical details.

2. Dirichlet Process and Sampling the Concentration Parameter

In Section 2.1, we give a brief review of the Dirichlet process, and in Section 2.2, we
review current methods to sample the posterior density of α . In Section 2.3 we present our
new method based on the ratio of uniforms. In Section 2.4, we provide a small simulation
study to compare our new method with few selected ones that we review.

2.1. Review of the Dirichlet Process

Let (Θ,B) be a measurable space, with G0 the baseline measure (nonrandom) on the
space, and let α be the concentration parameter. A Dirichlet process, DP(α,G0), is defined
as the distribution of a random probability measure G over (Θ,B) such that, for any finite
measurable partition of the measurable space, (Θ, {Ai}n

i=1), with Ai
⋂

A j = φ ,
⋃n

i=1 Ai = Θ,

{G(A1), · · · ,G(An)} ∼ Dirichlet{αG0(A1), · · · ,αG0(An)}.

We write G ∼ DP(α,G0), if G is a random probability measure with a distribution given
by the DP. For any measurable set, A, we have E[G(A)] = G0(A), that is the mean of the DP
is the baseline distribution G0 and Var[G(A)] = G0(A)[1−G0(A)]/(α +1). The larger α is,
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the smaller the variance (i.e. the DP concentrates more of its mass around the baseline dis-
tribution). Here, G0 and α are both parameters and they play intuitive roles in the definition
of the DP. Here, G is constrained to be around G0 and this is regulated by α .

Let G ∼ DP(α,G0) and y1, · · · ,yn be a sequence of independent draws from G. The
posterior distribution, G|y1, · · · ,yn is

DP
(

α +n,
α

α +n
G0 +

1
α +n

n

∑
i=1

δyi

)
,

where δyi is the cdf of a point mass at yi. This conjugate property of the DP was motivated
by Ferguson (1973), desirable for easy algebra and computations.

For a one-sample problem, one might take

Y1, · · · ,Yn|G ∼ G,

G ∼ DP(α,G0),

where G0 is the baseline measure and α the concentration parameter. Assuming that there
are k distinct values among Y1, · · · ,Yn, the baseline model is Y ∗

1 , · · · ,Y ∗
k |k ∼ G0. Note that k

is a random variable. The baseline measure G0 is assumed continuous. Binder (1982) was
the first to introduce this model to survey sampling; more recently, see Nandram and Yin
(2016 a,b). Although G0 can be discrete, it appears that this latter case was not discussed
by Antoniak (1974).

Antoniak (1974) wrote down the distribution of the number of distinct values k given
α and he proved that k is a sufficient statistic for α where G0 is continuous. It is easy to
write down the posterior density with an appropriate prior. The sampling methods being
discussed in this section are all based on continuous baseline. We write here that

p(k|α) =C · Γ(α)αk

Γ(α +n)
, k = 1, · · · ,n,

where C is a constant.
However, if G0 is discrete, k is no longer a sufficient statistic; this result appears to be

not so well known. Therefore, if the result is used, this is a violation of the sufficiency
principle; we will discuss this issue in Section 3.

2.2. Current Sampling Methods

In this section, we will discuss three current sampling methods for the concentration
parameter: the adaptive reject sampling method (ARS), the mixture of Gamma method and
the grid method.

We first review the ARS method (Gilks 1992).
Theorem. Let φ = ln(α), where α is the concentration parameter. With a logconcave prior
π(φ), the posterior density π(φ |k) is logconcave, (i.e. strongly unimodal with a unique
mode).

Rasmussen (2000) first demonstrated the logconcavity of π(φ |k) but here we provide
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our own proof in the appendix. More generally, we show that if prior π(φ) is logconcave,

i.e. d2 ln(π(φ))
dφ2 < 0, then the posterior density on the transformed scale is logconcave. We

mention two useful priors in the appendix when φ = ln(α). The shrinkage prior, f (2,2)
distribution, is

π(α) =
1

(1+α)2 ,α > 0.

Another example, the half-Cauchy prior, is

π(α) =
2

π(1+α2)
,α > 0.

Knowing that π(φ |k) is logconcave, we can use the adaptive reject sampling method
(Gilks 1992) to draw φ . This sampling procedure was performed with the R package ars.
Then we can compute α in the form α = eφ . There is limitation to the ARS method due to
tail problem, i.e. the sampling distribution for the two tails of the distribution is not accurate
and this can be seen in the simulation section.

Nandram and Choi (2004) discussed the use of the gamma prior, which was introduced
earlier by Escobar and West (1995). One concern is that the mix of Gamma method gives
bimodal sampling distribution whereas a unimodal density of α is preferred. Another prob-
lem is that it requires informative Gamma prior and this remains to be validated.

Nandram and Yin (2016) transformed α according to ρ = 1
1+α

, this is actually the cor-
relation, Cor(yi,y j), i ̸= j, in the DP. The posterior density of ρ is

π(ρ|k) ∝
(1−ρ)k−1ρn−k

∏
n−1
j=1(1−ρ +ρ j)

, 0 ≤ ρ ≤ 1.

Note that π(ρ|k) is well defined on [0,1]. However, we see that it is not in a simple form
and a one-dimensional grid method was used to draw samples from it, thereby avoiding
Markov chain Monte Carlo methods (e.g. Metropolis - Hastings sampler). The unit interval
is simply divided into 100 sub-intervals of equal width, and the joint posterior density is
approximated by a discrete distribution with probabilities proportional to the heights of the
continuous distribution at the mid-points of these sub-intervals. Now, it is easy to draw a
sample from this univariate discrete distribution of π(ρ|k); the discreteness is removed by
jittering. Nonetheless, there is a drawback of this method, because it may not perform well
when ρ has substantial probability near 0 or 1.

2.3. Ratio of Uniforms Method

Liu and Nandram (2020) proposed to use the ratio of uniforms method to obtain poste-
rior samples of α . Originally introduced by Kingderman and Monahan (1977), a point is
generated uniformly over a certain region in the plane.

To achieve this, independent uniform random variables are simulated,

U,V ∼ Uniform(0,1)
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and those that fall outside some set are discarded. The ratio V/U is then calculated for those
points inside the set. The ratio values obtained are used as observations from the required
distribution.

There are other priors that can be used but here for illustration purpose, we use the
posterior distribution of α with a noninformative prior, π(α) = 1

(1+α)2 ,

h(α) = π(α|k) ∝
αkΓ(α)

Γ(α +n)(α +1)2 , α > 0.

A half Cauchy prior can be used for the prior of α , but there is very little difference
between the two when transformed to [0,1] a posteriori. This method can proceed using the
following algorithm.

1. Generate u and v independently from U(0,b) and U(c,d).
2. Set α = v/u if u2 ≤ h(v/u) and return to (i) otherwise.

Here, b, c and d are given by

b = sup
α

√
h(α), c =−sup

α

α
√

h(α), d = sup
α

α
√

h(α).

Because α is positive, we set c = 0. This algorithm is very easy to implement and it is
very efficient to get samples.

2.4. Simulation Study

It is convenient to compare different sampling methods using simulations because we
can obtain the true distribution of α and compare the theoretical values with the sampled
values. Firstly we find the theoretical percentiles of α using fine grids of width 0.0025.
Then we perform the four sampling methods to get 10,000 sample points. We can find the
sample percentiles by ordering the sample values and find corresponding quantiles as the
theoretical values. Lastly, we compare the theoretical value versus the sampled value using
a quantile-quantile plot.

In order to compare the four sampling methods, we take the sample size n = 12, 25,
100 and the number of distinct values k to be roughly equal to lnn, with k = 2, 3 and 5
respectively. We choose a common prior, the shrinkage prior,

π(α) =
1

(1+α)2 ,α > 0.

to be used for all four sampling methods.
Results are shown in Figures 1, 2 and 3. All four methods provide reasonable sampling

distributions for α . However, the ratio of uniforms method is most accurate. In all these fig-
ures, the points of ratio of uniforms method fall on almost a 45 degree straight line through
the origin and there is some problem with the other plots at various places (e.g. not fitting
exactly on the 45 degree straight line through the origin). As we mentioned in Section 2, the
ARS and grid method have tail problems and mixture of gamma uses an informative prior
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which remains to be validated. Our method does not require informative gamma prior and
it is easy to implement. So we recommend using ratio of uniforms to get random samples
of α .

Figure 1: Comparison for the posterior distributions of the concentration parameter using
the four sampling methods (n= 12, k = 2)

3. Discrete Baseline

Current literature on DP has been using continuous baseline distributions, see Antonelli,
Trippa and Haneuse (2016). Teh, Jordan, Beal and Blei (2006) developed a hierarchical
Dirichlet process model with a discrete baseline distribution. Apparently, they were not
aware of the problem with the discrete baseline distribution when sampling the concentra-
tion parameter and they inadvertently attempted to “sweep the problem under the rug.”

Here, we explore a possibility of using a discrete baseline. One problem is that the
distinct values in the sample are no longer the true distinct ones because of discrete baseline.
We allow observing a “new” value from the baseline distribution that is the same as one that
is already in the sample. To solve this problem, we introduce latent variables,

Zi =

{
1, if a draw is made from the baseline,

0, if a draw is from the value that is already observed

with Zi
ind∼ Ber( α

α+i−1 ), i = 1, · · · ,n. Therefore, the true number of distinct values is k =

∑
n
i=1 zi.
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Figure 2: Comparison for the posterior distributions of the concentration parameter using
the four sampling methods (n= 25, k = 3)
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Figure 3: Comparison for the posterior distributions of the concentration parameter using
the four sampling methods (n= 100, k = 5)
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Our goal is to predict the finite population proportion for a given area based on a random
sample from it. This could be applied to many areas of study, for example we want to predict
the infectious rate (like a proportion where the denominator is fixed) of a given farmland for
some disease and it is not feasible to observe all the plants on the farm, however, we could
take a random sample and estimate the posterior mean using this sample. We have observed
n of them and want to make predictions to the N −n individuals. We consider three cases.

Case 1. We use the one-level DP model for the population values to make inference for
a finite population mean. For this case, the baseline distribution is chosen to be normal. We
assume that

y1 · · · ,yN |G ∼ G,

G ∼ DP(α,G0),

G0 ∼ N(µ,σ2),

π(µ,σ2) ∝
1

σ2 ,

π(α) =
1

(1+α)2 .

Here, we observe the number of distinct values k and then sample α as discussed in
Section 2. For each sampled α value, we predict the unobserved Yn+1, · · · ,YN using the
Polya urn scheme,

Yn+i+1|y1, · · · ,yn,yn+1, · · · ,yn+i ∼
α

α +n+ i
G0 +

n+ i
α +n+ i

n+i

∑
j=1

δy j ,

for i = 1, · · · ,N−n−1, (Nandram and Yin 2016 a, b). So it is easy to draw the nonsampled
values one by one using the Polya urn scheme.

Case 2a. We correct the true number of observations from the baseline distribution
∑

n
i=1 zi, where zi = 1 when obervation i is a distinct value from G0. The discrete model is

yi|G
ind∼ G, i = 1, · · · ,n,

G|p,α ∼ DP(α,Bin(m, p)),

zi|α, p ind∼ Ber(
α

α + i−1
),

π(α) =
1

(1+α)2 ,π(p) = 1.

Where n is the sample size and m is the predefined number of the total trials in the
Binomial distribution. The joint posterior density can be written as

π(z, p,α|y) ∝
1

(1+α)2×

n

∏
i=1

[pyi(1− p)m−yi ]zi [pyi(1− p)m−yi ]1−zi ·
[

α

α + i−1

]zi
[

1
α + i−1

]1−zi

.
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We obtain the conditional distribution of the Gibbs sampler

zi|α, p,y ind∼ Ber(Qi),

where

Qi =
α

α+i−1 pyi(1− p)m−yi

α

α+i−1 pyi(1− p)m−yi + i−1
α+i−1 pyi(1− p)m−yi

=
α

α + i−1
, i = 1, · · · ,n,

p|z,α,y ∼ Beta( ∑
{zi=1}

yi +1, ∑
{zi=1}

(m− yi)+1),

π(α|z, p) ∝
α∑

n
i=1 ziΓ(α)

Γ(α +n)(α +1)2 .

Here, α is drawn from its conditional posterior distribution using our preferred ratio
of uniforms method. For each sampled α , we predict one set of unobserved values and
compute the finite population mean using the Polya urn scheme. We used a burn in of 1000
and thinning of 10 to get a sample of 10,000. We diagnosed the Gibbs sampler after the
chain is run. For the data example we use in this paper, the diagnostic result shows that the
effective sample sizes are 4537, 5042 and 4978 for α , p and ∑

n
i=1 zi respectively. P-values

from the Geweke’s tests are 0.384, 0.533 and 0.628 respectively. So at this setting the Gibbs
sampler is mixing well. It took about 22 seconds to obtain 10,000 sample values on our
computer (see Section 2).

Case 2b. It would be interesting to see the difference of the prediction between a Polya
urn scheme and a stick breaking procedure with the idea borrowed from Sethuraman (1994),
Ishwaran and James (2001), Kalli, Griffin and Walker (2011). Using the model in Case
2a, but suppose we have already observed y∗1, · · · ,y∗d , d distinct values (1 ≤ d ≤ n), with
n1 ≥ n2, · · · ,≥ nd being their corresponding counts. Here, we allow some values to be unob-
served. Now we want to predict N1−n1, · · · ,Nd −nd , for convenience, we write N∗

1 , · · · ,N∗
d .

Let N∗ = N −n, so that we know N∗ = ∑
d
i=1 N∗

i . Now

N∗
1 , · · · ,N∗

d ∼ Multinomial
{

N∗,(w1, · · · ,wd)

}
,

where w1, · · · ,wd are the weights in stick-breaking algorithm with ∑
∞
s=1 ws = 1, w1 = ν1,

w2 = ν2(1−ν1), · · · , wd−1 = νd−1 ∏
d−2
i=1 (1−νi), wd = ∏

d−1
i=1 (1−νi), and

νi
iid∼ Beta(1,α).

Given α from the Gibbs sampler, we can draw νi and thus draw the predicted values from a
Multinomial distribution.

With the posterior samples of α from the Gibbs sampler in Case 2a, the conditional
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posterior distribution of ν is

π(ν |α,d) ∝ ν
n1
1 [ν2(1−ν1)]

n2 · · · [νd−1(1−ν1) · · ·(1−νd−2)]
nd−1

[(1−ν1) · · ·(1−νd−2)(1−νd−1)]
nd ×

d

∏
i=1

(1−νi)
α−1

∝ ν
n1
1 (1−ν1)

n2+···+nd+α−1
ν

n2
2 (1−ν2)

n3+···+nd+α−1 · · ·νnd−1
d−1 (1−νd−1)

nd+α−1.

Therefore,

π(νi|α,d) ind∼ Beta(ni +1,
d

∑
j=i+1

n j +α).

Once samples of νi are obtained, we can predict the unobserved response values from a
Multinomial distribution discussed above.

We will implement the three cases we discussed in the following example.

4. Real Data Analysis

The data we present here are about Phytophthora Epidemic in Bell Pepper from Gumpertz
(1997). The pathogen Phytophthora Capsici Leonian causes lesions on the crown, stem, and
leaves of bell pepper, and rapidly causes the plant to die. For their analyses, they took one
field which was a square lattice of 20 × 20 quadrats with 2 to 3 bell pepper plants per
quadrat as an example. The response variable within each quadrat was presence or absence
of disease in a quadrat. If any plant was wilted, dead, or had lesions on stem, crown, or
leaves, disease was considered to be present in the quadrat. Disease presence or absence
was recorded for each quadrat on nine dates throughout the growing season, from 6/16/92
to 8/5/92. Figure 2 shows the disease incidence on 6/25/92.

We want to make this data set usable to mimic our discrete response scenario so we
perform the following sampling procedure. We divide each row of the field by every fifth
quadrats and then we take one random sample within each row of the field. We assume
that the sampled value follows a binomial distribution with total number of trials being
5. Now, our goal is to predict the unobserved quadrats and estimate the infectious rate,
which is really a finite population proportion (mean) in this application. We performed the
estimation using both discrete baseline and continuous baseline approaches, as discussed in
Section 3.2.

We report the posterior means (PM), posterior standard deviations (PSD) and the cred-
ible intervals (CI) in Table 1. Given the true infectious rate of 0.1525, we found that the
continuous (Normal) baseline distribution provides an unbiased estimation to the infectious
rate. However, the lower end of 95% credible interval is negative. This is because the pos-
terior sample is taken over the whole real line as a nature of the Gaussian distribution. We
know in reality, the infectious rate is a probability and should always be positive. Here, we
naively use normal baseline because this is often chosen to be the G0 in many practices. But
for obvious reasons we now want to avoid it. PMs are roughly the same for Case 1 and Case
2a but Case 2b has some bias, with a larger estimation, however, the PSD is the smallest



32 Y. Liu, B. Nandram: Sampling methods for the concentration paramete ...

Figure 4: Map of Disease Incidence.

for Case 2b. Binomial baseline (Case 2a) has slightly more variability because it considers
the uncertainty of which urn a new observation is drawn. Last but not least, the prediction
using a Multinomial approach (Case 2b) can significantly reduce the standard deviation and
it provides a realistic result because it is based on a discrete distribution. Figure 5 shows
the posterior distribution of the three estimates of the finite population mean. The plots are
similar for Cases 2a and 2b but Case 2a is more spread out. Note that the plots are in the
same range (easier for us to visualize and compare). Similar to the table, the Multinomial
approach gives most concentrated plot. The Normal approach exceeds zero to the negative
side.

Table 1. Estimation of the Infectious Rate (True Rate∗: 0.1525)
Baseline Distribution PM PSD 95% CI

Case 1. Normal (µ,σ2) 0.1551 0.1728 (-0.2221,0.4735)
Case 2a. Binomial (n∗∗, p) 0.1588 0.219052 (0,0.6800)

Case 2b. Multinomial (N∗∗,w) 0.1698 0.0661 (0.0667,0.3267)

PM = Posterior Mean; PSD = Posterior Standard Deviation; CI = Credible Interval. * We
can compute the true rate with data from the whole 20×20 study site. ** In our case n = 5
and N = 80−20 = 60.

5. Concluding Remarks

We have proposed a new sampling method for the standard concentration parameter of
the Dirichlet Process and compared it with three methods. The Ratio of Uniforms is more
accurate and it is faster considering the computational time. In the meantime, we pointed out
a problem that current researchers have ignored regarding the baseline distribution of the DP.
We have corrected the true number of distinct values in the sample by introducing a latent
variable which indicated which urn a new observation is from. By using this approach,
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Figure 5: Posterior Distributions of the Finite Population Mean (Proportion) for the Three
Cases

we are able to give a more accurate estimation of the finite population mean when the
observations are discrete. We used a Phytophthora example to illustrate our approach. We
concluded the discrete baseline method is more reasonable.

There are two directions we could proceed to extend our current work. First, we might
consider a spatial model for the example provided in this paper. However, it is not the
purpose of our paper to provide a complete analysis of these data.

Second, we could extend the one-level DP model to a two-level DP model, where there
are groups naturally occur in the data. The two-level model is the Dirichlet process mixture
(DPM) model with a DP on the second level. Recently, Yin and Nandram (2020 a,b) placed
the DP on the first level but not on the second. They claimed that their approach is good for
data with gaps, outliers and ties.

Third, the work we have done in this paper also inspired us to study sensitivity to the
baseline. We may give a very weak assumption to the baseline, i.e. either logconcave or
unimodal. These can be discretized nicely. For a logconcave density the slopes of the tan-
gent lines decrease all the way or the chords joining any two points will have non-increasing
slopes all the way from left to right on the real line. Also, a unimodal density has heights
increasing to the mode and then decreasing (i.e. the cumulative distribution function is first
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convex up to the mode and concave after the mode). So, essentially, we can use a discrete
baseline distribution in the DPM.

Therefore, our work on discrete baseline distribution is an important start. However,
although we have a good algorithm for the concentration parameter of the Dirichlet process,
based on the ratio of uniforms, some improvement may be possible.
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Appendix

Logconcavity of the Posterior Density of α

Proof: It is easy to show that the likelihood function for α is

p(α | k) ∝
αk

∏
n−1
j=1( j+α)

,α > 0,

where k is the number of distinct values for a continuous baseline. For any prior π(α), using
Bayes’ theorem, the posterior density of α is

π(α | k) ∝ p(α | k)π(α).

If we make the transformation φ = log(α), p(α | k) will transform to p1(φ | k) = ekφ

∏
n−1
j=1( j+eφ )

and π(α) will transform to π1(φ) and the Jacobian is eφ . We show that if π1(φ) is logcon-

cave, i.e. d2 ln(π1(φ))
dφ2 < 0, then the posterior density on the transformed scale is logconcave.

Let

∆(φ) = (k+1)φ −
n−1

∑
j=1

ln( j+ eφ )+ ln(π1(φ)).

Then,
d∆(φ)

dφ
= (k+1)−

n−1

∑
j=1

eφ

j+ eφ
+

d ln(π1(φ))

dφ

and
d2∆(φ)

dφ 2 =−
n−1

∑
j=1

jeφ

( j+ eφ )2 +
d2 ln(π1(φ))

dφ 2 < 0.

Therefore, under the assumption of logconcavity for π1(φ), the posterior density of α is
logconcave.
We mention two useful priors when φ = ln(α). The shrinkage prior, f (2,2) distribution, is

π(α) =
1

(1+α)2 ,α > 0.

Another example, the half-Cauchy prior, is

π(α) =
2

π(1+α2)
,α > 0.

Both priors after making the transformation φ = ln(α) are logconcave.




